
DISSERTAÇÃO DE MESTRADO

Surrogate-assisted Optimization
using Multi-objective Evolutionary Techniques

Applied to Mechanical Structural Design

João Carlos Pereira Passos

Brasília, agosto de 2019

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

DISSERTAÇÃO DE MESTRADO

Surrogate-assisted Optimization
using Multi-objective Evolutionary Techniques

Applied to Mechanical Structural Design

João Carlos Pereira Passos

Dissertação de Mestrado submetida ao Departamento de Engenharia

Mecânica como requisito parcial para obtenção

do grau de Mestre em Sistemas Mecatrônicos

Banca Examinadora

Prof. Dr. Carlos H. Llanos Quintero, ENM/FT/UnB
Orientador

Prof. Dr. Mauricio Ayala Rincón, MAT/UnB
Examinador externo

Prof. Dr. Adriano Todorovic Fabro, ENM/FT/UnB
Examinador externo

FICHA CATALOGRÁFICA

PASSOS, JOÃO CARLOS PEREIRA
Surrogate-assisted Optimization using Multi-objective Evolutionary Techniques Applied to Mechanical
Structural Design [Distrito Federal] 2019.
xvi, 92 p., 210 x 297 mm (ENM/FT/UnB, Mestre, Engenharia Mecânica, 2019).
Dissertação de Mestrado - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Mecânica

1. Optimização Multi-Objetivo 2. Surrogates
3. Análise de Elementos Finitos 4. Design de Estruturas Mecânicas.
I. ENM/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
PASSOS, J.C.P (2019). Surrogate-assisted Optimization using Multi-objective Evolutionary Techniques
Applied to Mechanical Structural Design . Dissertação de Mestrado, Departamento de Engenharia
Mecânica, Universidade de Brasília, Brasília, DF, 92 p.

CESSÃO DE DIREITOS
AUTOR: João Carlos Pereira Passos
TÍTULO: Surrogate-assisted Optimization using Multi-objective Evolutionary Techniques Applied to
Mechanical Structural Design .
GRAU: Mestre em Sistemas Mecatrônicos ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Dissertação de Mestrado e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores reservam
outros direitos de publicação e nenhuma parte dessa Dissertação de Mestrado pode ser reproduzida sem
autorização por escrito dos autores.

João Carlos Pereira Passos
Depto. de Engenharia Mecânica (ENM) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

Acknowledgements

I want to thank Professor Llanos for his expert advice and encouragement throughout
this challenging project, as well as my family and friends that have been supporting me
despite all adverse situations and difficulties.

João Carlos Pereira Passos

RESUMO

Este manuscrito desenvolve um novo algoritmo de otimização assistida por substitutos, a fim de
mitigar os problemas críticos que afeta os problemas de otimização estrutural: a) alto custo com-
putacional e b) longo tempo de execução. A abordagem baseada em substitutos utiliza modelos
substitutos que possuem baixo custo de avaliação para reproduzir o comportamento das funções
de custo dos problemas, nos quais nossa técnica é capaz de aprimorar dinâmicamente os modelos
substitutos sem a utilização de uma população de validação. Além disso, também implementamos
um mecanismo que periodicamente tenta recuperar boas soluções que foram anteriormente des-
cartadas devido à deficiência do modelo. Além disso, este manuscrito abrange o desenvolvimento
de três novos algoritmos de preenchimento de espaço, que lidam com o problema de adicionar
novos pontos de maneira eficiente a um modelo substituto já existente. Mais ainda, criamos uma
métrica de preenchimento de espaço que mede a presença de lacunas em uma população de pon-
tos dentro de um espaço de busca, o que possibilita a comparação de distribuições de tamanhos
diferentes. Por fim, três estudos de caso foram usados para revelar as capacidades e limitações da
nova técnica de otimização assistida por substitutos em conjunto com o algoritmo de preenchi-
mento de espaço. Dois desses estudos de caso mostraram que o método é capaz de promover um
expressivo ganho de desempenho, conciliada com uma pequena perda na precisão. No entanto,
o terceiro estudo de caso revelou que a técnica também pode falhar na produção de resultados
satisfatórios.

Palavras-chave: Otimização multi-objetivo, modelos substitutos, otimização estrutural, pro-
jeto mecânico.

ABSTRACT

This manuscript develops a new surrogate-assisted optimization algorithm in order to mitigate the
critical issues that pertain problems of structural optimization: a) high computational cost and b)
long execution time. The surrogate approach utilizes surrogate models that have cheap evaluation
cost to reproduce the actual cost functions of the problems, in which our technique is capable of
dynamically improve these models without the utilization of a validation population. Moreover,
we also implemented a mechanism that periodically tries to recuperate suitable solutions that
were previously discarded due to the model’s deficiency. Besides, this manuscript covers the
development of three new space-filling algorithms, which handle the problem of efficiently adding
new points into an already existing surrogate model. Additionally, we created a space-filling
metric that measures the presence of gaps in a population of points within a search space, which
enables the comparison of distributions of different size. At last, three case studies were used
to reveal the capabilities and limitations of the new surrogate-assisted optimization technique in
conjunction with the space-filling algorithm. Two of these case studies show that the method is
capable of promoting an expressive performance gain reconciled with a small loss in accuracy,
whereas the other reveals that it could also fail to output satisfactory results.

Keywords: Multi-objective optimization, surrogate, structural optimization, mechanical de-
sign.

Contents

1 INTRODUCTION 1
1.1 The Problem and the Method used . 3
1.2 Related Works . 4
1.3 Objectives . 4

1.3.1 General Objective . 4
1.3.2 Specific Objectives . 4

1.4 Contributions . 4
1.5 Manuscript Organization . 5

2 THEORETICAL BACKGROUND 6
2.1 Design Process . 6
2.2 Engineering Design Process . 9
2.3 Design as Optimization Problem . 10
2.4 Structural Optimization . 14
2.5 Finite Element Method . 15
2.6 Design Variables . 17
2.7 Classification . 18
2.8 Conceptual Solution . 19
2.9 Overview . 20

3 SURROGATES 21
3.1 Sampling Strategies . 22
3.2 Management Strategy . 22
3.3 The Model Construction . 24

3.3.1 Radial Basis Function . 25
3.3.2 Examples . 27

3.4 Challenges of Surrogate Utilization . 28
3.5 Overview . 30

4 METHODOLOGY 31
4.1 Model-based Optimization . 31
4.2 Optimization Algorithm Integration . 38
4.3 Cost Function . 40
4.4 Optimization Population and Training Points 41

vii

4.4.1 Search Space Comprehension . 42
4.5 Initialization . 43

4.5.1 Generation Techniques . 43
4.5.2 Distinction Criteria . 46

4.6 Overview . 48

5 SPACE-FILLING ALGORITHMS 50
5.1 The First Algorithm Proposed: Fill Tri . 51

5.1.1 Creation Stage . 51
5.1.2 Elimination Stage . 52
5.1.3 Selection Stage . 53
5.1.4 Results . 53
5.1.5 Auxiliary Population . 53
5.1.6 Algorithm Implementation . 54
5.1.7 Limitation of this algorithm . 56

5.2 Second Algorithm Proposition: Fill N-Sphere 56
5.2.1 Creation Stage . 56
5.2.2 Elimination Stage & Selection Stage 58
5.2.3 Results . 58
5.2.4 Algorithm Implementation . 58
5.2.5 Limitation of this algorithm . 59

5.3 Third Algorithm Proposition: Fill-AVG . 59
5.3.1 Creation Stage . 60
5.3.2 Elimination Stage & Selection Stage 60
5.3.3 Results . 60
5.3.4 Algorithm Implementation . 61
5.3.5 Advantages of this algorithm . 61

5.4 Space-filling Metric . 62
5.5 An Efficiency Analysis about the Algorithm’s Internal Operation 63
5.6 In Loop Operation . 64
5.7 High-dimension Problems . 65
5.8 Overview . 66

6 CASE STUDIES 67
6.1 Heatsink . 67

6.1.1 Problem’s Description . 67
6.1.2 Design Variables . 68
6.1.3 Cost Functions . 69
6.1.4 Results . 70

6.2 Coffee Table . 73
6.2.1 Problem’s Description . 73

6.2.2 Design Variables . 74
6.2.3 Cost Functions . 75
6.2.4 Results . 75

6.3 Exoskeleton Knee Coupling . 78
6.3.1 Problem’s Description . 78
6.3.2 Design Variables . 79
6.3.3 Cost Functions . 79
6.3.4 Results . 80

6.4 Overview . 82

7 CONCLUSION 83
7.1 Future Work . 84

BIBLIOGRAPHIC REFERENCES 85

LIST OF FIGURES

1.1 Optimization Process . 1
1.2 Surrogate-assisted Optimization Process . 2
1.3 The Method used in this work . 3

2.1 Design Process - Flowchart . 6
2.2 Optimization Problem - Non-Injective Behavior 11
2.3 Optimization Problem - Results . 13
2.4 Structural Optimization - Representations . 15
2.5 Finite Element Method - Explanation . 16
2.6 Structural Optimization - Design Variable . 17

3.1 Model Construction - Scope . 24
3.2 RBF - Induction . 26
3.3 Examples of Surrogate Model . 29

4.1 Conventional Approach . 31
4.2 Surrogate Approach . 32
4.3 Surrogate Initialization . 32
4.4 Surrogate’s Internal Operation . 33
4.5 Sequential Updates . 34
4.6 Model Update Strategy . 35
4.7 Update’s Internal Operation . 36
4.8 Update Parameters’ Internal Operation . 36
4.9 Rebase’ Internal Operation . 37
4.10 Cost Function Evaluations’ Internal Operation 38
4.11 Multi-Objective Differential Evolution . 39
4.12 Surrogate-assisted Multi-Objective Differential Evolution 40
4.13 Number of Possible Solutions . 43
4.14 Grid’s Population Size Growth . 44
4.15 Grid’s Coverage Growth . 45
4.16 Initialization Methods . 46
4.17 Diversity of a Distribution - 2D . 47
4.18 Diversity of a Distribution - 20D . 48

5.1 Stacking Populations . 50

x

5.2 Triangle’s Problem - Geometric Interpretation 52
5.3 Space-filling Algorithm: Fill Tri . 53
5.4 N-Sphere’s Problem - Geometric Interpretation 57
5.5 Space-filling Algorithm: Fill N-Sphere . 58
5.6 Space-filling Algorithm: Fill AVG . 61
5.7 Number of Candidates Training Points . 63
5.8 In Loop Space-filling . 64

6.1 Heatsink - Simulation Scenario . 68
6.2 Heatsink - Design Features . 69
6.3 Heatsink - Pareto Front . 70
6.4 Heatsink - Cost Function Evaluations . 71
6.5 Heatsink - Proof Of Concept . 72
6.6 Heatsink - Pareto Set . 72
6.7 Coffee Table - Simulation Scenario . 73
6.8 Coffee Table - Design Features . 74
6.9 Coffee Table - Pareto Front . 76
6.10 Coffee Table - Cost Function Evaluations . 76
6.11 Coffee Table - Proof Of Concept . 77
6.12 Coffee Table - Pareto Set . 77
6.13 Exoskeleton Knee Coupling - Simulation Scenario 78
6.14 Exoskeleton Knee Coupling - Design Features 79
6.15 Exoskeleton Knee Coupling - Pareto Front . 80
6.16 Exoskeleton Knee Coupling - Cost Function Evaluations 81
6.17 Exoskeleton Knee Coupling - Proof Of Concept 81
6.18 Exoskeleton Knee Coupling - Pareto Set . 82

LIST OF TABLES

3.1 Radial Functions . 27

5.1 Space-filling Metric: Fill Score . 62
5.2 Space-filling at High Dimensions . 65

6.1 Heatsink - Engineering Data . 68
6.2 Heatsink - Design Variables . 69
6.3 Heatsink - Cost Functions’ Range of Values . 69
6.4 Coffee Table - Engineering Data . 74
6.5 Coffee Table - Design Variables . 74
6.6 Coffee Table - Cost Functions’ Range of Values 75
6.7 Exoskeleton Knee Coupling - Engineering Data 79
6.8 Exoskeleton Knee Coupling - Design Variables 79
6.9 Exoskeleton Knee Coupling - Cost Functions’ Range of Values 80

xii

1 INTRODUCTION

Engineering problems commonly possess more than one solution, each of them with different
advantages and disadvantages. Nonetheless, these problems are inherently an optimization prob-
lem composed by three basic components: (a) the design variables, (b) the state variables, and
(c) the objective functions (1).

The design variables list the set of changeable parameters of the problem. They effectively
correspond to the components under optimization. In contrast, state variables render the response
of the problem, given the selected design variables and the simulation scenario itself. At last, the
objective functions utilize the problem’s behavior or characteristics to indicate the goodness of the
evaluated design. Ideally, these indicators yield comparable values and are mostly numeric values.
In the literature, another conventional denotation for the objective function is cost function.

Figure 1.1 depicts an optimization process, which its iterative process has unrestricted access
to the cost function (2, 3), where X and F are respectively the design variables and objective
functions.

Optimization
Algorithm

Cost Function
Evaluations

X

F (X)

Figure 1.1 – Optimization Process

However, there are cases that unrestricted access to the cost function is a problem itself be-
cause they could demand the execution of experiments, that could be both laborious and finan-
cially expensive. Regardless, it is a fact that both of them are time-consuming, making the con-
ventional approach impracticable as the optimization process requires several inputs of the cost
function (2, 4, 5).

In that context, structural optimization describes a procedure capable of identifying a struc-
ture’s geometry and material that enables a higher efficient usage of materials on predefined oper-
ational conditions while fulfilling a set of project restrictions and safety regulations. Nonetheless,
the evaluation of these structural design problems demands the execution of simulations of high
complexity, which represents a critical issue due to its high computational cost and long execution
time (6), that are commonly performed by specific FEM software packages, e.g., Ansys, Abaqus,
and Autodesk Simulation. Moreover, these difficulties only become worse at an optimization pro-
cedure, which requires the execution of many of such simulations in order to guide the search
process towards the minimum/maximum global.

A promising solution for these issue is the utilization of a surrogate-assisted optimization
(7), which describes an optimization process that uses surrogate models instead of the actual

1

cost functions. These surrogate models are functions that mimic the behavior of the actual cost
functions but possess a cheap evaluation cost reconciled with a generic representation of the
problems (8).

Figure Fig. 1.2 depicts a surrogate-assisted optimization process, where X and F still describe
the current population of the optimization algorithm and the output of the cost functions, but Xs
and Fs respectively the training points used to generate the surrogate models and the output of
the surrogate models.

Optimization
Algorithm Surrogate

X

Fs (X)
Cost Function
Evaluations

Xs

F (Xs)

Figure 1.2 – Surrogate-assisted Optimization Process

The utilization of surrogate models by optimization algorithms grants a significant reduction
of the process overall computational cost. Nevertheless, the selected population sampling strategy
and model building method greatly influence the technique’s performance, so that it could fail to
emulate the source function, or be as costly as the direct approach.

In that context, this works develops a new surrogate-assisted optimization algorithm, which
it is capable of actively updating the surrogate models based on violations on the expected cost
functions’ range of values. Moreover, the algorithm implements a mechanism that periodically
tries to recuperate suitable solutions that were previously discarded due to the deficiency of the
surrogate models.

Another contribution was the development of three new space-filling algorithms, which handle
the problem of efficiently adding new points into an already existing surrogate model. Highlights
that the main algorithm adopts a straightforward strategy to identify the additional points’ loca-
tion, which translates into a low computational cost, even at high dimension problems. Nonethe-
less, this approach is still capable of outperformance the more complex implementations of the
space-filling algorithm.

The final contribution consists in the creation of a space-filling metric that measures the pres-
ence of gaps in a population of points within a search space, which enables the comparison of
distributions of different size.

At last, three case studies were used to reveals the capabilities and limitations of the new
surrogate-assisted optimization technique in conjunction with the space-filling algorithm, in which
have shown that in two of them the method is capable of promoting an expressive performance
gain reconciled with a small loss in accuracy, whereas the other reveals that it could also fail to
output satisfactory results.

2

1.1 THE PROBLEM AND THE METHOD USED

Figure 1.3 – The Method used in this work

Figure 1.3 depicts the data flow of the overall method initially proposed in this work and pre-
sented in (9), where different tools were integrated, such as Multi-objective Optimization based
on Differential Evolution (MODE) algorithm, SolidWorks tool, and Matlab’s FEA toolbox. Of
which, the SolidWorks and Finite Elements Analysis (FEA) were used for the purpose of evalu-
ating the cost function (fitness) in order to guide the optimization process.

In the context of optimization tasks, Multi-objective Optimization Problem (MOOP) algo-
rithms are used in problems with two or more conflicting criteria. The sizing optimization (used
in this work) was modeled as a MOOP because both safety factor and mass are conflicting objec-
tives. Therefore, the notion of the dominance concept is important to measure which solutions are
better, because both objective functions in MOOP can have equivalent importance to a decision-
maker.

It can be observed that the design problem of a mechanical part (in the context of e.g., struc-
tural optimization) can be seen as an Optimization Problem (OP), guided by a cost function. In
this case, the optimization algorithm (e.g., a bio-inspired one) must evaluate the cost function in
each iteration. But in this case, the cost function has a high mathematical complexity (e.g., based
on large system of equations equations), and/or evaluated by using computationally-expensive
simulation tools, namely Ansys, Abaqus, Autodesk Simulation, and Matlab.

For such problems the use of surrogate models is vital and recommended given that the op-
timization process to be used, in order to obtain a suitable project, can spend hours, weeks or
months, depending on the complexity of the project to be faced.

3

1.2 RELATED WORKS

The applications that utilize surrogate model techniques in the design and analysis of computer
experiments is a promising field of research, which has continually gain attention in the last 30
years (10). In that context, several publications were make to discuss the establish approaches and
future trends in this research area (11, 12, 2, 8, 13), in which the works overview the present state
of the art of constructing surrogate models, optimization strategies, feasibility analysis, and many
other aspects of pertaining the utilization of surrogate models. More so, these techniques have
already been applied in several optimization problems in order to mitigate the high computational
of engineering simulations (14, 15, 16, 3, 17).

