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Abstract. In this work we show a result of existence of positive solution for the following
nonlocal problem of Kirchhoff type

−M

(
ˆ

Ω

|∇u|2 dx
)
∆u = f(u)− a in Ω, u = 0 on ∂Ω,

where Ω ⊂ R
N is a smooth bounded domain, M, f are continuous nonnegative functions and a > 0.

By using mainly variational methods, we prove the existence of a solution for a small enough, under

two different sets of hypotheses, which generalize the classical superlinear and sublinear problems.

1. Introduction

In this paper we study the existence of positive weak solutions for the semiposi-
tone problem with Kirchhoff type, possibly degenerate, nonlocal term

(Pa)





−M

(
ˆ

Ω

|∇u|2 dx
)
∆u = f(u)− a in Ω,

u(x) > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N , N ∈ N, is a smooth bounded domain with smooth boundary denoted

by ∂Ω, f : [0,+∞) → [0,+∞) is a continuous function with subcritical growth, a > 0
and the function M : [0,+∞) → [0,+∞) is also continuous.

We will prove, via variational methods and with the help of some regularity
theory, a-priori estimates and comparison methods, the existence of a positive regular
solution for positive small values of the parameter a, under two different sets of
hypotheses, which generalize the model problem −∆u = uq−1 − a, respectively, in
the superlinear (q > 2) and the sublinear (1 < q < 2) case.

The main feature of problem (Pa) is the presence of the term M
(´

Ω
|∇u|2dx

)
,

which is said to be nonlocal, since it depends not only on the point in Ω where
the equation is evaluated, but on the norm of the whole solution. Such problems
are usually called of Kirchhoff type, as they are generalizations of the (stationary)
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Kirchhoff equation, originally proposed in [24] as an improvement of the vibrating
string equation, in order to take into account the variation in the tension of the string
due to the variation of its length with respect to the unstrained position.

Our results include the original nonlocal term M(t) = c+bt with c, b > 0 proposed
by Kirchhoff in [24], but also admit the possibility for M to be degenerate (see the
model problems in Section 1.2).

Many other physical phenomena can be modeled through nonlocal equations
similar to (Pa) (see examples in [33, 18]), and interesting mathematical questions
also arise.

For more recent literature about such Kirchhoff type problems we cite the works
[2, 27, 16, 15, 8, 13, 32, 31, 5, 4, 30, 21, 28, 22], which deal with the existence of
solutions with various types of nonlinearities f and use mainly variational methods.
Among them, we refer to [15, 31, 4, 30, 28, 22] for considering also the case where
the nonlocal term M is degenerate.

On the other hand, studies on positone problems are classic and very current.
For example, considering the Laplacian operator, the authors in [23] show existence
of radial solution in a ball or an annulus. For the case with the p-Laplacian operator,
the authors in [29] found a positive solution in the critical case. A uniqueness result
in exterior domains was proved in [14]. The version in Orlicz-Sobolev space was
studied in [3]. Other interesting results can be seen in [1], [6], [9], [10], [11], [12], [17]
and the references therein.

1.1. Statement of the results. We define the two primitives F (t) =
´ t

0
f(τ) dτ

and M(t) =
´ t

0
M(τ) dτ and we assume througout the paper the following two con-

ditions:

(H0) M, f : [0,+∞) → [0,+∞) are continuous, M(t) > 0 for t > 0 and f 6≡ 0;

(fsc) there exists q < 2∗ such that lim sup
t→∞

f(t)

tq−1
< ∞,

where, for N ≥ 3, 2∗ = 2N
N−2

is the critical Sobolev exponent, while for N = 1, 2 we
will take 2∗ = ∞.

In our first setting we will also assume

(M0) there exists r ∈ [2, q) such that lim inf
t→0

M(t2)

tr
> 0;

(f0) f(0) = 0 and lim
t→0

F (t)

tr
= 0.

