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Abstract: We study the evolution of the energy of a harmonic oscillator when its frequency slowly
varies with time and passes through a zero value. We consider both the classical and quantum
descriptions of the system. We show that after a single frequency passage through a zero value, the
famous adiabatic invariant ratio of energy to frequency (which does not hold for a zero frequency)
is reestablished again, but with the proportionality coefficient dependent on the initial state. The
dependence on the initial state disappears after averaging over the phases of initial states with the
same energy (in particular, for the initial vacuum, the Fock and thermal quantum states). In this case,
the mean proportionality coefficient is always greater than unity. The concrete value of the mean
proportionality coefficient depends on the power index of the frequency dependence on a time near
the zero point. In particular, the mean energy triplicates if the frequency tends to zero linearly. If the
frequency attains zero more than once, the adiabatic proportionality coefficient strongly depends
on the lengths of time intervals between zero points, so that the mean energy behavior becomes
quasi-stochastic after many passages through a zero value. The original Born–Fock theorem does
not work after the frequency passes through zero. However, its generalization is found: the initial
Fock state becomes a wide superposition of many Fock states, whose weights do not depend on time
in the new adiabatic regime. When the mean energy triplicates, the initial Nth Fock state becomes
a superposition of, roughly speaking, 6N states, distributed nonuniformly. The initial vacuum and
low-order Fock states become squeezed, as well as the initial thermal states with low values of the
mean energy.

Keywords: adiabatic invariants; Born–Fock theorem; power-law time-dependent frequency; Epstein–
Eckart frequency dependence; mean energy; energy fluctuations; invariant squeezing

1. Introduction

One of many brilliant results of classical and quantum mechanics is the existence
of adiabatic invariants in the case where parameters of a system vary slowly with time.
The simplest invariant is the ratio of the energy of a harmonic oscillator E(t) to its time-
dependent frequency ω(t) [1]:

E(t)/ω(t) = const if |ω̇|/ω2(t)� 1. (1)

Then, suppose that the frequency returns to its initial value after some slow variations.
What is the final energy of the oscillator? According to Equation (1), the answer is obvious:
the final energy coincides with the initial one. However, there exists a remarkable exclusion
from this result, when the frequency passes through a zero value in the process of evolution,
so that the condition of validity of Equation (1) is obviously broken for any rate of the
evolution. The goal of our paper is to study the dependence of the final energy on the shape
of the time-dependent frequency, when this frequency slowly passes through a zero value.
We perform analytic calculations for the quantum oscillator and numeric calculations for
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the classical oscillator. Note that various aspects of the harmonic oscillator evolution in the
adiabatic regime have been studied by many authors for decades (see, e.g., papers [2–8]).
However, the situation when the frequency passes slowly through a zero value have not
been considered in the known publications. An oscillator whose frequency exponentially
goes adiabatically and asymptotically to zero has been considered, e.g., in papers [9,10].
However, we are interested in the case when the frequency passes through zero and returns
to its initial value.

The structure of the paper is as follows. In Section 2, we describe the results of the
numeric solutions of the classical equations of motion for two kinds of time dependence of
the frequency: ω2(t) ∼ |t|n and ω2(t) ∼ | tanh(at)|n. Several figures show the differences
between the cases of fast and slow frequency variations, when the frequency does not
attain a zero value and when it passes through a zero value. In Section 3, we present
general formulas describing the evolution of the mean oscillator energy in the quantum
case, including adiabatic regimes without and with a zero-crossing frequency value. Exact
solutions for the power profile of the frequency are derived and analyzed in Section 4.
Transition rules in the case of a single frequency passage through zero are obtained in
Section 5. An example of tanh-like frequency functions is considered in Section 6. Double
transitions of the frequency through zero values are studied in Section 7 in the quantum
and classical cases. Sections 8, 9 and 10 are devoted to the energy fluctuations, the violation
and generalization of the Born–Fock theorem and the appearance of squeezing, respectively.
Section 11 contains a discussion of the main results.

2. Evolution of the Oscillator Energy in the Classical Case

The basic equation has the form

ẍ + ω2(t)x = 0. (2)

We consider a special case when the time-dependent frequency can be written as
ω2(t) = ω2

0 f (t/τ), where f (t/τ) is a non-negative function with the properties

f (−1) = 1, f (0) = 0, τ > 0. (3)

We assume that ω2(t) = ω2
0 = const for t ≤ −τ. Since we are interested mainly in

the evolution of the energy at t > −τ, we consider a one-parameter family of classical
trajectories with the same initial energy E0. Then, assuming the particle mass m = 1, it is
convenient to use the initial coordinate x0 and initial velocity ẋ0 in the form

x0 = cos(ϕ)
√

2E0/ω0, ẋ0 = sin(ϕ)
√

2E0, 0 ≤ ϕ < 2π.

To solve Equation (2) numerically, we introduce dimensionless variables X = ω0x/
√

2E0
and T = t/τ, arriving at the equation for T ≥ −1

d2X/dT2 + G2 f (T)X = 0, G = ω0τ, (4)

with the initial conditions

X(−1) = cos(ϕ), dX/dT|T=−1 = G sin(ϕ). (5)

Then, the dimensionless energy ratio R = E(t)/E0 depends on the dimensionless time T
and two parameters, G and ϕ:

R(T; G; ϕ) = f (T)X2(T) + G−2(dX/dT)2, (6)

where the derivative dX/dT must be taken at instant T. The existence of the adiabatic
invariant (1) implies that R(T; G) =

√
f (T) for T < 0 and big enough values of parameter
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G, independently on the values of parameter ϕ. In the following subsections, we study what
can happen if T > 0, for different families of functions f (T).

2.1. A Power Profile of the Frequency

Our first example is the power profile f (T) = |T|n with n > 0. We solved Equation (4)
numerically and calculated the dimensionless ratio

Rn(T; G; ϕ) = |T|nX2(T) + G−2(dX/dT)2.

