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Resumo

Esta tese tem três propósitos principais. Primeiro, investigamos soluções do
fluxo de Ricci que preservam a estrutura de produto torcido. Neste caso, nós mostramos
que a fibra é uma variedade de Einstein e a equação do Fluxo de Ricci na variedade
produto é equivalente a um sistema de equações de evolução na base. Em seguida,
consideramos soluções do fluxo Ricci que preservam a estrutura do produto torcido e
são definidos para todo tempo negativo, as chamadas soluções anciãs. Nós provamos
a não-existência de tais soluções quando o produto torcido tem base compacta e a
constante de Einstein de sua fibra é não-positiva.

Em segundo lugar, estudamos quase solitons de Ricci em produtos torcidos.
Mostramos que um quase soliton de Ricci gradiente em um produto torcido, (Bn ×h
Fm, g, f, λ), cuja função potencial f depende da fibra, ou é um sóliton de Ricci ou λ
não é constante e o produto torcido, a base, e a fibra são variedades de Einstein que
admitem campos de vetores conformes. Assumindo a completude, uma classificação é
fornecida para os quase solitons Ricci em produtos torcidos, cujas funções potenciais
dependem da fibra. Uma propriedade importante da função potencial é provada, mais
precisamente, sua decomposição em termos de funções que dependem ou da base ou
da fibra. No caso de um sóliton de Ricci completo, provamos que a função potencial
depende apenas da base.

O terceiro tema ocupa-se do fluxo de Ricci-Bourguignon em uma variedade com-
pacta de dimensão 3. Esta é uma família de equações de evolução a 1 parâmetro, ρ,
e nós mostramos que a importante estimativa de Hamilton-Ivey é verdadeira quando
esse parâmetro está no intervalo (−1/2, 1/4). Como consequência dessa desigualdade,
mostramos que as soluções anciãs, em variedades tridimensionais compactas, possuem
curvatura seccional não negativa, quando sua curvatura escalar é uniformemente limi-
tada no tempo e ρ ∈ (−1/2, 1/4).

Palavras Chave: Fluxo de Ricci, Fluxo de Ricci-Bourguignon, Desigualdade de
Hamilton-Ivey, Soliton de Ricci, Almost Soliton de Ricci, Variedade de Einstein, Pro-
duto Warped, Campos Conformes.



Abstract

This thesis has three main purposes. First we investigate solutions of the Ricci
flow which preserve the warped product structure. In this case, we show that the
fiber is an Einstein manifold and the Ricci Flow equation on the product manifold
is equivalent to a system of evolution equations on the base. We then turn to the
solutions of the Ricci Flow that preserve the warped product structure and are defined
for all negative time, the so called ancient solutions. We prove the nonexistence of such
solutions if the base is compact and the Einstein constant of its fiber is non positive.

Secondly we study Ricci Almost Soliton on warped products. It is shown that a
gradient Ricci almost soliton on a warped product, (Bn×h Fm, g, f, λ) whose potential
function f depends on the fiber, is either a Ricci soliton or λ is not constant and the
warped product, the base and the fiber are Einstein manifolds, which admit conformal
vector fields. Assuming completeness, a classification is provided for the Ricci almost
solitons on warped products, whose potential functions depend on the fiber. An im-
portant decomposition property of the potential function in terms of functions which
depend either on the base or on the fiber is proven. In the case of a complete Ricci
soliton, the potential function depends only on the base.

The third theme is concerned with the Ricci-Bourguignon Flow on a compact
3-dimensional manifold. This is a family of evolution equations on a parameter ρ and
we show that the important Hamilton-Ivey estimate holds when ρ lies in (−1/2, 1/4).
As a consequence of this inequality, we show that ancient solutions on compact three
dimensional manifolds with scalar curvature uniformly bounded on time, has positive
sectional curvature, provided ρ ∈ (−1/2, 1/4).

Keywords: Ricci Flow, Ricci-Bourguignon Flow, Hamilton-Ivey Inequality, Ricci Soli-
ton, Ricci Almost Soliton, Einstein Manifold, Warped Product, Conformal Fields.
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Introduction

A family of Riemannian metrics g(t), t ∈ [0, T ), on a manifold Mn is called a

Ricci Flow if the following evolution equation is satisfied:

∂

∂t
g(t) = −2Ric(t), (1)

where Ric(t) is the Ricci tensor of the metric g(t).

Since it was introduced, the Ricci flow has drown the attention of many mathe-

maticians, mainly because it has shown to be a powerful technique in order to solve

many important problems in Differential Geometry, such as the Poincaré Conjecture

[44]. Its first appearance was in a paper written by Richard Hamilton [29], where

compact three manifolds carrying metrics of positive Ricci curvature were classified

by using the Ricci flow. One of the main reasons, why Ricci flow was successfully

implemented in dimension three, is because in this dimension Ricci flow preserves

positivity of Ricci curvature. Even in this dimension, if one removes the assumption of

positivity on the Ricci tensor, the problem of controlling the Ricci flow becomes much

harder. One approach that may help understanding the general case, where the lack

of positivity of the Ricci tensor is present, is to put more symmetry into the problem.

One can assume, for instance, the manifold to be rotationally symmetric, a symmetric

space, a Lie group and so on. A first problem to be analyzed is if the flow preserves

such a symmetry. Another problem to be concerned with is to understand the singular

solutions, if any, inside the chosen class of symmetry. An important notion in the

process of understanding such singular solution is that of ancient solutions. A solution

of the Ricci Flow is called an ancient solution if it is defined on a set t ∈ (−∞, T ),

T ∈ R.

In this thesis, we investigate solutions of the Ricci flow which preserves warped
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Introduction 14

products. We characterize such solutions and then we get necessary conditions for

this property to be preserved, since the Ricci flow does not preserve warped product

structure in general. More precisely we have:

Theorem A Let (Mn+m = Bn ×h0 Fm, g0) be a warped product of (Bn, g0
B) and

(Fm, g0
F ) with non constant warping function h0 : B → (0,∞) and g0 = g0

B + h2
0g

0
F .

Let (Mn+m, g(t)), t ∈ [0, ε), ε ∈ (0,∞], be a Ricci flow such that g(0) = g0. The

flow (Mn+m, g(t)) preserves the warped product structure of (Mn+m, g0) if, and only

if, (Fm, g0
F ) is an Einstein manifold and there exists a family of smooth functions

u(t) : B → R such that

g(t) = gB(t) + e2u(t)g0
F (2)

∂

∂t
gB(t) = −2Ric(gB(t)) + 2m∇gB(t)∇gB(t)u(t) + 2mdu(t)⊗ du(t), (3)

∂

∂t
u(t) = ∆gB(t)u(t) +m|∇gB(t)u(t)|2 − R0

F

m
e−2u(t), (4)

where R0
F is the constant scalar curvature of the fiber.

Aiming the understanding of singularities of the Ricci flow which preserves the

warped product property, using the Scalar Maximum Principle for evolving metrics,

we prove that there are no ancient solutions that are warped product along the time

t, its fiber has non positive scalar curvature and its base is compact.

Theorem B Let (Mn+m = Bn × Fm, g(t)) be an ancient Ricci Flow that is warped

product along the time t and that has compact base. Then (Fm, gF (t)) is Einstein for

each time t with positive Einstein constant.

A self-similar solution of the Ricci Flow is a solution of the Ricci flow whose

evolution is performed by means of scaling and diffeomorphisms. Applying the last

theorem to self-similar solutions we prove that neither shrinking nor steady Ricci Flow

that preserves warped product can exist when its base is compact and its fiber has

non positive scalar curvature (see Corollary 5), a result proved in [23] using an Elliptic

Maximum Principle.

Self-similar solutions of the Ricci flow have a static formulation (i.e., described

by an equation independent of time). They are called Ricci solitons, and are defined
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Introduction 15

as Riemannian manifolds (Mn, g) for which there are a vector field X and a constant

λ satisfying the equation

Ric+
1

2
LXg = λg.

When the vector field X is the gradient of a function f : M → R, then the Ricci soliton

is called gradient Ricci soliton and we use the notation (M, g, f, λ). Ricci almost solitons

were introduced by Pigola and collaborators [46] by allowing the constant λ to become

a function. The second goal of this thesis is to understand semi-Riemannian warped

product manifolds admitting a structure of Ricci almost solitons. As a starting result,

we have an important decomposition property of the potential function in terms of

functions which depend either on the base or on the fiber. Such fact allows us to break

down the fundamental equation of a Ricci almost soliton into equations on the base

and on the fiber.

The result is based on the following proposition:

Proposition C Let (Bn ×h Fm, g, f, λ) be a Ricci almost soliton defined on a semi-

Riemannian warped product manifold, where the base (Bn, gB) or the fiber (Fm, gF )

are either Riemannian or semi-Riemannian manifolds, h : B → R is a positive smooth

function and g = gB + h2gF . Then the potential function f can be decomposed as

f = β + hϕ, (5)

where β : B → R and ϕ : F → R are smooth functions.

This decomposition has some consequences. Among them is the one concerning

complete warped product Ricci solitons with non constant warping function. Before we

state the result, it is worth remarking that in most of the examples of Ricci solitons built

on warped products the assumption in which the warping function does not depend on

the fiber is carried out. The result then says that in the presence of completeness of

the base, this is satisfied automatically.

Corollary D Let (B ×h F, g, f, λ) be a Ricci soliton on a complete non trivial semi-

Riemannian warped product. Then f does not depend on the fiber.
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Another consequence of the decomposition stated above is that when the poten-

tial function depends on the fiber a rigidity result is obtained, in the sense that when

the function λ is not constant, the manifold is necessarily an Einstein manifold. More

concisely:

Theorem E If (Bn×hFm, g, f, λ) is a non-trivial warped product Ricci almost soliton

with f non constant on F , then either λ is not constant and (Bn ×h Fm, g) is an

Einstein manifold or (Bn ×h Fm, g, f, λ) is a Ricci soliton.

Assuming completeness, the above theorem together with the previous corollary

tells us that a Ricci almost soliton on a warped product manifold with non constant

warping function and potential function depending on its fiber must be an Einstein

manifold. Now the fundamental equation of the Ricci almost soliton forces the gradient

of the potential function to become a conformal field, from where a classification is

provided for such spaces (see Theorem 15).

The third theme to be studied in this thesis is the Hamilton-Ivey estimate in

the context of the Ricci-Bourguignon Flow, which is a family of Riemannian metrics

g(t), t ∈ [0, T ), on a manifold Mn, satisfying the following perturbation of the Ricci

Flow
∂

∂t
g(t) = −2(Ric(t)− ρR(t)g(t)), (6)

where Ric(t) and R(t) are the Ricci tensor and the scalar curvature, respectively, of

the metric g(t) and ρ is a real parameter. To better explain the results, in what

follows we will comment on previous results both for the Ricci Flow and for the Ricci-

Bourguignon Flow. The Hamilton-Ivey estimate was first proved independently by Ivey

[31] and Hamilton [28] for the Ricci Flow, that is, when ρ = 0. Some consequences of

these estimates were given by both authors. In [14] Catino, Cremaschi and coworkers

generalized several properties of the Ricci flow to the case where ρ 6= 0. See also

Cremaschi’s thesis [17] for more on that, including a list of open problems. Regarding

the existence of solutions in the compact case, for general dimension n, they found out

that it is true once the constant ρ lies in the range (−∞, 1/(2(n − 1))), a result also

proved in [41]. For dimension 3 we then have that a solution exists when ρ ∈ (−∞, 1/4)

for any initial metric. Since the Ricci flow is a particular case of this family of flows

studied in [18] for ρ = 0, a natural question is whether the Hamilton-Ivey estimate is
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true or not for the Ricci-Bourguinon flow corresponding to some ρ 6= 0. It turns out

that Catino and coworkers, in the same work, showed that such an estimate is true for

solutions of the Ricci-Bourguinon flow on compact manifolds, provided ρ ∈ [0, 1/6).

Our main goal concerning the Ricci-Bourguignon flow in this thesis is to investigate this

important inequality for all ρ in which a solution is guaranteed, i.e., for ρ ∈ (−∞, 1/4).

When ρ is positive and below 1/4 we proved that solutions to the Ricci-Bourguignon

in dimension 3 satisfy the Hamilton-Ivey estimate, which extends the result earlier

mentioned. We then have,

Theorem F Let M3 be a compact three manifold, ρ ∈ [0, 1/4) and g0 be a Riemannian

metric on M satisfying the normalized assumption min
p∈M

ν0(p) ≥ −1, where ν0 is the

smallest sectional curvature of g0. If g(t), t ∈ [0, T ), is the solution of the Ricci-

Bourguignon Flow corresponding to ρ satisfying g(0) = g0, then the scalar curvature

R(t) of g(t) satisfies

R ≥ −ν(log(−ν) + log(1 + 2(1− 4ρ)t)− 3), (7)

at any point (p, t) where the smallest sectional curvature ν(p, t) of gp(t) is negative.

Turning to the negative case, we proved that the result does hold, provided the

parameter ρ is above −1/2. In this case the estimate takes a shape that is slightly

different from that in the positive case, since one needs to deform the eigenvalues of

the curvature operator, in order to be able to apply the Tensor Maximum Principle,

proved for the Laplace operator in [27] and extended to other differential operators

later in [14]. That explains the constants in the statement below.

Theorem G LetM3 be a compact three manifold, ρ ∈ (−1/2, 0], θ1 = 4θ2 = 1/2(2ρ2−

2ρ+ 1) and let g0 be a Riemannian metric on M satisfying the normalized assumption

min
p∈M

ν0(p) ≥ −1, where ν0 is the smallest sectional curvature of g0. If g(t), t ∈ [0, T ),

is the solution of the Ricci-Bourguignon Flow corresponding to ρ satisfying g(0) = g0,

then the scalar curvature R(t) of g(t) satisfies

R ≥ −ν(θ1 log(−ν) + θ2 log(1 + 2(1 + 2ρ)t)− 3), (8)

at any point (p, t) where the smallest sectional curvature ν(p, t) of gp(t) is negative.
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Among the most important consequences of the Hamilton-Ivey estimate is the

one where ancient solutions of the Ricci flow are proven to have nonnegative sectional

curvature [28]. This geometric consequence was obtained in [14] for singularity models

of the Ricci-Bourguignon Flow when ρ ∈ [0, 1/4). It follows from Theorem G that it is

true for ancient solutions of the Ricci-Bourguignon Flow with ρ ∈ (−1/4, 1/2), as we

state below.

Theorem H Let (M3, g(t)), t ∈ (−∞, T ), be a compact ancient solution of the Ricci-

Bourguignon flow with uniformly bounded scalar curvature. Assume that ρ ∈ (−1/2, 1/4).

Then g(t) has nonnegative sectional curvature, for as long as it exists.

Brasília, November 28, 2018

Valter Borges
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Chapter 1

Preliminaries

The aim of this chapter is to present the preliminaries we need in order to state

and prove the main results of this thesis.

In the first section, Section 1.1, we introduce the Ricci-Bourguignon Flow. We

give a list of the results that will be used in Chapter 4. We outline the important

Uhlenbeck’s trick for the equation of the curvature operator, used for the first time by

Hamilton in [29], and then we present features of the three dimensional case. We end

this section introducing the concept of almost Ricci soliton.

In Section 1.2, we describe Riemannian and semi-Riemannian warped products.

Such manifolds will be considered both in Chapter 2 and Chapter 3.

In Section 1.3, we introduce the important notion of conformal vector fields and

then we concentrate in the gradient ones. We present a local characterization which

says that Riemannian manifolds carrying such vector fields are a warped product of

a line and an (n − 1)-dimensional hypersurface in a neighborhood of a regular point.

This section ends with the classification of Einstein manifolds carrying conformal vector

fields.

1.1 Ricci-Bourguignon Flow

In 1981 Bourguignon [7] introduced the problem of studying an evolutionary

version of the Einstein equation. He suggested the investigation of a one parameter

family of evolutionary equations and indicated some directions to be followed. It turns

out that when the parameter is zero, then the evolution corresponds to the Ricci
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1.1. Ricci-Bourguignon Flow 20

flow, that has been intensively studied in the last years. The Ricci flow plays an

important role in proving important results in Differential Geometry. The celebrated

Poincaré Conjecture, for example, was proved in [44] by Perelman, following Hamilton’s

program using Ricci Flow. In his seminal paper, Hamilton [29] showed the power of

this technique by classifying closed 3 manifolds with positive Ricci curvature. Since

then, Ricci flow has been intensively investigated.

The family of flows was later called the Ricci-Bourguignon flow, and some results

known for the Ricci flow were extended to the Ricci-Bourguignon Flow by Catino,

Cremaschi and collaborators [14]. It is worthwhile to note that some of these results

are sensitive to the range of the parameter that occurs in its definition (see Definition

(1)).

1.1.1 Definition and Existence

Let g(t), t ∈ [0, T ), be a family of Riemannian metrics on an n−dimensional

manifold Mn. For each t ∈ [0, T ), let ∇(t), Rm(t), Ric(t) and R(t) be the Levi-Civita

connection, the Riemannian curvature tensor, the Ricci tensor and the scalar curvature,

respectively, associated to the metric g(t). In what follows we will omit the t whenever

it is clear from the context.

Definition 1 We say that a 1-parameter family of Riemannian metrics {g(t)}t∈[0,T )

on a manifoldMn is a solution of the Ricci-Bourguignon flow if it satisfies the equation

∂

∂t
g = −2(Ric− ρRg), (1.1)

where ρ is a given constant. We say that a Ricci Bourguignon Flow {g(t)}t∈[0,T ) on M

starts at g0 if g(0) = g0.

The tensor on the right hand side of (1.1) has special interest for certain values of ρ.

For instance, if ρ = 1/(2(n − 1)) the corresponding tensor is the Schouten tensor, an

important tensor in conformal geometry. When ρ = 0 it is the Ricci tensor and the

flow gives origin to the Ricci flow.

A general existence result concerning the Ricci-Bourguignon Flow on compact

manifolds is the following:
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1.1. Ricci-Bourguignon Flow 21

Theorem 1 ([14], [41]) Consider a compact Riemannian manifold (Mn, g0) of di-

mension n. If ρ < 1/(2(n − 1)), then there exists a unique Ricci-Bourguignon Flow

starting at g0.

This theorem was first proved by Hamilton [29] in the case where ρ = 0. We

observe that the proof of the theorem above highlights the nonexistence of Ricci-

Bourguignon Flows for generic initial metrics on compact manifolds, when ρ > 1/(2(n−

1)). It is still an open problem to determine whether (1.1) admits a solution for general

initial metrics in the case ρ = 1/(2(n− 1)), as it was observed in [14].

1.1.2 Evolution Equation of the Curvature Operator

For later use we first consider the general case of a smooth family of metrics

{g(t)}t∈(−ε,ε) satisfying the more general evolution equation

∂

∂t
g = σ, (1.2)

where σ is a symmetric two tensor depending smoothly on t. Our goal here is to collect

the variation formulas for the curvature tensors of g(t). The proof of the proposition

below can be found either in [5], page 62, or in [18], Chapter 3. We use local coordinates

to state the formulas.

Proposition 1 If a family of metrics {g(t)}t∈(−ε,ε) evolves via (1.2), then:

1. the inverse g−1(t) of the metric g(t) evolves by the equation

∂

∂t
gij = −gaigjbσab; (1.3)

2. the curvature operator Rm(t) of the metric g(t) evolves by the equation

∂

∂t
Rl
ijk =

1

2
glr
[
∇i∇jσkr +∇i∇kσjr −∇i∇rσjk −∇j∇iσkr

−∇j∇kσir +∇j∇rσik
]
; (1.4)

3. the Ricci tensor Ric(t) of the metric g(t) evolves by the equation

∂

∂t
Rij =

1

2
gab(∇a∇iσjb +∇a∇jσib −∇a∇bσij −∇i∇jσab); (1.5)
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4. the scalar curvature R(t) of the metric g(t) evolves by the equation

∂

∂t
R = ∆tr(σ)− div(div σ)− 〈σ,Ric〉 , (1.6)

where tr(σ) is the trace of σ(t) with respect to g(t) and div, ∆ and 〈, 〉 are taken

with respect to g(t).

As an application of the evolution equation (1.3), Proposition 1, we have the

following result, which will be important in Section 2.2.

Proposition 2 Let (Mn, g(t), u(t)), t ∈ [0, T ), be a family satisfying the coupled sys-

tem of evolution equations

∂

∂t
g(t) = −2Ric(t) + 2m∇g(t)∇g(t)u(t) + 2mdu(t)⊗ du(t), (1.7)

∂

∂t
u(t) = ∆g(t)u(t) +m|∇g(t)u(t)|2 − r

m
e−2u(t), (1.8)

where m ∈ N and r ∈ R. Then

(
∂

∂t
−∆g(t)

)
|∇g(t)u|2 = −2|∇g(t)∇g(t)u|2 +m

〈
∇g(t)u,∇g(t)(|∇g(t)u|2)

〉
(1.9)

−2m|∇g(t)u|4 +
4r

m
e−2u|∇g(t)u|2.

