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ABSTRACT

Machine-learning methods depend heavily on how well the selected feature extractor can
represent the raw input data. Nowadays, we have more data and computational capacity to
deal with it. With Convolutional Neural Networks, we have a network that is easier to train
and generalizes much better than usual. However, a good amount of essential features are
discarded in this process, even when using a powerful CNN. Multistream Convolutional Neu-
ral Networks can process more than one input using separate streams and are designed using
any classical CNN architecture as a base. The use of M-CNNs generates more features and
thus, improves the overall outcome. This work explored M-CNNs architectures and how the
stream signals behave during the processing, coming up with a novel M-CNN cross-fusion
strategy. The new module is first validated with a standard dataset, CIFAR-10, and compared
with the corresponding networks (single-stream CNN and late fusion M-CNN). Early results
on this scenario showed that our adapted model outperformed all the abovementioned models
by at least 28% compared to all tested models. Expanding the test, we used the backbones of
former state-of-the-art networks on image classification and additional datasets to investigate
if the technique can put these designs back in the game. On the NORB dataset, we showed
that we could increase accuracy up to 63.21% compared to basic M-CNNs structures. Vary-
ing our applications, the mAP@75 of the BDD100K multi-object detection and recognition
dataset improved by 50.16% compared to its unadapted version, even when trained from
scratch. The proposed fusion demonstrated robustness and stability, even when distractors
were used as inputs. While our goal is to reuse previous state-of-the-art architectures with
few modifications, we also expose the disadvantages of our explored strategy.
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RESUMO

Os métodos de aprendizado de máquina dependem muito de quão bom o extrator de
características selecionado pode representar os dados brutos de entrada. Atualmente, temos
mais dados e capacidade computacional para lidar com isso. Com as Redes Neurais Con-
volucionais temos uma rede que é mais fácil de treinar e generaliza muito melhor do que o
habitual. Há, no entanto, uma boa quantidade de características que são essenciais, mas são
descartadas nesse processo, mesmo quando se utiliza uma CNN poderosa. As Redes Neurais
Convolucionais Multistream podem processar mais de uma entrada usando fluxos separados
e são projetadas usando qualquer arquitetura CNN clássica como base. O uso de M-CNNs
gera mais informação de características e, assim, melhora o resultado geral. Este trabalho
explorou arquiteturas M-CNNs e como os sinais de fluxo se comportam durante o proces-
samento, chegando a uma nova estratégia de fusão cruzada de M-CNNs. O novo módulo é
validado, inicialmente, com um conjunto de dados padrão, CIFAR-10, e comparado com as
redes correspondentes (single-stream CNN e late fusion M-CNN). Os primeiros resultados
neste cenário mostraram que nosso modelo adaptado superou todos os modelos mencionados
acima em pelo menos 28% em comparação com todos os modelos testados. Expandindo o
teste, usamos a base de antigas redes estado-da-arte na classificação de imagens e conjuntos
de dados adicionais para investigar se a técnica pode colocar essas estruturas de volta ao
jogo. No conjunto de dados NORB, mostramos que podemos aumentar a precisão em até
63, 21% quando comparado às estruturas básicas de M-CNNs. Variando nossas aplicações,
o mAP@75 do conjunto de dados de detecção e reconhecimento de objetos BDD100K mel-
horou em 50, 16% em comparação com sua versão não adaptada, mesmo quando treinado do
zero. A fusão proposta demonstrou robustez e estabilidade, mesmo quando distratores foram
usados como entradas. Embora nosso objetivo seja reutilizar arquiteturas estado-da-arte an-
teriores com poucas modificações, também expomos as desvantagens de nossa estratégia
explorada.
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Chapter 1

Introduction

Our society has always yearned for automated machines. It has been a topic of philos-
ophy, general literature, movies. Since the introduction of the idea of neural networks as
computing machines [13] and Rosenblatt’s Perceptron [14] — the first model for supervised
learning [15] —, we were able to solve mathematical-based problems that are naturally diffi-
cult for human beings [1]. However, we still have a long way to go when talking about easy
and intuitive tasks for humans but challenging for machines, such as face recognition.

Machine-learning methods depend heavily on how well the selected feature extractor can
represent the raw input data. And these extractors require a significant amount of knowledge
to be constructed [16]. On the other hand, deep learning is a different approach to artificial
intelligence. It is capable of learning multiple levels of representation, starting with the raw
input, by using non-linear modules [16]. These higher layers of representation amplify the
essential features of the data and suppress irrelevant variations [16].

Convolutional Neural Networks (CNNs) are a specialized type of deep, feedforward net-
works, considered easier to train and with better generalization than networks with full con-
nectivity between adjacent layers [16]. CNNs have achieved impressive results in different
tasks of computer vision, such as image classification [3, 17, 18], segmentation [19, 20],
object detection [21, 22, 23], and action recognition [24, 6, 7, 25].

Especially in action recognition tasks, a novel approach of fusing CNNs was proposed
by Karpathy (2014) [6]. Multistream (or multichannel) Convolutional Neural Networks (M-
CNNs) are networks that have two or more streams, aiming for better performance with less
training time. The objective of augmenting the number of streams is to extend the connectiv-
ity of a CNN in the time domain to take advantage of local Spatio-temporal information [6].
Applying this multistream technique to static problems, as image classification, also outper-
forms single-channel results, considering that all the streams have contributive data to the
network [11, 12].
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1.1 Motivation

Nowadays, we have more data and computational capacity to deal with it. Consequently,
we can also observe an increasing the complexity of the solutions, even when they were
not necessary [26]. Unnecessary layer stack and ramification needs computing power that
directly affects the environment, and the most important point: larger and more elaborate
networks have a higher degradation state throughout the training process.

Considering the number of important but discarded features in a deep neural network
process, we desire to represent this data in a better way. Thus, we implement M-CNNs for
applications besides video classification to evaluate if this kind of network setting is better for
the general performance of the analyzed problem and where there is room for improvement.

Furthermore, we propose a novel fusion module capable of improving M-CNN results
by performing operations with the multiple streams and replacing its connections, observing
how the fusion process can optimize the overall network. Different kinds of applications will
serve as evaluation material for this new model.

In addition to the module, we address the following hypothesis H1:

Hypothesis 1 (H1): The proposed new module is a possible approach to recycle architec-
tures that are no longer used — because more complex structures are now state-of-the-art
—, making the so-called obsolete artificial neural networks competitive again.

With the motivation and the hypothesis, we define the subsequent goals.

1.2 Goals

This work aims to achieve the following contributions, using an exploratory and sequen-
tial methodology approach, divided into Primary and Secondary goals.

1.2.1 Primary Goal

Design, improve and explore current models of CNNs and M-CNNs to propose a novel
structural module that handles all the intermediate processes of M-CNNs.

1.2.2 Secondaries Goals

To achieve our primary goal, we have to set intermediary objectives, being them:

• Develop different M-CNN applications to compare its results to traditional CNN mod-
els;
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• Propose novel M-CNN architectures focusing on improvements based on structural
modifications;

• Explore signal processing boosting techniques inside the structure of M-CNNs;

• Design a general boosting module to adapt classical CNNs;

• Test different applications with the novel module, using same-domain and cross-
domain streams;

• Explore how the novel module performs with simpler networks.

1.3 Main Contributions

Knowing that M-CNNs have been developed, applied, and used in many situations and
applications [6, 12, 27, 28, 29, 30, 31, 32, 33], we implemented different M-CNN architec-
tures to discover the feasibility of using this type of network. These implementations were
the first contributions of this work [11, 12].

While our overall goal is to lessen the complexities, it’s important to note that these M-
CNNs duplicate the original networks. That is, despite the shorter training time, we still
require a certain computational power. Based on the discoveries of the papers mentioned
above, we noticed that works that address applications issues to an M-CNN approach do not
focus on the fusion stage.

Thus, we propose in this manuscript a novel module based on a new cross-fusion method
applied for all available models of M-CNNs. This new proposed cross-fusion method is
focused on observed features, used by many of traditional M-CNNs models developed in all
known approaches.

By adapting simpler and traditional structures, we expect this nouveau strategy to possi-
bly outperform the classical CNN networks and encourage the reuse of out-of-date networks.
With extensive tests within different application scenarios, we managed to identify the strong
and weak points of this approach.

1.4 Manuscript Organization

This work is divided as follows: Chapter 2 presents a theoretical background to under-
stand further chapters. Chapter 3 details CNNs and their variant, M-CNNs. It also introduces
related work, state-of-the-art, and important CNN and M-CNNs architectures. Furthermore,
it contains state-of-the-art applications using single and multiple stream data. Chapter 4
presents the methodology. From Chapter 5 in Sections 5.1 up to 5.4, studied and imple-
mented M-CNNs applications are showed as contributions and filling gaps, and Chapter 6 a
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new proposed topology is presented describing the main concept of the fusion strategy and
the module itself. Finally, Chapter 7 contains the conclusion and future works.
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Chapter 2

Theoretical Background

This chapter briefly describes an overview of basic and main concepts of how Convolu-
tional Neural Networks work.

2.1 Basic concepts

The perceptron is a probabilistic model introduced by Rosenblatt (1958) [34] defined by
Equation 2.1, where P is the binary answer of a n-dimensional perceptron, ip is the input,
wg are the weights, and ζ is the threshold.

P =

{
0 if

∑
nwgnipn ≤ ζ

1 if
∑

nwgnipn > ζ
. (2.1)

This is the simplest model of neural networks used to classify linearly separable patterns;
if it is built around a single neuron, the classification is limited to a binary output [15].

Multilayer perceptrons are a generalization of the single-layer perceptron previously de-
fined. According to Haykin (1994) [15], a multilayer perceptron can be described as a neural
network with one or more hidden layers, where these hidden neurons act as feature detec-
tors. As the learning process progresses across the multilayer perceptron, the hidden neurons
gradually discover the salient features that characterize the training data by performing a non-
linear transformation on the input data into a feature space. In this new space, the classes of
interest in a pattern-classification task, for example, may be more easily separated from each
other than could be the case in the original input data space.
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2.2 Convolutional Neural Networks

CNNs are a special class of multilayer perceptrons that are designed to process multiple
arrays, such as images, with a high degree of invariance to translation, scaling, skewing, and
other forms of distortion [15, 16].

In machine learning applications, the input is usually a multidimensional array of data,
and the kernel is usually a multidimensional array of parameters that are adapted by the
learning algorithm [1] — these multidimensional arrays are called tensors. Considering the
input as an image I with (x, y) coordinates and a two-dimensional kernel function K, a
feature map O can be achieved by calculating a discrete convolution operation described in
Equation 2.2.

O(x, y) = (K ∗ I)(x, y). (2.2)

Since each element of the input and kernel must be explicitly stored separately, we usu-
ally assume that these functions are zero everywhere but in the finite set of points for which
we store the values. This means that we can implement the infinite summation as a summa-
tion over a limited number of array elements [1], as stated in Equation 2.3.

O(x, y) =
∑
m

∑
n

I(x−m, y − n)K(m,n). (2.3)

Usually, CNNs are structured as a series of blocks, where the first block is composed of
convolutional and pooling layers [16]. The convolutional layer performs several convolu-
tions in parallel to produce a set of linear activations. Each linear activation is run through
a nonlinear function in the second stage. Then, the pooling layer modifies the layer’s out-
put further with a pooling function. A pooling function replaces the output of the net at a
specific location with a summary statistic of the nearby outputs [1]. These components are
summarized in Figure 2.1.

Figure 2.1: Typical components of the first block of a convolutional neural network. Adapted
from Goodfellow et al. (2016) [1].

The number of feature maps is increased with the successive blocks alternating between
convolution and pooling. At the same time, the spatial resolution is reduced, compared with
the corresponding previous block [15] — the following Section details other CNN common
layers, as regularization and activations.
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2.2.1 Additional Layers

2.2.1.1 Activations

Considering a neuron as a fundamental unity of a neural network processing, we describe
one of its basic elements: an activation function. Haykin (1994) [15] defines the activation
function as a restriction of the output amplitude of a neuron, having an output interval gen-
erally of a unit interval [0, 1] or [−1, 1].

The sigmoid function is the most common activation function. It has the shape of a s,
and one example of it is the logistic function, defined as

sigmoid(x) =
1

1 + exp(−ax)
, (2.4)

where a is the parameter of inclination.

