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A B S T R A C T   

Previous reports indicate that cove-type graphene nanoribbons (CGNR) may present high intrinsic charge 
mobility of almost 15,000 cm2/Vs. Still, with experimental estimates varying from 150 to 15,000 cm2/Vs. 
Typically, theoretical mobilities are obtained from methods such as the Drude-Smith model, which tends to 
neglect the electron-phonon coupling mechanism, or the Boltzmann transport equation, that considers only 
acoustic phonons. As such, more thorough approaches are needed. In this work, we simulated charge transport in 
4-CGNR by explicitly contemplating the lattice collective behavior. The nanoribbon is simulated by a two- 
dimensional Su-Schrieffer-Heeger (SSH) tight-binding model with electron-phonon coupling and considering 
all phonon modes. Results show the rise of two quasiparticles: polaron and bipolaron. We probed their dynamical 
properties by including the presence of an external electric field. Findings indicate that each carrier has a 
characteristic transport regime that is deeply related to phonon collision interactions. Model derived mobilities 
for polarons and bipolarons reach up to 18,000 cm2/Vs and 1500 cm2/Vs, respectively. Furthermore, calcula-
tions reveal the carriers to be highly efficient charge transporters, with a field independent low effective mass 
and notable mobility, delivering a better performance than other narrow GNRs. All presented features place the 
CGNR as a potential base material of future high-quality organic-based optoelectronic devices. The work also 
contributes to the theoretical understanding of transport physics in highly confined materials.   

1. Introduction 

Since its isolation in 2004 [1], graphene is playing a decisive role in 
material sciences due to its remarkable transport properties [2]. 
Currently, this carbon allotrope participates in numerous technological 
and scientific breakthroughs [3–6]. Most of the attention regarding 
graphene relates to its unique linear band structure. This topological 
feature allows charge carriers with exceptional mobility up to 200,000 
cm2/Vs [7,8]. Regardless of the numerous advantages, graphene pre-
sents no electronic bandgap. This setback prevents its use in optoelec-
tronics. In this context, a viable gap opening strategy relies on reducing 
the graphene dimensionality. Known as graphene nanoribbon (GNR) [9, 
10], this nanostructure may allow a non-zero gap due to quantum 
confinement effects. In addition, simple geometry adjustments can 
regulate its electronic properties. Controlling structural characteristics 
such as the width [9] or the edge shape [11,12] frequently leads to 
tunable electronic and transport properties. These features, allied with 

recent synthesis advances, turn the GNRs into a promising material class 
for future optoelectronics. 

Recently, a report described the route synthesis of a well-defined 
GNR synthesized in a bottom-up liquid-based process [13]. Experi-
mental evidence suggests that cove-type graphene nanoribbons (CGNR) 
possess a set of physical attributes that overcome previous synthesized 
GNRs. Unlike many GNRs syntheses [14–16], the one applied for the 
CGNR delivers extremely long specimens with almost no defects. 
Moreover, the bottom-up procedure, along with the liquid-based 
feature, is particularly desired for large-scale production. Physical 
measurements also reveal the nanoribbon applicability potential. The 
UV–vis spectrum indicates an optical bandgap of 1.88 eV [13], which is 
suitable for semiconducting applications. Also, time-resolved terahertz 
(THz) conductivity measurements suggest the presence of charge car-
riers with excellent intramolecular mobilities estimated between 150 
and 15,000 cm2/Vs [13]. 

To make sense of these results, a detailed description of charge 
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transport in CGNR is imperative. It is well-established that low- 
dimensional organic semiconductors present local distortion with self- 
trapped charged states, forming quasiparticles. These very structures 
are the result of collective behavior that entangles both the lattice and 
charges. Each type of quasiparticle has characteristic values of charge 
and spin. Furthermore, their existence links to electronic intragap states. 
In particular, charged quasiparticles play a lead role as carriers in the 
transport of charge. Here, two quasiparticles have a notorious relevance: 
the polaron and the bipolaron [17]. The first carrier is a polarized region 
with charge ∓ e and half spin. The latter is a bound state of polarons, 
being spinless with charge ∓ 2e. An adequate physical description of the 
charge transport requires the knowledge of these structures’ behavior 
[18–21]. 