Proof: Fix a normal coordinate system (x1, . . . , xn) around a point in M . We will

first prove that:

1. The following identities hold

∇i∆u =∆∇iu−Ria∇au, (1.10)

∆|∇u|2 =2 〈∇u,∆∇u〉+ 2|∇∇u|2. (1.11)

2. The inverse g−1(t) of the metric g(t) evolves by the equation

∂

∂t
gij = 2gaigjb(Rab −m∇a∇bu−m∇au∇bu). (1.12)
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3. The evolution equation of ∇u is

∂

∂t
∇u =

(
∆∇ju+Rj

a∇au+ 2

(
r

m
e−2u −m|∇u|2

)
∇ju

)
∂j. (1.13)

Let us prove (1.10) and (1.11):

∂i(∆u) =∂i(g
ab∇a∇bu)

= ∂i(g
ab)︸ ︷︷ ︸

=0

∇a∇bu+ gab ∂i∇a∇bu︸ ︷︷ ︸
∇i∇a∇bu

=gab∇i∇a∇bu

=gab∇a∇b∇iu−Ria∇au

=∆∇iu−Ria∇au,

where from the third to the fourth line we used the Ricci identity, ∇i∇a∇bu =

∇a∇b∇iu+∇cuRiacb. On the other hand,

∆|∇u|2 =gab∇a∇b(g
cd∇cu∇du)

=gabgcd∇a(∇b∇cu∇du+∇cu∇b∇du)

=gabgcd(∇a∇b∇cu∇du+∇b∇cu∇a∇du+∇a∇cu∇b∇du+∇cu∇a∇b∇du)

=gcd∆∇cu∇du+ gcd∇cu∆∇du+ gabgcd∇b∇cu∇a∇du+ gabgcd∇a∇cu∇b∇du

= 〈∆∇u,∇u〉+ 〈∆∇u,∇u〉+ |∇∇u|2 + |∇∇u|2

=2 〈∆∇u,∇u〉+ 2|∇∇u|2.

If we choose σ as

σij = −2Rij + 2m∇i∇ju+ 2m∇iu∇ju, (1.14)

then item (1.12) follows immediately from (1.3) of Proposition 2.

Now let us prove (1.13):

∂

∂t
∇ju =

∂

∂t

(
gij∂iu

)
=

∂

∂t

(
gij
)
∂iu+ gij

∂

∂t

(
∂iu

)
=

∂

∂t

(
gij
)
∂iu+ gij∂i

(
∂

∂t
u

)
=2gaigjb∂iu

(
Rab −m∇a∇bu−m∇au∇bu

)
+ gij∂i

(
∆u+m|∇u|2 − r

m
e−2u

)
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=2gjb
(
Rab∇au−m∇a∇bu∇au−m∇au∇bu∇au

)
+ gij

(
∇i∆u+m∇i(|∇u|2) + 2

r

m
e−2u∇iu

)
=2gjb

(
Rab∇au−m∇b∇∇uu−m|∇u|2∇bu

)
+ gij

(
∆∇iu−Ria∇au+ 2m∇i∇∇uu+ 2

r

m
e−2u∇iu

)
=2Rj

a∇au− 2m|∇u|2∇ju+ ∆∇ju−Rj
a∇au+ 2

r

m
e−2u∇ju

=∆∇ju+Rj
a∇au+ 2

( r
m
e−2u −m|∇u|2

)
∇ju.

Finally,

(
∂

∂t
−∆

)
|∇u|2 =

∂

∂t
|∇u|2 −∆|∇u|2 =

∂

∂t
(∇ju∇ju)− 2 〈∇u,∆∇u〉 − 2|∇∇u|2

=
∂

∂t
(∇ju)∇ju+∇ju∇j

(
∂

∂t
u

)
− 2 〈∇u,∆∇u〉 − 2|∇∇u|2

=
[
∆∇ju+Rj

a∇au+ 2
( r
m
e−2u −m|∇u|2

)
∇ju

]
∇ju

+∇ju∇j

[
∆u+m|∇u|2 − r

m
e−2u

]
− 2 〈∇u,∆∇u〉 − 2|∇∇u|2

= 〈∇u,∆∇u〉+Ric(∇u,∇u) + 2
( r
m
e−2u −m|∇u|2

)
|∇u|2

+∇ju∇j∆u+m∇ju∇j|∇u|2 +
2r

m
e−2u∇ju∇ju

− 2 〈∇u,∆∇u〉 − 2|∇∇u|2

=− 〈∇u,∆∇u〉 − 2|∇∇u|2 + 2

(
2r

m
e−2u −m|∇u|2

)
|∇u|2

+Ric(∇u,∇u) +m
〈
∇u,∇|∇u|2

〉
+∇ju∆∇ju−∇juRa

j∇au

=m
〈
∇u,∇|∇u|2

〉
− 2|∇∇u|2 + 2

(
2r

m
e−2u −m|∇u|2

)
|∇u|2

+Ric(∇u,∇u)− 〈∇u,∆∇u〉

+ 〈∇u,∆∇u〉 −Ric(∇u,∇u)

=− 2|∇∇u|2 +m
〈
∇u,∇|∇u|2

〉
+ 2

(
2r

m
e−2u −m|∇u|2

)
|∇u|2.

�
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In [14], the authors proved that under the Ricci-Bourguignon flow, that is when

σ = −2(Ric− ρRg), the Riemann curvature tensor evolves according to a complicated

reaction-diffusion equation. More precisely, (1.4) gives rise to:

Proposition 3 ([14]) If g(t), t ∈ [0, T ), is a Ricci-Bourguignon Flow, then its curva-

ture tensor Rm(t) evolves accordingly to the reaction-diffusion equation

∂
∂t
Rijkl = ∆Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

− gab(RajklRbi +RiaklRbj +RijalRbk +RijkaRbl)

− ρ(∇i∇kRjl −∇i∇lRjk −∇j∇kRil +∇j∇lRik) + 2ρRRijkl,

(1.15)

where Bijkl = gabgcdRiajcRkbld and the time dependent Laplacian ∆ = ∆t is defined by

∆tR(t)ijkl = g(t)ab∇(t) ∂
∂xa
∇(t) ∂

∂xb

R(t)ijkl.

The proof is a straightforward calculation that uses the Bianchi identities several

times to go from (1.4) to (1.15). For more details, see [29] or [18] for the case ρ = 0

and [14] or [17] for the general case.

In what follows we describe the Uhlembeck’s trick, which consists in using a

suitable evolving bundle isometry for rewriting (1.15), in order to obtain an equation

simpler than the previous one. It was first implemented by Hamilton in [29]. Later

Catino and coworkers generalized it for the Ricci-Bouguignon Flow in [14]

Let g(t), t ∈ [0, T ), be a Ricci-Bourguignon Flow on a manifold Mn. Consider

a family of bundle isomorphisms ϕ(t) : TM → TM , t ∈ [0, T ), satisfying


∂
∂t
ϕ(t) = Ric] ◦ ϕ(t)− ρRϕ(t),

ϕ(0) = IdTM ,
(1.16)

where Ric] : TM → TM is the self adjoint operator, depending on t, defined by

g(t)(Ric](X), Y ) = Ric(t)(X, Y ),

for all X, Y ∈ TM . The existence of solutions for equation (1.16) follows from the fact

that, for each p ∈ M it gives rise to an ODE system in the vector space TpM , whose

vector field is smooth and then the general existence result applies [18].
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An important fact is that the family of metrics ϕ(t)∗g(t) does not depend on t

(see [18], page 181) and then, g0 = ϕ(t)∗g(t), for all t ∈ [0, T ). This means that

ϕ(t) : (TM, g0)→ (TM, g(t))

is a family of isometries. Next consider the pulled back Levi-Civita connections D(t)

defined by

D(t)XY = ϕ∗(∇X(ϕ∗Y )),

where we have omitted the t of ϕ(t) and ∇(t) in the right hand side for the sake of

simplicity. Notice that for each t ∈ [0, T ), since ϕ is a bundle isometry, the connection

D(t) is compatible with g0. One can represent the Euclidean bundle with a family

of connections (TM, g0, D(t)) by using an abstract notation, namely (V, l,D(t)), for

emphasizing the fact that the connection used is not the Levi-Civita connection. We

still denote by D(t) the natural extension of the previously defined connection to the

tensor bundles associated to V .

The importance of the pull back by ϕ(t) of the Riemannian curvature operator,

P (t) = ϕ∗Rm(t) : ∧2V → ∧2V , is due to the proposition below.

Proposition 4 ([14]) The operators Rm(t) and P (t) have the same eigenvalues.

Before stating the next proposition, we would like to note that given a Euclidean

bundle with a family of metric connections (V, l,D(t)), there is a natural way of defining

the Laplacian of a tensor. For instance, if Q ∈ EndSA(∧2V ), the bundle of self adjoint

endomorphisms of ∧2V , then ∆DQ : ∧2V → ∧2V is defined as

∆DQ = labD(t) ∂
∂xa
D(t) ∂

∂xb

Q.

Remark 1 (see [18], page 184) Consider a Lie Algebra g with Lie bracket [, ] and

inner product 〈, 〉. Let {eα} be a basis of g and Cαβ
γ be the constant structures, defined

by

[eα, eβ] = Cαβ
γ eγ.

If L is a bilinear form in g∗, the dual of g, and {e∗α} is the algebraic dual basis of {eα},

one can see L as an element of g⊗S g whose components are given by Lαβ = L(e∗α, e
∗
β).
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We define the Lie algebra squared of L, L# ∈ g ⊗S g, as the bilinear form whose

coordinates are

(L#)αβ = Cγδ
α C

εζ
β LγεLδζ .

Using the inner product we can now regard L# as a symmetric operator on L.

We end this remark by saying how the construction above applies to the setting

of the Ricci-Bourguignon Flow. Since g0 and the bracket of vector fields extend in a

canonical way to ∧2TpM they provide a Lie algebra naturally isomorphic to SO(n).

On the other hand, Rm can be seen as a bilinear form on ∧2TpM , from which we can

define Rm#.

Now we can state the main consequence of the Uhlembeck’s trick.

Proposition 5 ([14]) The family of operators P (t) : ∧2V → ∧2V , t ∈ [0, T ), evolves

accordingly to the equation

∂

∂t
P = LP + 2P 2 + 2P# − 4ρtrg0(P )P, (1.17)

where L is the differential operator

LQ = ∆DQ− 2ρϕ∗(∇∇trl(Q))� l, (1.18)

and � is the Kulkarni-Nomizu product.

We end this section with the following important proposition used in the appli-

cations of the maximum principle.

Proposition 6 ([14]) If ρ < 1/(2(n − 1)), then the differential operator (1.18) is

uniformly elliptic.

1.1.3 Maximum Principles

One of the most important tools in investigating partial differential equations

is the Maximum Principle. In this section we are going to state some versions of this

principle to be used in the forthcoming chapters. We start with the Scalar Maximum

Principle and then we state an important generalization of it to tensor equations,

formulated first by Hamilton [29].
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Theorem 2 ([18, 19]) Let (Mk, g(t)), t ∈ [0, T ), be a family of compact Riemannian

manifolds smooth with respect to t. Let u : M × [0, T )→ R be a function satisfying


(
∂

∂t
−∆g(t)

)
u(t) ≤

〈
X(t),∇g(t)u(t)

〉
+ f(u(t), t),

u(0) ≤ c,

(1.19)

where, X(t) is a smooth one parameter family of vector fields and f : R × [0, T ) → R

is continuous in the first factor and locally Lipschitz in the second factor. Consider the

solution ϕ : [0, T̃ )→ R of the initial value problem
dϕ

dt
(t) = f(ϕ(t), t),

ϕ(0) = c.

(1.20)

Then u(p, t) ≤ ϕ(t), for all (p, t) ∈M × [0,min{T, T̃}).

Theorem 2 is also true if we reverse all the inequalities. Then, if in (1.19) we

have equality, it follows that

Corollary 1 ([18, 19]) Let (Mk, g(t)), t ∈ [0, T ), be a family of compact Riemannian

manifolds smooth with respect to t. Let u : M × [0, T )→ R be a solution of


(
∂

∂t
−∆g(t)

)
u(t) =

〈
X(t),∇g(t)u(t)

〉
+ f(u(t), t),

c1 ≤ u(0) ≤ c2,

(1.21)

where, X(t) is a smooth one parameter family of vector fields and f : R× [0, T )→ R is

locally Lipschitz in the first factor and continuous in the second factor. Fix j ∈ {1, 2}

and consider the solution ϕj : [0, T̃j)→ R of the initial value problem
dϕj
dt

(t) = f(ϕj(t), t),

ϕj(0) = cj.

(1.22)

Then ϕ1(t) ≤ u(p, t) ≤ ϕ2(t), for all (p, t) ∈M × [0,min{T, T̃1, T̃2}).

Now we will state the Vectorial Maximum Principle for Time-Dependent Sets.

Let (E, h,D(t)) be a vector bundle over (M, g(t)), where h is a bundle metric and D(t)

is a family of linear connections compatible with h, for each t ∈ [0, T ).
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Theorem 3 ([14]) Let u : [0, T ) → Γ(E) be a smooth solution of the parabolic equa-

tion
∂

∂t
u = Lu+ F (u, t) (1.23)

and F : E × [0, T ) → E a continuous map, locally lipschtiz in the E factor and

F (v, t) ∈ Ep for every p ∈ M , v ∈ Ep and t ∈ [0, T ). For every t ∈ [0, T ), let

K(t) ⊂ E be a closed subbundle, invariant under parallel translation with respect to

D(t), convex in the fibers and such that the space time track

T = {(v, t) ∈ E × R : v ∈ K(t), t ∈ [0, T )} (1.24)

is closed in E × [0, T ). Suppose that for every t0 ∈ [0, T ), K(t0) is preserved by the

associated ODE
∂

∂t
Q = F (Q, t) (1.25)

i.e., any solution Q(t) of the ODE (1.25) that starts in K(t0)p remains in K(t)p, as

long as it exists. If u(0) is contained in K(0), then u(p, t) ∈ K(t)P , for every p ∈ M ,

t ∈ [0, T ).

We will end this section with the following proposition, useful in the proofs when

checking invariance under parallel transport of sets.

Proposition 7 ([19], Lemma 10.11) Let (W , h) be a metric fiber bundle of rank

r ∈ N over a manifold (Mn, g) and let V = EndSA(W) be the bundle of self adjoint

endomorphisms of W. Suppose G : Γ→ R is a function, where

Γ = {(x1, . . . , xr) ∈ Rr : x1 ≥ . . . ≥ xr}. (1.26)

Given c ∈ R, let

Lc = {u ∈ V : G(λ1(u), . . . , λr(u)) ≤ c}, (1.27)

where λ1(u) ≥ . . . ≥ λr(u) are the eigenvalues of u ∈ Vc. The subset Lc ⊂ V is

invariant by parallel translations.
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1.1.4 Ricci-Bourguiginon Flow in Dimension 3

One characteristic present when working with Ricci Flow is to detect quantities

preserved by the flow, as long as the flow exists. For instance, the positivity of the

curvature operator is preserved in any dimension [20], and it was used in many papers.

In dimension 3, besides those excellent properties satisfied by this flow in any dimension,

the Ricci flow preserves the positivity of the Ricci tensor. To figure out properties of

the curvature operator that are preserved by the flow, we must look at its associated

ODE, introduced by Hamilton in [27]:

∂

∂t
Q = 2Q2 + 2Q# − 4ρtrg0(Q)Q. (1.28)

In dimension three, a family of operators Qp(t) ∈ S2(∧2TpM) is a solution to (1.28) if,

and only if, its eigenvalues λ, µ and ν satisfy the system (see [27]),


λ′ = 2λ2 + 2µν − 4ρλ(λ+ µ+ ν),

µ′ = 2µ2 + 2λν − 4ρµ(λ+ µ+ ν),

ν ′ = 2ν2 + 2λµ− 4ρν(λ+ µ+ ν).

(1.29)

Since we are interested in working with dimension 3, from now on, we will use system

(1.29). As a first application of the system, we have that the inequality λ ≥ µ ≥ ν is

preserved in time by the system (1.29), as observed in [14] and in [28]. More precisely:

Proposition 8 Let λ(t), µ(t) and ν(t), t ∈ [0, T ), be a solution of (1.29) satisfying

λ(0) ≥ µ(0) ≥ ν(0). Then λ(t) ≥ µ(t) ≥ ν(t), for all t ∈ [0, T ). Furthermore, if

λ(t0) = µ(t0) (resp. µ(t0) = ν(t0) or λ(t0) = ν(t0)) for a t0 ∈ [0, T ), then λ ≡ µ (resp.

µ ≡ ν or λ ≡ ν).

Proof: Using (1.29) one can see that

(λ− µ)′ = 2(λ2 − µ2) + 2(µν − λν)− 4ρ(λ+ µ+ ν)(λ− µ)

= 2(λ− µ)

[
λ+ µ− ν − 2ρ(λ+ µ+ ν)

]
. (1.30)

Therefore, if (λ − µ)(t0) = 0, then (1.30) guarantees that (λ − µ)′(t0) = 0. By the

theorem of Existence and Uniqueness of solutions to an ODE, (λ− µ)(t) must be the
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solution identically zero, which gives λ(t) = µ(t), for all t ∈ [0, T ). It implies that if

λ(0) > µ(0), then λ(t) > µ(t), for all t ∈ [0, T ). The other cases are proven analogously.

�

On the other hand, the trace of Qp(t), tr(Qp(t)) = λ + µ + ν, satisfies the

following differential inequality, important in the proof of Lemma 4 and Lemma 5, in

Chapter 2.

Proposition 9 If Qp(t) is a solution of (1.28), then its trace satisfies

(tr(Qp(t)))
′ ≥ 4

3
(1− 3ρ)tr(Qp(t))

2. (1.31)

Proof: Using (1.29) we get

(trQp(t))
′ =(λ+ µ+ ν)′

= λ2 + µ2 + ν2 + 2λµ+ 2λν + 2µν︸ ︷︷ ︸
(λ+µ+ν)2

+ λ2 + µ2 + ν2 − 4ρ(λ+ µ+ ν)2

= λ2 + µ2 + ν2 + (1− 4ρ)(λ+ µ+ ν)2. (1.32)

On the other hand, using the fact that the norm of the sum ‖‖Σ and the Euclidean

norm ‖‖E on R3 satisfy

‖‖2
E ≥

1

3
‖‖2

Σ,

we conclude that

λ2 + µ2 + ν2 ≥ 1

3
(λ+ µ+ ν)2. (1.33)

Now, it follows from (1.32) and (1.33) that

(trQp(t))
′ ≥ 1

3
(λ+ µ+ ν)2 + (1− 4ρ)(λ+ µ+ ν)2.

=
4

3
(1− 3ρ) (λ+ µ+ ν)2.
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�

We end this section by stating the Tensor Maximum Principle applied to the

Ricci-Bourquignon Flow concerning equation (1.17).

Theorem 4 Let g(t), t ∈ [0, T ), be a Ricci-Bourguignon Flow on a compact Rie-

mannian manifold (Mn, g0) so that g(0) = g0. For every t ∈ [0, T ), let K(t) ⊂

EndSA(∧2TM) be a closed subbundle, invariant under parallel translation with respect

to D(t), convex in the fibers and such that the space time track

T = {(P, t) ∈ EndSA(∧2TM)× R : P ∈ K(t), t ∈ [0, T )} (1.34)

is closed in EndSA(∧2TM) × [0, T ). Suppose that for every t0 ∈ [0, T ), K(t0) is pre-

served by the associated ODE. If Rm(p, 0) ∈ Kp(0) for every p ∈ M , then Rm(p, t) ∈

Kp(t), for every (p, t) ∈M × [0, T ).

1.1.5 Ricci Almost Solitons

The concept of Ricci almost soliton was introduced in [46], generalizing the

notion of Ricci soliton.

Definition 2 A Ricci almost soliton (M, g,X, λ) is a Riemannian or semi-Riemannian

manifold (M, g) with a vector field X and a smooth function λ : M → R satisfying the

following fundamental equation

Ric+
1

2
LXg = λg.

If the vector field X is the gradient field of some function f : M → R, then the soliton

is called a gradient Ricci almost soliton, or just Ricci almost soliton. In this case, it is

denoted by (M, g, f, λ) and the fundamental equation becomes

Ric+∇∇f = λg, (1.35)

where f is called the potential function and ∇∇f is the Hessian of f with respect to

the metric g.
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Definition 3 We say that a Ricci almost soliton is shrinking, steady, expanding or

undefined if the function λ is positive, null, negative or changes sign, respectively. If λ

is constant, then the Ricci almost soliton reduces to what is called just of Ricci soliton.

