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ABSTRACT

Cyber attacks are a ubiquitous reality nowadays, affecting organizations and countries worldwide. In
2021, information security incidents resulted in billions of dollars in losses. Most of those events evolved
from known vulnerabilities in information technology assets. However, several heterogeneous databases
and sources host information about those flaws, turning the risk assessment difficult. Despite massive
vulnerability databases supported by the USA and China governments, they differ in operation and coverage,
which hinders and turns uncertain risk assessment processes. This work creates a Data Collection and
Processing Pipeline for Cyber Vulnerability Intelligence to compare the USA National Vulnerability
Database (NVD), the China National Vulnerability Database (CNVD), the China National Vulnerability
Database of Information Security (CNNVD), and the Exploit Database (EDB). The results reveal that the
CNNVD has 1,661 vulnerabilities entries more than the NVD and at least 40 more entries regarding Chinese
vendors. Besides, they show a temporal correlation of 0.917560 with 70% of text similarity between the
NVD and CNNVD, indicating that despite the latter tracking the former, it is not an automatic translation
of the NVD, requiring the work of cyber specialists. Moreover, the pipeline includes a Recommender
Exploitation-Vulnerability System (REVS) with the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) using entropy-based weighting to rank vulnerability-exploit. REVS works as a network
scanning and recommender system, leveraging a mix of national vulnerability and exploit databases to
enhance penetration testing and System Security Assessment. Experiments evaluated in the GNS3 emulator
show that this work approach identifies nine more vulnerabilities than the commercial tool Vulners and that
the exploit features are more important criteria than the Common Vulnerability Scoring System (CVSS)
parameters to rank vulnerabilities. To the best of the authors’ knowledge, this work is the first to normalize
and compare the NVD, CNVD, CNNVD, and EDB, showing that the Chinese national vulnerability
databases are leveraging exploit data to infer reserved status CVEs.

Keywords: Cyber Intelligence, Vulnerability Database, Exploit Database, Vulnerability Ranking.
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RESUMO

Os ataques cibernéticos são uma realidade onipresente hoje em dia, afetando organizações e países em
todo o mundo. Em 2021, os incidentes de segurança da informação resultaram em bilhões de dólares em
perdas. A maioria desses eventos evoluiu a partir de vulnerabilidades conhecidas em ativos de tecnologia
da informação. Entretanto, vários bancos de dados e fontes heterogêneos hospedam informações sobre
essas falhas, tornando a avaliação de risco difícil. Apesar dos enormes bancos de dados de vulnerabilidade
apoiados pelos governos dos EUA e da China, eles diferem em operação e cobertura, o que dificulta e torna
os processos de avaliação de risco incertos. Este trabalho cria um Pipeline de Coleta e Processamento
de Dados para Inteligência de Vulnerabilidade Cibernética a fim de comparar o National Vulnerability
Databas dos EUA (NVD), o China National Vulnerability Database (CNVD), o China National Vulnerability
Database of Information Security (CNNVD), e o Exploit Database (EDB). Os resultados revelam que
o CNNVD tem mais 1.661 entradas de vulnerabilidades do que o NVD e pelo menos mais 40 entradas
relativas a fornecedores chineses. Além disso, eles mostram uma correlação temporal de 0,917560 com
70% de similaridade de texto entre o NVD e o CNNVD, indicando que apesar de o último rastrear o
primeiro, não é uma tradução automática dele, exigindo o trabalho de ciber especialistas. Além disso, o
pipeline inclui um Recommender Exploitation-Vulnerability System (REVS) com a Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) usando ponderação baseada em entropia para classificar
os pares de vulnerabilidade-exploits. O REVS funciona como um sistema de varredura e recomendação de
rede, empregando um mix de bancos de dados de vulnerabilidades e e exploitscpara melhorar os testes de
penetração e a avaliação de segurança do sistemas. Os experimentos relizados no emulador GNS3 mostram
que esta abordagem de trabalho identifica mais nove vulnerabilidades do que a ferramenta comercial Vulners
e que os critérios relativos aos exploits tem mais do que os parâmetros do Common Vulnerability Scoring
System (CVSS) para classificar as vulnerabilidades. De acordo com o referncial bibliográfico utilizado„ este
trabalho é o primeiro a normalizar e comparar o NVD, CNVD, CNNVD e EDB, mostrando que os bancos
de dados de vulnerabilidade nacionais chineses estão aproveitando os dados de exploração para inferir os
CVEs de status reservado.

Palavras-chave: Inteligência Cibernética, Banco de Dados de Vulnerabilidade, Banco de Dados de Exploit,
Priorização de Vulnerabilidade.
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1 INTRODUCTION

Nowadays, computer systems are ubiquitous in daily life. The COVID-19 epidemic forced a rush to
provide online services [14]. However, it also exposed system vulnerabilities and increased the attack sur-
face [15, 16]. Although there are several databases regarding system vulnerabilities, the most comprehensive
are those sponsored by the USA and China [12].

Even with a plethora of information about system security, several heterogeneous databases and sources
host those data, making the risk assessment difficult [17]. The National Vulnerability Database (NVD)
from the National Institute of Standards and Technology (NIST) of the USA is the authoritative source of
systems vulnerability information [18, 19]. The Department of Homeland Security (DHS) sponsors the
NVD, which provides extensive data regarding system vulnerabilities using Common Vulnerability Exposure
(CVE), Common Weakness Enumeration (CWE), Common Platform Enumeration (CPE), and Common
Vulnerability Scoring System (CVSS) [20, 21]. The MITRE Corporation established those frameworks for
data classification and enumeration regarding software vulnerabilities [22]. Afterward, it transferred these
standards to NIST, which nowadays is responsible for the NVD [6].

Despite the best effort from NIST to gather vulnerabilities, there might be a delay between NVD and
other open sources [23]. Moreover, several new software and hardware suppliers from China, like Xiaomi
and Huwaei, might carry new vulnerabilities not covered by the NVD [24]. For this reason, systems security
improvement requires tracking bug reports or new vulnerability sources [25]. New official databases from
China and commercial ones like the Exploit Database (EDB), the Metasploit Framework (MSF), and
Vulners [11], when orchestrated, can help achieve better situational awareness of enterprise risks.

The China National Vulnerability Database (CNVD) and the China National Vulnerability Database of
Information Security (CNNVD) are a new option for better vulnerability assessment and mitigation [26, 13].
The CNVD [7] and the CNNVD [8] are state-sponsored systems like the NVD. The National Computer
Network Emergency Response Technical Team/Coordination Center of China (CNCERT/CC) supports the
first. In contrast, the second works as a project from the China Information Technology Security Evaluation
Center (CNITSEC). They present several obstacles to their foreign users despite claiming public access.
Both provide a web interface in Mandarin for vulnerability search but do not offer an API for automatic
download [12]. Moreover, despite an average disclosure time lower than the NVD, there is evidence of
vulnerability hiding [27].

The joining and orchestration of heterogeneous databases and sources like the NVD, CNVD, CNNVD,
and EDB is still an open question [28, 29]. Most works about mining vulnerability databases covered
only the NVD [18, 28, 30, 31, 32, 23, 33]. Besides, some approaches leveraged the NVD, CNVD, and
CNNVD together to tackle the Internet of Things (IoT) platform [12, 13] or used only CNNVD to seek
vulnerabilities [34].

The Vulnerability Assessment (VA) and Penetration Testing (PT) are essential steps to assess and rank
vulnerabilities [35, 36, 37, 38]. However, choosing the most critical and threatening outcomes of those
steps are a decision process under several constraints. There are several approaches to solving issues in the
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decision process, ranging from using the Markov chain to Deep Learning algorithms [39]. However, several
attributes from the Common Vulnerability Scoring System (CVSS) bounds the VA [40]. So, it becomes a
decision problem that can leverage recommender system algorithms [41, 42, 43] — usually not suitable
for the ranking process — or the Multi-Criteria Decision-Making (MCDM) [44]. The Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) is an algorithm of the MCDM family used for the
cybersecurity of 5g networks [45], power control systems [46] and Intrusion Detection System (IDS) [47].

1.1 MOTIVATION

The NVD has grown into the world’s de facto vulnerability database nowadays. NIST collects and
records most known vulnerability entries and encourages the community to inform it about the new ones [48].
It is a natural consequence of the central role of American organizations in the hardware and software
industry since the seventies. Even well-known and established commercial tools and data feeds that
support security professionals and pentesters worldwide rely on the NVD data, one way or another [49].
Nevertheless, relying on a unique data source regarding system vulnerabilities is not advisable; it may
become a single point of failure. Even for the NVD, it is hard to cover the whole possible sources of
vulnerability information. Moreover, some vendors may not be interested in disclosing system flaws to the
NVD before releasing a patch to their customers. Indeed, part of those vulnerabilities had been published in
the Darkweb and on Social Media before their registering in the NVD [50].

There has been an increased market share of Chinese organizations in the software and hardware
industries since 2010 [51]. Vendors like Huawei, ZTE, and Xiaomi became mainstream in sectors like
mobile communications and 5G networks. Their products might have been a new source of system
vulnerabilities unknown to the NVD and related commercial tools. In this scenario, the CNVD and CNNVD
are turning into a relevant source of hardware and software vulnerabilities [52]. However, they are hard to
access data feeds and may present the same issues as the NVD: missing and undisclosed data. Moreover, the
CNVD and CNNVD use Mandarin, and their features have not been comprehensively compared to those
from the NVD [12].

Also, these concurrent vulnerability databases complicate the vulnerability assessment and pentest
processes. With the increase of hosts and IoT devices, even more vulnerable applications, services, and
operating systems are running in networked systems [13]. Usually, a simple network scan in a medium
enterprise environment returns hundreds of possible vulnerabilities, making it impossible to fix them at
the same time [53]. The traditional approaches that only use the CVSS base score to rank the CVEs
are not reliable [54, 55]. They do not consider time-changing factors like increased exploit capabilities,
threat actors, and the level of importance of information assets in the organization. New approaches
are necessary to prioritize the riskiest ones to patch. Several constraints and network conditions guide
this prioritization process. Therefore, this master thesis addresses those issues with a new pipeline for
vulnerability ranking with multiple national vulnerabilities and exploit databases to support multicriteria
decision-making, leveraging them to provide cyber intelligence awareness.
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1.2 GOALS

The main objective of this work is to create a data collection and processing pipeline for Cyber
Vulnerability Intelligence to uncover the features of the USA and China National Vulnerability Databases
and rank vulnerabilities according to their CVSS attributes and exploit maturity. The pipeline includes a
Multilingual NLP function to compare the similarity of vulnerability descriptions in English and Chinese.

1.2.1 Specific Goals

• Extract Transform and Load (ETL) Chinese vulnerability databases;

• Join and orchestrate heterogeneous vulnerability and exploit databases;

• Develop a Recommender Exploitation-Vulnerability System (REVS).

1.3 CONTRIBUTION

This work reached the following contributions:

• Demonstration that the China vulnerability database is not a mere translation of the NVD, even for
the registers that they have in common;

• Revelation that the China vulnerability databases are ahead of the USA and leveraging exploit data to
infer vulnerabilities;

• Outperforming Vulners in vulnerability detection, enhancing the information security assessment and
penetration testing;

• Improvement of vulnerability ranking through exploit criteria.

Moreover, it is worth mentioning that this work had part of its results published in the proceedings of
two international conferences:

• The short paper “REVS: A Vulnerability Ranking Tool for Enterprise Security” in the 24th International
Conference on Enterprise Information Systems (ICEIS 2022) [56].

• The full paper Towards System Security: What a Comparison of National Vulnerability Databases
Reveals in the 17th Iberian Conference on Information Systems and Technologies (CISTI 2022) [57].

1.4 DISSERTATION OVERVIEW

The rest of this work is organized as follows:
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• Chapter 2 provides the background about system vulnerability and exploit;

• Chapter 3 reviews the related works about information risk assessment, vulnerability databases,
exploit data sources, and recommender/prioritization algorithms that motivated and supported this
dissertation;

• Chapter 4 explains the Data Collection and Processing Pipeline for Cyber Vulnerability Intelligence,
which includes a decision layer with TOPSIS to rank vulnerabilities;

• Chapter 5 exposes the test environment and discusses the experimental results achieved with the
pipeline;

• Chapter 6 concludes this dissertation and suggests some future works.

1.5 SUMMARY

This chapter introduced the dissertation, presenting the research context that motivated this work. It also
listed the goals, contributions, and text structure. The next chapter presents the background contents of this
work.
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2 BACKGROUND

This chapter describes the basic concepts of vulnerabilities, exploits and their databases and frameworks.
Section 2.1 presents the vulnerability assessment concepts and tools. Section 2.2 describes the CVE
framework. Section 2.3 present the CPE naming system. Section 2.4 describes the CWE categorization
scheme. Section 2.5 presents the CVSS Framework. Section 2.6 describes the CAPEC classification for
cyberattack. Section 2.7 lists the main vulnerability databases. Section 2.8 lists two exploit databases.
Section 2.9 presents Vulners, a new InfoSec data feed. Section 2.10 summarizes this chapter

2.1 VULNERABILITY ASSESSMENT

The Vulnerability Assessment, formally known by the acronym VA, is the workflow to identify, qualify,
and quantify the flaws of a system, allowing prioritize handling it. The VA is a process that can be leveraged
in any system, even if it is not based on computer hardware. Since several steps comprise the VA of network
systems, this work focuses on the following ones: network scanning, CPE identification, CVE identification,
exploit identification, and CVE prioritization.

There are some well-known tools to scan computer systems to search for available services. Nessus [58,
59], OpenVas [60], Qualys, Nmap [61] Nettacker [62, 63] and Metasploit [64] are examples of those tools.
Most are more than network scanners but frameworks and automation suites for network and systems
security assessment. Moreover, as automation packages, several rely on Nmap as the main module for
network scanning. Some of them are free software with established community support, as the example of
Nmap that this work leverages as the core network scanner.

Nmap (Network Mapper) was first released in 1997 as a simple C language-based port scanner for
Linux. Since then, it has been evolving with an OS reconnaissance module, version detection capacity,
and a scripting engine [61]. It is free software based on the GNU GPLv2 license, forcing the software that
leverages Nmap to use a compatible license type. The objective is to keep Nmap free and open, prohibiting
its redistribution within proprietary products. If there is an intention to embed Nmap in a proprietary project,
it provides a special Nmap OEM license.

Nmap became the de facto network scanner worldwide, providing several options from port mapping to
version detection using TCP, ICPM, or UDP packets. Also, it is possible to calibrate the intensity of the
reconnaissance step to avoid detection by IDS or IPS. One of the objectives of this work is vulnerability
prioritization, first using services detection with Nmap without worries about bypassing defense mechanisms,
which is out of the scope of this work. Figure 2.1 shows the basic service and its version detection by Nmap.
This work with a Python interface will wrap this Nmap function.

Since the outcome of a network scanning is a list of system services listening to possible connections on
computer ports, there is a need to establish a standard to name those services. It generated the CPE naming
convention that this chapter describes in the subsection 2.3. After identifying the available CPEs, the next
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Figure 2.1: Nmap Basic Scan.

step is the search for possible vulnerabilities in them, formally known as CVEs. There is an intrinsic link
between the CPE and CVE. The relation between them may be n to n. Figure 2.2 shows the relation among
vendor, CPE, CVE, CWE, and exploit.

has

Platform

has

belongs to

Vulnerability

Exploit

has

Vendor

Vulnerability Group

Figure 2.2: Entities relationship.

As can be seen in Figure 2.2, it is crucial to have the CPE name in order to look for possible CVEs.
However, Figure 2.1 shows that nmap -sV command returns the list of services in the target machine to the
standard output in a human-readable format. Fortunately, the Nmap enables the list of the same services in
CPE format using the -oX ret_cpe.xml option. It saves several data about the target machine in XML format,
including the corresponding CPEs of the services list. Figure 2.3 shows the CPEs list when parsing the
ret_cpe.xml file.

Figure 2.3: Parsing Nmap CPE list.

Now, with the service names in the CPE format, it is possible to look for entries in vulnerability
databases. Nmap enables on-the-fly search for vulnerabilities regarding each detected CPE during network
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scan. Figure 2.4 shows a snippet from the Nmap command return with the –script vulners option.

Figure 2.4: Nmap returning vulnerability data.

The –script option in Nmap allows the execution of external scripts in the Lua programming language.
Figure 2.4 shows one of them in action while getting vulnerability data through external APIs.

2.2 THE CVE FRAMEWORK

The CVE is a community-based program with the following mission: identify, define, organize and
catalog publicly disclosed cybersecurity vulnerabilities. That implies a biunivocal relation between the
CVE entry and the cataloged vulnerability. The Mitre Corporation [22] launched the CVE as a community
program in 1999, while the National Institute of Standards and Technology (NIST) launched the NVD in
2005.