Since the sigmoid function is used to represent a probability distribution over a binary
variable, we need to extend this representation to n possible values. This generalization is the
softmax function — defined in Equation 2.5 —, most used as the output of a classifier [1].

softmax(x) =
exp(x)∑
nexp(xn)

. (2.5)

However, the recommendation for modern neural networks is a rectified linear unit
(ReLU) because being a nearly linear function, they preserve many of the properties that
make linear models generalize well [1]. Additionally, a ReLU is a simple maximum func-
tion, defined as ReLU(x) = max{0, x} [35].

2.2.1.2 Optimization

According to Salas et al. (2019) [26], the minimization of the loss function is the quantifi-
cation of the concept of learning. Using the loss function as a parameter to the optimization
process, several algorithms can be applied to diminish this loss. Gradient descent and its
variations are the favorite methods for this task.

Nonetheless, the search space for the best parameters during optimization can be exten-
sive. It can become a problem of overfitting, where a model generalizes too well to the input
but is not able to work with new data.

2.2.1.3 Regularization

The theory of regularization helps to reduce overfitting at the expense of increased train-
ing error. Many regularization methods limits the capacity of models by adding a parameter
norm penalty Ω(θ) to the objective function J , denoted by J(θ;X, y) = J(θ;X, y) +αΩ(θ),
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where α ∈ [θ,∞) is a hyperparameter that weights the relative contribution of the norm
penalty term relative to the standard objective function J.

A L2 regularization, or weight decay, adds an extra parameter to a cost function: a regu-
larization term Ω(θ) = 1

2
‖w‖22. The effect of regularization is to make the network prefer to

learn small weights, all other things being equal. Large weights will only be allowed if they
considerably improve the first part of the cost function [1].

The penalty term is substituted for a constraint using the standard stochastic gradient
descent. Instead of penalizing the L2 norm of the whole weight vector, an upper bound on
the L2 norm of the incoming weight vector for each hidden unit is set. When an update
breaches this restriction, the weights of the hidden unit are renormalized by division. As
stated in Hinton et al. (2012) [36], this makes it possible to start with a considerable learning
rate that decays during learning, thus allowing a far more thorough search of the weight-
space than methods that start with small weights and use a small learning rate.

Another regularization technique is called dropout. Dealing directly with structure
changes, some hidden units are randomly dropped during training, preventing co-adaptation
and forcing each hidden unit more robust and drive it towards creating useful features on its
own without relying on other hidden units to correct its mistakes [36].

2.2.2 Time-review

The use of CNNs improved the state-of-the-art in visual object recognition [3], object
detection [37], image segmentation [19] and many other domains [38, 39]. Figure 2.2 shows
a compilation of terms often associated with the Convolutional Neural Networks, where the
larger blobs represent a term that is constantly used. It can be noted that application terms,
such as recognition and classification, appear in bigger blobs and great frequency. A time-
review is presented in the next Chapter, from most to less recent of the main literature works.
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Figure 2.2: Terms that are often associated with CNNs.
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Chapter 3

Related Work

In 1980, a self-organizing neural network model named Neocognitron was proposed by
Fukushima (1980) [40] to recognize patterns regardless of the position of the stimulus pat-
terns. The multilayered structure of Neocognitron is based on the visual nervous system of
the vertebrate. After the self-organization, the network acquires a design similar to the hier-
archy model of the optical nervous system proposed by Hubel et al. (1962) [41], exploiting
the notion of “simple” and “complex” cells. It can be considered the very first CNN, but it
did not have an end-to-end supervised-learning algorithm such as backpropagation [16].

Years later, in 1989, Waibel et al. (1989) [42] proposed an approach to phoneme recog-
nition named Time-Delay Neural Network (TDNN), a primitive 1D CNN. A TDNN is a
multilayered feedforward neural network that can represent relationships between events in
time, not requiring temporal alignment of the labels. The features learned by the network are
insensitive to shifts in time. The first paper to use CNNs trained by backpropagation for the
task of classifying low-resolution images of handwritten digits were proposed by LeCun et
al. (1990) [43] and was a breakthrough in the field, with the presentation of LeNet-1. The
LeNet-1 is a multi-layer network with convolutions with small size kernels. The followed
stages are a squashing function and an additional layer that performs a local averaging and
subsampling, reducing the resolution of the generated feature map. In 1998, LeCun [2] pub-
lished a paper reviewing various methods applied to handwritten character recognition and
compared them, showing that CNNs outperform all other techniques. It also proposes an
evolution to the original LeNet-1 to LeNet-5 model.

According to Girshick et al. (2014) [44], CNNs saw heavy use in the 1990s [43, 2],
but then fell out of fashion with the rise of Support Vector Machines (SVMs). In 2012,
however, Krizhevsky et al. (2012) [3] revived the interest in CNNs by showing substantially
higher image classification accuracy — 84.70% — on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [45], almost halve the error rate for object recognition
at the time. Likewise, the increasing hardware processing capability and popularization of
Graphical Processing Units (GPUs) were additional assets to the works.
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The impact of the convolutional network called AlexNet and the revival of the CNN topic
can also be seen in the graphic presented in Figure 3.1 of publications by year, since 2009,
from three of the most prominent digital research libraries of the Artificial Intelligence field:
ACM [46], IEEE Xplore [47], and ScienceDirect [48]. Correlate terms as convolutional
neural network, ConvNet and deep learning were also used to highlight the effects of such
event. It is also interesting to note in Figure 3.1 that the sharp drop in the amount of work on
CNNs is related to the influence of the Sars-Cov-2 pandemic.
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Figure 3.1: Occurrences of the terms: CNN, convolutional neural network, ConvNet and
deep learning in 3 different repositories (ACM, Elsevier/ScienceDirect and IEEEXplore).

The architecture of AlexNet contains eight learned layers, five convolutional and three
fully-connected [3]. It uses techniques like Rectified Linear Units (ReLUs) [35] as an acti-
vation function, speeding up the training; and dropout layers [36] to reduce overfitting.

The ImageNet challenge proved to be one of the primary sources of novelties in CNNs
architecture. Between 2014 and 2015, three different CNN models were proposed and re-
main popular. Furthermore, the increasing number of layers characterizes this evolution. In
Simonyan et al. (2014) [17], there is an evaluation of networks of increasing depth using
an architecture with small convolution filters, showing that improvement can be achieved by
increasing the weight layers depth. The proposed networks are VGG-16 and VGG-19.

In 2015, GoogLenet — or Inception v1 — was proposed by Szegedy et al. (2015) [4].
This 22-layers architecture values the use of computing resources inside the network. They
increased the depth and width of the network while keeping the computational budget con-
stant.
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With more layers than the previous, ResNet [18] showed up as a residual learning frame-
work that improved the training of deeper networks. According to He et al. (2015) [18],
with the network depth increasing, accuracy gets saturated and then degrades rapidly. This
degradation is not caused by overfitting, and adding more layers to a deep model leads to
higher training error. They explicitly let stacked layers fit a residual mapping to address this
issue.

Besides state-of-the-art architectures, developers have also worked in a wide gamma of
CNN applications. In Wang et al. (2019) [38], it is proposed a method of learning from
naturally distributed data and optimizing the classification accuracy over a balanced test set.
This method maps an image to a feature space that visual concepts can relate to each other
based on a learned metric that respects the closed-world classification while acknowledg-
ing the novelty of the open world, featuring image recognition is performed in large-scale
databases.

Furthermore, dense 3D face decoding at a high frame rate was also contemplated. Zhou et
al. (2009) [49] present a non-linear statistical model that represents facial texture and shape
variations by learning joint texture and shape auto-encoders using direct mesh convolutions.

Although most of the applications are oriented toward images [50] — primarily image
classification and object recognition —, plentiful models are using other data sources. For
instance, Wang et al. (2017) [39] propose a wavelet-based ensemble approach for proba-
bilistic wind power forecasting. Other examples include 3D object classification from point
clouds [51], plant diseases recognition [12], and recognition of human activity in indoor
environments [52].

Meanwhile, Karpathy et al. (2014) [6] extended the image recognition good results to
video classification, developing a network structure with two different inputs to the classical
CNN. This multistream technique will be explored in the following Section.

3.1 Main CNNs Architectures and Models

This Subsection describes the most relevant and used CNNs architectures in chronologi-
cal order.

3.1.1 LeNet-5

The late 90’s LeNet-5 [2] presented in Figure 3.2 is a 7-layer CNN that receives as input
an approximately size-normalized and centered 32x32 pixel image. This input size was
meant to be larger than the dataset images to center the potential distinctive features of the
data, such as corners.
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Figure 3.2: LeNet-5 architecture proposed by LeCun et al. (1998) [2]. Figure originally
found in [2]. © 1998 IEEE.

The first convolutional layer, C1, has six 28x28 sized feature maps. Each unit in each
feature map is connected to a 5x5 neighborhood in the input. Afterward, there is a subsam-
pling layer with six 14x14 sized feature maps. These feature maps’ units are connected to a
2x2 neighborhood in the corresponding feature map in C1.

These connections are sustained until the third convolutional layer. This behavior causes
a break of symmetry in the network, so different feature maps are forced to extract different
features [2].

3.1.2 AlexNet

The AlexNet architecture [3] showed in Figure 3.3 has eight layers. With an input size
of 224 × 224 × 3, the first convolutional layer filters the image with 96 kernels of size
11 × 11 × 3 with a distance between the receptive field centers neighboring neurons in a
kernel map of 4 pixels. The output of the first convolutional layer becomes the input of the
second convolutional layer. The third, fourth, and fifth convolutional layers are connected
without pooling layers. The first two fully-connected layers use a dropout [36] technique to
reduce data overfitting.

Figure 3.3: AlexNet architecture proposed by Krizhevsky et al. (2012) [3]. Figure originally
found in [3].
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3.1.3 VGG

Starting to increase the architectures’ depth, the work of Simonyan et al. (2014) [17]
explores the addition of convolutional layers with small convolutional filters. Of all the
investigated networks, two had the top results: VGG-16 and VGG-19.

Both have an input size of 224×224×3 but differ in the number of convolutional layers.
While VGG-16 has 13 convolutional layers, VGG-19 has 16. Compared to AlexNet, VGG
uses tiny receptive fields throughout the net, filtering the image with kernels of size 3×3×3

with a distance between the receptive field centers of neighboring neurons in a kernel map
of 1 pixel in the first layer. Also, there is not a direct alternation between convolutional and
pooling layers.

3.1.4 GoogLenet

GoogLenet — or Inception — is a deep CNN model proposed by Szegedy et al.
(2014) [4]. With 27 layers, Inception is a network with many parameters that try to work
around the overfitting issue. Besides the traditional convolutional and pooling layers, there
is the addition of a Inception Module. This module analyzes the correlation statistics of the
last layer. It clusters them into groups of units with high correlation, forming the units of the
next layer and are connecting them to the units in the previous layer. This module is built
with a convolution layer of three different sizes of filters (1 × 1, 3 × 3 and 5 × 5) followed
by a max-pooling layer. The filter outputs are concatenated and sent to the next layer. The
naïvety of the described module leads to a need for dimensionality reduction to diminish the
computational processing cost. To achieve this outcome, they used the idea of embeddings
and added an extra convolutional layer with a filter size of 1 × 1 right before the 3 × 3 and
5× 5 convolutions.

3.1.5 ResNet

ResNet [18] is also a deep architecture that relies in modules to prevent a learning degra-
dation with the increase of depth. Instead of learning a direct mapping of y = H(x) with
a few stacked non-linear layers (H(x)), a residual mapping is proposed, where F (x) :=

H(x)− x, which can be reframed into H(x) = F (x) + x, where F (x) and x represents the
stacked non-linear layers and the identity function respectively.

According to He et al. (2015) [18], it is easier to optimize the residual mapping than
the unreferenced mapping. Likewise, the formulation of H(x) = F (x) + x can be realized
by feedforward neural networks with shortcut connections. In the ResNet Module, these
shortcut connections perform identity mapping, and their outputs are added to the outputs of
the stacked layers.
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Figure 3.4: Naïve module.

Figure 3.5: Module with dimensionality reduction.

Figure 3.6: Inception modules. Figure available in Szegedy et al. (2014) [4]. © 2014 IEEE.

3.1.6 Xception

Xception [53] network is an interpretation of Inception modules [4] with linear stacks
of depthwise separable convolution layers with residual connections. The essential theory
of Inception is that cross-channel and spatial correlations are reasonably decoupled. Xcep-
tion’s proposal is based on the hypothesis that the correlations above can be fully decoupled,
modeling a network using 36 convolutional layers, structured into 14 modules with linear
residual connections, leaving out the first and last modules.