The importance of the Ricci solitons is due to their relation with the Ricci

flow. In fact, they are stationary solutions of the Ricci flow, which were introduced by

Hamilton [29]. If the function λ is not constant, then Ricci almost solitons evolve under

the Ricci flow changing only by conformal diffeomorphisms (see [49] and [26] page 4).

Another relation with geometric flows is obtained by choosing specific functions for

λ, for which the corresponding Ricci almost solitons are self similar solutions of the

Ricci-Bourguignon flow [8]. On the other hand, Ricci almost solitons can be viewed

as a generalization of Einstein manifolds [5], as one can easily see by considering a

constant function on an Einstein manifold.

1.2 Semi-Riemannian Warped Product Manifolds

The content included in this section is based on the classical book [43], written

by O’Neil, page 204. Most of the results appeared first in the paper [6], written by

Bishop and O’Neil.

1.2.1 Definition and Properties

Let (Bn, gB) and (Fm, gF ) be semi-Riemannian manifolds of dimensions n and

m, respectively and denote by π : B × F → B and σ : B × F → F the canonical

projections.

Definition 4 (Warped Product) The warped product between (Bn, gB) and (Fm, gF )

with warping function h : B → (0,∞) is the product manifold B × F endowed with

the metric g, defined by

g = π∗gB + (h ◦ π)2σ∗gF . (1.36)

In this case we denote B ×h F and g = gB + h2gF .

Note that B ×h F is a semi-Riemannian manifold of dimension n+m.
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Warped products were introduced by Bishop and O’Neil in [6], where they gave

examples of manifolds of negative curvature. One of the most important points in

assuming that a manifold is a warped product is that it is possible to reduce geometric

quantities (such as curvatures), to similar quantities on the base and on the fiber, de-

pending also on the warping functions and its derivatives. In the case of the curvatures,

this is expressed by identities, sometimes called O’Neil formulas for a warped product,

that can be found in the main reference [43], page 204. We will only state those which

will be used in this thesis. For the Ricci curvature of the warped product one has

Proposition 10 (Ricci Curvature) Let Bn ×h Fm be a semi-Riemannian warped

product. Then its Ricci tensor is given by
Ric(X, Y ) = RicB(X, Y )−mh−1∇B∇Bh(X, Y ),

Ric(X,U) = 0,

Ric(U, V ) = RicF (U, V )− [h∆Bh+ (m− 1)|∇Bh|2]gF (U, V ),

(1.37)

where X, Y are vector fields lifted from B and U, V are vector fields lifted from F .

Warped product Einstein manifolds have been studied largely (see [34] and

references therein) where one of the main goals is to obtain new examples of Einstein

manifolds having this property. Using Proposition 10, the Einstein condition on a

warped product reduces to a system of equations on the base and on the fiber, as we

can see in the next proposition.

Proposition 11 ([34]) A semi-Riemannian warped product, Bn×hFm, is an Einstein

space with Einstein constant a ∈ R if, and only if, there is a constant c ∈ R so that
RicB −mh−1∇B∇Bh = a(m+ n− 1)gB,

h∆Bh+ (m− 1)|∇Bh|2 + a(m+ n− 1)h2 = c(m− 1),

RicF = c(m− 1)gF .

(1.38)

If the base B is a connected interval I ⊂ R, then Proposition 11 takes a simpler

form, which we state below for future references.
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Corollary 2 A semi-Riemannian warped product of the form I ×h Fm, where I ⊂ R,

is an Einstein space if, and only if, (Fm, gF ) is an Einstein space and the function h

satisfies

h′′ ± ah = 0 and ± (h′)2 + ah2 = c, (1.39)

where a is the Einstein constant of I ×h Fm and c is the Einstein constant of F .

Let f : B × F → R be a smooth function. If f depends only on the base, its

gradient agrees with its gradient viewed as a function only on B (see [43], page 204.).

This implies that the hessian of f with respect to B coincides with the hessian of f

with respect to B ×h F . In the case where f depends both on the base and on the

fiber, using the expressions for the Levi-Civita connection of B ×h F (see [43], page

204.), we have the following:

Proposition 12 (Hessian of a Function) Let Bn×hFm be a semi-Riemannian warped

product. Then the Hessian of a function f : Bn × Fm → R is given by
∇∇f(X, Y ) = ∇B∇Bf(X, Y ),

∇∇f(X,U) = X(U(f))− h−1X(h)U(f),

∇∇f(U, V ) = ∇F∇Ff(U, V ) + h(∇Bh)fgF (U, V ),

(1.40)

where X, Y are vector fields lifted from B and U, V are vector fields lifted from F .

Concerning completeness we have the following criterion for building a complete

warped product in the Riemannian setting, that can also be found in [43] (see page

209).

Proposition 13 ([6]) A Riemannian warped product B×h F is complete if, and only

if, B and F are complete.

When the signature of a semi-Riemannian warped product is not zero, the situ-

ation is not so simple. In fact, Been and Busemann showed that (R×R, dx2− e2xdy2)

is not a complete semi-Riemannian manifold. In fact, they showed that there are light

like geodesics that cannot be extended to R, see [43] (page 209). Their example shows

that there is no result similar to Proposition 13 for indefinite signature.
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For our purposes we have the following result that guarantees the non complete-

ness of the semi-Riemannian warped product, whenever the gradient of the warping

function is a parallel vector field on the base. For more results on completeness of

semi-Riemannian manifolds see [12]

Proposition 14 Let B ×h F be a non trivial warped product of the Riemanian or

semi-Riemannian manifolds (Bn, gB) and (F n, gF ). If ∇Bh is a parallel vector field on

B, then B ×h F is not complete.

Proof: Suppose by contradiction that B ×h F is complete. Consider p0 ∈ B and

v0 ∈ Tp0B such that dhp0v0 6= 0. Let γ be the geodesic such that γ(0) = p0 and

γ′(0) = v0. Since ∇Bh is parallel, it follows that

(h ◦ γ)′′(t) = γ′(γ′(h)) = γ′(γ′(h))−∇Bγ′
γ′(h)

= ∇B∇Bh(γ′, γ′) = 0.

Therefore, there exist constants a0, b0 ∈ R, so that

(h ◦ γ)(t) = a0t+ b0.

Observe that

a0 = (h ◦ γ)′(0) = dhp0v0 6= 0.

By assumption γ is defined on R, hence we may consider t0 = −b0/a0 ∈ R. However,

h(γ(−b0/a0)) = 0, which contradicts the fact that h 6= 0. �

1.3 Conformal Fields on Semi-Riemannian Manifolds

The study of conformal vector fields started long ago with the work of Brinkmann

[9]. In this work, he gave a local characterization of manifolds admitting such fields.

Later on, Obata [42], Kanay [32], Yano [50] and Kerbrat [33] studied global aspects

of such manifolds obtaining a classification for some specific cases. The goal of this

section is to collect part of these results that are going to be used in this thesis.
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1.3.1 Definition and Examples

Let (Mn, g) be a semi-Riemannian manifold of dimension n ≥ 2. The main

notion to be studied in this section is introduced in the definition below.

Definition 5 A vector field X on (Mn, g) is called a conformal field if there exists a

smooth function ϕ : M → R such that

LXg = 2ϕg. (1.41)

If the field X is the gradient of a function φ : M → R, it is called a gradient conformal

field and equation (1.41) becomes

∇∇φ = ϕg. (1.42)

Here is the geometric interpretation of equation (1.41). Consider a point p ∈ M and

let Φ : U × (−ε, ε) ⊂ M × R → M be the local flow of X. We know that Φ satisfies

Φ(p, 0) = p and
∂Φ

∂t
(p, t) = X(Φ(p, t)), (1.43)

for all (p, t) ∈ U × (−ε, ε). By definition of Lie derivative, we know that

(LXg)(X, Y ) =

(
∂

∂t

∣∣∣∣∣
t=t0

Φ∗tg

)
(X, Y ), (1.44)

where Φ∗tg is the pull-back of g by Φt : U → M , defined by Φt(p) = Φ(t, p). From

(1.41) and (1.44) it follows that

∂

∂t
Φ∗tg = 2(φ ◦ Φt)Φ

∗
tg.

Integrating the ODE above one obtains that, for each t ∈ (−ε, ε), there exists a function

ψt : U →M for which

Φ∗tg = ψtg. (1.45)

In other words, the diffeomorphisms Φt induced by the local flow of a field satisfying

(1.41) act by conformal transformations, which justifies its denomination.
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Now we will see in Proposition 16 that if an Einstein manifold admits a confor-

mal vector field satisfying (1.41), then it also admits a gradient conformal field. This

result can be found in [38]. Before stating this result we need the following proposition,

also stated in [38].

Proposition 15 ([38]) Let (Mn, g) be a semi-Riemannian manifold of dimension n ≥

2 and X a conformal field satisfying (1.41). Then

LXRic = −(n− 2)∇∇ϕ−∆ϕg. (1.46)

Proof: Consider g(t) = Φ∗tg, where Φt is the flow of the conformal field X, as in (1.43),

and φ(t) = φ ◦ Φt. With this notation we have

∂

∂t
g(t) = 2φ(t)g(t). (1.47)

We also note that

LXRic =
∂

∂t
Ric(g(t)), (1.48)

where Ric(g(t)) = Φ∗tRic(g), by the diffeomorphism invariance of the Ricci tensor.

Using formula (1.5), it follows that the right hand side of (1.48) is given, in local

coordinates, by

∂

∂t
Rjk = gab(∇a∇jφgkb +∇a∇kφgjb −∇a∇bφgjk −∇j∇kφgab)

= ∇k∇jφ+∇j∇kφ−∆φgjk − n∇j∇kφ (1.49)

= − (n− 2)∇j∇kφ−∆φgjk.

Now, (1.46) follows by considering (1.48) and (1.49) together. �

Proposition 16 ([38]) Let (Mn, g) be a semi-Riemannian Einstein manifold of di-

mension n ≥ 3 and X a conformal field satisfying (1.41) for ϕ : M → R. Then ∇ϕ is

also a conformal field satisfying

∇∇ϕ+
a

n− 1
ϕg = 0, (1.50)

where a is the unnormalized Einstein constant of (Mn, g).
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Proof: Since (Mn, g) is Einstein, it follows that Ric = ag. Taking the Lie derivative

in both sides of this equation one obtains

2aϕg = aLXg = LXRic = −(n− 2)∇∇ϕ−∆ϕg, (1.51)

where we have used equations (1.41) and (1.46). Taking the trace in equation (1.51)

we get ∆ϕ =
n

n− 1
aϕ. Substituting this expression into (1.51), we obtain (1.50), as

desired. �

When the conformal field is a gradient vector field of the form (1.42) and the

manifold is Einstein, it follows from the Bochner formula (see Proposition 17 below)

that ϕ is, up to the not normalized Einstein constant, equals to φ. To prove this result

we will state below the referred version of the Bochner formula. For a proof in the

Riemannian case, see Lemma 2.1 of [45]. We observe that the same proof is valid for

any signature.

Proposition 17 ([45]) Let (M, g) be a Riemannian or semi-Riemannian manifold

and let ϕ : M → R be a smooth function. Then

div(∇∇ϕ)(X) = Ric(∇ϕ,X) +X(∆ϕ), (1.52)

for all X ∈ X(M).

With this version of Bochner formula, we can provide a simple proof of the proposition

below when n ≥ 2. For another proof when n ≥ 3 see ([38]).

Proposition 18 Let (Mn, g) be an Einstein manifold with dimension n ≥ 2 and nor-

malized Einstein constant a. If φ : M → R is a smooth function such that ∇φ is a

conformal vector field satisfying (1.42) for some smooth function ϕ : M → R, then

there is a constant b ∈ R such that ϕ = −aφ− b.

Proof: It is easy to see that ∆φ = nϕ and that div(∇∇φ)(X) = X(ϕ), for all

X ∈ X(M). Using Bochner formula, we have

(n− 1)X(ϕ+ aφ) = 0.
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Since X is an arbitrary field and n ≥ 2, it follows that there is a constant b satisfying

the assertion. �

From now on we will focus on conformal vector fields satisfying the equation

∇∇ϕ+ (cϕ+ b)g = 0, (1.53)

where b, c ∈ R. Note that if c 6= 0 we can assume that b = 0 replacing ϕ by ϕ− b/c.

Equation (1.53) has been largely studied since the 1920’s, starting with Brinkman’s

work [9] on conformal transformations between semi-Riemannian Einstein manifolds.

In what follows we present examples of semi-Riemannian manifolds that admit

non-constant solutions for equation (1.53). We are following the notation used in [43].

Example 1 [Semi-Euclidean Space] Let Rn
ε be the linear space Rn with the semi-

Riemannian metric of index ξ

〈v, w〉ε =
n∑
j=1

εjvjwj.

If ϕ is a non constant solution of (1.53), then a straightforward calculation shows that

c must be zero and that, for all b ∈ R, a generic solution to (1.53) in Rn
ε is given by

ϕ(x1, . . . , xn) = −(b/2)
∑n

j=1 εjx
2
j + 〈Aε, x〉ε + An+1 (1.54)

where Aε = (ε1A1, . . . , εnAn) ∈ Rn
ε and An+1 ∈ R.

Example 2 [Pseudospheres] The pseudosphere [43], with dimension n and index ε, is

defined as

Snε (1/
√
c) = {x ∈ Rn+1

ε ; 〈x, x〉ε = 1/c}, where c > 0.

It is connected if, and only if, 0 ≤ ε ≤ n − 1, and simply connected if, and only if,

0 ≤ ε ≤ n − 2. Furthermore, each connected component of Snε (1/
√
c) is a complete

semi-Riemannian manifold of dimension n, index ε and constant curvature c. It is not

difficult to see that the functions in Example 1 with An+2 = 0 in the expression (1.54)

i.e., ϕAε(x) = 〈Aε, x〉ε, provide all the functions satisfying (1.53) for c > 0. Note that
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ϕAε(x) = 〈Aε, x〉ε is the height function with respect to Aε on the pseudosphere. .

Example 3 [Pseudohyperbolic Spaces] Similarly to the example above, the pseudo-

hyperbolic space [43], with dimension n and index ε, is defined as

Hn
ε (1/
√
−c) = {x ∈ Rn+1

ε+1 ; 〈x, x〉ε+1 = 1/c}, where c < 0.

It is connected if, and only if, 2 ≤ ε ≤ n and simply connected if and only if 1 ≤

ε ≤ n − 2. Furthermore each connected component of Hn
ε (1/
√
−c) is a complete

semi-Riemannian manifold of dimension n, index ε and constant curvature c. As in the

previous example, the functions in Example 1 with An+2 = 0 in the expression (1.54)

i.e., ϕAε+1(x) = 〈Aε+1, x〉ε+1, provide all the functions satisfying (1.53), for c < 0.

Note that ϕAε+1(x) = 〈Aε+1, x〉ε+1 is the height function with respect to Aε+1 on the

pseudohyperbolic space.

Example 4 [Warped Products] Let±I×hNn−1 be a warped product semi-Riemannian

manifold, where I ⊂ R is a connected interval andNn−1 is an arbitrary semi-Riemannian

manifold. Then a simple calculation shows that the function

ϕ(s, p) =

∫ s

s0

h(t)dt

solves equation (1.53), when h satisfies

h′′ ± ch = 0. (1.55)

For our purposes, it is important to know if a height function has zeros or not.

This is because height functions can occur as warping functions, as we will see in

Theorem 10, and warping functions do not admit zeros. We end this subsection with

a proposition which reveals the hyperquadrics that admit such functions.

Proposition 19 Let ϕA : Rn+1
ε → R be the height function with respect to A ∈ Rn+1

ε ,

A 6= 0 and n ≥ 2. Then ϕA has no zeros on Snε (1/
√
c) (resp. Hn

ε (1/
√
−c) if, and only

if, ε = n (resp. ε = 1) and A is a space like (resp. time like) or light like vector.

Proof: We first prove the proposition in the case of the sphere. Since we are

considering Snε (1/
√
c) 6= ∅, we can assume 0 ≤ ε ≤ n, i.e., ε 6= n + 1. Moreover, ϕA is
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a linear function, hence Rn+1 = Ker(ϕA) ⊕ Im(ϕA). where Ker(ϕA) = (A)⊥ ⊂ Rn+1.

Since A 6= 0, it follows that dim{Ker(ϕA)} = n ≥ 2 and dim{Im(ϕA)} = 1. In

what follows, we will analyze each case according to A being a time like, space like

or light like vector. We will consider an appropriate orthonormal basis in each case,

{e1, . . . , eε, eε+1, . . . , en+1} for Rn+1
ε such that e1, ..., eε are time like and eε+1, . . . , en+1

are space like.

Suppose that A is time like. In this case, 1 ≤ ε ≤ n and we choose the

basis such that eε = A/
√
| < A,A >ε |. Therefore, en+1 and eε are orthogonal hence,

(1/
√
c)en+1 ∈ A⊥ ∩ Snε (1/

√
c), i.e., ϕA has zeros on the sphere.

Suppose that A is space like. We consider the basis on Rn+1
ε , such that eε+1 =

Aε/|Aε|. If 0 ≤ ε ≤ n− 1, then eε+1 and en+1 are orthogonal and hence (1/
√
c)en+1 ∈

A⊥∩Snε (1/
√
c). If ε = n then A⊥ is negative definite since it is generated by {e1, . . . , en}.

Therefore A⊥ ∩ Snn(1/
√
c) = ∅, i.e., ϕA has no zeros on the sphere.

Suppose that A is light like, then 1 ≤ ε ≤ n and it is not so difficult to see that

there exist orthogonal vectors V1, V2 ∈ Rn+1 such that V1 6= 0 is time like, V2 6= 0 is

space like and A = V1 + V2. We consider the basis so that eε = V1/|
√
< V1, V1 >ε| and

eε+1 = V2/|V2|. If ε ≤ n − 1, then (1/
√
c)eε+2 ∈ (A⊥ ∩ Snε (1/

√
c) . Therefore, ϕA has

no zeros on the sphere if, and only if, ε = n.

This completes the proof for the case of the sphere. Considering suitable

changes, the proof for the hyperbolic space is similar. �

1.3.2 Special Coordinate System Around a Regular Point

In the proof of Theorem 14 (see Chapter 3), it will be important to work on

the set of regular points of a solution of (1.53). Such an argument works since as we

will see below, the referred set is a dense subset of the manifold, in the case where it is

complete. To support what was just said, one has the following result due to Kerbrat

[33]. The proof can also be found in Kuenel’s paper [39].

Proposition 20 ([33]) Let ϕ : M → R be a solution of the equation (1.53). Then the

critical points of ϕ are isolated.

The local classification below is due to Brinkmann [9] and can also be found in

the excellent survey [36]. It is of fundamental inportance for the global classification
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of complete semi-Riemannian manifolds admitting solutions to equation (1.53).

Proposition 21 ([9]) Let (M, g) be a pseudo-Riemannian-manifold. The following

are equivalent:

1. There is a non constant solution ϕ of

∇∇ϕ− (∆ϕ/n)g = 0,

in a neighborhood of a point p ∈M such that g(∇ϕ,∇ϕ) 6= 0.

2. There is a neighborhood U of p ∈ M , a smooth function ϕ : (−ε, ε) → R with

ϕ′(t) 6= 0, for all t ∈ (−ε, ε) and a pseudo-Riemannian manifold (N, gN) such

that (U, g) is isometric to the warped product

((−ε, ε)×ϕ′ N,±dt2 + (ϕ′)2gN),

where sgn(g(ϕ′, ϕ′)) = ±1.

1.3.3 Classification Results

To state the classification that we are interested in, since one is working with

semi-Riemannian manifolds, it is necessary to treat separately the cases when the non-

constant field is light like in an open set. For this reason we introduce the definition

below.

Definition 6 We say that a vector field X is improper if there is an open set where

X is light like. If there is no such an open set then X is called a proper vector field.

Theorems 5-7 will be of fundamental importance in the proof of our classification results

in Chapter 3. They provide the classification results of complete semi-Riemannian Ein-

stein manifolds admitting a non-constant solution of equation (1.53), and consequently

for Einstein manifolds admitting general conformal fields. This fact follows from Propo-

sition 1.3. These theorems assert the uniqueness of the examples given in Subsection

1.3.1, provided the conformal gradient vector field is proper. The improper case was

analized by Brinkman [9] showing, among other things, that∇ϕmust be parallel. Since

then, manifolds carrying parallel improper vector fields are called Brinkman spaces.
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Theorem 5 ([33]) A complete semi-Riemannian manifold, (Mn, g), with n ≥ 2, ad-

mits a non constant solution of the equation ∇∇ϕ+ bg = 0 b 6= 0 if, and only if, it is

isometric to the semi-Euclidean space Rn
ε .

