
A NOVEL PROTOCOL ARCHITECTURE FOR IOT:
EFFICIENCY THROUGH DATA AND FUNCTIONALITY SHARING

ACROSS LAYERS

VINÍCIUS GALVÃO GUIMARÃES

TESE DE DOUTORADO EM ENGENHARIA DE
SISTEMAS ELETRÔNICOS E DE AUTOMAÇÃO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

A NOVEL PROTOCOL ARCHITECTURE FOR IOT:
EFFICIENCY THROUGH DATA AND FUNCTIONALITY SHARING

ACROSS LAYERS

VINÍCIUS GALVÃO GUIMARÃES

ORIENTADOR: RENATO MARIZ DE MORAES
COORIENTADOR: ADOLFO BAUCHSPIESS

COORIENTADORA: KATIA OBRACZKA

TESE DE DOUTORADO EM ENGENHARIA DE
SISTEMAS ELETRÔNICOS E DE AUTOMAÇÃO

PUBLICAÇÃO: PPGEA.TD-143/2019

BRASÍLIA/DF: JUNHO - 2019

To Aída, Roberto, Ana Paula,

Geneviève, and family.

ACKNOWLEDGMENTS

At first, I would like to thank God, that provided this great adventure and strength.

Thank you for everything I am.

Right after, I thank my parents that always guided me along the way, believed in my

potential, and encouraged me to move on. My sister, who is and always will be my

friend and companion. My partner Genevieve, for supporting and standing next to

me in these moments. My family, who have always cheered for my success along

the way. My friends, for their credibility, patience, and support.

My advisor Prof. Renato Mariz de Moraes and co-advisor Prof. Adolfo Bauch-

spiess, who believed in my work and shared their knowledge for the development

of this project. Their dedication and support will always be carried with me, and

it will be an inspiration of professionalism, conduct, and yet friendship that I shall

return to whoever works with me.

My co-advisor Prof. Katia Obraczka of the University of California Santa Cruz,

who held me as her student during an amazing exchange research experience. Also,

transmitted her knowledge and helped me improving this work to a new higher level.

For all of my friends and colleagues who were present on this journey and made

it remarkable and priceless. Definitely, about friendship, I could not be luckier. I

thank you all (Obrigado, Gracias, Merci, Dhan’yavāda, Arigato gozaimashita).

The LARA laboratory and its students who supported me and made it an ideal

environment to work. A small place in space, but one of the greatest centers of

intelligence and technical quality of UnB.

For their financial support to this thesis, I would also like to thank The Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

The Faculty of Technology and the University of Brasília for giving me this oppor-

tunity to get these names on my resume.

ABSTRACT

Title: A Novel Protocol Architecture for IoT: Efficiency Through Data and Functionality
Sharing Across Layers
Author: Vinícius Galvão Guimarães
Supervisor: Renato Mariz de Moraes
Co-Supervisor: Adolfo Bauchspiess
Co-Supervisor: Katia Obraczka
Graduate Program in Electronic and Automation Systems Engineering
Brasília, June 28, 2019

TCP/IP is a standard stack for communication networks and present in many communi-
cation systems. However, in the Internet of Things (IoT) applications, many works propose
cross-layer designs or even very different architectures to improve energy efficiency. Moti-
vated by the need to accommodate IoT devices with limited power, processing, storage, and
communication capabilities, this work introduces the IoT Unified Services, or IoTUS, a novel
network protocol architecture that targets energy efficiency and compact memory footprint.
IoTUS uses an extensible service layer that facilitates cross-layer sharing. It promotes shar-
ing of both network control information (e.g., number of transmissions, receptions, collisions
at the data-link layer) and functionality (e.g., neighbor discovery, aggregation) by different
layers of the protocol stack. Additionally, IoTUS can be used by existing network stacks
without having to modify the basic operation of their protocols. We implemented IoTUS on
the Cooja-Contiki network simulator/emulator. Our theoretical and simulation results were
similar and coherent. Extended simulations showed that IoTUS framework attained up to
76.83% less energy consumption than adapted ContikiOS stack in a monitoring application,
with a linear topology of 10 nodes. For a 44 nodes tree topology, IoTUS got a network av-
erage of 42.33% less energy consumption. Consequently, IoTUS reached a network lifetime
of 43 days, while adapted ContikiOS got up to 24 days. IoTUS used approximately 4 kbytes
more of flash memory than adapted ContikiOS stack, but reduce up to 31.31% of the RAM
usage. Also, network overhead in IoTUS resulted in approximately 81.3% in a 44 nodes tree
topology, while adapted ContikiOS attained 87.3%. Our theoretical and simulation results
showed improved performance, better energy efficiency, a more extended network lifetime,
and more compact memory footprint when compared to current IoT protocol architectures.

Keywords: Wireless communication, Internet of Things, Energy Efficiency, Protocol Stack.

RESUMO

Título: Uma Nova Arquitetura de Protocolos para IoT: Eficiência Através do Compartil-
hamento de Dados e de Funcionalidades entre Camadas
Autor: Vinícius Galvão Guimarães
Orientador: Renato Mariz de Moraes
Coorientador: Adolfo Bauchspiess
Coorientadora: Katia Obraczka
Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos e de Automação
Brasília, 28 de junho de 2019

A pilha TCP/IP é um padrão para redes e, portanto, está presente em muitos sistemas
de comunicação. No entanto, em aplicações com Internet of Things (IoT), muitos trabalhos
propõem um design que infringem a restrição de acesso entre camadas não adjacentes ou,
até mesmo, novas arquiteturas de protocolos para melhorar a eficiência energética. Motivado
pela necessidade de acomodar dispositivos IoT com recursos limitados de energia, proces-
samento, armazenamento e comunicação, este trabalho apresenta o IoT Unified Services,
ou IoTUS, uma nova arquitetura de protocolos de rede voltada para eficiência de energia e
compacto uso de memória. O IoTUS usa uma camada de serviços extensível que facilita o
compartilhamento entre camadas. Promove também o compartilhamento das informações
de controle de rede (por exemplo, número de transmissões, recepções, colisões na camada
de enlace de dados) e funcionalidades (por exemplo, descoberta de vizinhos, agregação de
pacotes) para diferentes camadas da pilha de protocolos. Além disso, o IoTUS pode ser
usado por arquiteturas de protocolos já existentes, sem ter que modificar a proposta de seus
protocolos já desenvolvidos. O IoTUS foi implementado no simulador/emulador de rede
Cooja-Contiki. Os resultados teóricos e de simulação foram semelhantes e coerentes. As si-
mulações estendidas mostraram que o IoTUS consumiu 76, 83% menos energia comparado
à pilha de comunicação adaptada do ContikiOS em uma aplicação de monitoramento, com
uma topologia linear de 10 nós. Para uma topologia de 44 nós, a IoTUS obteve uma média
de 42, 33% menos consumo de energia. Consequentemente, o IoTUS atingiu uma vida útil
de 43 dias, enquanto a pilha ContikiOS adaptada chegou a 24 dias. O IoTUS usou aproxima-
damente 4 kbytes a mais de memória flash do que a pilha ContikiOS adaptada, mas reduziu
em até 31, 31% o uso de RAM. Além disso, o excesso de cabeçalhos na rede IoTUS foi de
aproximadamente 81, 3% com uma topologia em árvore de 44 nós, enquanto o ContikiOS
adaptado resultou em 87, 3%. Portanto, os resultados teóricos e de simulação mostraram
melhor desempenho do IoTUS, melhor eficiência energética, maior vida útil da rede e um
compacto uso de memória, quando comparado às atuais arquiteturas de protocolos de IoT.

Palavras-chave: Comunicação Sem Fio, Internet das Coisas, Eficiência Energética, Pilha de
Protocolos.

SUMMARY

1 INTRODUCTION . 1
1.1 MOTIVATION . 2
1.2 PROBLEM DESCRIPTION . 2
1.3 OBJECTIVES . 4

1.3.1 GENERAL OBJECTIVES . 4
1.3.2 SPECIFIC OBJECTIVES . 4

1.4 CONTRIBUTIONS . 4
1.5 OUTLINE . 5

2 RELATED WORK . 7
2.1 DATA LINK LAYER . 10

2.1.1 S-MAC .. 10
2.1.2 B-MAC.. 11
2.1.3 X-MAC .. 12
2.1.4 CONTIKIMAC .. 13
2.1.5 IEEE 802.15.4 MAC.. 14

2.2 ROUTING LAYER . 16
2.2.1 IPV6 . 16
2.2.2 RPL . 17

2.3 CROSS LAYER PROTOCOLS . 18
2.3.1 D-MAC .. 18
2.3.2 6LOWPAN .. 18

2.4 CROSS LAYER STACKS . 19
2.4.1 CLAMP . 19
2.4.2 RIME STACK . 19

2.5 CHAPTER’S CONCLUSION . 21

3 IOTUS - IOT UNIFIED SERVICES . 23
3.1 COMPILATION STAGE . 24
3.2 RUNTIME STAGE . 25
3.3 CHAPTER’S CONCLUSION . 29

4 IOTUS: DETAILED DESCRIPTION . 30

viii

SUMMARY ix

4.1 IOTUS-CORE . 31
4.1.1 COMPILATION STAGE . 31
4.1.2 RUNTIME STAGE . 32

4.2 NODE MANAGER . 34
4.3 PACKET MANAGER . 35
4.4 TASK MANAGER . 38
4.5 PIGGYBACK SERVICE . 39
4.6 NEIGHBOR DISCOVERY . 42
4.7 TREE MANAGER . 43
4.8 CHAPTER’S CONCLUSION . 43

5 METHODOLOGY . 44
5.1 ENERGY CONSUMPTION VALIDATION . 45
5.2 IOTUS FRAMEWORK PERFORMANCE . 48

5.2.1 OVERHEAD VALIDATION . 50
5.2.2 IOTUS SIMULATED RESULTS . 51

5.3 CHAPTER’S CONCLUSION . 53

6 THEORETICAL RESULTS . 54
6.1 ENERGY CONSUMPTION EVALUATION . 55

6.1.1 SCENARIO 1: SINGLE NODE TRANSMITTING BROADCAST PACKETS . . 55
6.1.2 SCENARIO 2: ONE NODE TRANSMITTING, AND OTHER NODE RE-

CEIVING . 56
6.1.3 SCENARIO 3: 6 NODES, LINEAR TOPOLOGY, AND ONLY END NODE

SENDS DATA . 58
6.1.4 SCENARIO 4: 6 NODES, LINEAR TOPOLOGY, AND ALL BUT SINK

NODES TRANSMIT DATA . 58
6.2 OVERHEAD EVALUATION . 59

6.2.1 SCENARIO 6: 2 NODES AND NEIGHBOR DISCOVERY PROCEDURE 60
6.2.2 SCENARIO 7: 10 NODES STAR TOPOLOGY, NEIGHBOR DISCOVERY

PROCEDURE . 66
6.2.3 SCENARIO 8: 10 NODES LINEAR TOPOLOGY, NEIGHBOR DISCOV-

ERY PROCEDURE . 68
6.3 THEORETICAL RESULTS’ CONCLUSION . 72

7 SIMULATION RESULTS . 74
7.1 ENERGY CONSUMPTION SIMULATION VALIDATION . 75

SUMMARY x

7.2 IOTUS PERFORMANCE COMPARED TO RIME STACK . 78
7.2.1 SCENARIO 5: 10 NODES, STATIC ROUTING NETWORK, AND TREE

TOPOLOGY . 78
7.2.2 OVERHEAD SIMULATION VALIDATION . 84
7.2.3 ENERGY CONSUMPTION, MEMORY USAGE, LIFETIME, ETC.: 89
7.2.4 SCENARIO 10: 44 NODES, NEIGHBOR DISCOVERY PROCEDURE, TREE

TOPOLOGY, AND RADIO’S DEEP SLEEP .100
7.3 SIMULATION RESULTS’ CONCLUSION .102

8 CONCLUSION .104
8.1 FUTURE DEVELOPMENTS .105

REFERENCES . 105

A RESUMO ESTENDIDO EM LÍNGUA PORTUGUESA114

B C STRUCTS AND FUNCTIONS USED IN IOTUS IMPLEMENTATION121

C IMPLEMENTATION SOURCE AND FOLDERS .128

D PYTHON SCRIPT: THEORETICAL ENERGY CONSUMPTION OF A
SINGLE NODE . 129

E PYTHON SCRIPT: THEORETICAL ENERGY CONSUMPTION OF SIX
NODES IN A LINEAR TOPOLOGY . 131

F PUBLISHED WORKS . 140

LIST OF FIGURES

1.1 Internet of Things devices with illustrative applications. 1
1.2 Common procedures sorted by layers. .. 3
1.3 IoTUS’s extensible cross-layer sharing framework. 4

2.1 Operating time diagram of S-MAC. ... 11
2.2 Operating time diagram of S-MAC-AL. .. 11
2.3 Comparative time diagram of B-MAC and X-MAC. 12
2.4 ContikiMAC unicast transmission example. ... 13
2.5 ContikiMAC broadcast transmission example... 13
2.6 Timing diagram of Superframe by the IEEE 802.15.4 MAC protocol............. 14
2.7 Standard IEEE 802.15.4 MAC association procedure. 15
2.8 IEEE 802.15.4 Physical and MAC headers. ... 16
2.9 General IPv6 header.. 16
2.10 IPv6 Source Routing Header (SRH). .. 17
2.11 ICMPv6 header.. 17
2.12 Timing diagram of D-MAC routing operation... 19
2.13 General 6LoWPAN header. .. 19
2.14 CLAMP stack. .. 20
2.15 ContikiOS stack... 20

3.1 (a) Traditional network stack; (b) Aggregating extensible IoTUS’s modules. ... 23
3.2 Example of an IoT network for temperature monitoring environment. 26
3.3 (a) Traditional packet building; (b) IoTUS service modules - packet building. . 26
3.4 Network protocol creating a routing path through a Neighbor Discovery

(ND) procedure: a) First stage of ND; b) Second stage of ND; c) Third stage
of ND. ... 27

3.5 Time diagram of exchanged control packets in a standard stack registering
(2nd layer) and neighbor discovery (3rd layer) process. 28

3.6 Time diagram of control packets exchanged with the new IoTUS framework
in a registering (2nd layer) and neighbor discovery (3rd layer) process........... 29

4.1 Compiling process for IoTUS framework. ... 30
4.2 Example of IoTUS-Core installing requested modules from different protocols. 32
4.3 IoTUS-Core initializing and starting protocols and their requested modules. ... 33

xi

LIST OF FIGURES xii

4.4 Protocols receiving a packet from a new neighbor, parsing, and sharing its
information. .. 34

4.5 IoTUS Packet Manager used to build an application message. 35
4.6 Traditional network stack building an application message through encapsu-

lation. .. 36
4.7 Message construction with IoTUS. .. 37
4.8 IoTUS Piggyback Service. ... 40
4.9 Piggyback assembly, transmission, and dis-assembly. 41
4.10 Piggyback Service used by different protocols to improve transmission over-

head. ... 41
4.11 Neighbor Discovery service: beacon message creation and transmission. 42

5.1 Illustrative Cooja simulator IDE screen. .. 44
5.2 Linear topology considered for theoretical model validation and simulations. .. 46
5.3 Report example of a node with PowerTrace. .. 47
5.4 Example of a general environmental monitoring application with nodes. 49
5.5 Tree topology considered for environmental monitoring. 50
5.6 Star-like topology used for IoTUS validation.. 51

6.1 Time diagram of a transmitted packet. .. 55
6.2 Time diagram of control packets exchanged in a standard stack registering

(2nd layer) and neighbor discovery (3rd layer) process. 60
6.3 Time diagram of control packets exchanged with the new IoTUS framework

in a registering (2nd layer) and neighbor discovery (3rd layer) process........... 62

7.1 Single transmission simulation in Cooja, repeated 60 times over 30min sim-
ulation. .. 75

7.2 Scenario 3: energy consumption in linear topology with only node six gen-
erating messages. ... 76

7.3 Scenario 4: energy consumption in linear topology with sink (node 1) and
all five nodes generating messages. .. 77

7.4 Scenario 5: average energy consumption per node in a 44-node tree network. . 79
7.5 Scenario 5: total energy consumption by states of all 44 nodes network. The

left side bar of each node describes the IoTUS framework consumption. The
right side bar indicates the consumption of the node for the Rime stack.......... 80

7.6 Scenario 5: total consumption by states of selected nodes from Figure 7.5. 81

LIST OF FIGURES xiii

7.7 Scenario 5: maximum and minimum radio energy gain per nodes in the net-
work (over 10 simulation runs).. 81

7.8 Scenario 5: average power consumption of the network. 82
7.9 Scenario 5: maximum lifetime per number of nodes in the network............... 83
7.10 Scenario 5: memory usage when increasing packet buffer capacity................ 84
7.11 Scenario 6: Pure header overhead comparison for two nodes. 86
7.12 Scenario 6: overhead comparison for two nodes.. 86
7.13 Scenario 7: overhead comparison for 10 nodes and star topology. 87
7.14 Scenario 8: Pure header overhead comparison for 10 nodes and linear topol-

ogy.. 88
7.15 Scenario 8: overhead comparison for 10 nodes and linear topology. 88
7.16 Scenario 7: average energy consumption per node in a 10-node star network... 89
7.17 Scenario 7: total energy consumption by states of all 10 nodes network. The

left side bar of each node describes the IoTUS framework consumption. The
right side bar indicates the consumption of the node for the Rime stack.......... 90

7.18 Scenario 7: final average energy consumption. ... 91
7.19 Scenario 7: maximum and minimum radio energy gain of IoTUS over Rime,

per nodes in the network. ... 91
7.20 Scenario 8: average energy consumption per node in a 10-node linear network. 92
7.21 Scenario 8: total energy consumption by states of all 10 nodes network. The

left side bar of each node describes the IoTUS framework consumption. The
right side bar indicates the consumption of the node for the Rime stack.......... 93

7.22 Scenario 8: final average energy consumption. ... 94
7.23 Scenario 8: maximum and minimum radio energy gain per nodes in the net-

work.. 94
7.24 Scenario 9: Pure header overhead comparison for 44 nodes and tree topology. 95
7.25 Scenario 9: overhead comparison for 44 nodes and tree topology. 95
7.26 Scenario 9: average energy consumption per node in a 44-node tree network. . 96
7.27 Scenario 9: total energy consumption by states of all 44 nodes network. The

left side bar of each node describes the IoTUS framework consumption. The
right side bar indicates the consumption of the node for the Rime stack.......... 97

7.28 Scenario 9: final average energy consumption with 44 nodes, neighbor dis-
covery, and tree topology. .. 97

7.29 Scenario 9: maximum and minimum radio energy gain per nodes in the net-
work with 44 nodes, neighbor discovery, and tree topology.......................... 98

LIST OF FIGURES xiv

7.30 Scenario 9: average power consumption of the network with 44 nodes, neigh-
bor discovery, and tree topology. ... 99

7.31 Scenario 9: maximum lifetime per number of nodes in the network with 44
nodes, neighbor discovery, and tree topology. ... 99

7.32 Scenario 9: memory usage when increasing packet buffer capacity................ 100
7.33 Scenario 10: average energy consumption per node in a 44-node tree network. 101
7.34 Scenario 10: total energy consumption by states of all 44 nodes network.

The left side bar of each node describes the IoTUS framework consumption.
The right side bar indicates the consumption of the node for the Rime stack.... 101

LIST OF TABLES

2.1 Implementation size of B-MAC and S-MAC protocols. 11
2.2 Reviewed layer-independent Data Link protocols. 21
2.3 Reviewed layer-independent Network protocols. 22
2.4 Reviewed Cross-layer protocols. .. 22
2.5 Reviewed cross-layer communication stacks. .. 22

5.1 Energy consumption by states of TMote Sky. .. 46
5.2 Simulation Parameters. ... 49
5.3 Headers, payload, and control commands’ sizes in adapted Rime stack. 53

6.1 Energy consumption expected for one node simulation during 30 minutes. 56
6.2 ContikiMAC parameters and average attributes. 57
6.3 Theoretic energy consumption of one sink node and one transmitting (appli-

cation and network packets) node during 30 minutes. 58
6.4 Expected energy consumption in a linear topology with only one node gen-

erating messages (application layer) during 30 minutes. 58
6.5 Expected energy consumption in a linear topology with all nodes generating

messages (application and Network layer) during 30 minutes. 59
6.6 Size of aggregated commands with IoTUS. ... 63
6.7 IoTUS Aggregated size for some typical aggregation conditions. 65
6.8 Theoretical energy results for different scenarios. 73
6.9 Theoretical results of IoTUS framework and adapted Rime stack. 73

7.1 Energy consumption of Scenario 1: one device compared between the theo-
retical model and simulation. 30 minutes simulation. 75

7.2 Energy consumption of Scenario 2: one mote sending (application messages
and KA) and other receiving. 30 minutes simulation. 75

7.3 Energy consumption of Scenario 3: six devices and only one sending mes-
sages in a linear topology. 30 minutes simulation. 76

7.4 Energy consumption of Scenario 4: five devices sending messages in a linear
topology. 30 minutes simulation. .. 77

7.5 Scenario 6: Pure header overhead and Overhead validation. 86
7.6 Overhead validation in Scenario 7. .. 87
7.7 Scenario 8: Pure header overhead and Overhead validation. 88

xv

LIST OF TABLES xvi

7.8 Compared simulated results of IoTUS framework and adapted Rime stack. ... 103

LIST OF SYMBOLS

AppPayload Application payload [bytes]
Appmsg A single application message in Rime stack [bytes]
BEvents Broadcast events
Bat Battery energy available for one node [J]
ClockRes Clock resolution of the device [units/s]
DL_Ans Amount of bytes in a DL’s answer frame with Rime stack [bytes]
DL_Reg Amount of bytes in a DL’s register frame with Rime stack [bytes]
DL_Req Amount of bytes in a DL’s request frame with Rime stack [bytes]
DLBeacon Amount of bytes in a DL beacon frame with Rime stack [bytes]
EAck Energy consumed with for one ACK [J]
ECCA Energy consumed with one CCA process [J]
EDSleep Energy consumed with radio’s deep-sleep state (Lowest

consumption)
[µJ]

EFirst tx Energy consumed for a ContikiMAC’s first transmission [J]
EIdle Energy consumed with radio’s idle state [mJ]
EOther tx Energy consumed for a ContikiMAC’s transmission [J]
EPkt Energy consumed with for one packet with ContikiMAC [J]
ERx Energy consumed with radio’s reception [mJ]
ESending node Final energy consumed of a transmitting node with Contiki-

MAC
[J]

ESleep Energy consumed with radio’s sleep state [mJ]
EState Accumulated energy consumed in a state [J]
ETx Energy consumed with radio’s transmission [mJ]
EWakeup Energy consumed with one reception event (radio at Rx

state)
[J]

Evreport Number of measuring reports of an experiment
IIdle Drawn current with radio’s idle state [A]
ISleep Drawn current with radio’s sleep state [A]
IState Drawn current with a radio’s state [A]
ITx Drawn current with radio’s transmission state [A]
IoTUS_Appmsg A single application message with IoTUS [bytes]
IoTUS_KALin_Conn IoTUS’s expected amount of bytes with Network’s KA

packets in a linear topology
[bytes]

xvii

LIST OF SYMBOLS xviii

IoTUS_NDLin_BC IoTUS’s expected amount of bytes with broadcast events in
a linear topology

[bytes]

IoTUS2nodes Sen&KA IoTUS’s expected amount of bytes during the sensing and
KA stage for two nodes

[bytes]

IoTUS2nodes overhead IoTUS’s expected overhead for two nodes [bytes]
IoTUSAns Amount of bytes in IoTUS’s answer packet with ND service [bytes]
IoTUSBeacon Amount of bytes in IoTUS’s beacon packet with ND service [bytes]
IoTUSDACK Amount of bytes in IoTUS’s DAO-ACK packet with ND

service
[bytes]

IoTUSDAO Amount of bytes in IoTUS’s DAO packet with ND service [bytes]
IoTUSLin_Ctrls IoTUS’s expected amount of bytes used with control packets

in a linear topology
[bytes]

IoTUSLin_Overhead IoTUS’s expected final overhead in a linear topology [bytes]
IoTUSLin_POverhead IoTUS’s expected pure header overhead in a linear topology [bytes]
IoTUSLin_RCtrls IoTUS’s expected amount of bytes used with control pack-

ets for the remaining duration of the experiment in a linear
topology

[bytes]

IoTUSOverhead Expected overhead in IoTUS [bytes]
IoTUSPure overhead Expected pure header overhead in IoTUS [bytes]
IoTUSReg Amount of bytes in IoTUS’s register packet with ND service [bytes]
IoTUSReq Amount of bytes in IoTUS’s request packet with ND service [bytes]
IoTUSSen&KA IoTUS’s expected amount of bytes during the sensing and

KA stage
[bytes]

IoTUSSingle conn Amount of bytes used for one association process in IoTUS [bytes]
IoTUSTotal conn Total amount of bytes used for during the association pro-

cess in IoTUS
[bytes]

NLBeacon Amount of bytes in a Network’s DIO packet with Rime stack [bytes]
NLDAO_ACK Amount of bytes in a Network’s DAO-ACK packet with

Rime stack
[bytes]

NLDAO Amount of bytes in a Network’s DAO packet with Rime
stack

[bytes]

NLDIO Amount of bytes in a Network’s DIO packet with Rime stack [bytes]
NLDIS Amount of bytes in a Network’s DIS packet with Rime stack [bytes]
NodePower Average power consumption of a node [W]
NumTx Number of transmissions
N Total number of motes of a network

LIST OF SYMBOLS xix

PBApp&DAO Piggyback Service’s DAO and application message in
IoTUS

[bytes]

RCEEvents Reception event representing the radio hardware in the re-
ception state during a short time

Rime_DLLin_BC Rime’s expected amount of bytes with DL’s broadcast events
in a linear topology

[bytes]

Rime_KALin_Conn Rime’s expected amount of bytes with Network’s KA pack-
ets in a linear topology

[bytes]

Rime_NLLin_BC Rime’s expected amount of bytes with Network’s broadcast
events in a linear topology

[bytes]

Rime2nodes Sen&KA Rime’s expected amount of bytes during the sensing and KA
stage for two nodes

[bytes]

Rime2nodes overhead Rime’s expected overhead for two nodes [bytes]
RimeDLconn Amount of bytes used for a DL’s association process in Rime

stack
[bytes]

RimeLin_Ctrls Rime’s expected amount of bytes used with control packets
in a linear topology

[bytes]

RimeLin_Overhead Rime’s expected final overhead in a linear topology [bytes]
RimeLin_POverhead Rime’s expected pure header overhead in a linear topology [bytes]
RimeLin_RCtrls Rime’s expected amount of bytes used with control pack-

ets for the remaining duration of the experiment in a linear
topology

[bytes]

RimeNLconn Amount of bytes used for a Network’s association process
in Rime stack

[bytes]

RimeOverhead Expected overhead in Rime stack [bytes]
RimePure overhead Expected pure header overhead in Rime stack [bytes]
RimeSen&KA Rime’s expected amount of bytes during the sensing and KA

stage
[bytes]

RimeSingle conn Amount of bytes used for one association process in Rime
stack

[bytes]

RimeTotal conn Total amount of bytes used for during the association pro-
cess in Rime stack

[bytes]

Tdev′State Accumulated value of a state in a device’s timing system
Tot_BEvents Total broadcast events in a simulation
VPP Battery voltage [V]
tAStage Average duration to complete all network association

LIST OF SYMBOLS xx

tBeacon Period of beacons in IEEE 802.15.4 MAC [ms]
tIdle Time elapsed with radio’s idle state [µs]
tSF base aBaseSuperFrameDuration parameter in IEEE 802.15.4

MAC
[ms]

tSleep Time elapsed with radio’s sleep state [µs]
tState Time elapsed with a radio’s state [µs]
tSuperframe Superframe period in IEEE 802.15.4 MAC [ms]
tone conn Average duration of one complete node association

bxc The floor function, which outputs the greatest integer less
than or equal to x

LIST OF ACRONYMS AND ABBREVIATIONS

6LoWPAN IPv6 over Low power Wireless Personal Area Networks. 2, 8, 18,
19, 22

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e. 8, 22

ACK Acknowledgment. 10, 13, 18, 28, 35, 52, 55–57, 66, 85
API Application Programming Interface. 31, 33
APT Advanced Packaging Tool. 24

BO Beacon Order. 14

CCA Clear Channel Assessment. 10, 46, 55–57
CLAMP Cross-Layer Management Plane. 3, 8, 19, 22
ContikiOS Contiki Operational system. 9, 10, 13, 19, 20, 22, 30, 35, 43–45,

49, 79, 104, 105
CPU Central Process Unit. 46, 47
CSMA Carrier Sense Multiple Access. 85
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance. 10
CTS Clear to Send. 10

DAO DODAG Advertisement Object. 18, 40, 52, 54, 64–71
DIO DODAG Information Object. 17, 18, 49, 52, 54, 66–69
DIS DODAG Information Solicitation. 17, 52, 54
DL Data Link. 4, 5, 8–10, 13, 16, 18, 20, 25, 27, 28, 49, 52, 55, 57,

59–64, 66–69, 78, 84, 85, 88, 92, 93, 104
DODAG Destination Oriented Directed Acyclic Graph. 17, 52

EMP Energy Management Plane. 19

FCS Frame Check Sequence. 15
FLIP Flexible Interconnection Protocol. 7

GCRAD Geographic Cross-layer Routing Adapted for Disaster. 8, 22
GNRC Riot’s GENERIC Stack. 10, 22

xxi

Acronyms xxii

HDr Header. 40

ICMPv6 internet control message protocol for IPv6. 17, 64
ID Identification Number. 12–14, 21, 47
IDE Integrated Development Environment. 44
IEEE Institute of Electrical and Electronic Engineers. 2, 14
IoT Internet of Things. 1, 2, 4, 5, 7–10, 16, 18, 19, 21, 23, 24, 34, 38,

44, 45, 50
IoTUS IoT Unified Services framework. 4–6, 23–35, 37–39, 43–45, 49–

54, 61–64, 66–74, 78–90, 92–96, 98–100, 102–105, 128
IP Internet Protocol. 2
IPv4 Internet Protocol version 4. 7, 22
IPv6 Internet Protocol version 6. 2, 7, 8, 16–18, 22, 27, 105
ISO International Organization for Standardization. 2
IWSN Industrial Wireless Sensor Networks. 7

KA Keep Alive. 25, 27, 49, 56, 57, 59, 65, 66, 68, 78, 84, 85

LLN Low-power Lossy Networks. 2, 21, 22, 24
LPL Low Power Listening. 12, 13
LPM3 Low Power Mode 3. 46, 47
LT Lifetime. 82

MAC Medium Access Control. 9, 20, 45, 49
MCU Microcontroller Unit. 46, 59

ND Neighbor Discovery. 2, 16, 18, 28, 42, 52
NDCC Neighbor Discovery Control Command. 42

OFM Open Framework Middleware. 9, 22
OS Operational System. 9–11, 22, 45, 47, 48
OSI Open System Interconnection. 2, 10, 19–21, 23

PAN Personal Area Network. 15
PBp Piggyback piece. 39, 40, 64

xxiii

QoS Quality of Service. 3, 18

RAM Random Access Memory. 24, 83, 100, 102, 105
RDC Radio-Duty Cycle. 9, 20, 44
RDML Reducing Delay and Maximizing Lifetime. 7, 22
RPL Routing Protocol for Low-Power and Lossy Networks. 2, 7, 8,

16, 17, 22, 27, 40, 43, 49, 54, 67, 104, 105
RTS Request to Send. 10

SFD Start of Frame delimiter. 15
SN Sequence Number. 15, 47
SO Superframe Order. 14
SRH Source Route Header. 17, 18

TCP Transmission Control Protocol. 2
TinyOS Tiny Operational System. 9, 10
TSCH Time-Slotted Channel Hopping. 8, 22
TSTP Trustful Space-Time Protocol. 9, 22

UCLEAH Uniform Clustering with Low Energy Adaptive Hierarchy. 8, 22
UDGM Unit Disk Graph Medium. 48, 49

WSAN Wireless Sensor and Actuator Networks. 9, 14
WSN Wireless Sensor Networks. 9, 11, 22, 24

XLM Unified Cross-Layer Module. 8, 22

INTRODUCTION

This chapter contextualizes the importance of new designs to
the traditional communication stack for IoT applications. It
also presents the problems in the current stacks, as well as
the objectives and contributions of this work.