3.1.7 DenseNet

In 2018, DenseNets or Densely Connected Convolutional Networks [54] were intro-
duced. Analyzing that deeper CNNs were more accurate, Huang et al. (2018) presented an
architecture that connects each layer to every other layer in a feed-forward way. The maxi-
mum information flow between layers in the network is guaranteed, promising to attenuate
the vanishing-gradient issue and enhance feature propagation while using lesser parameters.
In this model, the feature maps of all earlier layers are used as inputs for each layer. Their
feature maps are used as inputs into all following layers.
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Table 3.1: Literature review on CNNs, from oldest to newest references.

Year Author Description Architecture Dataset Metric

1980 Kunihiko Fukushima [40] Introduces CNNs Neocognitron — —

1989 Alex Waibel et al. [42] A primitive 1D ConvNet called a time-delay

neural network was used for phoneme recog-

nition

TDNN Common

Japanese

words

acc: 98.50%

1990 Yann LeCun et al. [43] The first paper using backpropagation on

CNNs for the task of classifying handwritten

digits

LeNet-1 USPS zip

codes

acc: 96.60%

1990 Léon Bottou et al. [55] A French digit recognition task with time-delay

neural networks

TDNN LIMSI

Speech

Database

acc: 95.00%

1997 Steve Lawrence et al. [56] Presents a hybrid neural network, combining

self-organizing maps (SOM) and CNNs, in or-

der to recognize faces

SOM + CNN ORL

Database

acc: 96.20%

1998 Yann LeCun et al. [2] This paper reviews various methods applied

to handwritten character recognition and com-

pares them, showing that CNNs outperforms

all other techniques

LeNet-5 MNIST acc: 99.05%

2012 Alex Krizhevsky et al. [3] Use deep CNNs to almost halve the error rate

in ImageNet challenge

AlexNet ImageNet acc: 84.70%

2013 Shuiwang Ji et al. [57] Implement a 3D CNN model for action recogni-

tion, extracting features from both spatial and

temporal dimensions by performing 3D convo-

lutions

3D CNN TRECVID

2008

auc: 0.0129%

2014 Nal Kalchbrenner et

al. [58]

Describe Dynamic Convolutional Neural Net-

work (DCNN) for the semantic modeling of

sentences

DCNN Stanford

Sentiment

Treebank

acc: 86.00%

2014 Yoon Kim [59] Shows that a simple CNN with hyperparame-

ter tuning and static vectors achieve good re-

sults on multiple benchmarks, especially for

sentence-level classification tasks

Word vectors +

CNN

Stanford

Sentiment

Treebank

acc: 48.00%

2014 Ross Girshick et al. [44] The first paper to show that CNNs can lead to

higher object detection performance as com-

pared to systems based on simpler HOG-like

features

R-CNN PASCAL

VOC 2010

mAP: 53.70%

2014 Karen Simonyan et al. [17] Investigate the effect of the convolutional net-

work depth on its accuracy in the large-scale

image recognition setting

VGG ImageNet acc: 93.20%

2015 Jeffrey Donahue et al. [60] Propose a novel recurrent convolutional archi-

tecture for large-scale visual learning

LRCN UCF101 acc: 77.46%

2015 Christian Szegedy et

al. [61]

A deep CNN with architectural decisions

based on the Hebbian principle and the intu-

ition of multi-scale processing, using the com-

puting resources inside the network, was pro-

posed. The depth and width of the network

were increased while keeping the computa-

tional budget constant

GoogLenet ImageNet acc: 93.33%

2015 Ross Girshick [62] Proposes a new training algorithm that fixes

the disadvantages of R-CNN and improves its

speed and accuracy

Fast R-CNN PASCAL

VOC 2010

mAP: 68.80%

2015 Shaoqing Ren et al. [37] Introduce Region Proposal Networks (RPNs)

that share convolutional layers with state-of-

the-art object detection networks as Fast R-

CNN

Faster R-CNN PASCAL

VOC 2012

mAP: 70.40%

2015 Kaiming He et al. [18] A deep residual learning framework is pro-

posed, reformulating the layers as learning

residual functions concerning the layer inputs,

instead of learning unreferenced functions

ResNet ImageNet acc: 94.29%
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Year Author Description Architecture Dataset Metric

2015 Du Tran et al. [63] Propose an approach for spatiotemporal fea-

ture learning using 3D CNNs

3D CNN UCF101 acc: 52.80%

2016 Leon Gatys et al. [64] Use image representations derived from

CNNs optimized for object recognition to ren-

der the semantic content of an image in differ-

ent styles

VGG — —

2016 Mohammad Rastegari et

al. [65]

Propose an architecture that uses bitwise op-

erations to approximate convolutions, enabling

the possibility of running state of the art deep

neural network on CPU in real-time

XNOR-net ImageNet acc: 90.00%

2017 Kaiming He et al. [66] Propose a general framework for object in-

stance segmentation, efficiently detecting ob-

jects in an image while simultaneously gener-

ating a segmentation mask for each instance

Mask R-CNN COCO AP: 53.50%

2017 Andrew Howard et al. [67] Present efficient models for mobile and em-

bedded vision applications

MobileNets ImageNet acc: 70.60%

2017 François Chollet [53] Shows and interpretation of the GoogLenet ar-

chitecture (Inception), where Inception mod-

ules have been replaced with depthwise sepa-

rable convolutions

Xception ImageNet acc: 94.50%

2018 Gao Huang et al. [54] Introduce Dense CNNs, showing that CNNs

can be deeper, more accurate and efficient to

train if they contain shorter connections be-

tween layers close to the input and those close

to the output

DenseNet ImageNet acc: 94.71%

3.2 Multistream Convolutional Neural Networks

Karpathy et al. (2014) [6] proposed an empirical evaluation of CNNs on video classifi-
cation. Noticing that the standard video classification approaches [68, 69, 70, 71, 72, 73, 74]
consisted in involving three main stages (visual features extraction, feature combination, and
then classification) that CNNs were achieving state-of-the-art results on image recognition,
segmentation, detection, and retrieval [3, 75, 76, 77, 78, 44], a new technique that included
local motion information in the video as connectivity to a CNN architecture was suggested.

Considering that there is the presence of the time domain in this type of application, a
multiresolution architecture was studied to extend the connectivity of a CNN and use the ad-
ditional information to improve overall performance. Therefore, multiple CNN architectures
with different approaches to combining information are evaluated. These architectures are
detailed in Section 3.2.1.

As stated by Ross Girshick et al. (2014) [44]: Features matter. Bringing the multistream
concept from video classification to image classification, we can input almost any extra in-
formation in the other streams, such as a segmented version of the first input or a crop of a
region of interest. The chart presented in Figure 3.7 shows the growth of the Multistream
CNN topic from 2009 to 2020. Our consulted sources were three of the most important
digital libraries, cited in Section 2.2. Also, Table 3.2 shows a timeline of the theme.

A multistream approach can speed up the runtime of the network while increasing the

17



Figure 3.7: Occurrences of the term ‘M-CNN‘ in 3 different publishers.

performance, as it can be seen in [11, 12], due to the additional relevant information injected
at the beginning of the process; and the most important: it adds more features to be learned.

In Simonyan et al. (2014) [7], there is the proposition of a two-stream CNN architecture
for action recognition, one spatial and one temporal stream. Also, they demonstrate that the
use of this technique gives good results, even with limited training data. An approach similar
to Karpathy et al. (2014) [6] is adopted, the Late Fusion (detailed in Sub subsection 3.2.1.1).
The temporal stream transmits the camera movement while the spatial flow carries infor-
mation about scenes and objects. Although they use Late Fusion, two fusion methods are
considered: averaging and training a multi-class linear SVM on stacked L2-normalized soft-
max scores as features [7].

Still on the video classification problem, Wu et al. (2015) [79] propose a framework
that integrates four different streams: spatial, short-term motion, long-term temporal, and
auditory clues in videos. They also concluded that the extra information could boost the
performance. Again, a Late Fusion model is implemented with a fusion method that learns
weights adaptively for each class.

Inspired by the work of Simonyan et al. (2014) [7], Feichtenhofer et al. (2016) [28]
propose a fusion evaluation of CNNs, to best take advantage of the additional information
that this kind of network disposes of. Using the two-stream architecture previously proposed
by Simonyan et al. (2014) [7], the authors consider different types of fusion, for spatial —
sum, maximum, concatenation, convolution, and bilinear — and temporal — 3D pooling and
3D convolution + pooling — features.

In Gammulle et al. (2017) [27] they focused on learning salient spatial features via a
CNN and then mapped their temporal relationship with a Long Short-Term Memory (LSTM)
network. There are two different models that fuse in different ways, being a simple merge
and the use of another LSTM that generates one single output. According to Gammulle
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Table 3.2: Literature review on M-CNNs, from oldest to newest references.

Year Author Description Architecture Dataset Metric

2014 Andrej Karpathy et al. [6] Introduces M-CNNs. A multiresolution net-

work that has an AlexNet-like [3] CNN at-

tached to its firsts layers

M-CNN UCF-101 mAP: 66.00%

2014 Karen Simonyan et al. [7] Propose a two-stream CNN architecture which

incorporates spatial and temporal networks for

action recognition

M-CNN UCF-101 acc: 88.00%

2015 Zuxuan Wu et al. [79] Train three CNNs to model spatial, short-term

motion and audio clues. Then, use LSTM net-

works to explore long-term temporal dynam-

ics. With the outputs of the individual streams,

they propose a fusion method to generate the

final predictions

M-CNN UCF-101 acc: 92.20%

2015 Limin Wang et al. [80] Design good practices for the training of very

deep two-stream CNNs in the video action

recognition domain

M-CNN — —

2016 Jingxiang Yang et al. [81] Use a two-channel CNN to learn jointly

spectral-spatial feature from hyperspectral im-

age

M-CNN Salinas

Valley +

Indian

pines

acc: 95.58%

2016 Xiaojiang Peng et al. [82] Propose a two-stream R-CNN for video action

detection, showing that a motion region pro-

posal network generates high-quality propos-

als and that stacking optical flow over several

frames significantly improves frame-level ac-

tion detection

M-RCNN UCF-

Sports

acc: 95.74%

2016 Ali Diba et al. [83] Explore motion representation with 3D-CNNs,

learning distinctive models to combine deep

motion features into appearance model via

learning optical flow features inside the net-

work

M-3DCNN UCF-101 acc: 90.20%

2016 Bharat Singh et al. [84] After locating bounding boxes around a per-

son, they train two additional streams on mo-

tion and appearance cropped to the tracked

bounding box, along with full-frame streams

MRNN Shopping

Dataset

acc: 80.31%

2016 Christoph Feichtenhofer

et al. [28]

Study a number of ways of fusing CNNs both

spatially and temporally in order to best take

advantage of the spatio-temporal information

M-CNN UCF-101 acc: 90.62%

2016 Velickovic et al. [8] Propose a network with cross-connections in-

serted after pooling operations and full weight

sharing in the fully connected layers

X-CNN CIFAR-10 acc: 86.14%

2017 Dahjung Chung et al. [85] Propose a two stream architecture where each

stream is a siamese network to the person

re-identification task in video surveillance sys-

tems

M-CNN iLiDS-VID Matching acc: 97.00%

2017 Harshala Gammulle et

al. [27]

Evaluate a deep fusion framework that exploits

spatial features from CNNs with temporal fea-

tures from LSTM models

Two-stream

LSTM

UCF-11 acc: 94.60%
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Year Author Description Architecture Dataset Metric

2017 T. Akilan et al. [86] Explore late fusion upon different multi-deep

CNNs used as feature extractors

M-CNN Caltech101 acc: 95.54%

2018 Yunlong Yu et al. [87] Use M-CNNs to classify aerial scenes, with

two pretrained CNNs as feature detectors

M-CNN UC-

Merced

acc: 97.12%

2018 Miao Ma et al. [5] Propose a method that reduces feature di-

mension while also effectively combining ap-

pearance and motion information in a unified

framework

M-CNN sub-

JHMDB

acc: 76.90%

2018 Qi Xuan et al. [29] Use M-CNNs to classify pearls with multiview

images

MS-CNN Pearls

labelled by

experts

acc: 92.14%

2018 Darwin Concha et al. [30] Use M-CNNs for action recognition in video

sequences using spatial and optical flow infor-

mation

M-CNN UCF-101 acc: 94.30%

2018 Chenjie Ge et al. [32] Use M-CNNs to extract and fuse the features

from multiple sensors for glioma tumor grading

M-CNN MICCAI

BraTS

2017 com-

petition

acc: 90.87%

2018 Petar Veličković et al. [88] Analyze multi-modal time-series data with a

cross-fused three-layer LSTM

X-LSTM Nokia Digi-

tal Health -

Withings

acc: 80.30%

2019 Zhigang Tu et al. [31] Use M-CNNs to recognize action in videos by

using semantics-derived multiple modalities in

both spatial and temporal domains

M-CNN UCF-101 acc: 94.80%

2019 Mostafa Amin-Naji et

al. [89]

Use M-CNN to create multiple focuses on the

dataset, using a concatenation as a fusion

method

M-CNN COCO acc: 99.78%

2019 Juan-Manuel Pérez-Rúa

et al. [90]

Propose a technique to search an optimal ar-

chitecture for a fiven dataset, looking for differ-

ent possible fusions

MFAS NTU

RGB+D

acc: 93.46%

2019 Ana Paula Almeida and

Flavio Vidal [91]

Present a CNN-based model with a cross-

fusion method for multiple streams applied for

image classification. This architecture is fo-

cused on the streams’ fusion stages

L-CNN CIFAR-10 acc: 62.57%

2020 Cătălina Cangea et al. Join two architectures with multimodal cross-

connections, allowing a dataflow between sev-

eral feature extractors

XFlow AVletters acc: 89.60%

2020 Hamid Reza Vaezi Joze

et al. [9]

Create a fusion module that uses squeeze and

excitation operations to recalibrate features on

the streams

MTMM NTU

RGB+D

acc: 90.11%
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et al. (2017) [27], the motivation behind having multiple layers of LSTMs is to capture
information hierarchically. Each stream can communicate with each other and improve the
backpropagation process.