Moreover, in order to obtain the required compactness condition we assume

(KAR) there exist θ > 1, D, β, t0 > 0 such that

(i) θF (t)− f(t)t ≤ 0 for every x ∈ Ω, t > t0,

(ii)
θ

2
M(t2)−M(t2)t2 ≥ βt−D for every t ≥ 0,

and finally, we will also impose

(M∞) there exist θ1 ∈ (1, θ) such that lim sup
t→+∞

M(t2)

tθ1
< ∞.
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Remark 1. Observe that by (KAR) and (M∞), using also that f 6≡ 0, there exist
A1, B1 > 0 such that

F (t) ≥ A1|t|θ −B1, t ≥ 0,(1.1)

1

2
M(t2) ≤ A1|t|θ1 +B1, t ≥ 0.(1.2)

Actually, (1.2) with θ instead of θ1 would be a consequence of (KAR-ii), so (M∞)
imposes a stronger growth condition than (KAR-ii). In fact, the two conditions are
independent: the former is required in order to guarantee that the functional we will
be working with is not bounded from below, while the latter is used in the proof of
the (PS)-condition.

Condition (fsc) imposes a subcritical growth to f and implies that θ < 2∗, while
the conditions (M0) and (f0) will produce a “range of mountain” geometry around
the origin for the functional, which completes the mountain pass structure.

In our second setting we still assume (H0) and (fsc), moreover we assume

(M̃0) there exists r ∈ [2, 2∗) such that lim sup
t→0

M(t2)

tr
< ∞;

(f̃0) f(0) = 0 and lim
t→0

F (t)

tr
= ∞,

and in order to obtain coercivity we assume

(KC) there exists r̃ > q, where q is the exponent from (fsc), such that

lim inf
t→+∞

M(t2)

tr̃
> 0.

Remark 2. In this setting, the conditions (M̃0) and (f̃0) will produce a situation
where the origin is not a local minimum for the functional while, as observed above,
(KC) will make the functional coercive, in view of (fsc). It will be then possible to
obtain solutions via minimization.

Remark 3. Our techniques could be extended to work for the p-Laplacian op-
erator and considering more general nonlinearities f(x, t) depending also on x ∈ Ω,
however, we chose to work in the setting with the Laplacian and autonomous non-
linearity, in order to keep the presentation more clear and avoid some technicalities.

Our main results are the following.

Theorem 1.1. Assume the conditions (H0), (fsc), (f0), (M0), (KAR) and (M∞).
Then there exist a∗ > 0 and γ ∈ (0, 1) such that, if a ∈ (0, a∗), problem (Pa) has a

positive weak solution ua ∈ C1,γ(Ω).

Theorem 1.2. Assume the conditions (H0), (fsc), (f̃0), (M̃0) and (KC). Then

there exist a∗ > 0 and γ ∈ (0, 1) such that, if a ∈ (0, a∗), problem (Pa) has a positive

weak solution ua ∈ C1,γ(Ω).

The paper is structured as follows. First, in Section 1.2, we present some model
problems that fit in the conditions of the main theorems. Then, in Section 2, we
define an auxiliary problem for which we obtain a solution for suitably small values
of the parameter a > 0; in Section 3 we obtain several estimates for such solutions,
and in particular we prove, in Lemma 3.2, that they are uniformly bounded in a
suitable Hölder space. Finally, in Section 4, we prove the main theorems by showing
that the solutions of the auxiliary problem are positive, and then they are actually
solution of problem (Pa), at least for small a.
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Throughout the paper we will denote by ‖u‖ =
(´

Ω
|∇u|2dx

)1/2
the norm in

H1
0 (Ω) and by ‖u‖s the Ls-norm. We will also use the letters C, c to denote generic

positive constants which may vary from line to line.

1.2. Model problems. As stated in the introduction, the local prototype for
the equations we are considering is

(1.3) −∆u = uq−1 − a,

where, respectively, q ∈ (2, 2∗) for Theorem 1.1 and q ∈ (1, 2) for Theorem 1.2.
More in general, consider the nonlocal problem

(1.4) −(c + b ‖u‖ω0−2)∆u = uq−1 − a

with c ≥ 0, b > 0 and ω0 > 2. For c > 0 and ω0 = 4, the left hand side is the original
nonlocal term proposed by Kirchhoff in [24]. On the other hand, if c = 0 then the
nonlocal term M in (1.4) is degenerate at the origin.

For (1.4) one has M(t2) = ct2 + 2b
ω0

tω0 , then for Theorem 1.1 one can take 2 <

ω0 < q < 2∗, actually hypothesis (M0) holds true with r = ω0, while (KAR) and
(M∞) hold with ω0 ≤ θ1 < θ < q. For Theorem 1.2 instead, one can take q ∈ (1, 2)

if c > 0 and q ∈ (1, ω0) in the degenerate case c = 0, actually hypothesis (M̃0) holds
true with r = 2, but also with r = ω0 if c = 0, while (KC) holds with r̃ = ω0. It is
worth noting that in this last case it is possible to take a linear f :

−‖u‖ω0−2∆u = u− a.