The adiabatic ratio must equal Rn(T; G) = |T|n/2. In Figures 1 and 2, we show Rn as
function of ϕ for the fixed values T = −1/2, n = 1/2, n = 2 and n = 4, comparing
different behaviors when G = 1 (no adiabaticity) and G = 1000. Figure 1 shows a strong
dependence of the energy on the phase ϕ in the nonadiabatic regime. However, this
dependence becomes negligible in Figure 2, which shows that the mean value of Rn is,
indeed, |T|n/2.
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Figure 1. The dimensionless energy of a classical particle at the dimensionless instant T = −1/2 in
the nonadiabatic regime (G = 1).
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Figure 2. The dimensionless energy of a classical particle at the dimensionless instant T = −1/2 in
the adiabatic regime (G = 1000).

However, the situation becomes quite different for T ≥ 0: the dependence of Rn on
ϕ does not disappear even for very big values of parameter G. This is shown in Figure 3
for Rn(1; 1000; ϕ), with n = 1/2, n = 2 and n = 4. It is important to pay attention to the
different vertical scales in the different plots. Strong oscillations are observed. The mean
value of these oscillations depends on index n.
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Figure 3. The dimensionless energy of a classical particle at the dimensionless instant T = 1 in the
case of slow evolution (G = 1000), for the profile f (T) = |T|n.

2.2. A Tanh-like Profile of the Frequency

The second example is the profile f (T) = | tanh(aT)/ tanh(−a)|n with n > 0 and
a = 5, which describes a softer transition from the constant frequency to a time-dependent
one. The plots in this case turn out very similar to those of the preceding section. We
show one of them in Figure 4, for the value T = 1 (when the final frequency coincides
with the initial one). While the lines R(ϕ) are shifted with respect to each other in the
cases of f (T) = |T|n and f (T) = | tanh(aT)/ tanh(−a)|n, the maximal and minimal values
coincide. Moreover, the average values of the final energy as functions of index n turn
out practically identical for two families of frequency profiles, as shown in Figure 5. This
coincidence is explained in the following sections.
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Figure 4. The dimensionless energy of a classical particle at the dimensionless instant T = 1 in the
case of slow evolution (G = 1000) for the profile f (T) = | tanh(aT)/ tanh(−a)|n a = 5.
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Figure 5. The dimensionless energy of a classical particle at the dimensionless instant T = 1 in the
case of slow evolution (G = 1000), averaged over the initial phase ϕ, as function of index n. Left: for
the profile f (T) = |T|n. Right: for the profile f (T) = | tanh(aT)/ tanh(−a)|n, a = 5.

3. Evolution of the Mean Oscillator Energy in the Quantum Case

In the quantum case, one has to solve the time-dependent Schrödinger equation and
use the solutions to calculate various mean values, in particular, those contributing to
the mean energy. However, a simpler way is to use the Ehrenfest equations for the mean
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values, which are immediate consequences of the Schrödinger equation. It was shown in
the seminal papers by Husimi [11], Popov and Perelomov [12], Lewis and Riesenfeld [13]
and Malkin, Man’ko and Trifonov [14] that the solutions of the Schrödinger and Ehrenfest
equations for the harmonic oscillator with an arbitrary time-dependent frequency depend
on complex functions ε(t) and ε∗(t), satisfying Equation (2) and the initial conditions

ε(−τ) = ω−1/2
0 , ε̇(−τ) = iω1/2

0 . (7)

The Wronskian identity for the solutions ε(t) and ε∗(t) has the form

ε̇ε∗ − ε̇∗ε = 2i. (8)

Then, we can write at t ≥ τ

x(t) = x0
√

ω0 Re[ε(t)] +
p0√
ω0

Im[ε(t)], p(t) = x0
√

ω0 Re[ε̇(t)] +
p0√
ω0

Im[ε̇(t)]. (9)

Equation (9) holds both for the classical and quantum particles (in the Heisenberg
representation in the latter case). Its immediate consequences are the following formulas
for the second-order moments of the canonical operators for t ≥ −τ:

〈x2〉t = 〈x2〉−τ ω0(Re[ε(t)])2 +
〈p2〉−τ

ω0
(Im[ε(t)])2 + 〈xp + px〉−τ(Re[ε(t)])(Im[ε(t)]), (10)

〈p2〉t = 〈x2〉−τ ω0(Re[ε̇(t)])2 +
〈p2〉−τ

ω0
(Im[ε̇(t)])2 + 〈xp + px〉−τ(Re[ε̇(t)])(Im[ε̇(t)]). (11)

The time-dependent mean energy is given by the formula

E(t) = 1
2

[
〈p2〉t + ω2(t)〈x2〉t

]
. (12)

It is worth remembering that for systems with quadratic Hamiltonians with respect to x and
p, the dynamics of the first-order mean values 〈x〉 and 〈p〉 are totally independent from the
dynamics of the variances σx = 〈x2〉 − 〈x〉2, σp = 〈p2〉 − 〈p〉2 and σxp = 〈xp + px〉/2−
〈x〉〈p〉. This means that the equations of the same form as (10) and (11) exist for the sets
(〈x〉2, 〈p〉2, 〈x〉〈p〉) and (σx, σp, σxp).