Theoretical approaches based on DFT, tight-binding, and others 
methods were forged to investigate charge transport in graphene-based 
materials [22–25,26,27]. In almost every case, the studies center on 
characterizing the electronic structure of the materials, using models to 
translate parameters such as effective mass into mobility estimates. 
These models include the Boltzmann transport equation (BTE)[28] and 
the Drude-Smith (DS) model[29]. The DS model bears some limitations 
despite its relative success over the past two decades [30]. Although it 
accounts for charge localization [31], the carrier’s quasiparticle nature 
is suppressed. This accuracy loss might reduce the model suitability in 
quantum-confined materials. As to the BTE model, it neglects the role of 
optical phonons, potentially underestimating lattice effects. In that 
sense, recently, we reported an alternative way to probe electronic 
transport explicitly considering collective behavior in GNRs [32] by 
combining non-adiabatic simulations with classical trajectory dynamics. 
The study focused on the so-called armchair graphene nanoribbons 
(AGNRs) and comparison with theoretical and experimental works 
showed good agreement. Hence, the quasiparticle treatment we propose 
here should deliver a better representation of the charge transport 
mechanism in 4-CGNR, as it suffers from neither limitation. In addition, 
transport phenomena in other nanoribbons have been shown to be 
mainly quasiparticle-mediated[9,18–20], suggesting that BTE and 
DS-based approaches supported by DFT may not be completely adequate 
for these materials as well. 

In the present work, we investigated charge transport in the 4-CGNR 
by characterizing the charged quasiparticles under the influence of an 
electric field. Our model consists of an extended two-dimensional Su- 
Schrieffer-Heeger (SSH) model Hamiltonian [33]. Charged states 
revealed the presence of two charged quasiparticles in the 4-CGNR: a 
polaron and a bipolaron. Results showed that each polarized region 
presents a distinctive transport regime. The profiles are a result of the 
interaction between the carriers and scattered phonons, which can be 
better appreciated in terms of a quasiparticle picture. In that sense, the 
importance of methods that account for the collective behavior became 
visible. These approaches are more likely to offer a better physical 
description in such confined systems. Finally, we extracted significant 
low effective masses for both carriers. We also carried out further 
characterization by estimating the I-V curve and the dispersion coeffi-
cient of each polarized region. Altogether, these properties corroborate 
experimental evidence that suggests highly efficient charge carriers in 
4-CGNR, reinforcing this material’s place as a strong candidate in future 
optoelectronics. 

2. Methodology 

We model the 4-CGNR through a two-dimensional extended SSH 
model with electron-phonon coupling. Fig. 1 shows a representation of 
this nanoribbon. The indexation adopted is presented as well. Past works 
describe in detail the model usage [19–21,34,35]. In summary, the 

modeling splits the nanoribbon’s physical description into two parts that 
should be solved simultaneously: an electronic (Htb) and a lattice term 
(Hlatt). We treat the first part quantum mechanically through a 
tight-binding like Hamiltonian for the π-electrons. On the other hand, 
the description of the latter lies in a classical framework. Then, writing 
the first part of the hybrid Hamiltonian (H) in the second quantization 
formalism, 

Htb = −
∑

<i,j>,s
[ti,jC†

i,sCj,s + h.c.]. (1)  

Here, C†

i,s is the creation operator for a π-electron with spin s in the i-th 
site. Accordingly, the operator Cj,s annihilates a π-electron with spin s in 
the j-th site. ti,j is the hopping integral, and the brackets in the summa-
tion represent a pair-wise sum. The distortion amplitude in σ-bonds 
amounts to about 2% [36] of the total length in GNRs. Thus, expanding 
the hopping integral around the undisturbed length [33] gives 

ti,j = t0 + αηi,j. (2)  

t0 is the hopping integral of the symmetric lattice, ηi,j the relative 
displacement of the bond between the i-th and j-th sites, and α is the 
electron-phonon constant. This last term connects the electronic phe-
nomena, mediated by the π-electrons, with the lattice structural disor-
der. We emphasize that Equation 2 inserts a local dependence into the 
hopping integral. Then, unlike pure tight-binding approaches, this 
model allows a positional sensibility in the charge transport process. 

As previously mentioned, our description lies under the approxi-
mation of small oscillations. This allows us to model the lattice term, 
Hlatt, based on the harmonic approximation, 

Hlatt =
K
2
∑

<i,j>
η2

i,j +
1

2M
∑

i
P2

i . (3)  

K is the elastic constant of the σ bonds, M the site’s mass, and Pi is the 
conjugated momentum operator. 