A further model, where instead M is degenerate at infinity, is

(1.5) − ∆u
(
‖u‖2 + 1

)1−ω∞/2
= uq−1 − a

with 1 < ω∞ < 2. In this case M(t2) = 2
ω∞

[
(t2 + 1)

ω∞/2 − 1
]
.

For Theorem 1.1 one can take q ∈ (2, 2∗): actually hypothesis (M0) holds true
with r = 2, while (KAR) and (M∞) hold with ω∞ ≤ θ1 < θ < q; on the other hand,

for Theorem 1.2 hypothesis (M̃0) holds true with r = 2 and (KC) with r̃ = ω∞, then
we can take q ∈ (1, ω∞).

By combining the above cases one can also consider a problems degenerate at
both the origin and infinity, such as

(1.6) −
(
min

{
‖u‖ω0−2 , ‖u‖ω∞−2})∆u = uq−1 − a

with 1 < ω∞ < 2 < ω0: then for Theorem 1.1, one needs q ∈ (ω0, 2
∗), since hypothesis

(M0) holds true with r = ω0, and (KAR) and (M∞) with ω∞ ≤ θ1 < θ < q; for
Theorem 1.2 instead one needs 1 < q < ω∞.

As a final example, with the same left hand side as (1.5) but with nonhomoge-
neous functions f , one can consider in Theorem 1.1 an asymptotically linear nonlin-
earity, for instance

(1.7) − ∆u
(
‖u‖2 + 1

)1−ω/2
=

u2

1 + u
− a.

with 1 < ω < 2, actually the hypotheses now hold with q ∈ (2, 2∗), r = 2 and
ω ≤ θ1 < θ < 2.
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In Theorem 1.2 one can also take a nonlinearity which goes to zero at infinity,
for instance

(1.8) − ∆u
(
‖u‖2 + 1

)1−ω/2
=

√
u

1 + u
− a.

with 1 < ω < 2, actually the hypotheses now hold with q = 1/2, r = 2 and r̃ = ω.

2. Preliminary results

In the sequel, we say that u ∈ H1
0 (Ω) is a weak solution for (Pa) if u is a continuous

positive function that verifies

M

(
ˆ

Ω

|∇u|2 dx
)
ˆ

Ω

∇u∇ϕdx =

ˆ

Ω

(f(u)− a)ϕdx, ϕ ∈ H1
0 (Ω).

In this section, we denote by fa : R → R the continuous functions given by

(2.1) fa(t) =





f(t)− a if t ≥ 0,

−a(t + 1) if t ∈ [−1, 0],

0 if t ≤ −1,

0 < a < 1, and −a = mint∈R fa(t).
Our intention is to prove the existence of a positive solution for the following

auxiliary problem

(APa)





−M

(
ˆ

Ω

|∇u|2 dx
)
∆u = fa(u) in Ω,

u(x) > 0 in Ω,

u = 0 on ∂Ω,

because such a solution is also a solution of (Pa). Associated with (APa), we have
the energy functional Ia : H

1
0 (Ω) → R defined by

Ia(u) =
1

2
M

(
ˆ

Ω

|∇u|2 dx
)
−
ˆ

Ω

Fa(u) dx, u ∈ H1
0 (Ω)

where

(2.2) Fa(t) =

ˆ t

0

fa(τ) dτ =





F (t)− at if t ≥ 0,
a
2
(1− (t + 1)2) if t ∈ [−1, 0],

a
2

if t ≤ −1.

As a consequence we can always estimate

(2.3) −at+ ≤ Fa(t) ≤
{
F (t) if t ≥ 0,
a
2

if t ≤ 0,

where t+ = max{t, 0}.
The functional Ia is Fréchet differentiable with derivative I ′a given by

〈I ′a(u), v〉 = M

(
ˆ

Ω

|∇u|2 dx
)
ˆ

Ω

∇u∇v dx−
ˆ

Ω

fa(u)v dx, v ∈ H1
0 (Ω).