Thus, it is possible to find similar approaches to our work in literature, which Gong and
Duan (18) proposes an adaptive surrogate modeling-based sampling strategy for parameter op-
timization and distribution estimation, Wang et al. (5) develops a data-driven surrogate-assisted
multi-objective optimization based on gaussian process, and Voutchkov and Keane (19) discusses
the idea of using surrogate models to reduce the number of cost function calls for multi-objective
optimization.

1.3 OBJECTIVES

1.3.1 General Objective

The main objectives of this manuscript are to develop a new surrogate-assisted optimization
algorithm, which it is capable of actively updating the surrogate models based on violations on
the expected cost functions’ range of values. With our technique, we aim to answer whether it is
possible to represent the dynamics of the cost functions with a small set of points.

1.3.2 Specific Objectives

• Develop a procedure to assist in the identification of new points for updating the surrogate
model.

• Develop a metric to measure the search space’s coverage of the surrogate model

1.4 CONTRIBUTIONS

The main contributions of this manuscript are:

• Development of a new surrogate-assisted optimization algorithm, which it is capable of
actively updating the surrogate models based on violations on the expected cost functions’

4

range of values. Moreover, the algorithm implements a mechanism that periodically tries to
recuperate suitable solutions that were previously discarded due to the model’s deficient.

• Development of three new space-filling algorithms, which handle the problem of efficiently
adding new points into an already existing surrogate model. High-lights that the main al-
gorithm adopts a straightforward strategy to identify the additional points’location, which
translates into a low computational cost, even at high dimension problems.

• The creation of a space-filling metric that measures the presence of gaps in a population
of points within a search space, which enables the comparison of distributions of different
size.

1.5 MANUSCRIPT ORGANIZATION

This manuscript introduces, in Chapter 2 detail the groundwork fundamentals that acts a the
base of this work. There we discuss the creative process of products and its particularities in
an engineering context. We also detail an approach to solve complex problems and explains the
fundamental concepts of structural optimization.

Chapter 3 provides an in-depth overview of the internal operation of a typical surrogate model,
which explains the process of selection of the training points and its update strategies. This
chapter is also responsible for detailing the techniques applied to construct a surrogate model and
the challenges of its utilization.

Chapter 4 explains the main difference between surrogate-assisted optimization and conven-
tional optimization. It shows the internal operation of the proposed surrogate-assisted optimiza-
tion process, detailing the peculiarities of cost functions and the solutions itself.

Chapter 5 devotes to the development of three space-filling algorithms, which details the ad-
vantages and disadvantages of them. Likewise, develops a space-filling metric in order to measure
the presence of gaps in populations and the challenges imposed by high dimension problems.

Chapter 6 develops three structural optimization problems as case study in order to validate
and test the functionalities of surrogate-assisted optimization algorithm.

Chapter 7 provides the concluding remarks as well as the direction for future works.

5

2 THEORETICAL BACKGROUND

The following chapters detail the groundwork fundamentals that acts a the base of this work.
Of which, Chapter 2.1 discuss about the creative process of products. Chapter 2.2 explains the
creative process in a engineering context. Chapter 2.3 details a solution approach to solve complex
problems. At last, Chapter 2.4, 2.5, 2.6, and 2.7 explains key concepts of structural optimization.

2.1 DESIGN PROCESS

Design Process denotes a functional sequence of steps used in the conception of processes and
products, i.e., a methodology focus on the creative process itself (20, 21). This process features
high interactivity and cycle behavior, which ensures the meeting of its attainable objectives re-
quirements. Thus, “learning from failure” is a key concept of this methodology, for the “journey”
towards the solution molds its upshot and maybe even the problem itself (22, 23). Figure 2.1
depicts the flowchart of a typical eight-step design process.

REPORT

1. Problem
Definition

2. Background
Research

3. Design
Requirements

4. Brainstorming

5. Solution
Selection

6. Solution
Development

7. Prototype
Building

8. Validation

Solution
Refinement

Figure 2.1 – Design Process - Flowchart

The Problem Definition is the methodology’s first step, procedure responsible for the defini-
tion of the set of goals that conditions the task’ fulfillment. The method is innately flexible, being
the objectives a product, answering to a question, or even the creation of another methodology
altogether. Either way, during this stage, the project designers endeavor integrally focus on un-

6

derstanding as much as possible about the problem’s endgame. Likewise, the designer has to take
special care of its requester, because they may not be able to convey their needs nor comprehend
their feasibility.

Once both parties reach an agreement about the project’s goals, follows Background Research
on the problem. The objective of this step consists of locating comparable predicaments to seek
reference from their pre-existing solutions, should they exist. At this stage happens the first
project revision, which makes expectations and outcomes increasingly more realistic. This re-
vision is a procedure in which the gathered information serves to refine the problem definition
further. Moreover, the cycling process of research and refining occurs until the meeting of the
client’s expectations and project constraints.

The Design Requirements, respectively, the methodology’s third step, translates the requester’s
expectations and project constraints into requirements. These design requirements describe es-
sential characteristics that the proposed solution must comply to indicate the project conclusion.
Likewise, it serves to guide the advance during its development process. In here are defined
features or specifications that the product or process must satisfy to meets its minimum passing
grade.

The trickiest question in a design process is: The requirements mold the solutions or the solu-
tions mold the requirements? The correct answer would that the methodology makes a compro-
mise of both. Realistic speaking, some problems are currently unfeasible, or its known solution
violates the problem’s requirements. In those situations, there must happen a problem revision
itself or loosen up its demands.

As there are problems without a single solution, there are others that have several established
solutions. In that context, the Brainstorming aims to list all possible methods to solve the problem,
including solutions that do not respect the problem’s actual requirements or constraints. The core
concept of this step lies in solving the problem at any cost, not bound by restrictions or a biased
mindset. That happens because the problem may not be as well-defined as given credit, or its
requirements are still unrealistic or do not conform with current technology limitations.

Once the bank of solutions is complete, the designer can gauge their pros and cons given the
project constraints and design requirements. Additionally, this compendium enables the visual-
ization of the current state of the art, thus allowing an understanding of potential contributions
and selling points of the final product. During the execution of the Solution Selection, there will
be straight rejections, but also solution that can entirely or partially fulfill the restrictions. The
final selection will not be only based on those observations, because conventionally the designer
attributes different weights to each of the problem’s constraints. So that, even a solution that does
not attend a set of criteria could be the chosen one.

Figure 2.1 designates the lasts three steps of the methodology as Solution Refinement. This
grouping aims to indicate that these steps operation differs from the rest of the others. Although
cyclic behavior marks the whole process, this section has a particular loop interaction. That
happens because inputs regarding the solution’s outputs are necessary to keep the refinement

7

in track with the problem’s constraints. For that reason, those steps are the leading workload
initiators in the entire process.

The first step of the Solution Refinement is responsible for the development of the solution
itself. The designer implements the technical solution to the problem with the available informa-
tion. However, due to the existence of problems that have data scarcity, unknown behavior, or
simplified model representations, the experiment’s results may differ from the expected outcomes
(2, 5). Thus, trial and error its one of the leading methods to obtaining insights and at the same
time verify the solution (24).

In that context, prototypes are built to evaluate those intermediate implementations of the
solution in the field. However, the construction of a prototype proves to be time and resource
consuming, especially when some of the tests are of the destructive kind. Thus, from the project
manager’s point of view, it is a money-burning process that should be seldom done, particularly
considering the possibility of failures experiments.

A fundamental concept in prototyping is Design Fidelity, which indicates the level of detail
and functionality included in a prototype, measuring how close it matches to the complete version
(25). There are low-fidelity ones that could be simple paper sketches, commonly used in the
earliest stages to generate feedback. On the other hand, high-fidelity prototypes are partially
or fully functional versions. The latter are often employed in the later stages of the refinement
process to validate the final version (26).

Nonetheless, the prototype’s production cost directly correlates with its degree of fidelity.
As such, the definition of a cost-effective Design Fidelity is essential to lower the burden of
the experiments (27). The procedure aims to remove features from the product that will not
heavily influence the measurements but are responsible for a significant portion of the prototype’s
building cost (28). As long as the prototype holds the fundamental characteristics of the solution,
the gathered information is still useful to the development process (29).

To effectively close the loop on the Solution Refinement, there is only left to define the Valida-
tion. This step is responsible for building several trials to gauge the performance of the prototype
and the solution regarding the designated design requirements. Highlights that the production
of the prototype itself also generates valuable information regarding the building procedures and
implementation feasibility of the process.

Figure 2.1 shows that the Report is a fundamental mechanism of this methodology because it
acts as a bridge to connect all the ongoing steps. This mechanism serves to keep track of project
progress and collected experience. Moreover, cataloging successes and failures of the project
enable its visualization from a broader view. Therefore, simplifying the identification of features
that most add value to the project (30). Likewise, a thoroughly documented solution facilities its
implementation and support (31).

8

2.2 ENGINEERING DESIGN PROCESS

The design process of an engineering project has dramatically changed over the years. For ex-
ample, optimization procedures were practically exclusive to critical applications that demanded
the fittest engineering solution (32). Likewise, there was a heavy dependence on prototyping to
evaluate intermediate solutions. However, due to the ever-increasing projects’ complexity recon-
ciled with technology advance, stricter regulations, and also shrinkages on schedules and budget;
prototyping was superseded mainly by computational simulations (33, 17).

In that context, the advent of Computer-aided Design (CAD) in the ’50s represents a break-
through in computing and the industry. The functionalities of the earliest CAD software were
reasonably limited, only been able to aid its user to draw simple sketches. However, their latest
implementations have become very sophisticated, thus becoming an essential skill to the curricu-
lum of engineers and project designer alike.

Modern CAD software features creation, parametric modeling, structural analysis, virtual as-
sembly, dynamic simulation, technical documentation, and optimization procedures of projects on
models of two and three dimensions. One of its many advantages is the systematical integration
of multi-piece parts sketches, facilitating the work on complexes project. That was possible due
to the creation of a set of parts’ libraries and built-in methods capable of dynamically generate
challenging geometries, e.g., bolts, screws, bearings, nuts, and gears.

The most significant advantage of a digital sketch against a manual one is that its duplication
cost almost nothing, be that either resource or time. Thus the skillful use of a CAD software
grants higher productivity and consistency to the project. This improvement also reflected in the
dissemination of a standard throughout the industry, i.e., recommended practices and common
components design.

However, like most new technologies, the process of broad dissemination took decades to
reach the general user. This delay is due to the required hardware’s high-cost and the state of
Proprietary Software of the early CAD implementations. At that time, these were manly use
by academics in collaborating with the space industry and large automotive assemblers, such as
General Motors (34, 35). For that reason, the general public demands were not the aims of the
software’s functionalities — this explains why most of them were developed to assist in specific
design tasks (36).

That scenario only comes to a change with the dissemination of desktops in the ’70s, a period
when the CAD software leaves the academical and private sector to become a product itself (37).
A notable mark in the industry is the software ADAM, what makes it so unique is that 70 percent
of all 3-D mechanical CAD/CAM systems’ code available today traces their roots back to its
source code. For this feat, its creator Patrick Hanratty is renown as the “Father of CAD/CAM”
(38, 39).

The virtualization of the design process facilitates the exchange of information between the
steps of the methodology. Which also enable the validation of the products on a broader range of

9

operational scenarios and configurations. As a direct consequence of this procedure, the amount
of available information to the design process has dramatically increased, providing an unseen
amount of information to the process. This breakthrough has made feasible the utilization of
structural optimization on non-high profile projects, given the significant diminishment of the
financial barrier (37, 19).

In the methodology, the most affected steps were those of the Solution Refinement, as the
products’ virtualization also enables the simulation of the experiments itself. Moreover, the sys-
tematization of these hand-made procedures grants faster and consistent results. However, in
order to achieve quality simulations, the computational cost has escalated massively.

Therefore, an Engineering Design Process is an inherent optimization problem, which has
become incessantly more complex and demanding over the days.

2.3 DESIGN AS OPTIMIZATION PROBLEM

There are three components in any optimization problem: (a) design variables, (b) state vari-
ables, and (c) objective functions (1). The design variables list the set of changeable parameters
of the problem. They effectively correspond to the components under optimization. In contrast,
state variables render the response of the problem, given the selected design variables and the
simulation scenario itself. At last, the objective functions utilize the problem’s behavior or char-
acteristics to indicate the goodness of the evaluated design. Ideally, these indicators yield compa-
rable values and are mostly numeric values. In the literature, another conventional denotation for
the objective function is cost function.

Therefore, the state variables are a set of functions with the design variables as its domains,
whereas the objectives are functions in which both the design variables and state variables com-
pose their domain. Utilizing a vectorial notation in the above description yields in the following
correlation:

• Design Variables:
−→
X

• State Variables:
−→
Y (
−→
X)

• Objectives Functions:
−→
F (
−→
X,
−→
Y)

However, this description does not fully represent the extent of the problem because it neglects
the existence of parameters originated from the problem definition and the simulation environ-
ment. Although these parameters remain fixed throughout the entire process, they significantly
affect the behavior of the state variables and objective functions. Thus, taking into account the
existence of these implicit parameters in the previous mathematical notation results in the de-
scription below:

10

• Problem Parameters:
−→
P

• Simulation Parameters:
−→
S

• Design Variables:
−→
X

• State Variables:
−→
Y (
−→
P ,
−→
S ,
−→
X)

• Objectives Functions:
−→
F (
−→
P ,
−→
S ,
−→
X,
−→
Y)

Worth highlighting that, the state variables may not be injective, i.e., possess the behavior of
a one-to-one function from its domain to the image. Therefore, different sets of design variables
could yield similar state variables. Figure 2.2 depicts such correlation between design variables
and state variables, whereXi represent a set of design variables, and Yj their corresponding set of
state variables. For this example, assumes the implicit utilization of the parameters of the problem
definition and simulation scenario.

X1

Xn

X2

Y1

Ym

Y2

Design
Variables

State
Variables

Figure 2.2 – Optimization Problem - Non-Injective Behavior

Likewise, the evaluation of the objective functions can also manifest similar behavior. How-
ever, that is a highly undesired behavior because this characteristic makes the indicator completely
useless. After all, an indicator with such behavior will not be capable of differentiating solutions
or gauge which one of them best fulfills the problem requirements.

The utilization of vector notation masks a characteristic of this class of problem: multi-type
values (40). It is important to note that, depending on the methodology used to set up the optimiza-
tion problem, a mixture of values of different types may compose its parameters and variables,
e.g., integer, float, boolean. That information is crucial to the selection of the solving algorithm,
as many of them does not natively support the optimization of the multi-type values.

The purpose of an optimization problem is the specification of a solution that best fulfills its
prescribed requirements, given a set of constraints and restrictions (6). However, the concept of
the "best" solution is relatively vague and not easily identified on all problems. A proper definition
of the meaning of requirements fulfillment is necessary to handle this specific issue (1).

11

The idea consists of translating the optimization problem to a minimization/maximization
problem. Given that its objectives commonly describe the costs, their diminishment becomes the
main objective of the optimization process. For that reason, implementations in the minimization
form are predominant in the literature. Whereas conflicting indicators, i.e., maximization indica-
tors in a minimization problem, are translated into minimization indicators through the internal
evaluation of their negative value.

Likewise, the same procedure applies to transform minimization indicators into its maximiza-
tion form. Highlights that this procedure does not implicates in non-linear transformations in the
image of these indicators. Thus, there are not solution concentrations as observed in the evalua-
tion of non-linear transformations, e.g., the inverse of the indicators.

The mathematical formulation handles the design variables and state variables as the domain
of the constrained optimization problem, and the objective function represents its image (41, 1, 6),
in which the design constraints comprehend the lower and upper boundary of the vector of design
variables, effectively delimiting its search space (32). Therefore, the optimization problem can be
seen as follows:

Opimization Problem

minimize

−→
F (
−→
P ,
−→
S ,
−→
X,
−→
Y)

subject to

behavior constrains on

−→
Y (
−→
P ,
−→
S ,
−→
X)

design constrains on X

equilibrium constrains

In a constrained problem, its number of degrees of freedom corresponds to the subtraction of
the number of equality constraints from the number of design variables (41). A negative result
indicates an overconstrained problem, i.e., its system of equations has more unknowns variables
than equations.

Regarding the resolution of optimization problems, there are two schools of thoughts: (a)
single objective and (b) multi-objective. The first one comprises the methods that handle problems
with a single objective function, be that natively or through the grouping of multiple objective
functions into a single value. While the second utilizes the concepts of Pareto Optimality Theory
to solve a problem with conflicting objectives without the attribution of weights for them. Figure
2.3 depicts an example of the expected results of these pair of approaches.

Equation 2.1 describes the most commonly used method to transform a multi-objective into
a single-objective: a weight function capable of attributing different degrees of influence to the
elements coming from the same set of data, where Fi and Wi respectively describe an objective
function and its influence on the final output of the weight function.

−→
F (
−→
P ,
−→
S ,
−→
X,
−→
Y) =

N∑
i=1

WiFi(
−→
P ,
−→
S ,
−→
X,
−→
Y) (2.1)

However, the definition of appropriates values to these weights is quite challenging, because of

12

(a) Single-objective (42) (b) Multi-objective (43)

Figure 2.3 – Optimization Problem - Results

the necessity of conciliating priorities criteria with issues related to the range and scales of values
of each of these indicators (44). This issue only worsens when evaluating objective functions that
hold different meanings, e.g., monetary cost, weight, execution time, and sensibility. Another
impasse happens while dealing with mutually exclusive objective functions, an issue that a linear
transformation is not capable of handling. Nonetheless, once these issues are solved, there is a
direct comprehension of the results, as indicated in Fig. 2.3 (a).

The Pareto Optimality Theory describes predicaments in which objective functions have equal
importance and a confliction behavior in their image, i.e., improving a single indicator result in
the worsening of at least one of the others objective (45, 46). In these situations, it is only possible
to make a tradeoff between these objectives.

The dominance concept is defined as: A vector −→u = (u1, u2, ..., uk) is said to dominate
another vector −→v = (v1, v2, ..., vk) (denoted by −→u � −→v) if and only if −→u is partially less than
−→v , i.e. ∀i ∈ {1, ..., k}, ui ≤ vi ∧ ∃i ∈ {1, ..., k} : ui < vi (41).