The NVD and the CVE are independent programs but with the same sponsor: the U.S. Department of
Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA). Figure 2.5, from the
CVE, depicts the Program Structure. It shows that the MITRE Corporation and the CISA from DHS are in
the top tier of the structure: Top-Level Roots (TL-Root) [65].

Most of the available public vulnerability databases rely on the CVE identification provided by CVE
Numbering Authorities (CNA) [32]. After MITRE registers and identifies a new vulnerability, it receives a
unique CVE identifier, a summary description, and external references. NIST gets this data from MITRE
and adds more features like a detailed description, vendor identifications, CWE, CPE, and CVSS [66]. The
latter is a scoring system to assign CVEs to a severity group based on a score from 0 to 10.

When a CNA registers a new vulnerability entry, it receives an id in the following format: CVE-year-ID.
When a vendor, user, researcher, or practitioner reports vulnerability information to a CNA, it assigns an
id from its block of identifiers. Following the hierarchy depicted in Figure 2.5, the CNA reports the new
CVE to MITRE. Of course, this is the ideal process flow because vendors may hide vulnerabilities, at least
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Figure 2.5: The CVE Program Structure (from [1])

for some time. They want to avoid reputation risks since the flaws might be exploited in case of sooner
disclosure. Moreover, the vendor needs time to release patches for vulnerable platforms, highlighting that
some huge companies like Microsoft and Google are CNA authorities.

2.3 THE CPE FRAMEWORK

The Common Platform Enumeration (CPE) is a standardized naming scheme to identify hardware,
applications, and operating systems groups. It is a scheme to identify classes of information technology
assets, not a unique instance of those assets. For example, every Linux Ubuntu 20.04 has the same CPE
identifier, despite being installed on different machines. A stack of specifications supports the CPE scheme,
with the lower layers providing definitions for the upper ones: Applicability Language, Dictionary, Name
Matching, and Naming. This last is the most important that supports the other ones. It specifies the Well-
Formed Names (WFN) convention for CPE as well as procedures to bind those WFNs to machine-readable
encoding using Uniform Resource Identifiers (URI) [67].

The CPE URI has the following pattern: cpe:part:vendor:product:version:update:edition:language:sw_-
edition:target_sw:target_hw:other. The CPE 2.3 specification introduced the attributes sw_edition, target_-
sw, target_hw, and other, which are called extended attributes to compatibility with prior specifications (2.1
and 2.2). The attributes of that URI are almost self-explanatory, but it is worth pointing out that the part
attribute can accept the following values:

• /a: applications;

• /h: hardware;

• /o: operating systems.

It must be clear that the CPE is not the synonym for operating systems, hardware, application, or
software library. It may be one of them or part of those systems. The software libraries are interesting cases

8



because some are not considered platforms but are supported by them. A library can depend on platforms, so
its connection to the CVE is not direct because there is a CPE in the middle. Figure 2.6 illustrates this issue
with the Apache Commons IO 2.6 <https://mvnrepository.com/artifact/commons-io/commons-io/2.6>.

Figure 2.6: Example of direct and indirect vulnerability (from [2]).

Figure 2.6 shows an example in which a library has two vulnerabilities: a direct one, CVE-2021-29425,
and an indirect one, CVE-2020-15250. The latter results from a vulnerability in JUnit4 (cpe:/a:junit:junit4:),
a framework that Apache Commons IO 2.6 (cpe:/a:apache:commons_io:2.6:) depends on. The Java
ecosystem, for example, has thousands of libraries with several vulnerabilities that are not discovered
directly by scanners. Either because they are not platforms or because they have only vulnerabilities from
dependencies.

The mapping of vulnerable libraries without CPE is out of the scope of this work. However, it is worth
mentioning that the same assessment method described here works for them. Regardless, network scanners
like Nmap can detect the platforms the libraries depend on if they are running in the target system and have
CPE id. For example, the Apache HTTP Server and the JBOSS Application Server.

There are some applications to list CVEs related to open source libraries. The Open Web Application
Security Project (OWASP) Dependency-Check tools look for possible vulnerabilities regarding the chain
of libraries. Those tools are essential during the development of secure software. They keep track of the
vulnerability dependency tree using vulnerabilities repositories like Maven (<https://mvnrepository.com/>).
Figure 2.7 shows an example of vulnerability tracking in Maven for several versions of the library Apache
Commons IO.
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Figure 2.7: Vulnerability tracking in Maven (from [2]).

2.4 THE CWE FRAMEWORK

Since the launching of the CVE framework by MITRE in 1999, a classification taxonomy for vulner-
abilities became necessary. Until 2005, when the CVE was migrated to the NVD, MITRE evaluated by
itself a categorization for software faults with implications for information security. In 2005, it released the
Preliminary List Of Vulnerability Examples for Researchers (PLOVER). Since 2006, this fault classification
has become a community-driven project under the Common Weakness Enumeration (CWE™) hood. With
the surge of hardware faults affecting information security, the CWE added support for hardware weakness
enumeration in 2020 [3]. The following list is examples of CWE:

• Software:

– CWE-787 - Out-of-bounds Write;

– CWE-79 - Improper Neutralization of Input During Web Page Generation (‘Cross-site Script-
ing’);

– CWE-125 - Out-of-bounds Read.

• Hardware:

– CWE-1189 - Improper Isolation of Shared Resources on System-on-a-Chip (SoC)

– CWE-1191 - On-Chip Debug and Test Interface With Improper Access Control

– CWE-1231 - Improper Prevention of Lock Bit Modification

Like the CVE, CWE has a scoring system for severity: Common Weakness Scoring System (CWSS™)
and Common Weakness Risk Analysis Framework (CWRAF™). However, it has less direct security

10



implications than the CVSS for CVE. While the latter is specific for a vulnerability, the earlier is a broader
score for a group of CVEs. Besides, the CWE has more educational than assessment purposes because it
tries to avoid new vulnerabilities during software and hardware design. Moreover, the CWE is a hierarchical
categorization of system flaws, as shown in Figure 2.8.

Figure 2.8: CWE Example (from [3]).

The CWE is a framework to group CVEs according to their type, e.g., web and buffer overflow. Lastly,
the CPE is a method to logically describe the affected hardware and software, considering versions and
conditions for the vulnerability [68]. For example, a web server software may be only vulnerable when
running on a specific Operating System (OS) [69].

2.5 THE CVSS FRAMEWORK

The Forum of Incident Response and Security Teams (FIRST) was created in 1990 to improve the
communication and coordination between different security incident response teams across the globe. As a
non-profit organization from the USA, FIRST provides access to its services and products without costs.

The Common Vulnerability Scoring System (CVSS) is a framework for assessing the vulnerability
attributes and calculating a score to its severity. It provides quantitative and qualitative outcomes to represent
vulnerability features. Despite being one of the main components of any vulnerability database, the CVSS
framework is provided by FIRST without costs as long as the user follows its guidelines. The CVSS Special
Interest Group (SIG) from FIRST is responsible for keeping and improving the CVSS standard. Figure 2.9
presents the three sub-scores that comprise the CVSS [70].

The CVSS is the adopted scoring system by most vulnerability databases, including the NVD. Thus,
it became the de facto standard to access vulnerability risk worldwide. It has been evolving over the
time: version 2.0 [71], version 3.0 [72] and version 3.1 [4]. Regardless of the version, the metric groups
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Figure 2.9: CVSS v3.1 Metric Groups (from [4]).

presented in Figure 2.9 are the building blocks of the framework. The following list – Base, Temporal and
Environmental – describes those blocks:

• Base - the basic features of the vulnerability that almost do not change over time and are common to
every instance;

• Temporal - the features that evolve and depend on external actors, e. g., the status of exploits and
threat agents.;

• Environmental - the features that depend on the user requirements and system instances.

Most vulnerability databases and vendors use only the Base Score (BS). One premise of this score group
is to be completely unaware of the external conditions: exploit status (Temporal Metric Group) and system
requirements (Environmental Metric Group). The BS is a function of the metrics from the Base Metric
Group in Figure 2.9. The features of this group are divided into three sub-groups:

• Exploitability Sub-Score (ESS): likelihood of being exploited.

– Attack Vector (AV): Network (N - 0.85), Adjacent (A - 0.62), Local (L - 0.55) or Physical (P -
0.2);

– Attack Complexity (AC): Low (L - 0.77) or High (H - 0.44);

– Privileges Required (PR): None (N - 0.85), Low (L - 0.62 or 0.68 if Scope is Changed (C)) or
High (H - 0.27 (or 0.5 if Scope is Changed (C));

– User Interaction (UI): None (N - 0.85) or Required (R - 0.62).

• Impact Sub-Score (ISS): impact of the exploitation

– Confidentiality (C): High (H - 0.56), Low (L - 0.22) or None (N - 0);

– Integrity (I): High (H - 0.56), Low (L - 0.22) or None (N - 0);

– Availability (A): High (H - 0.56), Low (L - 0.22) or None (N - 0);
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• Scope Sub-Score (SSS): impacts resources beyond its own security authority.

– Scope (S): Unchanged (U) or Changed (C)

The previous list has the variables to calculate the CVSS v3.x base score using the algorithm 1. The
algorithm 1 describes the procedure to calculate the Base Score (BS) based on the CVSS v3.1 that the NVD
uses. The BS from the CVSS v2.0 and v2.1 is slightly different. Since the CVSS v3.0 got in production
only in 2015, every vulnerability published before that date has only the CVSS v2.x BS, while the entries
after that date have the CVSS v2.x and CVSS v3.x BSs. The outcome from algorithm 1 is a number from 0
to 10, which can be converted to a qualitative view through table 2.1.

Algorithm 1 CVSS v3.1 Base Score Calculation

ISS ← 1− [(1− C)× (1− I)× (1−A)]
ESS ← 8.22×AV ×AC × PR× UI
if S is ‘U’ then

ISS ← 6.42× ISS
else

ISS ← 7.52× (ISS − 0.029)− 3.25× (ISS − 0.02)15

N ← N − 1
end if
if ISS <= 0 then

BS ← 0
else

if S is ‘U’ then
BS ← Roundup(Minimum[(ISS + ESS), 10])

else
BS ← Roundup(Minimum[1.08× (ISS + ESS), 10])

end if
end if

Table 2.1 reflects the evolution of the CVSS framework. The CVSS v3.x has greater granularity for
rating than the CVSS x2.x. The CVSS v2.x also lacks several metrics to distinguish between different types
of vulnerabilities regarding the new platforms, like IoT.

Table 2.1: CVSS Rating

Rating CVSS v3.x BS CVSS v2.x BS

None 0.0 ***

Low 0.1 - 3.9 0.0 – 3.9

Medium 4.0 - 6.9 4.0 – 6.9

High 7.0 - 8.9 7.0 – 10.0

Critical 9.0 - 10.0 ***
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2.6 THE CAPEC FRAMEWORK

The Common Attack Pattern Enumeration and Classification (CAPEC™) is the counterpart of the CWE.
The latter is a repository of weaknesses, while the earlier is a list of attack patterns to exploit those flaws.
The CAPEC was also a project from MITRE that DHS incorporated in 2007. Figure 2.10 depicts the relation
between the CVE, CWE, and CAPEC.

belongs to

Vulnerability

has

Vulnerability Group Attack Group

Figure 2.10: Relation between CVE, CWE and CAPEC.

Figure 2.10 shows that there is no direct relation between the CVE and CAPEC. However, there is an
indirect relation between those two entities through the CWE. Like this last, the CAPEC also has hierarchical
descriptions, but it has attack patterns descriptions instead of weaknesses. Figure 2.11 reproduces an example
o CAPEC entry.

Figure 2.11: CAPEC Example: SQL Injection (from [5]).

Figure 2.11 also shows that there is no direct relation between exploit and CAPEC. It is advisable not to
misunderstand those entities. The latter works as categorizations and sequences of attack actions, while the
earlier is an artifact or code snippet to target a specific software and hardware flaw. This vulnerability might
have been listed as a CVE entry, or maybe it is unknown to the information security community. This last
situation is critical because the attacker might keep exploiting that unknown vulnerability for a long time.

This work does not use the CAPEC for vulnerability ranking and prioritization because the features
leveraged in the proposal depend mainly on the CVSS attributes and exploit status.
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2.7 VULNERABILITY DATABASES

Vulnerability databases are repositories of software and hardware vulnerability entries organized so
that information can be retrieved. Most of them use the Mitre frameworks, detailed in the last subsections,
to create the data schema. The CVE id is usually the default primary key. Regarding the ownership, they
can be private or public. However, as national security interests or affairs, the most extensive vulnerability
databases worldwide are totally or partially supported by government institutions. This section addresses
the following vulnerability databases: NVD, CNVD, CNNVD, and JNVD.

2.7.1 NVD

As explained in subsection 2.2, despite being independent programs, the CVE and NVD are backed up
by the same USA State Authority, the DHS. Besides, there is a full synchronization between those two lists:
a new entry in the Mitre CVE is instantly inserted or updated in the NVD. It provides data through three
feeds: Web Page, Web Service based API, and JSON files feed [6]. Figure 2.12 shows an example of Web
Page data provided by the NVD for the CVE-2021-29425. This CVE is the same mentioned in section 2.3.

Figure 2.12: Basic NVD Data for CVE-2021-29425 (from [6]).

Figure 2.12 shows that the Web Page provides a more user-friendly interface than the API and JSON
file feeds, but with almost the same data. The API returns data regarding one CVE ID at a time over JSON
HTTP. On the other hand, the JSON files feed returns data regarding CVE IDs aggregated in one JSON file
for each year. This last option is more suitable for batch processing than the other two. Figure 2.13 shows
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that the Web Page also provides the CWE and CPE information.

Figure 2.13: CPE and CWE Data for CVE-2021-29425 (from [6]).

According to the NVD data feeds URL, this database offers the following vulnerability attributes:

• Descriptions: a brief analysis of the vulnerability record;

• Severity: the CVSS v2 and v3 – v3 only for entries after 2015 – as described in section 2.5;

• References: external URLs with extra information;

• Weakness Enumeration: the CWE ID of the weakness group to which the vulnerability record
belongs;

• Known Affected Software Configurations: the vulnerable CPEs list.

2.7.2 CNVD

The National Computer Network Emergency Response Technical Team/Coordination Center of China
(CNCERT/CC) is responsible for hosting and supporting the China National Vulnerability Database (CNVD).
That Center claims to be a non-profit organization with no subordination to the China government. As the
main CERT of China, it is responsible for coordinating other cybersecurity regional centers in that country.
It is also a member of the FIRST and one of the leaders of the Asia Pacific Computer Emergency Response
Team (APCERT) [73].

Figure 2.14 is a print screen of the CNVD Web Page. It shows that one of the main drawbacks of the
CNVD is the language support. There is no English language support, which requires this work to inspect
that Web Site to get the vulnerability data.

2.7.3 CNNVD

The China Information Technology Security Evaluation Center (CNITSEC) is an organization tied to
the Chinese Central Government and the Communist Party of China (CPC). It is the central organization in
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Figure 2.14: The CNVD Web Page (from [7]).

China for vulnerability analysis and risk assessment regarding information security. It is also responsible
for performing and funding cybersecurity research. The CNITSEC has also been responsible for the China
National Vulnerability Database of Information Security (CNNVD) since 2009 [74]. It uses the following
sources for data collection [8]:

• independent data mining;

• submission by users;

• collaborative sharing;

• network collection;

• technical testing.

The previous list shows that the CNNVD leverages an ecosystem of data sources to gather vulnerability
records. Its Chinese presentation also lists the following partners to collect data: mainstream application
software, operating systems, network equipment at home and abroad, government departments, industry,
vendors, universities, and research institutions. After discovering system loopholes, the CNNVD has a
dedicated team to perform analyses and vulnerability assessment [8].

Figure 2.15 is a print screen of the CNNVD Web Page. It also presents the identical drawback of the
CNVD: there is only Chinese language support. Thus, this work had to reverse engineering part o the Web
Page source code to grasp the CNVD services and functions.

2.7.4 JNVD

The Japan Vulnerability Notes iPedia (JVNDB) is a database of vulnerabilities regarding OSs, software,
embedded systems, applications, and libraries used in Japan. The Japan Vulnerability Notes (JVN) is a
web portal that hosts the JVNDB and provides analysis, solutions, and comments about vulnerabilities
entries stored in that database. The JVN is jointly supported by the Japan Cyber Emergency Response
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Figure 2.15: The CNNVD Web Page (from [8]).

Team (JPCERT) Coordination Center (CC) and the Information-technology Promotion Agency (IPA). They
released the JVNDB in 2007. On that date, it had 325 vulnerabilities entries from 1998 to February 2007 [9].
Figure 2.16 shows the last ten vulnerability records in the JVNDB.