Internet usage initially grew with the number of computer users. With the development
of new devices, the internet reached even further users as well as applications and function-
alities. Therefore, a new paradigm to connect devices was created, the Internet of Things
(IoT). Figure 1.1 illustrates some examples of IoT applications.

With technological development, new IoT devices are being integrated into our daily life,
e.g., smart watches, autonomous cars, etc. Some innovative devices can harvest their energy
from the environment [1, 2]. However, for most applications, energy is critical as the amount
of transmissions/receptions is supplied by batteries.

With technology advances, devices’ size and energy consumption tend to reduce. How-
ever, according to [3], IoT devices are likely to stay resource-constrained in the near future;
hence, the relevance of the present work, targeting energy efficiency through an innovative
protocol stack.

Figure 1.1 – Internet of Things devices with illustrative applications.

1

1

Similarly to the ISO/OSI (Open System Interconnection) communication standard [4],
the design of the Internet’s TCP/IP protocol architecture followed the principles of layered

system design. As such, the functions performed by the TCP/IP protocol suite are imple-
mented at different protocol layers, where each layer provides a specific set of services to
the layer above through a well-defined interface. Using this interface, data being received
or sent is passed through the stack. Accessing services provided by layer i through a well-
defined interface shields layer i + 1 from the implementation details of layer i, simplifying
each layer’s design and improving overall’s modularity, maintainability, and extensibility.
However, the layered design approach can increase overhead, as each layer incurs additional
communication (e.g., additional header fields) and processing costs. Furthermore, limiting
the flow between layers restricts sharing of functionality across layers and leads to duplicated
functions at different layers.

Motivated by the emergence of wireless networks, the networking research community
devoted considerable attention to cross-layer approaches as a way to circumvent the limita-
tions imposed by the traditional TCP/IP layered protocol architecture. Accordingly, a wide
range of techniques that use cross-layer information aiming to improve performance was
proposed [5, 6]. Even standard protocols like IPv6 over Low power Wireless Personal Area
Networks (6LoWPAN) [7], developed by Institute of Electrical and Electronic Engineers
(IEEE), use cross-layer operations to accommodate Internet Protocol version 6 (IPv6) [8]
into Low-power Lossy Networks (LLN).

1.1 MOTIVATION

• Increasing number of IoT applications;

• Energy efficiency in wireless communications;

• Cross-layer designs’ benefits and challenges.

1.2 PROBLEM DESCRIPTION

Protocols like IEEE 802.15.4 MAC [9], 6LoWPAN [7], IPv6 [8], and RPL [10] are stan-
dards in IoT systems. However, many of their procedures are duplicated on different levels
(Figure 1.2). As discussed by [11], e.g., the Neighbor Discovery (ND) protocol of 6LoW-
PAN has to consider the designs of IPv6-ND [12] and RPL’s ND.

2

Figure 1.2 – Common procedures sorted by layers.

Many works have proposed better compatibility and optimization using a cross-layer
approach. However, as pointed out by [5], there is not a wide accepted standard yet. As de-
scribed in more detail in Chapter 2, several approaches have tried to bridge this gap. Notable
examples include i) Using an adaptation layer that translates/optimizes header fields of stan-
dard protocols so they can run on capability-challenging devices [7], leading to monolithic
protocol stacks [13]. ii) Developing more effective ways for cross-layer information sharing,
e.g., CLAMP [14] and Rime [15]. However, most proposals to-date have either developed
modules that require protocol redesign or use traditional cross-layer data exchange.

Data exchange between protocols of different layers can reduce memory usage and facil-
itate cross-layer operations, but protocols are not aware of each other procedures. Therefore,
unless a set of protocols are designed to operate in the same stack, their procedures can be
redundant and impact in the number of packets exchanged and energy consumed. In the
layered OSI stacks, the impact of reduced information exchange between layers can be more
significant, since the header size of packets can increase with the encapsulation process,
which one protocol can not necessarily understand another protocol’s header.

3

1.3 OBJECTIVES

1.3.1 General objectives

• Improve energy efficiency in IoT networks.

1.3.2 Specific objectives

• Identify opportunities from the state of the art of IoT;

• Propose and develop a framework to address cross-layer, aggregation, and functions
for energy saving;

• Reduce the overall number of messages exchanged while improving performance, es-
pecially non-application control packets;

• Compare its performance with the state-of-the-art IoT stack.

1.4 CONTRIBUTIONS

Figure 1.3 – IoTUS’s extensible cross-layer sharing framework.

IoT Unified Services framework (IoTUS) proposes an extensible service layer that facil-
itates cross-layer sharing of not only control plane information, or attributes (e.g., number of
transmissions, receptions, collisions at the Data Link layer) but also services (e.g., neighbor
discovery, data aggregation), as shown in Figure 1.3. IoTUS can be used by existing proto-
col stacks allowing information and functionalities sharing among layers without requiring

4

changes to these protocols. With this framework, protocols are aware of each other proce-
dures and therefore, able to optimize their task (increase stack’s synergy). Our evaluation by
theoretical and extensive simulations shows that IoTUS can achieve significant energy sav-
ings, as well as use a smaller memory footprint when compared to the existing IoT stacks, in
particular, the stack used in ContikiOS [16].

IoTUS’s main contributions are:

• A systematic approach to cross-layer information sharing that yields both energy and
storage efficiency;

• A modular and extensible service layer that enables sharing common functionality by
different protocol layers;

• A framework that can be used by existing protocol stacks without having to modify
their design.

Although IoTUS is available for every layer in the protocol stack, and cross-layer benefits
can be obtained by every layer, in this work, we evaluate mainly the procedures operated by
the Physical, Data Link, Network, and Application layer.

1.5 OUTLINE

The remainder of this work is divided as follow:

• Chapter 2 discusses related works, their pros and cons, and how they pushed the
development of better solutions;

• Chapter 3 introduces the new framework IoTUS. It gives the reader an overall under-
standing of how IoTUS works, and what to expect of it;

• Chapter 4 explains the details about the IoTUS. It describes the procedures and struc-
tures used to develop IoTUS;

• Chapter 5 describes how this work was evaluated, the simulations proposed, and the
methods to obtain the results;

• Chapter 6 shows the development of theoretical models applied in different scenarios
to evaluate and validate IoTUS framework;

5

• Chapter 7 presents the simulation results obtained within different scenarios and pa-
rameters simulated. Every simulation is compared to the standard stack with equal
parameters;

• Chapter 8 concludes this work, with perspectives for future developments and exper-
iments, followed by the References;

• Appendix A has an extended abstract written in Portuguese;

• Appendix B shows the main structs and fields used by modules of IoTUS framework;

• Appendix C present instructions for obtaining IoTUS’s open-source code;

• Appendix D presents the Python scripts of the theoretical model used to calculate the
expected results with a single node network;

• Appendix E presents the Python scripts of the extended theoretical model used to
calculate the expected results for a linear topology;

• Appendix F lists the published works.

6

RELATED WORK

In this chapter, we present an overview of the current state of
the art of protocol stacks and architectures that try to accom-
modate devices with constrained power, computation, stor-
age, and communication capabilities. Detailed information
over these works is further presented.

By design, the standard layered stack protocols encapsulate their information into head-
ers. Thus, the abstraction and hidden data of each layer can cause undesirable effects, such
as disconnections, delays, overhead, retransmissions, etc. Many works proposed cross-layer
protocols to improve the efficiency of IoT devices [5, 6, 17], and other works also proposed
modifications to the standard stack to facilitate this exchange of information between layers
[15, 18, 14, 19, 20, 13]. As pointed out in [21], cross-layer design can eliminate a large
number of control packets while improving decision making within protocols. On the other
hand, layered stack allows loosely coupled modular protocols.

Through experiments using the Cooja-Contiki simulator [22, 16], the work reported in
[23] shows that the control overhead in Routing Protocol for Low-Power and Lossy Networks
(RPL) [10] can represent about 25% of the overall traffic in a 20-node network and can go
up to 75% with 100 nodes. According to [23], it is worth noting that IPv6 [8] and RPL [10]
use similar control packets for neighbor discovery, which could generate additional control
overhead.

The Flexible Interconnection Protocol (FLIP) [24] uses flexible headers to interconnect
heterogeneous devices while accommodating their different capabilities. The overhead in-
curred by FLIP’s header will depend on the capabilities of the device running FLIP and the
needed functionality. For low-power devices like scalar sensors (e.g., temperature, humidity,
etc.), which typically need to send out their readings periodically, FLIP provides considerable
savings when compared to fixed-length protocols like Internet Protocol version 4 (IPv4) [25]
and IPv6 [8].

RAWMAC [26] is based on ContikiMAC [27] and uses cross-layer access on RPL to
align the radio’s wake-up schedule. Therefore, similar to D-MAC [28], RAWMAC reduced
upward packet delay for monitoring systems.

In Reducing Delay and Maximizing Lifetime (RDML) [29], it maximizes network life-
time while reducing the message delay and the number of retransmissions for Industrial
Wireless Sensor Networks (IWSN). This work assumes that energy efficiency is already op-
timized, and so, increasing the duty-cycle of nodes with residual energy will not impact on

7

2

network lifetime. For that, cross-layer operations are required since position and proximity
to the sink node are used in different layers.

Other efforts towards efficient protocol architectures specifically targeting networks of
low power, low capability devices (e.g., wireless sensor networks) have used a “monolithic"
approach, i.e., combining the functionality of multiple layers into a single layer. A notable
example is the Unified Cross-Layer Module (XLM) [13] and Uniform Clustering with Low
Energy Adaptive Hierarchy (UCLEAH) [19].

Adaptation-layer protocols like IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) [7] have also been proposed as a way to translate protocol fields and optimize
headers in order to be able to adapt standards such as IPv6 [8] and RPL [10] to run on top
of IEEE 802.15.4 [30] in IoT devices. 6LoWPAN, IPv6, IEEE 802.15.4, and RPL can be
considered the de facto protocols for the IoT stack, according to [31].

Other works like Time-Slotted Channel Hopping (TSCH) of IEEE 802.15.4e [9] have
improved the design of IEEE 802.15.4 MAC, using channel hopping and better synchroniza-
tion techniques to improve the protocol’s efficiency, latency, and reliability,especially for
industrial applications. Also, with similar goals as 6LoWPAN, IPv6 over the TSCH mode
of IEEE 802.15.4e (6TiSCH) [32] adaptation-layer protocol was proposed. Moreover, up-
dates and improvements are still being developed, as presented in [33]. Finally, in [34], the
6TiSCH performance discussed. 6TiSCH makes use of cross-layer operations to optimize its
performance, but its design does also consider the traditional layered protocol stack.

Cross-layer operations can be presented in most layers of the stack [35]. However, Phys-
ical, Data Link (DL), and Network layers can provide more impacting cross-layer optimiza-
tion toward energy efficiency, e.g., Geographic Cross-layer Routing Adapted for Disaster
(GCRAD) [36] improves end-to-end delay and energy efficiency compared with other state-
of-the-art geographic routing methods. Another example is Leach-CLO [37], which is a
clustering routing protocol and proposed a cross-layer optimization model involving Physi-
cal, Data Link (DL), and Network layers. Leach-CLO outperforms other traditional layered
routing protocols for underwater communication, like Leach-L [38].

Other approaches try to improve IoT protocol stack efficiency through new architectures
facilitating cross-layer information sharing. For example, Cross-Layer Management Plane
(CLAMP) [14] uses a publish/subscribe/update/query system that allows protocols at dif-
ferent layers to share information. In this work, many other sub-layers were developed to
support the entire stack and are discussed further in this chapter.

Another solution for cross-layer sharing is proposed by TinyXXL [20] which provides the

8

Tiny Operational System (TinyOS) [39] embedded operating system with more efficient data
storage, as well as a generic interface for data exchange. TinyXXL is part of TinyCubus [40],
a new cross-layer based protocol stack for sensor networks. Moreover, TinyCubus includes
TinyAdapt [41], which provides an easier selection of protocols/parameters for a given set
of application requirements.

In [18], an Open Framework Middleware (OFM) is developed for Wireless Sensor and
Actuator Networks (WSAN). However, since shared information between layers is neces-
sary, the standard layered protocol stack restricts the network software modularity and limits
network optimal performance. Therefore, OFM also proposed a new stack consisting of
modules (e.g., routing, security and communication services) and abstraction layer to facili-
tate information access to high layers as OFM’s middleware.

Cross-layer information sharing in the Contiki Operational system (ContikiOS) [16],
which includes Rime stack [15], works as follows. Information produced by different proto-
col layers is stored as attribute-value pairs and is accessible by protocols at different layers.
Shared information is used in building packet headers with protocols at different layers.
ContikiOS uses a Radio-Duty Cycle (RDC) layer separate from the Medium Access Control
(MAC) layer. This may cause portability issues as most implementations handle both lay-
ers (RDC and MAC) as a single layer [42]. Rime [15] is a collection of sub-layers mainly
at Network layer that provides modular network functionalities to the stack. According to
[43], using COOJA/MSPSim hardware emulation tool (which includes TMote Sky [44]) en-
ables accurate energy consumption evaluation compared with testbed results, resulting in a
maximum difference of 0.6 µW (running up to 15 nodes).

HARE [17] provides a set of protocols (from the Data Link layer until the Transport
layer) to optimize uplink multi-hop communication using an adaptive transmission power
level. HARE was implemented in real motes and uses ContikiOS [16] and Cooja [22] as
its Operational System and simulator, respectively. Because of it, HARE also considers an
RDC layer and a MAC layer. The design of many protocols in different layers permits easier
cross-layer access and better-optimized operations.

Trustful Space-Time Protocol (TSTP) [21] is an application-oriented, cross-layer proto-
col for Wireless Sensor Networks (WSN) and IoT which proposed solutions for the entire
stack (from the application to the Medium Access Control layer). In this work, a template
metaprogramming technique is used to avoid monolithic, tightly-coupled software. Thus,
although cross-layer is used, modular programming is still available within its stack design.
TSTP improves the network procedures with its combined set of protocols and brings to the
application a complete communication solution.

9

It is interesting to point out that Riot-OS [45], a more recently developed operating sys-
tem for IoT devices, can use different protocol stacks, i.e., the Operational System (OS)
design facilitates the exchange of communication stacks. Nevertheless, the Riot’s default
stack is named GENERIC (GNRC) and does not make use of any cross-layer sharing. In
[46], Riot is compared with other stacks, including ContikiOS, where it shows that packet
building time is slightly higher due to driver-processing and its linked lists packet manage-
ment. Riot is an open-source project [47] and can be implemented in devices also compatible
with Cooja [22].

The remainder of this chapter contains detailed information over some reviewed works,
which is divided into Data Link layer protocols, Network layer protocols, cross-layer proto-
cols, and other protocol stacks. In the end, we conclude this chapter discussing the gap our
work intends to fill and a summarized view of all reviewed works.

2.1 DATA LINK LAYER

In general, Data Link layer can improve energy saving depending on the protocol’s de-
sign and application’s requirement. This is determined by the control on the radio’s trans-
mission events. Radio communication can represent the majority of a mote’s consumption.
Therefore, the group of protocols further described limit their procedures to the Data Link
attributions, according to the Open System Interconnection (OSI) stack design.

2.1.1 S-MAC

Sensor-MAC [48], also known as S-MAC, is a consolidated approach in terms of energy-
saving system that has been implemented on real motes using TinyOS [39] and Rene Motes [49].
This protocol works only with channel sensing for contention detection, which is similar to
Clear Channel Assessment (CCA). Other features of this protocol are:

• Activation and sleep cycles [50]: allowing the system to perform greater energy sav-
ings. However, this feature may generate delays of transmissions (increased latency).

• Packets for traffic control: similar to the Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA) [51] protocol, e.g., Request to Send (RTS), Clear to Send
(CTS), and Acknowledgment (ACK).

An overview of the operation mode of this protocol can be seen in Figure 2.1.

10

Figure 2.1 – Operating time diagram of S-MAC. Adapted from [48].

Table 2.1 – Implementation size of B-MAC and S-MAC protocols.

Protocol ROM (bytes) RAM (bytes)
B-MAC 3046 166

B-MAC with ACK 3340 168
B-MAC with LPL 4092 170

B-MAC with LPL, and ACK 4386 172
B-MAC with LPL, ACK, and RTS-CTS 4616 277

S-MAC 6274 516

According to [48], S-MAC was developed to meet the need for energy savings at the cost
of latency. Moreover, latency over multiple hops was improved in [52]. Therefore, Figure 2.2
illustrates a temporal diagram of S-MAC-AL (adaptive listening).

Figure 2.2 – Operating time diagram of S-MAC-AL. Adapted from [52].

Although S-MAC-AL improved latency over S-MAC, its design is not as efficient for
larger networks. Nevertheless, S-MAC is still a standard for WSN environments and is
present in many recent OSs.

2.1.2 B-MAC

Developed in Berkeley, B-MAC [53] was developed aiming at environment monitoring
applications with varying traffic rates. Therefore, instead of synchronization periods, B-
MAC uses preambles large enough to be detected by the receiving node. Consequently,
energy saving is obtained by reducing idle listening (event in which a device has its radio

11

on but receives no packet). Also, B-MAC developed the Low Power Listening (LPL), which
reduces idle listening even more. The implementation size of B-MAC in the MICA2 [54]
modules is presented in Table 2.1.

2.1.3 X-MAC

Based on B-MAC [53] and WiseMAC [55], the X-MAC [56] approach significantly im-
proves energy efficiency with idle listening. It proposes small periodic preambles capable of
being sensed by the receiver node (Figure 2.3).

Figure 2.3 – Comparative time diagram of B-MAC and X-MAC. Adapted from [56].

Hence, X-MAC energy efficiency is given not only with its shorter active times but also
with its identified preambles. Therefore, the destination node Identification Number (ID) is
sent inside the preamble, and thus, other nodes go faster to sleep. Consequently, X-MAC
works better in denser networks than B-MAC and WiseMAC.

12

2.1.4 ContikiMAC

ContikiMAC [27] is implemented in ContikiOS [16], and its design improved the LPL
mechanism done in X-MAC [56]. Moreover, it is the de facto standard low-power DL pro-
tocol used by ContikiOS.

In ContikiMAC, the preamble sent to initiate communication is the packet itself (with
its destination ID and payload). Also, Phase-lock mechanism (present in WiseMAC [55])
allows the sender to record the wake-up schedule of a neighbor receiver and uses fewer
preambles for the next communications. Meanwhile, the receiver node uses periodical wake-
ups to listen for the packet; thus, it sends an ACK frame once a reception occurs.

Figure 2.4 illustrates the communication process in ContikiMAC in which repeated frames
already containing the message payload are sent as a preamble until the ACK is confirmed.
However, as shown in Figure 2.5, broadcasts are not confirmed, but instead, they are trans-
mitted for the whole period inter-sampling (wake-ups).

Figure 2.4 – ContikiMAC unicast transmission example.

Figure 2.5 – ContikiMAC broadcast transmission example. Adapted from [27].

13

2.1.5 IEEE 802.15.4 MAC

IEEE 802.15.4 [30] was developed by the IEEE and is a standard for WSAN. It has
several modes of operation. Therefore, some examples of parameters to be configured are:

• Maximum active time;

• Beacon network;

• Time between synchronization signals (beacons);

• Nodes’ ID of 16-bit or 64-bit.

IEEE 802.15.4 MAC employs Superframes, which are communication slots; hence, de-
vices can communicate by either contention processes or reserved slots. During the Super-

frame (Figure 2.6) beacons are transmitted, informing network parameters, and communica-
tion slots are available for connected nodes.

Figure 2.6 – Timing diagram of Superframe by the IEEE 802.15.4 MAC protocol. Adapted
from [30].

As illustrated in Figure 2.6, the definition of Beacon Order (BO) and Superframe Order
(SO) determine the total time of the period between beacons and the maximum active time
of the network. Hence, these times are given by

tSuperframe = tSF base.2
SO, (2.1)

and
tBeacon = tSF base.2

BO, (2.2)

where tSF base is the aBaseSuperFrameDuration parameter in IEEE 802.15.4 MAC, e.g.,
16.36ms.

14

Furthermore, IEEE 802.15.4 MAC has a registering process (Figure 2.7) between co-
ordinators and other devices (an end-device or a router node). Thus, its association process
takes four main steps for the coordinator: sending beacons, processing an association request
(MLME_ASSOCIATE), waiting for a data request, and answering the association response.
Meanwhile, the end-device has five other steps: scanning (MLME_SCAN), choosing a co-
ordinator (Personal Area Network (PAN) selection), requesting to associate, requiring for an
answer (data request), and processing the answer. Because of this association process, IEEE
802.15.4 MAC can have independent groups coexisting, with a network formed by a general
coordinator, routers, and end-devices.

Figure 2.7 – Standard IEEE 802.15.4 MAC association procedure. Adapted from [57].

Figure 2.8 shows an example of the header that can be used by IEEE 802.15.4, with fields
like Start of Frame delimiter (SFD), Frame Check Sequence (FCS), Sequence Number (SN),
and FCS.

15

Figure 2.8 – IEEE 802.15.4 Physical and MAC headers. Adapted from [30].

2.2 ROUTING LAYER

The third layer or Network layer has many procedures capable of great impact on en-
ergy consumption; thus, Network protocols should also be energy-aware. Moreover, some
procedure in the third layer may be redundant with the DL layer, e.g., Neighbor Discovery
(ND).

2.2.1 IPv6

Internet Protocol version 6 (IPv6) [8] is the standard for IoT devices in the Network layer
since its design allows big address numbers (16 bytes), flexibility, and security. Thus, Many
computers, smartphone, and tablets are already supporting the IPv6. However, the address
field can be redundant, since Data Link addresses are generally used. Moreover, this standard
also defines a, ND procedure [12] that can be redundant with RPL [10].

Figure 2.9 – General IPv6 header. Adapted from [8].

16

Figure 2.9 presents a general IPv6 header. IPv6 headers are too big (40 bytes) to be
used by devices developed to transmit at most 127 bytes. Furthermore, this header is not
yet final and can increase even more due to its flexibility ("Next header" field). An example
of "Next header" field is the option to use Source Route Header (SRH) [58] (Figure 2.10).
Another flexibility option is the internet control message protocol for IPv6 (ICMPv6) [59]
(Figure 2.11), and so it is used to exchange control packets in the network.

Figure 2.10 – IPv6 Source Routing Header (SRH). Adapted from [58].

Figure 2.11 – ICMPv6 header. Adapted from [59].

2.2.2 RPL

RPL [10] is another standard routing protocol for constrained devices due to its flexi-
bility, reliability, and reasonable complexity. Its main feature is building a tree topology or
Destination Oriented Directed Acyclic Graph (DODAG). The topology consists of one data
sink node per instance, using an objective function to determine the network goal and defin-
ing which paths to create. However, the instances feature is not always implemented [23];
indeed, most implementations restrict to only one instance at a time.

Therefore, RPL specifies a set of new ICMPv6 control messages to exchange network
information:

• DODAG Information Solicitation (DIS): used by the nodes to proactively solicit
graph information which is answered with a DODAG Information Object (DIO) packet.

17

Its functions are fundamental to the building process of the tree, initiating the path up-
wards to the sink node;

• DODAG Information Object (DIO): the answer of the neighbor device to a DIO
packet. It is responsible for building the path upwards, towards the sink node;

• DODAG Advertisement Object (DAO): this frame is responsible for creating and
maintaining the path downwards to the end-devices. When this control frame is being
relayed, the router device can either store its information or just relay (SRH would
then be necessary for downwards packets);

• DAO_ACK: an ACK packet for a DODAG Advertisement Object (DAO).

2.3 CROSS LAYER PROTOCOLS

Some works tried to improve energy consumption with optimization over more than one
layer. Thus, better energy efficiency was attained, but at the cost of interoperability and/or
modularity.

2.3.1 D-MAC

D-MAC [28] improves energy efficiency by reducing idle listening using the Network
layer’s wake-up schedule. D-MAC main benefits are low latency while keeping energy sav-
ings. Also, its design corroborates in networks of a single destination (data sink).

Figure 2.12 illustrates D-MAC’s operation. It can be observed that devices optimize their
DL wake-up schedule to start transmitting right before its father node, thus reducing idle
listening and energy consumption. However, the downwards packets do not have the same
benefit; instead, they may experience relatively higher delays. Nevertheless, if necessary,
nodes can work more often to maintain Quality of Service (QoS) and ensure efficiency.

2.3.2 6LoWPAN

6LoWPAN [7] was developed to accommodate IEEE 802.15.4 [30] and IPv6 [8] in con-
strained IoT devices. It reduces the amount of overhead and optimizes redundant functions
and field between these protocols, e.g., duplicated addresses and Neighbor Discovery.

Similar to IPv6, 6LoWPAN has flexible headers and uses information in the DL layer

18

Figure 2.12 – Timing diagram of D-MAC routing operation. Adapted from [28].

to reduce the header size. Also, by doing cross-layer access, 6LoWPAN can improve the
addressing procedure. Figure 2.13 presents a general header used by 6LoWPAN.