The adiabatic (quasi-classical) approximate complex solution to Equation (2), satisfying
the initial conditions (7), has the form

ε(t) ≈ [ω(t)]−1/2eiφτ(t), ε̇(t) ≈ i[ω(t)]1/2eiφτ(t), φτ(t) =
∫ t

−τ
ω(z)dz. (13)

Putting the solution (13) in the Equations (10)–(12), we arrive immediately at the adiabatic
invariant

E(t)/ω(t) = E(−τ)/ω0, (14)

for arbitrary initial values at t = −τ. However, the solution (13) obviously loses its sense
if ω(t) = 0 at some time instant t∗ (taken as t = 0 in our paper). Nonetheless, when
the frequency slowly passes through a zero value and slowly becomes not too small, the
conditions of the quasi-classical approximation are reestablished again. Hence, the solution
for t > 0 can be written (outside some interval near t = 0) in the most general quasi-classical
form as follows,

ε(t) ≈ [ω(t)]−1/2
[
u+eiφ(t) + u−e−iφ(t)

]
, ε̇(t) ≈ i[ω(t)]1/2

[
u+eiφ(t) − u−e−iφ(t)

]
, (15)

where

φ(t) =
∫ t

t∗
ω(z)dz, dφ(t)/dt = ω(t). (16)
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Constant complex coefficients u± must obey the condition

|u+|2 − |u−|2 = 1, (17)

which is the consequence of Equation (8). Then, Equation (12) assumes the form

〈E〉t
〈E〉−τ

=
ω(t)
ω0

(β + ∆β), (18)

where
β = |u+|2 + |u−|2 = 1 + 2|u−|2, (19)

∆β =
{[

ω2
0〈x2〉−τ − 〈p2〉−τ

]
Re(u+u−) + ω0〈xp + px〉−τIm(u+u−)

}
/〈E〉−τ . (20)

Equation (18) can be interpreted as a generalized adiabatic formula for the energy after
the frequency passes slowly through a zero value. It shows that the quantum mechanical
mean energy is proportional to the instant frequency ω(t) in the adiabatic regime. However,
the proportionality coefficient strongly depends on the initial conditions in the most general
case. This is in agreement with the classical results shown in Figures 3 and 4. For this
reason, we concentrate hereafter on the important special case when

〈p2〉−τ = ω2
0〈x2〉−τ , 〈xp + px〉−τ = 0. (21)

It includes the vacuum, thermal and Fock initial quantum states. Then, ∆β = 0. In addition,
many formulas can be simplified:

〈x2〉t = ω0〈x2〉−τ |ε(t)|2, 〈p2〉t = 〈p2〉−τ |ε̇(t)|2/ω0, (22)

〈E〉t =
〈E〉−τ

2ω0

[
ω2(t)|ε(t)|2 + |ε̇(t)|2

]
. (23)

In principle, the choice of the initial point of integration in Equation (16), defining
the phase function φ(t) in Equation (15) can be arbitrary, since it influences the phases of
coefficients u± only. However, the point t∗ = 0 is distinguished in our problem, because
ω(t∗) = 0. Therefore, we assume hereafter that t∗ = 0 in the definition of the phase
φ(t) (16).

Note that after Lewis and Riesenfeld’s paper [13], many authors working on various
problems related to the harmonic oscillator with a time-dependent frequency did not use
as a starting point linear Equation (2) but its nonlinear analog (known under the name
“Ermakov equation”)

ρ̈ + ω2(t)ρ = ρ−3, ρ(t) ≡ |ε(t)|, (24)

which follows from (2) if one writes ε = ρ exp(iχ) and takes into account the condition (8).
Then, one can rewrite Equation (23) as follows,

〈E〉t =
〈E〉−τ

2ω0

{
ω2(t)ρ2(t) + [ρ̇(t)]2 + [ρ(t)]−2

}
≥ 〈E〉−τ

2ω0

{
2|ω(t)|+ [ρ̇(t)]2

}
. (25)

Consequently, the mean energy always increases when the frequency returns to its initial
value, unless the time derivative ρ̇(t) is negligibly small, i.e., if u− 6= 0 (under the condi-
tion (21)). Many references on the subjects related to the Ermakov equation can be found,
e.g., in the review [15] and a recent paper [16]. However, we prefer to use linear equation
(2), because the key terms that help us solve the adiabatic problem are the coefficients u±
in the asymptotic formula (15).

However, how to find these constant coefficients u±? The numeric results of Section 2
(especially Figure 5) indicate that the answer depends on the exponent n in the form of the
frequency transition through zero: ω2(t) ∼ |t|n when t → 0 (assuming that ω(t) = 0 at
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t = 0). It is remarkable that the explicit dependence of |u−|2 on the index n can be found
analytically, as shown in the next section.

4. Exact Solutions for the Power Profile of the Frequency

It is known that Equation (2) with the time-dependent frequency ω2(t) = ω2
0 |t/τ|n

can be reduced to the Bessel equation

d2Z
dy2 +

1
y

dZ
dy

+

(
1− ν2

y2

)
Z = 0 (26)

for t > 0 (see, e.g., papers [17,18]). The same can be done for t < 0, as soon as the initial
equation is invariant with respect to the time reflection t → −t. One can verify that
Equation (2) goes to (26) with the aid of the following transformations:

x(t) =
√
|t| Z[y(t)], ν =

1
n + 2

, y(t) = g
∣∣∣∣ t
τ

∣∣∣∣γ, γ =
1

2ν
, g = 2Gν, G = ω0τ. (27)

Hence, the function ε(t) can be written as a superposition of the Bessel functions Jν(y) and
J−ν(y), although with different coefficients in the regions of t < 0 and t > 0:

ε(t) =
√
|t| ×

{
{A− Jν[y(t)] + B− J−ν[y(t)]}, t < 0
{A+ Jν[y(t)] + B+ J−ν[y(t)]}, t > 0

. (28)

Constant complex coefficients A− and B− can be found from the initial conditions (7).
Remembering that d|t|/dt = −1 for t < 0, one obtains the following equations:

A− Jν(g) + B− J−ν(g) = 1/
√

G,

A− J′ν(g) + B− J′−ν(g) = − 1√
G

(
i +

1
2G

)
,

where J′±ν(z) means the derivative of the Bessel function J±ν(z) with respect to its argument
z. Using the known Wronskian [19,20]

Jν(z)J′−ν(z)− J−ν(z)J′ν(z) = −2 sin(νπ)/(zπ),

we obtain the following expressions:

A− = − νπ
√

G
sin(νπ)

[
J′−ν(g) +

(
i +

1
2G

)
J−ν(g)

]
,

B− =
νπ
√

G
sin(νπ)

[(
i +

1
2G

)
Jν(g) + J′ν(g)

]
.