2.1. Mountain pass geometry. Throughout this section we assume the hy-
potheses of Theorem 1.1. The next two lemmas will be useful to prove that in this
case Ia verifies the mountain pass geometry.



660 Giovany M. Figueiredo, Eugenio Massa and Jefferson A. Santos

Lemma 2.1. There exist ρ, a1, α > 0 such that

Ia(u) ≥ α, for ‖u‖ = ρ and any a ∈ [0, a1).

Proof. Notice that, in view of (f0), (fsc) and (2.3), given ǫ > 0, there exists
Cǫ > 0 such that

Fa(t) ≤ ǫ|t|r + Cǫ|t|q + a/2, for all t ∈ R.

On the other hand, (M0) implies that 1
2
M(s2) ≥ C1s

r for some C1 > 0 and s small
enough, then using also Sobolev embeddings, we get

Ia(u) ≥
1

2
M

(
ˆ

Ω

|∇u|2 dx
)
−ε ‖u‖rr − Cǫ‖u‖qq −

a

2
|Ω|

≥ ρr
(
C1 − εC − CCερ

q−r
)
− a

2
|Ω|.

We first set ε = C1/2C and then we set ρ sufficiently small such that CCερ
q−r ≤

C1/4, so that the term in parentheses is at least C1/4. With this, the claim is satisfied
by taking a1, α such that (C1/4)ρ

r − a1
2
|Ω| > α. �

Lemma 2.2. There exists v ∈ H1
0 (Ω) such that ‖v‖ > ρ and Ia(v) < 0, for all

a ∈ [0, a1).

Proof. Let ϕ ∈ C∞
0 (Ω) be a function verifying

ϕ > 0 in Ω and ||ϕ|| = 1.

Note that for all t > 0,

Ia(tϕ) =
1

2
M

(
t2
)
−
ˆ

Ω

Fa(tϕ) dx =
1

2
M

(
t2
)
−
ˆ

Ω

F (tϕ) dx+ a

ˆ

Ω

tϕ dx.

Estimating with (1.1) and (1.2) we get

(2.4) Ia(tϕ) ≤ A1t
θ1 +B1 −A1t

θ‖ϕ‖θθ + ta‖ϕ‖1 +B1|Ω|.
Since θ > max {θ1, 1} and a ∈ [0, a1), we can fix t1 > ρ large enough so that

Ia(v) < 0, where v = t1ϕ ∈ H1
0(Ω). �

In the sequel, we are going to study the boundedness of (PS) sequences of Ia. To
do this, observe that (KAR-i) yields that also fa satisfies the famous condition due to
Ambrosetti–Rabinowitz, that is, there exists Ta1 ∈ R, dependeing on a1, such that

(2.5) θFa(t) ≤ tfa(t) + Ta1 , t ∈ R and a ∈ [0, a1) .

Lemma 2.3. The functional Ia satisfies the Palais–Smale condition for all a > 0.

Proof. The proof was already given in [22, Proposition 4.1]. We give it here for
sake of completeness. Let {un} be a sequence in H1

0 (Ω) such that |Ia(un)| ≤ Υ, for
some Υ > 0 and I ′a(un) → 0. We then estimate |θIa(un)− I ′a(un)[un]| as
∣∣∣∣
(
θ

2
M

(
‖un‖2

)
−M

(
‖un‖2

)
‖un‖2

)
−
ˆ

Ω

(θFa(x, un)−fa(x, un)un) dx

∣∣∣∣ ≤ C+εn ‖un‖ ,

with ǫn → 0, so that, using (KAR-ii) and (2.5), we obtain

(2.6) β ‖un‖ ≤ C ′ + εn ‖un‖ ,
which implies that ‖un‖ is bounded.

Then, up to a subsequence, we have that

(2.7) ‖un‖ → Υ ≥ 0.
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On the other hand by standard arguments, in view of the subcriticality of f given
in (fsc), it follows that, up to a subsequence, un converges weakly in H1

0 (Ω) to some
u and from |I ′a(un)[un − u]| → 0 and (fsc), one obtains

M(‖un‖2)
ˆ

Ω

∇un∇(un − u) dx → 0 (n → ∞).

If Υ = 0, then from (2.7) the proof is over. If Υ > 0 by (H0) we obtain un → u
in H1

0 (Ω) in the proof is over. �

We will now obtain a solution for Problem (APa), by the Mountain Pass Theorem.
Below we will make explicit the dependence of the constants on the bounded interval
[0, a) where the parameter a is taken, by using as subscript its endpoint, which we
still have to fix, while we will not mention their dependence on M,Ω and f .