This result is a particular case of a theorem proved by Kerbrat [33], where the

author classifies spaces carrying vector fields satisfying more general equations.

Theorem 6 A complete semi-Riemannian Einstein manifold, (Mn, g), with n ≥ 2,

admits a non constant solution ϕ of the equation ∇∇ϕ = 0 if, and only if, it is

isometric to

1. R × Nn−1, where (N, gN) is a complete semi-Riemannian Einstein manifold, if

∇ϕ is a proper vector field (see [33]);

2. a Brinkman space, if ∇ϕ is an improper vector field and n ≥ 3 (see [9]).

Theorem 7 A complete semi-Riemannian Einstein manifold, (Mn, g), with n ≥ 2 and

index ε, admits a non constant solution of the equation ∇∇ϕ+ cϕg = 0 with c 6= 0 if,

and only if, it is isometric to

1. Snε (1/
√
c), when 0 ≤ ε ≤ n− 2; the covering of Snn−1(1/

√
c) when ε = n− 1 and

the upper part of Snn(1/
√
c) when ε = n if c > 0 and ϕ has some critical point

(see [42] for the case ε = 0 and [33] for the cases ε 6= 0);

2. Hn
ε (1/

√
|c|), when 2 ≤ ε ≤ n − 1; the covering of Hn

1 (1/
√
|c|) when ε = 1 and

the upper part of Hn
0 (1/

√
|c|) when ε = 0 , if c < 0 and ϕ has some critical

point (see [32] for the case ε = 0 and [33] for the cases ε 6= 0);

3. (R×Nn−1,±dt2+cosh2(
√
|c| t)gN), where (Nn−1, gN) is a semi-Riemannian Ein-

stein manifold, if ϕ has no critical points (see [33]);

4. (R×Nn−1,±dt2 ± e2
√
|c| tgN), where (Nn−1, gN) is a Riemannian Einstein man-

ifold, if ϕ has no critical points (see [33]).
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Chapter 2

Ricci Flow Preserving Warped

Product

In this chapter we will study in which cases the Ricci flow preserves warped

product. To be more precise, we will study when a solution for the Ricci flow whose

initial metric is a warped product is still a warped product for positive times. This is

the content of Section 2.1, where we present a structural theorem, Theorem 8, which

gives necessary and sufficient conditions for the Ricci flow to preserve the warped

product structure. In Section 2.2, using Parabolic Maximum Principles, we provide

non existence results concerning ancient solutions for Ricci Flows preserving warped

products with compact base.

2.1 Definition and Structural Theorem

The notion that we introduce in this section was motivated by the study of Ricci

solitons on warped product manifolds. Since a Ricci soliton generates a solution to the

Ricci flow which is self-similar (i.e., evolves by diffeomorphisms and change of scales)

it is natural to ask whether the warped product property is also preserved in time if

the initial metric is a Ricci soliton on a warped product manifold. It turns out that

the answer is positive (see the proof of Corollary 5), and the corresponding self-similar

solution is built from two families of metrics, one coming from the base manifold and

the other (constant in time) coming from the fiber and a family of warping functions.

Having this in mind, we introduce below a class of Ricci flow encoding the
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behavior described above. It says that the Ricci flow evolves as a warped product

manifold.

Definition 7 Let (Mn+m = Bn ×h0 Fm, g0) be a warped product of (Bn, g0
B) and

(Fm, g0
F ) with non constant warping function h0 : B → (0,∞) and g0 = g0

B +h2
0g

0
F . Let

(Mn+m, g(t)), t ∈ [0, ε), ε ∈ (0,∞], be a Ricci flow such that g(0) = g0. We say that

the Ricci Flow preserves the warped product structure if there exist smooth families

1. {gB(t); t ∈ [0, T )}, of metrics in B;

2. {h(t); t ∈ [0, T )}, of non constant functions in B;

3. {gF (t); t ∈ [0, T )}, of metrics in F

such that for each t ∈ [0, T )

g(t) = π∗gB(t) + (π∗h)2σ∗gF (t), (2.1)

where π : Mn+m → Bn and σ : Mn+m → Fm are the canonical projections into the

base and the fiber, respectively.

In the product case (Bn × Fm, g0 = g0
B + g0

F ), the situation is well understood.

To see this, consider gB(t) and gF (t), Ricci Flows on B and F , respectively, with

gB(0) = g0
B and gF (0) = g0

F . It follows that g(t) = gB(t) + gF (t) is a Ricci Flow

on B × F with g(0) = g0. Conversely, a Ricci Flow g(t) on the product manifold

Bn × Fm starting at the product metric g0 = g0
B + g0

F is equal to gB(t) + gF (t), if

one has uniqueness of solution. It is worth to say that uniqueness is guaranteed if, for

instance, the manifold is compact, see Hamilton [29]. In the non compact case, see [48]

for a condition that leads to uniqueness. Therefore, it seems reasonable to separate

the case when the warping function is constant as a trivial case.

Our goal in the next result is to answer the question of when the Ricci flow

preserves the warped product structure in the sense of Definition 7.

Theorem 8 Let (Mn+m = Bn×h0Fm, g0) be a warped product of (Bn, g0
B) and (Fm, g0

F )

with non constant warping function h0 : B → (0,∞) and g0 = g0
B + h2

0g
0
F . Let

(Mn+m, g(t)), t ∈ [0, ε), ε ∈ (0,∞], be a Ricci flow such that g(0) = g0. The
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flow (Mn+m, g(t)) preserves the warped product structure of (Mn+m, g0) if, and only

if, (Fm, g0
F ) is an Einstein manifold and there exists a family of smooth functions

u(t) : B → R such that

g(t) = gB(t) + e2u(t)g0
F (2.2)

∂

∂t
gB(t) = −2Ric(gB(t)) + 2m∇gB(t)∇gB(t)u(t) + 2mdu(t)⊗ du(t), (2.3)

∂

∂t
u(t) = ∆gB(t)u(t) +m|∇gB(t)u(t)|2 − R0

F

m
e−2u(t), (2.4)

where R0
F is the constant scalar curvature of the fiber.

In order to prove Theorem 8 we need the following lemma that separates vari-

ables on a product manifold. It will also be important in Chapter 3, for the proof of

Theorem 10.

Lemma 1 Let Bn × Fm be a semi-Riemannian manifold and let h : Bn → R and

ϕ : Fm → R be non constant differentiable functions. Let µ1, ρ1 : D ⊂ B → R and

µ2, ρ2 : G ⊂ F → R be differentiable functions, where D ×G is connected. Then

h(p)µ2(q) + ϕ(q)µ1(p) = ρ1(p) + ρ2(q), ∀(p, q) ∈ D ×G. (2.5)

if, and only if, there are constants b, b̃, c, c̃ ∈ R such that



µ1 = ch+ c̃,

ρ1 = −bh+ b̃,

µ2 = −cϕ− b,

ρ2 = c̃ϕ− b̃,

(2.6)

for all p ∈ D and q ∈ G.

Proof.: Assume that the relation (2.5) holds. Since h and ϕ are not constant,

we consider (p0, q0) ∈ D ×G such that p0 and q0 are regular points of the functions h

and ϕ, respectively. Then there exists a vector field X1 on a connected neighborhood

D1 ⊂ D of p0 and a vector field U1 on a connected neighborhood G1 ⊂ G of q0 such

that

X1(h)(p) 6= 0, U1(ϕ)(q) 6= 0, ∀p ∈ D1, q ∈ G1.
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Consider X1, X2, ..., Xn and U1, U2, ..., Um orthogonal frames locally defined in (neigh-

borhoods that we still denote by) D1 and G1, respectively. Applying the vector fields

Xk, k = 1, ..., n and Uα, α = 1, ...,m to the relation (2.5) we get that

Xk(h)Uα(µ2) = −Xk(µ1)Uα(ϕ), ∀k, α. (2.7)

In particular, we have

X1(µ1)

X1(h)
= −U1(µ2)

U1(ϕ)
= c, in D1 and G1,

for some constant c ∈ R. Hence

X1(µ1) = cX1(h) in D1 and U1(µ2) = −cU1(ϕ) in G1. (2.8)

We want to show that this expression holds for all Xi and Uα. Fix p1 ∈ D1 and consider

Xi(h)(p1) for i ≥ 2. If Xi(h)(p1) 6= 0, shrinking D2 if necessary, we can assume that

Xi(h) 6= 0 in D1. Then it follows from (2.7) and (2.8) that in D1

Xi(µ1)

Xi(h)
= −U1(µ2)

U1(ϕ)
= c.

Therefore,

Xi(µ1) = cXi(h) in D1.

If Xi(h)(p1) = 0, then it follows from (2.7) that U1(ϕ)X(µ1)(p1) = 0 and therefore

Xi(h)(p1) = cXi(µ1)(p1). We conclude that for all i and α we have

Xi(µ1 − ch) = 0 in D1.

Similarly, we get

Uα(µ2 + cϕ) = 0 in G1.

From the last two expressions we conclude that there exist constants c̃, b ∈ R

such that

µ1 − ch = c̃, in D1 µ2 + cϕ = −b, in G1.
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It follows from (2.5) that

ρ1 + bh = c̃ϕ− ρ2 = b̃.

Therefore, we obtained (2.6) in D1 ×G1.

If there is p1 ∈ D\D1, using (2.5) in p1 and (2.6) in q ∈ G1 we have

ϕ(q)(−ch(p1) + µ1(p1)− c̃) = ρ1(p1) + bh(p1)− b̃,

for all q ∈ G1. Applying X1 on the above identity and how ϕ is not constant on G1

it follows that (2.6) holds on D × G1. Analogously if there is q1 ∈ G\G1, we can use

(2.5) in q1, (2.6) in p ∈ D1 and the non constancy of h on D1 to prove (2.6) on whole

D ×G. �

Proof of Theorem 8: Since the flow g(t) preserves the warped product

structure, there are smooth families gB(t), gF (t) and h(t) satisfying condition (2.1).

Considering frames {Ej} ⊂ X(B) and {Uα} ⊂ X(F ) lifted from B and F , respectively,

the Ricci flow equation becomes equivalent to

∂

∂t
g(t)jk =− 2Ric(g(t))jk, (2.9)

∂

∂t
g(t)jα =− 2Ric(g(t))jα, (2.10)

∂

∂t
g(t)αβ =− 2Ric(g(t))αβ, (2.11)

where j, k ∈ {1, . . . , n} and α, β ∈ {1, . . . ,m}. We first observe that both sides of

(2.10) are identically zero. In fact, using the second equality of (1.37) one gets that

the right hand side of (2.10) is identically zero. To see that the left hand side is also

identically zero we will use the fact that the canonical projections π : Bm × F n → Bn

and σ : Bm×F n → F n are constant with respect to t, and then, for any j ∈ {1, . . . , n}

and α ∈ {1, . . . ,m}:

∂

∂t
g(t)jα =

(
∂

∂t
g(t)

)
(Ej, Uα)

=

(
∂

∂t

[
π∗gB(t) + (π∗h(t))2σ∗gB(t)

])
(Ej, Uα)

=

(
π∗
[
∂

∂t
gB(t)

]
+
∂

∂t
(π∗h(t))2σ∗gB(t) + (π∗h(t))2σ∗

[
∂

∂t
gB(t)

])
(Ej, Uα)

Borges, V. November 28, 2018 Mat – UnB

mailto: nablavalter@gmail.com
http://www.mat.unb.br


2.1. Definition and Structural Theorem 50

=

[
∂

∂t
gB(t)

]
(dπ(Ej), dπ(Uα)︸ ︷︷ ︸

=0

) +
∂

∂t
(π∗h(t))2[gB(t)](dσ(Ej)︸ ︷︷ ︸

=0

, dσ(Uα))

+ (π∗h(t))2

[
∂

∂t
gB(t)

]
(dσ(Ej)︸ ︷︷ ︸

=0

, dσ(Uα))

= 0,

as we claimed. Therefore, the Ricci flow equation preserves the warped product struc-

ture if, and only if (2.9) and (2.11) are satisfied. Using Proposition 10 and the fact

that the canonical projections do not depend on t, these equations are equivalent to

∂

∂t
gB(t)jk =− 2Ric(gB(t))jk + 2mh(t)−1∇gB(t)∇gB(t)h(t)jk, (2.12)

h(t)2 ∂

∂t
gF (t)αβ =2

[
h(t)∆gB(t)h(t) + (m− 1)|∇gB(t)h(t)|2 − h(t)

∂

∂t
h(t)

]
gF (t)αβ

− 2Ric(gF (t))αβ, (2.13)

where j, k ∈ {1, . . . , n} and α, β ∈ {1, . . . ,m}.

Equation (2.12) is a differential equation purely on the base. However, equation

(2.13) involves the base and the fiber. We will separate the variables in this equation

in order to obtain equations on the base and on the fiber that are equivalent to it.

Fix t0 ∈ [0, ε) and assume that {Uα}, α ∈ {1, . . . ,m}, is an orthonormal frame in a

connected open set G ⊂ F , with respect to gF (t0).

Take α = β in (2.13) and define smooth functions ρ1(t0) : B → R and

ρ2(t0, α), µ2(t0, α) : G ⊂ F → R as

ρ1(t0) = 2[h(t)∆gB(t)h(t) + (m− 1)|∇gB(t)h(t)|2 − h(t)
∂

∂t
h(t)]. (2.14)

µ2(t0, α) =
∂

∂t
gF (t)αα, (2.15)

ρ2(t0, α) = −2Ric(gF (t))αα, (2.16)

With these considerations, equation (2.13) can be rewritten as

h(t0)2µ2(t0, α) = ρ1(t0) + ρ2(t0, α), (2.17)
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for all points in B ×G. By the Lemma 1 we conclude the existence of constants a(t0)

and b(t0) satisfying 
ρ1(t0) = −a(t0, α)h(t0)2 + b(t0, α),

µ2(t0, α) = −a(t0, α),

ρ2(t0, α) = −b(t0, α).

(2.18)

By the first equation of (2.18) we can see that a(t0, α) and b(t0, α) do not depend on

α, so we will call them just by a(t0) and b(t0), respectively. By using (2.14), (2.15),

(2.16) and (2.18) we arrive at
2[h(t)∆gB(t)h(t) + (m− 1)|∇gB(t)h(t)|2 − h(t) ∂

∂t
h(t)] = −a(t0, α)h(t0)2 + b(t0, α),

∂
∂t
gF (t)αα = −a(t0) = −a(t0)δαα,

−2Ric(gF (t))αα = −b(t0) = −b(t0)δαα.

(2.19)

Take α 6= β in equation (2.13). Since h(t0) is not constant, we conclude that


∂
∂t
gF (t)αβ = 0 = −a(t0)δαβ,

−2Ric(gF (t))αβ = 0 = −b(t0)δαβ.
(2.20)

Since t0 ∈ [0, ε) is arbitrary, (2.19) and (2.20) are enough to conclude that
∂
∂t
h(t) = ∆gB(t)h(t) + (m− 1)h(t)−1|∇gB(t)h(t)|2 + 1

2
a(t)h(t)− 1

2
b(t)h(t)−1,

∂
∂t
gF (t) = −a(t)gF (t),

Ric(gF (t)) = b(t)
2
gF (t),

(2.21)

for all t ∈ [0, ε), where the first equation occurs on B and the last two equations hold

for all points in G ⊂ F . Since G was chosen to define the orthonormal frame and

we can do this on a neighborhood of each point of F , we conclude that system (2.21)

holds, for the same functions a(t) and b(t), on the whole manifold B×F . In particular

(F, gF (t)) is an Einstein manifold, for each t ∈ [0, ε). Notice that the last two equations

in (2.21) imply that a(t) and b(t) are smooth functions in the variable t. Using the last
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two equations and the scalar invariance of the Ricci tensor we have

gF (t) = exp

(
−
∫ t

0

a(s)ds

)
g0
F (2.22)

and

b(t) =
2RF

0

m
exp

(∫ t

0

a(s)ds

)
. (2.23)

To see this, notice that from the second equation of (2.21), given a non vanishing vector

field U ∈ X(F ), we have
∂

∂t
ln(gF (t)(U,U)) = −a(t),

what implies (2.22). By the invariance of the Ricci tensor we get

b(t)

2
exp

(
−
∫ t

0

a(s)ds

)
g0
F =

R0
F

m
g0
F ,

what gives (2.23). Define u(t) = ln(h(t))− 1
2

∫ t
0
a(s)ds and observe that

g(t) = gB(t) + h(t)2gF (t)

= gB(t) + exp
(
2(ln(h(t))− 1

2

∫ t
0
a(s)ds)

)
g0
F

= gB(t) + e2u(t)g0
F .

Using the identities
∂
∂t
h(t) = ( ∂

∂t
u(t) + 1

2
a(t))h(t)

∆gB(t)h(t) = (∆gB(t)u(t) + |∇gB(t)u(t)|2)h(t)

|∇gB(t)h(t)|2 = |∇gB(t)u(t)|2h(t)2

and the first equation of (2.21) we have that h(t) satisfies

( ∂
∂t
u(t) + 1

2
a(t))h(t) = (∆gB(t)u(t) + |∇gB(t)u(t)|2)h(t) + (m− 1)h(t)|∇gB(t)u(t)|2

+1
2
a(t)h(t)− 1

2
b(t)h(t)−1,

and since b(t)h−2 =
2R0

F

m
e−2u(t), it follows that

∂

∂t
u(t) = ∆gB(t)u(t) +m|∇gB(t)u(t)|2 − 2R0

F

m
e−2u(t).
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The converse is a direct computation. �

Assume we have uniqueness of the Ricci Flow when g(0) = g0
B+h2

0g
0
F is a warped

product metric on the manifold B × F . Let g(t), t ∈ [0, T ), be the unique solution of

the Ricci Flow with this initial condition. Theorem 8 tells us that if the fiber (F n, g0
F )

is not an Einstein manifold, the flow g(t) does not preserve warped product structure,

in the sense of Definition 7.

Corollary 3 Let (Mn+m = Bn × Fm, g(t)), t ∈ [0, ε), ε ∈ (0,∞], be a Ricci flow

with g(0) = g0
B + h2

0g
0
F , where h0 : B → (0,∞) is a non constant smooth function.

If (Fm, gF (0)) is not an Einstein manifold then the flow does not preserve the warped

product structure.

Note the resemblance with the case of Ricci solitons on warped products, where a

necessary condition for its existence is that the fiber is an Einstein manifold. So we

can see this as a generalization of this fact, proved in [47].

Given two solutions of the Ricci flow (Bn, gB(t)) and (Fm, gF (t)), it is easy to see

that its product (Bn × Fm, g(t) = gB(t) + gF (t)) is also a solution of the Ricci flow. It

is natural to ask whether this result still true for the warped product (Bn×Fm, g(t) =

gB(t)+h(t)2gF (t)), where h(t) : B → (0,∞) is a family of positive functions. It follows

from Theorem 8 that when the metric gB(t) is complete, for each t ∈ [0, T ), then there

is no such a warping function. In other words,

Corollary 4 Let (Bn, gB(t)), t ∈ [0, T ), be a Ricci Flow so that gB(t) is complete for

each t and (Fm, gF (t)), t ∈ [0, T ), be any family of metrics. There is no family of

non constant functions h(t) : B → (0,∞), t ∈ [0, T ), on B so that the warped product

(Bn × Fm, g(t) = gB(t) + h(t)2gB(t)) is a Ricci Flow.

Proof: Suppose by contradiction that there is a family h(t) : B → (0,∞), t ∈ [0, T ),

so that g(t) = gB(t) + h(t)2gF (t) is a Ricci Flow. Since by hypothesis g(t) is a Ricci

Flow that preserves warped product, it satisfies equation (2.3), and using the fact that

gB(t) is a Ricci Flow on B, we conclude that ∇B∇Bh(t) = 0. Let t0 ∈ [0, T ) so that

∇gB(t0)h(t0) 6= 0 and consider a geodesic γ : R → B with respect to (Bn, gB(t0)) so

that γ′(0) = ∇gB(t0)h(t0). It follows that (h(t0) ◦ γ)′′(s) = 0, for all s ∈ R. Then

there are constants a and b, depending of γ, so that (h(t0) ◦ γ)(s) = as + b. Notice
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that γ(s) is defined in R. Since a = (h(t0) ◦ γ)′(0) = |∇gB(t0)h(t0)|2 6= 0, one can take

s0 = −b/a in the domain of γ to obtain h(t0)(γ(s0)) = (h(t0) ◦ γ)(s0) = 0. But this is

a contradiction, since h(t) is positive for each t. �

2.2 Nonexistence of Ancient Solutions of the Ricci

Flow that Preserves Warped Product

Ancient solutions occur naturally in the process of understanding singularities

that occur in finite time.