Figure 2.13 – General 6LoWPAN header. Adapted from [7].

2.4 CROSS LAYER STACKS

This section presents a group of works that changed the standard OSI protocol stack.

2.4.1 CLAMP

CLAMP [14] refers to Cross-Layer Management Plane, which is only one of the layers
proposed by this work. Many new interfaces and sub-layers were proposed as well. Fig-
ure 2.14 presents the stack and its submodules.

CLAMP also presented a publish/subscribe/update/query system, where protocols can
share any information, and other protocols can access it by querying or subscribing to this
data. However, some proposed modules have independent operations (set by parameters),
e.g., Energy Management Plane (EMP), which is responsible for the radio duty cycle.

2.4.2 Rime stack

ContikiOS [16] is a largely used system for IoT devices; thus, its protocol stack (includ-
ing Rime [15]) can be considered a standard. Also, the packet managing system (Packetbuf)

19

Figure 2.14 – CLAMP stack. Adapted from [14].

allows a shared manner to build packets in the stack.

However, although ContikiOS stack is similar to OSI stack, it splits the DL layer into
MAC and RDC (Figure 2.15), with a framer sub-layer to translate Packetbuf fields and the
radio’s headers. Moreover, although protocols use a shared service to build packets, they are
still not aware of each other’s procedures and, therefore, cannot optimize their task without
recurring to cross-layer information access.

Figure 2.15 – ContikiOS stack. Adapted from [16].

ContikiOS and Cooja [22] form a powerful development environment, but RDC and
MAC division along with Rime do not provide a good stack for some protocol implementa-
tions (e.g., the IEEE 802.15.4 MAC). In this work, we adapted ContikiOS’s protocol stack
into a traditional stack composed of only Physical layer (and its framer sub-layer), MAC,
Network, Transport, and Application layer. The ContikiOS’s Packetbuf is still used for
packet managing. Therefore, for convenience, this adapted traditional protocol stack in Con-
tikiOS is also called Rime stack for the remaining of this text. The adapted stack accepts any
protocol in its layers, as the ContikiMAC, RPL, IEEE 802.15.4 MAC, etc.

20

2.5 CHAPTER’S CONCLUSION

We observed that cross-layer designs successfully attempted to solve specific problems
for specific applications, especially in LLN. For example, many solutions have being pro-
posed for applications with large throughput demand [35]. For many applications, the cross-
layer results are usually superior to the traditional layered stacks, either using monolithic
approaches or complete new designed stacks. However, the methods to enable cross-layer
development are mainly through non-modular protocols stacks, data sharing tools, or archi-
tecture modifications. Although works like [21] developed means to keep modular develop-
ment with cross-layer design, the optimized procedures between protocols are mostly given
by their implementation assuming a specific setup of protocols.

Therefore, there is still a gap between traditional layered standard protocols and cross-
layer modular designs that will allow both methods to communicate between themselves and
still benefit from their qualities. In this way, our work proposes a cross-layer facilitator, with
vertical modules/services that allow data exchange and functionality sharing to traditional
protocol stacks. Our proposal has a design that does not require the stack to be changed.
Hence, this allows a smoother transition from layered stacks to cross-layer designs for IoT
devices.

To facilitate comparison, we summarized the reviewed protocols and stacks in Table 2.2,
Table 2.3, Table 2.4, and Table 2.5. Thus, we split the work between groups, describing their
main contributions, and their restriction to the OSI design, i.e., having cross-layer access.

Status options are:

Tbd — Testbed or real device;

Sim — Simulated Only;

N/A — Not available

Table 2.2 – Reviewed layer-independent Data Link protocols.

Name Status Improvements Year
S-MAC [48] Tbd Group wake-up schedule 2002
B-MAC [53] Tbd Preambles and idle listening 2004
X-MAC [56] Tbd Shorter preambles with ID included 2006

ContikiMAC [27] Tbd Payload in the preamble and Phase-lock 2011
IEEE 802.15.4 MAC [30] Tbd Versatility and bigger networks 2006

IEEE 802.15.4e [9] Tbd More Versatility and channel hopping 2016

21

Table 2.3 – Reviewed layer-independent Network protocols.

Name Status Improvements Year
IPv4 [25] Tbd Internet standard 1981
IPv6 [8] Tbd New Internet standard 1998
RPL [10] Tbd Routing protocol for LLN 2012

Table 2.4 – Reviewed Cross-layer protocols.

Name Status Improvements Year
RAWMAC [26] Sim Aligned wake-up and improved latency 2014

FLIP [24] Tbd Dynamic headers 2004
D-MAC [28] Sim Improved upwards latency 2004

6LoWPAN [7] Tbd Accommodate IPv6 and RPL in LLN 2017
6TiSCH [34] Tbd Accommodate IPv6 and RPL with TSCH 2019
GCRAD [36] Sim Lower end-to-end delay and lower energy consumption 2017

Leach-CLO [37] Tbd Efficiently balance the energy consumption in WSN 2018
RDML [29] Sim Maximize nodes’ duty-cycle and network lifetime 2018
HARE [17] Tbd Improved uplink transmission and energy consumption 2018

Table 2.5 – Reviewed cross-layer communication stacks.

Name Status Improvements Year
UCLEAH [19] Sim Optimum hop distance 2017

XLM [13] Sim Unified cross-layering stack 2006
CLAMP [14] Sim Data sharing with a subscription system 2007
TinyXXL [20] N/A Cross-layer Data exchange for tinyOS 2007

OFM [18] N/A Abstract functionalities for cross-layer 2010
ContikiOS Stack [15] Tbd Shared packet building 2007

GNRC [47]1 Tbd Switchable stack in the OS 2018
TSTP [21] Tbd Shared metadata-enriched zero-copy buffers 2018

1GNRC does not have cross-layer, but Riot allows communication stack exchange and multiple stacks
running simultaneously.

22

IOTUS - IOT UNIFIED SERVICES

The new IoTUS framework for IoT stacks is introduced in this
chapter. It is based on modules to provide shared data and
functionalities; thus, a general description and examples are
used to explain IoTUS’s design.

IoTUS promotes information and functionalities sharing across protocol layers while
maintaining most benefits of a layered design. Through efficient cross-layer sharing, IoTUS’s
main goal is to achieve energy efficiency, as well as a more compact memory footprint,
both of which are important to accommodate IoT devices with limited capabilities. Sim-
ilar to other proposals [14, 15, 20], IoTUS provides modules to standardize the way in-
formation is accommodated in packets. However, differently from other reviewed works
[14, 15, 20, 21, 24], IoTUS not only provides modular cross-layer benefits but also allows
protocols (in the traditional OSI-like stack) to be aware of each other procedures and op-
timize their tasks through a subscription process. For example, when protocols share their
behavior with the stack (e.g., periodic packets and expected procedures), other protocols are
aware of possible aggregations and can optimize their parameters accordingly. As illustrated
in Figure 3.1(b), IoTUS is designed as a collection of service layers (or modules) which can
be used directly by existing stacks, without modifications of these protocols.

a) b)

Figure 3.1 – (a) Traditional network stack; (b) Aggregating extensible IoTUS’s modules.

In cross-layer architectures, centralized data storage facilitates the information exchange
between layers, e.g., TinyXXL [20] uses such a storage system, and Rime [16] provides a
shared packet building module. In IoTUS, a data exchange system was also implemented,
which includes a packet building module.

Other IoT protocols [14, 18, 20] have some independent modules to share specific func-
tions, e.g., duty cycling is often a separate service in the stack; neighbor discovery has its

23

3

separate implementation, providing service to other layers; topology building can be an in-
dependent service that provides connection to other protocols; etc.

In IoTUS, the framework functions are an additional feature to the traditional layered
stack (Figure 3.1). Therefore, no design change is required in the stack. IoTUS can operate
alongside with off-the-shelf protocols. The process of sharing functionalities is one of the
main contributions of this framework. Also, IoTUS’s modules are not independent; instead,
they are controlled by the protocols, i.e., a module has no access to send a packet itself, but
can build them on demand.

IoTUS framework was developed for WSN and IoT networks to provide both with an
architecture capable of improving protocols’ performance. Energy efficiency is mostly ob-
tained by the optimizations that protocols can achieve with IoTUS, reducing the number
of packets exchanged in the network while keeping their requirements. Flash memory has
an initial increment with the installation size of the framework (less than 5 kbytes), but it
provides an improved Random Access Memory (RAM) usage due to the centralized non-
redundant storage. Our future goal also includes optimizing Internet protocol procedures for
LLN with this framework cross-layer benefits.

IoTUS’s main module is called IoTUS-Core. It is required during compilation and run-
time. For the compilation process, this core module processes each protocol in the stack and
includes the other requested modules as needed.

3.1 COMPILATION STAGE

The IoTUS framework has an important process during compilation, controlled by the
IoTUS-Core, which prepares the framework to process its services. The framework compil-
ing directives (Makefiles) parses all protocols used in the stack and sets IoTUS’s code to be
operated according to the selected modules.

IoTUS modules are similar to dependencies in Linux’s Advanced Packaging Tool (APT)
[60]. They can rely on other IoTUS services, i.e., services can be split into smaller services
and protocols can select exactly which one(s) to use. IoTUS-Core also takes care of this
dependence management.

IoTUS actual implementation is composed of the following modules, classified as:

• Mandatory modules: includes the IoTUS-Core, Node Manager, Packet Manager,
Task Manager, Network Attributes, and Events Register;

24

• Optional modules: Piggyback Service, Neighbor Discovery, and Tree Manager.

Node Manager maintains information about the node’s neighbors such as addresses,
ranking in the routing tree, link layer sequence number, link quality (RSSI), etc. The Packet

Manager module provides functions to build packets; these functions can be used by any
layer in the stack when protocols are adding, removing, or changing fields in their respective
transmission units (e.g., packets at the Network layer, frames at the data link layer, etc). The
Task Manager assigns the control of a module to protocols, thus ensuring synchronization
between procedures and protocols.

Other modules are optional, and their utilization will depend on the protocol’s functional
needs. For example, the Piggyback Service module provides a data aggregation mechanism
that can be used by protocols at different layers. Piggybacking helps achieve energy effi-
ciency by "packaging" as much information as possible into a packet. Network Attributes

and Event Register module concentrates information about many general network values,
e.g., number of transmissions, connection quality, package drop rate, and others.

3.2 RUNTIME STAGE

At the start of a node’s operation, IoTUS framework interacts with the protocols that are
using its modules. This is possible because the compilation stage already recognized which
protocol was available to use this framework. Thus, IoTUS-Core is again responsible for
starting every module.

As the modules are receiving the start signal from the IoTUS-Core, the Task Manager

initiates its subscription process that will assign the modules’ tasks to the requesting proto-
cols, e.g., which protocol will control the Neighbor Discovery task, using the shared features
provided by this module.

To illustrate IoTUS’s operation, let us consider an environmental monitoring application
(Figure 3.2), where nodes use a basic network protocol stack composed of a Data Link pro-
tocol (e.g., ContikiMAC [27]), a static routing protocol, and the application layer protocol
(which sends periodic data from sensing nodes), thus forming a tree rooted at the data sink.
In addition to application-layer messages, Keep Alive (KA) control messages are periodi-
cally generated by nodes to the data sink. In this topology, application data is flowing to the
sink device, since it is connected to the main controller/supervisor system.

In most existing networks stacks, packets are built based on an array of bytes, in which

25

Figure 3.2 – Example of an IoT network for temperature monitoring environment.

headers are added to the payload as each layer processes packets on their way down in
the stack. In IoTUS, a protocol uses information maintained by Node Manager to build a
packet using the Packet Manager. During this step, additional information can also be added
to the packet, such as timeout, priority, fragmentation/aggregation, etc. After the protocol
finishes handling this packet, it sends a signal to the next layer, containing the reference to
the packet’s metadata (memory block containing the structure holding shared information,
e.g., payload, destination node, timeout, etc.). In this way, every field added to the packet
has a globally known format, readable across different protocols.

In the example shown in Figure 3.3, the application layer starts to build a packet and
will signal the Network layer when it is done. The Network layer evaluates the information
already inserted in this packet block created by the application and inserts more processed
data and header, sending, by its turn, a signal to the next layer.

Figure 3.3 – (a) Traditional packet building; (b) IoTUS service modules - packet building.

Since the process of managing packets across layers is done using a centralized module
(i.e., the Packet Manager), other modules such as Piggyback Service can use the outgoing

26

packet to aggregate information from other layers. For example, in the case of an application
message being built to be transmitted, a Keep Alive (KA) control packet can be piggybacked,
which results in improved network efficiency.

As previously discussed, besides facilitating information sharing across layers, IoTUS
also allows sharing of services, e.g., Neighbor discovery and Tree Manager services, which
are responsible for discovering information about a node’s neighbors and maintaining a rout-
ing tree, respectively. Thus, other protocols aware of these modules’ operations can aggre-
gate their requests, reducing overhead and/or improving connection speed.

To illustrate the process of sharing a service module in IoTUS (like Neighbor Discov-

ery, connecting motes as shown in Figure 3.4), consider two protocols in different layers that
need to find near nodes, e.g., RPL [10] in the Network layer and IEEE 802.15.4 MAC [30]
in Data Link layer. In this case, the network protocol needs neighbor information to deter-
mine the best path to send/forward messages. On the Data Link layer, its protocol requires
association with a coordinator device; thus, there is a registering protocol. Other protocols
could be added to this example (e.g., IPv6 [8]), but for simplicity consider only RPL and
IEEE 802.15.4 MAC.

a) b) c)

Figure 3.4 – Network protocol creating a routing path through a Neighbor Discovery (ND)
procedure: a) First stage of ND; b) Second stage of ND; c) Third stage of ND.

For these two protocols doing ND procedures, consider as well that Task Manager al-
ready processed their requests (to control the Neighbor Discovery module) and assigned the
lower layer IEEE 802.15.4 MAC to control it. Therefore, the Data Link protocol will de-
termine the time for each frame exchange, as well as which type of message will be used,
e.g., periodic broadcasts (beacons), register request, register answer, and others. In that way,
the Network protocol will be aware of which type of packet it can optimize in its discovery
protocol, by aggregating with the Data Link layer.

The Neighbor Discovery and Tree Manager modules have previously determined the
type of messages that are generally used by protocols; therefore, this framework allows
protocols from different layers to aggregate their messages into one single packet, since

27

association exchanges are usually similar to each other. In this work, only one Neighbor

Discovery module was implemented, but other association strategies can be implemented by
other modules and executed along with this one.

Figure 3.5 – Time diagram of exchanged control packets in a standard stack registering (2nd
layer) and neighbor discovery (3rd layer) process.

Figure 3.5 shows how two nodes would behave inside the network. First, an exchange1 of
Data Link control packets would happen: router node sends periodic broadcasts (DLBeacon)
followed by the connecting node starting the association with a DLReg and polling the an-
swer (DLAns) with DLReq. The second step of exchanges is given by the Network’s ND
control packets: broadcasts from the router‘s Network layer (NLBeacon) followed by the
connecting node starting network layer’s association (NLDIS); router replies with its net-
work information (NLDIO), and the connecting node sends its second step of association
packets (NLDAO) followed by the router’s answer (NLDAO−ACK). This process is repeated
for every device association.

On the other hand, using the IoTUS framework, where the registering/neighbor discov-
ery procedure can be aggregated with its Neighbor Discovery shared service, those control
frames could be put into one single message (as long as the total packet length is within

1Packets are replied with an ACK by the Data Link layer

28

Figure 3.6 – Time diagram of control packets exchanged with the new IoTUS framework in
a registering (2nd layer) and neighbor discovery (3rd layer) process.

maximum size). In this way, Figure 3.6 shows the same process done between two nodes
connecting to each other and using the IoTUS framework.

3.3 CHAPTER’S CONCLUSION

The IoTUS framework is presented in this chapter using examples of its features. Also,
the interaction demonstrates how this framework attains energy efficiency with data and
functionality sharing. For that, a monitoring application is exemplified to compare the stan-
dard stack procedures with protocols of a stack using IoTUS.

IoTUS was developed to improve energy consumption by allowing protocols to syn-
chronize and/or aggregate their procedures. Hence, with more protocols and more complex
tasks, better memory usage, code reduction, and improved network lifetime, in general, are
expected. However, IoTUS comes at the cost of processing time and initial additional code.
This processing cost caused by IoTUS framework can increase CPU consumption, but the
energy saved in radio operations is expected to have more impact on the overall network
consumption.

29

IOTUS: DETAILED DESCRIPTION

In this chapter, the new framework is explained in details,
and implementation aspects are exposed.

IoTUS framework was developed to provide better energy efficiency and lower memory
usage in low computational power devices. The actual implementation of IoTUS was done
in ContikiOS; therefore, it is in C Language. In this system, Makefiles are files used by
the compiler, which contains instructions for the compilation process. Since IoTUS has a
compilation stage, it uses Makefiles to configure its code according to the protocols in use by
the stack. Thus, for each protocol, two files are expected: Makefile and Dependencies.

For example, consider a stack being added by IoTUS. If the X protocol was implemented
to use IoTUS framework, then this protocol will provide (in its folder) the files, "Make-
file.X_v1.0.0" and "Dependencies.X_v1.0.0". Versioning for IoTUS is not yet implemented.
Hence, versions of modules and protocols are managed only by their name.

After the compilation stage, the device is ready to execute the code during its runtime

stage, as shown in Figure 4.1. However, many modules will be requested by protocols at this
stage, and so a synchronization system has to be used. In this case, IoTUS framework has
the Task Manager modules receiving protocol‘s requests and assigning the task.

Figure 4.1 – Compiling process for IoTUS framework.

Hence, for a better comprehension of IoTUS framework, the remainder of this chapter

30

4

describes in details all modules that have been currently implemented, plus some additional
tools, e.g., Safe-printer, Addresses manager, etc. More details over the implemented struc-
tures can also be found in Appendix B.

4.1 IOTUS-CORE

This module can be considered the main service in IoTUS-Core because it has functions
during the compilation stage and at runtime. Therefore, this section is divided into two,
explaining this module’s operation for both of these stages.

4.1.1 Compilation stage

As previously mentioned, the compilation stage is composed of IoTUS-Core reading each
protocol’s Makefile and Dependencies. The protocols without these files should not provide
information to IoTUS framework, although they still have read access to the framework.

Each module/service also has its own Makefile, which can request another module in
the framework to be installed, creating the dependency system. This process of reading
Makefiles both from protocols and requested modules can be seen in Figure 4.2.

This way, as the protocols know exactly which module they are using, the interface func-
tions and Application Programming Interface (API) are known, allowing for every informa-
tion in that module to be understood by protocols across the stack using the same module.

The Makefiles read by IoTUS contain codes as shown in Listing 4.1, which informs of
its name, as well as of the possible subfolders that have to be compiled.

Similarly, the Dependencies files are also processed by IoTUS-Core, which provides
information to the framework in the format shown in Listing 4.2.

With all files processed, the framework can then reconfigure its code to correctly operate
all the requested modules, allowing the system to continue to the next stage.

1 IOTUS_PROTOCOL_NAME = protocol_X
2
3 # If more folders need to be compiled, just add them to the following line, like
4 # THIS_SUB_MODULES := $(THIS_MODULE_FOLDER)/<NEW FOLDER>

Listing 4.1 – Makefile used by IoTUS-Core during compilation stage.

31

Figure 4.2 – Example of IoTUS-Core installing requested modules from different protocols.

1 # This file should contain all the dependencies that this
2 # service requires to work.
3
4 IOTUS_SERVICE_DEPENDENCIES_LIST = packet_v1.0.0 nodes_v1.0.0 piggyback_v1.0.0
5 IOTUS_SERVICE_DEPENDENCIES_LIST += neighbor_discovery_v1.0.0

Listing 4.2 – Example of a Dependencies file used by IoTUS-Core during the compilation
stage.

4.1.2 Runtime stage

In this stage, stack, framework, and modules are being executed together. Thus, synchro-
nization is necessary, which is done by the IoTUS-Core in association with the Task Manager

(further explained below). Since IoTUS-Core is responsible for starting all installed modules
at runtime, it is expected that the main application’s code calls IoTUS-Core at the beginning
of a device’s operation.

Within the initialization, the protocols using this framework must wait for two signals
from IoTUS-Core. The first signal is the initializing command, where protocols will initi-
ate their setups and requests with modules, e.g., subscribing to control some task in Task

Manager. The second signal is the start command, where protocols can poll for results

32

in modules and/or start their own task, e.g., polling the subscription process done in Task

Manager.

This initializing procedure done by IoTUS-Core in association with the Task Manager

can be seen in Figure 4.3.

Figure 4.3 – IoTUS-Core initializing and starting protocols and their requested modules.

At runtime stage, IoTUS-Core provides the Demanding_Period() functionality to the
stack with IoTUS, where its protocols can share their time-critical tasks with each other,
e.g., real-time tasks as a periodic coordinator broadcast. This is necessary for low power
computational devices without multi-task capacity.

One example of time demanding task is writing on the serial port (print function). There-
fore, another tool provided by IoTUS called Safe-Printer can store messages in memory and
print them during a non-critical period, using the Demanding_Period() function. In the
IoTUS implementation, the Safe-Printer tool has only a few bytes of storage, using a circu-
lar buffer ring to store data to be printed at a safe time. Its use is not mandatory, but it is
convenient, as a debugging tool.

As described in other modules, IoTUS-Core also simplifies API for some operations done

33

by other mandatory modules, e.g., IoTUS-Core provides functions for the application layer
that integrates Packet Manager and Node Manager.

4.2 NODE MANAGER

Many information extracted by different layers can be attached to a given neighbor node;
however, protocols usually would not share this data. This module centralizes the data gath-
ered on neighbors. It creates a standardized way to share a determined set of information,
thus allowing shared neighbor data to be stored in structures of blocks, retrieving its block
by reference pointers or search by address number.

Figure 4.4 – Protocols receiving a packet from a new neighbor, parsing, and sharing its
information.

As seen in Figure 4.4, considering that a new neighbor packet is received, protocols can
share its data using the Nodes Manager while reading and extracting the packet’s content.
This module has most of the fields generally expected in an IoT environment, e.g., the link
quality extracted by the physical layer can be attached to the node structure block, along with
the address given by the second layer and the rank given by the third layer (how distant, in
number of hops, the node is from a sink node). Such an approach reduces memory usage,
redundancy, and improves cross-layer decisions.

34

4.3 PACKET MANAGER

Similar to Node Manager, Packet Manager is responsible for concentrating most of the
packet information into one structure, as represented by the small circles being added to the
big packet block in Figure 4.5. This means shared data is located in a single place, where
every layer can understand what is being added to the header. Moreover, the Packet Manager

works on top of the Node Manager and saves memory space by pointing to its structure block
instead of copying all information into each packet block.

Figure 4.5 – IoTUS Packet Manager used to build an application message.

Many packet parameters, like source and destination addresses, are available in a stan-
dardized manner. This information is also available across the layers when the packet is
being built. IoTUS framework allocates the whole collection of possible data dynamically
– allocating only the necessary memory for the information attached through linked lists –
whereas Rime/ContikiOS only operates statically.

Thus, some of the standard fields held by this packet block are:

• Data: The buffer carrying the packet payload;

• Parameters: A binary set of defined flags. Some of them are:

– Wait for ACK: if the packet needs an acknowledgment after transmission;

– Aggregation: if the packet supports the Piggyback Service functions;

– Fragmentation: if the packet can be split and transmitted;

35

• Timeout: The maximum delay the packet can wait until transmission;

• Final destination node: The final node for which the packet should be sent to;

• Next destination node: The next hop that the packet should take until its final node;

• Previous source node: The last neighbor node that sent the packet;

• Additional information list: A generic linked list to hold a block of information. With
this field, protocols can share data that they extract from the packet. These blocks have
a defined header so that other protocols can also interpret the information.

As can be seen in the default fields in the packet block, along with the Node Manager

module, the Packet Manager references the source and destination nodes using this new sys-
tem; thus, it creates an integration that facilitates other services’ operations, like aggregation
of packets (further explained in the section Piggyback Service).

Figure 4.6 – Traditional network stack building an application message through encapsula-
tion.

A side-by-side comparison between a traditional layered stack and the same stack ex-
tended with the IoTUS framework will be made next. As in the traditional way illustrated
in Figure 4.6, messages are sent down the stack using abstract functions and encapsulating
headers in the buffer. In Figure 4.5, the same stack with IoTUS framework builds the mes-
sage using dynamic packet structure blocks. The Packet Manager creates a block containing
the buffer that can hold headers and a small amount of information attached to it. Each block
contains well defined and known information, which represents the packet fields.

36

Hence, after the application layer signals the messaging procedure in the shared layer, the
packet structure block (buffered) is reserved, and a signal is sent to the lower layer. Layers
below will set structure blocks and attach them to the packet structure block along with their
headers. This process is represented by the circles numbered with the layer rank (4 to 1). At
the physical layer, all information attached is readable, and the header is ready.

Figure 4.7 – Message construction with IoTUS.

The creation of a packet container in the IoTUS system can be seen with more details
in Figure 4.7, where Step 1 represents a calling from a protocol to the message creating
function, defining some basic information (payload, destination node, parameters, timeout,
and others). Continuing, lower layers will get information (Step 2) to process this packet.
This way, packets are always stored in a list of dynamic containers to which all layers have
access. IoTUS’s services generally use pointer references to other services’ block structures,
which helps to keep the information up to date.

37

4.4 TASK MANAGER

This manager module assigns tasks to each running protocol. Since IoTUS framework
proposes shared services and functionality, it would be possible that two or more protocols
using the same service would request it to start a procedure more than once; thus, syn-
chronization is necessary. However, it does not stop any protocol from doing a redundant
operation by itself; instead, it simply informs all layers which service will be controlled by
each protocol, allowing the redundancy if necessary.

The process of requesting a task is done at the start-up of the device by each protocol
using this framework. As illustrated in Figure 4.3, IoTUS-Core provides two steps for the
protocols using this framework; they can then subscribe and poll for the assigned process
provided by the Task Manager. Inside this module, priorities are usually given to the pro-
tocols located in lower layers, i.e., protocols in physical and data link layers have higher
priority than network and application layers. This also solves some issues with addressing,
packet aggregation, and other tasks.

In the case of addressing (a procedure which recognizes the neighbor’s addresses and/or
sets its address) most of the data link protocols have their own methods. Thus, they already
have to use the packet header to insert these addresses. A network layer that checks that
the data link layer is already addressing can use this feature to synthesize their addressing
system accordingly. In the traditional layered stack, this process is done through cross-layer
access, e.g., 6LoWPan protocol [7] is generally used with IEEE 802.15.4 [30] and uses its
addressing system to generate the IPv6 [8] address.

Another example of a task is the aggregation service. In many cases, it is done by the
network layer, but if the data link layer has some procedures that would benefit from aggre-
gating their control packets, its protocol can use the shared service and optimize its control
packets as well.

As mentioned previously, at initialization time, every protocol and service can request the
core to be in charge of some of these chores, avoiding that more than one module replicates
the same job. This list can also be extended according to the application necessity; therefore,
it is a layer synchronization approach that can serve many cases.

For future protocols’ implementations using IoTUS’s enhancements, it is expected that
overhead can be reduced by a better synergy through layers, i.e., reducing header sizes and
avoiding duplicated packet fields. For this reason, Task Manager provides other IoT task
assignments, for example:

38

• Insert the source address into the packet header;

• Insert the final destination address into the packet header;

• Insert the previous sender address into the packet header;

• Insert the next receiver address into the packet header;

• Fragment packets;

• Control the Neighbor Discovery service;

• Control the Tree Manager service.

4.5 PIGGYBACK SERVICE

IoTUS provides data aggregation through its Piggyback Service module, which is very
important to reduce energy consumption by reducing network traffic. Protocols can create
piggyback pieces and set defined parameters like timeout, destination address, and others.
Furthermore, if the timeout expires, Piggyback Service will signal the callback function of
the block creator, so that the protocol sends that data as soon as possible. However, if condi-
tions are matched, the piggyback container will be aggregated (with small compact headers)
into the outgoing packet.

Piggyback Service uses Node Manager and Packet Manager. The main conditions to
insert a piggyback block into a packet are:

• There is an outgoing packet;

• The packet has to be flagged as allowing aggregation by its creator protocol;

• The packet is addressed to the same next router or same final destination node.

Data inserted into Piggyback Service to be aggregated become a Piggyback piece (PBp)
and will wait a maximum amount of time equivalent to the piece’s selected timeout. The
timeout can vary as intend by a protocol which is able to poll shared information of other
protocols in the stack using IoTUS’s modules. The delay over hops is impacted only by
the router’s processing time and their duty-cycling. Therefore, even if intermediate routers
increase a packet size with more piggyback pieces, the relayed packets are not held by this
module and thus do not impact on latency.