We start solving the hybrid Hamiltonian in its stationary form ( Pi =

0). To numerically evaluate it, one must first find the set {ηi,j}. Starting 
from an initial guess, we can diagonalize the electronic Hamiltonian. 
Then, the set of eigenstates and eigenvalues are used to update {ηi,j}. 
Following the Ehrenfest theorem, the site coordinates ({qi}) are 

Fig. 1. Diagram of the 4-CGNR [11,13,28]. The site’s indexation is illustrated. 
The red dot represents the i-th site. The blue colored sites are their near-
est neighbors. 
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determined by the Euler-Lagrange equations. With 〈L〉 the expected 
value of the Lagrangian, we have, 

d
dt

(
∂〈L〉
∂q̇i

)

=
∂〈L〉
∂qi

. (4)  

〈L〉 is calculated with a Slater-type wave function ∣ψ〉 of the occupied 
π-electrons. The solving of Equation 4 returns a new set of {ηi,j}. Based 
on the convergence criterion, this set is accepted if it is close enough to 
the previous one. Otherwise, we use the newly found {ηi,j} to solve the 
electronic Hamiltonian once again. The whole process repeats until a 
stationary configuration arises. Our main objective in this work is to 
investigate charge transport in the 4-CGNR. For this purpose, we will 
first derive charged stationary solutions. These states are prepared by 
unbalancing the nanoribbon’s total charge. 

Next, we proceed to evolve the stationary states with time. To do so, 
we include the presence of an external electric field with a slowing 
varying potential vector A(t). Where E(t) = − (1∕c)Ȧ(t). The Periels 
substitution transforms the hopping integral into [20,36]. 

ti,j = e− iγAi,j (t0 + αηi,j), (5)  

where Ai,j is the projection of A(t) along the σ-bond that connects sites i 
and j. γ = ea∕(ℏc), in which e is the elementary charge, a the lattice 
parameter and c the speed of light. 

The evolution process consists of solving the time-dependent 
Schrodinger equation for the electronic part and Euler-Lagrange equa-
tions for the lattice. With {ψk,s} the eigenvectors of the electronic 
Hamiltonian, Eq. (4) gives the following equation of motion: 

Fi,j(t) = Mη̈i,j =
K
2
(ηi,i′ + ηi,i′′ + ηj,j′′ + ηj,j′ − 4ηi,j)

+
α
2
(Bi,i′ + Bi,i′′ + Bj,j′ + Bj,j′′ − 4Bi,j + c.c.),

(6)  

where, 

Bi,j ≡ e− iγAi,j
∑′

k,s
ψ*

k,s(i, t)ψk,s(j, t). (7) 

In Eq. (6), the prime on the site’s index represents its firsts neighbors. 
The prime in Eq. (7) means a sum over the occupied orbitals. One can 
notice the explicit coupling between lattice and electronic phenomena 
by the terms that accompany α in Eq. (6) [34]. This equation governs the 
lattice time evolution. 

The states {ψk,s} evolve in time according to Schrodinger equation. 
Then, 

iℏ
∂
∂t

∣ψk(t)〉 = H∣ψk(t)〉,

or,
∣ψk(t + dt)〉 = e− iH(t)dt∕ℏ∣ψk(t)〉. (8)  

Let {∣ϕl(t)〉} and {ϵl} be, respectively, the eigenvector and the eigenvalue 
sets of the electronic Hamiltonian at time t. Expanding the state over this 
basis gives 

|ψk(t + dt) >=
∑

l
〈ϕl(t)|ψk(t)〉e

− iϵldt/ℏ|ϕl(t) > . (9)  

Here, we emphasize that after each time step, dt, the set {ηi,j} changes as 
well. Then, further time increment will require additional diagonaliza-
tion and the re-utilization of Eqs. (8) and (6). 

The electric field is included in a adiabatic manner by [19,34,36]. 

A(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t < 0

− cE0(t − (sin
π
τt
)(τ/π)) if 0 ≤ t < τ,

− cE0(t − τ/2) if t ≥ τ and t < toff .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)  

Here, parameter τ is the time required to achieve a regime of constant 
electric field, while toff is the time when the field is shutdown. 

Finally, we describe our probing method for the transport phenom-
enon of charge carriers in GNRs. All charged quasiparticles have, to 
some extent, a local charge spreading. In special, a stable carrier 
maintains its profile as time evolves. Thus, one can associate this 
structure with the center of the charge density. By doing that, the dy-
namics of the carrier turn into a projectile trajectory. Here, we model 
this motion by including Stokes dissipation model [32]. The equation of 
motion modeled becomes 

FX = Meff Ẍ = qE0 − BvX , (11)  

where Meff is the quasiparticle effective mass, FX the force experienced 
by the particle, B the dissipation coefficient, q the carrier’s charge and vX 
the velocity along the applied field direction. The solution of this dif-
ferential equation gives the following trajectory [32]: 