Therefore, non-dominated solutions groups those that its dominance remains unchallenged in
the evaluated search space. Regarding the objectives functions, Pareto Set and Pareto Front will
be used to identify their respective domain and image.

In the multi-objective approach, the solver aims to identify a set of non-dominated solutions
within the search space. However, its entire evaluation is generally neither feasible nor desired.
In practice, most implementations only evaluate a subset of all the possible solutions. Thus,
the concept of dominance applies exclusively to the evaluated population, not extending to the
unexplored search space.

This method conventionally operates iteratively, thus in a convergent problem, there is a pro-
gressive improvement of the Pareto Front. In a minimization problem, this graphically translates

13

into the approximation of the Pareto Fronts to the plot’s axes. Figure 2.3 (b) exemplifies this
typical behavior, in which the blue and red dots compose the initial population of the problem,
where the red dots mark its first Pareto Front. The remaining data pertains to the Pareto Fronts
identified along the optimization process.

Therefore, unlike the previous method, a multi-objective optimization does not output a single
solution (47, 41). The final call in the selection of the solution still falls in the hand of the decision-
makers of the project, in which the Pareto Front acts a catalog of solutions (44, 48). Nevertheless,
regardless of the selected solution, the dominance criteria guarantee that there is no better solution
than them among the evaluated subset of the search space (19).

2.4 STRUCTURAL OPTIMIZATION

In this context, structural optimization comprehends the process that analyzes a structure’s
behavior under a set of constraints (49), e.g., external forces acting on the structure, in which its
primary objective is the determination of a geometry that has higher efficient usage of materials on
predefined operational conditions (50). Highlights that, this process can lead to a strict solution,
i.e., only correctly operate on a specific scenario (51).

This procedure has four prerequisites: (a) a design model, (b) an analysis model, (c) a set
of operation scenarios, and (d) an optimization algorithm (49). Nowadays, the first describes
a virtual representation of the designed structure, respectively, a geometric representation. This
design model is usually generated by CAD software that allows the parametric manipulations of
its geometric features (52).

In contrast, the analysis model describes how the external forces affect the structure, i.e., a
response representation. Whereas there can be a single design model, the same can not be said to
its analysis model.

The operation scenarios describe the operational conditions of the simulations, the environ-
ment that the structure is being fitted to best perform. At last, the optimization algorithm repre-
sents the methodology used to identify the design variables.

The objective of the design model and analysis model is essentially the same: represent the
product. However, each of them aims to characterize a distinct aspect of this same product. The
design model translates a concept product into a graphics model, whereas the analysis model
enables the simulation of the real-world’s structural behavior of this model. Figure 2.4 depicts the
correlation between the different representations of the product.

However, these analysis models describe problems which its analytical solutions are challeng-
ing to obtain (53). Thus, through a relaxation on the requirements of the solution, numerical meth-
ods were then applied to obtain an approximated solution, of which the Finite Element Method
is among the most classical technique, yielding simulations with both adjustable computational

14

Design ModelConcept
Product Analysis Model

Figure 2.4 – Structural Optimization - Representations

cost and trustability.

There is an extensive range of applicable object functions while dealing with structural opti-
mization (54, 50, 55, 56, 57, 58, 59). Nonetheless, regardless of the project’s purpose, most likely,
it will be subject to constraints related to the below structural characteristics:

• Compliance: structure flexibility, typically measured in units of meters per Newton.

• Deflection: displacement under load.

• Displacement: the difference between the initial and final position of a single point of the
solid.

• Buckling: instability that leads to structural failure.

• Mass: physical body’s property and a measure of its resistance to acceleration under load.

• Manufacturing Cost: the sum of costs of all resources consumed in the process of making a
product.

• Natural Frequencies: the frequencies in which the structure tends to oscillate in the absence
of any driving or damping force.

• Safety Factor: the ratio of the applied load and material strength.

• Strain: deformation of a solid due to stress.

• Stress: force per unit area.

• Temperature: physical quantification to express the perceptions of hot and cold.

2.5 FINITE ELEMENT METHOD

The Finite Element Method (FEM) is a numerical methodology that approximates solutions
for complex problems, a process that divides the problem domain into several small elements.
Its core idea consists in the application of the physical laws on these elements, following the
establishment of equations that models the interaction between them. The result of this process
is a set of linear algebraic simultaneous equations, individually easily solvable but in a massive
amount (60).

15

The concept of nodes is another essential component of this methodology. Graphically the
nodes designate an element’s boundaries and also the points of interaction between other elements
(53). The definition of the coordinates of these nodes in the problem’s domain is called mesh
generation. Figure 2.5 exemplify that in the context of a structural optimization problem, in which
a meshing process translates the CAD models into analysis-suitable geometries, and enables the
execution of a Finite Element Analysis (FEA) (33).

Figure 2.5 – Finite Element Method - Explanation (61)

In the literature, several algorithms implement the FEM. Nonetheless, all of them share three
primitive stages: (a) input preparation, (b) formulation of the system of equations, and (c) res-
olution (62). The first analyzes the input structure in order to create a discrete representation,
resulting in a mesh-based model. The second takes the coordinates of the nodes to define the
equations that describe the interaction of this piecewise structure. The last step is the resolution
of the resulting system of equations.

A mesh’s number of nodes indicates its degrees of freedom, which directly correlates with the
complexity of the system of equations. In that context, two aspects heavily influence resulting
complexity of the meshing process: (a) the structure details, and (b) the meshing algorithm.

A mesh is nothing but a collection of simple elements built to resemble a single-piece structure.
Thus it is reasonable to assume that a complex structure would require more elements than a
simple one. Nonetheless, that becomes a fatal issue in extremely detailed structures, due to the
size of its resulting mesh (63).

Meshing is an extremely complex problem and is a field of research on its own. For any
given structure, there is an infinite number of mesh representations with different results and
computational costs. Depending on the used algorithm, its complexity may even exceed the
complexity of solving the remaining phases of the FEM (62). Thus, it is quite popular the reuse
of meshes throughout simulations.

16

The cold truth is that a finite element mesh can never fully replicate its origin model. More-
over, it is not strange to observe the introduction of unknown behaviors in the analytical results
(33), due to slight discrepancies from the CAD geometry.

The methodology FEM bypasses the condition of unsolvability of a class of complex prob-
lems up to now without a feasible analytic solution method. Controversial to its simple idea, the
resulting procedure is far from trivial, being at the very least as complex as its source problem.

Therefore, its utilization in an iterative process, e.g., an optimization process, will not be
without difficulties. The main expected issue is the excessive computational effort required to
obtain results with reasonable quality (47, 2).

Given the high demand for information about the problem response in an optimization pro-
cess, that for sure will implicate in lengthy processing time (64, 65). Likewise, due to its high
hardware requirements, the complete parallelization of the process will hardly be possible with-
out its clusterization. At last, due to the meshing process, the results consistency throughout the
experiment becomes another issue (66).

2.6 DESIGN VARIABLES

The origin of the design variables plays a significant influence on the overall course of the
optimization process (67). Two categories conventionally segregate this phenomenon: (a) CAD-
based design, and (b) Finite Element based (FE-based) design. Figure 2.6 depicts the flowchart
about their creation pathway.

CAD-based

FE-based

Features

Mesh

Optimization
Process

Design
Variables

Figure 2.6 – Structural Optimization - Design Variable

In CAD-based optimization, each design variable specifies a geometric feature of the design
model, i.e., an angle; a position; a width; a length; and even the amount of a given feature (68).
Highlights that, due to the CAD model’s parametric modeling innate functionalities, the vast
majority of its features are parametrizable (69).

However, the selection process that attributes which and how many of them as design variables
remains a project decision. Because as their number increases, higher is the degree of freedom
and complexity of the optimization process (70, 71). That way, the alteration of a design variable
issues an update on the design model itself and consequently compels the reconstruction of the
analysis model - a very onerous task (54, 72, 73).

17

On the other hand, the design variable of an FE-based optimization pertains the properties of
the fine element mesh itself, i.e., element fulfillment, nodal coordinates, and nodal connection.
Nonetheless, the position of the node in the mesh indicates their function in the mesh, for they
can either specify the outer shape of the model or the finite elements. In an optimization problem,
the set of candidates design variables cames exclusively from the first group (68).

For that reason, this modality can achieve a significantly higher degree of freedom (67). Free-
form optimization is another designation found in the literature, due to the definition of shape’s
boundaries without any prior explicit parameterization (69). However, it remains true that the
resulting design model is inexorably a deformation of its reference design model. Hence their
alteration does not demand the update of the design model but the analysis model - a very trivial
task.

The core advantage of the second approach lies in the fact that updating a finite element mesh
is significantly less onerous than its complete reconstruction. Because in the end, it boils down
to changing values in the matrices of the finite element mesh. However, the analysis model’s
disassociation from the design model during the optimization process also has its particular chal-
lenges. The primary issue is its proneness to produce shapes that are not easily manufactured
(32, 67, 74), leading to an increase in the production cost and problems in the scalability of the
project. Likewise, this approach’s search domain is vastly superior to its counterpart, conciliated
with cost functions that have a higher degree of complexity.

2.7 CLASSIFICATION

In structural optimization, there are three mainstream classifications about the handling of
the methodology: (a) sizing, (b) shape, and (c) topology. However, in order to fully differenti-
ate them, the concepts topology and shape must be understood apriori. The formal definition of
topology states that it describes invariant properties of an object upon transformation – namely,
convergence, connectedness, and continuity. In the specific application, this notion pertains the
way that the melding of the individual parts that composes the model, disregarding any possi-
ble transformation on its shape. In counterpart, the shape property of an object states its outer
boundary, outline, or external surface.

Among the different strategies, the sizing optimization process constitutes the earliest ap-
proach researched in the topic of structural improvement (66). In here, the domain of the design
model and its state variables are known a priori and remains constant throughout the entire pro-
cess (50, 75). The identification fo the optimal design occurs by changing the different design
variables while keeping the shape and topology of the structure untouched (76).

Initially, it is hard to perceive the difference between shape and sizing optimization. However,
the distinctions lie in the fact that a shape optimization alters the boundaries of the model (50, 75).
A process that typically calls for an update on the analysis model, i.e., issues the creation of a new

18

finite element mesh (66, 77).

In other hands, the topology optimization compromises a whole different school of thought.
Here, there are two main aspects at work: (a) connectivity, and (b) fulfillment. Its core idea is
to remove extraneous material from the model (55). This process significantly affects the shape
of the resulting model. Achieved by altering the properties of the elements in the mesh of the
analysis model by attributing solid, empty, and porous regions (78). In short, it is a strategy
that effectively adds holes in the structure and operates the connectivity of the design domain
(50, 76, 75). However, because it evaluates different combinations of topologies, the results are a
step above the other strategies but also requires more computational efforts (77).

2.8 CONCEPTUAL SOLUTION

There are countless ways to integrate the design process, structural optimization, and FEM.
Nonetheless, the following sequence of procedures reconciles different optimization approaches
in order to supplement their disadvantages.

1. Concept Solution

2. Topology Optimization

3. Design Simplification

4. Parametrization

5. Shape Optimization

Regardless of its objective, the problem necessitates a concept solution that can fulfill primary
requirements, though may not all of the secondary ones. The idea of this process is to remove the
excess materials right at the initial phase of the design process. That way, there is a continuous
improvement of the solution, which early-stage models act as a base for the development of the
subsequent models (50).

The impossibility of complete automation marks its main drawback. The output solution’s
geometric features of a topology optimization do not conform with the conventional standard
(79). Thus, a design simplification is then made necessary, followed by the selection of the design
variables of the shape optimization.

Therefore, the topology optimization acts as a preprocessor of the concept structure, while
the shape optimization defines the final solution through the smoothing of the jagged boundaries
(80, 81, 82). Hence, this represents a procedure that initially aims to produce a rough concept,
which is then fine-tuned to fulfill its requirements.

19

2.9 OVERVIEW

Problem solving is the core skill of an engineer, so that private organizations and even the
government resort to them to solve their predicaments. Nonetheless, every problem has its pe-
culiarities, thus even established solutions demands adjustments in order to attain its objectives.
Therefore, Design Process and more specifically, the Engineering Design Process, enables even
inexperienced professionals to build robust solutions efficiently.

In the context of engineering, their problems commonly possess more than one solution, each
of them with different advantages and disadvantages. Nonetheless, a set of metrics could measure
the goodness of these solutions, and the problem could then become a minimization/maximization
problem.

Therefore, Structural Optimization is a procedure that implements those techniques in order to
determine a structure’s geometry that enables a higher efficient usage of materials on predefined
operational conditions, while fulfilling a set of project restrictions and safety regulations .

In this work, multi-objective optimization techniques will be used to solve Mechanical Struc-
tural Design’s problems. Nonetheless, the evaluation of the problem’s cost function represents a
critical issue due to its high computational cost and execution time, leading the research towards
the concept of surrogates, the topic of Chapter 3.

20

3 SURROGATES

In an optimization context, the cost function’s evaluation is crucial for its progression. That
happens because there are periodic evaluations of the cost function in order to guide the search
process towards the minimum/maximum global. However, often in an Engineering Design Pro-
cess, this cost function’s evaluation must be done by simulating complex mathematical systems of
high computational costs. In the case of Structural Optimization, specific FEM software packages
perform these simulations, e.g., Ansys, Abaqus, and Autodesk Simulation.

Therefore, Surrogates represent a set of methodologies capable of reducing the computational
cost of the search process while maintaining acceptable accuracy. The surrogate models de-
scribe functions that mimic the behavior of another function or process, in which “model”
is the most common designation for these representative functions.

There are two main reasons for its utilization: (a) handle a black-box problem or (b) a com-
putationally strenuous problem. The first category defines problems that there is little knowledge
about its internal operation, which is generally insufficient to generate a complete analytical rep-
resentation. The second category describes problems that have issues regarding their execution
costs. Therefore, surrogate models combine both generic representation and attractive computa-
tional simplicity (8).

The surrogates methodologies have resulted in the creation of a new branch of search al-
gorithms: surrogate-assisted optimization algorithms or model-assisted optimization algorithms.
Moreover, studies have indicated that this approach has the potential to solve some of the engi-
neering problems’ issues (7).

The principle of operation of the surrogates methodologies is quite simple, though there is a
varying degree of complexity on their implementations, in which model creation methods builds
a surrogate based on samples of the real function. Thus, two primitive procedures compose its
entire process: (a) a Population Sampling, and (b) Model Construction.

However, worth highlights that a surrogate model is only capable of mimicking a single func-
tion. Therefore, several models are necessary for a process in which a single evaluation point
output several outputs. Nonetheless, different surrogates can share the same sample (or the same
input domain) but models distinct behaviors.

Therefore, the following chapters provide an in-depth overview of the internal operation of
a typical surrogate. Of which, Chapter 3.1 explains selection of the stimuli inputs. Chapter 3.2
handle the update strategies of surrogates models. Chapter 3.3 details the different techniques
applied to construct a model. At last, Chapter 3.4 discourse on the challenges of its utilization.

21

3.1 SAMPLING STRATEGIES

In the context of surrogates, there is a consolidated pattern: quality stimuli inputs are crucial to
building good surrogate models (83). Moreover, that extends to all model construction techniques.
Some approaches may have the capability to extract more information from its data than others,
but there is a limit on that. Therefore, even simple model construction techniques achieve accurate
representation once given a good set of data points (15, 84). Nonetheless, sampling the design
space is not a trivial task, much less considering high-dimensional problems.

The sampling strategies are responsible for the selection of data points within the search space.
In the literature, these data points could also assume the designation of samples, observations, or
training points. However, the smaller the distance between an evaluation point and a training
point, higher is the likelihood of obtaining accurate estimations. For that reason, there are two
main approaches to their selection:

a) Domain-based Sampling Strategy: the training points are sparsely distributed in the search
space so that all evaluation points possess similar distance towards the training points.
Therefore, at least theoretically, also a similar accuracy.

b) Response-based Sampling Strategy: the training points are chosen according to the behav-
ior of the source function, so the accuracy of the resulting model depends on the evaluation
point’s location.

The Domain-based Sampling Strategy is commonly applied with no evaluation of the cost
function before the building of the surrogate. Moreover, there is no further update after the
model’s construction. For this characteristic, other common designations for this approach are
model-free, non-adaptative, a priori, one-shot, off-line or single-stage (84).

The Response-based Sampling Strategy assumes that it is possible to identify models failing to
mimic the source function’s behavior (or the actual function). Thus the new training points will be
strategically positioned within low-efficiency regions to enhance the efficiency of the surrogate.
Similar to the other approach, there is no standard designation for this strategy, of which model-
based, adaptative, a posteriori, sequential, or online are the most common designations (84). In
here, another designation for the additional training points is infill points (85).

3.2 MANAGEMENT STRATEGY

The main objective of an adaptative implementation is to building surrogate models with the
least amount of training points as possible while fulfilling its representation requirements (84). A
practical implementation for that is the utilization of surrogate models alongside an optimization
process. Where identifying the Pareto Front is far more critical than the flawless characterization

22

of the entire space search domain. Moreover, it may not be feasible to build a non-adaptative
model or just too time-consuming.

Therefore, Management Strategy describes procedures that coordinate when and how to up-
date the surrogate models (5). This leads to the definition of : (a) update triggers, and (b) selection
methods.

The update triggers could either be related to the optimization process or the surrogate model
itself. The first category holds triggers based in iteration-number and evaluations on the good-
ness of the Pareto Front, e.g., spacing, richness, diversity, or optimality (19); whereas the latter
congregate those related to the accuracy of the model.

The identification of low-efficiency models occurs by analyzing the surrogate model’s estima-
tions in a set of known values of the source function (64). These test points are an independent
set from the training points population. Thus, they serve exclusively to measure the performance
of the surrogate model against the source function.

An error measure or correlation criteria then quantify the accuracy of the surrogate model,
commonly through the identification of the root mean square error (RMSE) or the correlation
coefficient (R) (86). Nonetheless, the latter provides an advantage regarding its measures inter-
pretation. In which, the measures range from 0 to 1, where a correlation coefficient equal to 1
indicates an exceptionally accurately surrogate model. In contrast, the other measure interpreta-
tion depends on the behavior of the source function.