Definition 8 We say that a solution (Mn+m = Bn×Fm, g(t)) of the Ricci Flow is an

ancient solution if it is defined for each t ∈ (−∞, t0), where t0 ∈ (−∞,∞].

Similar to Definition 7, we introduce the ancient solutions that have the property

of being a warped product.

Definition 9 An ancient solution (Mn+m = Bn×Fm, g(t)), t ∈ (−∞, T ), of the Ricci

Flow is warped product along the time t if there are smooth families

1. {gB(t); t ∈ (−∞, T )}, of metrics on B;

2. {h(t); t ∈ (−∞, T )}, of non constant functions on B;

3. {gF (t); t ∈ (−∞, T )}, of metrics on F ,

such that for each t ∈ (−∞, T )

g(t) = π∗gB(t) + (π∗h)2σ∗gF (t), (2.24)

where π : Mm+n → Bn and σ : Mm+n → F n are the canonical projections into the

base and the fiber, respectively.

Shrinking and expanding Ricci solitons are self-similar solutions of the Ricci

Flow and it turns out that they are ancient solutions. In [22], the authors used Elliptic

Maximum Principle to prove that both shrinking and steady warped product Ricci

solitons with compact base have constant warping function. Since Ricci solitons are
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special solutions of the Ricci Flow, it would be interesting to know whether this result

extends to solutions of the Ricci Flow other than solitons. The result below asserts

that for warped product ancient solutions this still true.

Theorem 9 Let (Mn+m = Bn × Fm, g(t)) be an ancient Ricci Flow that is warped

product along time t and that has compact base. Then (Fm, gF (t)) is an Einstein

manifolds for each time t with positive Einstein constant.

To prove Theorem 9 we will compute the evolution equation satisfied by |∇Bu|2

and then use the Parabolic Maximum Principle. The result below is an immediate

consequence of Proposition 2.

Proposition 22 Let (Mn+m, g(t) = gB(t) + e2u(t)g0
F ), t ∈ [0, ε), ε ∈ (0,∞], be a

Ricci flow that preserves warped product. Then R0
F is constant and, if it is zero, then

|∇gB(t)u|2 satisfies

(
∂

∂t
−∆gB(t)

)
|∇gB(t)u|2 ≤ m

〈
∇gB(t)u,∇gB(t)(|∇gB(t)u|2)

〉
− 2m|∇gB(t)u|4 (2.25)

Proof: It follows from Proposition 2, item (1.9), that if r = R0
F = 0, then we get

(2.25). �

Proof of Theorem 9: Let (Mn+m, g(t)), t ∈ [0, T ), be a Ricci Flow that

preserves warped product structure. It follows from Theorem 8 that we can write

g(t) = gB(t) + e2u(t)g0
F , where (Fm, g0

F ) is an Einstein manifold with constant scalar

curvature R0
F and the families gB(t) and u(t) satisfy (2.3)-(2.4).

Suppose that B is compact. Then there are c1, c2 ∈ R so that u : Bn×[0, T )→ R

satisfies 
(
∂

∂t
−∆B

)
u = m|∇Bu|2 −

R0
F

m
e−2u(t)

c1 ≤ u(0) ≤ c2.

(2.26)

By the Maximum Principle, Corollary 1, if we take cj(t) solving


d

dt
cj(t) = −R

0
F

m
e−2cj(t)

cj(0) = cj,

(2.27)
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j ∈ {1, 2}, it follows that c1(t) ≤ u(t) ≤ c2(t), as long as they exist. Solving (2.27) we

get for h = eu,

e2c1 − 2R0
F

m
t = c1(t) ≤ h(t)2 ≤ c2(t) = e2c2 − 2R0

F

m
t. (2.28)

Suppose that (Mn+m, g(t)), t ∈ (−∞, T ), is an ancient solution that is a warped

product along the time. Consider the family of metrics given by g̃(t) = g(t − α),

t− α ∈ (−∞, T ). It is easy to see that g̃ is a solution of the Ricci Flow that preserves

warped product, and has warping function given by h̃(t) = h(t−α). Notice that taking

t and α so that −α < t < T , we get h̃(t+ α) = h(t), with 0 < t+ α < T + α.

If R0
F < 0, it follows from (2.28) by taking the limit when α→∞ we get

h(t) = lim
α→∞

h̃(t+ α) ≥ lim
α→∞

(
−2R0

F

m
(t+ α)

)
=∞,

which is clearly a contradiction.

If R0
F = 0, using the Maximum Principle it follows from (2.25) that

|∇gB(t)u(t)|2 ≤ c

1 + 2mct
, (2.29)

where c is the positive constant so that |∇gB(0)u(0)|2 ≤ c and the right hand side of

(2.29) is the solution of the ODE


d
dt
c(t) = −2mc(t)2

c(0) = c.

Applying (2.29) to ũ(t+ α) = u(t) and taking the limit when α→∞ we get

|∇gB(t)u(t)|2 ≤ lim
α→∞

(
c

1 + 2mc(t+ α)

)
= 0. (2.30)

This is a contradiction, because u(t) : B → R is not constant. �

Theorem 9 can be seen as a parabolic version of Corollary 1 in [22]. Using the

fact that Ricci solitons are self similar solutions of the Ricci Flow, we can derive this

result as a corollary, as we will see in the next result.
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Corollary 5 There is no gradient Ricci soliton, either shrinking or steady, on a warped

product with compact base and fiber with negative scalar curvature somewhere.

Proof: Assume that f is not constant, B is compact and λ ≥ 0. We can generate the

following solutions g(t) for the Ricci flow equation, defined on an interval I either of

the form I = (−∞,∞), when λ = 0, or I = (−∞, 2/λ), when λ > 0. Note that 0 ∈ I

and g(0) = g0. For each t ∈ I,

g(t) = (1− 2λt)ψ∗t g0

= (1− 2λt)ψ∗t gB + (
√

(1− 2λt)ψ∗t h)2gF ,

that is, g(t) is an ancient solution that is warped product along the time, where ψt

is the flow of a field suitably chosen (see [20], page 154). By Theorem 9 it follows

that (F n, gF (t)) is Einstein and its Einstein constant is positive, for each t. The result

follows from Theorem 9 by taking t = 0, since B is compact. �

It follows from Theorem 8 that the fiber of a Ricci Flow that preserves warped

product is an Einstein manifold. It is a corollary of the proof of Theorem 9 that when

the scalar curvature of its fiber is positive, the solution develops singularity in finite

time. Below we will see an estimate for the singular time in terms of the warping

function and the scalar curvature of the fiber. More precisely we have

Corollary 6 Let (Mn+m, g(t)) = (Bn×h(t)F
m, g(t) = gB(t)+e2u(t)g0

F ), be a Ricci Flow

that preserves warped product and that has compact base. If the scalar curvature of g0
F

is positive, then the flow develops singularity in a finite time T , where

T ≤ me2max
B
u(0)

2R0
F

,

and R0
F is the constant scalar curvature of the fiber (Fm, g0

F ).

Proof: If R0
F > 0 and g(t) is defined for

t0 =
me2max

B
u(0)

2R0
F

,
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it follows from (2.28) with c2 = max
B
u(0) that

0 < e2u(t0) ≤ e2max
B
u(0) − 2R0

F

m
t0 = 0,

which is a contradiction. Therefore g(t) develops singularity before t0. �
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Chapter 3

Ricci Almost Solitons on

semi-Riemannian Warped Products

In this chapter we consider Ricci almost solitons on warped products Bn×h Fm

and we assume that they are not trivial, in the sense that h : B → (0,∞) is not

a constant function. In the first section we characterize the fundamental equation

(1.35) taking into account the warped product property. It is made by considering

two complementary cases depending whether the potential function f : Bn × Fm → R

depends on the fiber F or not. The second section deals with the additional assumption

that f depends not trivially of the fiber F . From this new assumption we derive

rigidity, in the sense that either λ is not constant and (Bn×Fm, g) is Einstein or (Bn×

Fm, g, f, λ) is a Ricci soliton. The third and last section is addressed to the classification

under completeness of not trivial Ricci almost solitons for which its potential function

depends not trivially on the fiber F .

3.1 Characterization

We start with an important decomposition property of the potential function

of a Ricci almost soliton on a warped product. Roughly speaking, it says that under

the warped product property, the potential function of a Ricci almost soliton must

decompose (see (3.1) below).

Proposition 23 Let (Bn ×h Fm, g, f, λ) be a Ricci almost soliton defined on a semi-

Riemannian warped product manifold, where the base (Bn, gB) or the fiber (Fm, gF )
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are either Riemannian or semi-Riemannian manifolds, h : B → R is a positive smooth

function and g = gB + h2gF . Then the potential function f can be decomposed as

f = β + hϕ, (3.1)

where β : B → R and ϕ : F → R are smooth functions. Then the fundamental equation

(1.35) is equivalent to the system RicB +∇B∇Bβ + (ϕ−mh−1)∇B∇Bh = λgB,

RicF + h∇F∇Fϕ = [h∆Bh+ (m− 1)|∇Bh|2 − h(∇Bh)β − ϕh(∇Bh)h+ λh2]gF .

(3.2)

Proof: In view of Proposition 10 and Proposition 12 we can rewrite the fundamental

equation (1.35) as follows
RicB(X, Y )−mh−1∇B∇Bh(X, Y ) +∇B∇Bf(X, Y ) = λgB(X, Y ),

RicF (U, V ) +∇F∇Ff(U, V ) = [λh2 + (m− 1)h−2|∇Bh|2 + h−1∆Bh− h(∇Bh)f ]gF (U, V ),

X(U(f)) = h−1X(h)U(f).

(3.3)

Observe that X(U(f))− h−1U(f)X(h) = 0 implies

X(U(fh−1)) = X(U(f)h−1)

= X(U(f))h−1 − U(f)h−2X(h)

= 0,

for all X ∈ L(B) and all U ∈ L(F ). Therefore, there are smooth functions β : B → R

and ϕ : F → R such that the potential function f decomposes as in (3.1).

Substituting (3.1) in the first two equations of (3.3), a straighforward computa-

tion implies that (3.2) holds. �

In order to analyse the system (3.2), we will consider separately the cases where

the potential function f depends on the fiber or not. We observe that when the warping

function h is constant, the warped product reduces to the semi-Riemannian product.

In this case, the base and the fiber must be Ricci solitons, as we can easily see from
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(3.2). So, from now on, we will assume that h is not constant.

The next two theorems show how to separate the fundamental equation of a

Ricci almost soliton on a warped product, into equations on the base and on the fiber.

First we deal with the case where the potential function depends on the fiber. In this

case equation (1.35) reduces as in the following theorem:

Theorem 10 Let Bn×hFm be a non trivial warped product where the base (Bn, gB) or

the fiber (Fm, gF ) can be either a Riemannian or a semi-Riemannian manifold. Then

(Bn ×h Fm, g, f, λ) is a Ricci almost soliton, with f non constant on F if, and only

if, f = β + hϕ, where ϕ : F → R is not constant and β : B → R are differentiable

functions such that



∇B∇Bh+ ahgB = 0,

RicB +∇B∇Bβ = [h−1(∇Bh)β − bh−1 + (n− 1)a]gB,

∇F∇Fϕ+ (cϕ+ b)gF = 0,

RicF = (m− 1)cgF ,

(3.4)

for some constants a, b, c ∈ R, the function λ is given by

λ = h−1(∇Bh)β − bh−1 + (m+ n− 1)a− ahϕ, (3.5)

and the constants a and c are related to h by the equation

|∇Bh|2 + ah2 = c. (3.6)

Proof: If (Bn ×h Fm, g, f, λ) is a Ricci almost soliton then it follows from Theorem

23 that f = β + hϕ and the system (3.2) is satisfied. We are assuming that h is not

constant and f depends on the fibers. Hence ϕ is not constant.

Considering the system (3.2) evaluated at pairs of orthogonal vector fields

(X, Y ), X, Y ∈ X(B) and (U, V ), U, V ∈ X(F ) locally defined on a neighborhood

of any point (p, q) ∈ B × F , we have

 RicB(X, Y ) +∇B∇Bβ(X, Y ) + (ϕ−mh−1)∇B∇Bh(X, Y ) = 0,

RicF (U, V ) + h∇F∇Fϕ(U, V ) = 0.
(3.7)
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Fix p1 ∈ B and consider an open neighborhood G1 ⊂ B of regular points q of

ϕ and W a vector field such that W (ϕ) 6= 0 in G1. Considering the first equation of

(3.7) at the points (p1, q) and applying W to this equation, we get that

∇B∇Bh(X, Y )(p1) = 0,

RicB(X, Y )(p1) +∇B∇Bβ(X, Y )(p1) = 0
∀p1 ∈ B.

Similarly, by fixing q1 ∈ F and considering an open neighborhood D1 ⊂ B, of

regular points p of h, we obtain from the second equation of (3.7) that

∇F∇Fϕ(U, V )(q1) = 0,

RicF (U, V )(q1) = 0
∀q1 ∈ F.

Therefore, for any pairs of orthogonal vector fields (X, Y ) and (U, V ), locally

defined in B × F , we have



∇B∇Bh(X, Y ) = 0,

RicB(X, Y ) +∇B∇Bβ(X, Y ) = 0,

∇F∇Fϕ(U, V ) = 0,

RicF (U, V ) = 0.

(3.8)

Let (p0, q0) ∈ B×F such that p0 and q0 are regular points of the functions h and

ϕ respectively. Then there exist vector fields X1 and U1 defined one open connected

sets D ⊂ B and G ⊂ F with p0 ∈ D and q0 ∈ G, such that

X1(h)(p) 6= 0, ∀p ∈ D, U1(ϕ)(q) 6= 0, ∀q ∈ G. (3.9)

Let {X1, Xj}nj=2 and {U1, Uα}mα=2 be orthogonal vector fields on D and G respectively.

Without loss of generality we may consider

 gB(Xj, Xk) = εjδjkh
2, ∀j, k ∈ {1, . . . , n},

gF (Uα, Uγ) = εαδαγ, ∀α, γ ∈ {1, . . . ,m},
(3.10)

where εj and εα denote the signatures of the vector fields.
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Now we consider the system (3.2) evaluated at the pairs (Xj, Xj) and (Uα, Uα).

Subtracting the first equation multiplied by εj from the second one mutiplied by εα,

we get the following expression

ϕ(q)µ1j(p) + h(p)µ2α(q) = ρ1j(p) + ρ2α(q), ∀(p, q) ∈ D ×G, (3.11)

where 1 ≤ j ≤ n, 1 ≤ α ≤ m and



µ1j = −εj∇B∇Bh(Xj, Xj) + h|∇Bh|2,

ρ1j = h∆Bh+ (m− 1)|∇Bh|2 − h(∇Bh)β + εj[RicB +∇B∇Bβ −mh−1∇B∇Bh](Xj, Xj),

µ2α = εα∇F∇Fϕ(Uα, Uα),

ρ2α = −εαRicF (Uα, Uα).

(3.12)

In view of Lemma 1, it follows from (3.11) that, for each pair (j, α), there exist

contants ajα, bjα, cjα, djα, such that



µ1j = cjαh+ c̃jα,

ρ1j = −bjαh+ b̃jα,

µ2α = −cjαϕ− bjα,

ρ2α = c̃jαϕ− b̃jα.

(3.13)

Therefore,
X1(µ1j)

X1(h)
= cjα,

X1(ρ1j)

X1(h)
= −bjα,

U1(µ2α)

U1(ϕ)
= −cjα,

U1(ρ2α)

U1(ϕ)
= c̃jα,

i.e., cjα, bjα do not depend on α, and cjα and c̃jα do not depend on j. Hence we denote

cjα = c, bjα = bj and c̃jα = c̃α. Moreover, it follows from (3.13) that

µ1j − ch = c̃α and µ2α + cϕ = −bj.
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Therefore, c̃α does not depend on α and bj does not depend on j. Hence we may denote

c̃α = c̃ , bj = b and

ρ1j + bh = b̃jα, ρ2α − c̃ϕ = −b̃jα.

We conclude that b̃jα does not depend on j and α and we can denote b̃jα = b̃. Therefore,

it follows from (3.12) and (3.13) that in D ×G we have



−εj∇B∇Bh(Xj, Xj) + h|∇Bh|2 = ch+ c̃,

h∆Bh+ (m− 1)|∇Bh|2 − h(∇Bh)β + εj[RicB +∇B∇Bβ −mh−1∇B∇Bh](Xj, Xj) = −bh+ b̃,

εα∇F∇Fϕ(Uα, Uα) = −cϕ− b

−εαRicF (Uα, Uα) = c̃ϕ− b̃.
(3.14)

Considering (3.8) for the orthogonal vector fields {Xj}nj=1, {Uα}mα=1 it follows from

(3.14) that in D ×G we have



∇B∇Bh+ [ch−1 + c̃h−2 − h−1|∇Bh|2] gB = 0,

RicB +∇B∇Bβ +
{
h∆Bh− |∇Bh|2 − h(∇Bh)β − b̃+ bh+mc̃h−1 +mc

}
h−2gB = 0,

∇F∇Fϕ+ (cϕ+ b)gF = 0,

RicF + (c̃ϕ− b̃)gF = 0,

(3.15)

We will now prove that (3.15) holds in B × F . Let p1 ∈ B and X ∈ Tp1B such

that gB(X,X) = εXh
2(p1), where εX = ±1. Consider q ∈ G and the system (3.2)

at the pair of vectors (X,X) and the pair of vectors fields (U1, U1) at (p1, q), q ∈ G.

Multiplying the first equation by −εX and adding to the second equation multiplied

by ε1, we get

ϕ(q)µ1X(p1) + h(p1)µ21(q) = ρ1X(p1) + ρ21(q), ∀q ∈ G, (3.16)
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where

µ1X = −εX∇B∇Bh(X,X) + h|∇Bh|2,

ρ1X = h∆Bh+ (m− 1)|∇Bh|2 − h(∇Bh)β + εj[RicB +∇B∇Bβ −mh−1∇B∇Bh](X,X),

µ21 = −cϕ− b,

ρ21 = c̃ϕ− b̃,
(3.17)

where the last two equalities follow from (3.14) and the fact that q ∈ G. Therefore,

(3.16) reduces to

[−ch(p1) + µ1X(p1)− c̃]ϕ(q) = bh(p1) + ρ1X(p1)− b̃, ∀q ∈ G.

Applying the vector field U1 to this equation, we conclude that

µ1X(p1) = ch(p1) + c̃, ρ1X(p1) = −bh(p1) + b̃. (3.18)

Similarly, considering q1 ∈ F and U ∈ Tq1F such that gF (U,U) = εU = ±1, for

all p ∈ D the equations of (3.2) evaluated at the pairs (X1, X1) and (U,U) will imply

that

ϕ(q1)µ11(p) + h(p)µ2U(q1) = ρ11(p) + ρ2U(q1),

where

µ2U = εU∇F∇Fϕ(U,U), ρ2U = −εURicF (U,U).

Analogue arguments as before will imply that

µ2U(q1) = −cϕ(q1)− b, ρ2U(q1) = c̃ϕ(q1)− b̃. (3.19)

Since p1 ∈ B and q1 ∈ F are arbitrary, we conclude that for any locally defined

vector fields X ∈ X(B) and U ∈ X(F ), such that gB(X,X) = εXh
2 and gF (U,U) = εU

we have that (3.18) and (3.19) hold. We now consider any point (p1, q1) ∈ B × F

and orthogonal fields locally defined Y1, ..., Yn in X(B), V1, ...Vm in X(F ) such that
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gB(Yj, Yj) = εjh
2 and gF (Vα, Vα) = εα. Then

−εj∇B∇Bh(Yj, Yj) + h|∇Bh|2 = ch+ c̃,

h∆Bh+ (m− 1)|∇Bh|2 − h(∇Bh)β + εj[RicB +∇B∇Bβ −mh−1∇B∇Bh](Yj, Yj) = −bh+ b̃,

εα∇F∇Fϕ(Vα, Vα) = −cϕ− b

−εαRicF (Vα, Vα) = c̃ϕ− b̃.

Considering (3.8) for the orthogonal vector fields {Yj}nj=1 and {Vα}mα=1 it follows that

(3.15) holds in B × F .

We will now use Bochner formula (1.52) to prove that

c̃ = 0 and b̃ = (m− 1)c. (3.20)

In fact, it follows from the third equation of (3.15) that

U1(∆Fϕ) = −cmU1(ϕ).

From the fourth equation, we have

RicF (∇Fϕ,U1) = (−c̃ϕ+ b̃)U1(ϕ).

Moreover,

div(∇F∇Fϕ)(U1) =
m∑
α=1

(∇F Uα
∇F∇Fϕ)(U1, Uα)

=
m∑
α=1

(∇F Uα
(−(cϕ+ b)gF ))(U1, Uα)

= −cgB(U1,

m∑
α=1

Uα(ϕ)Uα)

= −cU1(ϕ).