X(t) = X0 + vtt +
v0 − vt

k
(1 − e− kt), (12)  

in which X0, and v0 are, respectively, the particle position and velocity 
when the field becomes constant. vt is the terminal velocity and k is a 
constant equals to B∕meff. Fitting Eq. (12) returns vt and k. A simple 
manipulation of both parameters also gives Meff and B. In possession of 
these values, we are now able to characterize the charge carrier motion. 
The mobility (μ) can be estimated as: 

μ = vt∕E0. (13) 

Having vt for a giving electric field strength also allows us to evaluate 
the quasiparticle current (I) and voltage (V). Let Q be the carrier’s 
charge. Assuming a steady velocity regime, the current reads 

I =
Qvt

L0
, (14)  

where L0 is the length of the unit cell simulated. Accordingly, one can 
also estimate the potential under the regime of constant E. If Lexp is the 
nanoribbon length and Ncells the integer number of unit cells in it, then, 
the potential reads 

V = E0NcellsL0. (15) 

Throughout this work, all parameters of the hybrid Hamiltonian are 
set based on previous works. t0 = 2.7 eV [37], K = 21 eV/Å2 [38] and a 
= 1.41 Å. Recently, we had estimated 4-CGNR’s α at 4.6 eV/Å [11]. As 
for the parameters related with A(t), τ = 5%toff, and toff equals to the 
entire simulation time, which ranges between 400 and 500 fs. Finally, 
the experimental report of the 4-CGNR synthesis points out nanoribbons 
with about 200 nm in extension [13]. Therefore, we set Lexp = 200 nm. 
NcellsL0 = 189 nm, and 191 nm for the polaron and bipolaron, 
respectively. 

As a final remark, we must stress that the described model physically 
treats the dynamics of quasiparticles with opposite charges equally. 
Then, any transport probing of a positively charged carrier will extend to 
the negative case. 

3. Results 

Fig. 2 presents the 4-CGNR electronic response for charged config-
urations. Fig. 2(a)-(c) show the electronic energy levels close to the 
highest occupied molecular orbital (HOMO) for the neutral state, singly 
and doubly positively charged states. Each line represents an electronic 
state that a π-electron could access. As previously discussed, quasipar-
ticles are associated with intragap states. The difference between these 
energy levels is also a way to characterize the carriers. The red line in (b) 
refers to the inferior orbital of the polaron’s intragap. On the other hand, 
the blue line in (c) is this state for the bipolaron. One can notice that the 
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state in (c) is more detached from the valence band than in (b). That is 
because the additional charge inserts further energetic distress in the 
material. As a result, bipolaron’s intragap state becomes narrower than 
the polaron’s. 

Two polarized regions are associated with the charged stationary 
states. Figure 2(d) displays the charge density profile of the 4-CGNR 
positively charged. The colors symbolize the charge accumulation de-
gree. Hot and cold tones indicate high and low charge density, respec-
tively. The upper polarized region results from the removal of one 
electron. On the other hand, the lower heatmap shows a quasiparticle 
that accumulates a net charge of 2e. We recognize the upper polarized 
region as the polaron and the lower as the bipolaron. 

A fact easily noted is that the polaron is wider than the bipolaron. We 
estimate the former’s width to be 144 Å, while the latter’s equals 100 Å, 
representing less than 10% of L0. Naturally, this is a manifestation of the 
carrier localization property, which makes its structure occupy only a 
fraction of the system’s extension. The reason for such discrepancy be-
tween the lengths lies in the inherent malleability of organic materials. 
Bipolaron posses more charge, which leads to stronger lattice de-
formations. Consequently, the polarized region becomes more concen-
trated. Nonetheless, our simulations indicate that 4-CGNR may host at 
least two types of polarized quasiparticles by unit cell. Their charac-
teristics and properties should crucially influence the description of 
charge transport in that material. 

We have analyzed the quasiparticles performance under the influ-
ence of electric fields in Fig. 3. The Fig. 3(a) and 3(b) show charge 
density snapshots of polaron and bipolaron states, respectively. In both 
cases, collective behavior is apparent. The first snap shows the charge 
density of the stationary state. Here, we can observe two localized 
charge accumulations. When time increases, these quasiparticles drift 
along the field direction, maintaining their characteristic shape. This 
consistent feature remains for all simulations in this work. Qualitatively, 
both carriers evolve in time similarly. At the time interval of 0–66 fs, 
there is no appreciable motion. That happens because, during this 
period, the electric field supports charge localization. Ultimately, this 
process increases the quasiparticle stability. Shortly after, the carrier has 
enough impulse to start drifting. Then, the charged structure enters into 
a regime of velocity gain. That state remains until, eventually, the 
quasiparticle reaches a maximum velocity. Previous works yield similar 

trajectories [20,32,39–41]. 
We emphasize that the velocity gain is not the same for both quasi-

particles. Starting about the same position, after 313 fs, the polaron 
covers almost 100 Å, while the bipolaron reaches only 25 Å. That in-
dicates that bipolaron offers more transport inertia than polaron. Such a 
characteristic is expected since bipolarons originate from a more intense 
lattice distortion. The charge density profile behaves collectively 
throughout the entire simulation time. Moreover, both polarized regions 
remained unchanged under external electric field, reinforcing their 
stability status. 