The drawback of this procedure is that it requires evaluations of the cost function, but at the
same time, do not actively improve the surrogates, i.e., essentially wasting valuable information.
Nonetheless, there is a way to achieve similar results without the definition of a set of evaluation
points, thou with far less accuracy.

Given prior knowledge of the range of values of the source function, it is possible to detect
anomalous behavior on the surrogate models. The principle of operation of this process lies in
the fact that estimations from low-efficiency models are prone to misbehave, i.e., violate these
expected ranges of values.

Otherwise, the selection method choose the new training points based either on (a) a design
space exploration criteria or (b) a design exploitation criteria (12). At its core, both approaches
enhance the surrogate model, but the first intend to improve the overall accuracy whereas the
second aims to improve the most prominent design region, i.e., the regions closest to the actual
Pareto Front.

In an exploitation-based approach, the most straightforward strategy is the selection of new
training points among the Pareto Set. Hence, this process does not take into consideration the
current training points population. Therefore, in that vicinity could exist training points capable
of ensuring a higher local enhancement of the model.

On the other hand, an exploration-based approach only takes into consideration the current
training points population. It aims to settle training points in regions that most lack representation,

23

i.e., regions with the highest distance between training points.

3.3 THE MODEL CONSTRUCTION

Two criteria heavily influence the accuracy and computational cost of a surrogate model:
scope and method. The surrogate’s scope delineates the mimicked portions of the search space,
and the method describes techniques that identify and reproduces the behavior of the source func-
tion.

Figure 3.1 exemplifies the two main strands of a models’ scope. Where the global approach
builds a single model for the entire domain, whereas the local approach builds several indepen-
dent models throughout the search space.

Variable X1
[0,1]

Va
ria

bl
e

X 2
[0

,1
]

(a) Global Model

Variable X1
[0,0.5]

Variable X1
[0.5,1]

Va
ria

bl
e

X 2
[0

,0
.5

]
Va

ria
bl

e
X 2

[0
.5

,1
]

(b) Local Model

Figure 3.1 – Model Construction - Scope

From an implementation perspective, the global approach has an advantage above the local
approach. In the first, the optimizations algorithms have to manage a single model. Whereas
in the second, the process has to manage several models, consecutively the workload is directly
proportional to their number. However, studies have shown that in problems of high dimension,
those advantages cease to exist, due to the ever-increasing demands on the number of training
points needed to build a global surrogate model (64).

The researches in the field of model creations have yield a considerable amount of method-
ologies. Nonetheless, the preeminent approaches construct their models based on criteria of in-
terpolation, regression, projection, or a mixture of them. Hence, a classification arises from the
clusterization of the techniques of a similar nature (87):

• Data-Fit Models (DFM)

• Reduced-Order Models (ROM) or Projection-Based Models (PBM)

• Multi-Fidelity Models (MFM)

24

The Data-Fit Models congregates methods that take a few samples of the source function
to generate a surrogate model based on their regression or interpolation (84). Therefore, they
do not model the physics behind its sourcing problem, i.e., their outputs are non-physics-based
approximations (88). The most commonly used methods are listed below:

• Response Surface Model (RSM, Polynomial Regression)

• Gaussian Process Regression (Kriging)

• Multivariate Adaptive Regression Splines (MARS)

• Artificial Neural Networks (ANN)

• Radial Basis Functions (RBF)

• Support Vector Regressions (SVM)

• Stochastic Spectral Approximations (SSA)

In contrast, the Reduced-Order Models do not require data samples from the source problem
but its discretized governing equations. The target of this approach are problems described in
the form of large-scale systems of complex equations arising from the discretization of partial
differential equations, which their large dimensionality often leads to excessive computational
efforts and data storage management issues (89). Hence, this approach aims to generate low-
order models that retaining the core dynamics, while neglecting irrelevant features of the large-
scale system (90, 84).

The Multi-Fidelity Models groups methods that are capable of combining data from different
levels of fidelity, i.e., the degree to which a model captures the physics of a phenomenon of
interest. For this characteristic, this approach is also known as data fusion or data merging.
The sourcing data came from Data-Fit Models, Reduced-Order Models, simplified simulations
(equalization, resolution), and empirical methods (84).

Another approach in the rising is the simultaneous utilization of Multiple Surrogate Models
to overcome their drawbacks. These methodologies strive to cross-validate their estimations in
order to identify low-fidelity regions (91) or build an ensemble of surrogates (92).

3.3.1 Radial Basis Function

In this study, the chosen model construction method is the Radial Basis Function (RBF). This
decision is supported by the results of several studies that have used the RBF in a similar opti-
mization context, in which have shown that this approach provides a more accurate approximation
for high-dimension problems in comparison with other Data-Fit Models (DFM) (93, 94, 95), such
as, a) Response Surface Model (RSM), b) Support Vector Regressions (SVM), and c) Gaussian
Process Regression (Kriging).

25

Likewise, the RBF is also an approximation method in which the model amplitudes are its
only degrees of freedom. Thus, for positive definite RBFs, the linear systems for the amplitudes
are guaranteed to be non-singular (96). Another point of consideration was the computational cost
of the method, which is significantly less computationally expensive than the Kriging, resulting
in overall faster operation (97), especially at high-dimension problems (97).

The method builds models that take into consideration the values of N known distinct points
of the source function to approximates the evaluation of an arbitrary unknown point in its domain.
Figure 3.2 exemplify the construction of a model with five training points.

Figure 3.2 – RBF - Induction (98)

Equation 3.1 express a typical RBF implementation given N distinct training points, where
λ1, ..., λN ∈ R are the weights to be determined, ‖.‖ conventionally represent the Euclidean
norm, φ is a radial function, Xs1, ..., XsN ∈ Rd are the training points, d is the dimension of the
problem (number of variables of the problem), and p a complementary function.

f(X) ≈ f̃(X) =
N∑
i=1

λiφ(‖X −Xsi‖) + p(X) (3.1)

Table 3.1 list the most common radial functions, which are defined for r ≥ 0 and γ is a
positive constant. As there is no solid evidence that indicates which one of them is better than the
other (8), there is no established selection criteria for radial functions either. Nonetheless, studies
have shown that the cubic basis function with a polynomial tail has a promising performance
(99). Moreover, this basis function does not require the definition of any additional parameter,
characteristic that could induce the inclusion of behavior alien to the source function and would
also require an auxiliary optimization procedure to adjust the constant parameter γ (100).

Equation 3.2 describes a RBF with a linear polynomial tail, where a1, ..., ad ∈ R and b ∈ R
are the weights of the polynomial interpolation.

26

Name Equation
Cubic (101) φ(r) = r3

Thin Plate Spline (102) φ(r) = r2ln(r)

Gaussian (103) φ(r) = e−(r/γ
2)

Multiquadric (104) φ(r) =
√
r2 + γ2

Table 3.1 – Radial Functions

f(X) ≈ f̃(X) =
N∑
i=1

λiφ(‖X −Xsi‖) + aTx+ b (3.2)

Equation 3.3 express the system of equations used to determine the weights λ, a and b of the
Eq. 3.2.

(
Φ P

P T O(d+1)×(d+1)

)(
λ

C

)
=

(
F

O(d+1)

)
(3.3)

Φij = ‖Xsi −Xsj‖ ; P =

XsT1 1

XsT2 1
...

...
XsTN 1

 ; λ =

λ1
λ2
...
λN

 ; C =

a1
...
ad
b

F =

f(Xs1)

f(Xs2)
...

f(XsN)

 O(d+1)×(d+1) =

0 0 . . . 0

0 0 . . . 0
...

...
0 0 . . . 0

 ; O(d+1) =

0

0
...
0

The resulting system of equation is a typical linear systems AX = B, which its coefficient

matrix in Eq. 3.3 is invertible if and only if rank(P) = d + 1 (96), i.e., there has to be d + 1

affinely independent points among the training points populations (100).

The Singular Value Decomposition (SVD) technique could be used to efficiently calculate
these matrix inversion (105). Thus, once the coefficients λ and C are defined, the values at any
position can be calculated with the Eq. 3.2. Nonetheless, it is only necessary to solve the system
of equation a single time, the subsequently calls of the RBF models adopts these coefficients.

3.3.2 Examples

The model construction method’s capabilities were put to test in three renown cost function in
the field of optimization algorithms: a) Three-hump camel (camel3), b) Ackley, and c) Schwefel.

The Three-hump camel (see Eq. 3.4) is bi-dimensional function that describes a valley-shaped

27

surface, which has three local minima at its flat region, which is usually evaluated for xi ∈
[−5, 5]∀i = 1, 2.

f(x) = 2x21 − 1.05x41 +
x61
6

+ x1x2 + x22 (3.4)

The Ackley (see Eq. 3.5) function is widely used for testing optimization algorithms, which
describes a plateau with many local minima, and a large hoke at the center, where d indicates the
target dimension, and remaining parameters are keep at their default values: a = 20, b = 0.2 and
c = 2π.

f(x) = −aexp

(
− b

√√√√1

2

d∑
i=1

(x2i)

)
− exp

(
1

2

d∑
i=1

cos(cx2i)

)
+ a+ e1 (3.5)

The Schwefel (see Eq. 3.6) is a complex N dimensional function with many local minima,
which is usually evaluated for xi ∈ [−500, 500]∀i = 1, ..., d, where d indicates the dimension of
the problem.

f(x) = 418.9829d−
d∑
i=1

xisin
(√
|xi|
)

(3.6)

Figure 3.3 exemplify the construction of models utilizing the RBF technique, where the items
(a), (b), and (c) holds plots the surface of function Camel3, RBF Model with 25 training points,
and RBF Model with 150 training points respectively; the items (d), (e), and (f) holds plots the
surface of function Ackley, RBF Model with 25 training points, and RBF Model with 150 training
points respectively; the items (g), (h), and (i) holds plots the surface of function Schwefel, RBF
Model with 25 training points, and RBF Model with 150 training points respectively.

3.4 CHALLENGES OF SURROGATE UTILIZATION

Ideally, an implementation of the surrogate methodology should reconcile both generic repre-
sentations with an attractive computational simplicity (8). Nonetheless, these characteristics are
natively conflicting objectives. Because building a model with reasonable accuracy of a source
function with an image of high complexity requires more training points (106).

However, as the number of training increases, so does the computational complexity of the
surrogate model; in which “empty space phenomenon” groups the set of issues related to model-
ing a source function without the right amount of training points (107).

That issue only worse while evaluating high-dimensions problems, commonly called the
“Curse of Dimensionality”. In here, there is a sharp increase in the number of the necessary

28

0

5

500

1000

5

F
x

1500

X2

2000

0

X1

2500

0

-5 -5

(a) Function Camel3
Image [−5, 5]

-500

5

0

500

5

1000

F
s

1500

X2

0

2000

X1

2500

0

-5 -5

(b) RBF Model
[N = 25]

-500

5

0

500

5

1000

F
s

1500

X2

0

2000

X1

2500

0

-5 -5

(c) RBF Model
[N = 150]

0

40

5

20 40

10

F
x

20

15

X2

0

X1

20

0
-20

-20

-40 -40

(d) Function Ackley
Image [−30, 30]

5

40

10

20 40

15

F
s

20

20

X2

0

X1

25

0
-20

-20

-40 -40

(e) RBF Model
[N = 25]

5

40

10

20 40

15

F
s

20

20

X2

0

X1

25

0
-20

-20

-40 -40

(f) RBF Model
[N = 150]

0

500

500

500

F
x

1000

X2

0

X1

1500

0

-500 -500

(g) Function Schwefel
Image [−500, 500]

-1000

500

-500

0

500

500

F
s

1000

X2

0

1500

X1

2000

0

-500 -500

(h) RBF Model
[N = 25]

0

500

500

500

F
s

1000

X2

0

X1

1500

0

-500 -500

(i) RBF Model
[N = 150]

Figure 3.3 – Examples of Surrogate Model

training points (90, 108, 85), in which the characterization of non-linear behavior becomes ex-
ceptionally inefficient for high-dimensions (106, 84). In essence, it describes a scenario where
there is an exponential increase in the overall complexity (109). Hence, its computational require-
ments become prohibitive (110, 111, 8).

The “Curse of Dimensionality” represents the Achilles’ heel of all surrogates methodologies,
one that is not easily fixable. As it simultaneously affects the process of Sampling Population
and Model Construction (85, 111). The issues lie in the fact that at a high-dimension, some of
the presuppositions start to lose its meanings or become misleading, e.g., Euclidean distances
measure (107, 112).

29

3.5 OVERVIEW

The utilization of surrogate models by optimization algorithms grants a significant reduction
of the process overall computational cost. Nonetheless, the population sampling strategy and
model building method greatly influence the technique’s performance, so that it could fail to
emulate the source function, or be as costly as the direct approach.

In this chapter, the principal characteristics and procedures of a surrogate methodologies im-
plementation were thoroughly explained, detailing its different approaches and challenges. Next
chapter will be devoted to discussing the interaction of such techniques in the context of an opti-
mization algorithm.

30

4 METHODOLOGY

In the context of a conventional optimization algorithm, regardless of the implementation, its
iterative process has unrestricted access to the cost function (2, 3). For that matter, some even
perform multiple evaluations in the same iteration. Figure 4.1 depicts such an approach, where X
and F are respectively the input and output of the cost function, emphasizes that the input is the
dimension defined in the search algorithm, i.e., the set of optimized parameters. Moreover, the
output is composed of its objectives; i.e., figuratively speaking the eyes of the said algorithm.

Optimization
Algorithm

Cost Function
Evaluations

X

F (X)

Figure 4.1 – Conventional Optimization Algorithm.

For most problems, that is usually very effective. So that the majority of the academic research
concerns the development of a new algorithm or modifications of existing ones, focusing on
improving the convergence to the optimal solution and overall results reproduction (77). Given
that, the criteria used to rank the algorithms is their capability of reaching the optimal solution.

However, there are cases that unrestricted access to the cost function is a problem itself, as
it could be quite costly. Generally, these cost criteria depend on the problem at hand. Some
demand the execution of experiments, that could be both laborious and financially expensive.
Alternatively, run simulations, generally computationally expensive (6). Regardless, it is a fact
that either of them is time-consuming, making the conventional approach impracticable as the
optimization process requires several inputs of the cost function (2, 4, 5). That way, instead of
focusing on improving the optimization algorithm’s search strategy, through the utilization of
Surrogates’ technique was possible to restrict the access to the cost functions.

Therefore, the following chapters provide an in-depth overview of the internal operation of
a typical surrogate. Of which, Chapter 4.1 explains the internal operation of the optimization
process. Chapter 4.2 describes how the model evaluation alters the conventional optimization
algorithm. Chapter 4.3 details the handling of the cost functions. Chapter 4.4 overview some
key aspects about the solutions. At last, Chapter 4.5 discourse on the challenges of population
initialization.

4.1 MODEL-BASED OPTIMIZATION

A model-based optimization is an approach that the optimization process runs over models
that try to mimic the behavior of the actual cost functions. In fact, during the entire procedure,

31

only the Surrogate can perform evaluations of the cost functions, as depicted in Fig. 4.2. Where
X and F still describe the current population of the optimization algorithm and the output of the
cost functions. However, in contrast to Fig. 4.1, here are introduced Xs and Fs, respectively
the training points used to generate the models and the output of the models. As depicted, the
Optimization Algorithm has an additional output Iteration, and additional input S. The output
information regulates the internal operation of the Surrogate, and the input is how that process
influences the operation of the Optimization Algorithm. In here, S represents a flag that compels
the Optimization Algorithm to reevaluate its current iteration solutions over the models.

Optimization
Algorithm Surrogate

X, Iteration

Fs (X), S
Cost Function
Evaluations

Xs

F (Xs)

Figure 4.2 – Surrogate Approach

In the context of a surrogate-assisted optimization, there are two distinct populations. One
holds the current’s iteration solutions of the optimization process, and another is composed of so-
lutions that are used to train the surrogate, i.e., the training points. Nonetheless, both populations
must still follow the same search domain restrictions.

As the optimization algorithm no longer has access to the cost function, the start of optimiza-
tion triggers the models’ initialization. In this process, a set of solutions are picked as training
points and then used to identify the models’ parameters. The procedure used to chose those
training points it is not trivial, and as such will addressed further ahead.

Figure 4.3 shows that the cost function values in the training points, F(Xs), and evaluation
points itself, Xs, are used to build the models. Highlights that, each of the cost functions Fi has a
distinct model described by a set of parameters Pi. Moreover, the image also reveals that each Fi
represent a model for a cost function, and all model shares the same training point set.

Training Points
Initialization

Parameters
Identification

Cost Function
Evaluation FN

F1

...

SURROGATE INITIALIZATION MODEL

PiXs

Xs F (Xs)

Figure 4.3 – Surrogate Initialization

The model strategy has a peculiar characteristic: there always be an error compared to the
source cost functions, no mattering the number of training points in the models. Furthermore,
as the surrogate population growths, the improvements in the models’ accuracy start to become
insignificant. Likewise, the model over-fitting is another critical issue, i.e., condition at which the

32

generalization performance ceases to improve and subsequently begins to decline (113).

Given that the number of training points directly correlates with the number of cost functions
evaluations and the overall execution time of the optimization process, the fewer training points
are used to build the model, the higher will be the overall performance increment. Therefore,
defining a suitable number of training points is a challenge between accuracy and computational
performance.

Based on that, arises the concept of model generation, in which the model conceived at Surro-
gate Initialization is the first-generation model. Because the critical population size can only be
identified by actually doing the process, an arbitrarily small number of training points composes
the first-generation model. Subsequent generations improve as spaces in the population becomes
smaller, procedure referenced as Update.

Figure 4.4 details the surrogates functionality showed in Fig.4.2, describing the integration of
this mechanism into the surrogate’s operation, where V holds the information about the validation
of the models, S represents a flag that compels the Optimization Algorithm to reevaluate its current
iteration solutions over the models, and P the set of parameters that defines the cost function
models. SURROGATE

Xs F (Xs)

Update

Validation

Model

P

X

Fs (X)

V

Cost Function
Evaluations

Iteration
S

Figure 4.4 – Surrogate’s Internal Operation

However, this concepts does not still explain when and how many times should the Surrogate
be updated, and neither indicates the number of training points in the final population. Instead, it
raises another consideration altogether: "How to judge the necessity of an update given that the
process essentially runs blindly regarding the actual cost functions?"