Using the known identities (see, e.g., formulas 7.2 (54) and 7.2 (55) in [20])

Jν(z)±
z
ν

J′ν(z) =
z
ν

Jν∓1(z), (29)

we can simplify formulas for the coefficients A− and B−:

A− =
νπ
√

G
sin(νπ)

[J1−ν(g)− i J−ν(g)], B− =
νπ
√

G
sin(νπ)

[i Jν(g) + Jν−1(g)]. (30)

The time derivative of function (28) at t < 0 (when d|t|/dt = −1) can be written with the
aid of identities (29) as follows:

dε/dt =
y

2ν
√
|t|

[B− J1−ν(y)− A− Jν−1(y)], t ≤ 0. (31)
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On the other hand,

dε/dt =
y

2ν
√

t
[A+ Jν−1(y)− B+ J1−ν(y)], t ≥ 0. (32)

Using the leading term of the Bessel function Jp(z) = zp/[2pΓ(p + 1)] at z → 0, one
can see that

√
|t|Jν(y) → 0 when t → 0, while the product

√
|t|J−ν(y) tends to a finite

value in this limit. Consequently, the continuity of function ε(t) at t = 0 implies the
condition B+ = B−. On the other hand, yJ1−ν(y)/

√
|t| → 0 at t → 0, while the product

yJν−1(y)/
√
|t| tends to a finite value in this limit. Hence, the continuity of derivative dε/dt

at t = 0 can be guaranteed under the condition A+ = −A−. Then, one can verify that
the Wronskian identity (8) is satisfied identically, both for t ≤ 0 and t ≥ 0, in view of the
identity [20]

Jν(z)J1−ν(z) + J−ν(z)Jν−1(z) = 2 sin(νπ)/(zπ). (33)

Using Equations (28) and (30), one can write down formula (23) for the mean energy
ratioR(t) = E(t)/E(−τ) as follows:

R(t < 0)
R(t > 0)

}
=

1
8

[
gπ

sin(νπ)

]2∣∣∣∣ t
τ

∣∣∣∣n+1

[K−(g)K+(y) + K+(g)K−(y)∓ 2K0(g)K0(y)], (34)

where

K+(z) = J2
ν(z) + J2

ν−1(z), K−(z) = J2
−ν(z) + J2

1−ν(z), K0(z) = Jν−1(z)J1−ν(z)− Jν(z)J−ν(z).

Figure 6 shows the function R(b), where −1 ≤ b ≡ t/τ ≤ 1, for ν = 1/4 (i.e., n = 2 and
y = gb2) and three values of parameter g = 0.1, 1.0, 10.
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Figure 6. The function R(b) for g = 0.1, 1.0, 10 and ν = 1/4.
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Using the known formulas

Jν(y) ≈ (y/2)ν/Γ(ν + 1), y� 1, (35)

Γ(z)Γ(1− z) = π/ sin(πz), (36)

one can see that R(b) is totally symmetric in the limit g→ 0 (an instantaneous frequency
jump through a zero value), when R(b) = (1 + |b|n)/2. However, the symmetry is broken
for not very small values of parameter g. The known asymptotic formula for the Bessel
functions of large arguments [19,20],

Jν(z) ∼
√

2
πz

cos
(

z− νπ

2
− π

4

)
, (37)

results in the following simple expressions for z� 1:

K±(z) =
2

πz
, K0(z) =

2 cos(νπ)

πz
.

Hence, in the adiabatic limit (g� 1 and y� 1), we obtain

R(t < 0)
R(t > 0)

}
=

ω(t)
[
1∓ cos2(νπ)

]
ω0 sin2(νπ)

.

If t < 0, we arrive exactly at the adiabatic formula (1) for any value of the power n. On the
other hand, if t > 0 (i.e., after the frequency has passed through a zero value), we see again
the linear proportionality

R(t) = βω(t)/ω0, β =
1 + cos2(νπ)

sin2(νπ)
, ν =

1
n + 2

. (38)

The proportionality coefficient β depends on parameter n. For example, β = 5/3 for
n = 1, β = 3 for n = 2 and β = 7 for n = 4, in accordance with Figure 5. If n � 1, then
β ≈ 1, while β ≈ 2(n/π)2 for n� 1. To see the limitations on the validity of the adiabatic
approximation g� 1, we plot in Figure 7 the ratio ρ ≡ R(τ),

ρ =
1
4

[
gπ

sin(νπ)

]2[
K−(g)K+(g) + K2

0(g)
]
, (39)

as a function of g for ν = 1/3, 1/4, 1/6. We see that the generalized adiabatic approximation
(38) has an accuracy better than 1% for g > 100.

In view of formula (35), the only nonzero contribution to the right-hand side of
Equation (34) at t → 0 is given by the function K+(y) ≈ J2

ν−1(y) ≈
[
(y/2)ν−1/Γ(ν)

]2 ∼
|t|−(n+1), whereas the contributions of K−(y) ∼ |t|−1 and K0(y) ∼ |t|0 are eliminated by
the term |t|(n+1). Hence,

R(t = 0) =
πg2ν−1

[2νΓ(ν) sin(πν)]2
, g� 1. (40)

This means, in particular, that the adiabatic formula (38) holds under the condition
ω(t)/ω0 � g2ν−1 (provided g = 2νω0τ � 1).
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Figure 7. The function ρ(g) (39) for g > 1 and ν = 1/3, 1/4, 1/6.