Lemma 2.4. There exists a constant Ca1 > 0 such that (APa) has a solution

ua ∈ H1
0 (Ω) satisfying 0 < α ≤ Ia(ua) ≤ Ca1 , for every a ∈ [0, a1).

Proof. The Lemmas 2.1, 2.2 and 2.3 guarantee that we can apply the Mountain
Pass Theorem due to Ambrosetti–Rabinowitz [7] to show the existence of a solution
ua ∈ H1

0 (Ω) for all a ∈ [0, a1) with Ia(ua) = da ≥ α > 0, where da is the mountain
pass level associated with Ia.

Now, taking ϕ ∈ C∞
0 (Ω) as in the proof of Lemma 2.2, t > 0, and estimating as

in (2.4), we see that Ia(tϕ) is bounded from above, uniformly if a ∈ [0, a1). Then the
mountain pass level is also estimated in the same way:

0 < α ≤ da = Ia(ua) ≤ max{Ia(tϕ); t ≥ 0} ≤ Ca1 . �

The next lemma establishes a very important estimate involving the Sobolev
norm of the solution ua for a ∈ [0, a1).

Lemma 2.5. There exist constants ka1 , Ka1, such that 0 < ka1 ≤ ‖ua‖ ≤ Ka1

for all a ∈ [0, a1).

Proof. By Lemma 2.4 we have

Ca1 ≥ Ia(ua)−
1

θ
I ′a(ua)ua

=
1

2
M(‖ua‖2)−

1

θ
M(‖ua‖2)‖ua‖2 +

ˆ

Ω

(
1

θ
fa(ua)ua − Fa(ua)

)
dx.

Then from (2.5) and (KAR-ii) we get

Ca1 ≥
1

θ
(β ‖ua‖ −D − Ta1) .

and then we obtain the claimed estimate from above.
For the estimate from below, just note that by (2.3) and Sobolev embeddings

α ≤ Ia(ua) ≤
1

2
M

(
‖ua‖2

)
+ a

ˆ

Ω

u+
a dx ≤ 1

2
M

(
‖ua‖2

)
+ Ca1 ‖ua‖

and the right hand side goes to zero if ‖ua‖ goes to zero. �

2.2. Gobal minimum geometry. Throughout this section we assume the
hypotheses of Theorem 1.2. The next two lemmas will prove that Ia has a global
minimum at a negative level.

Lemma 2.6. There exist a1, α > 0 and u0 ∈ H1
0 (Ω) such that

Ia(u0) ≤ −α, for any a ∈ [0, a1).
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Proof. Let ϕ ∈ C∞
0 (Ω) be as in the proof of Lemma 2.2. As there, for t > 0,

Ia(tϕ) =
1

2
M

(
t2
)
−
ˆ

Ω

F (tϕ) dx+ a

ˆ

Ω

tϕ dx.

From (M̃0) and (f̃0) we have that, for t0 small enough and some constant A > 0,

1

2
M

(
t20

)
≤ Atr0 and

ˆ

Ω

F (t0ϕ) dx ≥ 2Atr0.

Then we get

Ia(t0φ) ≤ −Atr0 + at0

ˆ

Ω

ϕdx.

Let now α = 1
2
Atr0 > 0 and then fix a1 = a1(t0) such that a1t0

´

Ω
ϕdx ≤ α, to obtain

Ia(t0φ) ≤ −α for a ∈ [0, a1). �

Lemma 2.7. Ia is coercive, uniformly with respect to a ∈ [0, a1), in fact, there

exist H, ρ > 0 independents of a such that Ia(u) ≥ H whenever ‖u‖ ≥ ρ and

a ∈ [0, a1).

Proof. By (fsc), (KC) and using (2.3), we get, for suitable constants c, C > 0,

(2.8) Ia(u) ≥
c

2
‖u‖r̃ − C − C ‖u‖q − a

2
|Ω| ,

then the claim follows easily since r̃ > q. �

Lemma 2.8. For every a ∈ R, Ia is weakly lower semicontinuos.

Proof. The proof is classical in view of (H0) and (fsc), observing that M ≥ 0

implies that M is nondecreasing and then M(‖u‖2) ≤ lim infM(‖un‖2) along a
sequence un that converges weakly to u. �

We will now obtain a solution for Problem (APa) by minimization.