Imparting more information into the system can help to solve this problem. This can be
achieved by: (a) executing additional evaluations of the cost functions or (b) teaching insights
about its behavior. The first proposal should provide better results, granted the willingness to pay
its price. However, the second proposal regarding the transference of intelligent into the process
could also yield results associated with a lower cost. Nonetheless, most of works use the first

33

approach, given the lack of knowledge of the cost function in a black-box problem (4).

In this work none additional cost function evaluations were used to identify the necessity of
surrogate update, even taking in considering the possibility of using them as additional training
points for the next generation model. That decision is based in the fact that strategically chosen
training points are better capable to improve the surrogate model in a global scale.

Initially, in order to execute the second proposal, it was taken into consideration the behavior
of the models regarding its number of training points. As expected, smaller populations cannot
reproduce the behavior of the cost function as well as a bigger one. As such, models build with
fewer training points are more prone to be erroneous than one with a larger population.

Therefore, our system schedules the execution of several periodic updates for the model, trig-
gered by Optimization Algorithm’s iteration number. Figure 4.5 reveals that our schedule was
built in a way that most of the updates happen at the beginning of the iterative process, then
consecutively growths sparser given time.

0 50 100 150

Iteration

0

5

10

15

20

25

N
u
m

b
e
r

o
f
U

p
d
a
te

s

Mode A: 5 Updates

Mode B: 10 Updates

Mode C: 15 Updates

Mode D: 20 Updates

Figure 4.5 – Sequential Updates

Figure 4.5 depicts three suggestion of schedules for a 150-iteration optimization process. All
of them share two characteristics, the majority of the updates happen in a time-frame of 50 itera-
tions, and there is 50-iteration padding after their last update.

The updates’ concentration at the beginning, as well as the padding at the tail, are per design
and represent an updating model strategy based on the experience acquired during the develop-
ment of this research. Equations 4.1, 4.2, 4.3, and 4.4 details the mathematical equations that
formulates the strategy’s modus operandi: a) Mode A, b) Mode B, c) Mode C, and d) Mode D.

34

Mode A: Iteration = round((10 + Update)× (e
Update1.5

7.75)1.5) (4.1)

Mode B: Iteration = round((10 + Update)× (e
Update1.5

25.30)1.5) (4.2)

Mode C: Iteration = round((10 + Update)× (e
Update1.5

52.70)1.5) (4.3)

Mode D: Iteration = round((10 + Update)× (e
Update1.5

91.20)1.5) (4.4)

Figure 4.6 depicts the stages that encompasses the model update strategy: a) Initialization, b)
Global Improvement, c) Local Improvement, and d) Refinement.

At the first stage, Initialization builds the first generation model with a predefined number of
training points, conventionally a relatively small population. The second stage describes a sce-
nario in which the model update strategy uses the Global Improvement approach, during this stage
the selection training points aims to improve the models’ representability of the cost function in
the entire domain. At the third stage, the model update strategy adopts the Local Improvement ap-
proach. In here, the selection of training points is biased to introduce them in critical locations of
the search space, because prioritizing regions closer to the non-dominated solutions yields better
results than improving the overall model further (47). At last, at the fourth stage, Refinement, the
remaining iterations allows the search process to refine the results over the most complex model.

Initialization Global
Improvement

Local
Improvement Refinement

STAGE 1 STAGE 4STAGE 3STAGE 2

Figure 4.6 – Model Update Strategy

Thus, the main difference between the improvement stages is that the first seeks to improve
the model in the entire domain, while the second limits to improve the region close to the Pareto
Set, i.e., the non-dominated solutions of the current iteration. Nonetheless, at the beginning of the
optimization process, the model update strategy’ Global Improvement approach aims to ensure a
minimum representation throughout the space search domain.

However, this strategy is only useful in the long run, as it does not take into consideration
punctual errors in the models. This problem was solved by analyzing the behavior of the cost
function itself. As for most cases, it is generally possible to estimate its boundaries, i.e., maximum
and minimum values.

That way, once a boundary violation on any the models occurs, an update on the models is

35

them made necessary, a procedure indicated as Validation at Fig. 4.4. Moreover, since the cost
functions are a byproduct of experiment simulations, acquiring data to update a single model
also enables the update of all the other models without any additional cost. However, the non-
occurrence of violations does not guarantee that the models are simulating the cost functions well
either.

Figure 4.7 detail the internal operation of the entire update system, depicted in Fig 4.4.

Scheduled Update

Iteration

V Drift

Instantaneous
Failure

Current Parameters

Update Parameters

Satisfy any
Criteria?

S

P

Xs F (Xs)

Cost Function
Evaluations

UPDATE

Yes

No

Figure 4.7 – Update’s Internal Operation

Figure 4.7 shows that three criteria could trigger an update, of which, two are regarding the
number of violations, and the current iteration of the Optimization Algorithm. In this work the
violation-triggered updates are indented to handle two distinct problems: a) Drift and b) Instan-
taneous Failure. The first occurs when a few violations happen sequentially, an issue that could
lead to a biased search. The second happens when there are just too many erroneous solutions in
the population to let it proceed unattended.

The fulfillment of any criteria triggers the procedure for updating the models, indicated as
Update Parameters in Fig. 4.7 and further explained in Fig. 4.8.

Space Filling
Strategy

Xs F (Xs)

Cost Function
Evaluations

Parameters
Identification

P

S

Iteration

Training Points
Population

Xs Xs
Rebase

UPDATE PARAMETERS

Figure 4.8 – Update Parameters’ Internal Operation

The distance between the training points and the evaluation point’s dimension ponders the
models’ output value, in which closer points have a higher weight. As such, during the updates,
as indicated in Fig. 4.8, the Space-filling Strategy inserts new training points in the models to
effectively shorten the distance towards the evaluation population.

36

Similarly to the population initialization, the procedure that identifies those additional training
points is not trivial as their position must be chosen in a way that best complement the current
training points population, in which the theory behind the procedure will be fully explaining at
Chapter 5. Nevertheless, the general idea is that the improved population of training points has
better coverage of the space-search domain.

However, the concept of a model generation makes tracking the convergence of the optimiza-
tion in real-time problematic. That is because objective-based metrics come from distinct model
generations, in which the models of the first generation hold lower trustworthy. For the same
reason, previously discard solutions could be part of the Pareto Front.

Figure 4.9 depicts the internal operation of the Rebase, first apparition at Fig. 4.8. This
process is responsible for refreshing the optimization algorithm’s objective-based metrics once
occurs an update, which requires archiving the iteration’s population throughout the experiment.
A byproduct of this process is the information regarding the Pareto Set and Pareto Front from all
previous iterations. Thus, as an attempt to recovery possible discarded good solutions, they are
then added as candidate solutions in the next iteration of the Optimization Algorithm, indicated as
S in Fig. 4.9.

Iteration 1

Models
...

Iteration N

Populations Cost Functions

Optimization
Database

Iteration 1

...

Iteration N

Update
Metrics S

REBASE

Figure 4.9 – Rebase’ Internal Operation

Even then, Cost Function Evaluation still cannot promptly access the actual cost function,
because before any evaluation, a system first checks their existence in a solution database. The
decision of implementing this system is due to the possibility of the duplicity of solutions in the
same population, area re-visitation, and experiment’s repetition. Thus, this mechanism could save
a considerable amount of cost function evaluations as well as speeding up the execution of the
overall optimization, given the same experiment scenario. Figure 4.10 depicts the implemented
system, where Z represents an arbitrary solution amidst the search space, and the implicit exis-
tence of Solution Database.

Once the optimization process reaches its end, i.e., finishes to executes its 150 iterations, the
process it is not over. In view that Optimization Algorithm’s output is composed of approximated
data, there may be possible mismatches with the actual problem. Therefore, the output’s Pareto
Set feeds the real cost function to generate the official Pareto Front of the entire process.

Due to the procedure used to identify the Pareto Front, it would not be strange that the official

37

COST FUNCTIONS EVALUATIONS

Cost Functions

Recovery
Information

Check
Database Z

Backup
Information

F (Z)

F (Z)

Figure 4.10 – Cost Function Evaluations’ Internal Operation

Pareto Front hold fewer solutions than its model-based counterparty. This population reduction
effect happens because the optimization process identifies a non-dominant Pareto Set from the
surrogate models.

However, whatsoever accurately are these models, they are still an approximation. Therefore,
some of these solutions may not fulfill the criteria of non-dominance on the image of the real cost
function (114). The difference in the size of the solutions’ populations is a metric of performance
of this model-based optimization process as it measures the fitness of the models in front of the
actual cost functions.

So with this ends the explanation of this implementation of model-based optimization. That
so far is regulated by the following parameters:

• Iteration number

• Population size

• Optimization algorithm parameters

• Surrogate initial population size

• Surrogate accumulative validation threshold

• Surrogate moving average validation threshold

• Surrogate population increment on updates

4.2 OPTIMIZATION ALGORITHM INTEGRATION

In this work, the Multi-Objective Differential Evolution (MODE) was the base optimization
algorithm to the implementation of its model-based version. Besides adding the Surrogate re-
lated modules and redirecting the cost functions calls to the models, the optimization remains
practically unchanged. Figure 4.11 and 4.12 holds the flowchart of the source algorithm and its
model-based version.

38

Initialization

New Solutions

Evaluation

Selection

Output

Iterative Process

Cost Functions

Cost Functions

Figure 4.11 – Multi-Objective Differential Evolution

Figure 4.11 depicts the working principles of the four procedures of algorithm MODE: Ini-
tialization, Generation, Evaluation, and Selection. In which, the initialization procedure chooses
points from the search space domain as the initial population of solutions. The generation pro-
cedure creates new solutions via a process of mutation and crossover of the existing solutions.
Subsequently, the evaluation procedure handles the cost function calls of the set of new solutions.
At last, at the selection procedure, the previous generation solution and the new solutions are
combined as one population of solutions. Following the current iteration’s population is chosen
from this combined population. That way, the optimization process’ result is the algorithm’s last
iteration solution population.

Figure 4.12 describes the model-based version of the algorithm MODE. This implementation
follows the same working principle as its source algorithm. However, there is a redirection of the
cost functions calls to the model, likewise the inclusion of the model-based related procedures.

Another notable difference is that after a model’s update, the previous iterations solutions
participate in the selection procedure of the next iteration. This mechanism attempts to recover
previously misjudge Pareto Set’s solutions due to models limitations. In this implementation,
the last iteration solution is not the algorithm’s results, but a set known as Candidate Solutions.
The results of the optimization process are the Pareto Set of these Candidate Solutions evaluated
utilizing the actual cost functions (instead of the model).

Regardless of the implementations, the algorithm MODE requires the configurations of the
following parameters:

• Population size

• Scaling factor

• Crossover probability

39

New Solutions

Evaluation

Selection

Candidates
Solutions

Iterative Process

Update

Cost Function
Evaluation

Evaluation Cost Function
Evaluation

Validation

Models

Selection

Output

Pareto Front
Identification

Initialization

Cost Function
EvaluationBuild Models

Figure 4.12 – Surrogate-assisted Multi-Objective Differential Evolution

4.3 COST FUNCTION

A core principle of the surrogate methodology is the extraction of as much information as
possible from its available data, here characterized by the outputs of the cost function. However,
a multi-objective optimization process demands that its criteria have a conflicting behavior, i.e.,
the enhancement of one deteriorates at least one of the others.

Still, the problems benefited from a model-based procedure generally outputs large amounts
of information on each execution. Conventionally while aiming to fulfill the project requirements,
a few of them would be chosen as cost functions while the remaining would be left unattended.
Be that because they do not comply with the conflict criteria or distinguished as of less importance
in the global context.

As previously explained, there are independent models for each of those cost function. While
they share the same parameters inputs, their behavior differs from one to another. The same
applies to the fitness of these models, as some of them are more easily mimicked then others.
However, an extensive set of training points yields a more reliable model.

The comparison between the model’s value and the actual cost function accurately assess the
model trustworthiness. However, estimating an individual solution’s trustworthy only requires the
knowledge of its position in the population of training points. As the closest, an evaluation point is
to a training point, higher it is his trustworthy. Of course, this is only valid if the image of this cost

40

function has some degree of smoothness, i.e., it must be continuous and without sharp derivatives.
So while respecting those restrictions, the smaller distance towards the model’s population can be
used as a metric of individual solution’s trustworthy.

A model-based optimization has access to three groups of information: the cost functions,
the simulations’ discarded data, and the individual solution trustworthy. However, only uses the
first group as gauges to identify the solutions that compose the Pareto Set, i.e., its best known
non-dominated solutions.

Ideally, the utilization of all gathered information would be the optimal scenario. The trust-
worthy measure and the simulations’ discarded data acts as cost function. Moreover, the second
could assist the Validation System in the identification of modeling failure. Nonetheless, any of
those alterations changes how the optimization algorithm operates typically.

The utilization of the trustworthy measure as a cost function leads to a biased search towards
high-density regions of the training population, because a uniform distribution of training points
is generally not observed. Nonetheless, enforcing trustworthy as a cost function filter ineligible
solutions from the Pareto Set.

Besides, once all models share the training points population, a cost function that possesses
a high sensitivity to its inputs could facilitate the identification of low-fidelity regions in the
models or complex regions amidst the search space. However, feeding the additional data do
the Validation System is the same as affirming that there is a behavior correlation between the
different cost functions.

A model-based optimization is a procedure that simultaneously tries to identify non-dominated
solutions from an ample search space while enhances the models that serves as its guide. Essen-
tially, a resource-constrained procedure that learns on-the-fly. Therefore, the more strict are the
constraints, higher should be the relaxation impose in the methodology’s procedures.

4.4 OPTIMIZATION POPULATION AND TRAINING POINTS

The performance of a search algorithm directly correlates with its population size and initial-
ization. The first reflects the amount of available information to the optimization algorithm on
each iteration, while the second helps to identify possibles regions of interest. Overall, a more
significant population tend to yield better results because it provides a more in-depth search.
Likewise, a balanced initialization generally speeds up the convergence to the optimal solution’s
region (115). While dealing with time-consuming problems, those are very looked after charac-
teristics, as they could significantly diminish the number of iterations.

On the conventional approach, increasing the population size of a search algorithm yields
more evaluations of the cost function. However, this concept loses its meaning in a model-based
optimization, due to the comparatively low computational cost provided by the utilization of

41

models. So that depending on the complexity of the problem, it is feasible the utilization of
an unseen optimization population size. Nonetheless, studies have shown that excessively large
population are also not helpful (116, 117).

However, the same strategy does not apply to the training points because a quality population
is imperative to build an accurate model. Therefore, the best scenario occurs when the least
amount of solutions composes the models’ training points. Thus each of them must be essential
to its constitution.

4.4.1 Search Space Comprehension

In this context, the search space comprehension becomes a critical concept while dealing with
surrogate-assisted optimization, because utilizing a single model to mimic a function’s behavior
at vast search space is exceedingly harder than in a bounded region.

Nonetheless, deploying a restricted region requires the understanding of the concepts of pre-
cision and boundary. The first is responsible for making the number of possible solutions finite,
while the second is responsible for diminishing the number of possibilities.

The concept precision indicates the number of digits in the right of the decimal point of val-
ues of dimensions, i.e., optimized parameters, which in turn may have different precision. The
precision number can be an external project restriction, i.e., machinery limitation or design fit-
ting, or a limitation of the application, i.e., insensibility of the cost function. In contrast, the
concept of boundary is an innate characteristic of an optimization algorithm, because it defines
the acceptable range of values for the dimensions.

Therefore, the concept precision makes the number of possible configurations finite, whereas
the concept of boundary restricts the number of possible combinations. That way, it is highly
recommended the utilization of a well-fitted boundary while dealing with the surrogate-assisted
optimization process.

Conventionally, the problem’s boundary is arbitrarily chosen, principally paying attention in
the individual requirements of dimensions than in its repercussion in the overall number of possi-
ble configurations.

The effects of this negligence are commonly imperceptible in the direct approach, as the algo-
rithm has unrestricted access to the cost function. However, in a surrogate-assisted optimization,
a vast boundary implies that each training point is responsible for a higher number of neighbor
solutions, which significantly deteriorates the representation of the behavior cost function.

Figure 4.13 depicts the number of possible solutions for a four-dimension problem, where
throughout the experiment, the lower boundary and precision of the dimensions respectively equal
to zero and one. Nonetheless, the upper boundary ranges from one up to three according to the
simulation scenarios: A, B, and C.

This experiment exemplifies the growth of the number of possible configurations due to the

42

A B C

Search Space Scenario

0

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r

o
f
P

o
s
s
ib

le
 S

o
lu

ti
o
n
s

105

Figure 4.13 – Number of Possible Solutions

enlarging of the search space, which a small boundary’s increment results in a massive growth on
the number possible solutions, given higher dimensions and precision numbers this effect is even
more pronounced.

Altogether, without the definition of a well-fitted search domain, the models’ representability
becomes questionable. Another point of consideration is the applicability of the database of
solutions because the possibility of a solution’s reoccurrence would be almost null at an incredibly
vast search space.

4.5 INITIALIZATION

4.5.1 Generation Techniques

The most straightforward initialization would be utilizing a grid of values that sparsely cover
the search domain. Among the several possible implementations, this work adopts the technique
that inserts intermediary points between the upper and lower boundary of the search space.

Nonetheless, this procedure could generate intermediaries points that do not attend the preci-
sion criteria. There are two ways to deal with this problem. The first method consists of discover-
ing the appropriated number of intermediary points for each dimension, then generating the grid
values with that information. While the second method adds the same amount of intermediary
points throughout all dimensions while creating the grid of values, but subsequently has to deal
with the precision criteria.

The first solution corresponds to a pre-processing approach that ensures the equal spacing of
the points regarding the dimensions restrictions and avoids reworks, while the second solution

43

corresponds to a post-processing approach that enforces the precision criteria over the generated
grid, leading to uneven spacing and duplication of the points. Regardless of the solution, the size
of the grid’s population has an exponential growth that is indirectly regulated by the number of
intermediary points.