Fig. 3(c) and 3(d) show, respectively, polaron and bipolaron trajec-
tories under several electric field magnitudes. Each figure contains two 
graphs. The upper one displays the quasiparticle position as a function of 
time. On the other hand, below each position graph, we have the time 
evolution of velocity. The line colors address the field strength. Blue, 
red, and green colored plots refer to dynamics under the field values of 
1210, 1820, and 3280 V/cm, respectively. As can be readily seen, all 
position graphs share a similar pattern. A regime of slow motion goes 
until about 200 fs. During this time, the quasiparticles are in a mobili-
zation process, as discusses previously. Soon after, they begin to cover a 
substantial distance at a fast pace. This new stage is expected to endure 
while the electric field is present. Increasing the field strength leads to a 
predictable consequence: the quasiparticles are accelerated faster. That 
happens because the electric field is the source of energy. 

Numerically, the quasiparticles respond differently to the external 
electric field. Despite that, their velocity plots have a similar shape. As 
time progress, the charged zones continuously gain more velocity. 
However, within the same time interval, the bipolaron gains signifi-
cantly less velocity than the polaron. In addition, the bipolaron reaches 
its terminal velocity regime while the polaron is still building mo-
mentum. We attribute this disparity as a consequence of the additional 
distortion stress that the bipolaron puts in the lattice. Moreover, 
increasing the electric field strength enforces a more intense velocity 
gain regime. 

Recently, our group reported an alternative charge transport 
description that accounts directly for the quasiparticles motion [32]. As 
discussed in the methodology section, the model treats their dynamics as 
the motion of a projectile subjected to Stoke’s drag. The yellow lines are 
the results of fitting the function of Equation 12. One can notice 

50

Fig. 2. The 4CGNR electronic profile: (a), (b) and (c) 
display, respectively, the electronic spectrum around the 
HOMO for the neutral, single, and doubly charged states. 
The red line indicates the intragap state associated with the 
polaron, while the blue line refers to the bipolaron. (d) 
shows the charge density (ρ) profiles of the charged states 
converged via the self-consistent approach. The upper 
nanoribbon refers to the prepared state with − 1 electron, 
while the lower one has − 2 electrons. Both profiles indi-
cate clear charge localization. The former is the polaron 
and the latter the bipolaron.   
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agreement between data and fit, reinforcing the approach’s reliability. 
The numerical data regarding the fitted coefficients can be found in the 
supplementary information file. 

Fig. 4 shows the mobility as a function of the electric field for the two 
quasiparticles. We estimate the values based on the steady-current 
model described in the Methodology section. The red and blue lines 
are guidelines for polaron and bipolaron data, respectively. The profile 
of each carrier is intrinsically distinct. As the field grows, polaron’s 
mobility tends to decay. Inversely, in the bipolaron case, mobility 
continuously increases. The trend of the former quasiparticle is a result 

of phonon collisions. As E0 grows, the carry becomes more and more 
mobile. That allows it to encounter phonons previously emitted. Po-
larons present a lighter lattice deformation amplitude due to their 
moderate charge. Because of that, the vibrational disturbance has the 
potential to disarray the very quasiparticle. Collisions diminish trans-
port efficiency, leading to mobility decay. SSH-based simulations for the 
polyacetylene (PA) point to similar outcomes [42]. In that system, 
higher electric fields accelerate more the polarized regions [41]. The 
lattice reacts by manifesting a more powerful vibrational disorder. Ul-
timately, the interaction between phonons and the polaron translates 

Fig. 3. Charge transport via polarons and bipolarons in the 4-CGNR. (a) and (b) exhibit the time evolution of charged states of Fig. 2 for E0 = 3.28 × 103 V cm− 1. Hot 
colors represent the accumulation of charges, while cold colors depict the inverse. The polaron is represented in (a), while the bipolaron in (b). The former and the 
latter dynamical evolution are placed in (c) and (d), respectively. Red, blue and green points/lines represent dynamics with E0 = 1.21 × 103, 1.82 × 103, and 
3.28 × 103 V cm− 1, respectively. The yellow line in the position plots is the fitting of the trajectory. 