Figure 2.16: Last ten vulnerability records in the JVNDB (from [9]).

This subsection cites the JVNDB just for awareness purposes because this work does not leverage that
database. The JVN claims to use the following data sources to populate the database: the information
published in the JVN portal, Japanese vendors, and the NVD. Moreover, figure 2.5 showed that the
JPCERT/CC, which supports the JVN, is a high-level member of the CVE Program in the USA. Therefore,
the JVNDB data should be promptly sent to the NVD, providing some synchronization between the JVNDB
and NVD. By April, 20 2022, the JVNDB had 2416 entries [9].
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This work does not mention the Bugtraq because it was discontinued by Accenture, the current owner of
SecurityFocus, in 2021 [75]. The Bugtraq was a famous mailing list about information security supported
by SecurityFocus since 1999.

2.8 EXPLOIT DATABASES

Exploit databases are repositories of code snippets and Proof of Concepts (PoC) to exploit software
and hardware vulnerabilities. Despite intrinsic linked to the vulnerability databases, while this last has the
system flaws, that one provides offensive weapons. This section addresses the following exploit databases:
Metasploit and Exploit-DB.

2.8.1 Metasploit

The Metasploit was created in 2003 as a portable network tool base on the Perl language. After that,
it was rebuilt in Ruby and acquired by the Rapid7 in 2009 [76]. This company boosted the Metasploit
development that turned into a framework capable of performing all phases of penetration testing. It has
two versions: Metasploit Pro and Metasploit Framework. The first is commercial one that offers several
automation tools and user friendly graphical interface. Metasploit Framework is the original open source
command-line tool on which the Pro version relies [77].

The architecture of Metasploit groups payloads, attack libraries and exploit in modules based on the
Ruby language. Recently, Metasploit started to support modules in Python and Go languages also [77].
Usually, the main objective of those modules and exploits is getting actively or passively access to a
command prompt in the target machine. No API or relational database is ready to download exploits or link
them to CVEs in Metasploit. Rapid7 also offers a searching tool on the Web for vulnerabilities – most of
them from the NVD – and exploit modules [76]. This work had to create a search mechanism to look for
exploits in Metsploit’s source code and relate them to CVEs.

2.8.2 Exploit-DB

The Exploit Database, known as Exploit-DB, is a repository of exploits supported by the Offensive
Security Organization [78]. It is a famous company for its information security certifications and PT
consulting. The Exploit-DB provides the source code of the exploits and, sometimes, the vulnerable target
applications. That repository is not a structured database but a mix of source code and text descriptions. The
Exploit-DB also has the Google Hacking Database (GHDB) since 2010. In most cases, the GHDB is a list
of google queries that return sensitive information that was not supposed to be public [10].

The Exploit-DB is a public database available at two URLs: <https://www.exploit-db.com/> and <https:
//github.com/offensive-security/exploitdb>. The first is a Web Page embedding metadata and information
regarding the exploits and the target applications. The CVE reference might be available if it is the target of
the exploit. The GitHub URL does not store an explicit reference to the CVE, which is only available in text
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comments in the exploit’s source code. None of them offer an API to enable data access or download. So,
this work had to develop a custom crawler to get the exploits and their metadata one at a time. Figure 2.17
is an example of an exploit list available on the Exploit-DB Web Page.

Figure 2.17: Example of an exploit list available on the Exploit-DB (from [10]).

2.9 VULNERS

Vulners is a data feed service that joins cybersecurity information from multiple public and private
sources. Vulners is a relatively new organization created in 2015 by Russian information security profes-
sionals. It has been gaining market share as an information security data feed. There is little information on
the Internet about Vulners as a company. It has two physical addresses for its headquarters: in Delaware, a
tax haven in the USA, and another one in Moscow/Russia. Vulners claims to leverage more than 170 data
sources to populate its data lake: different vendors, national vulnerability databases, infosec blogs, and
zero-day reports. So, it returns data ranging from CVEs to exploits and infosec comments. Figure 2.18 is
the main dashboard in Vulners’ Web Page [11].

Unlike most data sources presented in this chapter, Vulners is a high-priced service (C 500 per month in
April 2022). Its free option through API offers limited functionality, while the searches on the Web Page are
free but challenging to integrate with external systems [11]. One of its clients is Nmap. Despite not having
any commercial relations with Vulners, Nmap provides indirect data access to its data through the Nmap
scripting module. This work uses Vulners as on the fly searching tool after reverse-engineering the Nmap
Vulners script.
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Figure 2.18: Vulners Dashboard (from [11]).

2.10 SUMMARY

This chapter introduced the main concepts regarding vulnerabilities and exploits. It also listed databases
and sources regarding them. The following chapter reviews works about national vulnerability databases,
VA methods, and vulnerability prioritization.
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3 RELATED WORK

This chapter reviews related works and compare them with this. Section 3.1 reviews articles regarding
vulnerability assessment and pentest approaches. Section 3.2 addresses works that extract and compare
national vulnerability databases. Section 3.3 handles the use of recommender algorithms and MCDM
approaches for vulnerability choosing or ranking. Section 3.4 summarizes this chapter.

3.1 VULNERABILITY ASSESSMENT

Valea and Oprisa proposed pentest automation using Nmap and Metasploit [79]. The Nmap suite
provides the Nmap Scripting Engine (NSE) with Lua programming language to automate part of the
scanning procedure. With NSE scripts, the pentester can get CVEs regarding vulnerable services in the
target machine with some suggestions of available exploits. The work of Valea and Oprisa [79] focused only
on vulnerabilities regarding a root shell with Meterpreter. So, it worked with a small set of vulnerabilities-
exploits, which required algorithms like decision trees to avoid overfitting. Unlike this work, it leveraged
only the NMAP and its script engine as the source of vulnerability information [79], while this work uses
a mix of three national databases, Vulners and EDB. In the end, Valea and Oprisa did not realize that the
Nmap vulners script gets all its data from Vulners service API.

Huo et al. used Deep Reinforcement Learning (DRL) algorithm to automate the penetration test
operation [80, 81]. The method has three parts: training data, algorithm definition, model training, and
evaluation. It used Shodan, CVE, Nmap, Metasploit, and Microsoft to get the training data. Regarding
the model, it decided to use the Deep Q-Learning Network (DQN) method because of its plasticity to
mimic human behavior. Besides, DQN is ideal for treating state transitions in a Markov Chain Model. The
evaluation restricts the scope to web vulnerabilities. Also, it leverages the attack tree generation based on
multi-host multi-stage vulnerability analysis (MulVAL) [82].

The DQN model aims to achieve the optimal path using the CVSS base score as a reward function.
Although employing a deep learning model, the validation process was not straightforward. The training
process uses Shodan data to emulate local networks. Their experiment evaluated a small topology without
specification about the simulation environment and exploited only the CVE-2012-0053 [80, 81].

This section described works that showed the high computational cost of deep learning approaches for
extensive networks and sometimes convergence issues. They leveraged Nmap as the main searching tool for
vulnerabilities and exploits, but did not realize it was using data from Vulners. The Nmap scripts are an on
the fly integration with Vulners API through the NSE. This work uses an operation research method and
improves the NMAP integration with new data sources.
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3.2 VULNERABILITY AND EXPLOIT DATABASES

Wang and Guo proposed an Ontology for Vulnerability Management (OVM) to achieve knowledge
representation of the Common Vulnerabilities Exposures (CVE) of the NVD [20]. It was the first attempt to
create a knowledge base (KB) of vulnerabilities, but it did not consider the exploits possibility, which is
different from this work. GAO et al. created a taxonomy and ontology for network attack classification using
description logic (DL) [21]. Those works guided the CVE data model that this work uses for vulnerability
databases.

Kanakogi et al. [28, 30] used five approaches to map CVE to Common Attack Pattern Enumeration and
Classification (CAPEC). The first is the conventional way with Common Weakness Enumeration (CWE) as
a proxy. The other four approaches employed natural language processing (NLP). The former uses Term
Frequency-Inverse Document Frequency (TF-IDF) to match a CVE to a CAPEC. The second one employs
the encoder model USE developed by researchers at Google. The third uses the Sentence-BERT (SBERT).
The fourth uses the doc2vec python library. Finally, they conclude that the TF-IDF approach outperforms
the other three methods. They used only 58 CVEs from the NVD in the evaluation, not the entire set, which
may bias the results [28, 30]. Those results indicated the need for new vulnerability data sources beyond the
NVD.

Householder et al. [33] evaluated a systematic analysis of the relation between vulnerabilities and
exploits. They proposed three research goals: percentage of CVEs exploited, speed of exploit creation, and
features that influence exploit publication. By the end of 2019, only around 4.1% of the vulnerabilities
exposed after 2013 had an exploit publication. The creation speed is about two days. Rodriguez et al.
showed that vulnerability disclosure delay between the NVD and other open sources, e. g. in SecurityFocus,
may reach 244 days [23].

Moreover, Householder et al. [33] used the following vulnerability database sources: the NVD, the
CERT/CC Vulnerability Notes from Carnegie Mellon University, and TrendMicro’s Zero Day Initiative
(ZDI). For exploits, they used the EDB and Metasploit Framework. They found that vendor and CWE are
more correlated with the probability of exploitation than CVSS, but a causal relationship was not clear [33].
Moreover, they did not comprehensively download the entire EDB to assess its exploits and metadata. They
only checked for the existence of exploits regarding a set of CVEs from the NVD.

Despite several existing works regarding NVD mining, most of them leveraged some text mining
(TM) approach to visualize trends and patterns [18, 32, 33], even chaotic patterns (CP) [31]. Other
approaches used TM and machine learning (ML) to correlate the Common Attack Pattern Enumeration
and Classification (CAPEC) with CVE [28, 30]. Lastly, there were works leveraging text mining to detect
disclosure delays [23], NVD features estimations [69] and inconsistencies [66, 83]. This work learned from
these articles that the CVSS and CPE features carry many inconsistencies, but none of them went beyond
the NVD. Moreover, they did not leverage a data normalization (DN) approach.

A few works handled more than one national vulnerability database. Two of them used NVD, CNVD,
CNNVD, and other databases to extract data, but only regarding the IoT devices [12, 13]. The National
Research Institute (NASK) from Poland conducted the research Co-financed by the Connecting Europe
Facility of the European Union, which resulted in those two journal articles. NASK is the central institution
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for cybersecurity in Poland that works under the hood of the Chancellery of the Prime Minister. The first
article tackles the lack of a vulnerability database dedicated to IoT platforms.

According to Rytel et. al [12], the information about IoT vulnerabilities does not satisfy the architecture
layers’ requirements: Perception, Network, and Application. Moreover, the smart device market boosts
several new equipment manufacturers (OEMs), which release devices under multiple trade names, making
the CPEs hard to identify. Based on this motivation, the authors proposed a survey about IoT vulnerability
data feeds. They used the data sources from Table 3.1.

Table 3.1: Data sources cited in [12]

Data Source Description Observation

NVD
National Vulnerability Database
from the USA (the de facto standard)

Not focused on IoT

CNVD China National Vulnerability Database Has some IoT amenities

CNNVD
Chinese National Vulnerability
Database of Information Security

Not focused on IoT

JNVD Japan Vulnerability Notes iPedia Not focused on IoT

IVD
Industrial Control System (ICS)
vulnerability database

IoT or ICS focused

ICS-CERT-CN
Chinese CERT branch dedicated
to ICS vulnerability

IoT or ICS focused

US-CERT-ICS US-CERT dedicated to ICS vulnerability IoT or ICS focused

Other CERTs
CERTs from other countries
besides China and USA

None

ZDI Website of Zero Day Initiative Not focused on IoT

Bugtraq Forum maintained by SecurityFocus Not focused on IoT

Vulners Data Feed Aggregator Not focused on IoT

Exploitee.rs Wiki Site dedicated to IoT devices IoT or ICS focused

Other Blogs and Web Sites None

Table 3.1 shows that the work [12] was a comprehensive survey about vulnerability databases but
focused on IoT platforms. It is not a coincidence that [12] follows the list of data sources provided by FIRST
in <https://www.first.org/global/sigs/vrdx/vdb-catalog>. With that work, this one grasped that despite some
sources like the CERTs releasing new vulnerabilities sometimes sooner than the national databases, after
some while, the latter end up getting that information.

In their second work [13], the authors proposed an unstructured database for IoT vulnerabilities with
layers to clean data and avoid repeated entries from the raw data sources. They launched the Vulnerability
and Attack Repository for IoT (VARIoT - <https://www.variot.eu/>) in 2021 due to their work. Despite the
VARIoT [13] being an open database and forum regarding IoT, they do not provide access to the harvesting
programs’ source code. In contrast, this work provides access to its programming approaches and source
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code in Python.

Rytel et al. [12] did not leverage the flaws in the CNNVD Web Page to access the XML files without
using Web Parsing. Moreover, Rytel et al. focused on getting only IoT vulnerabilities and comparing the
databases over the following features: CVE use, CVSS scoring, and product identification. Regarding
this last feature, this work reached a different and more comprehensive conclusion about the CPE in the
CNVVD because of the use of the entire set of XML files. This work also compared the CNNVD and
CNVD regarding Chinese vendors, external references, and temporal correlation.

Regarding Vulners, this work and [12, 13] reached different conclusions. Despite the vastness of Vulners,
when leveraging it for network scanning, it performed worst than the NVD and CNNVD. It is a consequence
of the previous CPE conclusions. In common, Rytel and the authors of this work tried to contact the CNNVD
support team to access the XML files through the official channels. None of us obtained any reply to our
contacts. While Rytel et al. leveraged Web Crawlers to parse the HTML code, this work exploited a hidden
address in the Web Page Source code to get the files.

Janiszewski et al. [13] used the survey [12] to chose the data sources for the IoT database construction.
Table 3.2 lists the data sources that [13] leveraged.

Table 3.2: Data sources used in [13]

Data Source Type Source Trust Interface This work

NVD Vulnerability 1.0 JSON/API/Web Page Yes

CNVD Vulnerability 0.6 XML/Web Page Yes

CNNVD Vulnerability 0.6 XML/Web Page Yes

JNVD Vulnerability 0.8 XML/API/Web Page No

IVD Vulnerability 0.2 Web Page No

CERT/CC Vulnerability 0.8 GitHub No

ZDI Vulnerability 0.7 Web Page No

VUL-HUB Vulnerability 0.1 Web Page No

Vulmon Vulnerability 0.1 Web Page No

ZSL Vulnerability 0.1 Web Page No

Exploit-DB Exploit 0.9 Web Page Yes

Packet Storm Packet Vulnerability/Exploit 0.1 Web Page No

Bugtraq Vulnerability/Exploit 0.3 Web Page No

Table 3.2 shows that comparing [13] to [12], the main difference is the exclusion of Vulners and the
addition of the Exploit-DB and Packet Storm. They also decided to use exploit databases in the second
work to get more information about IoT devices. However, they did not know how to exploit the CNNVD
website’s flaws to get the XML files. Thus, they kept using Web Scraping techniques to get the CNNVD
data. The Source Trust attribute in Table 3.2, according to those authors, came from experts opinion.

The work described in [13], of which Rytel is one of the authors, is an extension of the vulnerability
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data source survey detailed in [12]. Janiszewski et al. [13] develop a pipeline to build an IoT unstructured
database with four steps: raw, low, medium, and high databases. Each one of the steps has the function of
harvesting, standardization, aggregation, and enhancement, respectively. Unlike this work, Janiszewski et
al. [13] leverage Elasticsearch and Kibana (ELK) to store and process the data over JSON, while this work
used a normalization approach with PostgreSQL.

This work decided to use only the data sources with file feeds because it allows a fast database update.
Web Page Scraping requires a long time of slow Web Access to get data without calling the attention of
blocking mechanisms. The only exception was for Exploit-DB; this work also used a Web Scraping approach
and Vulners. This last is an interesting case because they kept without realizing in both works [12, 13] that it
is possible to use Vulners through reversing engineering Nmap vulners script in Lua programming language.

Lastly, Table 3.3 shows that other approaches used only CNNVD to evaluate data analysis through
descriptive statistics (DS) [24], vulnerability classification with TM and ML [34] and severity prediction with
deep learning (DL) [84] without comparing with the NVD. This work seeks a more extensive comparison
between the NVD, CNVD, and CNNVD, leveraging them for vulnerability assessment and ranking.