39

This service creates control headers into the packet that allow separate transmissions to
have shared destinations in the network. Thus, many layers can rely on it to have their control
packet optimized, as is the case of DAO packet in RPL.

Figure 4.8 – IoTUS Piggyback Service.

The process of creating a piggyback block is given in Figure 4.8. Protocols would start
by a similar process as the Packet Manager, allocating resources with specific functions of
the module (Step 1 of Figure 4.8). Later, if any protocol was previously assigned by the Task

Manager, it will try to attach possible piggyback blocks into a packet being built, aggregating
its information (Step 2 of Figure 4.8).

Figure 4.9 illustrates the Piggyback piece (PBp) being created by "Protocol y", which
represents Step 1 in Figure 4.8. When “Protocol x" creates a packet, Headers (HDrs) are
attached. At some assigned layer, Piggyback Service is called and attaches the pieces that
match this condition, representing Step 2 in Figure 4.8. Bellow the dashed line, the process
is represented by a node using this procedure and delivering the packet to its destination,
where the piggyback piece is detached again and delivered to the target node’s protocol.

The same process of "Protocol x" creating a packet that adds the piggyback piece of
"Protocol y" can be seen in Figure 4.10. In this case, the piggyback pieces and the packet
blocks are represented inside the list that each service holds, the dashed line represents the
timeline, and the squares on bottom describe the events following the sequence of circles
aligned above them.

40

Figure 4.9 – Piggyback assembly, transmission, and dis-assembly.

Figure 4.10 – Piggyback Service used by different protocols to improve transmission over-
head.

41

4.6 NEIGHBOR DISCOVERY

The Neighbor Discovery service provides the aggregation of messages usually exchanged
between devices in their association procedure. It is composed of 5 types of Neighbor Dis-
covery Control Command (NDCC): ND-beacons (broadcasts), ND-Request, ND-Poll, ND-
Answer, and ND-Confirm. Each type of message represents a step of this association process
that can be used by different layers simultaneously. Some examples of standard protocols
that have similar messages are IEEE 802.15.4 MAC [30] and RPL [10].

The ND module’s control is assigned by the Task Manager; thus, only one protocol will
define when to send these ND messages. The controlling protocol can choose which NDCC
it will need. Other unused NDCCs can still be used by other protocols, as needed.

In the Neighbor Discovery service, protocols have a function that allows their piece of
control message to be aggregated into one of those 5 types of NDCC. The pieces are aggre-
gated in such a way that they can be delivered and correspondingly restored at the destination
node.

Figure 4.11 – Neighbor Discovery service: beacon message creation and transmission.

To exemplify these operations, consider Figure 4.11, where two protocols, "x" and "y",
need to send periodic broadcast packets (beacons) to their neighbors. Hence, both of them
will set their data (first step) into the ND module. If "Protocol y" was assigned by the Task

Manager to control the Neighbor Discovery, then it will request the final aggregated ND-

42

Beacon message to be sent as a beacon. The final beacon can, therefore, contain more than
one data or control command from different protocols.

This process of aggregating control message pieces and delivering them at the destination
node is similar to the Piggyback Service. As such, it can improve network energy efficiency
by reducing network traffic. Furthermore, Neighbor Discovery can generally shorten the
association time between devices.

4.7 TREE MANAGER

The tree building process is usually present in the third layer. However, the re-configuration
of a network topology can impact other layers too, causing disconnections and inefficiency.
Therefore, sharing these alterations through the stack can help other protocols to improve
their procedures, mainly if they use the topology to optimize medium access.

Tree Manager provides functions to store and share data about the tree topology and its
connections. For example, it can store which node is the root (sink), the network connection
status, and so on.

The control packets of Tree Manager are based on those existent in the Neighbor Discov-

ery module. The main goal of this module is to provide tools that allow RPL [10] to share
its information with other protocols.

4.8 CHAPTER’S CONCLUSION

In this chapter, IoTUS is described in details, presenting its developed implementation
and design. The modules like Packet Manager, Node Manager, and Tree Manager allow
data sharing by protocols in a stack. Meanwhile, modules like Piggyback Service, Neighbor

Discovery, and Tree Manager allow functionality sharing in the stack. Hence, the description
of their procedures is fundamental to understand how they interact with protocols and the
stack.

IoTUS was implemented in ContikiOS using the C language. As well, it is open-source,
and its code is available online; thus, Appendix C contains details about the software and
how to access it.

43

METHODOLOGY

This chapter exposes each procedure to evaluate IoTUS
framework, as we selected a simulator, defined test scenar-
ios, performed simulations, and obtained measurements.

We evaluated IoTUS using the Cooja-ContikiOS [22, 16] simulation/emulation platform.
We used Cooja (Figure 5.1) for the following reasons: first, it provides an experimental plat-
form specifically designed for wireless networks, well suited for capability-constrained wire-
less sensor networks and IoT networks. The advantage of using the simulation for a new
design is to run a controlled environment and so obtain reproducible experiments, besides a
helpful Integrated Development Environment (IDE). Cooja conveniently includes an imple-
mentation of the ContikiOS [16] and its Rime stack [15].

Figure 5.1 – Illustrative Cooja simulator IDE screen.

ContikiOS’s protocol stack already includes cross-layer operations (Packetbuf) and a
non-standard Radio-Duty Cycle (RDC) layer, which is not always easily portable to other

44

5

MAC protocols (e.g., IEEE 805.15.4 MAC [30]). However, new IoT stacks still maintain the
traditional layered design, like Riot [47]. Using the traditional layered protocol stack not only
makes it easier to be analyzed but also easier to be reproduced in other Operational Systems.
Therefore, we focused the comparison of a traditional stack with its layered operations and
IoTUS framework used in the same stack.

In this work, we adapted ContikiOS’s protocol stack into a traditional stack composed of
only Physical layer (and its framer sub-layer), MAC layer, Network layer, and Application
layer. Transport layer protocols, although necessary in IoT systems, were not yet imple-
mented. The ContikiOS Packetbuf was kept only in the traditional stack running without
IoTUS but removed when using IoTUS framework. For convenience, the adapted traditional
protocol stack is also called Rime stack, although the original Rime consists of many sub-
layers and network functionalities. This adapted stack accepts any protocol in its layers, as
the ContikiMAC, RPL, IEEE 802.15.4 MAC, etc.

Hence, we used the adapted Rime stack as a reference to compare with IoTUS. Addi-
tionally, codes that run on Cooja-ContikiOS can be directly ported to real devices running
ContikiOS. Real testbeds accessible to the research community, e.g., FlockLab [61], can also
be used to test our code. We developed IoTUS1 under ContikiOS [16] for the TMote Sky [44]
device emulated within Cooja, as shown in Figure 5.1.

5.1 ENERGY CONSUMPTION VALIDATION

To validate the results obtained using the simulation tool, we developed theoretical mod-
els that describe the energy consumption of a TMote Sky device. The theoretical model
considers the parameters and timings resulted from the implemented version of its respective
protocol, but all theoretical results are calculated independently from any simulation, using
only the equations developed in Chapter 6.

Initially, a single node was modeled considering its power consumption specification,
which is summarized in Table 5.1.

In the sequence, we increased the theoretical model complexity by adding more devices
and considering them executing the ContikiMAC [27] protocol. This extended model is then
used to calculate the performance of a linear topology (Figure 5.2), where the first node is
the data sink, the last node generates messages, and intermediate devices only relay this

1IoTUS is available at <https://github.com/Vinggui/contiki-IoTUS.git>.

45

https://github.com/Vinggui/contiki-IoTUS.git

Table 5.1 – Energy consumption by states of TMote Sky.

State Current
micro-controller

Active (No Radio) 1.8mA @1MHz, 3V

micro-controller
sleep (No Radio) 5.4 µA

Reception 18.8mA
Transmission 17.4mA (0 dBm)

Idle 18.8mA
Sleep 0.426mA

message towards the sink node. This topology is important to evaluate performance over
multiple hops.

Figure 5.2 – Linear topology considered for theoretical model validation and simulations.

With the theoretically estimated energy consumption of each node, we evaluate the
results obtained with the same configuration executed in the Cooja simulator. Note that
Cooja’s emulation of TMote Sky provides four different power modes2 for the radio, namely
Reception, Transmission, Idle, and Sleep, and two for the micro-controller, Active and
Sleep.

In the simulation environment, energy consumption measurements were provided by two
different Cooja-ContikiOS tools, namely: PowerTrace and PowerTracker. PowerTrace is a
ContikiOS tool, which periodically reports energy consumption through its serial port. Pow-

erTrace reports time spent in each state (transmitting, receiving, idle, or sleep for the radio,
and active or idle for CPU). PowerTracker comes with the Cooja simulator and provides
power consumption measurements of the radio. However, PowerTrace is executed in the
Microcontroller Unit (MCU) code and does not compute short radio’s state transitions (e.g.,
the Rx state for CCA before transmitting). On the other hand, PowerTracker can detect
radio’s transitions and therefore provides more accurate power consumption measurements
than PowerTrace. Consequently, we use PowerTracker to measure the energy consumed by
the radio while CPU consumption is still extracted from the PowerTrace tool.

The report sent by PowerTrace ("Message" field of Figure 5.3) is split into fields con-
tained each consumption state of the device. The values in these fields are represented as

2For this implementation, radio uses only the sleep state (power down is not used), and the main Central
Process Unit (CPU) switches between active and Low Power Mode 3 (LPM3) states.

46

Figure 5.3 – Report example of a node with PowerTrace.

a counter variable that depends on the CPU clock speed. Therefore, the fields correspond
to SN, total accumulated value of CPU, sleeping state in LPM3, transmitting (Tx), recep-
tion (Rx), idle transmitting3 (iTx), and idle reception (iRx). The instant field represents the
difference accumulated from the previous report, and thus, is useful to calculate the instant
power consumption, given the report period.

Hence, the equation to get the accumulated energy consumption of each device using the
reports provided by PowerTrace is given by

EState =
VPP ∗ IState ∗ Tdev′State

ClockRes

, (5.1)

where EState is the accumulated energy (given in Joules) consumed in the state until the
report, VPP is the battery voltage (Volts), IState is the current drawn (in amperes) in the state
measured, Tdev′State is the accumulated time of a state (CPU, Tx, Rx, etc.) in a device’s
timing system, and ClockRes is the clock’s frequency (32,768Hz). However, the "Time"
field in the report is given by the OS’s timer, which has a scaling factor of 256; thus, the OS’s
timer has a frequency of 128Hz. For example, as shown in Figure 5.3,

Time

128Hz
≈ CPU + LPM3

32,768Hz
. (5.2)

The reports provided by PowerTracker are generated by the script running in the simu-
lator. Thus, differently from using the serial peripheral in devices, PowerTracker does not
impact in the nodes procedures. By default, the reports provided by this tool have the format
shown in Listing 5.1, in which nodes have their names with their ID number followed by the
state (ON, TX, RX, and INT), the accumulated time on that state, and the percentage it rep-
resents to the total time accumulated (MONITORED). Also, an average (AVG) of all nodes
is automatically provided by PowerTracker. The "INT" represents the radio’s interference,
i.e., when it receives packets that were not destined to that node, while "ON" state represents

3Idle transmitting (iTx) is a specific state that can considered only in a few cases.

47

1 All nodes connected. Consumption:
2 AVG ON 11672752 us 11,70 %
3 AVG TX 123433 us 0,12 %
4 AVG RX 14224 us 0,01 %
5 AVG INT 4393 us 0,00 %
6 Sky_1 MONITORED 49890931 us
7 Sky_1 ON 472638 us 0,95 %
8 Sky_1 TX 44358 us 0,09 %
9 Sky_1 RX 6794 us 0,01 %

10 Sky_1 INT 3249 us 0,01 %
11 Sky_99 MONITORED 49891251 us
12 Sky_99 ON 11200114 us 22,45 %
13 Sky_99 TX 79075 us 0,16 %
14 Sky_99 RX 7430 us 0,01 %
15 Sky_99 INT 1144 us 0,00 %

Listing 5.1 – Powertracker report example for two nodes.

all radio’s active states. Therefore, we have that

tIdle = ON − (TX +RX), (5.3)

and

tSleep = MONITORED −ON, (5.4)

where tIdle and tSleep represents the accumulated time on idle and sleep states, respectively.

Hence, the equation to calculate the energy consumed with PowerTracker is similar to
Equation (5.1), but using the accumulated time instead, given in micro seconds.

5.2 IOTUS FRAMEWORK PERFORMANCE

To guide our experiments, we consider a general environmental monitoring application
(e.g., Figure 5.4) in which sensing values of the environment are deployed periodically (e.g.,
temperature, humidity, etc.) to a data sink. Figure 5.5 shows a 44-node tree topology used in
our simulations. The tree is rooted at the data sink (node 1); all intermediate and leaf nodes
are sensing nodes. Note that intermediate tree nodes act both, as traffic generators as well as
forwarders.

Table 5.2 shows the main simulation parameters used in our tests. We used the simulator
set with a random mote startup delay and a radio medium model as Unit Disk Graph Medium
(UDGM): Distance Loss. All other parameters, especially those related to the OS, Contiki-
MAC, Physical layer, and TMote sky were kept as they are in the original implementation

48

Figure 5.4 – Example of a general environmental monitoring application with nodes.

Table 5.2 – Simulation Parameters.

Parameter Value
Sensing rate (application packets) 30 seconds

Random delays for application packets 15 seconds
Application piggyback timeout 29 seconds

Application payload size 20 bytes
ContikiMAC’s RDC wake-up period 125 milliseconds

Data Link Beacon period 4 seconds
Network’s DIO rate (broadcast packet) 4 seconds
Neighbor discovery scanning duration 5 seconds

Keep Alive control data size 12 bytes
Keep Alive transmission rate 30 seconds

Data Link backoff 2 seconds
Cooja’s radio medium UDGM: Distance Loss

Cooja’s mote startup delay 1,000 milliseconds
Cooja’s mote transmission range 50 meters

of ContikiOS. The sensing rate and application payload size have been previously used in
the literature (e.g., [62]). Keep Alive messages are control messages periodically generated
by the network layer and are transmitted through the tree toward the root; thus, we set their
size and frequency based on ContikiOS’s implementation of RPL. ContikiMAC has a radio
wake-up schedule to receive packets, and its default value of 125 ms was kept for these simu-
lations. Application packets can have a random delay of up to 15 seconds to reduce network
packet collision. Also, when using IoTUS Piggyback Service, application packets can wait
a timeout of 29 seconds. Finally, MAC layer adds a backoff period of up to 2 seconds when
necessary.

IoTUS framework was compared to the ContikiOS’s adapted stack [15] because the latter

49

Figure 5.5 – Tree topology considered for environmental monitoring.

is the wide accepted architecture available with ContikiOS for IoT applications. Also, that
adapted Rime still uses some optimized features for IoT protocols, e.g., the shared tool for
building packets inside the stack (Packetbuf).

It is important to advance that, to obtain stochastic relevance, results reported in Chapter 7
were obtained by averaging over 10 runs using random seeds. Thus, this process provides a
confidence interval of 95%, when assuming a Student or a t-distribution [63, p. 432].

5.2.1 Overhead validation

Another theoretical model was developed to evaluate the overhead of IoTUS framework
compared to the adapted Rime stack. Here, a star topology (Figure 5.6) and a linear topology
(Figure 5.2) were used, both with 10 nodes, which results already show large differences and
characteristics of IoTUS framework under these topologies. The theoretical results are then
compared with the measurements obtained by the simulations.

With the star topology, every node sends application messages and are one hop away from
the sink. This topology is interesting to evaluate the performance for long-range radios.

50

Figure 5.6 – Star-like topology used for IoTUS validation.

5.2.2 IoTUS simulated results

As mentioned in Chapter 3, IoTUS framework brings more advantage when more com-
plex applications are tackled, i.e., IoTUS provides better results when more protocols and/or
more procedures are being executed in the stack. Therefore, we developed two simulation
setups that use different protocols and procedures. These setups operate with the star, linear,
and tree topologies.

With both setup’s results, it is possible to glimpse over the performance of IoTUS frame-
work with protocols exchange. The metrics considered to evaluate this simulation were:

• Memory usage;

• Energy consumption;

• Overhead;

• Network lifetime.

Static routes setup

This setup consists of the original implementation of ContikiMAC [27] and a static rout-
ing protocol. Therefore, this network protocol requires a pre-defined routing table, i.e., paths
already set.

Thus, the main procedures executed in this setup is:

• Application messages with sensed data (payload);

51

• Keep Alive packets.

It is expected that the main advantage of IoTUS will be the Piggyback Service, which
aggregates packets towards the sink.

Neighbor discovery setup

For this setup, both Data Link and network layers have protocols with more functional-
ities. Thus, for the DL layer, we modified ContikiMAC [27] and called it ContikiMAC802.
The modified DL protocol in this setup uses an adaptation of the registering process of IEEE
802.15.4 MAC [30]. For the network layer, we created a simplified version of RPL [10]
protocol, called RPL-like, which performs similar Neighbor Discovery procedures, and uses
this information to create paths to the sink, forming the tree topology.

ContikiMAC802 has all features of ContikiMAC plus an association procedure, and it is
composed of 5 control frames for commands: Beacons, Register request (Reg), Data request
(Req), register answer (Ans), and acknowledgment (ACK). The RPL-Like implementation
creates its routing table and DODAG, and it has another 5 control packets: DIO, DAO,
DODAG Information Solicitation (DIS), and DAO-ACK.

The protocols implemented for adapted Rime stack form three layers: physical, DL, and
Network. Each layer adds a minimum header with a fixed size (base). Also, each protocol
may have specific commands, which is fixed and named "base". The association of these
headers and a command base forms then a control frame/packet. For example, a DL Beacon
control frame is formed by a Phy header, a DL header, and a Beacon command, which has
a total size of 20 bytes. Table 5.3 shows, therefore, all possible combinations of messages
implemented for these protocols.

52

Table 5.3 – Headers, payload, and control commands’ sizes in adapted Rime stack.

Packet type Base [bytes] Frame/Packet [bytes]
Phy header 6 —

Data link header 11 —
Network header 1 —

Checksum header 2 —
DLBeacon (Beacon) 1 20
DL_Reg (Register) 8 27
DL_Req (Request) 6 25
DL_Ans (Answer) 4 23

Acknowledgment (ACK) 0 11
NLDIO (DIO) 12 33
NLDIS (DIS) 4 25
NLDAO (DAO) 4 25

NLDAO_ACK (DAO-ACK) 4 25
Appmsg (App. Message) 20 41

5.3 CHAPTER’S CONCLUSION

This chapter presents the methods and parameters used in this work to validate and obtain
results that compare IoTUS framework to the adapted Rime stack. Therefore, scenarios were
proposed in such a way that performance is evaluated with different complexity, i.e., the
stack with IoTUS is compared with Rime stack using varying network size, topologies, and
protocols procedures. The results are compared with memory usage, energy consumption,
overhead, average power consumption, and network lifetime.

53

THEORETICAL RESULTS

This chapter presents theoretical models, equations, and ex-
pected results for the simulation experiments developed.

The energy consumption evaluation starts with simple scenarios: one or two motes, trans-
mitting without collisions. Later, the complexity of these scenarios is increased step by step,
so that expected results can be compared. Consequently, these energy estimation procedures
can be validated, and more complex topologies can be analyzed.

For overhead evaluation, we compared IoTUS framework with the adapted Rime stack [16]
using theoretical models based on the proposed linear and star-like topologies. Also, in these
scenarios, we used modified protocol versions called ContikiMAC802 and RPL-like; thus,
many parameters could be obtained by the original ContikiMAC [27] and RPL [10] imple-
mentations.

Initially, a two-mote scenario is evaluated with the association and periodic transmission
events. Later, this logic is extended to an N nodes network for both star and linear topologies.
The notation N represents the total number of motes in a scenario.

In this work, overhead is defined as the percentage of header and control bytes per total
number of bytes transmitted in the network. However, our theoretical model considers an
environment without packet collision or repeated transmissions, i.e., an ideal environment
without packet loss.

Hence, for evaluation purpose, we split the overhead into the following terms:

• Pure header: The header bytes of any protocol inserted in the packet fields, usually
informing properties or details other than instruction or payload, e.g., packet size,
addresses, checksum, packet type, sequence number, etc;

• Control data: The bytes of a frame or packet containing protocols’ control commands,
e.g., the commands of a mote’s association or the RPL‘s packets (DIO, DAO, DIS, and
others).

Thus, a pure header overhead is defined as the percentage of pure header bytes over the total
number of bytes successfully transmitted.

54

6

6.1 ENERGY CONSUMPTION EVALUATION

The motes considered in this work have well-defined states of operation. However, the
transitions between those states can produce transients not easily measured/accounted. Thus,
it is common to accept an average power consumption per state, i.e., an idle state uses a fixed
value of current and when transmitting, it uses a higher, also fixed, value. In this work,
TMote Sky [44] was used for simulation; thus, the theoretical model will consider the values
shown in Table 5.1. Besides, motes are normally powered with a battery, providing 3V of
voltage (VPP).

The energy consumption of a node in a given state is given by

EState = VPP ∗ IState ∗ tState, (6.1)

where IState corresponds to the current, and tState is the elapsed time.

6.1.1 Scenario 1: single node transmitting broadcast packets

If this mote starts transmitting packets, then the energy calculation considers the trans-
mission current and the transmission time (proportional to the packet’s length – 49 bytes with
this scenario). As TMote Sky‘s radio technology uses a baud rate1 of 250 kbps, the trans-
mitting state will last 1.568ms. Also, because ContikiMAC [27] is used at the DL layer,
its implementation requests a CCA procedure before the transmission, along with a wait for
ACK. As shown in Figure 6.1, to initiate a transmission, the mote leaves the sleep state, goes
to reception/CCA, and then starts transmitting; hence, it takes a total of 2.2 ms.

Figure 6.1 – Time diagram of a transmitted packet.

Therefore, consider a scenario that lasts 30 minutes, in which motes transmit every 30
1The baud rate is the rate at which symbols are transferred in a communication channel.

55

seconds. Motes will have a number of transmissions (NumTx) equal to

NumTx =
30 ∗ 60 s

30 s/transmission
(6.2)

= 60 transmissions,

and so, the total energy consumption per state is given by

EIdle = VPP ∗ (2.2ms− 1.568ms) ∗ IIdle ∗NumTx, (6.3)

ETx = VPP ∗ 1.568ms ∗ ITx ∗NumTx, (6.4)

ESleep = VPP ∗ (30 s ∗ 1000ms− 2.2ms) ∗ ISleep ∗NumTx. (6.5)

Hence, for this single mote, the expected energy consumption is shown in Table 6.1. It is
important to point out that, in this work, we consider idle consumption as the event of being
in the reception state without receiving any message. Appendix D contains the script used to
obtain these results.

Table 6.1 – Energy consumption expected for one node simulation during 30 minutes.

State Energy (mJ)
ETx 4.9
ERx 0.0
EIdle 2.138
ESleep 2,300.2

6.1.2 Scenario 2: one node transmitting, and other node receiving

Increasing the complexity, consider a receiver node introduced to the vicinity of this
transmitting mote. Also, consider that nodes are using ContikiMAC [27] to access the
medium. The new node will be receiving packets from the previous mote. Moreover, the
energy-saving mechanisms of this protocol is activated to preserve consumption.

ContikiMAC protocol adds many procedures to save energy, e.g., duty cycle reception,
preambled packets, neighbor phase detection, burst transmission, etc. Therefore, the default
implementation parameters and also the average values of events will be considered for this
analysis, e.g., the number of CCAs before transmission, the quantity of preamble before a
reception, and so on.

Moreover, the receiver acknowledges with a 5 bytes frame (ACK is expected to spend
0.32 ms), and the transmitter sends application messages and network Keep Alive (KA).

56

Table 6.2 – ContikiMAC parameters and average attributes.

Attribute Value
Time between receptions event 125 ms

Duration of CCA 0.44 ms
Number of CCA in reception event 2

Time gap between CCA in reception event 0.74 ms
Number of CCA before a transmission 6

Time gap between CCA before a transmission 0.6
Number of preambles before finding the neighbor 27.5
Number of preambles after finding the neighbor 6

Time gap between preambles 0.84 ms
Time to wait for a burst transmission 0.25 ms

Table 6.2 presents the parameters for this new setup of two nodes using ContikiMAC.
This DL protocol works with preambles, and hence, some procedures are multiplied by its
average number. The expected energy consumption for the first transmission is given by

EFirst tx = 6 ∗ ECCA + (27.5) ∗ EPkt + EAck, (6.6)

where ECCA is the consumption for one CCA procedure, EPkt is the consumption for one
packet (preamble), and EAck is the consumption for one ACK.

After finding the neighbor’s wake up schedule, the subsequent messages in ContikiMAC
are optimized. Hence, preambles average number reduces from 27.5 to 4.5, and so each
transmission after neighbor’s information is given by

EOther tx = 6 ∗ ECCA + (4.5) ∗ EPkt + EAck. (6.7)

Thus, in the 30 minutes scenario, a sending mote would generate NumTx of application
messages and Network KA, which results in a total of 120 packets. As well, all motes would
have periodical reception events (receiver node puts its radio to reception state waiting for a
message) given by

RCEEvents =
30 ∗ 60 ∗ 1000ms

125ms/Receptions
(6.8)

= 14400 Receptions.

57

Therefore, the final consumption equation can be expressed as

ESending node = (EFirst tx + 119 ∗ EOther tx) +RCEEvents ∗ EWakeup + ESleep, (6.9)

where EWakeup is the total energy consumption caused by the reception events, and ESleep is
the consumption spent with sleep state. However, part of the wake-up events do not receive
any packet, being accounted as EIdle, and the other part is accounted as ERx. Therefore, as-
suming 14, 400 wake-up events as EIdle gives an upper bound of the final mote consumption.

With these equations, the two nodes would have an expected energy consumption as
given in Table 6.3.

Table 6.3 – Theoretic energy consumption of one sink node and one transmitting (application
and network packets) node during 30 minutes.

Nodes ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ)
1 (sink) 2.2 10.6 723.0 2,284.3
2 (app.) 46.0 2.4 762.5 2,281.9

6.1.3 Scenario 3: 6 nodes, linear topology, and only end node sends data

This model was used in a linear topology of six motes, in which only the end node
(number 6) generates application messages. However, the Network layer does not generate
any packet. Table 6.4 presents the expected energy consumption for this configuration.

Table 6.4 – Expected energy consumption in a linear topology with only one node generating
messages (application layer) during 30 minutes.

Nodes ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ)
1 (sink) 1.1 5.3 719.7 2,284.2

2 25.0 6.5 743.3 2,283.1
3 25.0 6.5 743.3 2,283.1
4 25.0 6.5 743.3 2,283.1
5 25.0 6.5 743.3 2,283.1

6 (app.) 23.9 1.2 740.0 2,283.0

6.1.4 Scenario 4: 6 nodes, linear topology, and all but sink nodes transmit data

We increased the number of packets generated in the network by making motes (from
number 2 to 6) create both application messages and network control packets, i.e., sensed

58

data reports and Keep Alive. Table 6.5 presents the expected energy consumption for this
configuration. Appendix E contains the script used to obtain these results for linear topology.

Table 6.5 – Expected energy consumption in a linear topology with all nodes generating
messages (application and Network layer) during 30 minutes.

Nodes ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ) EDSleep (µJ)
1 (sink) 11.0 53.1 749.9 2,284.8 5.36
2 (app.) 231.7 54.4 969.9 2,273.8 5.34
3 (app.) 185.3 41.4 918.1 2,275.8 5.34
4 (app.) 138.8 28.4 866.2 2,279.9 5.35
5 (app.) 92.4 15.4 814.4 2,279.9 5.35
6 (app.) 46.0 2.4 762.5 2,281.9 5.36

The TMote Sky model was used in the Contiki/Cooja2 simulation with its default radio
configuration, so the radio does not use the lowest energy mode available. Moreover, the
sleep state described in the fifth column (ESleep) of Table 6.5 refers to the third most energy-
saving mode available for this mote (ISleep equals to 426 µA).

The TMote Sky can operate in "Deep Sleep" modes [44]. MCU idle and Radio off
operate with only 54.4 µA nominal current, and by putting the MCU in standby, only 5.1 µA
is required. For that, a mote has to use the radio’s lowest energy consumption mode for
the sleep periods, which would consume 1 µA. It is important to note that the different
levels of sleep mode can impact on the transition times of the radio, i.e., to get ready to
transmit/receive. Here, as the simulated application is very coarse in time, deep sleep modes
can easily be accommodated.

Thus, using the Deep Sleep mode, the expected results for the linear topology with all
nodes sending KA and application messages would be as shown in the last column (EDSleep)
of Table 6.5, in which radio’s sleep state would have almost no impact on the energy con-
sumption.