T.S.A. Cassiano et al.                                                                                                                                                                                                                          



Synthetic Metals 287 (2022) 117056

6

into a sensible change in the quasiparticle amplitude distortion. 
One can notice a peak for fields around 1–2 kV/cm. In this electric 

field range, the polaron drifts smoothly, experiencing no phonon-related 
dissipating effects. We consider that there are possibly two causes for 
this regime. The first possible cause is that, within this range, the scat-
tered phonons do not possess enough momentum to disrupt the quasi-
particle. The other cause is that the polarized region gained insufficient 
impulse to reach scattered phonons [40,43]. Therefore, collision effects 
do not occur substantially. As a result, increasing the electric field can 
only enforce further mobilization. The estimated polaron mobility ex-
tends through the range 12,069–18,312 cm2/Vs. The magnitude is 
considerably lower than the one found in pure graphene, which is 
estimated to reach up to 200,000 cm2/Vs [7,8]. That sharp difference 
arises because these materials can have dramatically different topolog-
ical phases. Graphene allows massless carriers around the so-called 
Dirac points [2,6]. That feature translates into its outstanding 
mobility. However, the same does not occur in semiconducting GNRs [9, 
12,44,45]. Depending on the edge shape, narrow nanoribbons can 
display a finite energy bandgap due to lateral confinement effects. As a 
result, the charge carriers will have a non-zero effective mass. The ex-
istence of this transport inertia diminishes the potential to carry charges 
alongside the material. Ultimately, mobility suffers a substantial drop 
[46,47]. 

Nonetheless, our estimated mobility measure reveals the carrier as 
significantly more mobile than observed in other GNRs. Previous 
experimental works report mixed GNRs sub-10-nm wide with mobility 
of about 200 cm2/Vs [48,49] and 1500 cm2/Vs for 14 nm wide speci-
mens [50,51]. More recently, Terahertz spectroscopy measures point 
out 9-AGNR to have a mobility of about 350 cm2/Vs. Moreover, theo-
retical simulations predict AGNRs being even more mobile if they are 
sufficiently wide [52,53]. However, due to reduced confinement effects, 
the mobility gain comes at the expense of the gap magnitude. Significant 
wide AGNRs such as 34-AGNR may have electron mobility of about 40, 
000 cm2/Vs [7] but their gaps are as narrow as about 0.5 eV. This in-
verse relationship between gap and mobility limits the applicability of 
such materials. That said, our findings reveal the CGNR superior per-
formance, even if compared with wide AGNRs. Both materials present 
similar mobility. However, 4-CGNR’s gap is about 3x greater. That 
better balancing between gap and mobility enforces the suitability of 
this nanoribbon for future applications. 

CGNRs also present another transport advantage if compared with 
AGNRs. As well known, the energy bandgap profile of the latter has a 
non-smooth dependence with width changes[9,44]. As discussed pre-
viously, the gap magnitude directly influences the effective mass. 
Therefore, the non-smooth relationship extends to the transport inertia 

as well. Ultimately, mobility suffers from the same constrain. Just like 
the gap or the effective mass, mobility also has a non-smooth response 
over width changes. This condition alone can bring limitations in the 
development of future devices. For instance, mobility of 34, 35, and 
36-AGNR are estimated in 40,000, 2500, and 20,000 cm2/Vs [7,8]. On 
the other hand, cove-type GNRs allow smooth gap tune [11]. Then, 
unlike the AGNRs, these nanoribbons might sustain a mobility tune 
process more direct. 

Bipolaron’s regime resembles the one experienced by the polaron in 
low fields. However, its origin comes from another effect. Like in the 
previous case, the range of E is not strong enough to cause phonon 
collision. Thus, increasing it can only mobilize more the charge carriers. 
However, we do not expect profile changes even when the simulated 
interval is sufficient to enable phonon impacts. The reason for that is 
directly related to bipolaron’s charge. Its additional charge inducts a 
higher lattice distortion. Thus, vibrational disturbances are not strong 
enough to muddle the quasiparticle lattice amplitude. As can be seen, 
the mobility gain here is way more modest when compared to the 
polaron case. That happens because bipolarons put a higher degree of 
distortion on the lattice, along with a more intense charge accumulation. 
Mobilize such polarized regions is more expensive energetically, leading 
to a generalized mobility loss. Bipolaron’s mobility values lie within the 
range of 1051–2233 cm2/Vs. This magnitude is significantly lower than 
the observed in polaron. However, even this carrier still shows better 
performance than found in other GNR types, as discussed previously. 