Table 3.3: Comparison with Related Works I

Work Data Sources Approach Objective

[18, 32, 33] NVD TM
Pattern Detection
Data Visualization

[31] NVD CP Pattern Detection

[28, 30] NVD TM
Link CAPEC
to CPE

[23]
NVD
Web Data

TM Disclosure Delay

[69] NVD ML CPE discovering

[66, 83] NVD
TM
ML

Data inconsistencies

[12, 13]

NVD
CNVD, CNNVD, others
Exploit-DB, Packet Storm
Bugtraq

TM Vulnerability DB for IoT

[24] CNNVD DS Data Analysis

[34] CNNVD
TM
ML

Vulnerability
Classification

[84] CNNVD DL Severity Prediction

This work
NVD
CNVD, CNNVD
Exploit-DB, Vulners

TM
DN

Database Comparison
Vulnerability Assessment and Ranking
Multilingual NLP
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3.3 RECOMMENDER AND RANKING SYSTEMS

Pawlicki et al. wrote a comprehensive survey about the application of recommender systems for
cybersecurity [85]. The authors, through a long bibliography review, proposed the following classification
for the systems: Collaborative Filtering (CF), Content-Based (CB), and Knowledge-Based (KB). Besides,
some approaches can combine them to form various hybrid systems. Those three approaches have advantages
and disadvantages. CF relies on data from similar products, so it suffers from the cold start problem when
there is no initial data. CB does not rely on data from similar cases but depends on data about the users. Both
may suffer from sparsity issues. KB depends on ontology creation which might be complex and usually
requires user preferences representation. That survey [85] indicates Polatidis et al.[41, 42] works as the
main reference for recommender system for cybersecurity.

Polatidis et al. [41, 86] proposed an attack path prediction algorithm to achieve an information risk
assessment. Their work used CWE and CVE from Mitre and IT maritime infrastructure to generate the
attack graphs. After this, a recommendation system used a multi-level collaborative filtering method [42] to
choose the riskiest path. Polatidis et al. focused on attack path prediction in Microsoft Windows, whose
objective was gaining access to machines through the easiest attack path.

Polatidis et al. [41, 86] leveraged several qualitative criteria that depend on experts’ opinions to feed and
calibrate the recommender algorithm: Attack Path Analysis, Vulnerability Chain Analysis, Integration of
Open Source Information, Integration of Crowd Sourcing Information, Collaboration Capabilities, Support
tool, Tool availability, Pruning of paths, Propagation length, Attacker location, Attacker capability, Entry
points, Target Points, Satisfaction of EU policies, risk assessment functionality, Vulnerability types, and
Clarity and replication. Lima et al. [43] proposed a tridimensional matrix context-aware recommendation
system to model the benign behavior of mobile device users. The CB filtering uses a cluster algorithm
approach to indicate whether it is the same user, a different profile, or an abnormal one. In that case, the
recommender system aimed to determine malicious behavior and not rank vulnerability issues about the
system. Different from them, this work uses quantitative features from the CVSS to access the vulnerable
target, not the path to it. Besides, this work leverages TOPSIS targeting any platform, not only maritime,
based on Microsoft Windows.

Bączkiewicz and Wątróbski propose Python software packages to facilitate the Multi-criteria Decision
Analysis (MCDA) implementation: Crispyn [87] and pyrepo-mcda [88, 89]. The first is a library with the
following methods for the criteria weighting calculation: equal weighting, Standard Deviation, Statistical
Variance, MEthod based on the Removal Effects of Criteria (MEREC), Coefficient of Variation (CV)
[13,19], Angle, Criteria Importance Through Inter-criteria Correlation (CRITIC), Integrated Determination
of Objective CRIteria Weights (IDOCRIW), Criteria Impact Loss (CILOS), Gini coefficient-based and
entropy. The last method uses Shannon’s theory [90] to evaluate the information entropy from the criteria
data and assess the importance of each criterion.

Whereas the Crispyn [87] has weighting methods, the pyrepo-mcda [88, 89] provides the following
MCDA algorithms implementation: VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR),
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), COmbinative Distance-
based ASsessment (CODAS), Weighted Aggregated Sum Product Assessment (WASPAS) Multiattribute

27



Boundary Approximation Area Comparison (MABAC), MULTIMOORA, Multi-Objective Optimization
on the basis of Ratio Analysis (MOORA), Stable Preference Ordering Towards Ideal Solution (SPOTIS),
Evaluation based on Distance from Average Solution (EDAS), Preference Ranking Organization Method
for Enrichment Evaluation II (PROMETHEE II), Complex Proportional Assessment (COPRAS), Additive
Ratio Assessment (ARAS), PROMETHEE for Sustainability Assessment-Criteria (PROSA-C), Compromise
Ranking of Alternatives from Distance to Ideal Solution (CRADIS), Simple Additive Weighting (SAW),
Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) and Additive
Ratio Assessment (ARAS).

The MCDA analysis had already been used to prioritize software vulnerability types, but not the CVEs
themselves [91]. Moreover, there is an example of work comparing the VIKOR and TOPSIS methods to
rank vulnerability types, concluding that they have almost the same performance [92]. On the other hand,
this work ranks a list of CVEs based on their features. An attempt to use a hybrid approach of subjective and
objective weighting calculation with entropy has already been described for ranking material supplier [93].
As far as the author knows, no work has yet to try to rank CVEs using the CVSS attributes instead of
the CVSS aggregated value. Table 3.4 presents a summary comparison between the works cited in the
subsection and this work. It shows that it leverages more vulnerability database sources to a broader network
scope.

Table 3.4: Comparison with Related Works II

Work Data Sources Algorithm Scope

[85] Doesn’t apply Doesn’t apply Survey

[41] Mitre CVE CF MS Windows

[42] Mitre CVE CF MS Windows

[43] User profiles CB Mobile Devices

[45] NVD, Metasploit TOPSIS 5G networks

[47] Doesn’t apply TOPSIS IDS attributes

[46] Private TOPSIS Power Systems

[87] ✗ Weighting Calculation Software Package

[88] ✗ MCDA Software Package

[89] ✗
Weighting Calculation
and MCDA

Software Package

[91] Mitre CVE TOPSIS
Vulnerability Type
and Ranking

[92] Mitre CVE VIKOR and TOPSIS
Vulnerability Type
and Ranking

[93] ✗ TOPSIS
Material Supplier Type
and Ranking

This work
NVD, CNVD, CNNVD,
Metasploit, Exploit-DB,
Vulners

TOPSIS

Database Comparison,
Linux Servers,
Miltilingual NLP,
and Exploit Correlation
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Table 3.4 indicates that three works use the CF and CB recommendation algorithms: the first two [41, 42]
to recommend attack paths and the last [43] to model benign behavior. None of them target vulnerability
ranking. Table 3.4 also shows that three works treated the recommendation problem with an MCDM
approach [45, 46, 47]. It relies on minimizing or maximizing the geometric distance from an ideal solution
like the classical recommendations systems. Most of them leveraged the TOPSIS for security assessment
of mobile networks on a reduced scope of vulnerabilities without considering the maturity of the exploit
artifacts and for Intrusion Detection System (IDS), without leveraging multiple national vulnerability
databases [45, 46, 47]. Besides, Table 3.4 lists three works that do not handle system vulnerability ranking,
but they provide Python-based libraries with MCDA methods, including algorithms to objective weighting
calculation [87, 88, 89]. Furthermore, it shows works regarding the application of the TOPSIS and VIKOR
for ranking vulnerability types using only the Mitre CVE database and without considering the CVSS
features [91, 92]. Lastly, Table 3.4 presents an article about the use of TOPSIS with entropy-based weighting
for building material supplier selection [93].

3.4 SUMMARY

This chapter discussed the main related works in three areas: information security assessment, vulner-
ability/exploit data sources, recommender, and ranking systems. The next chapter proposes an ETL data
pipeline to assess, compare and link the NVD, CNVD, CNNVD, and EDB. It also proposes a recommender
system to rank the vulnerabilities.
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4 DATA COLLECTION AND PROCESSING PIPELINE

This chapter describes the architecture of the Data Collection and Processing Pipeline for Cyber
Vulnerability Intelligence. Figure 4.1 presents the two steps that comprise the vulnerability and exploit
databases building. Moreover, it also displays the three steps to scan, match and rank the vulnerabilities.
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Figure 4.1: Data Collection and Processing Pipeline

Section 4.1 describes the vulnerability database building process. Section 4.2 shows the exploit database
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building process. Section 4.3 presents the Scanner process. Section 4.4 describes the process to search for
the vulnerability-exploit tuples. Section 4.5 shows the step for vulnerability-exploit ranking. Section 4.6
concludes this chapter.

4.1 VULNERABILITY DATA

This section describes the approach to getting the vulnerability data. This work normalizes and links
them to evaluate the data analysis and support the vulnerability ranking and prioritization process. Figure 4.2
presents the summary of the vulnerability database building and analysis flow, which has three steps.

Data Harvesting Data Structuring

JSON
XML


Data Analysis

STRUCTURED
DATA


NVD
CNVD

CNNVD
TEXT
DATA


Multilingual NLP

Figure 4.2: Vulnerability Database Flow.

Subsection 4.1.1 describes the data harvesting step. Subsection 4.1.2 shows the data normalization
approach to create the relational database. Subsection 4.1.3 describes the database features.

4.1.1 Data Harvesting

The Data Harvesting step comprises the data collection of the following national vulnerability databases
described in section 2.7: the NVD, CNVD, and CNNVD. They are vulnerability databases supported by
state organizations. Moreover, this work starts downloading the NVD, CNVD, and CNNVD simultaneously
to achieve a fair comparison.

4.1.1.1 NVD

The NVD is available for download through compressed data files. They are in JSON format, archived
by year since 2002. It does not mean that there are only vulnerabilities since 2002. The 2002 archive
contains that year and previous vulnerabilities. Besides, there are two extra files: recent and modified. The
first is the archive of new vulnerabilities in the last seven days. The latter contains the modified entries in
the last month. NIST updates the year archives daily, while the two extra files are updated every two hours.

NIST also offers an API to get data receiving one CVE ID as a parameter. Figure 4.3 presents the web
page with the JSON archive files. This work uses the OpenCVE [94] program to download the files and
host them in a local PostgreSQL database. It provides a JSON data type that this work leverages to store the
entire dataset in one batch before the data normalization process.
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Figure 4.3: NVD Download Page.

4.1.1.2 CNVD

The CNVD does not offer an interface or documentation regarding data download. Moreover, the
website that hosts the database in Mandarin requires user authentication and blocks access when there are
many connection attempts from the same IP address. However, Figure 4.4 shows that it is possible to exploit
a system flaw to download the files through a direct link.

Figure 4.4: CNVD download without logon.
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The CNVD Web Page hides the base URL to download the XML data files in its source code. There are
direct links to those files concatenating the base URL <https://www.cnvd.org.cn/shareData/download/> with
an integer number from 1 to 1000. Some URLs do not correspond to an XML file, returning a 404 HTTP
error. This work created a Python program to exploit that system flaw and download the entire XML dataset.
Furthermore, the Python web scraper must set up the HTTP header with customized “User-Agent” tag and
cookie (__jsluid and __jsl_clearance_s). The Web Browser sets up those parameter values during the
HTTP GET Request to the CNVD Site. Listing 4.1 shows an example of a customized HTTP Tag to bypass
the CNVD blocking system.

default_headers = {

'Accept-Language' : 'en-US,en;q=0.5',

'Accept-Encoding' : "gzip, deflate, br",

"Sec-Fetch-User" : "?1",

"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:95.0) Gecko/20100101\

Firefox/95.0",

"Accept" : "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,\

image/webp,*/*;q=0.8",

"Accept-Encoding" : "gzip, deflate, br",

"Connection" : "keep-alive",

"Host" : "www.cnvd.org.cn",

"Sec-Fetch-Dest" : "document",

"Sec-Fetch-Mode" : "navigate",

"Sec-Fetch-Site" : "none",

"Sec-Fetch-User" : "?1",

"Upgrade-Insecure-Requests" : "1",

"Host": "www.cnvd.org.cn",

"Cookie": "__jsluid_s=3f0307d50bb07b51034147cc24d25413;\

__jsl_clearance_s=1641480308.561|0|dkCFvrbJViH2aIEVVi1qxemRKoM%3D",

}

Listing 4.1: HTTP GET Configuration

4.1.1.3 CNNVD

The CNNVD site is also in Mandarin like the CNVD and claims to be an open database. After
profiling the site, this work located the download section for the CNNVD dataset in the URL <http:
//www.cnnvd.org.cn/web/xxk/xmlDown.tag> as shown in Figure 4.5. It shows that the CNNVD download
page looks like the NVD page: one file for each year from 1999 to 2022. It also provides two more files:
daily updates in the first row and monthly updates in the second. However, the download attempts result in
the error message shown in Figure 4.6.

The message box in Figure 4.6 returns the following message translated to English: “Not logged
in, please log in first!”. It indicates that CNNVD requires user authentication, but no signup options
exist. After profiling the Web Page, it suggested contacting the system administrator through the email
cnnvd@itsec.gov.cn, which has not answered this work request for access.
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Figure 4.5: CNNVD Download Site.

Figure 4.6: CNNVD Error Message.

Regardless, the page source code hides the download URL to each file: the string pattern <http:
//www.cnnvd.org.cn/> concatenated with the file name available in the source code of the screen presented
in Figure 4.5. Figure 4.7 shows that, like the CNVD system, it is possible to download CNNVD XML files
without signing in. It is also worth mentioning that the CNNVD uses the HTTP protocol instead of HTTPS.

Figure 4.7: CNNVD download without logon.
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4.1.2 Data Structuring

The JSON and XML data types are not the best option for data and text processing with Python in
PostgreSQL. So, this work evaluates a database normalization of the NVD. It also uses the same approach
for the CNVD and CNNVD, with the difference that the NVD has deeply nested JSON. Besides, the CPE in
the NVD includes logical conditions that do not exist in the CNVD and CNNVD. Moreover, the NVD has
CVSS information unavailable in the other two.

An overview of entries in the JSON and XML files can help to grasp the differences between those three
data feeds. Figure 4.8 shows the entry in the NVD for the CVE-2020-15009.

Figure 4.8: Vulnerability Entry in JSON File from the NVD.

Besides the CVE element with data regarding the external references, description and the CWE in the
Figure 4.8, the JSON file has one separated element for the CPE description and other one for the CVSS
data. Figures 4.9 and 4.10 present those elements.

Figure 4.9: The CPE element in JSON File from the NVD.
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Figure 4.10: The CVSS element in JSON File from the NVD.

In order to compare the data feeds and grasp a data model, Figures 4.11 and 4.12 show the entries in the
CNVD and CNNVD for the same CVE picked up in the NVD, CVE-2020-15009.

Figure 4.11: Vulnerability entry in XML File from the CNVD.

36



Figure 4.12: Vulnerability entry in XML File from the CNNVD.

Despite not providing an XML Schema Definition (XSD), it is possible to infer a data model to the
CNVD and CNNVD. Besides the XML tags describing the vulnerability, they have a tag list equivalent to
the CPE list in the NVD: <vuln-software-list> in the CNNVD and <products> in the CNVD.
Although not the CVSS data are not available, they provide a severity classification tag: <serverity> in
the CNVD and <severity> in the CNNVD. By the way, the CNVD and CNNVD misspell some XML
tags in English.

From the JSON and XMLs data feeds overview, this work created a relational data model to store the
data from those files in a PostgreSQL database. Figure 4.13 depicts the data model with the main tables. It
shows that the central entity is the vulnerability table. Besides, there are other entities for the CVE metrics:
CVSS, description, CWE, CPE, and references. These last are data like URLs for external sites or exploits.

The CNVD and CNNVD use a database model very similar to the NVD. The main difference is that they
do not carry information about complex CPEs. This work stores the complex and basic CPEs in different
tables to enhance the data analysis. The CNVD and CNNVD only list the vulnerable platforms without
considering logical conditions. Furthermore, there are no data about CWE in these databases. This work
leverages the Pandas library and list compression technique with the Python Multiprocessing library to
accelerate the file reading, processing, and data normalization. Moreover, the data processing includes a
data cleaning to remove the <\r>, <\n>, <\t>, and <\\> characters.

This work uses the Python Multiprocessing library for fast creation and loading of the data from
JSON and XML files to PostgreSQL. It allows throwing n parallel processes, leveraging a multi-core CPU

37



NVD Vulnerability

CVE ID
CVSS
...

NVD Basic CPE 


 CVE ID
 ...


NVD Reference

CVE ID
...

NVD CWE

CVE ID
...

0..n1

NVD Complex CPE


 CVE ID

 ...


1

1

1

0..n

0..n

0..n

CNVD CVE

CNVD ID

CVE ID

CNVD Vulnerability

CNVD ID

CVSS
...

CNVD Product


CNVD ID
...

0..n110..n

CNNVD Vulnerability

CNNVD ID
CVSS

....


CNNVD Product


 CNNVD ID
 ...


CNNVD Reference

CNNVD ID
...