6.2 OVERHEAD EVALUATION

In this section, the overhead of the different scenarios will be theoretically analyzed. We
skip scenarios 1 to 4, to keep the text short, and focus on scenarios with neighbor discovery.
Scenario 5 consists of a Data Link layer with default ContikiMAC protocol, and a Network
layer with a static routing protocol. Scenario 5 is skipped in our theoretical models since the

2Contiki/Cooja was used as a state simulator, hence average transitions times are incorporated in simulation.

59

procedures in it are a subset of the procedures in Scenario 6.

6.2.1 Scenario 6: 2 nodes and neighbor discovery procedure

Association stage

Initially, consider a connection between two motes in the standard stack. In this case,
because of the selected protocols, DL would be the first layer to start its procedures. Con-
tikiMAC802 association protocol is based on the standard IEEE 802.15.4 MAC, which ex-
changes at least 5 types of command frames. ContikiMAC802 implemented frames are
described in Table 5.3.

Figure 6.2 – Time diagram of control packets exchanged in a standard stack registering (2nd
layer) and neighbor discovery (3rd layer) process.

Figure 6.2 illustrates the Data Link and Network association process of two nodes, where
RPL-Like packets are represented with green color, while ContikiMAC802 is the blue color.
Hence, in Step 1, after the scanning step (in this case listening for DL beacons), Rime stack

60

would spend

RimeDLconn = DLBeacon +DL_Reg +DL_Req +DL_Ans+ 3 ∗ ACK (6.10)

= 128 bytes,

where DLBeacon is the router’s beacon to be answered followed by IEEE 802.15.4 MAC
command types. DL_Reg, DL_Req, and DL_Ans correspond to the total size of DL asso-
ciations frames specified in Table 5.3.

In the adapted Rime stack [16], since little information is shared between layers, the
network layer has to wait for the DL to be ready to send packets. Also, another scanning
procedure is necessary, so that the network layer recognizes its neighbors. In the RPL-Like
protocol, it has another 4 commands type (Table 5.3). After a second scanning procedure,
the Network layer association would be given by

RimeNLconn = NLBeacon +NLDIS +NLDIO +NLDAO

+NLDAO_ACK + 4 ∗ ACK

(6.11)

= 185 bytes,

where NLDIS , NLDIO, NLDAO, and NLDAO_ACK correspond to the total size of network
control packets, as specified in Table 5.3.

Thus, the association procedure of a single mote in adapted Rime stack results

RimeSingle conn = RimeDLconn +RimeNLconn (6.12)

= 313 bytes.

On the other hand, with IoTUS, Neighbor Discovery could benefit from aggregation.
This procedure adds 1 byte to the header and 2 bytes per layer command (two layers in this
case). Therefore, as shown in Figure 6.3, some control commands could be aggregated. The
packets’ total sizes are described in Table 6.6.

61

Figure 6.3 – Time diagram of control packets exchanged with the new IoTUS framework in
a registering (2nd layer) and neighbor discovery (3rd layer) process.

The registering process (Figure 6.3) between two motes using IoTUS framework spends

IoTUSSingle conn = IoTUSBeacon + IoTUSReg + IoTUSReq + IoTUSAns + IoTUSDAO

+ IoTUSDACK + 5 ∗ ACK

(6.13)

= 255 bytes,

where IoTUSBeacon is the DL and network packets aggregated with Neighbor Discovery

module, IoTUSReq is the aggregated request packet, and IoTUSAns is the aggregated an-
swer packet for this association process. Also, all values correspond to the complete size
specified in Table 6.6.

Hence, analyzing the association process of only two nodes illustrated in Figure 6.3,
IoTUS would reduce 58 bytes per connection, i.e., 18.53% of association bytes reduced.

However, the final impact of IoTUS framework in the system is not only in the num-
ber of bytes exchanged during the association but also in its duration. As the association

62

Table 6.6 – Size of aggregated commands with IoTUS.

Field Aggregated size [bytes]
DL Beacon + DIO (IoTUSBeacon) 38

DL Register (IoTUSReg) 32
DL Request + DIS (IoTUSReq) 36
DL Answer + DIO (IoTUSAns) 42

DAO (IoTUSDAO) 26
DAO-ACK (IoTUSDACK) 26

time reduces, less periodic messages would be transmitted, i.e., fewer events of the periodic
broadcast from DL layer and Network layer will occur, impacting on the scenario overhead
measurement.

Due to the parameters in Table 5.2, it was observed that the Rime stack association pro-
cess takes an average total of 13 DLBeacon plus 13 NLBeacon until the association process
is complete. Therefore, the final overhead measurement for Rime stack considers the events
that occurred during the association process and is given by

RimeTotal conn = RimeSingle conn

+ 12 ∗DLBeacon + 12 ∗NLBeacon

(6.14)

= 949 bytes.

Meanwhile, the system using IoTUS takes less time for the association, since both pro-
tocols were aware of each other’s procedures. These protocols will have an average of 5
broadcast events during the association. Hence, IoTUS final overhead measurement is given
by

IoTUSTotal conn = IoTUSSingle conn + 4 ∗ IoTUSBeacon (6.15)

= 407 bytes.

Therefore, for the connection procedure of two nodes, it is expected that Rime stack will
have a pure header overhead of 77.76% which is given by

RimePure overhead = 1− BASE(RimeTotal conn)

RimeTotal conn

, (6.16)

where the function BASE() means extracting only the base values of the respective packets
specified in Table 6.6.

63

Meanwhile, IoTUS system will result in a pure header overhead of 73.71% which is
obtained from

IoTUSPure overhead = 1− BASE(IoTUSTotal conn)

IoTUSTotal conn

. (6.17)

Therefore, using IoTUS resulted in a pure header overhead reduction of 4.05% per node
connection. It is important to remind that the default implementation of IEEE 802.15.4
MAC [9] and RPL [10] has even bigger headers, and also uses 6LoWPAN [7] and ICMPv6 [59]
protocols. Thus, IoTUS is expected to facilitate these protocols to reduce even more network
overhead.

Periodic sensing and keep alive stage

After the association stage, motes are able to communicate at the application layer. Con-
sequently, messages from application, network, and DL layer are expected to coexist in this
environment.

The stack using IoTUS framework can benefit from the functions provided by Piggyback

Service. In this case, depending on the parameters used when a packet is created, this module
can optimize the network by aggregating control packets with messages, messages with other
messages, and so on. Piggyback Service module adds 1 byte of header, plus 1 or 2 bytes per
piece of message (PBp).

Therefore, the size of packets exchanged with IoTUS is not constant but dependent on
the application parameters. IoTUS would have an overhead result depending on how often
it produces aggregated packets. For this scenario, Table 6.7 presents possible aggregation
sizes.

The scenario considered here monitors environmental temperature, with no stringent time
requirements. Although Piggyback Service may increase delay (depending on the timeout
parameter), this delay is normally acceptable for this application. Therefore, in this example,
the application layer will create piggyback pieces (the block of memory used by Piggyback

Service described in Chapter 4), as expressed in Table 6.7.

Since the selected generation rate of DAOs packets and application messages have the
same value (Table 5.2), the analysis of the average case, given by events of "DAO + 1 Ap-

plication message", can be used as the theoretical model of this scenario. Note that when
packets are not aggregated (e.g., timeout expires), the node will transmit a "Single appli-
cation message" plus, eventually, a "Single DAO command". Piggyback Service can also

64

Table 6.7 – IoTUS Aggregated size for some typical aggregation conditions.

Aggregation Condition Aggregated size [bytes]
Single application message in the packet (IoTUS_Appmsg) 42
2 Application messages 64
3 Application messages 86
4 Application messages 108
5 Application messages 130 (exceeds frame)
Single DAO command in the packet (IoTUSDAO) 26
DAO + 1 Application message (PBApp&DAO) 48
DAO + 2 Application messages 70
DAO + 3 Application messages 92
DAO + 4 Application messages 114
DAO + 5 Application messages 136 (exceeds frame)

aggregate more than one packet (e.g., "DAO + 2 Application messages"), so the event "DAO
+ 1 Application messages" represents the network expected case.

Thus, according to the parameters for this scenario and the observed average broadcast
events (BEvents) per connection, Rime stack uses 13 BEvents per mote association, which
represents an average of 52 seconds of association stage (tone conn) for two nodes. Since the
whole scenario lasts 30 minutes and each mote reports every 30 seconds, all nodes would
have

Evreport =

⌊
30min ∗ 60 s− tone conn

30 s

⌋
, (6.18)

where tone conn is the average duration of one node’s complete association. In Rime stack, 58
report events (Evreport) are then expected with 58 network’s DAO packets generated.

The broadcast parameter in Table 5.2 allows determining the amount of Tot_BEvents

during the 30 minutes of simulation, which is given by

Tot_BEvents =

⌊
30min ∗ 60 s

4 s

⌋
= 450 broadcast events. (6.19)

Then, according to Table 5.3, Rime stack in the sensing and KA stage spend an amount
of bytes equivalent to

Rime2nodes Sen&KA = Evreport ∗ (Appmsg +NLDAO + ACK ∗ 2)

+ Tot_BEvents ∗ (DLBeacon +NLDIO),

(6.20)

where Appmsg is the application’s complete size message (41 bytes).

65

The expected Rime stack’s overhead for the whole scenario is 96.03% which is given by

Rime2nodes overhead = 1− Evreport ∗ AppPayload

RimeSingle conn +Rime2nodes Sen&KA

, (6.21)

where AppPayload is the application’s payload only (20 bytes of data).

On the other hand, IoTUS framework would be able to intrinsically aggregate these pack-
ets, spending 59 bytes (ACK included) for every 20 bytes of payload. Also, the association
time is shorter, since this system takes an average of 5 BEvents, which means 20 seconds of
association stage (tone conn). Therefore, the system with IoTUS can generate 59 report events
(Evreport). IoTUS framework is expected to produce an amount of bytes during its sensing
and KA stage equivalent to

IoTUS2nodes Sen&KA = Evreport ∗ (PBApp&DAO + ACK)

+ Tot_BEvents ∗ (IoTUSBeacon),

(6.22)

where PBApp&DAO is the full size of an event of application message aggregated with net-
work’s DAO packet, IoTUSBeacon is the DL beacon and network’s DIO aggregated with the
Neighbor Discovery module of IoTUS.

For this scenario, IoTUS framework is expected to have an overhead of 94.34% which is
given by

IoTUS2nodes overhead = 1− Evreport ∗ AppPayload

IoTUSSingle conn + IoTUS2nodes Sen&KA

, (6.23)

where PBApp&DAO is the full size of an event of application message aggregated with net-
work’s DAO packet, IoTUSBeacon is the DL beacon and network’s DIO aggregated with the
Neighbor Discovery module of IoTUS.

In IoTUS system worst case, no packet is aggregated by Piggyback Service. Thus, the
term "PBApp&DAO +ACK" in Equation (6.23) would be substituted by "IoTUS_Appmsg +

IoTUSDAO + 2 ∗ ACK", which results in an overhead of 94.8%. It means that IoTUS
system still held a better result for the duration of this scenario.

6.2.2 Scenario 7: 10 nodes star topology, neighbor discovery procedure

The star topology analysis (Scenario 7) is an extension of the 2 nodes topology ana-
lyzed in the previous scenario. However, with more nodes, some collisions may occur and
therefore cause some delay at the connection process, while the coordinator (mote 1) will

66

be broadcasting its DL’s beacons and RPL’s DIO packets during the whole scenario, every 4
seconds (Table 5.2).

For these parameters in Table 5.2 and the current DL protocol, reception slots occur every
125ms. Also, because the beacon period is 4 seconds (Data link and Network layer), the
nodes have 32 communication slots between broadcasts, which is enough for 10 nodes to
proceed with their association.

The overhead measurement of this scenario is a proportion between the connection stage
and the sensing and keep alive stage of 9 sensing motes and 1 sink coordinator. Therefore,
for the 30 minutes of scenario, 9 motes are expected to generate two types of transmissions: 1
DAO packet and 1 application message every 30 seconds. Consequently, after the connection
stage, each mote will generate about 58 transmissions (Evreport) of each type during the
whole scenario according to Equation (6.18). Also during this period, the coordinator mote
would send 450 broadcasts of DL’s beacons and 450 broadcasts of RPL’s DIO, according to
Equation (6.19).

The association stage for a star topology is similar to the 2 nodes scenario. However,
collision and backoff events can delay this procedure. Still, because of the small number of
motes compared to the number of available transmission slots, this effect does not signifi-
cantly impact the results.

Hence, using the values calculated for two nodes, the number of bytes exchanged for the
sensing and keep-alive stage (RimeSen&KA) in the adapted Rime is given by

RimeSen&KA =(N − 1) ∗ Evreport ∗ (Appmsg +NLDAO + 2 ∗ ACK)

+ Tot_BEvents ∗ (DLBeacon +NLDIO), (6.24)

where Appmsg is the full size of an application message, NLDAO is the network keep alive,
ACK is the acknowledge between transmissions, DLBeacon is the DL beacon, and NLDIO

is the RPL’s DIO.

Thus, the total overhead in Rime stack corresponds to 85.62% which is obtained from

RimeOverhead =1− (N − 1) ∗ Evreport ∗ AppPayload

(N − 1) ∗RimeSingle conn +RimeSen&KA

, (6.25)

where AppPayload is the application’s payload only (20 bytes of data), and RimeSingle conn is
the process of a single connection discussed in Equation (6.12).

Analogously, in the system using IoTUS framework and considering the average trans-

67

mitting event (consisting of 1 application message aggregated with 1 piggyback piece),
IoTUS would have its IoTUSSen&KA stage give by

IoTUSSen&KA =(N − 1) ∗ Evreport ∗ (PBApp&DAO + ACK)

+ Tot_BEvents ∗ IoTUSBeacon, (6.26)

where PBApp&DAO is the full size of an event of application message aggregated with KA
packet, IoTUSBeacon is the DL beacon, and RPL’s DIO integrated with the neighbor discov-
ery service of IoTUS.

Thus, the total overhead in IoTUS system corresponds to 79.06% which is given by

IoTUSOverhead =1− (N − 1) ∗ Evreport ∗ AppPayload

(N − 1) ∗ IoTUSSingle conn + IoTUSSen&KA

. (6.27)

Thus, for the star topology scenario, IoTUS should obtain 6.5% less overhead than the
adapted Rime stack.

6.2.3 Scenario 8: 10 nodes linear topology, neighbor discovery procedure

Differently from the star topology, the linear connection causes delays at the nodes fur-
ther away from the coordinator. Also, for this topology, router nodes will be sending periodic
broadcasts of both DL beacons and network’s DIO packets, plus network’s DAO packets up-
wards the sink. This increases overhead since many control data is exchanged until the last
node is finally connected. It is important to remind that, differently from the star topology
scenario, now only the last mote is sending periodic application messages after its connec-
tion.

For the 10 nodes linear topology (Figure 5.2), the third mote (therefore having rank 3)
will only start its connection after the second node is ready. Consequently, the whole associ-
ation stage is considered complete after the last mote gets the connected status. Also, every
byte exchanged for nodes will be counted for the final overhead measurement.

For example, using Rime stack, the first two connections (sink and second nodes) will
proceed as described in Equation (6.14). The association of the third node will have its
connection bytes (RimeTotal conn), broadcast events of the previous nodes, plus DAO pack-
ets sent by the second node. In sequence, the association of the fourth node will have its
RimeTotal conn bytes, broadcast events (sink, second node, and third node), plus DAO pack-
ets (second and third nodes).

68

Therefore, according to Table 5.2, for every 4 seconds of network runtime, coordina-
tor and router nodes will generate broadcast packet, e.g., DL beacons and Network’s DIO
packets, besides upward DAO packets every 30 seconds. For the same reasons in the star
topology, the DL protocol association using Rime stack is expected to take an average of 5
broadcast events (BEvents) to be complete, while the network protocol is expected to take
8 more BEvents. Meanwhile, using IoTUS framework, the association of both DL and Net-
work layers will occur simultaneously, and they are expected to take a total of 5 BEvents to
be done.

Linear topology: association stage

In Rime stack, the DL protocol initiates its connection before the Network layer. Also,
the DL layer takes only an average of 20 seconds (5 BEvents) to be completed, letting the net-
work available to do its own connections, which takes an average of 52 seconds (13 BEvents).
Therefore, the analysis of this topology is done separately in layers.

Hence, for Rime stack, on average, the last node to connect will take 468 seconds
(tAStage). It means that, during the association stage, the sink node will have this time to
generate broadcasts (DLBeacon). Consequently, the second node will have the same dura-
tion, minus the time it took to do its own connection (52 seconds). Therefore, the total
amount of bytes generated with DL broadcasts during the association stage by each node in
the network is given by

Rime_DLLin_BC =

(N−1)∑
n=1

(
tAStage − [(n− 1) ∗ tone conn]

4
∗DLBeacon

)
, (6.28)

where n is the node position in the linear topology, equivalent to its rank.

With the same structure, the total amount of broadcasts done by Rime’s Network layer is
given by

Rime_NLLin_BC =

(N−1)∑
n=1

(
tAStage − [(n− 1) ∗ tone conn]

4
∗NLBeacon

)
. (6.29)

Also, in Rime stack, Network layer starts transmitting NLDAO packets after its associ-
ation process is complete. However, not only NLDAO generation rate is different, but also
its packets are relayed until the sink. Hence, the total amount of bytes transmitted with

69

network’s DAO packets during the association stage is given by

Rime_KALin_Conn =
N∑

n=1

(⌊
tAStage − [(n− 1) ∗ tone conn]

30

⌋
∗ (n− 1) ∗ (NLDAO + ACK)

)
.

(6.30)

Considering

RimeLin_Ctrls = Rime_DLLin_BC +Rime_NLLin_BC +Rime_KALin_Conn, (6.31)

in Rime stack, the pure header overhead during the association stage of 10 nodes results in
80.28% which is obtained by

RimeLin_POverhead = 1− (N − 1) ∗BASE(RimeSingle conn) +BASE(RimeLin_Ctrls)

(N − 1) ∗RimeSingle conn +RimeLin_Ctrls

.

(6.32)

Analogously, IoTUS framework would have its broadcast packets aggregated by Neigh-

bor Discovery. The average duration expected for the association stage of 9 motes is 180
seconds (tAStage). Thus, the IoTUS broadcast events would result in an amount of byte given
by

IoTUS_NDLin_BC =

(N−1)∑
n=1

(⌊
tAStage − [(n− 1) ∗ tone conn]

4

⌋
∗ (IoTUSBeacon)

)
.

(6.33)

Also, the Network layer would generate IoTUSDAO packets after its complete associa-
tion. Hence, similar to the standard stack, the expected amount of bytes is given by

IoTUS_KALin_Conn =
N∑

n=1

(⌊
tAStage − [(n− 1) ∗ tone conn]

30

⌋
∗ (n− 1) ∗ (IoTUSDAO + ACK)

)
.

(6.34)

Considering

IoTUSLin_Ctrls = IoTUS_NDLin_BC + IoTUS_KALin_Conn, (6.35)

then, IoTUS framework pure header overhead during the association stage of 10 nodes re-

70

sults in 73.45% which is given by

IoTUSLin_POverhead = 1− (N − 1) ∗BASE(IoTUSSingle conn) +BASE(IoTUSLin_Ctrls)

(N − 1) ∗ IoTUSSingle conn + IoTUSLin_Ctrls

.

(6.36)

Linear topology: Periodic sensing and keep alive stage

Since only the last node in the linear topology will be generating application messages,
then all other motes (routers) will be doing broadcasts and DAO packets after the association
stage. Also, in the Rime stack, it is expected that the previous stage takes an average of
462 seconds to be completed (all nodes connected). Hence, for this scenario with 30 minutes
duration, the remaining time allows Rime nodes to generate 44 report events (Application
message and DAO packets– Evreport), plus 333 broadcast events (Tot_BEvents). Thus, the
additional bytes spent at this remaining stage can be calculated as

RimeLin_RCtrls =
N∑

n=1

[Evreport ∗ (NLDAO + ACK) ∗ (n− 1)]

+ (N − 1) ∗ Evreport ∗ Appmsg +RimeLin_Ctrls

+ (N − 1) ∗ Evreport ∗ (DLBeacon +NLBeacon). (6.37)

Finally, Rime stack overhead for the linear topology results in 97.33% and can be ex-
pressed as

RimeLin_Overhead = 1− (N − 1) ∗ Evreport ∗ AppPayload

(N − 1) ∗RimeSingle conn +RimeLin_RCtrls

. (6.38)

Analogously, IoTUS framework association stage took 180 seconds on average, which
leaves time for 54 report events (Application message and DAO packets), plus 405 broad-
cast events (Tot_BEvents). Thus, the additional bytes spent at this remaining stage can be
calculated as

IoTUSLin_RCtrls =

(N−1)∑
n=1

[Evreport ∗ (IoTUSDAO + ACK) ∗ (n− 1)]

+ (N − 1) ∗ Evreport ∗ PBApp&DAO + IoTUSLin_Ctrls

+ (N − 1) ∗ Tot_BEvents ∗ IoTUSBeacon. (6.39)

71

Therefore, in the linear topology, IoTUS framework is expected to have an overhead of
95.71% and is obtained by

IoTUSLin_Overhead = 1− (N − 1) ∗ Evreport ∗ AppPayload

(N − 1) ∗ IoTUSSingle conn + IoTUSLin_RCtrls

. (6.40)

6.3 THEORETICAL RESULTS’ CONCLUSION

In this chapter, we developed theoretical models to evaluate IoTUS framework and Rime
stack. Moreover, energy and overhead model were used to estimate the improvement of
stacks using the new framework compared to the standard stack.

The theoretical models also allow evaluating the measuring tools created to calculate the
simulation results. Therefore, the results obtained in this chapter will be compared with
simulations in Chapter 7. A summary of the theoretical results is presented in Table 6.8 and
Table 6.9.

Also, we recapitulate here, for convenience, the defined scenarios:

• Scenario 1: single node transmitting broadcast packets;

• Scenario 2: one node transmitting, and other node receiving;

• Scenario 3: 6 nodes, linear topology, and only end node transmits;

• Scenario 4: 6 nodes, linear topology, and 5 nodes transmitting to sink;

• Scenario 5: Only discussed in Chapter 7;

• Scenario 6: 2 nodes and neighbor discovery procedure;

• Scenario 7: 10 nodes, neighbor discovery procedure, and star topology;

• Scenario 8: 10 nodes, neighbor discovery procedure, and linear topology.

72

Table 6.8 – Theoretical energy results for different scenarios.

Scenario Node ID ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ) EDSleep (µJ)
1 1 4.9 0.0 2.138 2,300.2 —

1 (sink) 2.2 10.6 723.0 2,284.3 —
2

2 (app.) 46.0 2.4 762.5 2,281.9 —
1 (sink) 1.1 5.3 719.7 2,284.2 —

2 25.0 6.5 743.3 2,283.1 —
3 25.0 6.5 743.3 2,283.1 —
4 25.0 6.5 743.3 2,283.1 —
5 25.0 6.5 743.3 2,283.1 —

3

6 (app.) 23.9 1.2 740.0 2,283.0 —
1 (sink) 11.0 53.1 749.9 2,284.8 5.36
2 (app.) 231.7 54.4 969.9 2,273.8 5.34
3 (app.) 185.3 41.4 918.1 2,275.8 5.34
4 (app.) 138.8 28.4 866.2 2,279.9 5.35
5 (app.) 92.4 15.4 814.4 2,279.9 5.35

4

6 (app.) 46.0 2.4 762.5 2,281.9 5.36

Table 6.9 – Theoretical results of IoTUS framework and adapted Rime stack.

Parameter Scenario IoTUS Framework Rime stack Gain
6 73.7% 77.8% ≈ 5.26%Pure header

overhead 8 73.5% 80.3% ≈ 8.46%
6 94.3% 95.8% ≈ 1.56%
7 79.1% 85.6% ≈ 7.59%Overhead
8 95.7% 97.3% ≈ 1.64%

Network
association

time
8 180 s 468 s ≈ 61.53% faster

73

SIMULATION RESULTS

This chapter presents the simulation results obtained in this
work. Therefore, we compare to the theoretical models and
expand the topology to a higher number of devices.

The simulation results in this chapter present the performance of IoTUS framework for
different stack complexities. Thus, it is important to remember that results reported here were
obtained by averaging over 10 runs using random seeds with a 95% confidence interval. As
a baseline, we use ContikiOS’s adapted Rime stack, which is a simplified traditional stack
with ContikiOS’s cross-layer Packetbuf.

The simulations were divided into the scenarios described in Chapter 6, plus other sce-
narios expanded by the simulation environment. Therefore, the scenarios are:

• Energy consumption simulation validation:

– Scenario 1: single node transmitting broadcast packets;

– Scenario 2: one node transmitting, and other node receiving;

– Scenario 3: 6 nodes, linear topology, and only end node transmits;

– Scenario 4: 6 nodes, linear topology, and 5 nodes transmitting to sink;

• IoTUS performance compared to adapted Rime stack [16]:

– Scenario 5: 10 nodes, static routing network, and tree topology;

– Overhead simulation validation:

∗ Scenario 6: 2 nodes and neighbor discovery procedure;

∗ Scenario 7: 10 nodes, neighbor discovery procedure, and star topology;

∗ Scenario 8: 10 nodes, neighbor discovery procedure, and linear topology;

– Energy consumption, memory usage, lifetime, etc.:

∗ Scenario 7: 10 nodes, neighbor discovery procedure, and star topology;

∗ Scenario 8: 10 nodes, neighbor discovery procedure, and linear topology;

∗ Scenario 9: 44 nodes, neighbor discovery procedure, and tree topology;

∗ Scenario 10: 44 nodes, neighbor discovery procedure, tree topology, and
radio’s deep sleep.

74

7

7.1 ENERGY CONSUMPTION SIMULATION VALIDATION

All the measurements obtained in this work were obtained with Cooja [22] simulator.
Cooja provides different ways to measure energy: Over the serial output of each device,
using state tracker of each device (PowerTracker), and by means of the message output log.
In this work, we use more precise Cooja build in (PowerTracker) and compare the simulation
results with the theoretical results developed in Chapter 6.

Thus, the first simulation (Scenario 1) considers only one device, running a task that turns
the radio on and sends a single packet (a broadcast) periodically. This procedure is illustrated
in Figure 7.1. Therefore, Table 7.1 compares the expected results of the theoretical model and
the simulation.

Figure 7.1 – Single transmission simulation in Cooja, repeated 60 times over 30min simula-
tion.

Table 7.1 – Energy consumption of Scenario 1: one device compared between the theoretical
model and simulation. 30 minutes simulation.

Method ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ)
Theoretical model 4.9 0.0 2.138 2,300.2
Simulated results 4.8 0.0 2.293 2,300.6

As observed, both simulation and theoretical results were quite similar. Hence, we in-
creased the complexity of this scenario by adding a receiver node (Scenario 2). In this case,
only one device transmits packets to the data sink (node 1). Also, nodes are using Con-
tikiMAC [27] protocol features to save energy. Therefore, Table 7.2 compares the expected
results of the theoretical model and the simulation.

Table 7.2 – Energy consumption of Scenario 2: one mote sending (application messages and
KA) and other receiving. 30 minutes simulation.

Node ID Method ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ)
Theoretical model 2.2 10.6 723.0 2,284.3

1
Simulated results 2.0 11.2 738.8 2,283.8

2
Theoretical model 46.0 2.4 762.5 2,281.9
Simulated results 47.9 2.1 780.1 2,281.9

75

Once more, we increased the complexity by putting six nodes in a linear topology (Fig-
ure 5.2), corresponding to Scenario 3. In this case, only the last device transmits packets
to the data sink (node 1), while the other nodes relay these packets. Therefore, Table 7.3
compares the expected results of the theoretical model and the simulation. These results can
also be visualized in Figure 7.2.

Table 7.3 – Energy consumption of Scenario 3: six devices and only one sending messages
in a linear topology. 30 minutes simulation.

Node ID Method ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ)
Theoretical model 1.1 5.3 719.7 2,284.2

1 (sink)
Simulated results 1.0 5.6 731.0 2,284.5

2
Theoretical model 25.0 6.5 743.3 2,283.1
Simulated results 25.9 6.7 760.0 2,283.2
Theoretical model 25.0 6.5 743.3 2,283.1

3
Simulated results 26.7 8.0 761.3 2,283.1

4
Theoretical model 25.0 6.5 743.3 2,283.1
Simulated results 25.7 8.8 762.2 2,283.1
Theoretical model 25.0 6.5 743.3 2,283.1

5
Simulated results 26.4 8.1 763.0 2,283.1

6 (app.)
Theoretical model 23.9 1.2 740.0 2,283.0
Simulated results 24.8 1.2 752.0 2,283.5

Figure 7.2 – Scenario 3: energy consumption in linear topology with only node six generat-
ing messages.