The inset in Figure 4 shows the quasiparticle mean effective mass as a 
function of the electric field. The red and blue lines represent, respec-
tively, the polaron and the bipolaron. As can be seen, the obtained 
values are essentially field-independent. We estimate polaron’s and 
bipolaron’s effective masses, in units of free electron mass (me), at 0.285 
and 0.682, respectively. This result is expected since the latter quasi-
particle comes from a more intense lattice deformation and charge 
accumulation, translating into greater transport inertia. 

The above results can be compared with several previous theoretical 
works. A theoretical investigation using the BTE estimated hole and 
electron mobilities in the 4CGNR to be 472 and 18,700 cm2/Vs, 
respectively [28]. As it can be seen, the obtained electron mobility 
matches very well our estimates for polarons, whereas hole mobilities 
appear to be closer to our results for bipolarons. These similarities are 
surprising considering the fact that the BTE model accounts only for 
existence of acoustic phonons, which we expect to affect predictions for 
GNRs [54]. 

When it comes to comparing effective masses, a previous work 
calculated hole and electron effective masses to be 0.228 me and 0.246 
me, respectively [28], which agrees well with our above estimates for the 

Fig. 4. Transport response of polaron and bipolaron under the electric field strength (E0). The red and blue triangles assign simulations in which the mobility of 
polaron and bipolaron are probed. The colored lines are guidelines. Following the same color representation, the inset displays the respective effective masses of each 
carrier as E0 changes. 
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effective mass of polarons. Furthermore, our calculated values are 
similar to previous results obtained for AGNRs. For instance, we have 
estimated the polaron effective mass in 9-AGNR to be roughly 0.31 me. 
In contrast, the bipolaron’s effective mass in 9-AGNR varies between 4 
and 6 me [32], an order of magnitude larger than those found in 4-CGNR. 
The difference results from the structural arrangement of the latter GNR. 
Cove edges can be seen as the superposition of armchair, and zig-zag 
borders [11]. ZGNRs, like graphene, present no lattice symmetry 
break. As a result, their charge carriers are essentially massless. Then, to 
some extent, the edge mixing in CGNRs absorbs this attribute, enabling 
lighter carriers than the ones found in GNRs with pure armchair edges. 
This result supports the role of 4-CGNR as a possible host to highly 
efficient charge carriers. 

The panel in Fig. 5 gathers additional transport-related measures. 
Fig. 5(a) displays the estimated current-voltage profiles of the polaron 
and bipolaron. In Fig. 5(b) we present B of each carrier as a function of 
the electric field strength. In both figures, red and blue curves refer to 
polaron and bipolaron, respectively. Here, we estimate the current by 
assuming a steady charge flow of carriers in terminal velocity. A closer 
look at the curves reveals distinct responses. The polaron case consists of 
two different regimes. For low potentials, around 1–30 mV, the current 
increases almost linearly. However, it starts to reach some saturation 
value as the potential grows further. That behavior is due to collision 
effects. Higher field values induce greater acceleration to the carriers. 
However, at some point, the quasiparticles become mobile enough to 
meet scattered phonons. The encounter between the structures limits the 
charge transport efficiency. Once a nanoribbon fully populated by po-
larons reaches this saturation state, further potential difference, V, 
increment will likely cause minimal current variation. 

On the other hand, the bipolaron case behaves differently. Here, 
aside from an initial potential range, the I-V curve is almost linear. Once 
again, we can relate the interplay between the quasiparticle and pho-
nons with the transport profile. The phonon collisions are not able to 
significantly influence the bipolaron’s motion. Thus, increasing the 
potential will only deliver more impulse to the polarized region. The 
amount of charge transported increases, translating into a current gain. 
We emphasize that, although polarons have mobility considerably 
greater than bipolarons, their contribution to the I-V curve is similar. 
Moreover, the bipolaron’s crescent profile suggests that, given sufficient 
potential, it may even overcome polaron’s current. Finally, the distin-
guished transport behavior of the quasiparticles in Fig. 5(a) signs their 
intrinsic properties. The 4-CGNR deliver a more efficient charge trans-
port than previous GNRs types. 

The magnitude of the frictional coefficient allows us to extend the 
quasiparticle characterization process. In Fig. 5(b), one can observe two 
different profiles for the polaron. As E0 increases, the curve shows a non- 
monotonic shape. B decays for electric fields in the 0–2 kV/cm range. For 
higher field intensities, B starts to increase. Once again, the curve shape 

can be related to the occurrence of phonon collisions. This effect is the 
source of restraint. Therefore, the dissipation coefficient directly relates 
to the impact of the collisions. In that sense, the brief B decay trend 
results from quasiparticle mobilization with a negligible influence of 
disseminated phonons. As much E0 increases, the lattice does not present 
greater resistance to motion. Correlative analysis fits the other field 
regime. When the field increases, the quasiparticle faces enough pho-
nons to reduce its mobility. That translates into a B gain trend. 