5. Transition Rules for Adiabatic Coefficients after Frequency Passes through Zero Value

Equation (38) means that parameter |u−| (determining the adiabatic evolution of the
mean energy after the frequency passes through a zero value according to formula (18))
has the following form:

|u−| = cot(νπ) = cot
(

π

n + 2

)
. (41)

This formula can be derived directly from Equation (28). If g� 1, Equation (30) assumes
the following asymptotic form:

A− ≈
√

νπ

sin(νπ)
exp

[
i
(

g +
νπ

2
− 3π

4

)]
, B− ≈

√
νπ

sin(νπ)
exp

[
i
(

g− νπ

2
+

π

4

)]
(42)

Then, Equation (28) results in the following expressions for y� 1:

ε(t < 0) ≈ [ω(t)]−1/2ei(g−y), ε(t > 0) ≈ eig

[ω(t)]1/2 sin(νπ)

[
eiy + i cos(νπ)e−iy

]
. (43)

On the other hand, calculating the phase φ(t) according to the definition (16), we find
φ = −y for t < 0 and φ = y for t > 0. Hence, omitting the common phase term eig in
Equation (43) and comparing this equation with (13) and (15), we obtain the following
expressions for the coefficients u±:

u+ = [sin(νπ)]−1, u− = i cot(νπ). (44)

They satisfy exactly the identity (17) and result in formula (41). Note that coefficient u+

given by Equation (44) is real. However, probably, the reality of this coefficient is due to the
specific exact power shape of function ω(t) considered in this section. For other functions
ω(t) with a similar behavior when ω → 0, this coefficient can be complex, although with
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the same absolute value. An example is given in the next section. However, the formulas
for the absolute values |u±|,

|u+| = [sin(νπ)]−1, |u−| = cot(νπ), (45)

seem to be universal after a single frequency passage through zero.

6. Exact Solution for the Tanh Profile of the Frequency

An interesting example of exact solutions corresponds to the time-dependent frequency
(a special case of the family of Epstein–Eckart profiles [21,22])

ω2(t) = ω2
0 tanh2(κt/2), −∞ < t < ∞, κ > 0. (46)

In this case, solutions to Equation (2) can be written in terms of the Gauss hypergeometric
function

F(a, b; c; x) =
∞

∑
n=1

(a)n(b)nxn

(c)nn!
,

satisfying the equation

x(1− x)F′′ + (c− (a + b + 1)x)F′ − abF = 0. (47)

The first step to come to Equation (47) is to introduce the new variable ξ = tanh(κt/2).
Then, Equation (2) takes the form

(1− ξ2)2 d2x
dξ2 − 2ξ(1− ξ2)

dx
dξ

+ 4ω̃2
0ξ2x = 0, ω̃0 ≡ ω0/κ. (48)

We wish to arrive to the function F(a, b; c; y) with y = (1+ ξ)/2. In such a case, y = 0 when
t = −∞, so that the initial condition (7) can be easily satisfied, as soon as F(a, b; c; 0) = 1.
On the other hand, there are many relations for the function F(a, b; c; 1), which arises when
t→ ∞. Then, the asymptotics of function ε(t) can be easily found. Therefore, looking for
the solution in the form x(t) = [y(1− y)]

α
f (y), we obtain the equation

y2(1− y)2 f ′′ + y(1− y)(1− 2y)(1 + 2α) f ′ +
[
(2y− 1)2

(
α2 + ω̃2

0

)
− 2αy(1− y)

]
f = 0. (49)

Consequently, choosing α = iω̃0, we arrive at the solution

ε(t) = ω−1/2
0 [y(1− y)]iω̃0 F(a+, a−; c; y) = ω−1/2

0 [2 cosh(κt/2)]−2iω̃0 F(a+, a−; c; y), (50)

where
y =

1
2
[1 + tanh(κt/2)] =

(
1 + e−κt)−1, (51)

a± =
1
2
+ 2iω̃0 ± r, r =

1
2

√
1− 16ω̃2

0, c = 1 + 2iω̃0. (52)

If t → −∞, function (50) goes to ε(t) = ω−1/2
0 exp(iω0t). If t → ∞ (and y → 1), we

can use the analytic continuation of the hypergeometric function, given, e.g., by formula
2.10(1) from [20],

F(a, b; c; y) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F(a, b; a + b + 1− c; 1− y)

+
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
(1− y)c−a−bF(c− a, c− b; c + 1− a− b; 1− y). (53)
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Then, function (50) assumes the asymptotic form

ε(t) = ω−1/2
0

[
v+eiω0t + v−e−iω0t

]
, (54)

v+ =
Γ(1 + 2iω̃0)Γ(2iω̃0)

Γ(1/2 + 2iω̃0 + r)Γ(1/2 + 2iω̃0 − r)
, v− =

Γ(1 + 2iω̃0)Γ(−2iω̃0)

Γ(1/2 + r)Γ(1/2− r)
. (55)

Using relation (36), we can simplify the expression for coefficient v−:

v− =
i cos

(
π
√

1/4− 4ω̃2
0

)
sinh(2πω̃0)

. (56)

The quantity |v−|2 increases with an increase of ω̃0. If ω̃0 = 1/4, then |v−|2 = [sinh(π/2)]−2 ≈
0.19. In the adiabatic limit ω̃0 � 1, we have v− ≈ i coth(2πω̃0), i.e., v− → i and |v−| → 1
when ω̃0 → ∞. In this limit, we have r = 2iω̃0 +O(ω̃−1

0 ). Then, we can write

v+ ≈
2iω̃0[Γ(2iω̃0)]

2
√

πΓ(1/2 + 4iω̃0)
.

Using the asymptotic Stirling formula for the gamma function,

Γ(z) ≈
√

2π exp[(z− 1/2) ln(z)− z], |z| � 1. (57)

we obtain the expression
v+ ≈

√
2 exp[−4iω̃0 ln(2)]. (58)

Consequently, |v+|2 − |v−|2 = 1 and E(∞)/E(−∞) = 3, in accordance with formula (38).
The asymptotic form (54) is similar to the general adiabatic solution (15). Using the

definition (16) of the phase φ(t), we obtain the formula (remember that ω(t) = | tanh(κt/2)|
in this section, as soon as function ω(t) is assumed to be non-negative in formula (15))

φ(t) = 2ω̃0 ln[cosh(κt/2)]sign(t). (59)

If t → ±∞, then φ(t) ≈ ω0t− 2ω̃0 ln(2)sign(t). This means that, according to (15), the
function ω−1/2

0 exp(i[ω0t + 2ω̃0 ln(2)]) at t→ −∞ goes to the following superposition at
t→ ∞:

ω−1/2
0 {u+ exp(i[ω0t− 2ω̃0 ln(2)]) + u− exp(i[−ω0t + 2ω̃0 ln(2)])}.