Figure 4.14 depicts the growth of the grid’s population due to the increment of the number
of intermediate points between the boundary domain of a four-dimension problem with a fixed
precision of one digit. The grids were built with a fixed amount of intermediate points, and later
post-processed to deal with problems related to its precision. In this way, Raw Grid labels the
source grid, and Post-Processing Grid labels the processed grid. Moreover, Scenario A’s domain
ranges from zero to one for all dimensions while Scenario B accommodates the results pertinent
to a problem with varying upper boundary, also initializing in zero, but ending respectively at one,
three, five, and seven.

0 1 2 3 4 5 6 7 8 9 10

Number of Intermediate Points

0

0.5

1

1.5

2

2.5

P
o

p
u

la
ti
o

n
 S

iz
e

104

Raw Grid

Post-Processed Grid

(a) Scenario A

0 2 4 6 8 10 12 14 16 18 20

Number of Intermediate Points

0

0.5

1

1.5

2

2.5

P
o

p
u

la
ti
o

n
 S

iz
e

105

Raw Grid

Post-Processed Grid

(b) Scenario B

Figure 4.14 – Grid’s Population Size Growth

Figure 4.14 demonstrates that Scenario B has to handle for more precision related issues than
Scenario A. This happens because the boundary of the later has excellent compatibility with the
given precision. Furthermore, its post-processed population only began to differ from its source
population at the ninth grid, when all possible acceptable solutions already belonged to the grid,
effectively marking the exhaustion of the domain. However, the population of Scenario B still
growths even after doubling the number of intermediate points. Figure 4.15 allows an more easy
observation of this characteristic.

Figure 4.15 demonstrates the correlation between the domain boundary and the capacity of
the grid to cover the entire domain. Those charts illustrate that to achieve the full exhaustion of
a copious domain, a higher number of intermediate points is necessary. Thereby reiterates once
more the importance of a well-fitted boundary. Nevertheless, the core idea of this procedure is
the utilization of a minimal subset of the population to represent the entire group. However, said
proposed solution has an exponential population growth given a small increment in the number
of intermediates points, an undesired characteristic.

44

0 1 2 3 4 5 6 7 8 9 10

Intermediate Points

0

10

20

30

40

50

60

70

80

90

100

C
o

v
e

ra
g

e
 (

%
)

(a) Scenario A

0 2 4 6 8 10 12 14 16 18 20

Intermediate Points

0

1

2

3

4

5

6

7

8

9

10

C
o

v
e

ra
g

e
 (

%
)

(b) Scenario B

Figure 4.15 – Grid’s Coverage Growth

Ideally, the optimum scenario would be a technique that could generate a subset population
within the search space domain regardless of its boundary, moreover the size of this subset be a
control parameter of this process. This problem can be worked in two stages: distribution and
scaling. Initially, occurs the distribution of a set of N elements in a simplified domain. Later, this
distribution is then re-scaled to the actual search space domain.

The most straight forward way to generate those distributions would be utilizing a randomizer
(RAND). However, such an approach has a fatal issue: there is no correlation between the mem-
bers of the same population, i.e., the procedure chooses each new member without taking consid-
eration of the existing members. This characteristic leads to non-homogeneous distributions, i.e.,
there will be regions with a high population density and others without a single member. Like-
wise, comparisons between subsets yield similar results: there are some outstanding distributions,
and others not so much.

However, the problem of selecting a subset from a large population is not new. As such, several
methodologies have already been proposed and extensively studied. One of them is a method
called random Symmetric Latin Hypercube Design (SLHD) (118). In which, distributions created
with this method has three beneficial characteristics: symmetry, entropy, and intersite distance.
Its symmetry assures that there is a reflection plane within the distribution, i.e., it is only necessary
to position half the population. The second ensures a monotonous behavior regarding the entropy
of the generated subsets. The last characteristic is related to its space-filling proprieties, wherein
minimize problems related to population density in specific regions of the domain.

Should be noted that both methods’ inputs are the number of elements of the population and
the dimension of the problem, and its output is a distribution of values ranging from zero to one.
Figure 4.16 exemplifies the behavior of the three initialization methods in a 2-dimension problem.

In order not to privilege any method, all three distributions contained in Fig. 4.16 contains
sixteen members, the population size of a Grid generated with two intermediate points for the

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
2

(a) Grid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
2

(b) RAND

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
2

(c) SLHD

Figure 4.16 – Initialization Methods

specified dimension and precision. Figure 4.16 (a) holds the Grid’s distribution. In here, the points
are equally spaced, however densely concentrated in the boundary limits. This characteristic
tends to dimish once the number of intermediate points increases. Nonetheless, from a surrogate
modeling perspective, that behavior is very undesired for the distribution of the training points
because the points located at the border loses at least haft of its coverage region. A solution to
this issue would be down-scaling the distribution into a smaller domain, e.g., values ranging from
0.2 to 0.8.

Figure 4.16 (b) exemplifies the homogeneity’s issues of a typical RAND’s distribution. Where
it is possible to identify two regions of points concentrations divided by an imaginary line con-
necting the points (0.3, 0) and (0.8, 1). In which the region below this diagonal houses eleven
members of the entire population. Moreover, applying the same principle in the upper region out-
puts a region composed of a single member and another containing the four remaining members.

Similarly, the analyze of the SLHD’s distribution, Fig. 4.16 (c), outputs four distinct regions
housing respectively two, six, six, and two members. Due to its symmetrical behavior, each group
has an equivalent with the same amount of members. However, unlike previously distribution,
here the density’ discrepancies are less pronounced.

4.5.2 Distinction Criteria

Initially, the distinction of superiority between distributions appears like an easy task for hu-
mans. However, that is only true while dealing with problems with graphic representation, up
to three dimensions, or problems small populations. Therefore, the formulation of a superiority
criterion is necessary to distinguish distributions, preferably one that translates that information
into a single comparable metric.

Formally speaking, diversity and uniformity characterize a population’s distribution. Al-
though these metrics are related to one another, one does not implies the other. In other words,
the presence of satisfactory diversity does not inevitably translate into superior uniformity and
vice versa. However, for most cases, a superior uniformity yields consistent dissimilarity be-
tween neighbors, whereas a satisfactory diversity holds the highest amount of information (112).

46

Therefore, unlike the grid’s population that heavily prioritize uniformity of its population, the best
distribution will be the one that posses the highest diversity.

The distance between the points plays a crucial part in the evaluation of the distribution’s
dissimilarity. The Euclidean distance (L2 norm) is a commonly used measure for gauging the
distance between two points. The leading cause for its popularity is the fact that humans are
three-dimension creatures, a dimension where this measure works just fine. However, this dis-
tance metric is not well suited for measuring distance on higher dimensions (119, 107, 120, 112).
Nonetheless, studies have shown that Lp-norm-based measures are promising alternatives to
gauge distances at higher dimensions (121, 122).

Thus among the several methodologies available, two metrics were chosen to represent either
approach. In which, the metric Diversity (123) ponderates the scale search space and the mean
of Euclidean distance between the members of the population, whereas the metric Pure Diversity
(112) measures the diversity of the whole population by summing the dissimilarity of each point
while taking in consideration Lp-norm-based distances.

Figure 4.17 and 4.18 depicts an experiment designed to put into practice the idea of popula-
tion distinction, where one-thousand distributions were generated utilizing the RAND and SLHD
methods for two specific problems: two-dimension with 16 members population, and twenty-
dimension with 160 members population.

Figure 4.17 – Diversity of a Distribution - 2D

On these experiments, two metrics gauge the diversity of those distributions, respectively
Diversity, and Pure Diversity. The graphics aim to compare the diversity of the populations,
achieve through dominance criteria and the observation of general behavior of the methods. The
first evaluates if given two populations generated by either method is capable of dominating the
other, i.e., yield greater diversity. The latter identifies the minimum, mean, and maximum values
during the experiment, following the diversity measures are then sorted and plotted.

47

Figure 4.18 – Diversity of a Distribution - 20D

Throughout the experiment of both scenarios, the diversity measure by the metric Diversity
of the SLHD’s distributions has low variance, whereas the RAND’s distributions possess a high
variance. Regarding the dominance criterion, the results at a lower dimension are not as con-
clusive as at higher dimension. However, Fig. 4.18 shows that the method’s discerning ability
decays as the dimension increases on distributions of similar properties, e.g., SLHD’s distribu-
tions. Nonetheless, the result indicates that SLHD’s distributions provide consistent performance
while maintaining a satisfactory distribution of the population.

Regarding the metric Pure Diversity, this experiment reveals its critical issue: lack of scale in
the results. Figure 4.18 shows that at higher dimensions, this value grows to unprecedented levels,
but that is not an atypical behavior. The metric builds tree-branches starting from each point then
sum their length to measure the population dissimilarity. However, due to the spatial distortions
caused by the dimension number and the Lp-norm, these lengths become considerably high. Dur-
ing the experiment, the metric output similar measures pattern regardless of the dimension of the
population, in which the SLHD method best the RAND method even at higher dimensions.

4.6 OVERVIEW

Several engineering problems demands the execution of simulations of high complexity, there-
fore, high computational requirements and lengthy execution times. That only become worse at
an optimization procedure, which requires the execution many of such simulations.

Thus, the use of surrogate modeling techniques has become indispensable, due to their cheap
evaluation cost reconciled with a generic representation of the problems, characteristics very de-
sired in at an optimization task.

48

This chapter developed a new surrogate-assisted optimization algorithm, which it is capable
of actively identifying update triggers based on violations on the cost functions’ range of values.
Moreover, the algorithm implements a mechanism that periodically try to recuperate possible
non-dominated solutions that were previous discarded due to model’s deficient. Next chapter will
be devoted to discussing the space-filling algorithms developed in this work.

49

5 SPACE-FILLING ALGORITHMS

The study of space-filling algorithms arises from the need to improve the model’s population
without discarding the predefined training points. That happens, because creating a population
with more training points would offshoot in the evaluation of the cost function on its entire pop-
ulation. Thus, this process results in far more cost function calls than just processing a set of
complementary training points.

The simplest solution to the space-filling problem would be stacking a new population of
training points on top of the existing population. However, this process does not take into consid-
eration the position of either population in the search space. In other words, there is the possibility
of adding new training points on highly populated regions, instead of filling the gaps of the target
population. Figure 5.1 depicts an example of stacking different populations to improve a model’s
population, where the variables X1 and X2 ranges from −5 to +5 with single-digit precision.

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(a) Initial Population

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(b) Stacking Population

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(c) Improved Population

Figure 5.1 – Stacking Populations

Figure 5.1 (a) portrays an experiment where the Initial Population has a five-member popu-
lation generated through a RAND distribution. The Stacking Population, Fig. 5.1 (b), has a total
of eight members distributed in the domain via the SLHD method. Following at 5.1 (c), there
is the Improved Population, which is the resulting population of the combination of previous
populations.

This experiment aims to demonstrate that stacking a population on top of other it is not a
very effective method to complement a model’s population. Moreover, Fig. 5.1 (c) shows that
the Improved Population still has regions without any training points, but has highly congested
regions. Moreover, the methodology to be used to gauge the improvement of the population
is another point of consideration, because both diversity-based metrics introduced at Chapter 4,
Diversity (123) and Pure Diversity (112), possess strong dependence on the population’ size.

The quality of a surrogate model’s population is directly correlated with its coverage, in which
smaller gaps indicate a higher degree of coverability of the search space. The problem of locating
those gaps at a domain for humans is a relatively simple task. However, writing an algorithm that

50

translates this task into a methodology is quite challenging.

Therefore, the following chapter will be devoted to the development of a set of new space-
filling algorithms. Namely, this chapter represent a detailing of the process “Space Filling Strat-
egy” at Fig. 4.8 from the Chapter 4.

Section 5.1 develops an algorithm with the capability of identifying additional training points
at a bi-dimension search space. Section 5.2 extends the first algorithm’s operation to a N-
dimensional problem, while introducing others issues. Section 5.3 develops a space-filling al-
gorithm capable of working on any problem dimension while outputting promising results at a
low computational cost. Section 5.4 develops a space-filling metric in order to measure the pres-
ence of gaps in populations. Section 5.5 highlights the influence of algorithm’ improvements on
its internal operation. Section 5.6 discuss the iterative usage of the algorithm. At last, Section 5.7
discourse on the challenges of its utilization at high dimension problems.

5.1 THE FIRST ALGORITHM PROPOSED: FILL TRI

The Fill Tri algorithm utilize a triangle-based method to identify regions without points in
the space search on a two-dimension problem. A procedure done in three stage: a) creation, b)
elimination, and c) selection.

5.1.1 Creation Stage

The creation stage cluster the points of the Initial Population in groups of size equals to
the dimension of the problem plus one to form triangles. For each point in the population, the
procedure the identifies the depth number (DN) points closest to the initial point then build
triangles with remaining points of the population while calculating their area. Subsequently, the
algorithm utilizes the triangle’s area as a classifier to select DN triangles among them, in which
larger areas indicates longer distances between its points.

Equation 5.1 describe the Shoelace Formula used to determine the area of these triangles,
where Ax, Bx, and Cx describe the x and y coordinates of three arbitrary points A, B, and C
respectively.

Area =

∣∣∣∣∣∣∣
1 1 1

Ax Bx Cx
Ay By Cy

∣∣∣∣∣∣∣ (5.1)

Within the region delimited by a triangle, there is a point called incenter, which is located
at the intersection of the triangle’s three angle bisectors. Moreover, this is also the position of
the center of the triangle’s incircle. Therefore, in this algorithm, the circles’ center position
composes the population of candidates training points selected to improve the model’s coverage

51

in the region.

Equations 5.2, and 5.3 describe the mathematically used to solve the incenter coordinate prob-
lem, where Ax, Bx, and Cx describe the x and y coordinates of three arbitrary points A, B, and
C respectively. The side lengths opposing the vertex A, B, and C are indicated as a, b, and c. At
last, p indicates the perimeter of the triangle ABC, i.e., the sum of the side lengths a, b, and c.

Ox =
aAx + bBx + cCx

p
(5.2)

Oy =
aAy + bBy + cCy

p
(5.3)

Figure 5.2 exemplify the geometric interpretation of the creation stage, where the points in
black indicate the triangle vertices, and in blue is the center of the triangle’s incircle, i.e., the
candidate training point.

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

X
1

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

X
2

Figure 5.2 – Triangle’s Problem - Geometric Interpretation

Moreover, it should be noted that the circle’s center coordinates do not represent the final
position of the candidate point, because all of them must still respect the precision parameters for
each dimension. Therefore, there will be a slight deviation from its geometric interpretation after
the application of the corrective measures.

5.1.2 Elimination Stage

The elimination stage uses the distance between the candidate points towards the closest point
from the Initial Population, and the distance between themselves to shrink the candidates’ popu-
lation. This process aims to removes the a) unwanted candidates, b) duplicates candidates, and c)

52

overlapping candidates.

The unwanted candidates are the ones that are too close to the Initial Population or are not
within a desired region of the search space. Therefore, they would not improve the coverage
of the model effectively. The duplicates candidates describe solutions that already compose the
candidates’ populations. At last, the overlapping candidates is a type of unwanted candidate but
regarding the candidate population itself, i.e., points that are too close to another point of the
candidate population.

5.1.3 Selection Stage

The selection stage utilize the distance towards the Initial Population to choose the training
candidates that would best improve the coverage of the Improved Population. This procedure
chooses first the candidates that are further away from the initial population then checks whether
the subsequent ones are located within their respective coverage region.

5.1.4 Results

Figure 5.3 exemplifies the behavior of the algorithm Fill Tri utilizing the same initial popula-
tion as in Fig. 5.1, where Fig. 5.3 (a) holds all identified candidate training points, and Fig. 5.3
(b) shows the improved population, in which the cyan circles represent the coverage area of each
new training point.

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(a) Candidate Training Points

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(b) Improved Population

Figure 5.3 – Space-filling Algorithm: Fill Tri

However, the algorithm does not guarantee the matching between the required number of ad-
ditional training points with the infill population’s size. Therefore, should none of the candidates
meets the pre-requisites, the procedure is inconclusive.

5.1.5 Auxiliary Population

However, the position of the population’s points restricts the candidate training point’s po-
sition, i.e., the candidate’s coordinates are within the region described by three training points.

53

Thus, this procedure is incapable of creating candidate training points in unexplored regions of
the search space domain. Therefore, an auxiliary population was used to supplement the cover-
age deficiency of the initial population and aid to identify additional training points in the entire
search space (see line 2 of Algorithm 1).

The utilization of grids as the auxiliary population has the advantage of evenly covering the
entire search domain while making the procedure non-stochastic. However, due to its popula-
tion growth rate, the auxiliary population’s size becomes an issue, because of the number of
three-member grouping would be overwhelming. Therefore, the overall computational require-
ments and processing time of the algorithm becomes prohibitive. Therefore, the parameters depth
number, and the grid size are fundamental to control the overall computational requirements and
processing time of the Algorithm 1.

5.1.6 Algorithm Implementation

Therefore, Algorithm 1 details the implementation of this concept in the form of an algorithm,
in which reveals that several parameters were used to regulate the operation of the space-filling
algorithm’s three stages, respectively: a) Creation (lines 1 to 20), b) Elimination (line 21), and c)
Selection (line 22).