CNNVD CVE

CNNVD ID
CVE ID

0..n1

1

1

0..n

0..n

NVD Model

CNVD Model

CNNVD Model

Figure 4.13: Data Models.

architecture, which is ubiquitous nowadays. Each parallel process is responsible for reading, processing,
and loading one file into the relational database. Figure 4.14 depicts the Extract Transact and Load (ETL)
data pipeline built with Python and PostgreSQL.

ETL Pipeline
Extract Transform Load

1 ... 3

1 ... 3

1 ... 3

Figure 4.14: ETL Pipeline.

Figure 4.14 shows the same basic structure for loading JSON and XML files. The main difference
between them is the step for file reading. The NVD files are deeply nested JSON elements, which requires
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a normalization approach with the method json_normalize from the Pandas library. This work uses the
xml.etree.ElementTree API to handle the XML files from the CNVD and CNNVD. For the database schema
creation, this work leverages the method to_sql from the Pandas library with the SQLAlchemy engine.

4.1.3 Data Analysis

This step depends on the relational database created in PostgreSQL. It seeks data descriptions and
inconsistencies in those three national vulnerability databases. So, it requires the calculation of numeric
features of each database regarding the attributes presented in Table 4.1.

Table 4.1: Vulnerability Database Attributes

Feature Target Database

Vulnerability Count NVD, CNVD, CNNVD

Missing CPE NVD, CNVD, CNNVD

Missing CVSS NVD, CNVD, CNNVD

Missing Reference NVD, CNVD, CNNVD

Missing CVE CNVD, CNNVD

Missing Data NVD, CNVD, CNNVD

Duplicated CVE CNVD, CNNVD

CVSS version NVD, CNVD, CNNVD

Missing CWE NVD, CNVD, CNNVD

The attributes of Table 4.1 allow a database summary and tracking of each database’s evolution since
the historical series’s beginning. After grasping the numeric features of the NVD, CNVD, and CNNVD, it
is possible to compare them and look for data inconsistencies. This work will also seek a possible numeric
correlation between the historical series of those three national vulnerability databases.

Lastly, this works leverages text mining techniques in PostgreSQL to seek uncommon vulnerability
descriptions, vendors, and platforms. This part pays more attention to comparing Chinese software and
hardware industry occurrences, e. g. Huawei, Xiaomi, and ZTE, in each one of the databases.

4.1.4 Multilingual NLP

More than checking the data features of the national vulnerability databases, this work proceeds a text
comparison between them. In order to check if the Chinese databases are only copying the NVD, this
work proceeds with a text comparison between the NVD and CNNVD entries that share the same CVE id.
Nevertheless, the NVD text is in English, while the CNNVD is in Chinese, making the comparison difficult.
Initially, it would be necessary at least to translate the Chinese databases to English before comparing
them with the NVD. Evaluating a comparison model or manual checking would be necessary even after
translation. This last option is almost impossible because there are more than one hundred thousand CVEs
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in the CNNVD. Besides, high-quality translation services would be necessary, which are not free of charge
nowadays. Therefore, this work decided to use a semantic text similarity approach.

This work uses a transfer model to create a word embedding for each vulnerability description to avoid
the translation step. The word embedding is a numeric text vector representing each vulnerability description.
Theoretically, the vectors representing identical texts have a high cosine similarity regardless of the language.
Thus, after generating the word embedding for the vulnerability descriptions set, this work calculates the
cosine distance between them to assess the similarity between the entries with the same CVE id. Figure
4.15 describes this work comparison approach.
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(English Text Vector)

CNNVD Vulnerability Description

(Chinese Text Vector)
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Word Embedding
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Figure 4.15: Text Comparison Scheme.

Figure 4.15 describes a scheme that requires a multilingual model to handle texts in English and Chinese.
The last type of text also may be in traditional or simplified Chinese. However, despite China’s use of
simplified Chinese as a standard, too much legacy content is written in the traditional version. Since the
pre-trained models can handle only simplified Chinese, the scheme displayed in Figure 4.15 requires a
Chinese version checking and conversion step. This work uses the Hanzi Identifier Python-based library [95]
for the checking and the Hanzi Converter Python-based library [96] for the conversion. The following
diagrams omit the Chinese language checking and conversion block for simplification purposes.

This work applies pre-trained transfer models on a representative sample set of vulnerabilities from
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the NVD and CNNVD. Considering a population o 168,398 entries referencing the same CVE id in the
NVD and CNNVD, a representative sample set with 95% of confidence level and 5% of maximum deviation
must have at least 384 samples. After getting the vulnerability samples randomly from those databases, the
Chinese text of each entry is manually translated to English using two different services: Google translate
and DeepL libraries.

After the translation process, this work uses the following five pre-trained models from Sentence
Transformers [97]: distiluse-base-multilingual-cased-v1, distiluse-base-multilingual-cased-v2, paraphrase-
multilingual-MiniLM-L12-v2, LaBSE and paraphrase-multilingual-mpnet-base-v2 [98, 99, 100]. This work
chose those five models because they provide support for multilingual NLP, including English and Chinese
languages, according to [98, 99, 100].

Before evaluating those five multilingual pre-trained models, this work uses a histogram of the word
count of the vulnerability descriptions in the NVD and CNNVD. Through the analysis of the histogram
models, it is possible to reach a max_word_length parameter value for those models to fit most of the texts
without truncation. Figure 4.16 shows the sampling approach that uses the preceding comparison scheme.
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Figure 4.16: Model Test Scheme.
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Figure 4.16 shows the process flow to compare each Chinese vulnerability description against three texts:
the Google-translated version, the Deepl-translated version, and the NVD description. Thus, it calculates the
cosine similarity for each text comparison. After evaluating the calculation for the sample set using those
five transfer models, this work computes the standard and weighted average of the cosine similarities to
choose the model with the best performance. Beyond calculating the similarities, this work also gauges the
execution performance of the models. Figure 4.17 shows the testing scheme.
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Figure 4.17: Ranking Models Scheme.

Figure 4.17 shows that the models with the results closest to one (100%) present the best performance.
With it, this work creates a scheme to evaluate the comparison of the NVD and CNNVD entries with the
same CVE reference. Considering the amount of text, it may take too much time for CPU processing,
even with multi-core processing. Moreover, the pre-trained neural network models depend on intensive
matrix calculations, slowing the overall process even further. In that case, a GPU hardware with hundreds of
unit cores tuned to perform the same multiplication operation in parallel over different data can perform
much better than a CPU — usually with less than ten general purpose cores — in model training and
evaluation [101].

Thereby, this work decided to leverage GPU processing with PyTorch and Compute Unified Device
Architecture (CUDA) to speed up the encoding of the text vectors into numerical vectors (word embedding)
and the similarity calculation. Since the data volume may be larger than the Dedicated Video RAM (VRAM),
it may require splitting them into data chunks to fit into the GPU memory for each calculation batch. Figure
4.18 describe the GPU approach.
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Figure 4.18: GPU implementation.

4.2 EXPLOIT DATA

This section describes the procedure to get the exploits data. Unlike the vulnerabilities data that
state organizations usually provide, the community or private organization gets used to supporting the
exploit repositories. Sometimes, the national vulnerability databases mentioned before getting data from
exploit archives to enrich their knowledge base, as this work will demonstrate. This work normalizes the
unstructured data from two exploit repositories and links them to the previously collected vulnerability
databases. Figure 4.19 presents the summary of the database methodology flow, which has three steps.

Subsection 4.2.1 describes the data harvesting step. Subsection 4.2.2 shows the data normalization
approach to create the relational database. Subsection 4.2.3 describes the database features to link and
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Figure 4.19: The Exploit Database Summary Flow.

compare with the national vulnerability databases.

4.2.1 Data Harvesting

The Data Harvesting step comprises the data collection of the following exploit databases: the Metas-
ploit Framework (MSF) and Exploit Database (EDB). They are archives of exploits provided by private
organizations.

4.2.1.1 Metasploit

More than a system, the MSF is a framework integrating reconnaissance tools, exploits, and payloads
in the same environment. The EDB is supposed to list every exploit from the MSF. Moreover, the MSF
implements only a subset of the exploits from the EDB, most of them based on Ruby programming language.
As the exploits in it leverage interpreted languages as described in subsection 2.8, this work uses a custom
python program to parse MSF’s modules and search for CVEs references. Listing 4.2 reproduces the python
code snippet that executes that CVE pattern search.

import shutil, sys
import subprocess
import pandas as pd

cmd = ['grep','--recursive','--line-number','--extended-regexp','--only-matching',\
'/opt/metasploit-framework/embedded/framework/modules', \
"--regexp=[\'\[\(\ ]{1,3}CVE[\'\ \,]{1,4}[0-9]{4}\-[0-9]{1,5}'? ?)?]?"]

a = subprocess.Popen(cmd, stdout=subprocess.PIPE)

if sys.version_info[0] < 3:
from StringIO import StringIO

else:
from io import StringIO

buff = StringIO(a.communicate()[0].decode('utf-8'))

header_list = ["module", "line", "cve"]
df = pd.read_csv(buff, sep=":", names = header_list)

df['cve'] = df['cve'].str.replace('[\' \[\]]*', '', regex=True).str.replace(',','-')

print(df)
}

Listing 4.2: MSF Parser Code Snippet
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Listing 4.2 shows that this work searches for the pattern <CVE-YYYY-DDDDD> in Metasploit’s modules
directory. After getting the CVEs list, this work stores it in the PostgreSQL table for joining search in the
national vulnerability databases and EDB.

4.2.1.2 The Exploit Database (EDB)

The EDB is an exploit archive supported by the Offensive Security Organization [78] as explained in
section 2.8. It is a repository of unstructured data because it neither provides an API for input calls nor
offers semistructured data like JSON and XML files. The EDB is a collection of exploit source codes and
their metadata embedded in the HTML and Javascript of the Web Page.

Different from the three venerability databases, the EDB requires a custom crawler to profile its Web
Page Source code to get the exploit source codes and their metadata one by one. The EDB Web page hosts
each exploit in a separate address with the following URL pattern: <https://www.exploit-db.com/exploits/>
concatenated with an integer number which is the exploit identification. Figure 4.20 is an example provided
by EDP for the exploit <https://www.exploit-db.com/exploits/900>.

Figure 4.20: Example of Exploit Data from EDB.

Figure 4.20 also shows that exploit id is the same integer number that comprises the URL. It also shows
from the rendered HTML page that it is possible to get the following attributes:

• EDB-ID: exploit id;

• CVE: exploited CVE id;

• Author: author’s name of the exploit;

• Type: exploit classification;

• Platform: classification of the platform that hosts the application target;

• Date: publish date;

• EDB Verified: already tested;
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• Exploit: source code;

• Vulnerable App: binary of the vulnerable application.

4.2.2 Data Structuring

On the other hand, crawling the EDB Web Page requires getting the site entries one by one, making this
task IO and not CPU bound. Then, the multiprocessing approach used to handle the vulnerability data feeds
does not work. In that case, it is advisable to use a multithreading technique. Nevertheless, even being an
IO-bound task requires a balance between the multithreading approach to speed up the download versus the
possibility of being IP blocked by an IDS in the EDB site.

The Thread class from the threading library enables multithreading in the Python programming language.
This work decided not to stress the EDB Web page and did not leverage a multithreading approach to
speed up the database download. After getting the data through sequential calls using the Requests and
BeautifulSoup libraries, this work handled them in the same way as the vulnerability databases with Pandas
and SqlAlchemy libraries. Figure 4.21 represents the Exploit database model.
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Figure 4.21: Data Model for Exploit-DB.

4.2.3 Data Analysis and Visualization

This step depends on the relational databases created for the national vulnerabilities and exploit data.
First, it calculates aggregated values regarding exploit count and missing references to CVEs. Second, this
work groups the exploits according to the type and author.

After those two steps, it evaluates a cross-reference between the EDB and the NVD, CNVD, and
CNNVD. The objective is to realize which are more up-to-date to exploit maturity and if the Chinese
databases are using the EDB to grasp new vulnerabilities before the NVD. Thus, it requires the calculation
of numeric features of each database regarding the attributes presented in Table 4.2.
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Table 4.2: Exploit Database Attributes

Feature Target Database

Exploit Count MSF and EDB

Missing CVE EDB

Exploit Groups EDB

Exploit Authors EDB

Cross-Reference EDB, NVD, CNVD, and CNNVD

4.3 SCANNER

The work implements two scanning methods: network and host. The former returns the list of running
nodes in a target network. The later returns the list of CPEs for running services in a target node. The former
uses the NMAP function to detect the network hosts’ situation (up or down). The latter also leverages
NMAP to identify CPEs of the opening services in each up machine. While the CPE is the key to searching
for entries in the created vulnerability database, the CVE is the key to linking them to entries in the exploit
database.

This work built a new Python class to wrap the NMAP scanning functions, as shown in Listing 4.3. It
shows that the class implements two functions: scanNetworkStatus to check for machines availability in a
network and scanFullTarget to list exposed services/CPEs in a target machine. The more detailed the CPE
information, the more likely the chance to precisely match exploitable vulnerabilities for the target in the
Matcher module.

class NmapScanner:

def __init__(self):
self.scanner = nmap.PortScanner()
print("Starting REVS...")
print("Starting Nmap...")

def scanFullTarget(self, ip):

nm = self.scanner
nm.scan(hosts=ip)
serv_list = list()

for proto in nm[ip].all_protocols():
lport = nm[ip][proto].keys()
for port in lport:

serv_list.append({"port":port,"state":nm[ip][proto][port]['state'],\
"protocol":proto,"service_name":nm[ip][proto][port]['product'],\
"cpe":nm[ip][proto][port]['cpe']})

return serv_list

def scanNetworkStatus(self, network):
nm = self.scanner
nm.scan(hosts=network, arguments='-n -sP -PE -PA21,23,80,3389')
hosts_list = [(x, nm[x]['status']['state']) for x in nm.all_hosts()]

return hosts_list

Listing 4.3: Python Wrapper to Nmap
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4.4 MATCHER

This step uses the results from the prior one to search for security data in the following databases:
Vulnerabilities, Exploits, and Vulners API. The last is a web service provided by Vulners [11], an Information
Security Company from Russia as described in section 2.9. The other two are the PostgreSQL databases
described in sections 4.1 and 4.2, respectively.

The Vulners data provides a cross-validation layer to the vulnerability and exploit databases that this
work created before. An interface to Vulners database is embedded in NMAP and coded in Lua programming
language: vulns script. The work of [79] leveraged it to carry out the MSF automation. However, this work
requires more vulnerability features to create the decision matrix for the TOPSIS algorithm. So, this work
created a new wrapper to Vulners API (<https://vulners.com/api/v3/burp/software?>) through a Python
class. Listing 4.4 shows a code snippet of that Python wrapper.

class VulnersScraper:
def __init__(self):

self.vulners_url = 'https://vulners.com/api/v3/burp/software?'
print("Gathering Vulnerabilities and Exploits...")

def getVulnersCPE(self, vuln_software, vuln_version, vuln_type):
vulners_lst = []
vulners_dict ={}
session = HTMLSession()
url = self.vulners_url + "software=" + vuln_software + '&version=' + \
vuln_version + "&type=" + vuln_type
response = session.get(url=url)
if response.json()['result'] == 'warning':

return response.json()['result'], response.json()['data']['warning']
resp = response.json()['data']['search']
for line in resp:

line_dict = {}
line_dict['nmap_cpe'] = vuln_software + ':' + vuln_version
line_dict['id'] = line['_source']['id']
line_dict['type'] = line['_source']['type']
line_dict['bulletin_family'] = line['_source']['bulletinFamily']
line_dict['title'] = line['_source']['title']
line_dict['description'] = line['_source']['description']
line_dict['cvss_score'] = line['_source']['cvss']['score']
line_dict['cvss_vector'] = line['_source']['cvss']['vector']

Listing 4.4: Python Class Snippet to Wrap Vulners WebsService

Nmap Scripting Engine (NSE) uses an embedded Lua interpreter to enable the extension of Nmap
functions. Moreover, a library connects Lua scripts with the Nmap API, allowing the parallel call of available
functions. It is so consolidated in the Nmap environment that most users think the –script vulns option is a
native function from it. However, a Lua script stored in the script folder under the NMAP root directory
evaluates the search for vulnerabilities. Listing 4.5 is a code snippet of that Lua program. It inspired this
work for building the Python class presented in Listing 4.4. It wraps the call to the Vulners web service to
return more CVSS attributes than the Nmap Lua Script.
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function get_results(what, vers, type)
local api_endpoint = "https://vulners.com/api/v3/burp/software/"
local vulns
local option={

header={
['User-Agent'] = string.format('Vulners NMAP Plugin %s', api_version)

},
any_af = true,

}

local response = http.get_url(('%s?software=%s&version=%s&type=%s'):
format(api_endpoint, what, vers, type), option)

local status = response.status
if status == nil then
-- Something went really wrong out there
-- According to the NSE way we will die silently rather
-- than spam user with error messages
return

elseif status ~= 200 then
-- Again just die silently
return

end

status, vulns = json.parse(response.body)

if status == true then
if vulns.result == "OK" then
return make_links(vulns)

end
end

end
}

Listing 4.5: Nmap vulns script

4.5 RECOMMENDER

This work approach chooses the riskiest vulnerability using a decision-making method. In this case, it
uses the TOPSIS algorithm based on the optimization technique described in [102, 103, 104]. The attack is
a one-layer problem of picking up the riskiest vulnerability, i.e., the lowest cost and highest impact. So, the
decision matrix has m vulnerabilities (rows) compared to n features (columns).