76

Finally, we increased the number of packets generated in the network simulated. In this
case, nodes create application messages and network control frames every 30 seconds and
send them to the data sink device (Scenario 4). Therefore, Table 7.4 compares the expected
results of the theoretical model and the simulation. Once again, these results can be visual-
ized in Figure 7.3.

Table 7.4 – Energy consumption of Scenario 4: five devices sending messages in a linear
topology. 30 minutes simulation.

Node ID Method ETx (mJ) ERx (mJ) EIdle (mJ) ESleep (mJ)
Theoretical model 11.0 53.1 749.9 2,284.8

1 (sink)
Simulated results 9.5 53.0 800.4 2,281.7

2 (app.)
Theoretical model 231.7 54.4 969.9 2,273.8
Simulated results 232.9 53.3 1,056.6 2,270.3
Theoretical model 185.3 41.4 918.1 2,275.8

3 (app.)
Simulated results 185.3 60.5 1,005.3 2,272.5

4 (app.)
Theoretical model 138.8 28.4 866.2 2,279.9
Simulated results 142.4 28.2 920.1 2,276.2
Theoretical model 92.4 15.4 814.4 2,279.9

5 (app.)
Simulated results 94.9 20.2 866.8 2,278.8

6 (app.)
Theoretical model 46.0 2.4 762.5 2,281.9
Simulated results 48.6 2.2 780.4 2,282.2

Figure 7.3 – Scenario 4: energy consumption in linear topology with sink (node 1) and all
five nodes generating messages.

77

The differences observed on the bars from Figure 7.2 and Figure 7.3 indicates that the
closer a router is to the data sink, the higher is its energy consumption. This behavior is
expected since devices closer to the sink in a linear or tree topology are more likely to relay
packets than further away nodes.

Thus, the results presented in Table 7.3 and Table 7.4 confirm that the method to measure
energy consumption in the simulator is coherent to the theoretical model; thus, it can be used
for further simulations.

Furthermore, we observed that the amount of energy spent on the sleep state is higher
than other states. However, this is coherent, since the used sleep mode consumed 426 µA, the
duty cycle obtained in these simulations was between 0.3% to 1.3%, and simulations were
30 minutes long.

7.2 IOTUS PERFORMANCE COMPARED TO RIME STACK

7.2.1 Scenario 5: 10 nodes, static routing network, and tree topology

In this scenario, we evaluated IoTUS in terms of its energy efficiency and memory foot-
print. Moreover, its setup is composed as:

• Topology: tree with a single root node (data sink);

• Data Link Layer:

– Protocol: ContikiMAC;

– Events: Piggyback Service may aggregate packets flowing to the same destina-
tion;

• Network layer:

– Protocol: static routing table;

– Events: Keep Alive packets generation in all devices every 30 seconds;

• Application layer:

– Protocol: None;

– Events: message generation in all devices every 30 seconds;

78

While latency is an important performance metric for delay-sensitive applications, it is
not considered to be critical for environmental monitoring (an important motivation appli-
cation for this thesis). Though we do not report latency results in this work, we note that
additional processing incurred by IoTUS (e.g., packet construction, data aggregation) may
increase latency. For example, the duration between building a message at the application
layer and finally transmitting it was on average 4.1ms with IoTUS, while the Rime stack
processed the same request in 1.3ms. Depending on the end-to-end propagation delay, this
difference may be disregarded. According to [46], Riot [45] and TinyOS [39] took around
3ms to build a transmitting packet, while ContikiOS [16] resulted in around 1.5ms. Con-
tikiOS (and the adapted Rime stack defined in this work) uses a static centralized array buffer
to store packets (Packetbuf), while Riot and TinyOS use dynamically allocated memory and
linked list to store their packets. IoTUS not only uses a dynamic linked list to store its pack-
ets but also adds more processing with its management; thus, the longer building time of a
transmitting packet is caused by the additional IoTUS’s modules processing. As part of our
future work, we will be evaluating IoTUS impact on latency.

Figure 7.4 plots energy consumption averaged over all 44 network nodes using the topol-
ogy illustrated in Fig. 5.5 for both IoTUS and Rime over time. The shaded areas represent
the confidence interval of each line according to their colors.

Figure 7.4 – Scenario 5: average energy consumption per node in a 44-node tree network.

We ran the simulations for 30 minutes to allow enough time for the system to reach steady
state. Although IoTUS’s average energy consumption gain was about 5.33%, as shown in

79

Figure 7.6, nodes 2 and 3 experienced energy consumption gains of 13% each. Note that
these are the closest nodes to the root of the tree and, thus, are the ones that need to forward
the highest number of packets on their way to the sink.

Figure 7.6, which plots consumption by power state for selected nodes in the network,
shows that most of nodes’ 2 and 3 energy consumption gains by IoTUS come from the radio,
more specifically by spending less time in transmission mode when compared to the Rime
stack. This is mainly due to IoTUS’s aggregation feature provided by the Packet Manager

and Piggyback Service. For comparison purposes, node 43 (a leaf node) had the overall
minimum consumption. Figure 7.5 also shows energy consumption for other nodes, which
are a mix of intermediate and leaf nodes.

Figure 7.5 – Scenario 5: total energy consumption by states of all 44 nodes network. The
left side bar of each node describes the IoTUS framework consumption. The right side bar
indicates the consumption of the node for the Rime stack.

As expected, for this simulation, radio functions are by far the most energy consuming.
Even though active states can consume thousands more than sleep state and up to 10 times
more than CPU, Figure 7.6 reveals that nodes’ radios spent most of the time in either idle or
sleep, and these two states contributed the most to the overall energy consumed by nodes.

This scenario was also simulated for small trees. Thus, Figure 7.7 shows the maximum
and minimum energy consumption gains attained for networks of varying size. These results
were obtained by using trees of sizes 2, 8, 14, 20 nodes, etc. where each tree corresponds
to the tree shown in Figure 5.5 but only including nodes up to node id 2, 8, 14, 20, etc.,
respectively.

80

Figure 7.6 – Scenario 5: total consumption by states of selected nodes from Figure 7.5.

Figure 7.7 – Scenario 5: maximum and minimum radio energy gain per nodes in the network
(over 10 simulation runs).

We observe that, as the network increases in size, so does the energy consumption gains
obtained using IoTUS. As previously discussed, the highest gains were observed by nodes 2
and 3, which also had the highest energy consumption, according to Figure 7.6. Since these
nodes are the most likely to be the first to have their battery depleted, guaranteeing them the

81

highest energy savings results in extending the network’s overall lifetime.

To calculate lifetime, we consider that each device is supplied with a NiMH battery [64]
(e.g., 2000 mAh at 3 volts) that would provide up to

Bat = 2000mA ∗ VPP ∗ 60min ∗ 60 s (7.1)

= 2A ∗ 3V ∗ 60min ∗ 60 s

= 21.6 kJ.

Thus, a node’s Lifetime (LT) is obtained by

Lifetime(LT) =
Bat

NodePower

, (7.2)

where NodePower is the average power consumption of a device.

Figure 7.8 – Scenario 5: average power consumption of the network.

Figure 7.8 plots power consumption averaged over all 44 network nodes, and Figure 7.9
presents results for expected network lifetime for tree topologies of varying sizes. Network
lifetime is defined as the time between the start of the simulation until any one of the nodes’
battery is depleted.

Considering this scenario, power modes and the fact that nodes 2 and 3 did exhibit the
highest energy consumption, IoTUS achieves a lifetime of 8, 700, 322 s (≈ 100 days), rep-
resenting an improvement of 12.11% over Rime (7, 760, 324 s≈ 89 days). Furthermore, for

82

Figure 7.9 – Scenario 5: maximum lifetime per number of nodes in the network.

this particular topology, once nodes 2 and 3 deplete their batteries, the rest of the network
gets disconnected from the sink and therefore is no longer able to perform its monitoring
task.

We should point out that, for the static routing setup of Scenario 5, we were not able
to run simulations using trees with more than 44 nodes. Since the code is compiled for all
nodes at the same time, the static routing table saved in each device gets bigger with the
network size. The RAM size needed by routing table in the adapted Rime stack exceeded
the 10 KByte of TMote Sky’s RAM capacity. On the other hand, larger tree topologies
could still be emulated when using IoTUS, which attests to its efficient memory footprint.
IoTUS offers additional tools for protocols in the stack and impacts on memory usage, but
network scalability is mostly limited by the protocols’ design. In this way, IoTUS requires
an initial flash memory to be installed, but it reduces the amount of used RAM and allows
more neighbors to be stored; thus, it possibly allows larger networks compared to the adapted
Rime stack.

Figure 7.10 shows a comparative memory footprint characterization between IoTUS and
Rime as packet buffer size increases. While IoTUS requires additional flash space (less than
5 kbytes, or 18% more than Rime), it saves RAM storage through its ability to share infor-
mation across layers and avoids information duplication. As shown in Figure 7.10, IoTUS’s
memory footprint savings increases with the size of the packet buffer. In this simulation,
memory saving reaches 23.63% for a packet buffer size of 15 packets.

83

Figure 7.10 – Scenario 5: memory usage when increasing packet buffer capacity.

7.2.2 Overhead simulation validation

The simulation of Scenarios 6, 7, 8, 9, and 10 will be using the Neighbor Discovery mod-
ule of IoTUS framework. Therefore, the routing table of the Network layer will be generated
at runtime. Also, the Data Link layer and Network layer will be executing association proce-
dures along with Keep Alive packet and application messages (after connected). Hence, the
configuration of this scenario is:

• Topology: 2 nodes, star, and linear;

• Data Link Layer:

– Protocol: ContikiMAC802 (has association procedure and periodic broadcasts);

– Events:

∗ Neighbor Discovery aggregates the association frames and helps the connec-
tion process;

∗ After connected, router nodes will be broadcasting DL beacon frames;

∗ Piggyback Service may aggregate packets flowing to the same destination;

• Network layer:

– Protocol: RPL-Like;

– Events:

84

∗ Neighbor Discovery aggregates the association frames and helps the connec-
tion process;

∗ After connected, router nodes will be broadcasting DL beacon frames;

∗ Keep Alive packets generation in all devices every 30 seconds;

• Application layer:

– Protocol: None;

– Events: After connected, there will be message generation in all devices every 30
seconds;

Cooja simulator [22] can provide the log of communication of a simulation. Therefore,
this log contains every packet transmitted during the simulation, including collided packets,
retransmissions, ACKs, etc. However, according to the definition of overhead adopted in
Chapter 6, collided packets and retransmissions should not happen.

Hence, to validate our developed overhead measuring tool, we do not consider the col-
lided and/or retransmitted packets. Consequently, only the successful transmitted packets
are accounted for overhead. This filtering process also improves the comparison analysis
between IoTUS framework and Rime stack, since the influence of protocols’ design (e.g.,
ContikiMAC and Carrier Sense Multiple Access) will be reduced. Note that we always use
the same configuration, parameters, and filtering process for both systems: the stack using
IoTUS framework and for Rime stack.

Scenario 6: 2 nodes and neighbor discovery procedure

The overhead measuring tool parses and averages the whole log files of the 10 runs,
counting every byte in all the messages. However, as discussed before, we account only the
successfully delivered packets. When the network is completely connected (routing paths
are established), we calculate the pure header overhead (defined in Chapter 6). Finally, with
the complete 30 minutes log, we calculate the final average overhead.

Scenario 6 contains only one transmitting node and one receiver (data sink). Therefore,
Figure 7.11 presents the results of Pure header overhead, in which DL and Network layers
are discriminated. Also, the final overhead calculated with the 30 minutes log files is pre-
sented in Figure 7.12, when events of application message are already generated. Finally,
Table 7.5 compares these results with the theoretically expected values.

85

Figure 7.11 – Scenario 6: Pure header overhead comparison for two nodes.

Figure 7.12 – Scenario 6: overhead comparison for two nodes.

Table 7.5 – Scenario 6: Pure header overhead and Overhead validation.

Type Method IoTUS Rime stack

Theoretical model 73.7% 77.8%Pure header
overhead Simulated results 74.7% 78.1%

Overhead
Theoretical model 94.3% 96.0%
Simulated results 94.7% 95.8%

As observed, the expected results were quite close to the simulations. Also, it can be
seen that the Network layer had a greater amount of command bytes exchanged, which is
coherent to the packet sizes presented in Table 5.3 and Table 6.6. Moreover, in general,
IoTUS framework spends less total bytes than Rime stack to do the same procedure.

With these results, we also obtained the goodput for this network, which is defined as the

86

amount of application payload bytes per second received at the sink node. Thus, IoTUS and
Rime stack had a similar final goodput of 0.6 bytes/s.

Scenario 7: 10 nodes, neighbor discovery procedure, and star topology

With the overhead measuring tool validated for two nodes, we expanded the network up
to 10 devices in Scenario 7, but in a star topology. In this case, the network nodes compete
for the transmitting slot, but since many slots are available and collisions are not accounted,
results are an extension of the Scenario 6. Therefore, the overhead calculated with the 30

minutes log files is presented in Figure 7.13, and Table 7.6 compares these results with the
theoretically expected values.

Figure 7.13 – Scenario 7: overhead comparison for 10 nodes and star topology.

Table 7.6 – Overhead validation in Scenario 7.

Type Method IoTUS Rime stack

Overhead Theoretical model 79.1% 85.6%
Simulated results 79.4% 84.9%

In terms of the average amount of header bytes exchanged, IoTUS spent approximately
38, 619 bytes (79.4%) during the 30 minutes of the simulation, while Rime stack spent
60, 555 bytes (84.9%). Meanwhile, the goodput measured in IoTUS was 5.49 bytes/s, while
rime stack had 5.88 bytes/s. Thus, for a similar goodput, IoTUS used fewer bytes, a differ-
ence of 21, 936 bytes and equivalent to 36.22%.

87

Scenario 8: 10 nodes, neighbor discovery procedure, and linear topology

The last topology analyzed with the theoretical model is given in Scenario 8, which
has a linear topology. In this case, only the last node transmits application messages after
connected by DL layer and Network layer.

Table 7.7 – Scenario 8: Pure header overhead and Overhead validation.

Type Method IoTUS Rime stack
Theoretical model 73.5% 80.3%Pure header

overhead Simulated results 73.3% 80.8%

Overhead Theoretical model 95.7% 97.3%
Simulated results 96.5% 97.3%

Figure 7.14 – Scenario 8: Pure header overhead comparison for 10 nodes and linear topol-
ogy.

Figure 7.15 – Scenario 8: overhead comparison for 10 nodes and linear topology.

88

Therefore, Figure 7.14 presents the results of Pure header overhead. Also, the final over-
head calculated with the 30 minutes log files is presented in Figure 7.15. Finally, Table 7.7
compares these results with the theoretically expected values.

In the linear topology, node "n+1" has to wait for the node "n" to be connected, and so
the association process takes longer than the star topology. Therefore, more periodic control
frames are transmitted during the association stage.

Once again, in terms of the average amount of header bytes exchanged, IoTUS spent
approximately 240, 190 bytes (96.5%) during the 30 minutes of the simulation, while Rime
stack spent 266, 279 bytes (97.3%). Meanwhile, the goodput measured in IoTUS was 0.53 bytes/s,
while rime stack had 0.44 bytes/s. Thus, IoTUS used fewer bytes with a better goodput, a
difference of 26, 089 bytes and equivalent to 9.79% improvement.

7.2.3 Energy consumption, memory usage, lifetime, etc.:

Scenario 7: 10 nodes, neighbor discovery procedure, and star topology

Figure 7.16 plots energy consumption averaged over all 10 network nodes using the star
topology illustrated in Fig. 5.6. Also, after 30 minutes of simulation, Figure 7.17 presents
the energy consumption per state of each node.

Figure 7.16 – Scenario 7: average energy consumption per node in a 10-node star network.

According to Figure 7.17, for IoTUS and Rime stack, all transmitting devices but the sink

89

Figure 7.17 – Scenario 7: total energy consumption by states of all 10 nodes network. The
left side bar of each node describes the IoTUS framework consumption. The right side bar
indicates the consumption of the node for the Rime stack.

node had similar energy consumption. However, this occurred because all devices but sink
had the same function (leaf nodes) and the same number of hops from the data sink. Still,
IoTUS framework obtained an average gain of approximately 19.51% compared to the Rime
stack. Moreover, the average network association time, illustrated in Figure 7.16 as vertical
lines, was faster in the environment using IoTUS (37.2 s) than in the Rime Stack (45.3 s).

Scenario 7 was also simulated for a small number of nodes. Thus, Figure 7.18 illus-
trates the final energy consumption averaged over the N nodes in each size of the network.
Also, Figure 7.19 shows the maximum and minimum energy consumption gains attained for
networks of varying size.

According to Figure 7.19, for the star topology in Scenario 7, IoTUS attained a maximum
gain over Rime in the network with three nodes (25.07%). However, due to the number of
communication slots per message transmission period available in this scenario, the energy
consumption per number of nodes in the network does not increase significantly, as shown
in Figure 7.18.

90

Figure 7.18 – Scenario 7: final average energy consumption.

Figure 7.19 – Scenario 7: maximum and minimum radio energy gain of IoTUS over Rime,
per nodes in the network.

Scenario 8: 10 nodes, neighbor discovery procedure, and linear topology

In this scenario, the benefits of sharing procedures and other information between layers
is shown by the impact on energy consumption and association time. Therefore, Figure 7.20

91

plots energy consumption averaged over all 10 network nodes using the linear topology il-
lustrated in Figure 5.2. Also, after 30 minutes of the simulation, Figure 7.21 presents the
energy consumption per state of each node. Note that only the end node (device 10) trans-
mits application message for this linear topology.

Figure 7.20 – Scenario 8: average energy consumption per node in a 10-node linear network.

It can be observed that both stacks with and without IoTUS framework had a big incre-
ment of energy consumption. On IoTUS, after 30 minutes of simulation, the final energy
consumption was 8.35 J, while in Rime stack it reached 29.64 J. These values are very high
compared to the other scenarios because many disconnections and scanning procedures oc-
cur, which also increase confidence interval. In IoTUS, these association of both layers
is enhanced by Neighbor Discovery service; therefore, IoTUS provided fewer disconnec-
tions and more stable association through the network. Also, IoTUS had an average gain of
71.81%.

In this Scenario 8, the devices have to associate to two layers before being ready to
broadcast and let the next node connect in sequence. Since the neighbor discovery process
of the second and third layers are independent, many disconnections occur. For example,
consider node "n-1" already connected in both layers, then node "n" will scan "n-1" broadcast
frames and start its DL layer association. After node "n" gets connected in DL, it will start
broadcast DL frames and will start an association process for its Network layer. However, the
node "n+1" recognizes node "n" and starts another DL association too. Hence, node "n+1"
DL connection can slow node "n" Network layer connection. Consequently, Figure 7.21

92

Figure 7.21 – Scenario 8: total energy consumption by states of all 10 nodes network. The
left side bar of each node describes the IoTUS framework consumption. The right side bar
indicates the consumption of the node for the Rime stack.

show the big increment of energy consumption from node 2 to node 3.

Another important event in this Scenario 8 is that by the time node 3 gets its network as-
sociation, all other nodes (4 to 10) are already connected within the Data Link layer. There-
fore, the step of energy consumption is smaller from node 3 and beyond. Consequently, the
whole process of network connection in Rime stack takes 469.2 s (Theoretical model esti-
mated 468 s). Meanwhile, in IoTUS, Neighbor Discovery module improves the association
procedure of both layers. Therefore, IoTUS had a smoother step between nodes in a lin-
ear topology and also provided a faster network connection of 183.7 s (Theoretical model
estimated 180 s).

Scenario 8 was also simulated for a small number of nodes. Figure 7.22 illustrates the
final energy consumption averaged over the N nodes in each size of the network. Figure 7.23
shows the maximum and minimum energy consumption gains attained for networks of vary-
ing size.

93

Figure 7.22 – Scenario 8: final average energy consumption.

Figure 7.23 – Scenario 8: maximum and minimum radio energy gain per nodes in the net-
work.

Therefore, according to Figure 7.23, for the star topology in Scenario 8, IoTUS attained a
maximum gain over Rime in the network with nine nodes (76.83%). Moreover, Figure 7.22
shows the impact of multiple hops when using IoTUS framework and Rime stack.

94

Scenario 9: 44 nodes, neighbor discovery procedure, and tree topology

Scenario 9 is composed of 44 nodes in a tree topology (Figure 5.5), which has mixed
similarities of the star and linear topologies. Thus, in this case, nodes will compete for
transmission slots and will have to wait for their predecessor node to get connected first.

Therefore, Scenario 9 also had an overhead evaluation, and so Figure 7.24 presents the
Pure header overhead obtained in these simulations, as well as Figure 7.25 presents the final
average overhead after 30 minutes of simulations.

Figure 7.24 – Scenario 9: Pure header overhead comparison for 44 nodes and tree topology.

Thus, with only 37, 888 bytes (68.3%), IoTUS framework spent fewer header bytes to
complete the network connection than Rime stack (117, 788 bytes or 75.9%). Therefore, in
the association stage for the tree topology, IoTUS obtained a gain of 67.83%.

Figure 7.25 – Scenario 9: overhead comparison for 44 nodes and tree topology.

Meanwhile, regarding the average amount of header bytes exchanged after 30 minutes of
the simulation, IoTUS spent approximately 927, 023 bytes (81.4%), while Rime stack spent

95

1, 279, 108 bytes (87.3%). Also, the goodput measured in IoTUS was 26.94 B/s, while Rime
stack had 15.30 B/s. Thus, IoTUS used fewer bytes while keeping an improved goodput,
resulting in a difference of 352, 085 bytes or a gain of 27.52%.

For energy evaluation, Figure 7.26 plots the energy consumption averaged over all 44
network nodes for both IoTUS and Rime over time. Therefore, IoTUS’s average energy
consumption gain was approximately 34.88%. Moreover, Figure 7.27 plots consumption by
power state for selected nodes in the network.

Figure 7.26 – Scenario 9: average energy consumption per node in a 44-node tree network.

In Scenario 9, the addition of an association process and neighbor discovery procedure
altered the energy results of Figure 7.27 when compared to Scenario 5 (static routing tree
topology). Hence, in Scenario 9, further distant nodes presented the highest consumption
(e.g., node 42). Consequently, the node with the highest gain in this 44 devices tree topology
was node 32 (43.25% gain compared to Rime stack).

For this scenario, the gains obtained by IoTUS come mostly from the radio, more specifi-
cally by spending less time in transmission mode when compared to the Rime stack. IoTUS’s
aggregation feature provided by the Packet Manager, Piggyback Service, and Neighbor Dis-

covery module caused most of the gains compared to Rime stack. These IoTUS’s modules
also improved association time, which is illustrated by vertical lines in Figure 7.26. Thus,
the new framework completed the network connection in 170.4 s, while Rime stack had an
average of 247.4 s.

Scenario 9 was also simulated for a small number of nodes; thus, Figure 7.28 presents

96

Figure 7.27 – Scenario 9: total energy consumption by states of all 44 nodes network. The
left side bar of each node describes the IoTUS framework consumption. The right side bar
indicates the consumption of the node for the Rime stack.

the final energy consumption averaged over the N nodes in each network size. Also, Fig-
ure 7.29 shows the maximum and minimum energy consumption gains attained for networks
of varying size.

Figure 7.28 – Scenario 9: final average energy consumption with 44 nodes, neighbor discov-
ery, and tree topology.

97

Figure 7.29 – Scenario 9: maximum and minimum radio energy gain per nodes in the net-
work with 44 nodes, neighbor discovery, and tree topology.

Therefore, according to Figure 7.28, increasing the tree topology number of nodes dras-
tically impacts on the final energy consumption. However, maximum nodes’ gain over Rime
stack does not have the same rate, and thus, the simulation with 26 nodes obtained the high-
est gain, i.e., IoTUS framework consumed a total of 7.479 J, while Rime resulted in 14.522 J
(a gain of 48.50%).

Figure 7.30 presents the average network power consumption, which also illustrates the
moment a network achieves steady state. Hence, it can be seen that Rime stack takes longer
to reach steady state, and after that, it still spends more power.

Figure 7.31 presents results for expected network lifetime for tree topologies of vary-
ing sizes. Hence, IoTUS achieves a lifetime of 3, 161, 695 s (≈ 36 days), representing an
improvement of 62.84% over Rime (1, 941, 592 s≈ 22 days).

98

Figure 7.30 – Scenario 9: average power consumption of the network with 44 nodes, neigh-
bor discovery, and tree topology.

Figure 7.31 – Scenario 9: maximum lifetime per number of nodes in the network with 44
nodes, neighbor discovery, and tree topology.

Figure 7.32 shows a comparative memory footprint characterization between IoTUS and
Rime as packet buffer size increases. In this scenario, IoTUS implementation plus the ad-
dition of protocols procedures (e.g., neighbor discovery, association, etc.) consumed a flash
space of 30, 462 bytes, while Rime stack consumed 26, 504 bytes (less than 4 kbytes, or

99

14.9% more than Rime). Also, the RAM can consume up to 4, 084 bytes in IoTUS, while
Rime consumed up to 5, 946 bytes. Therefore, it means that IoTUS consumed 31.31% less
RAM for a packet buffer size of 15 packets.

Figure 7.32 – Scenario 9: memory usage when increasing packet buffer capacity.

7.2.4 Scenario 10: 44 nodes, neighbor discovery procedure, tree topology, and
radio’s deep sleep

We simulated all the 9 scenarios using the default sleep mode (0.426mA) in TMote Sky’s
implementation. However, regarding the environment sensing application, the deep sleep
mode (1 µA) could be applied. Therefore, in Scenario 10, we estimate the energy results
considering the radio’s deep sleep mode instead. Therefore, Figure 7.33 plots the energy
consumption averaged over all 44 network nodes for both IoTUS and Rime over time.

Since the sleep state is drastically reduced in deep sleep mode, IoTUS’s average energy
consumption gain was approximately 42.33%. Also, for a detailed analysis, Figure 7.34 plots
consumption by power state for selected nodes in the network.

Furthermore, IoTUS in Scenario 10 obtained a lifetime of 3, 774, 280 s (≈ 45 days),
while Rime stack achieved 2, 135, 360 s (≈ 24 days). Therefore, it represents 76.75% of
lifetime improvement.

100

Figure 7.33 – Scenario 10: average energy consumption per node in a 44-node tree network.

Figure 7.34 – Scenario 10: total energy consumption by states of all 44 nodes network. The
left side bar of each node describes the IoTUS framework consumption. The right side bar
indicates the consumption of the node for the Rime stack.

101

7.3 SIMULATION RESULTS’ CONCLUSION

The simulated results comparing IoTUS framework and Rime stack [15] in this chapter
are summarized into Table 7.8.

Therefore, compared to the static routing tree (Scenario 5), IoTUS framework improved
energy efficiency over Rime while reducing its memory footprint (from 18% to 9.9%) and
increasing the RAM efficiency (from 23.63% to 31.31%). Hence, with more protocols pro-
cedures in the stack, IoTUS improved memory usage.

These results confirm that the new IoTUS framework can improve network energy effi-
ciency.

Summarizing the results in Table 7.8, we recapitulate here, for convenience, all scenarios
described in this thesis:

• Scenario 1: single node transmitting broadcast packets;

• Scenario 2: one node transmitting, and other node receiving;

• Scenario 3: 6 nodes, linear topology, and only end node transmits app. message;

• Scenario 4: 6 nodes, linear topology, and 5 nodes transmitting app. message to sink;

• Scenario 5: 10 nodes, static routing network, and tree topology;

• Scenario 6: 2 nodes and neighbor discovery procedure;

• Scenario 7: 10 nodes, neighbor discovery procedure, and star topology;

• Scenario 8: 10 nodes, neighbor discovery procedure, linear topology, and only end
node transmits app. message;

• Scenario 9: 44 nodes, neighbor discovery procedure, and tree topology;

• Scenario 10: 44 nodes, neighbor discovery procedure, tree topology, and radio’s deep
sleep.

102

Table 7.8 – Compared simulated results of IoTUS framework and adapted Rime stack.