More recently, a six-stream network was proposed by Ma et al. (2018) [5]. Based on an
estimation of human pose and human parts positions in video sequences, different patches
of crops serve as input to the network, Figure 3.8. There is no elaborated fusion technique in
this work, just a concatenation of the outputs before the first fully connected layer.

Figure 3.8: Six-stream CNN. Adapted from Ma et al. (2018) [5].

It is still unusual to work with multiple streams in an image classification context. Aerial
images, for example, have not only space and texture features but also contain a large num-
ber of scene semantic information [87]. Thus, a good feature representation is needed for
positive classification results. Yu et al. (2018) [87] proposed a two-stream CNN based on
two pre-trained CNNs as feature extractors to learn deep features from the original aerial
image and the processed aerial image through saliency detection, respectively. Right be-
fore an extreme learning machine classifier, the streams are fused in two distinct strategies –
concatenation and sum.

3.2.1 M-CNN Models and Architectures

M-CNNs are directly derived from traditional CNN architectures. This Section explores
some successful models with more than one input and presents our model proposal.

3.2.1.1 Karpathy’s two-stream CNN

According to Karpathy et al. (2014) [6], the Single Frame architecture is a traditional
single-stream CNN, which can be any known architecture. Their model uses a single-stream
AlexNet [3] as a baseline. Considering that videos vary in temporal extent and each clip
has several frames, extending the network’s connectivity in the time dimension is possible
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learning spatio-temporal features. Figure 3.9 is illustrates their proposed connectivities.

Figure 3.9: Evaluation of multiple CNN architectures proposed by Karpathy et al. (2014) [6].
Red, green and blue boxes represent convolutional, normalization and pooling layers respec-
tively. Figure taken from [6]. © 2014 IEEE.

Although it looks similar to the Single Frame model, the Early Fusion model combines
information across an entire time window immediately on the pixel level by modifying the
filters on the first convolutional layer in the first shown model. This connectivity allows the
network to detect local motion direction and speed precisely.

The Late Fusion architecture places two (or more) single-stream networks with shared
parameters and then merges the two streams in the first fully connected layer. Therefore,
the first fully connected layer can compute global features by comparing the outputs of both
towers.

The Slow Fusion model is a balanced mix between the two multi-stream approaches that
slowly fuses information throughout the network. Higher layers get access to progressively
more global information in both dimensions.

Lower resolution images were used in a multiresolution architecture to speed up the
models’ runtime performance with accuracy maintenance. Two separate streams served as
an input to the M-CNN. The context stream received the downsampled frames at half the
original spatial resolution. The fovea stream received the central region at the original reso-
lution, taking advantage of a usual camera bias.

3.2.1.2 Simonyan’s two-stream CNN

Simonyan et al. (2014) proposed a two-stream architecture to receive spatial and tem-
poral components of a video. Each stream is composed of a deep CNN, as detailed in Fig-
ure 3.10. All hidden weight layers use the rectification (ReLU) activation function, and max
pooling is performed over 3× 3 spatial windows with stride 2. The fully convolutional layer
is combined by using the previously cited Late Fusion.

In this work, two fusion methods are considered: averaging and training a multi-class
linear SVM on stacked L2-normalized softmax scores as features.
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Figure 3.10: Two-stream architecture proposed by Simonyan et al. (2014) [7]. Figure taken
from [7].

3.2.1.3 X-CNNs

As previously shown, multiple stream networks have been developed, applied, and used
in many situations and applications nowadays [27, 29, 30, 31, 32, 33]. Nevertheless, signal
treating in between multistream layers strategies are lacking in the literature. Velickovic et
al. (2016) [8] present a cross-modal architecture for image classification, the X-CNN.

Designed to deal with sparse data sets, X-CNNs are a typically image-based approach
that allows weight-sharing and information exchange between hidden layers of a network by
using cross-connections inserted after each pooling layer, presented in Figure 3.11. Inspired
by the biological cross-connections between various sensory networks, this strategy attempts
to improve CNNs predictions without requiring large input data dimensionality.

Figure 3.11: X-CNN architecture. Figure originally found in Velickovic et al. (2016) [8].

3.2.1.4 M-CNNs as ensembles

Akilan et al. (2017) [86] explore late fusion upon different multi-deep CNNs used as
feature extractors. Their approach uses a four rule feature fusion – product, sum, average
and maximum – to merge different CNN features. Based on previous works that ensembled
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distinct classifiers, such as K-Nearest Neighbors (KNN) and CNNs, they demonstrate that
even simple fusion processes can improve classification results.

Still following the line of multiple CNN architectures ensemble, Amin-Naji et al.
(2019) [89] also use several networks simultaneously trained on a dataset to solve an is-
sue. This time, however, the proposed methodology also intends to create multiple focuses
on the dataset, improving the overall accuracy. For fusing the networks, a concatenation
strategy is used.

3.2.1.5 Multimodal M-CNNs

It is typical to observe multiple streams when treating videos with spatial and temporal
portions or when using different data modalities. In Veličković et al. (2018) [88], multi-
modal time-series data is analyzed using an X-LSTM technique. Each input passes through
a separate three-layer LSTM stream, allowing a piece of information to flow using cross-
connections between the streams in the second layer, where features from a stream are passed
and concatenated with features from another stream. In Pérez-Rúa et al. (2019) [90], they
propose a search space that covers numerous possible fusion architectures given the nature of
the multimodal dataset. The outputs of layers that perform a function, such as convolutions
or poolings, are then eligible to be chosen for fusion in this approach. When a fusion point
is selected, a concatenation operation is performed. The XFlow network [92] also brings an
ensemble of different architectures, but with cross-connections as fusing strategies.

In 2020, Joze et al. [9] proposed a multimodal transfer module for CNN fusions –
MTMM –. The MTMM can be added at different levels of the model, and one main advan-
tage is that the input tensors do not have the same spatial dimensions, as it performs squeeze
and excitation operations. Also, each stream can be initialized with existing pre-trained
weights since minimum chances are made in the main structure. Although the module is not
mainly used for image classification, it can be adapted to this task. An illustration of the
module can be found in Figure 3.12, where A and B are layer features.

Figure 3.12: MTMM module. Figure originally found in Joze et al. (2020) [9].
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After presenting in this Chapter a list of main topics and research related to artificial
neural networks, focused on the convolutional and multistream architectures, in the next
chapter, we will introduce our proposed methodology to prove the Hypothesis H1.
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Chapter 4

Methodology

As stated in Section 1, the main goal of this work is to reach a new topology that involves
all the knowledge gathered during this time. To achieve the expected result, some steps were
taken and are shown in Figure 4.1.

Figure 4.1: Methodology workflow.

The initial step of this work was an exploratory methodology. As a primary reference
source, we used books, conferences, and journal articles [1, 2, 4, 3, 6, 15, 93]. As sec-
ondary, survey articles and participation in conferences in the area of artificial intelligence
and computer vision were used [11, 12, 16]. This phase was fundamental to understand what
difficulties and benefits the area is going through. After the bibliographical survey, it was
possible to verify that the scope of CNNs has been gaining more and more space among the
scientists and that special attention to M-CNNs has been given since it was an approach that
could handle more features at once.

Besides being exploratory, the proposed methodology is also sequential. The following
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steps were taken: A bibliographic review of CNNs and M-CNNs was performed to discover
the main gaps in the literature and define the line of work to be filled by this dissertation. It
was also important to determine the intermediate steps to accomplish the primary goal. Also,
we realized a study of the main CNN (e.g. GoogLenet [4], Alexnet [3]) and M-CNN (e.g.
Multistream Networks [6], Two-Stream Network [7]) architectures.

In addition to the previous steps, the implementation of the networks above for different
applications, such as image and document classification was made. This step was fundamen-
tal to understanding how the main frameworks and APIs work (specifically Keras [94] and
Tensorflow [95]). Moreover, the first contributions were produced — mainly for M-CNNS.

Starting with video classification, we learned the most basic techniques of M-CNNs.
How to use multiple streams, handle these various streams, combine them, and compare
their result with a single stream network.

Understanding the impact of an additional stream on a neural network, we extrapolate the
problem to a previously unexplored type of application: image classification. Using a dataset
of plant diseases, we transformed the original dataset into versions that empirically could
contribute to the feature extraction modules of a deep neural net. Again, we got positive
results with the multiple streams strategy.

Having confirmed that the technique also works for image classification, we wondered if
the fusion of two different modalities could also present a performance gain. Here we worked
with image and text, two forms of input with additional information about the same problem.
As we entered this field, we saw that some efforts towards multimodality were already being
explored. Still, we decided to focus on our previously learned fusion techniques and models
and compare them with the state-of-the-art.

Later on, we gathered our efforts towards a different area of interest and tested our pro-
posed method on object detection problems. We still have a lot to adjust, but preliminary
results are promising.

It is essential to notice that we chose to work on non-standard problems: M-CNNs were,
at first, commonly used for video classification, where we have spatial and temporal features
to analyze, and we decided to apply most of our adaptations to image classification issues.
This choice was conscious as we wanted to check if the growth of this kind of network could
improve the accuracy of other modalities, always with a concern of providing a good second
stream for the network.

At the same time that multimodality was explored, another aspect was also being studied
within image classification. While we constantly noticed the gain in accuracy, sometimes
this gain was not that significant or required a computational power that was too high for us
to be able to start the experiment with multiple streams. Thus, one way to continue applying
this technique was to examine fusion points that would increase accuracy with less training
time and would not increase the network parameters to make it impossible to run tests.
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All applications are further detailed in Chapter 5.

4.1 Topology proposal

Creating M-CNN versions of classic architectures was a great learning experience in
the use of programming libraries and tools and in understanding the main issues of using
multiple streams. We started to inquire more about what would be a perfect complement to
standard RGB stream and at what moment the fusion would work better in that gigantic new
structure. These questions became the next point of reflection in this work.

After the exploration, bibliographic surveys, and practical implementations, the defini-
tion of the problem took shape, and we could identify a central gap in the literature: where
to fuse M-CNN models. Also, we had the restriction of not having infinite computational
power to run experiments.

This strategy should be usable in lots of different networks without growing the parame-
ters excessively.

Considering the restrictions mentioned above and that the ReLU activation on convolu-
tions is widespread and its implementation is simple, a fusion strategy for any model con-
taining ReLU’s activation was proposed, developed, and tested. To do so, we searched for
different application scopes: traditional datasets, such as CIFAR-10 [10], were used to vali-
date the novel method. Furthermore, we also analyzed our proposition with a complex image
classification dataset called NORB [96]. Subsequently, we expanded the implementation to
object detection using the BDD100K dataset [97]. More details of the implemented strategy
and its results can be found in Chapter 6.