A = (aij) i = 1, 2, ...,m; j = 1, 2, ..., n (4.1)

Equation 4.1 shows that the aij is the jth feature value of the ith vulnerability. After that, the A is
normalized to Y and weighted by columns to its X form:

Y = (yij) yij = aij/

√√√√ m∑
i=1

a2ij (4.2)
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X = (xij) xij = λj ∗ yij (4.3)

The technique requires choosing the best and worst options from the attacker role.

Z+ = (z+1 , z
+
2 , z

+
3 , ..., z

+
n ) (4.4)

Z− = (z−1 , z
−
2 , z

−
3 , ..., z

−
n ) (4.5)

Understanding if the column feature is a benefit or a cost is essential. If it is a benefit, the zj value for
the best option is the maximum column value. Otherwise, it must be the minimum value. Equations 4.6
e 4.7 indicate the calculus for benefit and cost features, respectively.

z+j = max(xij) z−j = min(xij) (4.6)

z+j = min(xij) z−j = max(xij) (4.7)

There are m vectors with dimension n, which are the rows of the matrix X. The ideal solutions are two
new vectors with sizes n, Z+, and Z−, which TOPSIS uses to calculate the Euclidean distance with each of
the m vectors.

d+i =
√
(Zi −X+)2 (4.8)

d−i =
√
(Zi −X−)2 (4.9)

Finally, it calculates the performance ratio to rank each one of the vulnerabilities, from highest to lowest.

pi = d+i /(d
−
i + d+i ), i = 1, 2, 3, ...,m (4.10)

This work uses nine features as criteria in the decision matrix:

• Seven Vulnerability Features: described in Subsection 2.5 — access_vector, access_complexity,
authentication, confidentiality_impact, integrity_impact, availability_impact —, and the time gap
between the vulnerability publishing date and the evaluation date. This last is a cost feature that
TOPSIS must minimize;

• Two Exploit Features: the number of correspondent exploits for each vulnerability and how many
verified exploits for each vulnerability.

The Multi-criteria Decision Analysis (MCDA) proposed in TOPSIS allows the ranking and assessing of

50



alternatives guided by criteria that may be conflicting. The weights that are used by each criterion have a
strong influence over the MCDA results. Thus, besides the method itself, the weighting calculation algorithm
influences the ranking procedure. There are three types of weighting methods: subjective, objective, and
mixed. The first relies on expert opinions, which are subjected to human interference and error. The second
depends solely on the algorithm and data themselves. The third one is a combination of the previous two.
This work uses an objective method based on Entropy due to the lack of consensus from experts about the
level of importance of each CVSS attribute over the other.

The weights vector W (λj) can be calculated from the normalized matrix Y (yij), using the following
equations:

Z = (zij) zij = yij/
m∑
i=1

yij (4.11)

E = (ej) ej = −(1/ lnm)

m∑
i=1

zij ln zij (4.12)

W = (λj) λj = (1− ej)/(n−
n∑

j=1

ej) (4.13)

The entropy value ej from equation 4.12 is in the interval [0, 1]. Moreover, if zij = 0 then zij ln zij = 0.
A smaller entropy value indicates a greater dispersion of the feature values, embedding more information
and resulting in a greater weight value. On the other side, a greater entropy value shows less information,
resulting in a decrease in the weight value. If the criterion values zj are equal, the entropy value ej will be
one, indicating no information and resulting in a null weight value.

4.6 SUMMARY

This chapter describes the new Data Collection and Processing Pipeline to produce cyber intelligence
and awareness. It generated e a new vulnerability database merging the NVD, CNVD, and CNNVD.
Furthermore, it also handles an exploit database using MSF and EDB, with the latter containing the former.
The pipeline includes a layer to compare the vulnerability descriptions between the USA and China national
databases using multilingual pre-trained models, being able to check the similarity between Chinese and
English texts. Moreover, there is also a layer to rank scanned vulnerabilities using an entropy-based
multi-criteria decision method with TOPSIS algorithm.
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5 EXPERIMENTAL RESULTS

This chapter presents the experimental results of this work. Section 5.1 describes the software and
hardware in the test environment. Section 5.2 shows the performance results for the vulnerability database
building step and comparison results between the NVD, CNVD, and CNNVD. Section 5.3 explains the
results regarding the EDB, which includes the MSF, and its relation with those vulnerability databases.
Section 5.4 shows the Scanner results. Section 5.5 explains the Matcher results leveraging Nmap and the
created databases. Section 5.6 analyses the Recommender results using TOPSIS algorithm. Section 5.7
concludes this chapter.

5.1 TEST ENVIRONMENT

This work emulates a medium enterprise Security Operation Center (SOC) using Graphical Network
Simulator-3 (GNS3). It uses Quick Emulator (QEMU) on kernel-based virtual machines (KVM) in Linux
Ubuntu 20.04. Furthermore, KVM in Linux performs better than type 2 hypervisors like VirtualBox and
VMware because of hardware acceleration and kernel-embedded commands. Figure 5.1 presents the test
environment.

REVS

Figure 5.1: Emulated SOC with QEMU/KVN.
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The GNS3 makes it possible to build an environment with different Operating Systems (OSs): Kali
Linux, Ubuntu 18.04, CentOS 8, Windows Server, and Metasploitable III [105] machine. This last is a
vulnerable public VM based on Ubuntu 14.04. Table 5.1 lists the environment hardware and VMs.

Table 5.1: Environment hardware and VMs

Machine Description

Host Ryzen 7 4800h / 16gb RAM

Emulator GNS3 2.2.28

Metasploitable III Ubuntu 14.04

Firewall pfSense 2.5.2

Routers VyOS 1.1.8

Switches Open vSwitch 2.4.0

For the data scraping and processing, relational database creation, and NLP of the vulnerability de-
scription text in the NVD and CNNVD, this work uses two computers running OS Ubuntu 20.04, each
with 16GB RAM. The NLP task requires more computer processing, which this work achieves using CPU
processing for the sampled texts and GPU processing for the entire dataset, as described in subsection 4.1.4.
Table 5.2 lists each hardware item and its respective purpose.

Table 5.2: Data and text processing hardware

Item Function

Ryzen 7 4800h Data scraping and database

NVIDIA GeForce GTX 1650 Ti NLP

Intel(R) Core(TM) i5-10310U NLP

5.2 VULNERABILITY DATABASE RESULTS

This work implements three data scrapers to collect vulnerability data from the NVD, CNVD, and
CNNVD. The first uses the JSON data feed supported by NIST, which provides vulnerability registers with
unique CVE id and CVSS v2 and v3 scores. Besides, some of these registers also contain CPEs and CWEs
related to the vulnerability. This work uses the OPENCVE tool [94] to retrieve data from the REST API and
store it locally in a PostgreSQL relational database.

The other two scrapers require implementation from scratch. The CNVD does not provide any API to
return vulnerability data. Otherwise, it provides a set of XML files lacking schema definition. Moreover,
CNCERT/CC generates a new XML file every Monday at 18h:00 (CST) with vulnerability registers from
the past week. Different from the work of [12], REVS used the python requests library with custom
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“User-Agent” tag and cookie parameters (__jsluid and __jsl_clearance_s) to bypass the CNVD blocking
system.

Figure 5.2 displays a screenshot of the Linux terminal, showing that the CNVD provides one file each
week. Besides, this work revealed that the CNVD XML data only have vulnerability records since 2015,
despite the CNVD Web site showing registers before that date.

Figure 5.2: CNVD Files Sample.

Afer downloading the XML files from the CNVD dataset, this work detect six missing files (weeks):
2019-02-11_2019-02-17.xml, 2019-05-20_2019-05-26.xml, 2019-09-23_2019-09-29.xml, 2020-03-02_-
2020-03-08.xml, 2020-10-12_2020-10-18.xml and 2015-02-16_2015-02-22.xml.

This section discusses the performance results during the Structuring step. Lastly, it explains the features
and differences between the national vulnerability databases.

5.2.1 Performance Results

The performance results of the Table 5.3 show the execution time to transform the unstructured XML
and JSON into structured data into PostgreSQL.

Table 5.3: Batch Processing

Database Format Files Total Size Process Time

NVD JSON 23 1.5 GB 266.74s

CNVD XML 364 146.9 MB 11.33s

CNNVD XML 25 2.4 GB 48.88s

The Data Structuring step uses a pool of five workers. They can process in parallel five blocks of data
leveraging multicore processors. This approach assigns each data file to a worker for data normalization.
Although there is more data in the CNNVD than in NVD, this takes more processing time than that because
of nested JSON data.
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5.2.2 Comparison Results

Table 5.4 shows an outline of the three national vulnerability databases.

Table 5.4: Data Summary

Feature NVD CNVD CNNVD

Vulnerability 178,906 99,261 180,567

Missing Weeks 0 6 0

Missing CVE 0 23,281 9,963

Repeated ID 0 88 0

Repeated CVE 0 108 15

Wrong CVE 0 193 0

Missing CVSS 10,933 326 8,466

Missing CPE 11,143 113 25,694

Missing CWE 10,928 99,261 180,567

Missing Reference 24,035 19,012 5,786

Table 5.4 shows that the CNNVD has more entries than the NVD, providing a more comprehensive
dataset regarding system vulnerabilities. The CNNVD also enables mapping to the NVD using the CVE id
to link the two databases. There are only 9,963 entries without CVE id mapping in the CNNVD. Despite
fewer entries than the CNNVD, the CNVD has many more vulnerabilities without CVE mapping. Other
than that, the previous files from the CNVD are not updated.

At first sight, the CVSS metric seems to be more available in the Chinese databases than in the NVD.
Nevertheless, after profiling the 10,933 entries without CVSS score in the NVD, 10,531 has a “REJECT”
status. CNAs required those 10,531 CVE ids without assigning any vulnerability. Only 721 vulnerabilities of
these 10,531 are stored in the CNNVD, showing that this Chinese database evaluates filtering mechanisms.

The CVSS in the CNVD and CNNVD is a one-column data to the severity metric representing the
CVSS base score. There is no score calculation but the equivalent text description. Moreover, the CNVD
uses CVSS version 2 (low, medium, and high) and the CNNVD uses versions 2 and 3 (low, medium, high
and critical), trying to follow the FIRST standard. The CNVD and CNNVD neither provide the CVSS base
and temporal attributes nor the CVSS vector string. Section 2.5 presented the background of the CVSS
scoring system.

Figure 5.3 shows that 23.45% of the vulnerability entries in the CNVD have no CVE feature, preventing
a link to the NVD. Despite much more entries, the CNNVD has 5.52% without CVE. The NVD has no CVE
issues because the CVE code is its primary key. Despite the main responsible for CVE Mitre framework
implementation, the NVD has 6.11% of the entries without any CVSS metric, while the CNNVD has 4.69%.
Otherwise, the CNNVD has 14.23% of the entries without CPE, preventing a comprehensive identification
of vulnerable systems in those cases. On the other hand, the CNNVD carries more information regarding
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Figure 5.3: Issues Summary.

external URL references, with only 3.2% of the entries without this information.

Also, it is worth mentioning that the Chinese databases do not present any CWE information, while
the NVD has 6.11% of the entries without this information. The CWE, critical information to group the
hardware and software vulnerabilities, is not embedded in the Chinese databases. Nevertheless, they offer a
text defining the type of vulnerability that looks like the CWEs description from the MITRE framework.

The CPE information of the NVD is more comprehensive than that of the CNNVD and CNVD. The
earlier covers three configurations: Basic, Running On/With, and Advanced. The Chinese databases do
not include the CPE information with this granularity. The CNNVD lists every software version affected
by the vulnerability, while the NVD describes logical conditions covering the possibilities of vulnerability
occurrence. Furthermore, the CNNVD provides data about the possible solutions with external URLs. The
NVD does not offer this solution information in a separate column.

5.2.3 Comparing the NVD and CNNVD

After realizing that the CNVD XML files have vulnerability records only after 2015, this work decided
to keep assessing the NVD and CNNVD. This work evaluated three tests with them: seek an explanation for
unmatched CVEs, compare Chinese vendors in that database with the NVD, and temporal analysis. For the
first issue, a complete translation of the English language is a necessary step that this work did not evaluate.
Despite that, this work found 25 vulnerabilities entries of the type “information leakage”, which are not
available to the public. They have been published since 2019 and received an id, but they are classified
information. Figure 5.4 shows vulnerability entries for three famous Chinese vendors in the CNNVD and
NVD: Huawei, ZTE, and Xiaomi.
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Figure 5.4: Vendors Comparison.

Figure 5.4 indicates that the CNNVD has more vulnerability entries regarding Huawei than the NVD,
while there is no difference for Xiaomi. By the way, the number of Figure 5.4 comes from counting the
vulnerabilities with the string “Huawei” in the description. There may be more entries from these vendors
in mandarin. Lastly, Figure 5.5 shows the monthly time series for the NVD and CNNVD.

Figure 5.5: Monthly Time Series.

Figure 5.5 reveals that the time series are very similar, with a Pearson correlation of 0.917560. It
indicates that they may have been using the same information sources, or maybe they are tracking each
other.
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5.2.4 Multilingual NLP

Despite showing 170,604 registers with mapped CVE — that is the reason for 9,963 missing CVE
entries in Table 5.4 — 168,398 of them point to CVEs that both the NVD and CNNVD have. Thus, that set
of 168,398 vulnerabilities is the sample space to support the choice of the best performance multilingual
transfer model with 95% of confidence. So, this work randomly selects 384 registers from that population
with the test scheme proposed in subsection 4.1.4 to assess those five models regarding execution times and
text similarity results. Figures 5.6 and 5.7 present the histograms for the NVD and CNNVD, respectively,
embedding the values for the simple average, 50th, 95th, and 99ht quantiles.
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Figure 5.6: Word Count Histogram for the NVD.
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Figure 5.7: Word Count Histogram for the CNNVD.
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Figures 5.6 and 5.7 show that the CNNVD has simple average, 50th, 95th and 99th quantiles about 25%
greater than the NVD. However, both have more than 99% of vulnerability text descriptions with less than
300 words. Therefore, this work uses 300 as the max_word_length parameter for those five pre-trained
models, avoiding text truncation for most vulnerability descriptions.

After setting 300 as the max_word_length parameter, this work runs each model against the same
sampled set with 384 vulnerabilities. Because of the small sample set, this work uses a CPU parallel
processing approach with PyTorch to evaluate and compare those five pre-trained models regarding the
processing time and similarity calculation performances. Since the CORE i5 vPRO 10th generation CPU
has four physical cores, this work uses three parallel processes for model processing, leaving one core free
for the OS. Therefore, this procedure is repeated five times since this work tackles five models, enabling a
fair comparison of the processing time. Table 5.5 shows how much time takes for each model to process the
sampled set.

Table 5.5: Models Processing Performance

Model Processing Time

distiluse-base-multilingual-cased-v1 (distiluseV1) [98, 99] 159.30s

distiluse-base-multilingual-cased-v2 (distiluseV2) [98, 99] 171.75s

paraphrase-multilingual-MiniLM-L12-v2 (MiniLM) [98, 99] 97.87s

LaBSE (LaBSE) [100] 328.31s

paraphrase-multilingual-mpnet-base-v2 (mpnet) [98, 99] 290.71s

Table 5.5 shows that the two versions of the distiluse model took almost the same time to process
the dataset, about 120s. The MiniLM is the fastest, taking 74.60s, while the LaBSE lasted 322.25s,
showing it is the slowest. After that, this work compares the processing results regarding the similarity
between the Chinese text description of those 384 vulnerabilities with their translated versions by the
Google Translator Service(<https://translate.google.com/>) and DeepL Translator (<https://www.deepl.
com/translator>). Figure 5.8 shows the achieved results using the simple average of the text cosine
similarities.

Figure 5.8 shows that the LaBSE model reaches higher cosine similarity (closer to 100%) for the
translated versions — 95% with the Google and 94.83% with DeepL — and also a higher value with the
NVD, 72.94%. Despite not being the objective of this experiment, all models indicate that the Google-
translated text is slightly more similar to the Chinese one than that translated by DeepL. It is worth
mentioning that the MiniLM achieved results close to the LabBSE and mpnet, despite being 3,35x faster
than the first and 2,97x faster than the second. It indicates that the MiniLM is more suited when the time
processing constraints are more important than the similarity requirements. This work also evaluated the
average of the similarities weighted by the text size to check if it influences the results. Figure 5.9 shows the
same bar graph style of the Figure 5.8, but now using the weighted cosine similarities.