Now Bochner formula implies that

[c̃ϕ− b̃+ c(m− 1)]U1(ϕ) = 0.
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Since U1(ϕ) 6= 0, we conclude that (3.20) holds.

Therefore, on B × F , the system (3.15) reduces to



∇B∇Bh+ (c− |∇Bh|2)h−1gB = 0,

RicB +∇B∇Bβ + {h−1 [∆Bh− (∇Bh)β + b] + h−2(c− |∇Bh|2)} gB = 0,

∇F∇Fϕ+ (cϕ+ b)gF = 0,

RicF − (m− 1)cgF = 0.

(3.21)

Observe that for any X ∈ L(B), we have the following expressions

∇B∇Bh(X,∇BX) = gB(∇X∇Bh,∇Bh) = 1
2
X(|∇Bh|2),

∇B∇Bh(X,∇BX) = (|∇Bh|2 − c)h−1X(h),

where the second equality follows from (3.21). Therefore,

X(|∇Bh|2)

2
−
(
|∇Bh|2 − c

)
h−1X(h) = 0,

which implies that

X
[(
c− |∇Bh|2

)
h−2
]

= 0.

Hence there exists a constant a such that

(
c− |∇Bh|2

)
h−2 = a,

i.e., (3.6) holds. Moreover, the first equation of (3.21) reduces to

∇B∇Bh+ ahgB = 0

and ∆Bh = −anh. Hence, the second equation of (3.21) reduces to

RicB +∇B∇Bβ =
[
(n− 1)a+ h−1(∇Bh)β − bh−1

]
gB.

Finally, it follows from these two last equations that the first equation of (3.2) provides

λ = h−1(∇Bh)β + (m+ n− 1)a− bh−1 − ahϕ.
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Therefore, the functions f, h and λ satisfy the system (3.4). The converse is a

straightforward computation. This concludes the proof of Theorem 10. �

Remark 2 Equations such as the first or third equations of (3.4) have appeared in

many contexts in semi-Riemannian geometry. They appeared for example in concir-

cular transformations [50], in conformal transformations between Einstein spaces [37]

and in conformal vector fields on Einstein manifolds [38].

Remark 3 A function satisfying equation (3.6) is said to have constant energy, fol-

lowing [13], where the author investigated properties of such functions. Equation (3.6)

also appeared in the Critical Point Equation conjecture [40].

As an application of Theorem 10 we will prove that for a complete warped product

Ricci solitons (that is, when λ is a constant) the potential function does not depend

on the fiber.

Corollary 7 Let (B ×h F, g, f, λ) be a Ricci soliton on a complete non trivial semi-

Riemannian warped product. Then f does not depend on the fiber.

Proof: Suppose by contradiction that f depends on the fiber, then it follows from

Theorem 10 that f = β + hϕ where ϕ is not constant. Moreover, β, h, ϕ and λ satisfy

(3.4)-(3.6). Hence there exists a vector field U ∈ L(F ) such that U(ϕ) 6= 0 on an open

subset of F . Since λ is constant, taking the derivative of (3.5) with respect to U , we

obtain 0 = U(λ) = −ahU(ϕ). Hence a = 0 and the first equation of (3.4) reduces to

∇B∇Bh = 0. However, it follows from Proposition 14 that if B ×h F is complete then

∇Bh is not parallel, which is a contradiction. �

Remark 4 Corollary 7 was also considered in [47] by a different approach. It shows

that examples of Ricci solitons on complete semi-Riemannian warped product occur

when the potential function depends only on the base.

Now we consider the case where the potential function does not depend on the

fiber.
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Theorem 11 Let Bn×hFm be a non trivial warped product where the base (Bn, gB) or

the fiber (Fm, gF ) can be either a Riemannian or a semi-Riemannian manifold. Then

(Bn ×h Fm, g, f, λ) is a Ricci almost soliton, with f constant on F if, and only if,
RicB +∇B∇Bf −mh−1∇B∇Bh = λgB,

λh2 = h(∇Bh)f − (m− 1)|∇Bh|2 − h∆Bh+ c(m− 1),

RicF = c(m− 1)gF ,

(3.22)

for some constant c ∈ R.

Proof: It follows from Proposition 23 that if (Bn ×h Fm, g, f, λ) is a Ricci almost

soliton and f is constant on F , then in the decomposition of f given by (3.1) we may

consider ϕ = 0. Therefore, from the first equation of (3.2) we get that the first equation

of (3.22) holds and that λ is a function constant on F , hence it depends only on B. In

order to obtain the other equations of (3.22), we observe that if U ∈ L(F ) is a unitary

vector field satisfying gF (U,U) = ε ∈ {−1, 1} we obtain from the second equation of

(3.2) :

εRicF (U,U) = h∆Bh+ (m− 1)|∇Bh|2 − h(∇Bh)β + λh2.

Since the left hand side is a function defined only on F and the right hand side is a

function defined only on B, there is a constant c̃ ∈ R independent of the fixed field U ,

(as we can see using the right hand side of the above equality), such that

λh2 = h(∇Bh)β − (m− 1)|∇Bh|2 − h∆Bh+ c̃,

and

RicF = c̃gF .

In order to normalize the Einstein constant, we consider c̃ = (m − 1)c. This proves

that (3.22) holds. The converse is a simple calculation. �

The Riemannian version of Theorem 11 was considered in [23], where the authors

gave some explicit solutions to the system.

The essence of both Theorems 10 and 11 is to express the condition for a warped

product to be a Ricci almost soliton in terms of conditions on the base and on the fiber.
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Note that the first and third equations in Theorem 10 say that the corresponding

gradient vector fields are conformal (see Section 1.3 for definitions). In addition, the

fourth equation of Theorem 10 and the third equation of Theorem 11 show that the

fiber is an Eisntein manifold in both cases.

3.2 Rigidity when the potential function depends on

the Fiber

We start this section stating its main result, which says that when the potential

function f depends on the fiber F then the Ricci almost soliton must be somehow rigid.

Theorem 12 If (Bn×hFm, g, f, λ) is a non-trivial warped product Ricci almost soliton

with f non constant on F , then either λ is not constant and (Bn×hFm, g) is an Einstein

manifold or (Bn ×h Fm, g, f, λ) is a Ricci soliton.

The proof of Theorem 12 will follow from the proofs of Theorem 14 and Theorem

13 (see below for their statements). In order, for stating these theorems we will intro-

duce some important notions in what follows. Among all conformal transformations,

we stress the following ones.

Definition 10 A vector field X is homothetic if its local flow acts by translations.

Otherwise, it is called non homothetic.

Now we will give the notion of Brinkmann space, which plays an important role

in General Relativity [9] and was introduced by Brinkmann [9] when the author studied

conformal transformations between Einstein manifolds.

Definition 11 We say that a semi-Riemannian manifold (M, g) is a Brinkmann space

if it admits a parallel light like vector field X, called a Brinkmann field.

Our next result characterizes Ricci almost solitons on semi-Riemannian warped

products, when the potential function depends on the fiber and ∇Bh is an improper

vector field on B (see Definitioin 6 to recall this notion).

Theorem 13 Let Bn ×h Fm, n ≥ 2, be a non trivial warped product where the base

(Bn, gB) is a semi-Riemannian manifold and the fiber (Fm, gF ) can be either a Rie-

mannian or a semi-Riemannian manifold. Then (Bn ×h Fm, g, f, λ) is a Ricci almost
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soliton, with f non constant on F and ∇Bh an improper vector field on B if, and only

if, λ is constant and f = β + hϕ, where ϕ : F → R non constant and β : B → R are

smooth functions satisfying

g(∇Bh,∇Bβ) = λh+ b, RicB +∇B∇Bβ = λgB, ∇F∇Fϕ+ bgF = 0

for a constant b ∈ R, B is a Brinkmann space with ∇Bh as a Brinkmann field and F

is Ricci flat. If in addition F is complete, then it is isometric to

1. ±R× F̄m−1, where F̄ is Ricci flat, if b = 0;

2. Rm
ε , if b 6= 0.

Proof: From Theorem 10, we have that f = β + hϕ and equations (3.4)-(3.6) are

satisfied. If ∇Bh is an improper vector field on B, it follows from equation (3.6) that

a = c = 0. Hence, (3.4) and (3.5) imply that ∇Bh is a parallel light like vector field,

(F, gF ) is Ricci flat and 
RicB +∇B∇Bβ = λgB,

λ = h−1(∇Bh)β − bh−1,

∇F∇Fϕ+ bgF = 0.

(3.23)

Now we will prove that λ is constant. If λ = 0 there is nothing to prove. Otherwise,

there is an open set U ⊂M where λ does not vanish. Then it follows from the second

equation of (3.23) that

1

2
X(ln(λ2)) =

1

2
X(ln(h−2(g(∇Bh,∇Bβ)− b)2))

= −h−1X(h) + (g(∇Bh,∇Bβ)− b)−1X(g(∇Bh,∇Bβ))

= −h−1X(h) + (g(∇Bh,∇Bβ)− b)−1∇B∇Bβ(X,∇h).

(3.24)

Since ∇Bh is a parallel vector field, Bochner’s Formula implies that Ric(X,∇Bh) = 0,

hence from the first equation of (3.23), we get that ∇B∇Bβ(X,∇Bh) = λgB(X,∇Bh).

We conclude, using the second equation of (3.23) that (3.24) reduces to

1

2
X(ln(λ2)) = −h−1X(h) + h−1X(h) = 0,

which proves that λ is constant. The converse is immediate.
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Now suppose that (F, gF ) is complete. Since ∇F∇Fϕ + bgF = 0, the result

follows from Theorem 5, if b 6= 0 and from Theorem 6 if b = 0. �

The next result deals with the rigidity of a Ricci almost soliton on a warped

product when the potential function depends on the fiber and ∇Bh is a proper vector

field.

Theorem 14 Let Bn ×h Fm be a non trivial warped product where the base (Bn, gB)

or the fiber (Fm, gF ) can be either a Riemannian or a semi-Riemannian manifold and

suppose that (Bn ×h Fm, g, f, λ) is a Ricci almost soliton with f non constant on F

and ∇Bh a proper vector field. Then

1. If ∇Bh is homothetic, then λ is constant, i.e., it is a Ricci soliton;

2. If ∇Bh is non-homothetic, then λ is not constant, B, F and Bn ×h Fm are

Einstein manifolds such that

RicB×hF = (n+m− 1)ag,

RicB = (n− 1)agB,

RicF = (m− 1)cgF ,

(3.25)

where the constants a 6= 0 and c are related to h by |∇Bh|2 + ah2 = c. Moreover,

∇f and ∇Bh are conformal gradient fields on Bn×hFm and on Bn, respectively,

satisfying
∇∇f + (af + a0)g = 0,

∇B∇Bh+ ahgB = 0,
(3.26)

and

λ = −af + a(m+ n− 1)− a0, (3.27)

for some constant a0 ∈ R.

Proof: If (Bn ×h Fm, g, f, λ) is a Ricci almost soliton with h non constant and f

depending on the fiber then, it follows from Theorem 10 that there are functions

β : B → R and ϕ : F → R and constants a, b, c ∈ R, such that f = β + hϕ where

β, h, ϕ and λ satisfy (3.4)-(3.6).
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If ∇Bh is a homothetic vector field, then a = 0. It means that this vector field

is parallel, and by the same argument as in the proof of Theorem 13, we see that λ is

constant, which proves that (Bn ×h Fm, g, f, λ) is a Ricci soliton.

From now on we will suppose that ∇Bh is a non homothetic vector field, that

is, a 6= 0.

If n = 1, from these equations we get
h′′ ± ah = 0,

±(h′)2 + ah2 = c,

RicF = (m− 1)cgF ,

where gB1 = ±dt2. Therefore, B1 ×h Fm is an Einstein manifold with normalized

Einstein constant a, as a consequence of Corollary 2.

If n ≥ 2, it follows from the second equation of (3.4) that (B, gB, β, λ̄) is a Ricci

almost soliton, i.e.,

RicB +∇B∇Bβ = λ̄gB (3.28)

where

λ̄ = h−1(∇Bh)β − bh−1 + (n− 1)a. (3.29)

From the first equation of (3.4), we get that ∇Bh is a gradient conformal field satisfying

∇B∇Bh+ ahgB = 0, (3.30)

i.e., (B, gB, β, λ̄) is a Ricci almost soliton. Moreover, ∇B∇Bh − ∆Bh/ng = 0. By

hypothesis, ∇Bh is a non homothetic vector field hence ∇Bh is a proper vector field,

and therefore a 6= 0 and h admits regular points. Fixing a regular point of h, p ∈ B, it

follows from Proposition 21 that there exists a connected open set D ⊂ B, containing

p, such that D is diffeomorphic to (−ε, ε) × Nn−1 for ε > 0 and a regular level Nn−1

of h, in such a way that h does not depend on Nn−1 and (D, gD) is isometric to

((−ε, ε) × Nn−1,±dt2 + h′(t)2gN), where gD = gB|D and gN = gB|N . By restricting β

and λ̄ to D, we have that (D, gD, β, λ̄) is a Ricci almost soliton, therefore

((−ε, ε)×h′ Nn−1,±dt2 + h′(t)2gN , β, λ̄), (3.31)
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is also a Ricci almost soliton. We are going to use this coordinate system to conclude

that (D, gD) is an Einstein manifold with normalized Einstein constant a. This is

equivalent to proving that the following equations hold
h′′′ ± ah′ = 0,

±(h′′)2 + a(h′)2 = c̄,

RicN = (n− 2)c̄gN ,

(3.32)

as one can see from Corollary 2. In order to do so, we must consider two cases whether

β depends on Nn−1 or not.

Suppose that β depends on Nn−1, then we can apply Theorem 10 to (3.28),

when restricted to D, given as in 3.31. From the first and fourth equations of (3.4) we

get that the following equations hold

 h′′′ ± āh′ = 0,

RicN = (n− 2)c̄gN ,
(3.33)

for some constants ā, c̄ ∈ R. Moreover, from (3.6) the constants ā and c̄ are related to

h′ by the equation ±(h′′)2 + ā(h′)2 = c̄. It follows from the first equation of (3.4) and

(3.33) that a = ā. This proves (3.32) for this case.

Suppose that β does not depend on Nn−1, then since (3.28) holds, we can apply

Theorem 11 to D given as in (3.31). Then (3.22) reduces to

β′′ − (n− 1)(h′)−1h′′′ = ±λ̄,

(h′)2λ̄ = ±h′h′′β′ ∓ (n− 2)(h′′)2 ∓ h′′′ + c̄(n− 2),

RicN = c̄(n− 2)gN ,

(3.34)

for some constant c̄ ∈ R. Moreover, the first equation of (3.4) restricted to D gives

h′′ ± ah = 0 and hence h′′′ ± ah′ = 0. These two equations substituted into the first

two equations of (3.34) implies that

β′′ ± (n− 1)a = ±λ̄,

(h′)2λ̄ = −ahh′β′ ∓ (n− 2)a2h2 + a(h′)2 + c̄(n− 2).
(3.35)
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Substituting (3.29) into both equations of (3.35), and using (3.6) we conclude that the

following equations hold

(β′h−1)′ = ∓bh−2,

cβ′h−1 = bh−1h′ + (n− 2)(c̄∓ ac)(h′)−1,

h′′′ ± ah′ = 0,

±(h′′)2 + a(h′)2 = ±ac,

RicN = c̄(n− 2)gN

(3.36)

Therefore, in order to prove that (3.32) holds, we need to show the equality c̄ = ±ac.

If c = 0 it follows from the second equation of (3.36) that c̄ = 0. If c 6= 0, then we

substitute the second equation of (3.36) into the first one to obtain

a(c̄∓ ac) = 0.

which implies c̄ = ±ac, since a 6= 0. Therefore, we have proved that (3.32) also holds

when β does not depend on Nn−1.

Now from Proposition 20, we know that the set of regular points of h is a dense

subset of B, and the argument above implies that (B, gB) is an Einstein manifold with

normalized Einstein constant a. As a consequence we have
RicB = a(n− 1)gB,

∇B∇Bh+ ahgB = 0,

RicF = c(m− 1)gF ,

(3.37)

which implies from Proposition 11 that B ×h F is itself Einstein with normalized

Einstein constant a.

From the fundamental equation (1.35), we obtain that

∇∇f + ((m+ n− 1)a− λ)g = 0,

Borges, V. November 28, 2018 Mat – UnB

mailto: nablavalter@gmail.com
http://www.mat.unb.br


3.3. Classification when the potential function depends on the Fiber 76

and ∇f is a gradient conformal field on an Einstein manifold. Proposition 18 says that

there is a constant a0 such that

λ = −af + a(m+ n− 1) + a0,

in view of n + m ≥ 2. Hence ∇∇f + (af − a0)g = 0. This concludes the proof of

Theorem 14. �

The proof of Theorem 12 is a direct consequence of both Theorem 13 and

Theorem 14.

3.3 Classification when the potential function depends

on the Fiber

In this section, we classify complete Ricci almost solitons on warped product

Riemannian or semi-Riemannian manifolds in the case where f depends on the fiber.

In order to state our classification result for Ricci almost solitons on complete semi-

Riemannian warped products, we consider the following classes of n-dimensional com-

plete semi-Riemannian Einstein manifolds (see Theorems 6 and 7) :

Class I

1. R×Nn−1 where (N, gN) is a complete semi-Riemannian Einstein manifold.

2. A Brinkman space of dimension n ≥ 3, i.e. a semi-Riemannian manifold (Mn, g)

admitting a parallel light like vector field.

Class II

1. Snε (1/
√
c), when 0 ≤ ε ≤ n− 2; the covering of Snn−1(1/

√
c) when ε = n− 1 and

the upper part of Snn(1/
√
c) when ε = n with c > 0.

2. Hn
ε (1/

√
|c|), when 2 ≤ ε ≤ n − 1; the covering of Hn

1 (1/
√
|c|) when ε = 1 and

the upper part of Hn
0 (1/

√
|c|) when ε = 0 , with c < 0.

3. (R×Nn−1,±dt2 +cosh2(
√
|c| t)gN), where (Nn−1, gN) is a semi-Riemannian Ein-

stein manifold.
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4. (R×Nn−1,±dt2 ± e2
√
|c| tgN), where (Nn−1, gN) is a Riemannian Einstein mani-

fold,

The following result classifies the complete Ricci almost solitons on warped

products, whose potential functions depend on the fiber.

Theorem 15 Let Mn+m = Bn ×h Fm be a non trivial warped product where the base

(Bn, gB) or the fiber (Fm, gF ) can be either a Riemannian or a semi-Riemannian

manifold. Then (Bn ×h Fm, g, f, λ) is a complete Ricci almost soliton with f non

constant on F if, and only if, there exist constants a 6= 0, a0, c ∈ R such that

f = a−1(−λ+ a(m+ n− 1)− a0) and

1. if n = 1 then B1 is isometric to (R, sgn a dt2)

h =

 Ae
√
|a|t if c = 0,√

| c
a
|[cosh(

√
|a|t+B)] if c 6= 0,

(3.38)

where A 6= 0 and B ∈ R. Moreover, M is an Einstein manifold satisfying

RicM = (m + n − 1)ag and if m ≥ 2, F is an Einstein manifold satisfying

RicF = (m− 1)cgF .

2. If n ≥ 2 and m ≥ 2 then

• Mn+m is an Eisntein manifold isometric either to a manifold of Class II.1

(resp. II.2) when a > 0 (resp. a < 0) and f has some critical point or it is

isometric to a manifold of Class II.3 or II.4 if f has no critical points.

• B is a complete Einstein manifold isometric either to a manifold of Class

II.1 (resp. Class II.2) and index εB = n (resp. εB = 1) if a > 0 (resp.

a < 0) and h has critical points or to a manifold of Class II.3 or II.4 if h

has no critical points.

• F is a complete Einstein manifold isometric to either Rn
ε , or to a manifolds

of Class I when c = 0 and it is isometric to a manifold of Class II when

c 6= 0.

3. Moreover, Fm, m ≥ 1 is positive definite (resp. negative definite) if Bn, n ≥ 1

is positive definite (resp. negative definite).
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Proof: Suppose that (Bn ×h Fm, g, f, λ) is a complete Ricci almost soliton, with h

non constant and f depending on F . Then it follows from Theorem 10 that there are

functions β : B → R and ϕ : F → R and constants a, b, c ∈ R such that f = β + hϕ,

where β, h, ϕ and λ satisfy (3.4)-(3.6). From Proposition 14 the completeness of

Bn ×h Fm implies that ∇Bh is not a parallel vector field on B and hence it follows

from the first equation of (3.4) that a 6= 0, therefore ∇Bh is not homothetic. Applying

Theorem 14 we have that Bn×h Fm, B and F are Einstein manifolds satisfying (3.25)

for constants a 6= 0 and c, a0 ∈ R, ∇Bh, ∇Fϕ and ∇f are conformal vector fields

satisfying (3.26) and λ is given by (3.27).