4.1.1 Model recycling

While designing the new module, we observed that our strategy was able to boost results
from outdated architectures, making them competitive again.

As a consequence of this behavior, we were able to compare the implementation of our
technique both in more traditional and no longer used models and in more recent models.
And the results showed that older and simpler models could be used to solve current problems
with compatible or close to state-of-the-art performance.

One of the most common complaints currently in deep neural networks is the indiscrim-
inate use of increasingly complex and, thus, irreproducible models by institutions or small
companies. Very complex models require more powerful hardware, which, in turn, uses
much more energy and natural resources.

Nonetheless, our strategy can be applied to revive simple structures with the advantage
of great assertiveness using less hardware and therefore fewer assets. All these comparisons

28



and results can be found in detail in Chapter 6.

4.2 Datasets

To achieve the results presented in Chapters 5 and 6, we describe here the used data for
all applications.

4.2.1 The comma.ai driving dataset

The comma.ai organization dataset is composed of 11 videos with a 320 × 160 pixels
resolution, variable duration and recorded in a 20Hz frequency using a dash camera installed
inside the vehicle, capturing a total of 522,434 frames of its frontal vision while driving
during day and night on highways, corresponding to approximately 7 hours of recording
time. An example frame can be found in Figure 4.2.

Figure 4.2: A frame found in comma.ai dataset.

For the purposes of the Autonomous vehicle steering wheel estimation work, the only
information that was taken into account was the video frames in RGB format and the steering
angle values. The steering angle is given in degrees and corresponds to the rotation angle
of the vehicle’s steering wheel. Every angle value present in the dataset is in the interval
[−502.3, 512.6].

Thus, each training session was repeated 3 times and each time the dataset was randomly
partitioned in training/validation/test subsets, following a 70/15/15 proportion schema.

4.2.2 PlantVillage

The PlantVillage dataset, provided by [98], containing 54,306 images of plant leaves
and 38 different classes with 14 plant species, each class corresponding to a different crop
disease. Every class has three different versions: original colored image, grayscaled image
and segmented image. Figure 4.3 shows samples from the data.
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Figure 4.3: A frame found in comma.ai dataset.

The set proportion was 80% of the whole dataset used for training, and 20% for testing,
as suggested by Mohanty et al. (2016) [99].

4.2.3 VICTOR

The VICTOR dataset [100] is composed of five main types of legal documents that make
up the cases that are dealt by the Supreme Federal Tribunal of Brazil.

Containing 6,814 manually annotated documents with over 1,000,000 pages, it is gener-
ated a stratified split for each document class, maintaining the proportions of class samples
in each subset, resulting in the proportions of 70% for the training set, 20% for validation
and 10% for the test set.A sample of these documents can be found in Figure 4.4. They are
intentionally blurred so that critical information is hidden.

4.2.3.1 Small VICTOR

Being a subset of VICTOR, the small VICTOR dataset limits the number of suits for
each theme to 100 samples in each set, which contains 6,510 Extraordinary Appeals, 94,267
documents and 339,478 pages.
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Figure 4.4: Blurred document samples from the VICTOR data set.

31



4.2.4 CIFAR-10

Divided into five training batches and one test randomly generated batch, each with
10000 images, CIFAR-10 [10] consists of 60000 32x32 color images in 10 classes, with
6000 images per class. Figure 4.5 shows ten samples of each class.

Figure 4.5: CIFAR-10 samples. Original figure found in Krizhevsky (2019) [10].

4.2.4.1 CIFAR-50 and CIFAR-100

Instead of 10 classes, as in CIFAR-10, the CIFAR-100 has 100 classes with 600 32x32
images in each class. Inside the one hundred classes, there are 20 superclasses that generalize
certain labels, but these were not considered in this work.

To produce the CIFAR-50 dataset, we randomly chose fifty classes from the original
CIFAR-100 dataset. The final samples consisted of 50 classes with 600 images each, 500 for
training and 100 for testing.

4.2.5 NORB Object Recognition Dataset

The main goal of this dataset is to recognize 3D objects from shapes. It has 48600
pictures of 50 toys belonging to 5 general categories: airplanes, four-legged animals, trucks,
human figures, and cars. The dataset provides a pair of images for every toy: the items were
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imaged by a pair of cameras under 9 elevations (30 to 70 degrees every 5 degrees), 6 lighting
conditions, and 18 azimuths (0 to 340 every 20 degrees) [96].

Training and validation sets are equally divided, being 5 instances of each category (4, 6,
7, 8 and 9) selected to the former and the remaining instances for the latter.

Figure 4.6: Pair of images found in NORB dataset.

4.2.6 BDD100K

BDD100K [97] is the largest open driving video dataset, containing 100, 000 high-
resolution videos and bounding box annotations of 10 categories (road, sidewalk, building,
wall, fence, pole, light, sign, vegetation, terrain, sky, person, rider, car, truck, bus, train, mo-
torcycle, and bicycle) to evaluate image recognition algorithms on autonomous driving. The
videos are split into 70, 000, 20, 000 and 10, 000, being, respectively, training, validation and
test sets. Figure 4.7 shows one frame of a video containing almost all of the categories.

Figure 4.7: A frame of the BDD100K dataset.
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4.3 Metrics

The evaluation metrics commonly used to check the quality of results obtained in a ma-
chine learning experiment are precision, recall, and F-measure [101].

Binary measures are defined to calculate these metrics, namely: the true positive (tp),
which represents an item being correctly considered relevant; false positive (fp), when an
item is erroneously computed as relevant; true negative (tn), representing an object correctly
considered irrelevant and false negative (fn), where an item is erroneously classified as irrel-
evant.

Recall represents the proportion of positive cases that were correctly predicted as such,
however, it is not usually used as an evaluation metric because it does not give any trace of
the items that were not returned [101]. Equation 4.1 defines recall as:

recall =
tp

tp+ fn
. (4.1)

Precision denotes the proportion between predicted positive cases and those that are ac-
tually positive and is represented by the Equation 4.2.

precision =
tp

tp+ fp
. (4.2)

In addition to using precision, several authors [44, 62, 37] represent data analysis with a
metric derived from precision, the mean average precision (mAP). This metric corresponds
to the average sum of all precisions in a given data set and is described in Equation 4.3.

mAP =
1

ns

ns∑
i=1

precisioni, (4.3)

where ns is the number of samples.

A harmonic mean between these two measures generates the F-measure, presented in
Equation 4.4. However, in the same way as the previous tests, the F-measure also does not
consider the items negatives that were correctly classified as negative.

fmeasure = 2.
precision.recall

precision+ recall
. (4.4)

Accuracy has the full scope of information about the data, both positive, the successes,
and negative, the errors, and is given by Equation 4.5, where acc is the accuracy.

acc =
tp+ tn

tp+ tn+ fp+ fn
. (4.5)

34



The error measurement generally used to evaluate the prediction of numerical values is
the root of the mean squared error (RMSE), which is described by Equation 4.6.

RMSE =

√√√√ 1

ns

ns∑
i=1

(ai − a′i)2, (4.6)

where ns corresponds to the number of predictions, gi equals to the ground truth of the i-th
example and g’i is the prediction. To enable the comparison between different combinations
of subsets, the normalized form of the RMSE (NRMSE) was chosen. It is evaluated in
Equation 4.7:

NRMSE =
RMSE

gmax − gmin

, (4.7)

where amin and amax correspond to the lowest and greatest values observed.
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Chapter 5

Initial Contributions and filling gaps

Following the methodology presented in Chapter 4, and having completed stages A and
B, as demonstrated in Chapters 2 and 3, respectively, this Chapter describes the initial results
of the applications carried out during the study. The results presented here are part of the
maturation process of the studies carried out previously, which allowed the advancement to
the next stage in the proposed methodology proposing the new model.

The contributions presented in the following Sections are all focused on using M-CNNs,
which allowed the production of expressive results that guided the work carried out, includ-
ing publications in high-impact vehicles (conferences and international journals), describe in
Chapter 7.

5.1 Autonomous vehicle steering wheel estimation

Nowadays, autonomous driving and navigation technology is an artificial intelligence
application that has drawn significant attention with the popularity of intelligent vehicles. In
these application areas, unsolved issues remain and have been significantly explored by the
automotive and technological industries due to the potential impact that such innovation will
bring in the near future [102, 103, 104].

Over the last decades, many works have approached this theme: In 1989, Pomer-
leau [102] described the construction of an autonomous vehicle based on artificial neural
networks. The proposed network is responsible for providing guidance to the vehicle, and
the architecture of the network consists of a classical artificial neural network (ANN) with a
single intermediate layer, containing 29 neurons fully connected to the input units.

Many works involving ANN in autonomous vehicle applications can be found in the
available literature. However, a lot has changed since the advent of new network architec-
tures. With the rise of deep learning, CNNs have improved the image comprehension tasks
by learning more discriminative features, allowing a proper development on several systems,
including autonomous vehicles [105].

36



Using this motivation as a basis, we proposed in Ferreira et al. (2018) [11] a M-CNN
capable of estimating the steering angle of an autonomous vehicle, having as only input
images captured by a camera attached to the vehicle’s frontal area.

Following a single stream CNN architecture, we proposed a multichannel model that
processed the inputs in different channels until the last exponential linear unit (ELU) layer.
In other words, the outputs of the last ELU layers from each channel are concatenated and
passed as input to the first fully connected layer, as shown in Figure 5.1.

Figure 5.1: Proposed M-CNN architecture. Adapted from Ferreira et al. (2018) [11].

The original comma.ai dataset, described in Chapter 4, had to be adapted to generate
different inputs to the M-CNN model. Thus, using Karpathy et al. (2014) [6] fovea input
as inspiration, we created two more versions of the data besides the original video: a frame
subsampled in 50% and central region of the image in the original scale.

With the new dataset versions, five model combinations were designed. Model 1 was the
original single-channel CNN. Model 2 used the two-channel CNN architecture, receiving
the original image and its frame subsampled in 50%. Model 3 also used the two-channel
CNN architecture, but it received the original image and its central region. Model 4 uses the
three-channel CNN architecture, aiming to observe whether the neural network can produce
better results if the additional information is combined with the original frame. Another
model, Model 5, containing only the generated versions of the dataset, was also evaluated.

37



Table 5.1: Average test errors in percentage (%) of all trained models. Table adapted from
Ferreira et al. (2018) [11].

Number of epochs
200 350 500

Model 1 5.75 4.72 4.80
Model 2 4.09 4.63 4.79
Model 3 4.85 3.80 4.76
Model 4 4.75 4.69 5.11
Model 5 4.89 5.12 5.27

As seen in Table 5.1, it was possible to observe that Model 3 trained with 350 epochs
obtained a lower NRMSE when compared to the others, including the single channel as
a reference model. It can also be seen that M-CNNs provided improvements in their use in
autonomous vehicle applications, with an approximate gain of 7% compared to the reference
model. Furthermore, Model 5 presented similar results to the others, showing that it was
capable of maintaining robustness even when receiving input with reduced dimensionality.

5.2 Plant diseases recognition from digital images

The recognition and classification of leaf diseases of plants is a problem with many chal-
lenges to overcome. The analysis in identifying the diseases through the leaves can incur
many false positives. For example, the symptoms of phytotoxicity are associated with some
diseases due to similar leaf lesions.

In Abade et al. (2019) [12], we noticed that plant diseases are considered one of the
main factors influencing food production, and to minimize losses in production, crop dis-
eases must have fast detection and recognition. Before the advent of CNNs, traditional ma-
chine learning classification methods, such as SVM [106] and K-Means [107], were used
to classify diseases in plants. Patil et al. (2011) [108] applied classic image processing
technique for disease detection in sugarcane leaves by using threshold segmentation to de-
termine leaf area and triangle threshold for lesioning area, getting the average accuracy of
98.60%. An approach developed by Singh et al. (2017) [109] uses genetic algorithms for
image segmentation, which is crucial for disease detection in a plant leaf.

Relevant works approach to feature extraction techniques for the detection of plant dis-
eases. It is possible to highlight the studies of Pydipati et al. (2006) [110], where there is
the use of Color Co-occurrence Method (CCM) to determine whether texture-based hue, sat-
uration, and intensity color features in conjunction with statistical classification algorithms
could be used to identify diseased and normal citrus leaves under laboratory conditions. The
leaf sample discriminant analysis using CCM textural features achieved classification accu-
racies of over 95% for all classes when using hue and saturation texture features. According
to [111], a feature extraction is a promising approach capable of solving dichotomies be-
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tween datasets constructed with images in controlled environments and images captured in
the real world. This study proposed an ideal case approach in plant classification and recog-
nition that was applicable in the real world and acceptable in laboratory conditions.