Figures 5.8 and 5.9 display that the following three models achieved better comparison performance in
crescent order: MiniLM, Mpnet and Labse. Therefore, this work runs those three models to compare the
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Figure 5.9: Weighted Average Text Similarity

description text of the 168,398 vulnerability entries — the entire dataset — that exist both in the CNNVD
and NVD. Table 5.5 showed that the fastest model, MiniLM, took 74.06s to process 384 registers in a
parallel processing approach leveraging the three cores of the CPU. Therefore, the same approach will
take at least 9 hours for the entire dataset. So, this work uses a parallel processing approach leveraging a
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GPU with CUDA to speed up the text processing. Table 5.6 lists the processing time for those 168,398
vulnerabilities.

Table 5.6: Models Processing Performance with GPU

Model Processing Time

paraphrase-multilingual-MiniLM-L12-v2 (MiniLM) [98, 99] 1031.62s

LaBSE (LaBSE) [100] 4818.29s

paraphrase-multilingual-mpnet-base-v2 (mpnet) [98, 99] 3675.72s

Like the CPU approach with the sampled data, this work checks the cosine similarity between the
Chinese text in the CNNVD with the correspondent description in the English language in the NVD, but
now for the entire dataset using the three models about which Table 5.6 describes the time performance.
Figure 5.10 shows the achieved results using the simple average of the text cosine similarities.
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Figure 5.10: Text Similarity between the NVD and CNNVD

Figure 5.10 displays that the simple and weighted averages achieve close results. Besides, the results
with the entire dataset are equivalent to those of the sampled vulnerabilities, indicating that the sampling
approach to choosing the three best pre-trained models was correct. Moreover, Figure 5.10 reveals the
LaBSE achieved the highest similarities with the simple and weighted averages, respectively: 73.74% and
71.82%.

61



5.3 EXPLOIT DATABASE RESULTS

This work implements a crawler to collect exploit data from the EDB and a program to parse the MSF
modules. The first uses sequential calls to the EDB web page with HTML and Javascript scraping to
capture the exploit source codes and their metadata. As described in section 4.2, this work did not use a
multithreading approach to avoid blocking mechanisms. Because of that, it has taken almost five days to
download the EDB data.

This section discusses the EDB records, comparing them with the exploited vulnerabilities in the NVD,
NVD, and CNNVD. The CVE ID is the key to linking those databases and grasping if the Chinese ones are
ahead of the NVD or leveraging the EDB for vulnerability inference.

5.3.1 EDB Analysis

During the EDB parsing, this work detected an inconsistency between the rendered Web Page and its
internal metadata. The Browser may display exploited CVE IDs that differ slightly from those listed in the
internal HTML code. Figures 5.11 and 5.12 show an example of this issue with the exploit id 900.

Figure 5.11: EDB Inconsistency

Figure 5.12: Rendered Web Page from EDB Inconsistency.

While the keywords metadata in Figure 5.11 lists the CVE-15065 and CVE-2005-0892, the rendered
Web Page in Figure 5.12 shows only the CVE-2005-0892. The CVE-15065 is malformed since there is no
mention of the year part in the code. Despite seeming a minor issue, if someone uses the search page to look
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for exploits to the wrong CVE-15065, it will return the results listed in Figure 5.13.

Figure 5.13: EDB Wrong Search

Figure 5.13 shows that the search mechanism of the EDB does not check the CVE ID in the NVD. After
detecting that issue, this work evaluated a cross-reference between the EDB and NVD using the CVE ID.
In the first round, this work found 12 entries in the EDB with at least one of the following errors: escape
characters, wrong dash separators, and malformed IDs. After correcting them, this work evaluated a second
cross-reference and identified 35 CVEs in the EDB that did not exist in the NVD. Table 5.7 categorizes
those missing CVEs.

Table 5.7: CVEs in the EDB without being in the NVD

CVEs Observation

CVE-2021-44673 The NVD published it on 03/10/2022.

CVE-2021-3560 The NVD published it on 02/16/2022.

CVE-2021-35380 The NVD published it on 02/15/2022.

CVE-2019-89242
It neither exists in Mitre CVE
nor in the NVD.

CVE-2019-5797, CVE-2019-17591, CVE-2019-13491,
CVE-2017-2796, CVE-2017-12854, CVE-2017-11197,
CVE-2016-2534, CVE-2014-5470, CVE-2014-5469,
CVE-2014-5329, CVE-2014-3736, CVE-2014-3212,
CVE-2014-2923, CVE-2014-2239, CVE-2013-3307,
CVE-2013-2649, CVE-2013-1916, CVE-2013-1891,
CVE-2012-6679, CVE-2012-6664, CVE-2012-4749,
CVE-2012-4748, CVE-2012-2765, CVE-2012-1309,
CVE-2012-1305, CVE-2012-1304, CVE-2012-1300,
CVE-2011-1656, CVE-2010-2782, CVE-2010-0368,
CVE-2005-0153

They exist in Mitre CVE with “RESERVED” status,
but are not listed in the NVD.

Total 35

Table 5.7 shows that despite the Mitre CVE and NVD being under the same authority – the DHS
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as explained in 2.2 – the supposed online synchronization between them is not happening. It may be a
filtering mechanism to shred the vulnerability entries with the “RESERVED” status from the NVD. However,
subsection 5.2.2 revealed that the NVD does not remove entries with “REJECT” status. It is dangerous
since a “RESERVED” status, unlike the “REJECT” one, might indicate an existing vulnerability that has
not completed the registration flow. Even if there is no existence or description in the NVD, the attacker can
infer the vulnerability characteristics from the exploit in the EDB.

For a fair comparison between the national databases and EDB, this work only considers entries in
them before 01/25/2022. Thus, Table 5.7 also reveals that the EDB is ahead of the NVD in some cases.
It mentioned the CVEs 2021-44673, 2021-3560, and 2021-35380 before the NVD. Also, the nonexistent
CVE-2019-89242 listed in Table 5.7 and the typos indicate manual registration and the absence of checking
procedures in the EDB.

After finding those 35 records cataloged in Table 5.7, this work searched for them in the CNVD
and CNNVD. The results corroborate the differences between the vulnerability databases presented in
subsection 5.2.2. Considering those 35 CVEs that the NVD does not have, 15 are in CNNVD, and two are
in the CNVD. Of those two, one is listed only in the CNVD. Table 5.8 describes those findings.

Table 5.8: CVEs mentioned in EDB and listed only in CNVD or CNNVD

CVE Chinese ID Chinese Title In CNVD In CNNVD

CVE-2011-1656 CNNVD-201107-051 NetBSD /libc/net/栈缓冲区错误漏洞 ✗ ✓

CVE-2014-3736 CNNVD-201406-575 ALLPlayer‘.wav’文件处理内存损坏漏洞 ✗ ✓

CVE-2014-5329 CNNVD-201410-1274 多款TripodWorks GIGAPOD产品远程拒绝服务漏洞 ✗ ✓

CVE-2014-3212 CNNVD-201406-559 KMPlayer远程基于栈的缓冲区错误漏洞 ✗ ✓

CVE-2014-2239 CNNVD-201501-100 Lazarus Guestbook SQL注入漏洞和HTML注入漏洞 ✗ ✓

CVE-2017-12854 CNNVD-201708-629 ✗ ✗ ✓

CVE-2017-11197 CNNVD-201707-514 ✗ ✗ ✓

CVE-2013-1891 CNNVD-201303-399 OpenCart ‘filemanager.php’多个目录遍历漏洞 ✗ ✓

CVE-2013-2649 CNNVD-201304-225 Hero Framework多个跨站脚本漏洞 ✗ ✓

CVE-2013-1916 CNNVD-201303-530 WordPress User Photo ‘user-photo.php’任意文件上传漏洞 ✗ ✓

CVE-2019-5797 CNNVD-201903-464 Google Chrome竞争条件漏洞 ✗ ✓

CVE-2012-1300 CNNVD-201203-466 phpFox ‘ajax.php’远程命令执行漏洞 ✗ ✓

CVE-2019-89242 CNNVD-202102-067 WordPress安全漏洞 ✗ ✓

CVE-2021-3560 CNNVD-202106-211 polkit权限许可和访问控制问题漏洞 ✗ ✓

CVE-2019-13491
CNVD-2020-35173
CNNVD-201907-713

Tenda D301跨站脚本漏洞
Tenda D301跨站脚本漏洞

✓ ✓

CVE-2016-2534 CNVD-2020-35173 Jive Forums目录遍历漏洞 ✓ ✗

Total: 16 2 15

Table 5.8 reveals that the CNVD misses most of those CVEs. That is compatible with the findings
regarding the CNVD XML files, as they have vulnerabilities later than 2015. However, it does not explain
the absence of the CVEs 2019-5797, 2019-89242, and 2021-3560, as the NVD released them after 2015.
Thus, this work decided to look for them in the CNVD Web Page displayed in Figure 5.14 considering a
possible failure only in the XML feed and not in the Web interface.

After searching for the CVE-2019-5797 and CVE-2019-89242, the Web Page printed in Figure 5.14
did not return any results. It shows no inconsistency between the XML file and Web page regarding those
two vulnerabilities. However, after looking for the CVE-2021-3560, it returned six entries as printed in
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Figure 5.14: The CNVD Web Search.

Figure 5.15.

Figure 5.15: Search results for CVE-2021-3560 in the CNVD Web.

Thereby, this work profiled those six returned vulnerabilities from Figure 5.15 regarding the CVE-2021-
3560 in the respective CNVD detail page. Awkwardly, none of them has any relation to the CVE-2021-3560.
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However, those six results have CVEs in which the first thirteen characters match the string pattern “CVE-
2021-3560”. It shows search issues on the CNVD Web Page.

This work repeated the same procedure for the CVE-2016-2534 but in the CNNVD. It searched for
the CVE-2016-2534 on the CNNVD Web page because it was the only one not found in the XML files. It
returned no results, as printed in Figure 5.16, indicating no inconsistency between the Web and file interfaces
in the CNNVD.

Figure 5.16: The CNNVD Web Search.

This work demonstrates through data presented in Tables 5.7 and 5.8 from the EBD, CNVD, and
CNNVD that they are ahead of the NVD. However, the question of whether the Chinese databases are
leveraging the EDB to achieve new vulnerabilities nonexistent in the NVD was still open. Table 5.9 lists
those 16 vulnerabilities in the CNNVD, and their correspondent exploit titles to answer that question. It
enables comparing them.

Table 5.9: CNNVD Vulnerabilities and Their Exploits in EDB

CVE EDB ID EDB Title Chinese Title

CVE-2011-1656 35919 NetBSD 5.1 - ’libc/net’ Multiple Stack Buffer Overflows NetBSD /’libc/net/’栈缓冲区错误漏洞

CVE-2014-3736 39183 ALLPlayer - ’.wav’ File Processing Memory Corruption ALLPlayer‘.wav’文件处理内存损坏漏洞

CVE-2014-5329
17696
18221

Apache - Remote Memory Exhaustion (Denial of Service)
Apache - Denial of Service

多款TripodWorks GIGAPOD产品远程拒绝服务漏洞

CVE-2014-3212 39181 Intel Indeo - Video Memory Corruption KMPlayer远程基于栈的缓冲区错误漏洞

CVE-2014-2239 35605 Lazarus Guestbook 1.22 - Multiple Vulnerabilities Lazarus Guestbook SQL注入漏洞和HTML注入漏洞

CVE-2017-12854 44065 Sophos XG Firewall 16.05.4 MR-4 - Path Traversal. ✗

CVE-2017-11197 42319 CyberArk Viewfinity 5.5.10.95 - Local Privilege Escalation ✗

CVE-2013-1891 24877 OpenCart 1.5.5.1 - ’FileManager.php’ Directory Traversal Arbitrary File Access OpenCart ‘filemanager.php’多个目录遍历漏洞

CVE-2013-2649
38461
38462

Hero Framework - ’/users/login?Username’ Cross-Site Scripting
Hero Framework - ’/users/forgot_password?error’ Cross-Site Scripting

Hero Framework多个跨站脚本漏洞

CVE-2013-1916 16181 WordPress Plugin User Photo Component - Arbitrary File Upload WordPress User Photo ‘user-photo.php’任意文件上传漏洞

CVE-2019-5797 46565 Google Chrome < M73 - Double-Destruction Race in StoragePartitionService Google Chrome竞争条件漏洞

CVE-2012-1300 18655 PHPFox 3.0.1 - ’ajax.php’ Remote Command Execution phpFox ‘ajax.php’远程命令执行漏洞

CVE-2019-89242 49512 WordPress 5.0.0 - Image Remote Code Execution WordPress安全漏洞

CVE-2021-3560
50550
50011

Polkit Authentication bypass Local Privesc - Paper
Polkit 0.105-26 0.117-2 - Local Privilege Escalation

polkit权限许可和访问控制问题漏洞

CVE-2019-13491 47107 Tenda D301 v2 Modem Router - Persistent Cross-Site Scripting Tenda D301跨站脚本漏洞

CVE-2016-2534 39405 Jive Forums 5.5.25 - Directory Traversal Jive Forums目录遍历漏洞
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Table 5.9 shows that CVEs 2014-5329, 2013-2649, 2021-3560 have more than one exploit. It also
shows that although most EDB and Chinese titles look alike, they are completely different in the CVEs
2014-5329, 2014-3212, 2017-12854, and 2017-11197. In the last two, the CNNVD does not provide any
title or reference, only the following description: “此编号已经被预留用于标识某安全漏洞”, which
means an entry code reserved to identify a security vulnerability in the future. It shows that CNNVD is
tracking some “RESERVED” status entries in the MITRE CVE, but not all of them. Moreover, among those
16 vulnerabilities listed in Table 5.9 , the CNNVD references the EDB as a source of data for the CVEs
2021-3560, 2019-5797, 2019-89242 and 2019-13491. In the last two, the CNNVD references only the EDB.
It is another clue that the Chinese databases use human analysts to populate them.

Beyond the cross-reference between the CNNVD and EDB, this work performs a classification taxonomy
and authors ranking for the latter in Tables 5.10 and 5.11, respectively.

Table 5.10: Exploit Classification

Type Description Amount Checked(%)

webapps Target Web Applications 26,260 70.50%

remote Enable attacks from outside 7,184 88.99%

dos Denial of Service 6,810 80.46%

local Requires local access to the target 4665 70.05%

papers Documents describing attacks 1,672 79.13%

shellcode Shell code based attacks 1,051 45.77%
Total 47,642 74.43%

Table 5.11: Top 20 Exploit Authors

Rank Author Quantity

1 Metasploit 1778

2 Google Security Research 1152

3 Ihsan Sencan 944

4 LiquidWorm 629

5 High-Tech Bridge SA 424

6 Luigi Auriemma 419

7 anonymous 379

8 rgod 333

9 Vulnerability-Lab 312

10 indoushka 297

11 r0t 257

12 hyp3rlinx 228

13 ZoRLu 225

14 ajann 204

15 Lostmon 188

16 shinnai 179

17 Moudi 174

18 laurent gaffie 162

19 GulfTe ch Security 159

20 GoLd_M 152
Total 8,595
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Table 5.10 shows that the EDB has 47,642 vulnerability entries, and almost 50% are exploiting Web
Applications. Besides, 74,43% of the exploits have already been tested by the EDB team. Table 5.10 also
shows that the remote type has the highest percentage of tested exploits: 88.99%. Moreover, despite the
last entry id being 50,850 and following a sequential pattern, there are 47,642 exploits. After profiling the
historical series, this work found 3,208 missing ids, the same number of missing exploits.

This work also decided to rank the exploit authors according to the number of artifacts submitted to
the EDB. Table 5.11 shows that the top 20 authors submitted 8,595 exploits to the EDB. Since there are
10,232 authors, Table 5.11 indicates that 0.20% of the authors submitted 18.04% of the exploits in the EDB.
Moreover, Table 5.11 also shows that Metasploit and Google Security Research are the two most active
authors in the EDB.

In order to reach a better situation awareness of the top 20 most active exploit makers, this work decided
to build a heatmap for them regarding the used programming languages. Figure 5.17 shows most of them
are text-based artifacts. It means that they are white papers or comments on how to exploit some system
flaw. Another finding is that Metasploit submits its exploits to the EDB in a standard way: ruby based, as
expected by the MSF. It is also possible to grasp some degree of specialization in the authors: rgod has more
expertise in PHP. On the other hand, Google Security Research, anonymous and Luigi Auriemma have more
capacity for building c-based exploits, which require greater programming skills. It is also possible to see
that LiquidWorm likes to use Python.
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Figure 5.17: Heatmap: Authors vs. Programming Language.