Comparing this expression with (54), we conclude that

u+ = v+ =
√

2 exp[−4iω̃0 ln(2)], u− = v− = i. (60)

We see that the phases of complex coefficients u± are sensitive to the rate of the adiabatic
evolution through the term ω̃0. A strong consequence of this result is considered in the
next section.

7. Double Adiabatic Passage of Frequency through Zero Value

What can happen if the frequency passes again through a zero value? Then, we have
to make the transformation of function (15), using the superposition principle and two
additional observations. First, the function ω−1/2 exp(−iφ) transforms as function ε∗(t)
after the frequency passes through a zero value. Second, applying the transformation
rule (15) to the second transition, we must use the phase φ̃(t), where the integral over the
frequency is taken from the second transition point t∗∗. Obviously,

φ(t) = φ̃(t) + Φ, Φ(t∗, t∗∗) =
∫ t∗∗

t∗
ω(z)dz. (61)



Entropy 2022, 25, 2 13 of 20

We suppose that the transition rule through the second zero has the form{
[ω(t)]−1/2eiφ̃(t)

}
t<t∗∗

→
{
[ω(t)]−1/2

[
w+eiφ̃(t) + w−e−iφ̃(t)

]}
t>t∗∗

, |w+|2 − |w−|2 = 1.

Comparing the two forms of the solution ε(t) for t > t∗∗ (far enough from that point), we
arrive at the equality (omitting the common term ω−1/2 and using the notation U± for the
coefficients at t > t∗∗)

U+eiφ̃(t) + U−e−iφ̃(t) = u+eiΦ
[
w+eiφ̃(t) + w−e−iφ̃(t)

]
+ u−e−iΦ

[
w∗+e−iφ̃(t) + w∗−eiφ̃(t)

]
.

Hence,
U+ = w+u+eiΦ + w∗−u−e−iΦ, U− = w−u+eiΦ + w∗+u−e−iΦ. (62)

One can verify that the identity |U+|2 − |U−|2 = 1 is fulfilled exactly. The adiabatic mean
energy amplification factor after the second passage through a zero frequency equals

β = 1 + 2|U−|2 = 1 + 2
[
|w−|2|u+|2 + |w+|2|u−|2 + 2Re

(
w+w−u+u∗−e2iΦ

)]
. (63)

In the adiabatic regime, Φ � 1. Moreover, this phase is very sensitive to the form of
function ω(t) and the distance between the zero-point instances t∗ and t∗∗. In addition,
coefficients u± and w± can be strongly phase-sensitive, as shown in Section 6. This means
that it is practically impossible to predict the energy mean value after twice crossing the
zero frequency (quite differently from the single crossing). The extremal values of β are
as follows,

βmin = 1 + 2(|w+u−| − |w−u+|)2, βmax = 1 + 2(|w+u−|+ |w−u+|)2. (64)

In particular, if w± = u±, then βmin = 1, meaning that, in principle, the mean energy can
return to the initial value after the frequency passes through a zero value two times. On the
other hand, βmax = 1 + 8|u+u−|2 under the same conditions. If n = 2, βmax = 17.

Classical Illustrations

To illustrate the effects after single and double frequency crossings through a zero
value, we considered the classical motion with the frequency ω2(t) = ω2

0 sin2[πt/(2τ)]|
for t ≥= −τ and the initial conditions (5). Figure 8 shows the energy ratio R (6) at the
instants T = t/τ = 1 and T = 3, for several values of parameter G close to G = 1000. If
T = 1 (single crossing), the variations of parameter G result in shifts of the curves without
changing the maximal, minimal and average values. On the other hand, the picture is
totally different for T = 3 (double crossing). In this case, Φ = 4G/π. Hence, the variation
∆Φ = 2π, when one can expect a similar behavior, corresponds to ∆G = π2/2 ≈ 5. On
the other hand, a twice smaller variation ∆G ≈ 2, yielding ∆Φ ≈ π, results in a totally
different behavior, as one can see in the figure for T = 3.
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Figure 8. The dimensionless energy of a classical particle at the dimensionless instants T = 1 (top)
and T = 3 (bottom) for several different values of the adiabatic parameter G = ω0τ, shown near the
respective lines. The frequency profile is ω2(t) = ω2

0 sin2[πt/(2τ)]|.

8. Energy Fluctuations

Figures 3, 4 and 8 show strong energy fluctuations (as functions of the initial phase)
after the frequency passes through a zero value. These fluctuations can be characterized
by the variance σE = 〈E2〉 − 〈E〉2. Using the solutions (9) of the Heisenberg equations of
motion, one can write σE in terms of the fourth- and second-order moments of the canonical
variables x and p and various products of functions ε(t), ε̇(t) and their complex-conjugated
partners. The complete formula is rather cumbersome in the most general case. For this
reason, we consider here the simplest case of the initial Fock quantum state |N〉. This
special case is probably the most interesting, because the famous adiabatic theorem in
quantum mechanics was proven by Born and Fock [23] exactly for the Fock states. In
this special case (as well as for arbitrary diagonal mixtures of Fock states), the nonzero
statistical moments are those containing even powers of each variable, x or p. After some
algebra, one can obtain the following formula (using the dimensionless variables, assuming
h̄ = m = ω0 = 1, so that 〈x4〉 = 〈p4〉):

16〈E2〉t = 2〈x4〉−τ

(
A2 + B2

)
+ 〈x2 p2 + p2x2〉−τ

(
A2 − B2

)
+ 〈(xp + px)2〉−τC2, (65)

where

A(t) = ω2(t)|ε(t)|2 + |ε̇(t)|2, B(t) = Re
[
ω2(t)ε2(t) + ε̇2(t)

]
, C(t) = Im

[
ω2(t)ε2(t) + ε̇2(t)

]
.