Algorithm 1 Fill Tril

INPUT: Initial Population (IP)
Number of Points (N)
Initial Bounds (ID)
Final Bounds (FD)
Precision (P)
Lower Boundary (LB)
Upper Boundary (FD)
Behavior (B)
Grid Size (GS)
Depth Number (DN)
D Factor (DF)
R Factor (RF)

OUTPUT: Filling Points (F)
1: procedure FILLTRI

2: AP = AuxPopulation(ID, FD, GS)
3: m = count(AP) + count(IP)
4: D = DistanceMatrix(AP , IP)
5: for i = 1 to m do
6: P1 = SelectP1(i, D)

7: for j = 1 to DN do
8: P2 = SelectP2(P1, D)
9: for k = 1 to m− 2 do

10: P3 = SelectP3(P1, P2, D)
11: Tk = Triangle(P1, P2, P3)
12: Ak = Area(Tk) . Eq. 5.1
13: end for
14: for k = 1 to DN do
15: Sk = SelectTriangle(Ak, Tk)
16: Ck = Center(Sk) . Eq. 5.2, 5.3
17: Dk = Distance(S, P , AP)
18: end for
19: end for
20: end for
21: E = Elimination(LB, UB, DF , RF , D, C)
22: F = Selection(N , B, E)
23: return F
24: end procedure

The first stage is responsible to generate the candidate training points, procedure ruled by
five parameters: Grid Number, Depth Number, Precision, Initial Domain, and Final Domain. In
the second stage, four eliminatory procedures filter invalid or undesired solutions, in which four

54

parameters regulates its operation: R Factor, D Factor, a Lower Boundary, and an Upper Bound-
ary. At last, the third stage regulates the selection of the training points among the remaining
candidates, a process controlled by a pair of parameters: Behavior and the Number of Points.

The Grid Number regulates the number of intermediate points in the grid that composes the
auxiliary population, while the Depth Number specifies the number of neighbors points accept for
each pairing while forming the groups. In this algorithm, the input parameter Precision regulates
the number of digits in the right of the decimal point of the coordinates. Likewise, the parameters
Initial Domain and Final Domain define the grid’s covered region within the boundary search
space.

Meanwhile, the R Factor and D Factor are both proximity parameters, respectively related to
the minimum distance to any member of the mesh and the minimum distance between candidates.
In this context, the pair Lower Boundary and Upper Boundary define the allowed space search
domain while the parameter Behavior manages the occurrence of overlapping coverage of the
additional training points. At last, the Number of Points stipulates the desired number of additional
training points.

At first, the functionality of the parameters boundary and domain may be seen very similar.
Nonetheless, the parameter domain specifies the region where the auxiliary population resides,
whereas the parameter boundary defines the acceptable region for the candidates training points.
Thus, since the positions of candidate training points are generally within the region delimited
by its group point, the skillful manipulation of those parameters allows the conditioning of the
candidate training points’ coordinates.

The parameters behavior and number of points are the principal factors to regulate the number
of additional candidates, in which the first controls the overlapping of candidates’ coverage, i.e.,
the distance between the candidates, and the second influence the minimum distance between the
training points and the initial population.

Moreover, the behavior control has two distinct modes of operation: a) aggressive control,
and b) mild control. The first has an aggressive control over the overlapping of coverage of
the additional training points, which restricts the overlapping of coverage’s regions by additional
training points, i.e., it aims to use a single point to supplement the gaps in the population. In
contrast, the second mode of operation uses a mild approach that combines several candidates
training points in order to improve the coverage of the improved population. Therefore, the
former hinder the addition of many points but also enhances less appealing regions, whereas the
second, on the other hand, places a high priority on the most disadvantaged region, and thus may
not be able to enhance the other regions.

Thereby, the list below records all the configurable parameters necessary to operate the devel-
oped algorithm:

• Input population • Number of points • Initial domain

55

• Final domain

• Precision

• Lower boundary

• Upper boundary

• Depth number

• Behavior

• Grid number

• D factor

• R factor

5.1.7 Limitation of this algorithm

Nonetheless, the algorithm has some known limitations: a) fixed problem dimension (2D),
and b) complexity. The first issue is an inheritance of its geometric foundation, the mathematical
equations of triangles prohibit its escalation to higher dimensions. The second issue is due to
the identification of the candidates training points, which demands the solution of a system of
equations for each new training points evaluated.

Thus, the restrictions of the algorithm Fill-Tri lies in the lack of generalization of its mathemat-
ical foundation, which limits its operation to only 2D problems. Nonetheless, beyond the geomet-
ric topological space, extends the manifold topological space, which already has a well-defined
n-dimensional problem that is very similar to the first algorithm proposition. Consequently, in the
next section, a new algorithm is then proposed to solve the fixed dimension restriction.

5.2 SECOND ALGORITHM PROPOSITION: FILL N-SPHERE

The N-dimensional version deviates from the bi-dimensional version of the algorithm through
their interpretation of the process of locating the candidate training points, in which N is linked to
the problem’s dimension, i.e., the number of design variables. The cornerstone of this algorithm
is the concept of N-Sphere, which is a generalization of an ordinary sphere to spaces of arbitrary
dimension.

5.2.1 Creation Stage

Given that according to the Delaunay Triangulation’s theory, the coordinates of N-Sphere’s
center point lies on the bisectors of line segments connecting the N + 1 points on its perimeter
(124). In here, the idea is finding an N-Sphere in which a set of points resides in its surface,
where similarly to the algorithm Fill Tri, the center of those N-Sphere are the coordinates of the
candidate training points. For that reason, Fill N-Sphere labels the n-dimensional version of the
space-filling algorithm.

The process consists in letting one of these points acts as an anchor point, −→xo, and then deter-
mining N vectors −→v1 , ...,−→vN pointing towards the remaining points, as indicated in Eq. 5.4.

−→vi = −→xi −−→x0 (5.4)

56

Later, as described in Eq. 5.5, the normalization of these vector results in the unit-length
vector −→u1, ...,−→uN .

−→ui =
−→vi
2

(5.5)

The identification of a vector −→r pointing from −→xo towards the center of the N-Sphere is the
final step of this procedure, which takes advantage of the fact that the projection of the vector −→r
on each unit-length vector −→ui has its endpoint at the midpoint of the line segment from −→xo to −→xi
(the projection of −→r on −→vi equals

−→vi
2

) to build system of linear equation AX = B in order to
determine R (124). Moreover, should the−→x0, ...,−→xN be points on a sphere, Eq. 5.6 is non-singular
and always solvable (see line 26 of algorithm).

−→r =

−→u1T

...
−→uNT

−1

1
2
‖−→v1‖

...
1
2
‖−→vN‖

 (5.6)

Thus, Equation 5.7 describe that the center of the N-Sphere −→c is the sum of the anchor point
−→xo and vector −→r (see line 27 of algorithm).

−→ci = −→x0 +−→ri (5.7)

Figure 5.4 exemplify a bi-dimensional geometric interpretation of the concepts behind the al-
gorithm Fill N-Sphere, where the points in black indicate the points over the N-Sphere’s perimeter,
and in blue is the center position, i.e., the candidate training point.

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

X
1

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

X
2

Figure 5.4 – N-Sphere’s Problem - Geometric Interpretation

57

Algorithm 2 Grouping

INPUT: Dimension (N)
Number of Points (NP)
Depth Number (DN)
Distance Matrix (D)

OUTPUT: Points Groups (PG)
1: procedure GROUPING

2: PG = []
3: for i = 1 to NP do
4: G0 = i
5: for j = 1 to N do
6: Gj = []
7: for i = 1 to count(Gj−1) do
8: P = Gj−1(k, :)

9: Dj = sum(D(P ,:))
10: [Dj, Index] = sort(Dj, 2)
11: F = min(NP-j, DN , count(Dj))
12: for k = 1 to F do
13: Gj = [Gj P , Index(k)]
14: end for
15: end for
16: end for
17: PG = [PG; GN]
18: end for
19: Out F
20: end procedure

5.2.2 Elimination Stage & Selection Stage

Nonetheless, at the satge elimination and selection the algorithm Fill N-Sphere utilizes the
same process as the Fill Tri.

5.2.3 Results

Figure 5.5 exemplifies the behavior of the algorithm Fill N-Sphere utilizing the same initial
population as Fig. 5.1, where the blue asterisks at Fig. 5.5 (a) represent position of the candi-
date training points, and Fig. 5.5 (b) shows the improved population, in which the cyan circles
represent the coverage area of each new training point.

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(a) Candidate Training Points

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(b) Improved Population

Figure 5.5 – Space-filling Algorithm: Fill N-Sphere

5.2.4 Algorithm Implementation

The grouping process was another procedure of the space-filling algorithm that had a fixed
dimension implementation. Algorithm 2 implements a new grouping process, which essentially

58

recursively pair the points in order to build groups with N + 1 points from the initial population
and the auxiliary population. This paring process, thou still selects the points that are the closest
to its anchor point.

Therefore, Algorithm 3 holds the pseudo-code of the implementation of the algorithm Fill
N-Sphere.

Algorithm 3 Fill N-Sphere

INPUT: Initial Population (IP)
Number of Points (N)
Initial Bounds (ID)
Final Bounds (FD)
Precision (P)
Lower Boundary (LB)
Upper Boundary (FD)
Behavior (B)
Grid Size (GS)
Depth Number (DN)
D Factor (DF)
R Factor (RF)

OUTPUT: Filling Points (F)

1: procedure FILLNSPHERE

2: AP = AuxPopulation(ID, FD, GS)
3: D = DistanceMatrix(AP , IP)
4: G = Grouping(D, AP , DN , IP)
5: for i = 1 to count(G) do
6: Ri = DetermineR(Gi) . Eq. 5.6
7: Ci = Gi(0) +Ri . Eq. 5.7
8: end for
9: E = Elimination(LB, UB, DF , RF , D, C,
R)

10: F = Selection(N , B, E, R)
11: return F
12: end procedure

5.2.5 Limitation of this algorithm

However, even though the algorithm Fill N-Sphere removes the fixed problem dimension
present in the algorithm Fill Tri, it still remains as a relatively complex process that has to solve
a system of linear equations for each candidate training point. Moreover, should a solution exist,
the center position may not even be within the space search domain. This problem is due to bad
conditioning of the matrices of the system of linear equations, which means that the points that
compose the group are not within the perimeter of any N-Sphere.

Thus, the physical interpretation restricts the operation of the algorithm. Nonetheless, the aim
of the algorithm is just adding points in a skillfully matter in a pre-established population. As
such, a physical correlation of this methodology is entirely unnecessary. Therefore, in the next
section develops a single yet effective strategy to identify the coordinates of the candidate training
point.

5.3 THIRD ALGORITHM PROPOSITION: FILL-AVG

This version took reference from the algorithm Fill N-Sphere, while following a single guide-
line: keep it simple. Its inspiration arises from the analyses of the Geometric Interpretation of the
algorithm Fill N-Sphere (see Fig. 5.4), which essentially describes a process that the candidate

59

training points are somewhat distant from a set of points. In other words, a strategy that uses
N + 1 points to determine the location of a candidate training point within the search space.

Nonetheless, the creation process’ strategies of the algorithms Fill Tri and Fill N-Sphere have
issues regarding their scalability and dimension operation.

5.3.1 Creation Stage

Hence, a new strategy was developed in order to identify the new candidate training points,
which limits to locating a point within the search space at a different position than itsN+1 anchor
points. Moreover, this strategy has to possess a low computational cost and must not demand the
resolution of any system of equation.

Equation 5.8 describes the new strategy, in which the mean location of the N + 1 anchor
points that composes group replaces all the previous complex procedures, where −−→xAP indicates
the set of anchor points. The main advantage of this strategy is that all generated candidate
training points respect the search space restrictions while reconciling easy implementation and
low computational cost. Therefore, due to its average behavior, this algorithm as named Fill AVG.

−→xc =
1

N + 1

N+1∑
i=1

−−→xAP i (5.8)

Subsequently, Eq. 5.9 describes the criterion utilized in the Elimination and Selection stages
of the algorithm, in which adopts the the shortest distance towards any point that make up the
initial population in order to evaluate the training candidates points, where −→x = [−→x1, ...,−→xm]T

indicates the set of points that composes the Initial Population.

Rc = min(‖−→x −−→xc‖) (5.9)

5.3.2 Elimination Stage & Selection Stage

Nonetheless, at the satge elimination and selection the algorithm Fill N-Sphere utilizes the
same process as the Fill Tri.

5.3.3 Results

Figure 5.6 exemplifies its utilization given the same initial population as Fig. 5.1, where the
dotted green circle marks the coverage of the candidate training point to the nearest point in the
model’s population, and the blue asterisks represent the location of the candidate training points.

60

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(a) Candidate Training Points

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(b) Improved Population

Figure 5.6 – Space-filling Algorithm: Fill AVG

5.3.4 Algorithm Implementation

Therefore, Algorithm 4 holds the pseudo-code of the implementation of the algorithm Fill
AVG.

Algorithm 4 Fill AVG

INPUT: Initial Population (IP)
Number of Points (N)
Initial Bounds (ID)
Final Bounds (FD)
Precision (P)
Lower Boundary (LB)
Upper Boundary (FD)
Behavior (B)
Grid Size (GS)
Depth Number (DN)
D Factor (DF)
R Factor (RF)

OUTPUT: Filling Points (F)

1: procedure FILLAVG

2: AP = AuxPopulation(ID, FD, GS)
3: D = DistanceMatrix(AP , IP)
4: G = Grouping(D, AP , DN , IP)
5: for i = 1 to count(G) do
6: Ci = mean(Gi) . Eq. 5.8
7: Ri = MinDistance(Ci, IP) . Eq. 5.9
8: end for
9: E = Elimination(LB, UB, DF , RF , D, C,
R)

10: F = Selection(N , B, E, R)
11: return F
12: end procedure

5.3.5 Advantages of this algorithm

This algorithm adopts an identification strategy for the candidate training point’s coordinates
that do not relies on the solution of a linear system of equation. Moreover, it is both computation-
ally cheap and guarantees that the identified candidate training points are within the predefined
search space.

61

5.4 SPACE-FILLING METRIC

The aim of the space-filling algorithms is the identification of a set of training points located at
the gaps of the initial population. Nonetheless, the distances between these points and the inputs
points are a byproduct of this process, where large values indicate the existence of large gaps in
the population. Therefore, the information regarding the additional training points could be used
to assess the initial population’s coverage of the search space.

Algorithm 5 consolidates the information about the candidate training points and space search
bounds into a gap-based metric, which a population without gaps receives a score equals to zero.
Highlights that, the metric is biased to heavy ponderer the training points with the largest distances
from the population because these would be the location of the highest probability to be a low-
efficient region within the surrogate model. Moreover, this metric is independent of population
size, given the utilization of the space-filling algorithm with similar input parameters.

Algorithm 5 Fill Score

INPUT: Distance R (R)
Filling Points (F)
Initial Bounds (ID)
Final Bounds (FD)

OUTPUT: Score (Score)
1: procedure FILLSCORE

2: Delta = mean(ID − FD)

3: N = count(F)
4: Score = −N
5: for i = 1 to N do
6: Score +=

(
1 + Ri

Delta

)N−i+1

7: end for
8: return Score
9: end procedure

Nonetheless, its accuracy depends on the gathering of quality information about gaps in the
model, i.e., the identification of regions that demands additional training points. However, skill-
fully adding several additional points is many times harder than inserting a few of them, due to
poor positioning of the candidate training points or restrictions imposed over the space-filling
algorithm.

Table 5.1 holds the metrics of the Initial Population and the four Improved Population com-
prising the ones generated via the Stacking Population method and the algorithms Fill Tri, Fill
N-Sphere and Fill AVG, where the measures were generated utilizing the algorithm Fill AVG with
twenty-five additional points.

Experiment Metric Percentage
Initial Population 8.1515 100.00 %
Stacking Population 6.1268 75.16 %
Fill Tri 5.3026 65.05 %
Fill N-Sphere 5.3766 65.96 %
Fill AVG 5.2519 64.43 %

Table 5.1 – Space-filling Metric: Fill Score

These results attest the advantages of the utilization of the developed space-filling algorithms,

62

in which either of the methodologies is capable of locating critical regions otherwise previously
neglected. Nonetheless, it is undeniable that adding an SLHD-based population over the Initial
Population does help to reduce its coverage’s gaps.

5.5 AN EFFICIENCY ANALYSIS ABOUT THE ALGORITHM’S INTERNAL OPER-
ATION

It can be observe that the complexity of Fill Tri (see Algorithm 1), Fill Tri (see Algorithm
3), and Fill Tri (see Algorithm 4) are practically the same for a problem of similar dimensional-
ity. Nonetheless, this section adopts an efficiency perspective to evaluate the performance of the
proposed algorithms, where it reflects the quality of the identified candidate training points.

All three developed space-filling algorithms share the same three-stage structure: a) Creation,
b) Elimination, and c) Selection. Moreover, the last two stages have an identical implementation
on all of them. Thus, it is correct to say that the only difference between them is the Creation
stage, which is responsible for generating the set of candidate training points. Nonetheless, its is
worth reminding that, one of the major improvements of the algorithms Fill N-Sphere, and Fill
AVG over the Fill Tri is their points grouping process, which also composes the Creation stage.
Therefore, the grouping process and creations strategy mark the major enhancements that occur
during the development of the space-filling algorithms.

Figure 5.7 depicts the number of candidates training points during the execution of the Elimi-
nation stage for a problem of two dimension, where the variables X1 and X2 ranges from minus
five to five with single digit precision.

Figure 5.7 – Number of Candidates Training Points

63

The Elimination stage four criterion of elimination analyses the candidates training points in
order to filter the unfitted points, respectively taking in consideration the a) Distance to the Initial
Population, b) Points Duplicity, c) Boundary Violations, and the d) Distance to Candidates.

The comparison of the number of Initial Candidates at Fig. 5.7 highlights the improvement of
the grouping process, which yield a significant decrease in their amount, thereby also significantly
reducing the computational cost and execution time. In contrast, the information regarding the
Distance to Population reveals that generating points too close to the initial population it is not a
major issue for all the algorithms.

Nonetheless, the execution of the procedure to correct the precision of the candidate training
points triggers the algorithms Fill Tri, and Fill N-Sphere: points duplicity. Moreover, this ex-
periment also reveals how serious is the issue of boundary violations in algorithm Fill N-Sphere.
Thus, it is indisputable that the algorithm Fill AVG is the most efficient among its peers, regarding
the use of resources.

5.6 IN LOOP OPERATION

Regardless of the input parameters configuration, its universal that the firsts candidate training
points are the best at improving the coverage of the population. From that notion surges a strategy
that bypasses the necessity of fine-tuning algorithms input parameters. The idea is to run the
space-filling algorithm in an iterative form, while subsequently adding the first candidates into
the population. Nonetheless, this methodology has a high computational cost but yields the best
possible results.