From those 8,595 exploits in the Table 5.11, 4,953 were created after 2010. Due to that, this work got
into the top 20 most active authors in the EDB since 2020. Table 5.12 presents those results. It shows, that
despite authors like LiquidWorm, Vulnerability-Lab and Metasploit keeping very active, most of them are
new authors.
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Table 5.12: Top 20 Exploit Authors since 2020

Rank Author Quantity

1 LiquidWorm 112

2 Vulnerability-Lab 48

3 boku 48

4 Metasploit 44

5 Ismail Tasdelen 31

6 Ron Jost 26

7 Besim 23

8 SunCSR 21

9 Luis Martínez 21

10 Brian Rodriguez 19

11 Metin Yunus Kandemir 19

12 hyp3rlinx 18

13 0xB9 18

14 Ismael Nava 17

15 Mohammed Alshehri 17

16 Aryan Chehreghani 16

17 BKpatron 15

18 Matthew Aberegg 15

19 1F98D 15

20 Saeed Bala Ahmed 15
Total 8,595

5.4 SCANNER RESULTS

This work uses the attack scenario depicted in Figure 5.1: the attacker outside the topology against
the Metasploitable III VM on the DMZ. In this scenario, the attacker runs the scanning process in the host
machine against the guest VM emulated by GNS3. He uses the Python Program described in the subsection
4.3 to perform the attack. Table 5.13 lists the detected services.

Table 5.13: Detected Services

Service CPE Description Version

cpe:/a:proftpd:proftpd:1.3.5 FTP Server 1.3.5

cpe:/o:linux:linux_kernel Linux OS Kernel ✗

cpe:/a:apache:http_server:2.4.7 HTTP Server 2.4.7

cpe:/a:samba:samba Samba File Server ✗

cpe:/a:apple:cups:1.7 Printer Service 1.7

cpe:/a:mysql:mysql Relational Database ✗

cpe:/a:mortbay:jetty:8.1.7.v20120910
Java Web Server and
Servlet Container

8.1.7.v20120910

Total 7 4
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Table 5.13 reveals that the Python program based on Nmap step found seven exposed CPEs. Moreover,
it identified the version of four of them: cpe:/a:proftpd:proftpd:1.3.5, cpe:/a:apache:http_server:2.4.7,
cpe:/a:apple:cups:1.7, and cpe:/a:mortbay:jetty:8.1.7.v20120910.

One of the main purposes of the Scanner module is to return a precise list of CPEs to match them to
their possible vulnerabilities. Thus, this work uses only the CPEs with versions to evaluate the vulnerability
databases in a precise way in the Matcher module.

5.5 MATCHER RESULTS

For the Matcher module, this work did not use the CNVD in the mix of vulnerability databases. The
CNVD has only entries after January 2015, so it is different from the entire NVD and CNNVD. Four of
those seven vulnerable CPEs include the software version. So, this work seeks vulnerabilities regarding
them in the NVD, CNNVD, and Vulners, showing the results listed in Table 5.14.

Table 5.14: Vulnerability Summary

CPE NVD CNNVD Vulners

cpe:/a:proftpd:proftpd:1.3.5 11 11 9

cpe:/a:apache:http_server:2.4.7 46 47 44

cpe:/a:apple:cups:1.7 9 8 5

cpe:/a:mortbay:jetty:8.1.7.v20120910 0 0 0
66 66 58

Table 5.14 reveals that the Apache webserver has much more vulnerabilities than the other CPEs. It also
indicates that the NVD and the CNNVD present almost identical performance in vulnerability identification.
Despite Vulners being an established security service, it returns fewer vulnerability entries than this work
approach with a mix of the NVD and CNNVD. After the aggregated view in Table 5.14, Table 5.15 presents
the vulnerabilities the NVD, CNNVD, or Vulners do not have.

Table 5.15: Unidentified Vulnerabilities

CPE NVD CNNVD Vulners

cpe:/a:proftpd:proftpd:1.3.5 None None CVE-2019-12815, CVE-2019-19269

cpe:/a:apache:http_server:2.4.7 CVE-2018-17189 None
CVE-2014-3523, CVE-2018-17189,

CVE-2020-13938

cpe:/a:apple:cups:1.7 None CVE-2014-9679
CVE-2014-9679, CVE-2017-18190,
CVE-2017-18248, CVE-2018-4300

1 1 9

Table 5.15 shows the NVD and CNNVD detected the same CVEs regarding the cpe:/a:proftpd:proftpd:1.3.5.
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Otherwise, Vulners failed to identify two vulnerabilities: CVE-2019-12815 and CVE-2019-19269. The
first is a critical one related to the CVE-2015-3306 that affects the ProFTPD up to version 1.3.5b and
allows remote code execution. The second is a NULL Pointer Dereference with medium impact. Table 5.15
also shows that the NVD misses the CVE-2018-1718 regarding the cpe:/a:apache:http server:2.4.7, while
Vulners misses the CVE-2014-3523, CVE-2018-17189 and CVE-2020-13938. There is an issue with the
CVE-2018-17189: the NVD says in the description that it affects the Apache HTTP server versions 2.4.37
and below. However, the NVD does not include versions before 2.4.17 in its CPEs affected list. However,
the CNNVD includes these versions in its CPE list. The CVE-2014-3523 and CVE-2020-13938 that Vulners
did not detect depend on the running OS: it may affect the Apache Server when running on Windows.

Regarding the cpe:/a:apple:cups:1.7, the CNNVD and Vulners did not detect the CVE-2014-9679,
which depends on the running OS: it affects CUPS before version 2.0.2 when running on Linux OS. The
other three, CVE-2017-18190, CVE-2017-18248, and CVE-2018-4300, which only Vulners did not detect,
have a CPE description in a version range, not in a CPE list. It suggests that Vulners may have issues in
precisely identifying vulnerabilities when the NVD does not provide an exhaustive list of affected CPEs.

The Matcher module uses the previous list of CVEs to look for possible correspondent exploits in the
EDB/MSF. Table 5.16 lists those findings.

Table 5.16: List of Exploits

CVE Exploit ID Description Checked

CVE-2014-0226 34133 Apache 2.4.7 mod_status - Scoreboard Handling Race Condition ✗

CVE-2015-3306 36742 ProFTPd 1.3.5 - File Copy ✓

. CVE-2015-3306 36803 ProFTPd 1.3.5 - ’mod_copy’ Remote Command Execution ✗

CVE-2015-3306 37262 ProFTPd 1.3.5 - ’mod_copy’ Command Execution (Metasploit) ✓

CVE-2015-3306 49908 ProFTPd 1.3.5 - ’mod_copy’ Remote Command Execution ✓

CVE-2016-0736 40961 Apache mod_session_crypto - Padding Oracle ✗

CVE-2017-9798 42745 Apache < 2.2.34 / < 2.4.27 - OPTIONS Memory Leak ✗

CVE-2019-10092 47688 Apache Httpd mod_proxy - Error Page Cross-Site Scripting ✗

CVE-2019-10098 47689 Apache Httpd mod_rewrite - Open Redirects ✗

Table 5.16 shows that this work detected nine exploits in its database. They target six vulnerabilities
(CVEs) since four exploits address the same vulnerability, CVE-2015-3306. Moreover, the EDB team
checked only three of those nine artifacts, all targeting the CVE-2015-3306. Most of the information
security assessment and penetration testers would stop in this step, since there is a list of vulnerabilities
with the correspondent exploits, being the CVE-2015-3306 a strong candidate to be a target of exploitation.
Nonetheless, this work proposes a Recommender Vulnerability-Exploit System (REVS) using TOPSIS with
entropy-based weights as described in section 4.5 to rank the vulnerabilities using their features and their
possible matching exploits.
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5.6 RECOMMENDER RESULTS

Lastly, this work ranks the vulnerabilities using the procedure described in Section 4.5. As the first
step, this work calculates the weights for the nine criteria of the decision matrix. Table 5.17 presents those
weights values in four scenarios: the first two using the original proposal considering possible correspondent
exploits and the other two with only the CVSS features.

Table 5.17: Criteria Weight Values

Features Scenario 1 Scenario 2 Scenario 3 Scenario 4

Access Vector 0.20% 11.11% 0.80% 14.29%

Access Complexity 0.10% 11.11% 0.38% 14.29%

Authentication 0.01% 11.11% 0.06% 14.29%

Confidentiality Impact 9.40% 11.11% 37.13% 14.29%

Integrity Impact 7.96% 11.11% 31.44% 14.29%

Availability Impact 6.10% 11.11% 24.10% 14.29%

Time (Days) 1.55% 11.11% 6.09% 14.29%

Qt. Exploits 28.70% 11.11% ✗ ✗

Qt. Checked 45.99% 11.11% ✗ ✗

Table 5.17 shows that in the first scenario, taking into account the existent artifacts in the EDB, the
exploit features have the most weight values, with almost 75%. Without considering the artifacts in the
EDB, the third scenario shows that the confidentiality, integrity, and availability impact features gain most
of the weight, almost 98%. It indicates two things: the exploit features carry most of the information in
the decision process of which vulnerabilities should be handled first. Table 5.17 also shows that without
considering the exploits, the confidentiality, integrity, and availability impact features carry most of the
information for the decision process. Besides, Table 5.17 has two more scenarios, 2 and 4, considering an
equally weighted approach.

Table 5.18 shows the results using the scenarios for the top 10 CVEs ranking with TOPSIS using
entropy-based and equally weighted criteria. Table 5.18 indicates that, despite the scenario, this work ranks
the CVE-2015-3306 as the riskiest. It also shows that despite shifting from an entropy-based to an equally
weighted strategy in scenarios 1 and 2, the top three vulnerabilities keep the same. The exploit existence
for those three vulnerabilities can explain it. Besides, those two scenarios return the CVEs 2021-44790,
2021-39275, 2021-40438, and 2021-26691, which shows the importance of the time feature as a cost
criterium that the decision process must minimize.

Lastly, scenarios 3 and 4, an entropy-based approach against an equally weighted without considering
exploit features, show virtually the same results. There is only an interchange in the CVEs 2021-26691 and
2021-40438 positions. Those top 10 vulnerabilities have very similar CVSS features; therefore, the time
feature has more influence on the decision process.
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Table 5.18: TOPSIS Vulnerability Rank

Rank Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 CVE-2015-3306 CVE-2015-3306 CVE-2015-3306 CVE-2015-3306

2 CVE-2014-0226 CVE-2014-0226 CVE-2021-44790 CVE-2021-44790

3 CVE-2019-10098 CVE-2019-10098 CVE-2021-39275 CVE-2021-39275

4 CVE-2017-9798 CVE-2021-44790 CVE-2021-40438 CVE-2021-26691

5 CVE-2016-0736 CVE-2021-39275 CVE-2021-26691 CVE-2021-40438

6 CVE-2019-10092 CVE-2021-40438 CVE-2020-35452 CVE-2020-35452

7 CVE-2021-44790 CVE-2021-26691 CVE-2019-12815 CVE-2019-12815

8 CVE-2021-39275 CVE-2020-35452 CVE-2019-0217 CVE-2019-0217

9 CVE-2021-40438 CVE-2019-10092 CVE-2018-1312 CVE-2018-1312

10 CVE-2021-26691 CVE-2019-12815 CVE-2017-15715 CVE-2017-15715

5.7 SUMMARY

This chapter explained the experimental results achieved with the Cyber Intelligence Pipeline. It
compares three national vulnerability databases, the NVD, CNVD, and CNNVD, and also linked them to the
Exploit Database (EDB). It demonstrated that the China vulnerability database is not a mere translation of
the NVD, even for the registers that they share. It revealed that the China vulnerability databases are ahead
of the USA and leveraging exploit data to infer reserved vulnerabilities that do not exist in the NVD. The
pipeline also outperforms Vulners in vulnerability detection, enhancing information security assessment and
penetration testing. Lastly, it improves the vulnerability ranking through exploit criteria and entropy-bases
TOPSIS decision process.
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6 CONCLUSIONS AND FUTURE WORKS

This work created an ETL data pipeline to compare three national vulnerability databases from USA and
China: the NVD, CNVD, and CNNVD. Besides, this work also used that pipeline to get, process, and link
the EDB to them. This work downloaded those national databases simultaneously during the Harvesting
Step to enable a fair comparison between them. Moreover, it leverages a Python parallel multiprocessing
approach to optimize the transform and load phases of the ETL. Furthermore, it uses pre-trained neural
networks with GPU parallel processing to perform multilingual NLP and compare vulnerability descriptions
in English and Chinese.

Despite claiming themselves as public XML databases, the CNVD and CNNVD hinder access. Several
sign-in issues demanded building custom crawlers and leveraging data scrape techniques to download the
XML dataset. Although the CNVD has 99,261 entries, the historical series started in 2015, it has six weeks
without data in its XML data feed, and previous files need to be updated, suggesting an intention to hide
information or process issues. Most text data are in Mandarin except for URLs, software, and vendor names.
Those two vulnerability databases have content tailored to the local Chinese community.

The CNNVD has 1,661 more entries than the NVD, the standard vulnerability database. That database
has 25 classified registers, which is compliant with Chinese legislation but against the best practices of
information sharing regarding system vulnerabilities. Moreover, the CNNVD contains at least 35 and 5 more
Huawei and ZTE product entries than the NVD. That database resembles this but has fewer CVSS metrics.
Besides, the CNNVD provides an extensive list of vulnerable CPEs but does not offer vulnerable software
combinations like the NVD. The CNNVD also provides richer information regarding external references
and possible solutions. Further, a temporal correlation of 0.917560 between the NVD and CNNVD indicates
shared sources or that they are tracking each other. On the other hand, the pre-trained multilingual model
LaBSE achieved a cosine similarity between the NVD and CNNVD around 72%. It indicates that the latter
is not just a translated version of the earlier and human intervention by cyber analysts to build the CNNVD.

The Chinese national vulnerabilities are comprehensive databases, particularly the CNNVD. It has 3.2%
of the entries without URL references, while the NVD has 13.43% with the same issue. For that reason,
the CNNVD is a promising source of extra data regarding exploits and possible solutions to vulnerabilities.
Moreover, the CNNVD has 5.52% of the entries without CVE mapping, possibly suggesting system flaws
only known to the Chinese community.

After collecting and linking the 47642 exploits from the EDB with the national databases, this work
found 35 exploited CVEs that do not exist in the NVD. However, the Chinese databases have 16 of those
35, indicating they are ahead of the NVD. They use several data sources to keep track of up-to-date
vulnerabilities and overcome the NVD. This work demonstrates that the CNNVD tracks entries in the
MITRE CVE before going to the NVD. Moreover, the CNNVD is leveraging exploit data in the EDB to
infer system vulnerabilities.

This work evaluates network scanning with a mix of the NVD and CNNVD as vulnerability data sources.
REVS performed better than an established commercial database like Vulners, which did not identify nine
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vulnerabilities detected by this work. Vulners has issues returning vulnerabilities about CPEs described as
version range or logical expressions. The entropy-based criteria values indicate that the exploit features
have more influence in the multicriteria decision than the CVSS parameters. TOPSIS ranking method with
those entropy-based weights classified the CVE-2015-3306, CVE-2014-0226, and CVE-2019-10098 riskiest
vulnerabilities in the emulated environment. As far as the author knows, this is the first approach to leverage
a mix of the NVD and CNNVD for network scanning and perform a thorough comparison between them,
including multilingual NLP.

6.1 FUTURE WORKS

As future work, this research suggests a complete Natural Language Processing (NLP) customized to
the Chinese language to extract more features from the CNVD and CNNVD. One suggested approach is the
Han Language Processing (HanLP) library with pre-trained models.

A second idea for future work is the creation of training and test datasets joining the NVD, CNVD,
CNNVD, and EDB for vulnerability exploitation prediction. Since the relational database is available in
this work, it may provide ML model training and evaluation features to predict vulnerability exploitation
and prioritization. Lastly, several other MCDA algorithms, like VIKOR, can be used to rank vulnerabilities,
leaving an idea for future work to compare those methods and evaluate a sensitivity analysis of the weight
values in the vulnerability ranking results.
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systems and their applications in cybersecurity. Sensors, Multidisciplinary Digital Publishing Institute, v. 21,
n. 15, p. 5248, 2021.

86 POLATIDIS, N.; PIMENIDIS, E.; PAVLIDIS, M.; PAPASTERGIOU, S.; MOURATIDIS, H. From
product recommendation to cyber-attack prediction: generating attack graphs and predicting future attacks.
Evolving Systems, Springer, v. 11, n. 3, p. 479–490, 2020.
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