In the adiabatic regime (15), we have

A = 2ω(t)
(

u+|2 + |u−|2
)

, B = 4ω(t)Re(u+u−), C = 4ω(t)Im(u+u−). (66)
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For the initial Fock state |N〉, we have

〈x4〉−τ =
3
4

(
2N2 + 2N + 1

)
, 〈x2 p2 + p2x2〉−τ =

1
2

(
2N2 + 2N − 1

)
,

〈(xp + px)2〉−τ = 2
(

N2 + N + 1
)

.

Hence,

〈E2〉t/ω2(t) =
(

u+|2 + |u−|2
)2

(N + 1/2)2 + 2|u+u−|2
(

N2 + N + 1
)

.

Remembering that the mean energy equals 〈E〉t = ω(t)
(
u+|2 + |u−|2

)
(N + 1/2), we arrive

at the unexpectedly simple formula for the energy variance:

σE(t) = 2ω2(t)|u+u−|2
(

N2 + N + 1
)

,
σE(t)
〈E〉2t

= 2|u+u−|2
N2 + N + 1

N2 + N + 1/4
. (67)

In the absence of zero-frequency values we have u− = 0. In this case, σE(t) ≡ 0, in
accordance with the Born–Fock theorem. However, this theorem is broken when the
frequency passes through a zero value. For example, for the initial vacuum state (N = 0)
and the power index n = 2 of the single frequency transition through a zero value, we
obtain σE(t)/〈E〉2t = 16. This ratio can be four times smaller if N � 1.

In quantum optics, fluctuations are frequently characterized by the Mandel factor [24]

Q =
(
〈n̂2〉 − 〈n̂〉2

)
/〈n̂〉 − 1, n̂ ≡ Ê/(h̄ω)− 1/2. (68)

Then, for the initial Fock state |N〉 (having Q = −1, which means the so called sub-
Poissonian statistics), we obtain the following instantaneous values:

n̂ = N + 2|u−|2(N + 1/2), 〈n̂2〉 − 〈n̂〉2 = σE/(h̄ω)2.

Consequently,

Q =
|u−|2

(
1 + 2|u−|2

)
+ N

(
2|u−|4 − 1

)
+ 2N2|u+u−|2

N + 2|u−|2(N + 1/2)
. (69)

In particular, for |u−|2 = 1, we have

Q =
3 + N + 4N2

3N + 1
. (70)

This means that the statistics become super-Poissonian after the frequency passage through
a zero value. However, the super-Poissonianity is not very strong, because Q ≈ (4/3)N ≈
(4/9)〈n̂〉 for N � 1, whereas Q = 〈n̂〉 for the “strongly super-Poissonian” thermal states.

9. Evolution of the Fock States

What happens with the initial Fock state |N〉 when the frequency passes through a
zero value? Obviously, it cannot survive, as soon as the mean energy and especially the
energy variance increase substantially. This means that the initial Fock state becomes a
superposition of many Fock states. However, what is the width of the new distribution?
Is it concentrated near some distinguished states, or it is very wide and almost uniform,
especially when N � 1? To answer these questions, one can use general results concerning
the quantum harmonic oscillator with a time-dependent frequency [11–14] (the details can
be found, e.g., in the review [25]). Recall that the Fock states |N〉 are eigenstates of the
operator â† â, where â and â† are standard annihilation and creation operators. When the
frequency varies with time, operators â and â† become new operators, Â and Â†, which
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are quantum integrals of motion. The time-dependent state |N〉t remains the eigenstate
of operator Â† Â. As soon as operators Â and Â† maintain their linear form with respect
to operators x̂ and p̂, the wave function of state |N〉t maintains its functional form as the
product of some Gaussian exponential by the Hermite polynomial. The explicit form, found
in [12,14] (see also [18]), is as follows (in dimensionless units with h̄ = m = 1),

〈x|N〉t =
(

N! ε
√

π
)−1/2

(
ε∗

2ε

)N/2
exp

(
iε̇
2ε

x2
)

HN

(
x
|ε|

)
, (71)

where ε(t) is the solution to Equation (2) satisfying conditions (7) and (8). Transition proba-
bilities |〈M|N〉t|2 between the instantaneous Fock state |M〉 (when ε(t) = ω−1/2 exp(iωt))
and exact time-dependent state |N〉t were calculated in different forms in [11–14]. In
the generalized adiabatic regime (15), the results of [12,14] can be written in the form
(symmetric with respect to M and N)

|〈M|N〉t|2 =
N<!
N>!
|u+|−1

[
P|M−N|/2
(M+N)/2

(
|u+|−1

)]2
, (72)

where Pk
j (z) is the associated Legendre polynomial, N< = min(M, N), N> = max(M, N).

Formula (72) holds provided |M− N|/2 is an integer; otherwise, the probability equals
zero. Note that the probabilities do not depend on time, as soon as the adiabatic solution
(15) is valid.

In some cases, it can be convenient to use the expression of the associated Legendre
polynomials in terms of the Gauss hypergeometric function,

Pm
n (x) =

(−1)m(n + m)!
2m(n−m)!m!