If n = 1 then gB = ±dt2 and from the first equation of (3.4) and (3.6) we have

that h′′±ah = 0 and ±(h′)2 +ah2 = c . Since B is not compact it follows that B1 = R

and the non vanishing of h implies that ±a < 0. Therefore h satisfies

h′′ − |a|h = 0,

(h′)2 − |a|h2 = ±c,

and hence (3.38) holds i.e.

h =

 Ae
√
|a|t if c = 0,√

| c
a
|[cosh(

√
|a|t+ θ)] if c 6= 0,

where A 6= 0 and θ ∈ R.

If n ≥ 2 and m ≥ 2, it follows that Bn and Fm are complete Einstein manifolds

satisfying (3.25).

Since f satisfies the first equation of (3.26) it follows that f̃ = f − a0/a is a

solution of ∇∇f̃ + af̃g = 0, therefore from Theorem 7 we conclude that when f has

some critical point then B×hF is isometric to a manifold of Class II 1 (resp Class II 2)

when a > 0 (resp. a < 0) and f is a height function on Snε (1/
√
a) (resp. Hn

ε (1/
√
|a|)

( see Examples 2 and 3); when f has no critical points then B ×h F is isometric to a

manifold of Class II 3 or 4.

Since h satisfies the second equation of (3.26) then it follows from Theorem 7

that if h has no critical points then B is isometric to one of the manifolds of Class II 3

or 4 and if h has some critical point then B is isometric to a manifold of Class II 1 or 2
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according to the sign of a moreover, h is a height function. However, since h does not

vanish it induces a restriction on the index of B, in fact, it follows from Proposition 19

that when a > 0 (resp. a < 0) B is isometric to Snn(1/
√
a) (resp. Hn

1 (1/
√
|a|).

Since ϕ satisfies the third equation of (3.4), i.e. ∇F∇Fϕ + (cϕ + b)gF = 0, it

follows from Theorem 5 that if c = 0 and b 6= 0, then F is isometric to a semi Eulidean

space Rm
ε . If c = b = 0 then Theorem 6 implies that F is isometric to a manifold of

Class I. Finally, if c 6= 0 then Theorem 7 implies that F is isometric to a manifold of

Class II 1 (resp. Class II 2) when c > 0 (resp. c < 0) and ϕ has some critical point

while F is isometric to a manifold of Class II 3 or 4 when ϕ has no critical points.

We conclude by observing that, since B × F is complete, in order to avoid the

phenomena of Been-Buseman example one must have Fm, m ≥ 1 positive definite

(resp. negative definite) if B is positive definite (resp. negative definite). �

Remarks:

1. The proofs of our main results rely strongly on an important property of the

potential function f that decomposes as f = β + hϕ, where β and h are defined

on the base and ϕ is defined on the fiber F (see Proposition 23). By considering

this decomposition, in Theorem 15 item 2, when c 6= 0, the fiber F is isometric

to a manifold of Class II 1 (resp. Class II 2) when c > 0 (resp. c < 0) and ϕ has

some critical point, while F is isometric to a manifold of Class II 3 or 4 when ϕ

has no critical points (see proof of Theorem 15).

2. We observe that, when we are in the Riemannian setting, Theorem 13 does not

occur, Class I only contains the product of R × Nn−1, where (N, gN) is a com-

plete Riemannian Einstein manifold and Class II is restricted to the Riemannian

manifolds.
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Chapter 4

Hamilton-Ivey Estimate for the

Ricci-Bourguignon Flow

Recall that a Ricci-Bourguignon Flow on a manifoldM is a family of Riemannian

metrics g(t), t ∈ [0, T ), satisfying equation (1.1), that is,

∂

∂t
g = −2(Ric− ρRg),

where ρ is a given constant.

In this chapter, we will prove that for a three dimensional manifold, ancient

solutions of the Ricci-Bourguignon Flow have nonnegative sectional curvature for ρ ∈

(−1/2, 1/4), extending results previously proved by Hamilton (ρ = 0, [28]) and Catino

and coworkers (ρ ∈ (0, 1/6), [7]). Ancient solutions are important in the process of

understanding and classifying singular solutions of this flow.

The strategy to prove this result is similar to the one established by Hamilton

for ρ = 0. The first step is to provide an estimate for the scalar curvature in terms of

the smallest sectional curvature, known as Hamilton-Ivey estimate. This estimate, in

turn, has its own interest since it has a clear geometric interpretation (see [20], page

243).

In Section 4.1, we introduce and start investigating a set that depends on time

and on 2 parameters, one of them being ρ, to which we will apply the Tensor Maximum

Principle. In Section 4.2, we prove the invariance of this set by the ODE (1.29) when

ρ ∈ (−1/2, 0] and prove the Hamilton-Ivey estimate in this case. In Section 4.3, we
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prove analogous results for the case where ρ ∈ [0, 1/4). In the last section, Section 4.4,

we demonstrate that ancient solutions of the Ricci-Bourguignon Flow have positive

sectional curvature.

4.1 The set Kη,ρ
p (t) and its Properties

To prove the Hamilton-Ivey estimate, we will consider a subset of the bundle of

self adjoint endomorphisms of ∧2V , EndSA(∧2TpM), for which we intend to use the

Vectorial Maximum Principle (Theorem 3 or Theorem 4). The idea is to investigate

the solutions of the PDE (1.17) by studying the solutions of its associated ODE (1.29).

Given an element Op ∈ EndSA(∧2TpM), we denote its smallest eigenvalue by

γ(Op). Let us consider real numbers η and ρ such that 1 + ηρ ≥ 0. We consider the

following time-dependent set Kη,ρ
p (t), t ∈ [0, T ), so that for t = 0 it is defined as

Kη,ρ
p (0) =

{
Op ∈ EndSA(∧2TpM) : γ(Op) ≥ −1, Op satisfies (P1)0 and (P2)0

}
,

and for t > 0 it is defined as

Kη,ρ
p (t) =

{
Op ∈ EndSA(∧2TpM) : Op satisfies (P1)t and (P2)t

}
,

where p is a point in M3 and the properties (P1)t and (P2)t are given by

(P1)t tr(Op) ≥ −
3

1 + 2(1 + ηρ)t
,

(P2)t There are constants θ1 ≥ θ2 > 0 such that if γ(Op) ≤ −
1

1 + 2(1 + ηρ)t
, then

tr(Op) ≥ −γ(Op)(θ1 log(−γ(Op)) + θ2 log(1 + 2(1 + ηρ)t)− 3)

Since we plan to use Theorem 4, we need to check the following properties for

Kη,ρ
p (t):

1. Convexity;

2. Invariance under parallel translations;

3. Closedness of its track (1.34);

4. Invariance under ODE (1.29).
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These properties will be proved in several steps, the last one being the hardest to show

when ρ ≤ 0. When ρ ∈ [0, 1/4) the proof is similar to Hamilton’s original proof, when

ρ = 0.

Lemma 2 (Invariance by Parallel Transport and Track Closedness) The track

of Kη,ρ is closed. For each t, the set Kη,ρ(t) is invariant by parallel transport with re-

spect to D(t).

Proof: The track {(O, t) ∈ EndSA(∧2TM)×R : t ∈ [0, T ), O ∈ Kη,ρ(t)} is closed since

Kη,ρ(t) is closed for each t; it depends continuously on t; for t ∈ (0, T ), the smallest

eigenvalue function γ(O) is continuous; O is a smooth section of EndSA(∧2TM).

To see that Kη,ρ(t) is invariant by parallel translations, fix η and ρ so that

1 + ηρ > 0 and t ∈ [0, T ). Consider θ1 and θ2 determined in property (P2)t, which

depend only on η, ρ and t. Consider the set

Γ = {(x, y, z) ∈ R;x ≥ y ≥ z},

and let Gη,ρ,t
1 , Gη,ρ,t

2 , Gη,ρ,t
3 , G4 : Γ→ R be functions defined as

Gη,ρ,t
1 (x, y, z) = (1 + 2(1 + ηρ)t)z + 1,

Gη,ρ,t
2 (x, y, z) =

[
x+ y + z − |z|

(
θ1 log(|z|) + θ2 log(1 + 2(1 + ηρ)t)

)
x

]
Gt

1(x, y, z),

Gη,ρ,t
3 (x, y, z) = (1 + 2(1 + ηρ)t)[x+ y + z] + 3,

G4(x, y, z) = −z.

Let α(O) ≥ β(O) ≥ γ(O) be the eigenvalues of O ∈ EndSA(∧2TM) and let

Lη,ρ(t) = {O ∈ EndSA(∧2TM) : Gη,ρ,t
1 (α(O), β(O), γ(O)) ≤ 0},

Mη,ρ(t) = {O ∈ EndSA(∧2TM) : Gη,ρ,t
2 (α(O), β(O), γ(O)) ≤ 0},

Nη,ρ(t) = {O ∈ EndSA(∧2TM) : Gη,ρ,t
3 (α(O), β(O), γ(O)) ≤ 0},

O = {O ∈ EndSA(∧2TM) : G4(α(O), β(O), γ(O)) ≤ 1},

be subsets of EndSA(∧2TM). It follows from Proposition 7 that Lη,ρ(t),Mη,ρ(t),Nη,ρ(t)

and O are invariant by parallel translations with respect to the connection D(t). On
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the other hand, one can see that

Kη,ρ(0) = Lη,ρ(0) ∩Mη,ρ(0) ∩Nη,ρ(0) ∩O

and if t ∈ (0, T ), then

Kη,ρ(t) = Lη,ρ(t) ∩Mη,ρ(t) ∩Nη,ρ(t),

which shows that Kη,ρ(t) is invariant by parallel translations with respect to D(t), for

all t ∈ [0, T ). �

Lemma 3 (Convexity) The set Kη,ρ
p (t) is convex.

Proof: Consider the map φ : EndSA(∧2TpM)→ R2 given by

φ(Op) = (|γ(Op)|, tr(Op)) = (x(Op), y(Op)), (4.1)

where γ(Op) is the smallest eigenvalue of Op, which is a concave function of Op. Con-

sider the set

Aη,ρ(t) =
{

(x, y) ∈ R2 : (x, y) satisfies (P̃1)t, (P̃2)t and (P̃3)t

}
, (4.2)

where

(P̃1)t y ≥ − 3

1 + 2(1 + ηρ)t
,

(P̃2)t y ≥ −3x,

(P̃3)t There are constants θ1 ≥ θ2 > 0 such that if x ≥ 1

1 + 2(1 + ηρ)t
, then

y ≥ x(θ1 log(x) + θ2 log(1 + 2(1 + ηρ)t)− 3).

Then Aη,ρ(t) is convex for each fixed η, ρ and t.

With this notation, for all t ∈ (0, T ), we have Op ∈ Kη,ρ
p (t) if, and only if,

φ(Op) ∈ Aη,ρ(t). Consider t ∈ (0, T ) and Op(s) = sOp + (1 − s)O′p, where Op and

O′p are in Kη,ρ
p (t) and s ∈ [0, 1]. Since Aη,ρ(t) is convex, all we need to prove is that
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φ(Op(s)) ∈ Aη,ρ(t). The first condition is satisfied, once

y(Op(s)) = sy(Op) + (1− s)y(O′p)

≥ s

(
− 3

1 + 2(1 + ηρ)t

)
+ (1− s)

(
− 3

1 + 2(1 + ηρ)t

)
= − 3

1 + 2(1 + ηρ)t
.

The inequality y(Op(s)) ≥ −3x(Op(s)) is trivially satisfied and it implies that

s

(
− 1

3
y(Op)

)
+ (1− s)

(
− 1

3
y(O′p)

)
= −1

3
y(sOp + (1− s)O′p)

≤ x(sOp + (1− s)O′p)

≤ sx(O′p) + (1− s)x(Op),

where in the last inequality we have used that x(Op) = −γ(Op) is a concave function.

These inequalities imply that φ(sOp + (1 − s)O′p) is contained in the trapezium T of

vertices

(u(Op), v(Op)), (u(O′p), v(O′p)), (−1/3v(Op), v(Op)), (−1/3v(O′p), v(O′p)),

where each vertex is in Aη,ρ(t). Since T is convex and is contained in Aη,ρ(t), which in

turn is convex, it follows that φ(Op(s)) ∈ Aη,ρ(t), and then Op(s) ∈ Kη,ρ
p (t), for each

t ∈ (0, T ). It shows that Kη,ρ
p (t) is convex for t ∈ (0, T ).

Let us prove the convexity when t = 0. In fact, consider the sets

K̃η,ρ
p (0) =

{
Op ∈ EndSA(∧2TpM) : Op satisfies (P1)0 and (P2)0,

}
,

and

K̄η,ρ
p (0) = {Op ∈ EndSA(∧2TpM) : γ(Op) ≥ −1}.

Note that

Kη,ρ
p (0) = K̃η,ρ

p (0) ∩ K̄η,ρ
p (0). (4.3)

With this notation we have Op ∈ K̃η,ρ
p (0) if, and only if, φ(Op) ∈ Aη,ρ(0). By using
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the same argument as for t ∈ (0, T ), one shows that K̃η,ρ
p (0) is convex. On the other

hand, if Op O′p ∈ K̄η,ρ
p (0), by using the concavity of γ,

γ(Op(s)) ≥ sγ(Op) + (1− s)γ(O′p)

≥ s(−1) + (1− s)(−1)

= −1.

This shows that K̄η,ρ
p (0) is convex. Using (4.3) we see that Kη,ρ

p (0) is convex, which

completes the proof. �

We need to proof that Kη,ρ
p (t) is invariant by (1.29). Since the proof is long,

it will be presented in two sections, treating the cases ρ ∈ (−1/2, 0] and ρ ∈ [0, 1/4)

separately, in sections 4.2 and 4.3, respectively. At the end of each section we present

the corresponding Hamilton-Ivey estimate.

4.2 Hamilton-Ivey Estimate for ρ ∈ (−1/2, 0]

By considering η = 2, in this section we prove that the system (1.29) leaves

invariant the set K2,ρ
p (t). In the sequence we prove the Hamilton-Ivey estimate for

ρ ∈ (−1/2, 0].

Lemma 4 The set K2,ρ
p (t) is invariant under system (1.29).

Proof: Let Qp(t) = Q(t) ∈ EndSA(∧2TpM) be a solution to the ODE (1.28) with

Q(0) ∈ K2,ρ
p (0) and fix t0 ∈ (0, T ). We would like to show that Q(t0) ∈ K2,ρ

p (t0).

Note that, defining the sets

Up(t) =
{
Op ∈ K2,ρ

p (t) : Op satisfies (P1)t

}
,

and

Vp(t) =
{
Op ∈ K2,ρ

p (t) : Op satisfies (P2)t

}
,

we obviously have Kη,ρ
p (t) = Up(t) ∩ Vp(t).
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We will first show that Q(t0) ∈ Up(t0). If tr(Q(t0)) is nonnegative, then

tr(Q(t0)) ≥ 0 > − 3

1 + 2(1 + 2ρ)t0
,

which gives the result in this case. Now suppose that tr(Q(t0)) < 0. By Proposition

9, we have that tr(Q) satisfies

(tr(Q))′ ≥ 4

3
(1− 3ρ)tr(Q)2 ≥ 0, (4.4)

for each t ∈ [0, T ), which gives tr(Q(0)) ≤ tr(Q(t0)) < 0. Integrating (4.4), we have

− 1

tr(Q(t0))
+

1

tr(Q(0))
=

∫ t0

0

[tr(Q(s))]′

[tr(Q(s))]2
ds

≥ 4

3
(1− 3ρ)t0.

Taking into account that tr(Q(0)) ≥ −3, we have

− 1

tr(Q(t0))
− 1

3
≥ 4

3
(1− 3ρ)t0,

which gives

tr(Qp(t0)) ≥ − 3

1 + 4(1− 3ρ)t0
> − 3

1 + 2(1 + 2ρ)t0
,

where in the last inequality we have used that ρ ≤ 0. This shows that Q(t0) ∈ Up(t0).

Now we will prove that Q(t0) ∈ Vp(t0). In order to do so, assume that

ν(t0) ≤ − 1

1 + 2(1 + 2ρ)t0
, (4.5)

and consider

θ1 = 4θ2 =
1

2(2ρ2 − 2ρ+ 1)
. (4.6)

If the equality holds in (4.5), i.e., −ν(t0)(1 + 2(1 + 2ρ)t0) = 1, then we get:

tr(Q(t0)) ≥3ν(t0)

=− ν(t0)(θ1 ln(−ν(t0)) + θ1 ln(1 + (1 + 2ρ)t0)︸ ︷︷ ︸
=0

−3) (4.7)
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≥− ν(t0)(θ1 ln(−ν(t0)) + θ2 ln(1 + (1 + 2ρ)t0)− 3),

which gives Q(t0) ∈ Vp(t0) in this case.

If, on the other hand, we have the strict inequality in (4.5), i.e.

ν(t0) < − 1

1 + 2(1 + 2ρ)t0
,

then consider the smallest number t̃ ∈ [0, t0) such that

ν(t) < − 1

1 + 2(1 + 2ρ)t
, ∀t ∈ (t̃, t0]. (4.8)

It follows from this choice that

ν(t̃) = − 1

1 + 2(1 + 2ρ)t̃
. (4.9)

In fact, if t̃ > 0, then (4.9) is obvious. If t̃ = 0, it follows from the definition of K(0)

that ν(0) ≥ −1. Since ν(0) = ν(t̃) ≤ −1, we get (4.9) with t̃ = 0.

Consider the function f : [t̃, t0]→ R defined by

f(t) =
tr(Q)

−ν
− θ1 ln(−ν)− θ2 ln(1 + 2(1 + 2ρ)t). (4.10)

We claim that

Claim 1 If ν(t) < 0, for all t ∈ [t̃, t0], then f(t0) ≥ −3.

Assuming Claim 1 we have at t0 that

tr(Q(t0)) ≥ −ν(t0)(θ1 ln(−ν(t0)) + θ2 ln(1 + 2(1 + 2ρ)t0)− 3),

which gives Q(t0) ∈ Vp(t0) in this case.

To conclude the proof of Lemma 4, we still need to prove Claim 1.

Proof of Claim 1: Consider the auxiliary function ξ : [t̃, t0] → R defined in

the following way

ξ(t) =
aλ+ µ+ bν

−ν
− ln(−ν)− 1

4
ln(1 + 2(1 + 2ρ)t), (4.11)
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where  a = 1− 2ρ

b = 3(a2 + 1)− a− 1 = 2(6ρ2 − 5ρ+ 2),
(4.12)

and [t̃, t0] is defined as in (4.8). Taking the derivative of ξ(t) we get

ξ′(t) =

(
aλ+ µ+ bν

−ν
− ln(−ν)− 1

4
ln(1 + 2(1 + 2ρ)t)

)′
=ν−2

(
−ν(aλ′ + µ′) + (aλ+ µ)ν ′ − νν ′ − 1 + 2ρ

2(1 + 2(1 + 2ρ)t)
ν2

)
,

and using (4.8) for estimating the last term of ξ′(t) on the second line we have

ξ′(t) >ν−2

(
−ν(aλ′ + µ′) + (aλ+ µ)ν ′ − νν ′ + (1 + 2ρ)

2
ν3

)
︸ ︷︷ ︸

=I

. (4.13)

We will use the hypothesis that λ, µ and ν satisfy ODE (1.28) to get an expression for

I with no derivatives of these functions. It follows from (1.29) that one has:

−ν(aλ′ + µ′) + (aλ+ µ)ν ′ =

=− 2ν[aλ2 + aµν − 2aρλ(λ+ µ+ ν) + µ2 + λν − 2ρµ(λ+ µ+ ν)]

+ 2(aλ+ µ)[ν2 + λµ− 2ρν(λ+ µ+ ν)] (4.14)

=2[−aλ2ν − aµν2 − µ2ν − λν2 + aλν2 + aλ2µ+ µν2 + λµ2]

+ 4ρ[ν(aλ+ µ)(λ+ µ+ ν)− ν(aλ+ µ)(λ+ µ+ ν)︸ ︷︷ ︸
=0

]

=2a(µ− ν)λ2 + 2((a− 1)ν2 + µ2)λ+ 2((1− a)µν2 − νµ2).