Due to the increase in processing capacity triggered by the use of GPUs [112], machine
learning techniques have demonstrated significant accuracy in the classification and iden-
tification of plant diseases. These advances are demonstrated in the work of Rumpf et al.
(2010) [106], which proposes an approach for the detection and differentiation of plant dis-
eases using Support Vector Machine algorithms. In this study, the authors implemented a
technique to identify beet diseases, in which depending on the type and stage of the dis-
ease, the classification accuracy was between 65% and 90%. Another approach based on
leaf images and using Artificial Neural Networks as a technique for automatic detection and
classification of plant diseases was used in conjunction with K-means as a clustering pro-
cedure proposed in the work of Hiary et al. (2011) [107]. On average, the accuracy of
classification using this approach was 94.67%.

Thus, we proposed the use of M-CNNs, based on two distinct single architecture —
AlexNet [3] and GoogLeNet (Inception v1) [4] —, to train and evaluate the PlantVillage
dataset. Figure 5.2 shows a generic M-CNN architecture for this application.

Figure 5.2: Generic M-CNN architecture. Taken from Abade et al.(2019) [12]. ©2019 IEEE.

As in Ferreira et al. (2018) [11], different versions of the original dataset were generated
in an attempt to prove the contribution of these additional streams to the network perfor-
mance. The extra streams consisted of a grayscaled and segmented version of the colored
data and were combined as: Version 1: Color + Grayscale; Version 2: Color + Segmented
and Version 3: Grayscale + Segmented.
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Table 5.2: Mean F1 score in percentage (%) of the proposed architectures. Table adapted
from Abade et al.(2019) [12].

Model Dataset Type Mean F1 Score
AlexNet (from scratch) Color 98.73

GoogleNet (from scratch) Color 99.40

M-AlexNet (from scratch)
Version 1 99.59
Version 2 99.20
Version 3 99.23

M-GoogleNet (from scratch)
Version 1 99.55
Version 2 99.38
Version 3 99.41

It should be noted that knowing the gains of transfer learning techniques, we chose to
train from scratch to demonstrate the possibility of customization and improvements in the
learning process compared to a sample considered small for a dataset. Also, the additional
inputs of the network provided better accuracy than the single stream CNN, showing that
M-CNNs were able to enhance the general system, generating the best overall result in this
work and keeping the mean F1 scores regular and robust, independently of the chosen model.

Overall, we could conclude that an M-CNN model trained from scratch is better than
a single channel model with transfer learning: faster convergence and reduced processing
time. Furthermore, other image frequencies (e.g., grayscale) are crucial to improving the
general accuracy.

5.3 Document classification using Bi-LSTM and ResNet-50

The Brazilian court system is currently the most clogged up judiciary system in the world
since thousands of lawsuit cases reach the supreme court every day. These cases need to be
analyzed to be associated with relevant tags and allocated to the right team. One of the first
steps for the analysis is to classify these documents. In Braz et al. (2018) [113], this issue
is addressed with the use of a Bi-LSTM model receiving as input the extracted text from the
lawsuits PDF files.

Focusing on classifying five main types of legal documents handled by the Brazilian
supreme court (STF) — documents that do not belong to these classes are grouped in a
category called Outros —, over 1,000,000 text documents were manually labeled by a team
of lawyers. This dataset has a high level of within-class diversity.

Furthermore, documents do not follow a pattern, not only in layout but also in terms of
scanned image quality and whether or not they embed digital text or have only raster images.
A significant amount of these documents contained handwritten annotations, stamps, stains.

Using the same dataset and single-stream Bi-LSTM model as [113], but with more sam-
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ples, we achieved the results presented in Table 5.3 for text only.

Table 5.3: Classification report in percentage (%) using text as input.

Precision Recall F1-score Support
Acórdão de 2 instância 42.03 97.82 58.80 2336

Agravo em recurso extraordinário 53.35 82.02 64.65 13811
Despacho de admissibilidade 51.32 95.63 66.80 1970

Outros 98.81 90.86 94.67 416680
Petição do RE 61.15 87.27 71.91 36693

Sentença 61.18 96.21 74.80 9835
Average 93.40 90.50 91.38 481325

Nonetheless, we checked if only the image information was enough to classify the legal
documents. Using a ResNet-50 approach, we saw that even with fine-tuning and hyperpa-
rameter optimization, the imbalance of the dataset was too much to handle. With a high
accuracy as a result of a large number of Outros, the other metrics were weak.

Thus, to combine two domains aiming for a performance gain, the previous ResNet-50
was fused to the original Bi-LSTM. The ResNet dealt with the PDF image files, while the
Bi-LSTM learned the text features. Insisting on image features was an empirical feeling that
we thought it would benefit the network. The M-CNN results are shown in Table 5.4.

Table 5.4: Classification report in percentage (%) using text and image as input.

Precision Recall F1-score Support
Acórdão de 2 instância 94.63 95.85 95.24 2336

Agravo em recurso extraordinário 95.57 83.48 89.12 13811
Despacho de admissibilidade 95.38 81.83 88.09 1970

Outros 98.76 98.97 98.86 416680
Petição do RE 91.17 93.34 92.24 36693

Sentença 94.10 96.59 95.33 9835
Average 97.96 97.96 97.94 481325

Although the results with only text were already excellent, we can see that the inclusion
of image features, which alone did not work, were essential for gain in accuracy. Thus, we
expand this concept and present it in the following Section.

5.4 Sequence-aware multimodal page classification of
Brazilian legal documents

Still dealing with the problem of the overflow of cases in the Brazilian judicial system,
we explored multimodal classification of documents from Brazil’s Supreme Court. In here,
we used a subset of VICTOR dataset, named small VICTOR. Each lawsuit in this dataset
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is an ordered sequence of pages, stored both as an image and as a corresponding text ex-
tracted through optical character recognition. By combining these two different sources of
information, previously extracted from individual classifiers – ResNet-50 [18] for image
classification and a stack of convolutional neural networks for text classification –, we create
a fusion module that is capable of handling absent textual or visual inputs by using learned
embeddings for missing data. Table 5.5 presents a simplified F1 measure, in %, comparison
between our test set.

Several other approaches were implemented before reaching the final fusion module that
concatenates each modality embedding followed by fully connected layers. Primarily, the
combination of raw images with raw text that was the same strategy used in the aforemen-
tioned paper [113] was tested. However, since we had a distinct subset with more refined
data, the results were not as good as the previous one and could not solve the same issue. Im-
ages were too heavy to load, and we decided to resize them to fit into the model. This spatial
reduction leads to a good amount of information loss, resulting in a bad image classifier and
thus of little help to the text classifier, regardless of the fusion strategy chosen. We collected
image input activations to feed the image network to minimize this issue, leading to a more
promising model.

Furthermore, changing the artificial intelligence framework also increased our perfor-
mance as it seemed that the combination of PyTorch [114] and fastai [115] had intrinsic
optimizations that improved our Tensorflow [95] + Keras [94] multimodal fusion models.
The latter had trouble converging with several combinations of parameters.

Continuing the process of classification improvement using the fusion module, the order
of the pages was also part of the solution: sequence classification techniques as a conditional
random field (CRF) [116] were used to output a sequence of class predictions.

An additional learning in this work was the implementation of the LayoutLMv2 net-
work [117]. This architecture is designed to deal with the same multimodality that we pro-
posed, utilizing document layout and its OCR as the leading reference on the document +
text issue. Using Transformer encoders on each stream, this model also contains a spatial-
aware self-attention mechanism into the Transformer architecture, understanding the relative
positional relationship among different text blocks.

Table 5.5: F1 measures in percentage (%) for text only, image only, the fusion module, the
fusion module with sequence classification and the reference LayoutLMv2 model.

Text Image FM FM + Sequence classification LMv2
Acórdão de 2 instância 89.96 18.45 90.74 88.97 60.13

Agravo em recurso extraordinário 55.72 11.33 57.92 61.16 23.91
Despacho de admissibilidade 62.94 08.44 63.98 64.07 23.72

Outros 97.31 61.72 97.24 97.46 96.54
Petição do RE 75.59 32.59 75.47 79.67 72.25

Sentença 80.53 43.52 82.04 85.26 66.68
Average 77.01 29.34 77.90 79.43 57.21
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Chapter 6

Proposed topology

M-CNNs have been developed, applied and used in many situations and applications
nowadays [6, 12, 27, 28, 29, 30, 31, 32, 33]. This model architecture is derived from tradi-
tional CNNs proposed by [2] and allow to employ basically all, traditional (or not) models
available in the literature, as LeNet[2], AlexNet[10], VGG[17] and many others models, ba-
sically adjusting (or modifying) the fusion stage[6].

Usually, works that address applications issues to a M-CNN approach do not focus on
the fusion stage (e.g. [12, 17]). However, there are some efforts [27, 118, 119, 87] in order
to increase the performance of the networks. Gamulle et al. [27] and Tu et al. [118] uses
a multi-stream approach in order to recognize human actions from video sequences. The
former focuses on learning salient spatial features and mapping their temporal relationship
with the aid of Long-Short-Term-Memory (LSTM) networks and uses two different fusion
methods: averaging and training a multi-class linear SVM using the softmax scores as fea-
tures. The latter construct an appearance and a motion stream, concatenating the streams in
a fusion module based on Spatio-temporal 3D convolutions. Azar et al. [119] use M-CNNs
to recognize group activities and use concatenations to fuse all its streams. In [87], M-CNNs
are used to classificate high-resolution aerial scenes, and two fusion techniques are evaluated,
concatenation and addition.

Karpathy et al. [6] addressed the fusion issue to a novel model, placing two separate
single-frame networks time-delayed apart and merging their outputs in a fusion step, allow-
ing improvements in the accuracy scores on video action recognition tasks. As described in
Feichtenhofer et al. [28], the fusion stage can be performed at a convolutional layer with-
out loss of performance (accuracy). Based on this finding, we propose in this manuscript
a novel model based on a new cross-fusion method applied for all available models of M-
CNNs. This new proposed cross-fusion method is focused on observed features, specifically
in the ReLu’s stage, used by many of traditional M-CNNs models developed in all known
approaches (e.g., in [6, 8, 28]).

Our proposed model is based on a crossing signal inference among each data streaming
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(or channel) output from the convolution stage and processed by the ReLU’s stage, con-
necting each of this output with others outputs coming from all others data streamings (or
channels) using a new fusion function approaching. This model is formally described in the
following Section.

6.1 Lattice Cross-fusion Strategy

In system analysis, there is a field that studies the enhancement or restoration of degraded
signals [120]. Inspired by the fact that there is no signal processing without degradation and
that a CNN signal suffers loss along its course, we decided to apply basic signal operations
between activation layers. Especially the ones that use the ReLU (Rectified Linear Unit)
function: g(z) = max{0, z}, is a non-linear function used by many classical M-CNNs
models developed in several popular approaches (e.g. in [6, 8, 28]). ReLU outputs zero
across half its domain, making the derivatives through it remain significant whenever the
unit is active. Nonetheless, they cannot learn with gradients near zero [1].

To boost up near zero gradients and get a hold of important features that may be left out,
we combine two different signal streams and a crossing signal inference of the operation
result to the input of the subsequent layer. Equation 6.1 presents a fusion F (s) of two signals
s, s̄, where � represents the chosen mathematical operation.

F (s, s̄) = s� s̄. (6.1)

Then, a layer L can be defined as:

L(s, s̄) = [Fa(Ca(s), Cb(s̄)),

Fb(Cb(s̄), Cb(s))].
(6.2)

As described in Almeida et al. (2019) [91], the cross-fusion function f :

Ca, Cb, ..., Ck, ...Cn → y combines the n − 1 convolutional layers with the Ck ∈ Rh×w×d

where h,w and d are the height, width, and depth (number of channels/streams), respectively.

The cross-fusion general module is defined in Equation 6.2. It computes the operation
� of two convolutional layers inputs, Ca and Cb, connecting the result as an input of the
next layers Ca′ and Cb′ . It is important to point out that any mathematical operation can be
applied in the � stage, such as addition, subtraction, average.

These fusion modules are repeated along with all CNNs’ convolution-ReLU layers sets,
finishing with a late fusion process right before the fully connected stack step. Figure 6.1
presents a visual definition of this proposed cross-function strategy.