Parameter Scenario IoTUS Framework Rime stack Approximated gain1

2 3.60ms 1.28ms −81.25%Packet building
time 5–9 4.12ms 1.29ms −119.37%

Average final
energy

consumption

5 3.3742 J 3.5642 J 5.33%

7 4.1976 J 5.0647 J 19.51%

8 7.7666 J 22.9122 J 71.81%

9 8.2454 J 12.6620 J 34.88%

10 6.1535 J 10.6707 J 42.33%

5 4.1902 J 4.8155 J 13.0% at 38 nodes
7 4.1419 J 5.5279 J 25.07% at 3 nodes
8 5.7794 J 24.9426 J 76.83% at 10 nodes

Maximum energy
consumption gain

9 7.479 J 14.522 J 48.50% at 26 nodes

Network lifetime
5 8,700,322 s 7,760,324 s 12.11%, ≈11days
9 3,161,695 s 1,941,592 s 62.84%, ≈14days

10 3,774,280 s 2,135,360 s 76.75%, ≈19days
Flash: 27,712 B Flash: 23,302 B −18.92%

5
RAM: 5,932 B RAM: 7,768 B 23.63%

Flash: 30,462 B Flash: 26,504 B −14.9%Memory usage
9

RAM: 4,084 B RAM: 5,946 B 31.31%

Pure header
overhead

6 74.7% 78.1% 4.35%

7 79.2% 81.6% 2.94%

8 73.3% 80.8% 9.28%

9 68.3% 75.9% 10.01%

6 94.7% 95.8% 1.14%

7 79.4% 84.9% 6.47%

8 96.5% 97.3% 0.82%
Overhead

9 81.4% 87.3% 6.75%

Goodput2

6 0.60 B/s 0.62 B/s 96.77%

7 5.49 B/s 5.88 B/s 93.36%

8 0.53 B/s 0.44 B/s 120.45%

9 26.94 B/s 15.30 B/s 176.07%

7 37.2 s 45.3 s 17.88%

8 183.7 s 469.2 s 60.84%

Network
association

time 9 170.4 s 247.4 s 31.12%

Energy efficiency3 9 38.9 µJ/B 68.4 µJ/B 43.13%

1The gain column is given by "1-(IoTUS/Rime)".
2The gain equation for goodput is given by (IoTUS/Rime).
3Average final energy consumption per number of delivered application payload bytes (Figure 7.25).

103

CONCLUSION

In this paper, a new framework called IoT Unified Services framework, or IoTUS, was
introduced. Its main goal is to facilitate sharing across protocol layers while preserving
the benefits of layered protocol architectures, in particular, modularity and portability. To
this end, IoTUS proposes an extensible service layer, that allows sharing of control plane
information (e.g., collisions at the data-link layer, number of transmissions/receptions, radio
packet size, ID address size), as well as sharing of services (e.g., neighbor discovery, network
events log, data aggregation). Additionally, IoTUS can be used by existing network stacks
without having to modify the basic operation of their protocols.

Since the framework is an addition to the general stack, we used proposed scenarios to
evaluate its performance, which varies with complexity and number of motes. A traditional
layered stack, which is a modification of ContikiOS’s stack [16] (conveniently called adapted
Rime), was used for comparison. Therefore, we evaluated Data Link (DL) and Network
protocols implemented with and without IoTUS.

For the DL protocols, it was used ContikiMAC [27] and a modified version of it to fit
IoTUS’s design. Moreover, a ContikiMAC802 protocol was developed using features of
ContikiMAC and the association process of IEEE 802.15.4 MAC [30]. For the Network
layer, it was used a static routing protocol, and an RPL-Like protocol (developed using the
association process of RPL [10]).

We implemented IoTUS on ContikiOS[16] and evaluated its performance using Con-
tikiOS’s Cooja network simulator. Also, we developed a theoretical model for energy and
overhead measurements as a validation method. These models were applied to the star and
linear topologies from 1 to 10 nodes. The theoretical results were then compared to the
simulation results, which resulted in coherent measurements between both methods.

The network evaluated had sizes of two motes up to 44 nodes (limited by the static rout-
ing table in memory). These nodes formed the star and linear topologies, providing an envi-
ronment similar to long-range applications and multiple-hops applications, respectively. The
tree topology was also evaluated, which represents a general case of monitoring applications.
For all scenarios, the monitoring application parameter was considered.

The results showed that the stack with IoTUS framework attained up to 76.83% less en-
ergy consumption than adapted Rime stack in a monitoring application, with a linear topol-
ogy of 10 nodes. For a 44 nodes tree topology using radio’s deep sleep mode, IoTUS got
a network average of 42.33% less energy consumption. Consequently, IoTUS reached a

104

8

network lifetime of 43 days, while adapted Rime got up to 24 days.

Moreover, IoTUS used approximately 4 kbytes more of flash memory than adapted Rime,
but reduce up to 31.31% of the RAM usage. Also, network overhead in IoTUS resulted in
approximately 81.3% in a 44 nodes tree topology, while adapted Rime attained 87.3%.

Therefore, our results demonstrate that IoTUS is able to achieve energy efficiency, as well
as more compact memory footprint when compared to adapted Rime, an OSI-like layered
stack adapted from ContikiOS’s stack.

8.1 FUTURE DEVELOPMENTS

Directions for future work include:

• Implementing protocol standards like RPL and IPv6 using IoTUS;

• Exploring more layers’ procedures, like the Transport layer;

• Simulating scenarios with a larger number of devices;

• Deploying and evaluating IoTUS in real-world testbeds;

• Evaluating IoTUS latency performance;

• Extending the experiments for the different types of applications.

105

BIBLIOGRAPHY

[1] S. Beeby and N. White, Energy harvesting for autonomous systems. Norwood, MA:
Artech House, 2010.

[2] W. K. G. Seah, A. E. Zhi, and H. P. Tan, “Wireless Sensor Networks Powered by Am-
bient Energy Harvesting (WSN-HEAP) - Survey and challenges,” in Proceedings of

the 2009 1st International Conference on Wireless Communication, Vehicular Technol-

ogy, Information Theory and Aerospace and Electronic Systems Technology, Wireless

VITAE 2009, Aalborg, Denmark, 2009, pp. 1–5.

[3] O. Iova, P. Picco, T. Istomin, and C. Kiraly, “RPL: The Routing Standard for the Inter-
net of Things... Or Is It?” IEEE Communications Magazine, vol. 54, no. 12, pp. 16–22,
dec 2016.

[4] Webopedia, “The 7 layers of the OSI Model,” accessed 2019-02-01. [Online].
Available: https://www.webopedia.com/quick_ref/OSI_Layers.asp

[5] B. Fu, Y. Xiao, H. J. Deng, and H. Zeng, “A survey of cross-layer designs in wireless
networks,” IEEE Communications Surveys and Tutorials, vol. 16, no. 1, pp. 110–126,
2014.

[6] L. D. Mendes and J. J. Rodrigues, “A survey on cross-layer solutions for wireless sensor
networks,” Journal of Network and Computer Applications, vol. 34, no. 2, pp. 523–534,
2011.

[7] S. Chakrabarti, G. Montenegro, R. Droms, and J. Woodyatt, “IPv6 over Low-Power
Wireless Personal Area Network (6LoWPAN) ESC Dispatch Code Points and
Guidelines,” February 2017. [Online]. Available: https://www.rfc-editor.org/info/
rfc8066

[8] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”
December 1998. [Online]. Available: https://www.rfc-editor.org/info/rfc2460

[9] IEEE, “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2015

(Revision of IEEE Std 802.15.4-2011), pp. 1–709, apr 2016.

[10] T. Winter, Ed., P. Thubert, Ed., A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing

106

https://www.webopedia.com/quick_ref/OSI_Layers.asp
https://www.rfc-editor.org/info/rfc8066
https://www.rfc-editor.org/info/rfc8066
https://www.rfc-editor.org/info/rfc2460

Protocol for Low-Power and Lossy Networks,” March 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6550

[11] J. P. Vasseur, N. Agarwal, J. Hui, Z. Shelby, P. Bertrand, and C. Chauvenet, “RPL: The
IP routing protocol designed for low power and lossy networks,” In Internet Protocol

for Smart Objects (IPSO) Alliance, no. April, p. 20, 2011.

[12] Z. Shelby, Ed., S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor
Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs),” November 2012. [Online]. Available: https://www.rfc-editor.org/info/
rfc6775

[13] I. Akyildiz, M. Vuran, and O. Akan, “A Cross-Layer Protocol for Wireless Sensor Net-
works,” in Proceedings of the 2006 40th Annual Conference on Information Sciences

and Systems. Princeton, NJ, USA: IEEE, mar 2006, pp. 1102–1107.

[14] S. A. Madani, S. Mahlknecht, and J. Glaser, “A Step towards Standardization of Wire-
less Sensor Networks: A Layered Protocol Architecture Perspective,” in Proceedings

of the 2007 International Conference on Sensor Technologies and Applications (SEN-

SORCOMM 2007). Valencia, Spain: IEEE, oct 2007, pp. 82–87.

[15] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architecture for wire-
less sensor networks,” in Proceedings of the 5th international conference on Embedded

networked sensor systems - SenSys ’07. Sydney, Australia: ACM Press, 2007, pp.
335–349.

[16] Contiki, “The Open Source OS for the Internet of Things,” accessed 2016-07-22.
[Online]. Available: http://www.contiki-os.org/

[17] T. A. Vázquez, S. Barrachina-Muñoz, B. Bellalta, and A. Bel, “HARE: Supporting effi-
cient uplink multi-hop communications in self-organizing LPWANs,” Sensors (Switzer-

land), vol. 18, no. 1, 2018.

[18] M. S. Aslam, S. Rea, and D. Pesch, “A Vision for Wireless Sensor Networks: Hy-
brid Architecture, Model Framework and Service based Systems,” in Proceedings of

the 2010 Fifth International Conference on Digital Information Management (ICDIM).
Thunder Bay, ON, Canada: IEEE, 2010, pp. 353–358.

[19] K. Babber and R. Randhawa, “A Cross-Layer Optimization Framework for Energy
Efficiency in Wireless Sensor Networks,” Wireless Sensor Network, vol. 09, no. 06, pp.
189–203, 2017.

107

https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6775
https://www.rfc-editor.org/info/rfc6775
http://www.contiki-os.org/

[20] A. Lachenmann, P. J. Marrón, D. Minder, M. Gauger, O. Saukh, and K. Rothermel,
“TinyXXL: Language and runtime support for cross-layer interactions,” in Proceedings

of the 2006 3rd Annual IEEE Communications Society on Sensor and Adhoc Commu-

nications and Networks, Secon 2006, vol. 1, Reston, VA, USA, 2007, pp. 178–187.

[21] D. Resner, G. Medeiros de Araujo, and A. A. Fröhlich, “Design and implementation of
a cross-layer IoT protocol,” Science of Computer Programming, vol. 165, pp. 24–37,
2018.

[22] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor net-
work simulation with COOJA,” in Proceedings of the Conference on Local Computer

Networks, LCN. Tampa, FL, USA: IEEE, 2006, pp. 641–648.

[23] A. Parasuram, D. Culler, and R. Katz, “An Analysis of the RPL Routing Standard for
Low Power and Lossy Networks,” Technical Report No. UCB/EECS-2016-106, p. 98,
2016.

[24] I. Solis and K. Obraczka, “FLIP: A Flexible Interconnection Protocol for heterogeneous
internetworking,” Mobile Networks and Applications, vol. 9, no. 4, pp. 347–361, 2004.

[25] J. Postel, “Internet Protocol,” September 1981. [Online]. Available: https:
//www.rfc-editor.org/info/rfc791

[26] P. Gonizzi, P. Medagliani, G. Ferrari, and J. Leguay, “RAWMAC: A routing aware
wave-based MAC protocol for WSNs,” in Wireless and Mobile Computing, Networking

and Communications (WiMob), 2014 IEEE 10th International Conference on. Lar-
naca, Cyprus: IEEE, 2014, pp. 205–212.

[27] A. Dunkels, “The contikimac radio duty cycling protocol,” SICS Technical Report

T2011:13, 2011.

[28] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-efficient and
low-latency MAC for data gathering in wireless sensor networks,” in 18th International

Parallel and Distributed Processing Symposium, 2004. Proceedings., vol. 00, no. C,
Santa Fe, NM, USA, 2004, pp. 224–231.

[29] J. Tan, A. Liu, M. Zhao, H. Shen, and M. Ma, “Cross-layer design for reducing delay
and maximizing lifetime in industrial wireless sensor networks,” Eurasip Journal on

Wireless Communications and Networking, vol. 2018, no. 1, 2018.

108

https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791

[30] IEEE, “IEEE 802.15.4-2006 - IEEE Standard for Information technology– Local and
metropolitan area networks– Specific requirements– Part 15.4: Wireless Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (WPANs),” IEEE Std 802.15.4-2006 (Revision of IEEE Std

802.15.4-2003), pp. 1–320, Sept 2006.

[31] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia, and
M. Dohler, “Standardized protocol stack for the internet of (important) things,” IEEE

Communications Surveys and Tutorials, vol. 15, no. 3, pp. 1389–1406, 2013.

[32] T. Watteyne, Ed., M. Palattella, and L. Grieco, “Using IEEE 802.15.4e Time-Slotted
Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement,” May
2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7554

[33] Q. Wang, Ed., X. Vilajosana, and T. Watteyne, “6TiSCH Operation Sublayer (6top)
Protocol (6P),” November 2018. [Online]. Available: https://www.rfc-editor.org/info/
rfc8480

[34] X. Vilajosana, T. Watteyne, M. Vucinic, T. Chang, and K. S. J. Pister, “6TiSCH: In-
dustrial Performance for IPv6 Internet-of-Things Networks,” Proceedings of the IEEE,
vol. 107, no. 6, pp. 1153–1165, jun 2019.

[35] H. Khattak, Z. Ameer, U. Din, and M. Khan, “Cross-layer design and optimization
techniques in wireless multimedia sensor networks for smart cities,” Computer Science

and Information Systems, vol. 16, no. 1, pp. 1–17, 2019.

[36] Z. Niroumand and H. S. Aghdasi, “A geographic cross-layer routing adapted for disas-
ter relief operations in wireless sensor networks,” Computers and Electrical Engineer-

ing, vol. 64, pp. 395–406, 2017.

[37] W. Zhang, X. Wei, G. Han, and X. Tan, “An Energy-Efficient Ring Cross-Layer Opti-
mization Algorithm for Wireless Sensor Networks,” IEEE Access, vol. 6, pp. 16 588–
16 598, 2018.

[38] X. Li, S. L. Fang, and Y. C. Zhang, “The study on clustering algorithm of the un-
derwater acoustic sensor networks,” in Proceedings 14th International Conference on

Mechatronics and Machine Vision in Practice, M2VIP2007. Xiamen, China: IEEE,
2007, pp. 78–81.

[39] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and Others, “TinyOS: An operating system for sensor networks,”

109

https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc8480
https://www.rfc-editor.org/info/rfc8480

in Weber W., Rabaey J.M., Aarts E. (eds) Ambient intelligence. Berlin, Heidelberg:
Springer, 2005, pp. 115–148.

[40] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel, “TinyCubus: An Adaptive
Cross-Layer Framework for Sensor Networks (TinyCubus: Ein Adaptives Cross-Layer
Framework für Sensornetze),” it - Information Technology, vol. 47, no. 2, jan 2005.

[41] D. Minder, M. Handte, and P. J. Marrón, “TinyAdapt: An adaptation framework for
sensor networks,” in Proceedings of the INSS 2010 - 7th International Conference on

Networked Sensing Systems, Kassel, Germany, 2010, pp. 253–256.

[42] K. Roussel and Y.-q. Song, “A critical analysis of Contiki’s network stack for integrat-
ing new MAC protocols,” Ph.D. dissertation, INRIA Nancy, 2015.

[43] J. Eriksson, F. Österlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt, “Accurate
Network-Scale Power Profiling for Sensor Network Simulators,” in Roedig U., Sreenan

C.J. (eds) Wireless Sensor Networks. EWSN 2009. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2009, vol. 5432 LNCS, pp. 312–326.

[44] Moteiv, “Tmote sky - Low Power Wireless Sensor Module,” accessed 2018-
06-11. [Online]. Available: http://www.eecs.harvard.edu/~konrad/projects/shimmer/
references/tmote-sky-datasheet.pdf

[45] E. Baccelli, C. Gundogan, O. Hahm, P. Kietzmann, M. S. Lenders, H. Petersen,
K. Schleiser, T. C. Schmidt, and M. Wahlisch, “RIOT: An Open Source Operating
System for Low-End Embedded Devices in the IoT,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 4428–4440, 2018.

[46] M. Lenders, P. Kietzmann, O. Hahm, H. Petersen, C. Gündoğan, E. Baccelli,
K. Schleiser, T. C. Schmidt, and M. Wählisch, “Connecting the World of Embedded
Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things,”
arXiv:1801.02833 [cs.NI], 2018.

[47] Riot, “The friendly Operating System for the Internet of Things,” accessed 2019-01-15.
[Online]. Available: https://riot-os.org/

[48] Wei Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless
sensor networks,” in Proceedings of the Twenty-First Annual Joint Conference of the

IEEE Computer and Communications Societies, vol. 3. New York, NY, USA: IEEE,
2002, pp. 1567–1576.

110

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
https://riot-os.org/

[49] www.xbow.com, “Wireless motes Rene,” accessed 2014-05-01. [Online]. Available:
www.xbow.com

[50] K. Han, J. Luo, Y. Liu, and A. Vasilakos, “Algorithm design for data communications
in duty-cycled wireless sensor networks: A survey,” IEEE Communications Magazine,
vol. 51, no. 7, pp. 107–113, jul 2013.

[51] R. M. de Moraes and H. Sadjadpour, “Wireless Network Protocols,” in Jerry D. Gibson.

(Org.). Mobile Communications Handbook, 3rd ed. CRC press, 2012, pp. 603–614.

[52] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated adap-
tive sleeping for wireless sensor networks,” IEEE/ACM Transactions on Networking,
vol. 12, no. 3, pp. 493–506, 2004.

[53] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sen-
sor Networks,” in Proceedings of the 2nd ACM Conferences on Embedded Networked

Sensor Systems, Baltimore, MD, USA, 2004, pp. 95–107.

[54] B. University of California, “Mica2 Wireless mote,” accessed 2016-07-
07. [Online]. Available: http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/
DataSheets/mica2.pdf

[55] A. El-Hoiydi and J.-d. Decotignie, “WiseMAC : An Ultra Low Power MAC Protocol
for Multi-hop Wireless Sensor Networks,” Power, vol. 3121, no. 5005, pp. 18–31, 2004.

[56] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks,” in Proceedings of the 4th inter-

national conference on Embedded networked sensor systems (SenSys 2006), Boulder,
Colorado, USA, 2006, pp. 307–320.

[57] L. Constante, J. Lau, R. Moraes, G. Araujo, C. Montez, and E. Leao, “Enhanced as-
sociation mechanism for IEEE 802.15.4 networks,” in 2017 22nd IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA). Limassol,
Cyprus: IEEE, sep 2017, pp. 1–8.

[58] J. Hui, J. Vasseur, D. Culler, and V. Manral, “An IPv6 Routing Header for Source
Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL),” March
2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6554

[59] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “Extended ICMP to Support
Multi-Part Messages,” April 2007. [Online]. Available: https://www.rfc-editor.org/
info/rfc4884

111

www.xbow.com
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
https://www.rfc-editor.org/info/rfc6554
https://www.rfc-editor.org/info/rfc4884
https://www.rfc-editor.org/info/rfc4884

[60] Wikipedia, “Advanced Packaging Tool,” accessed 2019-02-02. [Online]. Available:
https://pt.wikipedia.org/wiki/Advanced_Packaging_Tool

[61] FlockLab, “Flocklab,” accessed 2016-10-21. [Online]. Available: https://www.
flocklab.ethz.ch/wiki/

[62] F. Osterlind, E. Pramsten, D. Roberthson, J. Eriksson, N. Finne, and T. Voigt, “Inte-
grating building automation systems and wireless sensor networks,” in Proceedings of

the 2007 IEEE Conference on Emerging Technologies & Factory Automation (EFTA

2007), Patras, Greece, 2007, pp. 1376–1379.

[63] B. R. Haverkort, Performance of Computer Communication Systems: A Model-Based

Approach, 1st ed. Chichester, England: John Wiley & Sons, Inc., 1998.

[64] Wikipedia, “AA battery,” accessed 2019-02-02. [Online]. Available: https:
//en.wikipedia.org/wiki/AA_battery

112

https://pt.wikipedia.org/wiki/Advanced_Packaging_Tool
https://www.flocklab.ethz.ch/wiki/
https://www.flocklab.ethz.ch/wiki/
https://en.wikipedia.org/wiki/AA_battery
https://en.wikipedia.org/wiki/AA_battery

APPENDIX

113

RESUMO ESTENDIDO EM LÍNGUA
PORTUGUESA

Título: Uma Nova Arquitetura de Protocolos para IoT: Eficiência Através do Compartil-
hamento de Dados e de Funcionalidades entre Camadas
Autor: Vinícius Galvão Guimarães
Orientador: Renato Mariz de Moraes
Coorientador: Adolfo Bauchspiess
Coorientadora: Katia Obraczka
Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos e de Automação
Brasília, 28 de junho de 2019

Palavras-chave: Comunicação Sem Fio, Internet das Coisas, Eficiência Energética, Pilha
de Protocolos.

Contextualização

A pilha TCP/IP é um padrão para redes e, portanto, está presente em muitos sistemas
de comunicação. No entanto, para aplicações com Internet of Things (IoT), como os da
Figura A.1, muitos trabalhos propõem designs que infringem a restrição de acesso entre
camadas não adjacentes ou, até mesmo, novas arquiteturas de protocolos para melhorar a
eficiência energética.

Figura A.1 – Dispositivos da Internet das Coisas com aplicações ilustrativas.

114

A

Motivado pela necessidade de acomodar dispositivos IoT com recursos limitados de ener-
gia, processamento, armazenamento e comunicação, este trabalho apresenta o IoT Unified

Services, ou IoTUS, uma nova arquitetura de protocolos de rede voltada para eficiência de
energia e compacto uso de memória.

IoTUS - IoT Unified Services

Figura A.2 – Camada de serviços extensível do IoTUS adicional à uma pilha tradicional.

O IoTUS usa uma camada de serviços extensível que facilita o compartilhamento entre
camadas (Figura A.2). Promove também o compartilhamento das informações de controle
de rede (por exemplo, número de transmissões, recepções, colisões na camada de enlace de
dados) e funcionalidades (por exemplo, descoberta de vizinhos, agregação de pacotes) para
diferentes camadas da pilha de protocolos.

Através do eficiente compartilhamento em camadas cruzadas, o principal objetivo do
IoTUS é alcançar a eficiência energética, bem como um compacto uso de memória, ambos
importantes para acomodar dispositivos IoT com recursos limitados. Semelhante às outras
propostas [14, 15, 20], IoTUS fornece módulos para padronizar o modo como a informação é
acomodada nos pacotes. No entanto, diferentemente de outras propostas [14, 15, 20, 21, 24],
o IoTUS não apenas fornece benefícios de designs entre camadas, como também permite
que os protocolos na pilha tradicional estejam cientes dos procedimentos uns dos outros para
otimizar suas tarefas através de um processo de inscrição. Por exemplo, quando protocolos
compartilham seu comportamento com os demais da pilha (pacotes periódicos e procedimen-
tos esperados), outros protocolos estarão cientes de possíveis agregações e poderão otimizar

115

seus parâmetros para operar de acordo.

Além disso, como ilustrado na Figura A.2, o IoTUS pode ser usado por arquiteturas de
protocolos já existentes, sem ter que modificar a proposta de seus protocolos já desenvolvi-
dos.

Metodologia

Avaliou-se o IoTUS usando a plataforma de simulação/emulação Cooja-ContikiOS. O si-
mulador Cooja (Figura A.3) foi utilizado pelos seguintes motivos: primeiro, ele fornece uma
plataforma experimental especificamente projetada para redes sem fio, adequada para redes
de sensores sem fio com restrição de capacidade/processamento. A vantagem de usar a simu-
lação para um novo projeto é executar um ambiente controlado e assim obter experimentos
reprodutíveis.

Figura A.3 – Tela ilustrativa do simulador Cooja.

116

A pilha de protocolos do ContikiOS já inclui operações cross-layer (Packetbuf) e uma
camada RDC fora do padrão OSI, que nem sempre é facilmente portável para outros proto-
colos MAC. No entanto, novas pilhas IoT ainda mantêm o design tradicional em camadas,
como no Riot. O uso da pilha tradicional de protocolos em camadas não apenas facilita a
análise, mas também facilita a reprodução em outros sistemas operacionais. Portanto, o foco
desta proposta foi a comparação do IoTUS com uma pilha tradicional e suas operações em
camadas.

Neste trabalho, adaptou-se a pilha de protocolos do ContikiOS para uma pilha tradicional
composta apenas de camada física (e sua subcamada framer), camada MAC, camada de
rede e camada de aplicação. Os protocolos da camada de transporte, embora necessários
em sistemas IoT, ainda não foram implementados. O Packetbuf do ContikiOS foi mantido
apenas na pilha tradicional.

Para validar os resultados obtidos usando a ferramenta de simulação, foram desenvolvi-
dos modelos teóricos, que descrevem o consumo de energia de um dispositivo TMote Sky.
O modelo teórico considera os parâmetros e tempos resultantes da versão implementada de
seus respectivos protocolos, mas todos os resultados teóricos são calculados independente-
mente de qualquer simulação.

No ambiente de simulação, as medições de consumo de energia foram fornecidas por
duas ferramentas Cooja-ContikiOS diferentes: PowerTrace e PowerTracker. PowerTrace é
uma ferramenta ContikiOS, que reporta periodicamente o consumo de energia através de
sua porta serial. PowerTrace relata o tempo gasto em cada estado (transmissão, recepção,
inatividade, e ativo ou inativo para o CPU). PowerTracker vem com o simulador Cooja e
fornece medições de consumo de energia do rádio. No entanto, PowerTrace é executado
no código do MCU e não calcula as curtas transições de estado do rádio (por exemplo, o
estado Rx para o CCA antes da transmissão). Por outro lado, PowerTracker pode detectar
transições de rádio e, portanto, fornece medições de consumo de energia mais precisas do que
o PowerTrace. Consequentemente, usamos PowerTracker para medir a energia consumida
pelo rádio, enquanto o consumo de CPU ainda é extraído da ferramenta PowerTrace.

Para guiar as simulações deste trabalho, considerou-se uma aplicação de monitoramento
ambiental geral como na Figura A.4, em que os valores de medição do ambiente tais como
temperatura e umidade são reportados periodicamente para um nó sumidouro, geralmente
conectado à internet ou ao sistema de controle. A Figura A.5 mostra uma topologia de árvore
de 44 nós usada nas simulações deste trabalho. A árvore está direcionada ao coletor de
dados (nó 1); Todos os nós intermediários e folhas são nós sensores. Observe que os nós
intermediários da árvore agem tanto como geradores de tráfego quanto como roteadores.

117

Figura A.4 – Exemplo de uma aplicação geral de monitoramento ambiental com nós.

Figura A.5 – Topologia de árvore considerada para monitoramento ambiental.

Resultados

Os resultados teóricos e de simulação mostraram-se bastante parecidos e coerentes. As-
sim, nos resultados simulados, o IoTUS consumiu 76, 83% menos energia comparado à pilha
de comunicação adaptada do ContikiOS em uma aplicação de monitoramento, com uma to-
pologia linear de 10 nós (Figura A.6). Para uma topologia de 44 nós em árvore, o IoTUS
obteve uma média de 42, 33% menos consumo de energia (Figura A.7).

118

Figura A.6 – Máximo e mínimo ganho de energia de rádio por nós na rede com topologia
linear.

Figura A.7 – Máximo e mínimo ganho de energia de rádio por nós na rede com topologia em
árvore.

Consequentemente, o IoTUS atingiu uma vida útil de 43 dias, enquanto a pilha Con-
tikiOS adaptada chegou a 24 dias. Quanto à memória, o IoTUS usou aproximadamente
4 kbytes a mais de memória flash do que a pilha adaptada do ContikiOS, mas reduziu em até
31, 31% o uso de RAM (Figura A.8).

119

Figura A.8 – Uso de memória ao aumentar a capacidade do buffer de pacote.

Além disso, como apresentado na Figura A.9, o excesso de cabeçalhos na rede IoTUS foi
de aproximadamente 81, 3% com uma topologia em árvore de 44 nós, enquanto o ContikiOS
adaptado resultou em 87, 3%.

Figura A.9 – Comparação do excesso de cabeçalhos para 44 nós em uma topologia de árvore.

Conclusão

Os resultados teóricos e de simulação mostraram melhor desempenho do IoTUS, me-
lhor eficiência energética, maior vida útil da rede e um compacto uso de memória, quando
comparado às atuais arquiteturas de protocolos de IoT.