On the other hand:

νν ′ =2ν3 + 2λµν − 4ρν2(λ+ µ+ ν)

=2(µν − 2ρν2)λ+ 2((1− 2ρ)ν3 − 2ρµν2). (4.15)

Using (4.13), (4.14) and (4.15) we can write I as

1

2
I =a(µ− ν)λ2 + (µ2 − µν + (a− 1 + 2ρ︸ ︷︷ ︸

=0

)ν2)λ
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− µ2ν + (1− a+ 2ρ)µν2 +

(
−1 + 2ρ+

1

4
+

1

2
ρ

)
ν3

=a(µ− ν)λ2 + (µ2 − µν)λ− µ2ν + 4ρµν2 +

(
5

2
ρ− 3

4

)
ν3 (4.16)

It follows from (4.13) that if we prove that I > 0, then ξ′(t) > 0, and we finish

the proof of Claim 1. To prove that I > 0, we will fix any t1 ∈ [T, 0) so that ν(t1) < 0

and consider some possibilities accordingly to the sign of the quantities involving λ(t1),

µ(t1) and ν(t1). The cases and subcases are the following:

(1) µ(t1) = ν(t1);

(2) µ(t1) > ν(t1)

(2.1) µ(t1) > 0

(2.1.i) µ(t1) + ν(t1) > 0

(2.1.ii) µ(t1) + ν(t1) ≤ 0

(2.2) µ(t1) ≤ 0

Case (1): µ(t1) = ν(t1).

It follows from (4.16) that

1

2
I =

(
−1 + 4ρ+

(
5

2
ρ− 3

4

))
ν3 > 0

Case (2.1.i): λ(t1) > µ(t1) > 0 > ν(t1) and µ(t1) + ν(t1) < 0.

It follows from the hypothesis that −ν > µ. This together with the expression

(4.16) gives:

1

2
I = a(µ− ν)λ2 + (µ2 − µν)λ︸ ︷︷ ︸

>0

−µ2ν︸ ︷︷ ︸
>0

+4ρµν2 +

(
5

2
ρ− 3

4

)
ν3

>4ρµν2 +

(
3

4
− 5

2
ρ

)
ν2( −ν︸︷︷︸

>µ

)

>

(
4ρ+

3

4
− 5

2
ρ

)
µν2

=
3

4
(2ρ+ 1)µν2 > 0

Case (2.1.ii): λ(t1) > µ(t1) > 0 > ν(t1) and µ(t1) + ν(t1) ≥ 0.
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The hypothesis gives λ > µ > −ν. Therefore,

1

2
I =a(µ− ν)λ2 + (µ2 − µν)λ− µ2ν︸ ︷︷ ︸

>0

+4ρµν2 +

(
5

2
ρ− 3

4

)
ν3︸ ︷︷ ︸

>0

>a( µ︸︷︷︸
>−ν

−ν) λ︸︷︷︸
>−ν

λ︸︷︷︸
>µ

+4ρµν2

>2aµν2 + 4ρµν2

=(2− 4ρ+ 4ρ)µν2

=2µν2 > 0

Case (2.2): 0 > µ(t1) > ν(t1).

It follows from (4.16) that:

1

2
I = a︸︷︷︸

>1

(µ− ν)λ2 + (µ2 − µν)λ− µ2ν + 4ρµν2 +

(
5

2
ρ− 3

4

)
ν3︸ ︷︷ ︸

>0

>(µ− ν)λ2 + (µ2 − µν)λ− µ2ν

=(µ− ν)(λ+ µ)λ− µ2ν (4.17)

=µλ2 − νλ2 + λµ2 − λµν − µ2ν

=µ(λ− ν)(λ+ µ)− νλ2. (4.18)

We have two cases to analyze according to the sign of λ + µ at t1. If it is positive,

then λ(t1) > −µ(t1) > 0 and it follows from (4.17) that I > 0. If on the other hand

λ(t1) + µ(t1) ≤ 0, then it follows from (4.18) that I > 0 as well.

Now recall that at t̃ the function ν satisfies (4.9), and then

ξ(t̃) =
aλ(t̃) + µ(t̃) + bν(t̃)

−ν(t̃)
− ln(−ν(t̃))− 1

4
ln(1 + 2(1 + 2ρ)t̃︸ ︷︷ ︸

−ν(t̃)−1

)

=
aλ(t̃) + µ(t̃) + bν(t̃)

−ν(t̃)
− ln(−ν(t̃))− 1

4
ln(−ν(t̃)−1)

=
aλ(t̃) + µ(t̃) + bν(t̃)

−ν(t̃)
−3

4
ln(−ν(t̃))︸ ︷︷ ︸
≥0
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≥(a+ 1 + b)ν(t̃)

−ν(t̃)

=− 3(a2 + 1),

where in the last line we have used the expression of b in terms of a (4.12). Since we

have proved that ξ(t) has positive slope on [t̃, t0], it follows that ξ(t0) > −3(a2 + 1), or

equivalently that

aλ(t0) + µ(t0) + bν(t0) ≥ −ν(t0)(ln(−ν(t0)) +
1

4
ln(1 + 2(1 + 2ρ)t0)− 3(a2 + 1)),

which dividing by a2 + 1 gives at t0 that ,

a

a2 + 1
λ+

1

a2 + 1
µ+

b

a2 + 1
ν ≥ −ν(θ1 ln(−ν(t0)) + θ2 ln(1 + 2(1 + 2ρ)t0)− 3). (4.19)

On the other hand, note that

a

a2 + 1
λ+

1

a2 + 1
µ+

b

a2 + 1
ν =

a

a2 + 1
λ+

1

a2 + 1
µ+

(
3− a

a2 + 1
− 1

a2 + 1

)
ν =

a

a2 + 1
(λ− ν) +

1

a2 + 1
(µ− ν) + 3ν < (4.20)

λ− ν + µ− ν + 3ν =

tr(Q(t0)).

Putting (4.19) and (4.20) together we get

tr(Q(t0)) > −ν(t0)(θ1 ln(−ν(t0)) + θ2 ln(1 + 2(1 + 2ρ)t0)− 3),

which finishes the proof since it is equivalent to f(t0) > −3. �

�

Combining Lemma 2, Lemma 3 and Lemma 4 we have:

Theorem 16 LetM3 be a compact three manifold, ρ ∈ (−1/2, 0], θ1 = 4θ2 = 1/2(2ρ2−

2ρ+ 1) and let g0 be a Riemannian metric on M satisfying the normalized assumption
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min
p∈M

ν0(p) ≥ −1, where ν0 is the smallest sectional curvature of g0. If g(t), t ∈ [0, T ),

is the solution of the Ricci-Bourguignon Flow corresponding to ρ satisfying g(0) = g0,

then the scalar curvature R(t) of g(t) satisfies

R ≥ −ν(θ1 log(−ν) + θ2 log(1 + 2(1 + 2ρ)t)− 3), (4.21)

at any point (p, t) where the smallest sectional curvature ν(p, t) of gp(t) is negative.

Proof: Let Rm(t), t ∈ [0, T ), be the curvature operator of a Ricci-Bourguignon

Flow g(t), t ∈ [0, T ). Fix t0 so that ν(t0) < 0.

First we will assume that

ν(t0) > − 1

1 + 2(1 + 2ρ)t0
. (4.22)

In this case one has

θ1 ln(−ν(t0)) + θ2 ln(1 + (1 + 2ρ)t0) ≤ θ1 ln(−ν(t0)) + θ1 ln(1 + (1 + 2ρ)t0)

= θ1 ln(−ν(t0)(1 + (1 + 2ρ)t0))

≤ θ1 ln

(
1

1 + (1 + 2ρ)t0
(1 + (1 + 2ρ)t0)

)
= 0,

where from the second to the third line we used (4.22). Therefore,

R(t0) ≥ 3ν(t0)

= −ν(t0)(−3)

≥ −ν(t0)(θ1 ln(−ν(t0)) + θ2 ln(1 + (1 + 2ρ)t0)− 3),

which gives the estimate in this case.

Now assume that

ν(t0) ≤ − 1

1 + 2(1 + 2ρ)t0
. (4.23)

Let ϕ(t) : (TM, g0)→ (TM, g(t)) be the family of isometries which satisfy (1.16). Let

P (t) = ϕ(t)∗Rm(t). It follows from Proposition 5 that P (t) is a solution of (1.17). Since

R(t) ≥ 3ν(t), for all t, it follows from the normalizing assumption and from the fact

that P (t) and Rm(t) have the same eigenvalues (Proposition 4) that P (0) ∈ K2,ρ
p (0).
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We have seen that the set K2,ρ
p (t) is invariant under parallel translations, it has a

closed track (Lemma 2), it is convex (Lemma 3) and it is invariant under the system

(1.29) (Lemma 4). On the other hand, the fiber preserving map F (Q, t) = 2Q2 +2Q#−

4ρ trg0(Q)Q is continuous and locally Lipschitz (See [14] for the details). The Tensorial

Maximum Principle (Theorem 4) now assures that P (t) ∈ K2,ρ
p (t), for all t ∈ [0, T ).

Since P (t0) and Rm(t0) have the same eigenvalues, we have (4.21) at t0, since (4.23)

is satisfied. This concludes the proof of the theorem. �

4.3 Hamilton-Ivey Estimate for ρ ∈ [0, 1/4)

In this section we will consider η = −4, and prove that the system (1.29) leaves

invariant the set K−4,ρ
p (t). In the sequence we prove the Hamilton-Ivey estimate for

ρ ∈ [0, 1/4). Similar to Lemma 4 we have the following lemma.

Lemma 5 The set K−4,ρ
p (t) is invariant under system (1.29).

Proof: Let Qp(t) = Q(t) ∈ EndSA(∧2TpM) be a self-adjoint endomorphism so that

its eigenvalues satisfy system (1.29). Assume Q(0) ∈ K−4,ρ
p (0) and fix t0 ∈ (0, T ). We

want to show that Q(t0) ∈ K−4,ρ
p (t0).

Consider the sets

Ap(t) =
{
Op ∈ K−4,ρ

p (t) : Op satisfies (P1)t

}
,

and

Bp(t) =
{
Op ∈ K−4,ρ

p (t) : Op satisfies (P2)t

}
,

and note that K−4,ρ
p (t) = Ap(t) ∩ Bp(t). Proceeding as in the first part of Lemma 4,

we conclude that

tr(Qp(t0)) ≥ − 3

1 + 4(1− 3ρ)t0
≥ − 3

1 + 2(1− 4ρ)t0
,

which implies that Q(t0) ∈ Ap(t0).

Now let us show that Q(t0) ∈ Bp(t0). To do so, let us assume that

ν(t0) ≤ − 1

1 + 2(1− 4ρ)t0
, (4.24)
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and take θ1 = θ2 = 1. If the equality holds in (4.24) we proceed as in Lemma 4 to

conclude that Q(t0) ∈ B(t0). Now assume that

ν(t0) < − 1

1 + 2(1− 4ρ)t0
, (4.25)

and let t̃ ∈ [0, t0) be the smallest number such that

ν(t) < − 1

1 + 2(1− 4ρ)t
, ∀t ∈ (t̃, t0).

Arguing as in Lemma 4, we have

ν(t̃) = − 1

1 + 2(1− 4ρ)t̃
.

Consider the function f : [t̃, t0]→ R given by

f(t) =
tr(Q)

−ν
− ln(−ν)− ln(1 + 2(1− 4ρ)t).

We claim the following:

Claim 2 For all t ∈ [t̃, t0], f ′(t) ≥ 0 and f(t̃) ≥ −3.

Let us assume that the claim is true. It is an immediate consequence of the

claim that f(t0) ≥ −3, which is equivalent to

tr(Qp(t0)) ≥ −ν(t0)(log(−ν(t0)) + log(1 + 2(1− 4ρ)t0)− 3), (4.26)

that concludes the proof of Lemma 5‘.

Below we prove Claim 2.

Proof of Claim 2: In order, to prove the claim, we first note that

(
λ+ µ+ ν

−ν

)′
− (ln(−ν))′ ≥ −2(1− 4ρ)ν, (4.27)

provided ν < 0. First of all, note that (1.29) implies


ν2

(
λ+ µ+ ν

−ν

)′
= −2ν(λ2 + µ2) + 2µλ(µ+ λ)

ν2(ln(−ν))′ = 2ν3 + 2νµλ− 4ρν2(λ+ µ+ ν),

(4.28)
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and then

ν2

(
λ+ µ+ ν

−ν

)′
− ν2(ln(−ν))′ + 2(1− 4ρ)ν3 =

−2ν3 − 2ν(λ2 + µ2) + 2µλ(µ+ λ)− 2νµλ+ 4ρν2(λ+ µ+ ν) + 2(1− 4ρ)ν3 =

−2ν(λ2 + µ2) + 2µλ(µ+ λ)− 2νµλ+ 4ρν2(λ+ µ)− 4ρν3︸ ︷︷ ︸
I

.

Therefore, to prove (4.27), all we need is to prove that I ≥ 0. To show this we are

going to divide it into 2 cases according to the sign of λ, and then subdivide each case

into two other subcases.

Case 1. Assume that λ ≥ 0. We will divide this case into two further subcases,

namely when µ ≤ 0 or µ > 0.

Subcase 1.1. λ ≥ 0 and µ ≤ 0. In this case

I = 2(µ− ν)(λ2 + λµ+ µ2)− 2µ(λ2 + λµ+ µ2) + 2µλ(µ+ λ) + 4ρν2λ+ 4ρν2(µ− ν)

= 2(µ− ν)(λ2 + λµ+ µ2)− 2µ3 + 4ρν2λ+ 4ρν2(µ− ν)

≥ 0.

Subcase 1.2. λ ≥ 0 and µ > 0. In this case

I = −2ν(λ2 + µ2) + 2µλ(µ+ λ)− 2νµλ+ 4ρν2λ

≥ 0.

Case 2. Assume that λ < 0. We will divide this case into two further subcases,

namely when 2µ ≤ ν or 2µ > ν.

Subcase 2.1. λ < 0 and 2µ ≤ ν. In this case we have

I = −2ν(λ2 + µ2) + 2µλ(µ+ λ)− 2νµλ+ 8ρνµλ− 8ρνµλ+ 4ρν2λ

= 2λ2(µ− ν) + 2µ2(λ− ν) + 2(4ρ− 1)νµλ+ 4ρνλ(ν − 2µ)

≥ 0.
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Subcase 2.2. λ < 0 and 2µ > ν. In this case we have

I = −2ν(λ2 + µ2) + 2µλ(µ+ λ)− 2νµλ+ 4ρν2(λ+ µ)− 4ρν3

= 2λ2(µ− ν) + 2µ2(λ− ν)− 2νµλ+ 4ρν2(λ+ µ− ν)

≥ 2λ2(µ− ν) + 2µ2(λ− ν)− 2νµλ+ 4ρν2(2µ− ν)

≥ 0.

To finish the proof of the claim, since ν(t) ≤ −1/(1 + 2(1− 4ρ)t), (4.27) gives

f ′(t) =

(
tr(Q(t))

−ν
− ln(−ν)− ln(1 + 2(1− 4ρ)t)

)′
=

(
tr(Q(t)

−ν

)′
− (ln(−ν))′ − 2(1− 4ρ)

1 + 2(1− 4ρ)t

≥ 0,

(4.29)

∀t ∈ [t̃, t0]. On the other hand, at t̃ we have f(t̃) ≥ −3. This implies that f(t0) ≥ −3,

that concludes the proof. �

�

In the next result we will show that the Hamilton-Ivey inequality holds when

ρ ∈ [0, 1/4).

Theorem 17 Let (M3, g(t)) be a solution of the Ricci-Bourguignon flow on a com-

pact three manifold such that the initial metric satisfies the normalized assumption

minp∈M νp(0) ≥ −1. If ρ ∈ [0, 1/4), then the scalar curvature satisfies

R ≥ |ν|(log |ν|+ log(1 + 2(1− 4ρ)t)− 3), (4.30)

at any point (p, t) where νp(t) < 0,

Proof: Let Rm(t), t ∈ [0, T ), be the curvature operator of a Ricci-Bourguignon Flow

g(t), t ∈ [0, T ). Fix t0 so that ν(t0) < 0.

First we will assume that

ν(t0) > − 1

1 + 2(1− 4ρ)t0
. (4.31)
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In this case one has

ln(−ν(t0)) + ln(1 + (1− 4ρ)t0) = ln(−ν(t0)(1 + (1− 4ρ)t0))

< ln

(
1

1 + (1− 4ρ)t0
(1 + (1− 4ρ)t0)

)
= 0,

where from the second to the third line we used (4.31). Therefore,

R(t0) ≥ 3ν(t0)

= −ν(t0)(−3)

≥ −ν(t0)(ln(−ν(t0)) + ln(1 + (1− 4ρ)t0)− 3),

which gives the estimate in this case.

Now assume that

ν(t0) ≤ − 1

1 + 2(1− 4ρ)t0
. (4.32)

Let ϕ(t) : (TM, g0)→ (TM, g(t)) be the family of isometries which satisfy (1.16). Let

P (t) = ϕ(t)∗Rm(t). It follows from Proposition 5 that P (t) is a solution of (1.17). Since

R(t) ≥ 3ν(t), for all t, it follows from the normalizing assumption and from the fact

that P (t) and Rm(t) have the same eigenvalues (Proposition 4) that P (0) ∈ K−4,ρ
p (0).

We have seen that the set K−4,ρ
p (t) is invariant under parallel translations, it has a

closed track (Lemma 2), it is convex (Lemma 3) and it is invariant under the system

(1.29) (Lemma 5). On the other hand, the fiber preserving map F (Q, t) = 2Q2 +2Q#−

4ρ trg0(Q)Q is continuous and locally Lipschitz (See [14] for the details). The Tensorial

Maximum Principle (Theorem 4) now assures that P (t) ∈ K−4,ρ
p (t), for all t ∈ [0, T ).

Since P (t0) and Rm(t0) have the same eigenvalues, we have (4.30) at t0, since (4.32)

is satisfied. This concludes the proof of the theorem. �

4.4 Ancient Solutions have Nonnegative Curvature

Theorem 16 and Theorem 17 can be interpreted as the following: for solutions of

the Ricci-Bourguignon flow, with ρ ∈ (−1/2, 1/4), negative sectional curvature occurs

only in the presence of larger positive sectional curvature [20]. To see this, assume that
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g(t), t ∈ [0, T ), is a solution of the Ricci-Bourguignon Flow, with ρ ∈ (−1/2, 0] and

min
p∈M

νp(0) ≥ −1. Let (p0, t0) ∈ M3 × [0, T ) and assume that there is a constant C > 0

such that ν(p0, t0) < −e2(C+3)(2ρ2−2ρ+1). Using Theorem 16 one can see that

λ(t0) ≥ 1

3
R(t0)

≥ −1

3
ν(t0)(θ1 log(−ν(t0)) + θ2 log(1 + 2(1 + 2ρ)t0)︸ ︷︷ ︸

≥0

−3)

≥ 1

3
e2(C+3)(2ρ2−2ρ+1)(C + 3− 3)

=
C

3
e2(C+3)(2ρ2−2ρ+1),

which implies that R(p0, t0) ≥ Ce2(C+3)(2ρ2−2ρ+1) > 0, showing that positive sectional

curvature wins in the average. Below we state one of the main consequences of the

Hamilton-Ivey estimate, which asserts that for certain solutions, not only the average

of curvatures, but the sectional curvatures themselves are nonnegative.

Theorem 18 Let (M3, g(t)) be a compact ancient solution of the Ricci-Bourguignon

flow with uniformly bounded scalar curvature. Then g(t) has nonnegative sectional

curvature, for as long as it exists.

Proof: Let (M3, g(t)) be an ancient solution of the Ricci-Bourguignon flow, with

ρ ∈ (−∞, 0], that has uniformly bounded scalar curvature. Consider η > 0 so that

ρ ∈ (−1/η, 0]. Assume that for a certain t0 ∈ (−∞, T ), ν0 = infp νp(t0) < 0 and fix

α > 0 so that −α < t0. Consider the solution

g̃(t) = |ν0|g
(
t− α
|ν0|

)
,

where |ν0|t+ α ∈ (−∞, T ). Since ν̃(|ν0|t0 + α) > −1, it follows from Theorem 16 that

R̃(|ν0|t+ α) ≥ −ν̃(|ν0|t+ α)

(
θ1 log(−ν̃(|ν0|t+ α))

+θ2 log(1 + 2(1 + 2ρ)(|ν0|t+ α))− 3

)
,

(4.33)
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wherever ν̃(|ν0|t+ α) < 0. Rewriting (4.33) in terms of g(t), we have

R(t) ≥ −ν(t)(θ1 log(−|ν0|−1ν(t)) + θ2 log(1 + 2(1 + 2ρ)(|ν0|t+ α))− 3)

≥ −ν(t)(θ1 log(−ν(t)) + θ2 log(|ν0|−2 + 2(1 + 2ρ)(|ν0|−1t+ |ν0|−2α))− 3).

Since

lim
α→∞

log(|ν0|−2 + 2(1 + 2ρ)(|ν0|−1t+ |ν0|−2α)) =∞,

we get a contradiction. It implies that ν(p, t) ≥ 0, ∀(p, t) ∈ M3 × (−∞, T ] and the

result follows. �
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