The signal crossing can be noticed in the visualization of the L-strategy module found in
Figure 6.2.
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Figure 6.1: A general L-CNN model. Convolutional layers are represented by the color
red, followed by a wine color ReLU indicator, while the fusion modules are dotted-blue.
Pooling layers are expressed by the color green. Other layers are included for an architecture
disclosure.
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Figure 6.2: A closer look at the L-strategy module. OP represents a mathematical operation.

This signal enhancement makes it possible to empower CNNs with fewer layers and use
simpler structures to achieve good results as state-of-the-art networks with tons of convolu-
tional layers modules. This structure cannot run in modest hardware. The following Section
shows our work methodology, and we demonstrate that our results, even with insignificant
streams, generally outperform classical late fusion approaches.

6.2 Experimental Evaluation

To evaluate our approach, our cross-fusion function is set to an average operation and
the used baseline (single and dual-stream) architecture is AlexNet [3].

An average fusion is defined as yavg = f avg(Ca, Cb, ..., Ck, ..., Cn). It computes the aver-
age of the n convolutional layers, connecting as an input of the next pooling layer.

Our new AlexNet-LCNN is defined as C(96,11,4) → LF(average) → P(2) →
C(256,11,1) → LF(average) → P(2) → C(384,3,1) → C(384,3,1) → C(256,3,1) →
LF(average) → P(2) → FL → FC(4096) → D(0.4) → FC(4096) → D(0.4) → FC(10),
such that C(d, f, s) indicates a convolution layer with d filters of spatial size f × f , applied to
the input with stride s. LF(α) means the lattice fusion realized with an operation cross-fusion
function. P(s) is the pooling layer with stride s. FL is a layer that flattens the input. FC(n)
is a fully connected layer with n nodes. D(p) is a dropout layer of p as a dropout rate, used
exclusively during the training step.

To compare performances, we also implemented a late fusion multistream AlexNet
(AlexNet-MCNN), consisting of two independent streams that merge right before the first
fully connected layer as highlighted in [6].

Additionally, for comparison proposes, we also evaluated a cross-modal CNN (AlexNet-
XCNN) [8], which is a typically image-based approach that each of the stream image re-
ceives its own CNN super layer, with cross-connections inserted after the pooling operation,
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and total weight sharing in the fully connected layers. This model was developed to explore
the crossing-signal inference, and its accuracy performance will be used to compare with our
novel proposed L-CNN model. Results also considered the traditional single-stream AlexNet
architecture [3] for both of our streams, described below.

The chosen testbed data set to evaluate our model was the CIFAR-10 [10], a popular
image classification benchmark data set. For a multistreaming scenario, the selected streams
were purposely worsened to evaluate the robustness increased by the proposed L-CNN model
— the main goal is not to achieve or improve state-of-the-art results. In the first stream,
a grayscaled version of CIFAR-10 is used, and in the second stream, an edge extraction
— created with Canny edge detector [121] — of the first stream, presented respectively in
Figures 6.3 and 6.4. To respect AlexNet’s original first convolutional stage constraints, both
input streams were resized to 224× 224.

Figure 6.3: Grayscale image. Figure 6.4: Image with edge detection.

Figure 6.5: A class sample from the CIFAR-10 data set [10]. In (a) the first stream is a
224× 224 grayscale image. In the second stream (b), the same image with edge detection.

Table 6.1 presents all the achieved accuracies with the previously described streams and
model comparisons when trained for 260 epochs. This number of epochs was chosen ac-
cordingly to loss and accuracies graphs presented in [8]. Given that the edge detection single
stream shows constantly poor results in accuracy and loss, we can describe this stream as a
distractor to the network. Even the grayscale stream did not perform well in a single stream
scenario, as described in Table 6.1. It also can be noticed that the L-CNN method outper-
forms all the others approaches, including the single-stream models, using two low-quality
streams and fewer features to learn, considering that we took the color information that would
support the network in feature learning, in according to [1].

The graphs shown in Figures 6.6 and 6.7 confirm that our edge detection signal does not
add consistent information to the network, as expected. Furthermore, the grayscale stream
does not have a good performance by itself. Using this information, we can also point out
the stability from the AlexNet-LCNN, achieving its peak of about 50 epochs and maintaining
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Table 6.1: CIFAR-10 data set accuracies in percentage (%) using a 2-streaming schema.

Model Loss Accuracy
AlexNet (grayscale) 3.12 16.64
AlexNet (edge detection) 12.91 10.08
AlexNet-MCNN 2.92 48.53
AlexNet-XCNN 2.35 48.96
AlexNet-LCNN 2.92 62.57

accuracy and loss during all the training process, unlike AlexNet-XCNN and even AlexNet
(grayscale). Moreover, the lattice module increased the robustness of the network results
using poor signals as streams.

Figure 6.6: CIFAR-10 test accuracies. Figure 6.7: CIFAR-10 test losses.

Figure 6.8: CIFAR-10 test accuracies and losses under training epochs.

6.3 Turning old models fashion again: Recycling classical
CNN networks using the Lattice Transformation

In our test expansion of the previous technique, two additional mathematical operations
to the average were implemented in our fusion module: addition and subtraction. Further,
we adapted 9 different architectures’ backbones to demonstrate that the lattice strategy has
significant improvements with varying kinds of structures, varying in-depth, the number of
convolutional layers, and parameters in general. Full models can be found in the Appendix.
With the exception of the LFR-CNN model that used the Adam optimizer at a learning rate of
0.00001, all experiments were performed using a default SGD optimizer with a 0.01 learning
rate.

Initially, three sets of data were used to evaluate our fusion strategy: the previously used
CIFAR-10 [10], CIFAR-50, and CIFAR-100 [122]. Different sizes of datasets were chosen
to analyze our strategy performance with a distinct amount of data samples. To create images
for the second stream, we generated a mirrored input using an edge extraction created with
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Table 6.2: Network parameters by implementation type.

Architecture Type Parameters

Alexnet
Single stream 23.98M

Multistream - late fusion 30.08M
Multistream - lattice 30.08M

ResNet-18
Single stream 11.19M

Multistream - late fusion 22.38M
Multistream - lattice 34.93M

ResNet-34
Single stream 21.31M

Multistream - late fusion 42.62M
Multistream - lattice 65.29M

ResNet-50
Single stream 23.59M

Multistream - late fusion 47.18M
Multistream - lattice 57.33M

DenseNet-121
Single stream 70.47M

Multistream - late fusion 14.09M
Multistream - lattice 14.08M

DenseNet-169
Single stream 12.65M

Multistream - late fusion 25.31M
Multistream - lattice 25.30M

DenseNet-201
Single stream 18.34M

Multistream - late fusion 36.68M
Multistream - lattice 36.66M

Xception
Single stream 20.88M

Multistream - late fusion 41.76M
Multistream - lattice 41.72M

FR-CNN
Single stream 53.29M

Multistream - late fusion —-
Multistream - lattice 99.55M
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a Canny edge detector [121], as in Almeida et al. (2019) [91]. Also, it is important to
emphasize that all images were resized to a 224 × 224 shape with the purpose that they fit
most of our networks’ default input shapes.

With the need to expand the tests, however, it became necessary for us to include other
data sources with different purposes. For image classification, NORB; for object detection,
BDD100K. Since the NORB data already has two different streams to fill in our network
specifications, as stated in Chapter 4, the only modification needed was on the BDD100K:
we apply the same approach used on the CIFAR datasets, an edge extraction illustrated on
Figure 6.9.

Figure 6.9: A frame of the BDD100K dataset with Canny edge detection.

6.3.1 Hardware and training time

Most networks were adapted from their previous implementation on the Keras li-
brary [94]. AlexNet and FR-CNN were based on their definition papers. Fusion operations
were created using tensor operations available in the Tensorflow framework [95]. The exper-
iments were trained in one RTX 3090 GPU, and all experiments, including the NORB and
BDD10K dataset, took approximately 6 months.

6.3.2 Results

The CIFAR datasets had their training set subsampled in a cross-validation procedure
with 5 folds. The following accuracy results are presented by fold. No data augmentation
nor transfer learning was used in the whole process. Due to many experiments, we chose to
gather all accuracies in one figure. In all plots, the color blue will represent the late fusion
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version of the network. Colors orange, green, and red are the L-fusion architectures with
average, sum, and subtraction operations.

Considering the increase of the network parameters presented in Table 6.2, but also an
accuracy gaining of 5.66% using a default L-strategy average operation over a simple late
fusion technique, independently of the given dataset or dataset quality, it is fair to say that
the occasional increase in parameters is outweighed by the performance boost. Our losses
graph, Figure 6.41, also shows that the lattice-adapted networks tend to converge faster.

The goal of this work is not to beat any kind of state-of-the-art models, as previously
noted. Thus, it is remarkable to achieve strong accuracies with very degraded streams. Our
L-Xception with the average operation, for example, reached an 87.02% accuracy on CIFAR-
10.

Also, using the same dataset as a comparator, a late fusion AlexNet went from 42.69%

to 58.66%. AlexNet has a very straightforward backbone, is easy to implement, and can run
smoothly on plain hardware.

Tables 6.3, 6.4, and 6.5 present the mean accuracy of the folds for all models and datasets
tested here, being a summarized version of the graphs presented in Figures 6.13, 6.23, 6.27,
and 6.37.
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Figure 6.10: AlexNet - CIFAR-10

Figure 6.11: AlexNet - CIFAR-50

Figure 6.12: AlexNet - CIFAR-100

Figure 6.13: Compilation of accuracy comparisons using AlexNet architecture variations.
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Figure 6.14: DenseNet-121
- CIFAR-10

Figure 6.15: DenseNet-121
- CIFAR-50

Figure 6.16: DenseNet-121
- CIFAR-100

Figure 6.17: DenseNet-169
- CIFAR-10

Figure 6.18: DenseNet-169
- CIFAR-50

Figure 6.19: DenseNet-169
- CIFAR-100

Figure 6.20: DenseNet-201
- CIFAR-10

Figure 6.21: DenseNet-201
- CIFAR-50

Figure 6.22: DenseNet-201
- CIFAR-100

Figure 6.23: Compilation of accuracy comparisons using DenseNet architecture variations.
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Figure 6.24: Xception - CIFAR-10

Figure 6.25: Xception - CIFAR-50

Figure 6.26: Xception - CIFAR-100

Figure 6.27: Compilation of accuracy comparisons using Xception architecture variations.
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Figure 6.28: ResNet-18 -
CIFAR-10

Figure 6.29: ResNet-18 -
CIFAR-50

Figure 6.30: ResNet-18 -
CIFAR-100

Figure 6.31: ResNet-34 -
CIFAR-10

Figure 6.32: ResNet-34 -
CIFAR-50

Figure 6.33: ResNet-34 -
CIFAR-100

Figure 6.34: ResNet-50 -
CIFAR-10

Figure 6.35: ResNet-50 -
CIFAR-50

Figure 6.36: ResNet-50 -
CIFAR-100

Figure 6.37: Compilation of accuracy comparisons using ResNet architecture variations.
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Figure 6.38: AlexNet losses per fold - CIFAR-
10 dataset

Figure 6.39: ResNet-18 losses per fold -
CIFAR-10 dataset

Figure 6.40: DenseNet-169 losses per fold -
CIFAR-100 dataset

Figure 6.41: Loss comparison per fold showing different architectures and distinct streams.
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Table 6.3: Mean accuracies in percentage (%) of all trained models for CIFAR-10.

Architecture AlexNet DenseNet-121 DenseNet-169 DenseNet-201 Xception ResNet-18 ResNet-34 ResNet-50
M-CNN 42.69 77.93 75.26 83.39 83.79 55.55 44.06 28.74

L-CNN
avg 58.66 54.22 54.04 57.28 87.02 66.34 50.45 59.53
add 10.00 78.486 76.31 83.20 86.89 55.01 56.05 54.87
sub 10.0 77.40 77.06 80.19 87.17 64.96 63.49 56.31

Table 6.4: Mean accuracies in percentage (%) of all trained models for CIFAR-50.

Architecture AlexNet DenseNet-121 DenseNet-169 DenseNet-201 Xception ResNet-18 ResNet-34 ResNet-50
M-CNN 18.85 35.74 35.95 54.93 71.12 25.06 27.37 30.30

L-CNN
avg 33.6 47.39 49.60 48.39 69.46 29.90 25.22 38.96
add 10.00 55.66 54.18 60.30 69.96 37.63 37.84 34.48
sub 10.00 53.47 54.21 57.60 71.22 39.00 39.48 36.50

Table 6.5: Mean accuracies in percentage (%) of all trained models for CIFAR-100.