120

C STRUCTS AND FUNCTIONS USED IN
IOTUS IMPLEMENTATION

1 /*

2 * Main packet struct to hold most of its information

3 */

4 typedef struct packet_piece {

5 struct packet_piece *next;

6 struct mmem data;

7 struct ctimer transmit_timer;

8 iotus_node_t *finalDestinationNode;

9 iotus_node_t *nextDestinationNode;

10 iotus_node_t *prevSourceNode;

11 void (*confirm_cb)(struct packet_piece *packet, iotus_netstack_return

returnAns);

12 LIST_STRUCT(additionalInfoList);

13 timestamp_t timeout;

14 iotus_layer_priority priority;

15 uint16_t firstHeaderBitSize;

16 uint16_t lastHeaderSize;

17 uint8_t params;

18 uint8_t pktID;

19 uint8_t type;

20 uint8_t collisions;

21 uint8_t transmissions;

22 } iotus_packet_t;

23
24 /*

25 * List of additional options implemented

26 */

27 enum packet_additionalInfoList_types {

28 IOTUS_PACKET_INFO_TYPE_RESERVED = 0,

29
30 IOTUS_PACKET_INFO_TYPE_P2P_ADDRESSES,

31 IOTUS_PACKET_INFO_TYPE_SOURCE_ADDRESS,

32 IOTUS_PACKET_INFO_TYPE_DEST_ADDRESS,

33 IOTUS_PACKET_INFO_TYPE_SEQUENCE_NUMBER,

34 IOTUS_PACKET_INFO_TYPE_RETX_ATTEMPTS_DID,

35
36 //Values generally sensed and available from the radio after receiving

121

B

a packet

37 IOTUS_PACKET_INFO_TYPE_RADIO_RCV_BLCK,

38 //Value generally expected by the radio to transmit a packet

39 IOTUS_PACKET_INFO_TYPE_RADIO_TX_BLCK,

40
41 IOTUS_PACKET_INFO_TYPE___N,

42 };

43
44 /*

45 * Structs to hold additional options implemented

46 */

47
48 /**

49 * This struct is preceded by the type

IOTUS_PACKET_INFO_TYPE_RADIO_RCV_BLCK

50 */

51 typedef struct __attribute__ ((__packed__)) packet_rcv_additional_info {

52 uint16_t networkID;

53 int8_t linkQuality;

54 int8_t rssi; //got from CCA

55 } packet_rcv_block_output_t;

56
57 /**

58 * This struct is preceded by the type

IOTUS_PACKET_INFO_TYPE_RADIO_TX_BLCK

59 */

60 typedef struct __attribute__ ((__packed__)) packet_tx_additional_info {

61 uint8_t txPower;

62 uint8_t channel;

63 } packet_tx_block_input_t;

64
65 /*

66 * This struct is preceded by the type

IOTUS_PACKET_INFO_TYPE_P2P_ADDRESSES

67 * Used to inform end to end communications

68 */

69 typedef struct __attribute__ ((__packed__)) packet_e2e_nodes_addit_info {

70 uint8_t *sourceNode;

71 uint8_t *finaLNode;

72 } packet_addresses_block_t;

73
74 /*

75 * List of available functions

76 */

122

77 uint8_t

78 packet_get_parameter(iotus_packet_t *packet_piece, uint8_t param);

79 void

80 packet_set_parameter(iotus_packet_t *packet_piece, uint8_t param);

81 void

82 packet_clear_parameter(iotus_packet_t *packet_piece, uint8_t param);

83 iotus_node_t *

84 packet_get_final_destination(iotus_packet_t *packet_piece);

85 iotus_node_t *

86 packet_get_prevSource_node(iotus_packet_t *packetPiece);

87 iotus_node_t *

88 packet_get_next_destination(iotus_packet_t *packetPiece);

89 Status

90 packet_set_next_destination(iotus_packet_t *packetPiece, iotus_node_t *

node);

91 Status

92 packet_set_final_destination(iotus_packet_t *packetPiece, iotus_node_t

*node);

93 Boolean

94 packet_holds_broadcast(iotus_packet_t *packetiece);

95 Status

96 packet_set_tx_channel(iotus_packet_t *packetPiece, uint8_t channel);

97 int16_t

98 packet_get_tx_channel(iotus_packet_t *packetPiece);

99 Status

100 packet_set_tx_power(iotus_packet_t *packetPiece, int8_t power);

101 int8_t

102 packet_get_tx_power(iotus_packet_t *packetPiece);

103 Status

104 packet_set_sequence_number(iotus_packet_t *packetPiece, uint8_t

sequence);

105 int16_t

106 packet_get_sequence_number(iotus_packet_t *packetPiece);

107 Status

108 packet_set_rx_netID(iotus_packet_t *packetPiece, uint16_t netID);

109 Status

110 packet_set_rx_linkQuality_RSSI(iotus_packet_t *packetPiece, uint8_t

linkQuality, uint8_t rssi);

111 packet_rcv_block_output_t *

112 packet_get_rx_block(iotus_packet_t *packetPiece);

113 iotus_packet_t *

114 packet_create_msg(uint16_t payloadSize, const uint8_t* payload,

115 iotus_layer_priority priority, uint16_t timeout, Boolean

AllowOptimization,

123

116 iotus_node_t *finalDestination);

117 Boolean

118 packet_destroy(iotus_packet_t *msgPiece);

119 unsigned int

120 packet_get_size(iotus_packet_t *packet_piece);

121 uint16_t

122 packet_push_bit_header(uint16_t bitSequenceSize, const uint8_t *bitSeq,

123 iotus_packet_t *packet_piece);

124 uint16_t

125 packet_append_last_header(uint16_t byteSequenceSize, const uint8_t *

headerToAppend,

126 iotus_packet_t *packet_piece);

127 uint8_t

128 packet_read_byte(uint16_t bytePos, iotus_packet_t *packet_piece);

129 uint8_t

130 packet_read_byte_backward(uint16_t bytePos, iotus_packet_t *

packet_piece);

131 void

132 packet_set_byte_backward(uint8_t byte, uint16_t bytePos, iotus_packet_t

*packetPiece);

133 void

134 packet_extract_data_bytes(uint8_t *buff, uint16_t bytePos, uint16_t

size, iotus_packet_t *packetPiece);

135 Status

136 packet_unwrap_appended_byte(iotus_packet_t *packetPiece, uint8_t *buf,

uint16_t num);

137 uint8_t

138 packet_unwrap_pushed_byte(iotus_packet_t *packetPiece);

139 uint32_t

140 packet_unwrap_pushed_bit(iotus_packet_t *packetPiece, int8_t num);

141 uint16_t

142 packet_get_payload_size(iotus_packet_t *packetPiece);

143 uint8_t *

144 packet_get_payload_data(iotus_packet_t *packetPiece);

145 void

146 packet_parse(iotus_packet_t *packetPiece);

147 Boolean

148 packet_has_space(iotus_packet_t *packetPiece, uint16_t space);

149 void

150 packet_set_confirmation_cb(iotus_packet_t *packet, packet_sent_cb

func_cb);

151 void

152 packet_confirm_transmission(iotus_packet_t *packet,

iotus_netstack_return status);

124

153 uint8_t

154 packet_queue_size_by_node(iotus_node_t *node);

155 iotus_packet_t *

156 packet_get_queue_by_node(iotus_node_t *node, iotus_packet_t *from);

157 /* This function provides the core access to basic operations into this

service */

158 void

159 iotus_signal_handler_packet(iotus_service_signal signal, void *data);

Listing B.1 – Main structs in language C for IoTUS’s Packet Manager.

1 /*

2 * Main node struct

3 */

4 typedef struct nodes {

5 struct nodes *next;

6 LIST_STRUCT(additionalInfoList);

7 uint8_t params;

8 } iotus_node_t;

9
10 /*

11 * List of additional options implemented

12 */

13 enum nodes_additional_Info_types {

14 IOTUS_ADDRESSES_TYPE_INCLUDE(NODES_ADD_INFO),

15 IOTUS_NODES_ADD_INFO_TYPE_TOPOL_TREE_RANK,

16 IOTUS_NODES_ADD_INFO_TYPE_LAST_SEQ_NUM,

17 IOTUS_NODES_ADD_INFO_TYPE_NETID,

18 IOTUS_NODES_ADD_INFO_TYPE_WAKEUP_PHASE,

19 IOTUS_NODES_ADD_INFO_TYPE_NEXT_ADDR_TO_NODE,

20 IOTUS_NODES_ADD_INFO_TYPE___N

21 };

22
23 /*

24 * List of available functions

25 */

26 uint8_t

27 node_get_parameter(iotus_node_t *node, uint8_t param);

28 void

29 node_set_parameter(iotus_node_t *node, uint8_t param);

30 uint8_t *

31 nodes_get_address(iotus_address_type addressType, iotus_node_t *node);

32 iotus_node_t *

125

33 nodes_get_node_by_address(iotus_address_type addressType, uint8_t *

address);

34 Boolean

35 nodes_set_address(iotus_node_t *node, iotus_address_type addressType,

uint8_t *address);

36 iotus_node_t *

37 nodes_update_by_address(iotus_address_type addressType, uint8_t *

address);

38 void

39 nodes_destroy(iotus_node_t *node);

40 void

41 iotus_signal_handler_nodes(iotus_service_signal signal, void *data);

Listing B.2 – Main structs in language C for IoTUS’s Node Manager.

1 /*

2 * Main node struct

3 */

4 typedef struct piggyback_piece {

5 struct piggyback_piece *next;

6 struct mmem data;

7 iotus_layer_priority priority;

8 iotus_node_t *finalDestinationNode;

9 timestamp_t timeout;

10 uint8_t params;

11 uint8_t pktID;

12 uint8_t extendedSize;

13 } iotus_piggyback_t;

14
15
16 /*

17 * List of additional options implemented

18 */

19 enum nodes_additional_Info_types {

20 IOTUS_ADDRESSES_TYPE_INCLUDE(NODES_ADD_INFO),

21 IOTUS_NODES_ADD_INFO_TYPE_TOPOL_TREE_RANK,

22 IOTUS_NODES_ADD_INFO_TYPE_LAST_SEQ_NUM,

23 IOTUS_NODES_ADD_INFO_TYPE_NETID,

24 IOTUS_NODES_ADD_INFO_TYPE_WAKEUP_PHASE,

25 IOTUS_NODES_ADD_INFO_TYPE_NEXT_ADDR_TO_NODE,

26 IOTUS_NODES_ADD_INFO_TYPE___N

27 };

28

126

29 /*

30 * List of available functions

31 */

32 Boolean

33 piggyback_destroy(iotus_piggyback_t *piece);

34 void

35 piggyback_confirm_sent(iotus_packet_t *packet, uint8_t status);

36 iotus_piggyback_t *

37 piggyback_create_piece(uint16_t headerSize, const uint8_t* headerData,

38 iotus_layer_priority targetLayer, iotus_node_t *destinationNode,

int16_t timeout);

39 void

40 piggyback_unwrap_payload(iotus_packet_t *packet);

41 uint16_t

42 piggyback_apply(iotus_packet_t *packet_piece, uint16_t availableSpace

);

43 void

44 piggyback_subscribe(iotus_layer_priority layer, piggy_cb_func *cbFunc);

45 void

46 iotus_signal_handler_piggyback(iotus_service_signal signal, void *data)

;

Listing B.3 – Main structs in language C for IoTUS’s Piggyback Service.

127

IMPLEMENTATION SOURCE AND
FOLDERS

The implemented framework IoTUS is open source and is available online at
https://github.com/Vinggui/contiki-IoTUS

The framework code is inside the "iotus-arch" folder. Services, examples of protocols
(including the ContikiMAC802 and RPL-Like used in this work), and the services/tools of
IoTUS framework are all available in this online open and free repository.

Instructions are present in the main page of its repository, where user can understand how
to install and executes its functions.

128

C

https://github.com/Vinggui/contiki-IoTUS

PYTHON SCRIPT: THEORETICAL
ENERGY CONSUMPTION OF A SINGLE
NODE

Listing D.1 – Python script to calculate the theoretical energy consumption of a single node.

1 import matplotlib.pyplot as plot

2 import matplotlib as mpl

3 import metrics_funcs_multiple_exp as metric

4 import numpy, math

5 import os

6
7 # Parameters

8 volt = 3.0

9 curr_tx = 0.0174

10 curr_rx = 0.0188

11 curr_idle_tx = 0

12 curr_idle_rx = curr_rx

13 curr_radio_sleep = 0.000426

14 curr_cpu = 0.0018

15 curr_lpm = 0.0000054

16
17 # Topology

18 num_nodes = 1

19
20 RADIO_ON_DUR = 2.2

21 RADIO_TX_DUR = 1.534

22
23 RADIO_REPORT_PERIOD = 30000

24
25
26 total_time = 30*60*1000

27 num_pkt_sent = total_time/RADIO_REPORT_PERIOD

28
29 radio_tx_cons_period = volt*curr_tx*(RADIO_TX_DUR)*num_pkt_sent

30 radio_idle_cons_period = volt*curr_idle_rx*(RADIO_ON_DUR-RADIO_TX_DUR)*

num_pkt_sent

31 radio_sleep_cons_period = volt*curr_radio_sleep*(RADIO_REPORT_PERIOD-

RADIO_ON_DUR)*num_pkt_sent

129

D

32
33 # Results

34 print("Consumptions")

35 print("Tx: "+str(radio_tx_cons_period))

36 print("rx: "+str(radio_idle_cons_period))

37 print("sleep: "+str(radio_sleep_cons_period))

130

PYTHON SCRIPT: THEORETICAL
ENERGY CONSUMPTION OF SIX
NODES IN A LINEAR TOPOLOGY

Listing E.1 – Python script to calculate the theoretical energy consumption of N nodes in a
linear topology.

1 import matplotlib.pyplot as plot

2 import matplotlib as mpl

3 import metrics_funcs_multiple_exp as metric

4 import numpy, math

5 import os

6
7
8 # Parameters

9 volt = 3.0

10 curr_tx = 0.0174

11 curr_rx = 0.0188

12 curr_idle_tx = 0

13 curr_idle_rx = curr_rx

14 curr_cpu = 0.0018

15 curr_lpm = 0.0000054

16
17 # Select the sleep mode consumption to use

18 #curr_radio_sleep = 0.00000002

19 curr_radio_sleep = 0.000426

20
21
22 # Linear topology, select number of nodes

23 #num_nodes = 2

24 num_nodes = 6

25
26 #------------------------

27 # The node that is supposed to be generating messages,

28 # if 0 then all nodes will be considered generating (App and KA)

29 node_gen = 0

30 #------------------------

31
32 # Wakeup in ms

131

E

33 wake_up_period = 125

34
35 # Number of cca per wakeup

36 CCA_per_wakeup = 2

37
38 # Simulation duration in min

39 simulation_duration = 30

40
41 # Period of application msg in sec

42 application_period = 30

43
44 # Period of keep alive msg in sec, 0 means no service...

45 if node_gen == 0:

46 keepAlive_period = 30

47 else:

48 keepAlive_period = 0

49
50
51 def get_transmission_time(bytes):

52 #Add 6 bytes of PHY layer preamble

53 return 8*(bytes+6)/250

54
55 def lcm(a,b): return abs(a*b)/math.gcd(a,b) if a and b else 0

56
57 class consumption_states:

58 def __init__(self, name):

59 self.name = name

60 self.tx = 0

61 self.rx = 0

62 self.idle_rx = 0

63 self.sleep = 0

64 self.duration = 0

65
66 def __add__(self, other):

67 new_result = consumption_states("("+self.name + " + "+other.name+

")")

68 new_result.tx = self.tx + other.tx

69 new_result.rx = self.rx + other.rx

70 new_result.idle_rx = self.idle_rx + other.idle_rx

71 new_result.sleep = self.sleep + other.sleep

72 new_result.duration = self.duration + other.duration

73 return new_result

74
75 def __mul__(self, other):

132

76 final_value = other

77 new_result = consumption_states("("+self.name + " * "+str(

final_value)+")")

78 new_result.tx = self.tx*final_value

79 new_result.rx = self.rx*final_value

80 new_result.idle_rx = self.idle_rx*final_value

81 new_result.sleep = self.sleep*final_value

82 new_result.duration = self.duration*final_value

83 return new_result

84
85 def dump(obj):

86 print(" ")

87 print("Consumption of "+obj.name)

88 print("%s = \t\t%s" % ("tx", obj.tx))

89 print("%s = \t\t%s" % ("rx", obj.rx))

90 print("%s = \t%s" % ("idle rx", obj.idle_rx))

91 print("%s = \t%s" % ("sleep", obj.sleep))

92 print("%s = \t%s" % ("duration", obj.duration))

93 print("")

94
95 def dump_topology(topology):

96 node_list = []

97 for rank_list in topology:

98 for device in rank_list:

99 node_list.append(device)

100
101 node_list.sort(key=lambda x: x.id)

102
103 text_to_print = ""

104 text_to_print += "Energy consumption of nodes\n"

105 text_to_print += "Node ## Tx Rx Idle Sleep\n"

106 for i in range(0, len(node_list)):

107 text_to_print += "Node {:02}: {: >8.4f} {: >8.4f} {: >8.4f} {:

>9.4f}\n".format(i + 1, \

108 node_list[i].consumption.tx/1000,\

109 node_list[i].consumption.rx/1000, \

110 node_list[i].consumption.idle_rx/1000,\

111 node_list[i].consumption.sleep/1000)

112
113 print(text_to_print)

114
115
116 # Times...

117 time_pkt_43b_transmission = get_transmission_time(43)

133

118 time_pkt_5b_transmission = get_transmission_time(5)

119 gap_between_wakeup_CAA = 0.744

120 gap_between_attempts_CAA = 0.6

121 time_of_one_CAA = 0.441

122 gap_between_transmissions_attempts = 0.838

123 time_one_transmission_attempt = gap_between_transmissions_attempts +

time_pkt_43b_transmission

124 idle_time_after_ack_received = 0.252

125
126 # Calculate how many transmissions could happen between wakeup pariods

127 gap_to_transmit_between_wake_up = wake_up_period - gap_between_wakeup_CAA

- 2*time_of_one_CAA

128 max_transmission_between_wakeup = numpy.floor(

gap_to_transmit_between_wake_up/

time_one_transmission_attempt)

129 mean_transmissions_first_burst_communication =

max_transmission_between_wakeup/2

130 print("First burst transmission mean attempts = "+\

131 str(mean_transmissions_first_burst_communication))

132
133 #Calculate consumption for every event

134 consumption_one_pkt_attempt = consumption_states("one pkt sent attempt")

135 consumption_one_pkt_attempt.tx = volt*curr_tx*time_pkt_43b_transmission

136 consumption_one_pkt_attempt.idle_rx = volt*curr_idle_rx*

gap_between_transmissions_attempts

137 consumption_one_pkt_attempt.duration = time_pkt_43b_transmission+

gap_between_transmissions_attempts

138 dump(consumption_one_pkt_attempt)

139
140 consumption_one_pkt_attempt_received = consumption_states("one pkt

received attempt")

141 consumption_one_pkt_attempt_received.rx = volt*curr_rx*

time_pkt_43b_transmission

142 consumption_one_pkt_attempt_received.idle_rx = volt*curr_idle_rx*\

143 (gap_between_transmissions_attempts+\

144 time_pkt_43b_transmission/2)

145 consumption_one_pkt_attempt_received.duration = time_pkt_43b_transmission

+\

146 gap_between_transmissions_attempts+\

147 time_pkt_43b_transmission/2

148 dump(consumption_one_pkt_attempt)

149
150 consumption_one_CCA_attempt = consumption_states("one CCA attempt")

151 consumption_one_CCA_attempt.idle_rx = volt*curr_idle_rx*time_of_one_CAA

134

152 consumption_one_CCA_attempt.sleep = volt*curr_radio_sleep*

gap_between_attempts_CAA

153 consumption_one_CCA_attempt.duration = time_of_one_CAA+

gap_between_attempts_CAA

154 dump(consumption_one_CCA_attempt)

155
156 consumption_one_wakeup = consumption_states("one wakeup")

157 consumption_one_wakeup.idle_rx = volt*curr_idle_rx*time_of_one_CAA*

CCA_per_wakeup

158 consumption_one_wakeup.sleep = volt*curr_radio_sleep*

gap_between_wakeup_CAA*(

CCA_per_wakeup-1)

159 consumption_one_wakeup.duration = time_of_one_CAA*CCA_per_wakeup +

gap_between_wakeup_CAA*(

CCA_per_wakeup-1)

160 dump(consumption_one_wakeup)

161
162 consumption_one_ACK_sent = consumption_states("one ACK sent")

163 consumption_one_ACK_sent.idle_rx = volt*curr_idle_rx*

idle_time_after_ack_received

164 consumption_one_ACK_sent.tx = volt*curr_tx*time_pkt_5b_transmission

165 consumption_one_ACK_sent.duration = idle_time_after_ack_received +

time_pkt_5b_transmission

166 dump(consumption_one_ACK_sent)

167
168 consumption_one_ACK_received = consumption_states("one ACK received")

169 consumption_one_ACK_received.idle_rx = volt*curr_idle_rx*

idle_time_after_ack_received

170 consumption_one_ACK_received.rx = volt*curr_rx*time_pkt_5b_transmission

171 consumption_one_ACK_received.duration = idle_time_after_ack_received +

time_pkt_5b_transmission

172 dump(consumption_one_ACK_received)

173
174 #Calculate the consumption of the first burst attempt

175 consumption_first_burst_communication = consumption_one_CCA_attempt*6\

176 +consumption_one_pkt_attempt*\

177 (mean_transmissions_first_burst_communication+1.5)\

178 +consumption_one_ACK_received

179 consumption_first_burst_communication.name = "First burst communication"

180 dump(consumption_first_burst_communication)

181
182 #Calculate the consumption of the later communicatin with known

destination already saved into phase

183 consumption_later_communications = consumption_one_CCA_attempt*6\

135

184 +consumption_one_pkt_attempt*4.5\

185 +consumption_one_ACK_received

186 consumption_later_communications.name = "later communications"

187 dump(consumption_later_communications)

188
189 #Calculate the consumption of the receiving communicatin

190 consumption_received_communications =

consumption_one_pkt_attempt_received

\

191 +consumption_one_ACK_sent

192 consumption_received_communications.name = "received communications"

193 dump(consumption_received_communications)

194
195 # check the number of receptions not matching

196 total_application_pkt_attempts = 0

197 if application_period > 0:

198 total_application_pkt_attempts = simulation_duration*60/

application_period

199
200 total_keepAlive_pkt_attempts = 0

201 if keepAlive_period > 0:

202 total_keepAlive_pkt_attempts = simulation_duration*60/

keepAlive_period

203
204 total_wakeup_done_for_simulation = 1000*simulation_duration*60/

wake_up_period

205 total_time_remaining_in_sleep_per_period = simulation_duration*60*1000\

206 -consumption_first_burst_communication.duration\

207 -consumption_later_communications.duration*\

208 (total_application_pkt_attempts+\

209 total_keepAlive_pkt_attempts-1)\

210 -consumption_one_wakeup.duration*\

211 total_wakeup_done_for_simulation

212 print("Total remaining sleep time = "+\

213 str(total_time_remaining_in_sleep_per_period))

214 consumption_total_remaining_sleep_leaf_node = consumption_states("

remaining sleep")

215 consumption_total_remaining_sleep_leaf_node.sleep = volt*\

216 curr_radio_sleep*total_time_remaining_in_sleep_per_period

217 consumption_total_remaining_sleep_leaf_node.duration =\

218 total_time_remaining_in_sleep_per_period

219 dump(consumption_total_remaining_sleep_leaf_node)

220
221

136

222 #Final consumption for a leaf node without colision and a root node

223 consumption_final_node_leaf_rank2_noColision =\

224 consumption_first_burst_communication\

225 +consumption_later_communications*\

226 (total_application_pkt_attempts+total_keepAlive_pkt_attempts-1)\

227 +consumption_one_wakeup*total_wakeup_done_for_simulation\

228 +consumption_total_remaining_sleep_leaf_node

229 consumption_final_node_leaf_rank2_noColision.name = "Final leaf node in a

duo exp"

230 dump(consumption_final_node_leaf_rank2_noColision)

231
232 #------------------------

233 # Topology Analisis

234 #------------------------

235
236 class node:

237 def __init__(self, id, father_node, rank):

238 self.id = id

239 self.father_node = father_node

240 self.consumption = consumption_states("cons of node {}".format(id

))

241 self.rank = rank

242 self.total_wakeups = 0

243 self.total_rx = 0

244 self.total_first_tx_attempts = 0

245 self.total_later_tx_attempts = 0

246 self.total_possible_collisions = 0

247 self.total_sleep_time = 0

248
249 def relayed_msg_to_add(self, number_to_add):

250 if self.rank == 0:

251 return

252 # transmit the values spent of this node to its father node

253 self.father_node.total_rx += number_to_add

254 self.father_node.total_wakeups -= number_to_add

255 self.father_node.total_sleep_time -=\

256 consumption_one_pkt_attempt_received.duration

257 if self.rank > 1:

258 if self.father_node.total_first_tx_attempts == 0:

259 #This device will need to do one first attempt

260 self.father_node.total_first_tx_attempts = 1

261 self.father_node.total_later_tx_attempts += number_to_add

-1

262 self.father_node.total_sleep_time -=\

137

263 consumption_first_burst_communication.duration

264 self.father_node.total_sleep_time -=\

265 consumption_later_communications.duration*(

number_to_add -

1)

266 else:

267 self.father_node.total_later_tx_attempts += number_to_add

268 self.father_node.total_sleep_time -=\

269 consumption_later_communications.duration *\

270 number_to_add

271
272 self.father_node.relayed_msg_to_add(number_to_add)

273
274 def recursive_relay_messages(self):

275 self.relayed_msg_to_add(self.total_first_tx_attempts\

276 +self.total_later_tx_attempts)

277
278
279 node_father = node(1, None, 0)

280 topologia_linear = [[node_father]]

281 node_n = None

282 for node_id in range(2, num_nodes + 1):

283 node_n = node(node_id, node_father, node_id-1)

284 node_father = node_n

285 topologia_linear.append([node_n])

286
287
288 #Calculate the energy spent by this topoology

289 topology = topologia_linear

290
291 rank_size = len(topology)

292 for rank_list in topology:

293 for device in rank_list:

294 if device.rank == 0:

295 device.total_wakeups = total_wakeup_done_for_simulation

296 device.total_sleep_time = simulation_duration * 60 * 1000

297 else:

298 device.total_wakeups = total_wakeup_done_for_simulation

299 device.total_sleep_time = simulation_duration * 60 * 1000

300 if node_gen == 0 or node_gen == device.id:

301 device.total_first_tx_attempts = 1

302 device.total_later_tx_attempts =\

303 total_application_pkt_attempts\

304 +total_keepAlive_pkt_attempts-1

138

305 device.total_sleep_time -=\

306 (consumption_first_burst_communication.duration\

307 +consumption_later_communications.duration*\

308 (device.total_first_tx_attempts\

309 +device.total_later_tx_attempts))

310 device.recursive_relay_messages()

311
312 for rank_list in topology:

313 for device in rank_list:

314 sleep_cons = consumption_states("remaining sleep")

315 device.total_sleep_time -= consumption_one_wakeup.duration *

device.total_wakeups

316 sleep_cons.sleep = volt * curr_radio_sleep * device.

total_sleep_time

317 sleep_cons.duration = device.total_sleep_time

318
319 device.consumption = consumption_first_burst_communication*device

.total_first_tx_attempts\

320 +consumption_later_communications*\

321 (device.total_later_tx_attempts)\

322 +consumption_one_wakeup*device.total_wakeups\

323 +consumption_received_communications*device.total_rx\

324 +sleep_cons

325
326 device.consumption.name = "Final node {}".format(device.id)

327
328
329 #Dump devices

330 dump_topology(topology)

139

PUBLISHED WORKS

Some part of this thesis has already been accepted in the following conference:

• V. G. GUIMARAES, A. BAUCHSPIESS, K. OBRACZKA, and R. M. DE MORAES,
"A Novel IoT Protocol Architecture: Efficiency Through Data and Functionality Shar-
ing Across Layers," accepted at the 28th International Conference on Computer Com-

munications and Networks (ICCCN 2019), Valencia, Spain, jul 2019.

Other publications during the period of the thesis:

• V. G. GUIMARAES, A. BAUCHSPIESS, and R. M. DE MORAES, "Dynamic Timed
Energy Efficient and Data Collision Free MAC Protocol for Wireless Sensor Net-
works," Journal of IEEE América Latina, vol. 13, pp. 416-421, 2015.

• V. G. GUIMARAES, A. BAUCHSPIESS, and R. M. DE MORAES, "Customized
MAC Protocol for Small Properties with Wireless Irrigation Automation," in XXI Con-

gresso Brasileiro de Automática – CBA2016, Vitória, ES, Brazil, oct 2016, pp. 2956-
2961.

140

F