Lemma 2.9. There exists a constant Ca1 > 0 such that Problem (APa) has a

solution ua ∈ H1
0(Ω) satisfying 0 > −α ≥ Ia(ua) ≥ −Ca1 , for every a ∈ [0, a1).

Proof. The solution is obtained by minimization in view of the above lemmas.
Actually the global minimum of Ia stays below −α by Lemma 2.6, while the bound
from below is a consequence of (2.8) with a < a1. �

We now prove that the same kind of estimate obtained in Lemma 2.5, holds true
also in this case.

Lemma 2.10. There exist constants ka1 , Ka1 , such that 0 < ka1 ≤ ‖ua‖ ≤ Ka1

for all a ∈ [0, a1).

Proof. The bound from above for the norm of ua is a consequence of the uniform
coercivity proved in Lemma 2.7, since Ia(u0) < 0. The bound from below follows by
the same argument as in Lemma 2.5. Actually, by (2.3), Sobolev embeddings and
estimating Fa(t) ≤ F (t+) + a|t|, we get

0 > −α ≥ Ia(ua) =
1

2
M

(
‖ua‖2

)
−
ˆ

Ω

Fa(ua) dx ≥ −a1 ‖ua‖1 −
ˆ

Ω

F (u+
a ) dx

and again the right hand side goes to zero if ‖ua‖ goes to zero. �
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3. Further estimates for the solutions ua

From now on ua will be the solution of Problem (APa) obtained either in Lemma 2.4
or in Lemma 2.9.

As an immediate consequence of Lemma 2.5 and Lemma 2.10, in view of condition
(H0), we obtain the following

Corollary 3.1. There exist constants ha1 , Ha1 , such that 0 < ha1 ≤ M (‖ua‖2) ≤
Ha1 for all a ∈ [0, a1).

This estimate is very important because it implies that from now on we can work
as if the nonlocal term were nondegenerate and bounded, making the next steps very
similar to the local case M ≡ 1.

Our next result ensures that ua belongs to L∞(Ω), and that the family {ua}a∈[0,a)
is a bounded set in L∞(Ω) for a small enough. This fact is crucial in our approach.

Lemma 3.2. There exists a2 ∈ (0, a1] and β ∈ (0, 1) such that {ua}a∈[0,a2) ⊆
C1,β(Ω) and is a bounded set in C1,β(Ω). In particular, there exists C∞

a2
> 0 such

that

(3.1) ‖ua‖∞ ≤ C∞
a2 , ∀a ∈ [0, a2).

Proof. In order to prove the lemma, it is enough to show that for any sequence
aj → 0, the sequence of solutions uj = uaj from Lemma 2.4 (resp. Lemma 2.9)

possesses a subsequence, still denoted by itself, which is bounded in C1,β(Ω). We
will do this by showing that a suitable subsequence of uj satisfies the conditions in
[19, Proposition 3.7], which provides the claimed boundedness as a consequence of
[20, 25, 26].

As uj is bounded in H1
0 (Ω) by Lemma 2.5 (resp. Lemma 2.10), there is a subse-

quence of {uj}, still denoted by itself, and u ∈ H1
0(Ω) such that uj → u weakly in

H1
0 (Ω), strongly in Lτ (Ω) for τ < 2∗ and a.e. in Ω. Proceeding similar to the proof

of Lemma 2.3, from |I ′aj (uj)[uj − u]| = 0 and (fsc), since faj (uj(x)) → f0(u(x)) a.e.
for x ∈ Ω one obtains

M(‖uj‖2)
ˆ

Ω

∇uj∇(uj − u) dx → 0 .

Note that from Corollary 3.1 that uj does not tend to zero and then M
(
‖uj‖2

)
→

c > 0 so that
´

Ω
∇uj∇(uj − u) dx → 0 and then uj → u strongly in H1

0 (Ω) and also

in L2∗(Ω). Hence up to further subsequence, u2∗

j is uniformly integrable.
Finally, from Corollary 3.1 again we get the estimate, in the weak sense,

(3.2) | −∆ua| =
∣∣∣∣

1

M(‖ua‖2)
fa(ua)

∣∣∣∣ ≤
1

ha1

(f(ua) + |a|) ,

where f is subcritical by (fsc). �

In what follows, we show an estimate from below of the norm L∞(Ω) of ua for a
small enough.