Architecture AlexNet DenseNet-121 DenseNet-169 DenseNet-201 Xception ResNet-18 ResNet-34 ResNet-50
M-CNN 17.30 77.93 75.26 83.39 64.98 25.36 37.18 30.94

L-CNN
avg 30.58 77.30 79.05 78.77 65.02 27.03 37.11 29.32
add 10.00 49.23 50.43 54.92 66.29 32.08 31.38 26.55
sub 10.00 48.72 49.51 53.23 66.39 37.09 32.44 29.73

57



Table 6.6: NORB accuracies in percentage (%) on the test set.

Architecture DenseNet-169 ResNet-50 AlexNet
Single stream - left image 60.21 20.00 20.00
Multistream - late fusion 37.27 67.85 20.00

Multistream - lattice
average 70.91 46.82 20.00
addition 52.53 31.38 20.00

subtraction 51.56 75.58 83.21

After the experiments with variant and degraded CIFAR datasets, we decided to under-
stand our proposal better by applying our method in a real and not overused dataset. Ta-
ble 6.6 presents a comparison between three different-sized architectures in three forms: single
stream, multistream with late fusion, and multistream with our lattice cross-connection. Re-
sults show that at least one lattice operation could outperform all other results, demonstrating
the flexibility of the technique when we come across not-so-good results.

The BDD100K and the LFR-CNN bring complexity and a challenge to our strategy. On
the network aspect, we are dealing with two different outputs with distinct goals and imple-
mentations. On the data side, we have a very difficult in-the-wild dataset that is completely
outside the scope of what we were evaluating the models: here we have actual driving scenes.

Figure 6.42: Training losses of the BDD100K dataset.

Using the work of Bhargava (2019) [123] as the baseline reference, since it uses the same
model and backbone as ours, we report a mAP@75 improvement of 50.16%, as shown in
Table 6.7. This improvement was obtained after training per 50 epochs without loading pre-
trained weights or parameter optimization.
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A closer look at Figure 6.42 shows that the loss drop tends to diminish if trained for a
longer period. However, since we had computational limitations, 50 epochs were our maxi-
mum effort.

Table 6.7: BDD100K mAP@75 in percentage (%) on the validation set.

Architecture mAP@75
FR-CNN 18.20

LFR-CNN 27.30

6.4 Discussions

The first applications presented here showed a more straightforward way of constructing
M-CNNs. Simple network constructions for complex applications. The results all seemed to
improve a single approach, leading to the hypothesis that networks with multiple entries were
naturally good candidates for solving different problems. The inclusion of features proved
real.

With the proposition of the L-strategy, we start to raise the level of our efforts. The lattice
fusion comes directly with a new modeling structure as we begin to customize more previ-
ously consolidated networks. Primarily, we used an AlexNet architecture as a baseline and
CIFAR-10 data set and implemented three different model versions: a multistream CNN with
late fusion, a cross-CNN, and our lattice-CNN, alongside two single streams of traditional
AlexNet. Experimental results show that the proposed LF outperformed all the models above
at least 28% compared to all tested models. Also, the proposed fusion demonstrated robustness
and stability, even when distractors were used as streams.

With the expansion of the test, we used other different backbones and 4 datasets (including
the CIFAR-10 mentioned above) to demonstrate the robustness of the proposed technique. Our
experimental results show that the proposed strategy has faster convergence and flexibility of
operational switches.The previously noted stability was maintained.

Considering that we stayed in a safe field during all the anterior applications, we managed
to elevate our strategy to a new complexity: object detection. Here, we have to not only
classify, but we also have to locate an object during a video. That is a task that requires two
outputs and another it is indeed another layer of difficulty. Nevertheless, the L-strategy still
performed well with the restricted training conditions which were our initial assumptions of
not using pre-trained weights, not recalibrating the hyperparameters and not doing fine tuning.
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With a gain of approximately 50% we are positive that the suggested implementation can go
even further.

6.4.1 What if L-strategy does not improve my results?

There is a possibility that the described module and its default operators will over-amplify
signals in a way that the model will simply not learn. Using signal processing knowledge, we
know that when this kind of peaks occurs, we can perform a compression to approximate low
and high signals. Therefore, we propose using a logarithm-based compression function that
will balance the broad range, reducing the difference between large and small values. This
function is described in Equation 6.3, where s and s̄ are the incoming signal streams.

F (s, s̄) = s− log(1− s̄). (6.3)

An example is our L-VGG-16 [17] implementation. Our first run using an average function
on CIFAR-10 went well, but not enough to beat the M-VGG-16 architecture. Further runs
with other defined operators were boosting both tensor streams, and our model found its local
minimum very fast, without room for optimizations. Figure 6.43 shows a comparison between
operations and modeling type.
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Figure 6.43: VGG-16 results on CIFAR-10.

Table 6.8 presents all obtained VGG-16 accuracies for each fold on the test set. We can
clearly see that our log-compression function improved the overall results.

Table 6.8: VGG-16 accuracies in percentage (%) on the test set of CIFAR-10 for each fold.

ArchitectureFold M-VGG-16 L-VGG-16-avg L-VGG-16-log L-VGG-16-add L-VGG-16-sub
1 64.54 60.21 72.65 10.00 10.00
2 67.20 62.80 74.26 10.00 10.00
3 68.47 63.80 75.62 10.00 10.00
4 69.63 63.97 75.94 10.00 10.00
5 69.66 63.77 75.55 10.00 10.00

Average 67.90 62.91 74.80 10.00 10.00

Notice that the technique mentioned above was meant to be used with all default hyper-
parameters. Still, it does not work for all situations. A VGG-19 with standard initialization
will continue to have its signal overamplified, converging too quickly. Nonetheless, basic op-
timization approaches are sufficient to train the network smoothly gathered all accuracy: the
learning rate, for example, controls the adaptability of the dataset to the network and affects
directly in weights updated. Hence, when faced with large amplifications caused by the L-
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strategy, it is usually enough to decrease the starting learning rate or apply schedulers. To
illustrate this, we present in Table 6.9 a comparison between a multistream late fusion ap-
proach and the L-strategy approach with the non-default learning rate of 10−4, for as much as
the regular parameterization generated unusable results.

Table 6.9: VGG-19 accuracies in percentage (%) on the test set for each fold.

ArchitectureFold M-VGG-19 L-VGG-19-avg L-VGG-19-add L-VGG-19-sub
1 66.63 56.43 65.11 66.71
2 66.25 50.64 69.52 70.52
3 69.32 52.52 71.21 71.84
4 69.11 54.85 72.89 72.45
5 64.55 55.53 73.38 73.49

Average 67.17 53.99 70.42 71.00

Finally, we can observe that the presented results in this Section are not linear. There is
not a definitive better fusion operation. Although we recommend using average, we displayed
our results using a trial-and-error method.
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Chapter 7

Conclusions

This work explores how multistream deep neural networks are a gamechanger in the deep
learning field. However, they have not been extensively researched yet. We came across many
gaps in this kind of building during our study sessions: where is the best point of fusion of
several equal or different backbones? What techniques can we use to get the best result from
this inclusion of features? Do all backbones work the same when it comes to fusing them?

With the L-CNN model, we could at least clarify some of these questions. Using signal
processing fundamentals, we developed a general module to get the best that multiple signals
could offer us by overamplifying our inputs and crossing them to serve as the new input to the
sequential convolutional layer.

Nonetheless, we also observed that when the strategy fit well the backbone, the results
were likely to be more expressive than the single versions or the late fused backbones regard-
less of the final application. This observation included elementary structures, such as AlexNet,
or previously considered state-of-the-art networks. The expressiveness led to an exciting con-
clusion.

Regarding our predefined hypothesis 1 in Chapter 1, we could see that our L-strategy can
give extra life to obsolete models, offering an uncomplicated module design to basic structures,
allowing them to become competitive again.

This model recycling is especially interesting when the available hardware capacity is not
enough to train the super complex models that come out almost daily. Further, no one will not
have to deal with constructing a whole new stack, it is just a matter of rehashing networks that
are already known. Thus, our goal to reuse previous state-of-the-art architectures with few
modifications to keep them in the game was successfully achieved.
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Still, there is no definitive technique. The general model turned out not to be suitable for
certain types of architectures. We showed that we could obtain an increase of accuracy up
to 63.21% in image classification tasks using an easy-implemented network and a boost of
50.16% on the mAP baseline of an object detection challenge with a classical model structure,
nonetheless, the L-strategy with very large kernel sizes tends to overamplify so much the
signal that the default hypermeters are not enough to train a good model, causing the process
to get stuck right on the beginning of the training cycle.

7.1 Future Work

Besides dealing with the over-amplification issues, future work will also include new steps
exploring improvement categories: the next move is to enhance a range of other models, fol-
lowing an exploratory line of research for new techniques to give extra life to models becoming
obsolete.

Additionally, we intend to explore not only CNNs but also every kind of structure that
includes a ReLU activation, such as Long short-term memory (LSTM) and Generative Adver-
sarial Networks (GAN), evaluating the proposed technique in other data modalities. Different
application tasks are also considered when we explore distinct types of architectures.

Since this module presents implementation flexibility, we plan to test the number of fusion
modules needed to improve the final network representation, considering that not all ReLU
activations need to be crossed. Also, on-training mixed operations to check which one effec-
tively boosts the signal in the right way is a future research topic.

Finally, among the improvement and development activities, the need to create an auto-
mated strategy for the L-CNN conversion of existing models, including those in disuse, is
worth mentioning because more advanced models and efficient architectures have superseded
them. Currently, the process is partially automated, which is dependent on the development
library, in this case, Tensorflow[95]. It is worth mentioning that this is also a possible ob-
stacle to the wide dissemination and adoption of the L-CNN conversion technique by other
researchers. Therefore, it is necessary to contemplate the support to other libraries adopted by
the scientific community regarding the development to be carried out in the future. This ap-
proach is crucial for expanding the different models and inspiring the new analysis of changes
in the signal flow of the other architectures and existing models.
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7.2 Publications

Table 7.1 presents a summary of the published papers that reinforced the importance of our work and show
our contributions so far.

Title Authors Publisher Year Status Qualis CAPES
Autonomous vehicle steering wheel

estimation from a video using
multichannel convolutional neural networks

A. E. T. Ferreira; International Conference on Informatics in
Control, Automation and Robotics (ICINCO) 2018 Published A4ALMEIDA, A. P. G. S. de;

VIDAL, F. de B.

Document classification using a Bi-LSTM
to unclog Brazil’s supreme court

Fabricio Ataides Braz,

Neural Information Processing Systems (NeurIPS) 2018 Published A1

Nilton Correia da Silva,
Teofilo Emidio de Campos,

Felipe Borges S Chaves,
Marcelo HS Ferreira,

Pedro Henrique Inazawa,
Victor HD Coelho,

Bernardo Pablo Sukiennik,
Ana Paula Goncalves Soares de Almeida,

Flavio Barros Vidal,
Davi Alves Bezerra,

Davi B Gusmao,
Gabriel G Ziegler,

Ricardo VC Fernandes,
Roberta Zumblick,

Fabiano Hartmann Peixoto

Plant diseases recognition from digital images
using multichannel convolutional neural networks

ABADE, A.; International Conference on Computer Vision
Theory and Applications (VISAPP) 2019 Published A3ALMEIDA, A. P. G. S. de;

VIDAL, F. de B.
L-CNN: a lattice cross-fusion strategy for
multistream convolutional neural networks

ALMEIDA, A. P. G. de; Electronics Letters 2019 Published A4VIDAL, F. de B.

Sequence-aware multimodal page classification
of Brazilian legal documents

Pedro H. Luz de Araujo;

International Journal on Document Analysis
and Recognition (IJDAR) 2022 Accepted for publication A3

Ana Paula G. S. de Almeida;
Fabricio A. Braz;

Nilton C. da Silva;
Flavio de Barros Vidal;
Teofilo E. de Campos

Turning old models fashion again:
Recycling classical CNN networks
using the Lattice Transformation

Ana Paula G. S. de Almeida; IEEE Access 2022 Under Review A2Flavio de Barros Vidal

Table 7.1: Publications’ summary.
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Appendix

Figure 1: L-Alexnet.
80



81



Figure 2: L-ResNet-18.
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Figure 3: L-DenseNet-121.
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Figure 4: L-Xception.

99



100



101



102



103



104



105



Figure 5: L-FRCNN.
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