(1− x2)m/2F
(

m− n, m + n + 1; m + 1;
1− x

2

)
. (73)

Then,

|〈M|N〉t|2 =
2(N>)!|u−||M−N|

(N<)!
[(
|M−N|

2

)
!
]2
|2u+||M−N|+1

[
F
(
−N< , N> + 1;

|M− N|
2

+ 1;
|u+| − 1

2|u+|

)]2

. (74)

In the case of a single frequency crossing through a zero value, this formula can also be
written as

|〈M|N〉t|2 =
(N>)! sin(νπ)[cos(νπ)]|M−N|

(N<)!
[(
|M−N|

2

)
!
]2

2|M−N|

[
F
(
−N< , N> + 1;

|M− N|
2

+ 1; sin2[(1− 2ν)π/4]
)]2

. (75)

Among different special cases, we bring here two formulas:

|〈2K|0〉t|2 =
(2K− 1)!!|u−|2K

(2K)!!|u+|2K+1 =
(2K− 1)!!
(2K)!!

sin(νπ)[cos(νπ)]2K, (76)

|〈N|N〉t|2 = |u+|−1
[

PN

(
|u+|−1

)]2
= sin(νπ)[PN(sin(νπ))]2, (77)

where PN(z) ≡ P0
N(z) is the usual Legendre polynomial. The first equalities in Equa-

tions (76) and (77) hold in the most general adiabatic case (including multiple frequency
crossings through a zero value), whereas the second equalities are valid for the single cross-
ing. The distribution (76) (describing the evolution of the initial ground state) decreases
monotonously as function of parameter K. However, the situation is totally different for
other initial Fock states, especially when N � 1.
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The survival probabilities ps(N) ≡ |〈N|N〉t|2 rapidly diminish with the quantum
number N. For example, if n = 2 (ν = 1/4), we find the following surviving probabilities
after the single frequency zero-crossing (when the mean energy triplicates):

ps(0) =
1√
2

, ps(1) =
1

2
√

2
, ps(2) =

1
16
√

2
, ps(3) =

1
32
√

2
, . . .

This means that the initial Fock state |N〉 becomes a superposition of a large number of
different Fock states |M〉, see Figure 9. It is impressive that the probability of transition
N → 3N is very small, whereas the probability pN(M ≥ 3N) is about 50%. In addition,
the distribution of probabilities pN(M) with M < 3N looks rather irregular, whereas some
regular picture is observed for M > 3N. Unfortunately, we did not succeed to find an
analytic approximation for this regular picture.
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Figure 9. The probability p(M) (given by Equation (74)) of finding the initial Fock state |N〉 in the
Fock state |M〉 after the frequency slowly passes through a zero value, in the case of |u−| = 1 and
|u+| =

√
2.
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10. Squeezing Evolution

If the frequency ω does not depend on time, the evolution of the coordinate variance
is given by the formula

σx(t) = σx(0) cos2(ωt) +
σp(0)
(mω)2 sin2(ωt) +

σxp(0)
(mω)

sin(2ωt). (78)

Minimizing this expression over time, one can write the minimal value σmin as (similar
formulas were obtained, e.g., in [26–28])

σmin = (mω2)−1
[

E−
√

E2 −ω2D
]
,

where
E = σp/(2m) + mω2σx/2, D = σxσp − σ2

xp.

The quantity D is the simplest example of quantum universal invariants [29], which do
not depend on time (although they depend on the initial state) for arbitrary quadratic
Hamiltonians. On the other hand, D ≥ h̄2/4 for any (normalizable) quantum state due
to the Schrödinger–Robertson uncertainty relation. The energy of quantum fluctuations
E satisfies the inequality E ≥ h̄ω/2. Therefore, it is convenient to use two dimensionless
parameters, λ ≥ 1 and γ ≥ 1, according to the relations E = λh̄ω/2 and D = γ2h̄2/4. Then,
normalizing the minimal value σmin by the variance in the vacuum state σvac = h̄/(2mω),
one can obtain the following formula for the invariant squeezing coefficient s = σmin/σvac:

s = λ−
√

λ2 − γ2 =
γ2

λ +
√

λ2 − γ2
. (79)

For the states satisfying the initial conditions (21), we have γ = λ and s = λ ≥
1. Moreover, parameter λ maintains it initial value in the standard adiabatic case (14).
However, if the frequency passes through a zero value, in the new adiabatic regime (18), λ
goes to βλ, while γ maintains its initial value. Hence, the new squeezing coefficient equals

s =
λ

β +
√

β2 − 1
. (80)

Hence, the initial vacuum state becomes squeezed when the frequency passes adiabatically
through a zero value. Using Equation (38), we obtain the following value of the squeezing
coefficient after a single passage through zero:

s = λ tan2(νπ/2). (81)

In particular, s ≈ 0.17λ for ν = 1/4 (i.e., n = 2 and β = 3), so the Fock states |N〉 become
squeezed for N ≤ 2 (when λ ≤ 5) in this special case.

11. Conclusions

The first main result of the paper is the discovery of the existence of the generalized
adiabatic invariant in the form of Equation (18). In the most general case, the adiabatic
proportionality coefficient in this equation depends on the initial state. This dependence dis-
appears after averaging over parameters of families of initial states with the same energy (in
particular, such averaging happens automatically for the initial vacuum, Fock and thermal
states). Then, universal relations (45) exist, provided the frequency passes through zero only once.
In the cases of multiple frequency passages through zero, the energy adiabatic coefficients
become sensitive to the additional parameter, the phase Φ, according to Equation (63). As a
consequence, the adiabatic behavior after many crossings through a zero frequency value
can be quasi-chaotic. Under specific conditions, the mean energy can return to the initial
value after a double frequency passage through zero. The original Born–Fock adiabatic
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theorem is broken after the frequency passes through a zero value. Although the functional
shape of the wave function of the initial Fock state is preserved in the form of the product
of a Gaussian exponential by the Hermite polynomial, the arguments of this form are not
determined totally by the instantaneous frequency. However, the probability distribution
over the instantaneous Fock states, determined by the adiabatic coefficients |u±|, according
to Equation (72), does not depend on time, as soon as the adiabatic regime is justified.
This statement can be considered as the generalized Born–Fock theorem; it is the second
main result of the paper. Note that the time-independent probability distributions can be
different after each frequency passage through zero.

In view of the mean energy amplification (e.g., triplication in the most natural case of
a linear frequency dependence near the zero point), any initial state becomes significantly
deformed. For example, coherent states (which possess the same quadrature variances as
the vacuum state) will be transformed into squeezed states. The same can be said about
initial thermal states: they will become Gaussian mixed states with unequal quadrature
variances (and squeezed under certain conditions), maintaining the initial value of the
quantum purity.
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