Lemma 3.3. There exists a3 ∈ (0, a2) and δ > 0 that does dependent on a ∈
[0, a3), such that ‖ua‖∞ ≥ δ for all a ∈ [0, a3).

Proof. By using ua as a test function we have

M(‖ua‖2)
ˆ

Ω

|∇ua|2 dx =

ˆ

Ω

fa(ua) ua dx,
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By Lemma 2.5 (resp. Lemma 2.10) and Corollary 3.1 the left hand side is bounded
from below by ha1k

2
a1 .

Let now δ be such that f(t)t < ha1k
2
a1/|Ω| for t ∈ [0, δ], it follows that there exists

a3 such that for a ∈ [0, a3) fa(t)t < ha1k
2
a1
/|Ω| for t ∈ (−∞, δ]. Then if ‖ua‖∞ < δ

and a ∈ [0, a3) we are lead to the contradiction

ha1k
2
a1 ≤ M(‖ua‖2)

ˆ

Ω

|∇ua|2 dx =

ˆ

Ω

fa(ua) ua dx < ha1k
2
a1

and then the claim is proved. �

4. Proof of the main theorems

In order to conclude the proof of Theorem 1.1 and 1.2, we need to show that
the solution ua is positive for a ∈ (0, a3), decreasing a3 if necessary. Indeed, let
{aj} ⊂ (0, a3) be a sequence with aj → 0 as j → ∞, and let uj be a solution of
(APa) with a = aj. Setting fj(uj) = faj (uj), we have

{
−M(‖uj‖2)∆uj = fj(uj) in Ω,

uj = 0 on ∂Ω.

From Lemma 3.2 we know that uj is bounded in C1,β(Ω) for some β ∈ (0, 1). By
the compact inclusion C1,β(Ω) ⊆ C1,γ(Ω) for 0 < γ < β, we obtain a subsequence
(still denoted by uj) and a function u ∈ C1,γ(Ω) such that uj → u in C1,γ(Ω).

Now using corollary 3.1 we can estimate

−∆uj =
fj(uj)

M(‖uj‖2)
≥ −aj

ha3

.

Let vj be the solution of the problem
{
−∆vj = kj :=

−aj
ha3

in Ω,

uj = 0 on ∂Ω,

so that then −∆vj ≤ −∆uj and by the comparison principle for the Laplacian we
conclude that

vj ≤ uj in Ω.

Since vj ր 0 uniformly, this implies that u ≥ 0.
Now notice that

• ∇uj(x) → ∇u(x) uniformly in Ω,

• ‖uj‖ → ‖u‖ and then M(‖uj‖2) → M(‖u‖2),
• {fj(uj)} is bounded in Ls(Ω), s > 1,
• fj(uj) ⇀ z in Ls(Ω),
• fj(uj(x)) → f0(u(x)) a.e. x ∈ Ω,

where f0(t) = f(t) if t ≥ 0, and f0(t) = 0 if t < 0.
Having this in mind, we deduce that z = f0(u) ≥ 0, and for any ϕ ∈ C∞

0 (Ω)

M(‖u‖2)
ˆ

Ω

∇u∇ϕdx = lim
j→+∞

M(‖uj‖2)
ˆ

Ω

∇uj∇ϕdx

= lim
j→+∞

ˆ

Ω

fj(uj)ϕdx =

ˆ

Ω

zϕ dx.

(4.1)
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As ‖uj‖∞ ≥ δ for all j ∈ N, by Lemma 3.3, we derive that ||u||∞ ≥ δ, and so
u 6≡ 0, consequently M(‖u‖2) > 0, and from (4.1) we get





−∆u = z
M(‖u‖2)

in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω.

As z ≥ 0, we obtain 



−∆u ≥ 0 in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω.

Now by the strong comparison principle for the Laplacian,

u > 0 in Ω and
∂u

∂η
< 0 on ∂Ω,

where ∂/∂η denotes the exterior normal derivative. This information together with
the limit

uj → u in C1,τ (Ω)

leads to uj(x) > 0, x ∈ Ω, for j large enough. Decreasing a3 if necessary, the above
analysis guarantees that ua is positive for a ∈ (0, a3). This completes the proof of
the main Theorems.
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