Conversely, bipolaron shows a consistent monotonic B decay. Such 
response directly connects with how the polarized structure interacts 
with phonons. As discussed in Fig. 4, bipolaron’s existence provokes a 
more prominent localized lattice distortion. Unlike in the polaron case, 
the phonon interplay does not produce significant interference on that 
structure. Thus, in other words, bipolaron motion does not endure 
additional resistance due to vibrational effects. Since this is the only 
restrain accounted for, higher electric fields can only facilitate charge 
translation. As an effect, B decreases continuously. 

The profile of B over electric field strength corroborates the previous 
mobility analysis. The intrinsic relationship of this dissipation coeffi-
cient sheds light on the lattice response led by scattered phonons. Re-
sults clearly distinguish polaron and bipolaron cases due to their 
interaction with such vibrational effects. As the field increases, the 
former quasiparticle suffers major lattice restraints, while the latter 
shows no visible interference. Thus, if such a trend maintains for more 
intense fields, bipolarons could overcome polaron transport efficiency. 

4. Conclusion 

In conclusion, we investigated the charge transport of the 4-CGNR by 
explicitly considering the quasiparticle mechanism. The nanoribbon was 
simulated employing a 2-D extended SSH model with electron-phonon 
coupling. Stationary solutions revealed the existence of at least two 
charged quasiparticles, namely polaron, and bipolaron. Then, we pro-
ceeded to probe dynamical transport characteristics of each carrier. 
Findings unveiled the existence of a distinctive transport regime for each 
quasiparticle. Polaron’s mobility ranges between 12,069 and 
18,312 cm2/Vs, while bipolaron lies around 1051–2233 cm2/Vs for a 
same electric field strength variation. Further analysis linked the 
distinctive regimes with the interplay of the quasiparticles with scat-
tered phonons. We found that a light carrier, such as the polaron, is 
severely affected by phonon collision in high fields. On the other hand, 
bipolaron experienced no interference, regardless of the phonon’s 
momentum. 

Additionally, both carriers show impressive mobility if compared 
with previously studied GNRs. They also present modest effective 
masses. We estimated polaron’s and bipolaron’s as, respectively, 0.285 
and 0.682 me. These quantities showed no apparent variation for E0 
within 0.5–5 kV. All these traits confer the 4-CGNR’s carriers a great 
latent potential for future devices. Finally, we presented two alternative 
transport measurements that contribute to further characterize these 
carriers. 
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[23] D.A. Areshkin, B.K. Nikolić, Electron density and transport in top-gated graphene 
nanoribbon devices: First-principles green function algorithms for systems 
containing a large number of atoms, Phys. Rev. B 81 (2010), 155450. 

[24] G.G. Silva, L.A.R. Junior, M.L.P. Junior, A.L. de Almeida Fonseca, R.T. de Sousa 
Júnior, G.M. e Silva, Bipolaron dynamics in graphene nanoribbons, Sci. Rep. 9 
(2019) 1. 

[25] R. Shishir, D. Ferry, and S. Goodnick, Room temperature velocity saturation in 
intrinsic graphene,in Journal of Physics:Conference Series, 193 (IOP Publishing, 
2009: 012118. 

[26] S. Bruzzone, G. Fiori, Ab-initio simulations of deformation potentials and electron 
mobility in chemically modified graphene and two-dimensional hexagonal boron- 
nitride, Appl. Phys. Lett. 99 (2011), 222108. 

[27] N. Amin, M.T. Ahmadi, Z. Johari, J. Webb, S. Mousavi, and R. Ismail, Drift velocity 
and mobility of a graphene nanoribbon in a high magnitude electric field, in AIP 
Conference Proceedings, vol. 1337 (American Institute of Physics, 2011: 177–179. 

[28] I. Ivanov, Y. Hu, S. Osella, U. Beser, H.I. Wang, D. Beljonne, A. Narita, K. Müllen, 
D. Turchinovich, M. Bonn, Role of edge engineering in photoconductivity of 
graphene nanoribbons, J. Am. Chem. Soc. 139 (2017) 7982. 

[29] N. Smith, Classical generalization of the drude formula for the optical conductivity, 
Phys. Rev. B 64 (2001), 155106. 

[30] T.L. Cocker, D. Baillie, M. Buruma, L.V. Titova, R.D. Sydora, F. Marsiglio, F. 
A. Hegmann, Microscopic origin of the drude-smith model, Phys. Rev. B 96 (2017), 
205439. 
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