Figure 5.8 exemplifies its utilization given the same initial population as Fig. 5.1, where the
dotted green circle marks the coverage of the candidate training point to the nearest point in the
model’s population, and the blue asterisks represent the location of the candidate training points.
The number that follows “Loop” indicates the number of additional training points added on
each iteration to the Improved Population, which in this example demanded eight, four, and two
iterations respectively.

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(a) Fill AVG: Loop 1
Metric: 5.1893

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(b) Fill AVG: Loop 2
Metric: 5.1893

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
2

(c) Fill AVG: Loop 4
Metric: 5.1965

Figure 5.8 – In Loop Space-filling

64

The metric fill score of each of them reveals that this mode of operation is indeed capable of
improving the coverage of the population. However, that advantage does not worth the additional
processing time.

5.7 HIGH-DIMENSION PROBLEMS

The exponential growth of the grid marks the algorithm biggest issue, a characteristic that
translates in the creation of a massive number of possible candidates, which make its utilization
prohibitive regarding the hardware requirements, and its execution time, especially at a high-
dimension problem.

In those cases, a population with an acceptable number of points could act as the auxiliary
population instead of the grid. Nonetheless, the usage of dynamic populations eliminates the
algorithm’s non-stochastic behavior, i.e., the algorithm no longer outputs the same improved
population given the same parameters and initial population.

Table 5.2 holds the results of an experiment of a twenty-dimension problem, where the vari-
ables X1, ..., X20 ranges from minus five to five with single-digit precision, and the Initial Pop-
ulation has a total of fifty points, in which the space-filling algorithm has to identify twenty-five
additional points while utilizing a set of auxiliary populations of different size.

Experiment Auxiliary Population Metric
Initial Population - 171.40
Improved Population with Stacking Population - 166.37
Improved Population with Fill AVG 250 points 164.48
Improved Population with Fill AVG 500 points 167.50
Improved Population with Fill AVG 1000 points 166.56
Improved Population with Fill AVG 2000 points 166.36
Improved Population with Fill AVG 4000 points 164.86
Improved Population with Fill AVG 8000 points 163.10

Table 5.2 – Space-filling at High Dimensions

In order to ensure fairness in the experiment, the auxiliary population with a higher number of
points houses the points that compose the smaller population. Therefore, the auxiliary population
remains static throughout the experiment during the different stages of the experiment. Thus,
enabling the analysis of the influence of the auxiliary population’s size in the performance of the
space-filling algorithm.

The construction of the static auxiliary population is an extremely time-consuming procedure,
in which its first-generation took an SLHD distribution to set the position of 250 points in its
search space. Following, batches of fifth additional points populate the subsequent points, which
ensures that the auxiliary population improves as it growths.

These experiments demonstrate that even with a relatively small auxiliary population the algo-

65

rithm Fill Tri outperforms its benchmark, the methodology based on stacking population. More-
over, the number of possible positions at a high-dimension problem is so expressive that utilizing
a small set of points to cover this space search naturally yield in its fault coverage, i.e., the pop-
ulation that is just too small to cover the domain effectively. Therefore, these characteristics
practically make irrelevant the usage of a vast auxiliary population to improve the algorithm per-
formance, due to the sheer amount of large gaps in the population.

5.8 OVERVIEW

In this chapter, three new space-filling algorithms were developed to handle the problem of
efficiently adding new points into an already existing population. This process of creation resulted
in an algorithm that adopts an extremely simple strategy to identify the location of these additional
points, which also culminated in the creation of a space-filling metric that is independent of the
initial population size. Next chapter will be devoted to discussing the results of the surrogate-
based optimization methodology in several Mechanical Structural Design’s problems.

66

6 CASE STUDIES

A practical example is an incredible tool for validating and testing the functionalities of
methodologies. Nonetheless, the goal of the following case study is not the application itself
neither their results, but the capability of the surrogate-assisted technique to model the problem’s
cost functions. Therefore, although there would be the problem’s contextualization, the analysis,
interpretation, and discussion of the results will be centered in the capabilities of the surrogate
model.

Therefore, the following chapters will be devoted to developing three structural optimization
problems. Chapter 6.1 utilizes a heatsink to discuss about the optimization of thermal systems.
Chapter 6.2 optimize the structure of a coffee table given the application of external loads. At last,
Chapter 6.2 analyze the optimization process of a moving support structure of an exoskeleton.

6.1 HEATSINK

The design of thermal systems is a particular field of research within the engineering design
process, in which the thermodynamics, the fluid flow, and the thermal transport composes the
project main criterion (125). In particular, the design of microprocessor applications has become
increasingly challenging due to the increase in the total power, die shrinkage and other complex-
ities of microprocessor design, which have increase the solution local powers densities (126).

6.1.1 Problem’s Description

Therefore, thermal management of microelectronics components has become critical to main-
taining the device performance and reliability (127). In that context, a cost-effective solution for
removing heat from the components are solid metal heatsink.

A heatsink is a passive heat exchanger that transfers the heat generated by an electronic or a
mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away
from the device, thereby allowing regulation of the device’s temperature at optimal levels.

Figure 6.1 describe the simulation scenario of a heatsink that was created based on the Fischer
Elektronik heatsink SK47 (128), where there is an 40mm height ten-fin heatsink over a micropro-
cessor measuring 100 mm x 75 mm x 10 mm (width x depth x height). This experiment utilizes
the software ANSYS version R19.1 to execute a Steady-State Thermal simulation of a micropro-
cessor and its heatsink, wherein the image A indicates convective heat transfer, B the radiation
from surface to surface of the heatsink, C the radiation from heatsink to the ambient, D the radia-
tion from surface to surface of the microprocessor, E the radiation from the microprocessor to the

67

ambient, F a heat flow of 60W in the microprocessor, and G a negative heat flow of 30W in the
heatsink.

Figure 6.1 – Heatsink - Simulation Scenario

Table 6.1 holds the thermal properties of the selected materials used in the case study, where
the heatsink is made of copper alloy and the microprocessor is made of silicon anisotropic.

Material Thermal Conductivity Radiation Emissivity
Copper Alloy 401Wm−1C−1 0.75
Silicon Anisotropic 124Wm−1C−1 0.90

Table 6.1 – Heatsink - Engineering Data

6.1.2 Design Variables

This study case aims to optimize the heatsink while taking into consideration the thermal
management of the microprocessor. Therefore, utilizing the approach of structural optimization,
the process becomes a problem of shape optimization, where the design variables are the fin’s
height and the deepness between fin.

Highlights that during optimization, the fins’ height could be independent design variables,
and so the shape optimization would be a ten-dimension problem. Nonetheless, only four fin’s
height was specified as design variables in order to reduce four dimensions of the optimization
problem.

Figure 6.2 specifies which of the geometric features of the heatsink that were selected as
design variables of the optimization, where six design variables composes the list of design vari-
ables: a) depth1, b) depth2, c) h1_h2, d) h3_h4, e) h5_h6, and e) h7_h8.

68

(a) Design Variable: depth1 (b) Design Variable: depth2 (c) Design Variable: h1_h2

(d) Design Variable: h3_h4 (e) Design Variable: h5_h6 (f) Design Variable: h7_h8

Figure 6.2 – Heatsink - Design Features

Table 6.2 describes the characteristics of domain and precision of each of the six design vari-
ables, which taking in consideration the precision of each of them results in a search space of
63504 possible solutions.

Design Variable Inital Domain Final Domain Precision
depth1, depth2 2 mm 8 mm 0
h1_h2, h3_h4, h5_h6, h7_h8 30 mm 35 mm 0

Table 6.2 – Heatsink - Design Variables

6.1.3 Cost Functions

The cost functions of the optimization process are: a) the weight of the heatsink and b) the
maximum temperature on the microprocessor measure at its top surface, in which the first de-
pends on the geometry of the heatsink while the second indicates the cooling capacity of the
heatsink. Moreover, the information regarding heat flux on the microprocessor’s top surface feeds
the Validation system.

In order to configure the surrogate-based optimization process, several simulations manually
executed to determine the typical range of values of the cost functions, in which Tab. 6.3 holds
the identified the expected cost functions’ range of values for this specific heatsink design.

Cost Function Lower Image’s Value Upper Image’s Value
Heatsink’s Mass 890g 1200g
Microprocessor’s Top Surface Heat Flux 11900W/m−2 12600W/m−2

Microprocessor’s Top Surface Temperature 70◦C 80◦C

Table 6.3 – Heatsink - Cost Functions’ Range of Values

69

6.1.4 Results

In all instances of optimization process execution, the implemented solution run simulations
on 1593 out of 63504 possible configurations of the problem, which would take approximately 25

hours to simulate without occurring errors in its execution. This measure of time only takes in
consideration the execution time of each of the simulations which the minimum, mean, median
and maximum execution time are 51.37 seconds, 56.67 seconds, 56.00 seconds, and 77.98 seconds
respectively.

Therefore, an optimization process that runs for 150 iterations with a population size equals
to 30 individuals would demand the execution of 4500 simulations. Thus, taking in consideration
the median execution time of the evaluated simulations, this optimization process would take
approximately 70 hours to finish, whereas sweeping the entire domain would take more than 41
days. Moreover, these estimations are for a particularly simple structure, given that the execution
time of a single simulation of a complex structure could take from hours to days, the utilization
of the conventional approach becomes impracticable.

Figure 6.3 depicts the results of the surrogate-based optimization process, which the first-
generation surrogate model was built with 25 training points and 3 additional filing points were
added on each update call, and the periodic update curve Mode A prescribes 5 model updates.

76.5 77 77.5 78 78.5 79

Microprocessor's Top Surface Temperature (C)

900

905

910

915

920

925

930

935

940

H
e
a
ts

in
k
's

 M
a
s
s
 (

g
)

Actual Cost Function

Surrogate Model - #n 40

Best Pareto Front - #n 1562

Figure 6.3 – Heatsink - Pareto Front

Figure 6.3 holds three Pareto Front: a) the Surrogate Model’s Pareto Front, b) the Actual Cost
Function’s Pareto Front, and c) the Best Pareto Front. The first corresponds to the set of solutions
that composes the last iteration of the optimization process, also known as candidate solutions.
The second evaluates these candidate solutions in the actual cost function to identify the official

70

Pareto Front of the process. The third indicates the best known Pareto Front, which is identified
taking utilizing all previously executed solution in the solution’s database.

That way, during the experiment, 40 simulations were executed to build the models of the
optimization process, and 30 additional evaluations were also done to evaluate the candidate can-
didates solution, which indicates that the surrogate-based optimization only had access to the
actual cost function 70 times.

Nonetheless, the developed methodology was able to identify an accurate Pareto Front with
less than 2% of the number of cost functions evaluations of the conventional method (70 out
of 4500).

Figure 6.4 depicts when these cost functions evaluations happen during the execution of the
optimization, and also indicates the amount of them that were already in the solution’s database.

0 20 40 60 80 100 120 140 160

Iteration

25

30

35

40

Fx
 E

va
lu

at
io

ns

Total

Recovery

Figure 6.4 – Heatsink - Cost Function Evaluations

As Proof of Concept, the accuracy of the surrogate model was tracked utilizing two ap-
proaches: a) Global Accuracy and b) Local Accuracy. The Global Accuracy evaluates the values
estimated of the cost functions in a population of points that are independent of the optimiza-
tion process on each model update, whereas the Local Accuracy evaluates the iteration’s Pareto
Set with a frequency of 30-iteration to measure the model accuracy. Highlights that, both pare
procedures are completely independent of the optimization process.

Figure 6.5 depicts the measures coefficient of correlation (R) of both of these approaches, in
which values close to 1 indicates that the models outputs good estimations, where Local Accuracy
is indicated as PoC #1, and Global Accuracy is indicated as PoC #2. In here, a grid with one
intermediate points between the dimensions boundary was used to measure the global accuracy,
in which it was composed by 729 points.

71

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1
R

- M
icr

op
ro

ce
ss

or
's

To
p

Su
rfa

ce
 T

em
pe

ra
tu

re

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- H

ea
tsi

nk
's

M
as

s
PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

icr
op

ro
ce

ss
or

's
To

p
Su

rfa
ce

 H
ea

t F
lux

PoC #1

PoC #2

(a) Maximum Temperature

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

icr
op

ro
ce

ss
or

's
To

p
Su

rfa
ce

 T
em

pe
ra

tu
re

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- H

ea
tsi

nk
's

M
as

s

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

icr
op

ro
ce

ss
or

's
To

p
Su

rfa
ce

 H
ea

t F
lux

PoC #1

PoC #2

(b) Mass

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

icr
op

ro
ce

ss
or

's
To

p
Su

rfa
ce

 T
em

pe
ra

tu
re

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- H

ea
tsi

nk
's

M
as

s

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

icr
op

ro
ce

ss
or

's
To

p
Su

rfa
ce

 H
ea

t F
lux

PoC #1

PoC #2

(c) Heat Flux

Figure 6.5 – Heatsink - Proof Of Concept

As can be seen in Fig. 6.5, throughout the optimization, the model was able to estimate
all the cost functions with reasonable accuracy. Nonetheless, the measures of Global Accuracy
shows that the model build for the Microprocessor’s Top Surface Heat Flux decreased its accuracy
when additional training points were added to the model, which indicates that these new points
improved the accuracy of model locally, but at the same time decrease the aspect of generalization
of the model in a global scale.

Figure 6.6 depicts the disposition of the Pareto Set on each Design Variable in the domain,
where the curve in red describe the nonparametric kernel-smoothing distribution of the data.

-5 0 5

depth1 (mm) [2.00 - 8.00]

0

10

20

30

P
ar

et
o

S
et

-5 0 5

depth2 (mm) [2.00 - 8.00]

0

10

20

30

P
ar

et
o

S
et

20 30 40 50

h1-h2 (mm) [30.00 - 35.00]

0

5

10

15

20

25

P
ar

et
o

S
et

25 30 35 40

h3-h4 (mm) [30.00 - 35.00]

0

5

10

15

P
ar

et
o

S
et

25 30 35 40

h5-h6 (mm) [30.00 - 35.00]

0

5

10

15

P
ar

et
o

S
et

25 30 35 40

h7-h8 (mm) [30.00 - 35.00]

0

5

10

15

20

P
ar

et
o

S
et

Figure 6.6 – Heatsink - Pareto Set

72

As can be seen in Fig. 6.6, the design variables depth1, and depth2 remains the same on all
solutions, which indicates that the Pareto Set resides in a particular region of the search space.
Therefore, the six-dimension problem has only four meaningful design variables, which translates
into a four-dimension problem that has only 1296 possible configurations. Thus, the surrogate-
based optimization process could be used to measure the meaningfulness of the design variables
prior the execution of the optimization process with the intention of assisting the construction of
the problem itself.

6.2 COFFEE TABLE

The second study case follows similar approach as the one utilized in the first study case.
Nonetheless, it aims to optimize a structure given the application of external loads, in which takes
a Coffee Table - Model Sehpa (129) as the optimization problem’s target structure.

6.2.1 Problem’s Description

Figure 6.7 describes a simulation scenario built at the software ANSYS version R19.1 to ex-
ecute a Static Structural where a load of 1500N (approximately 150Kg) are applied over the
structure’s top surface. This experiment aims to simulate the wrongfully utilization of the struc-
ture, where it could is been used as a chair or to support a object weighting over 150Kg.

Figure 6.7 – Coffee Table - Simulation Scenario

Table 6.4 holds the mechanical properties of the selected materials used in the case study,
where the coffee table is made of structural steel.

73

Material Density Tensile Yield Strength Young’s Modulus Poisson’s Ratio
Structural Steel 7850Kgm−3 250MPa 2E + 05Mpa 0.3

Table 6.4 – Coffee Table - Engineering Data

6.2.2 Design Variables

This experiment was build into a five-dimension shape optimization problem, where five ge-
ometric features of the Coffee Table’s structure were select as Design Variables: a) bar1_depth,
b) bar2_depth, c) bar1_pos, d) bar2_right, and e) bar2_left. The bar1_depth, bar2_depth,
bar2_right and bar2_left indicates the extrusion of the indicated regions of the structure. At
last, the bar1_pos is responsible to set the position of one the central bar.

(a) Design Variable: bar1_depth (b) Design Variable: bar2_depth

(c) Design Variable: bar1_pos (d) Design Variable: bar2_right (e) Design Variable: bar2_left

Figure 6.8 – Coffee Table - Design Features

Table 6.5 describes the characteristics of domain and precision of each of the five design
variables, which taking in consideration the precision of each of them results in a search space of
69696 possible solutions.

Design Variable Initial Domain Final Domain Precision
bar1_pos 20 mm 35 mm 0
bar2_right, bar2_left 0 mm 10 mm 0
bar1_depth, bar2_depth 0 mm 5 mm 0

Table 6.5 – Coffee Table - Design Variables

74

6.2.3 Cost Functions

The cost functions of the optimization process are the weight and the safety factor on the coffee
table, which the first depends on its geometry while the second indicates the actual load-bearing
capacity of a structure or component. Moreover, the information regarding total deformation on
the coffee table feeds the Validation system.

In engineering, safety factor, also known as factor of safety, expresses the structure’s ability to
sustain loads, which is commonly defined as the ratio between the strength of the material and the
maximum stress in the part. Therefore, this measure enables a binary evaluation of the structural
reliability, in which values smaller than one indicates a critical failure.

Nonetheless, several engineering projects, such as aviation and medical applications, have to
respects strict regulations of minimum safety factor to ensure the structural integrity at adverse
situations, e.g., emergencies, unexpected loads, misuse, or degradation.

Highlights that safety factor is innately a maximization cost function in a minimization op-
timization process. Therefore, the optimization process evaluates the negative value of this cost
function in order to translate it to the minimization form.

In order to configure the surrogate-based optimization process, several simulations manually
executed to determine the typical range of values of the cost functions, in which Tab. 6.6 holds
the identified values for the specified structure.

Cost Function Lower Image’s Value Upper Image’s Value
Safety Factor 2.5 3.8
Mass 400g 850g
Total Distortion 0.1mm 0.6mm

Table 6.6 – Coffee Table - Cost Functions’ Range of Values

6.2.4 Results

In all instances of optimization process execution, the implemented solution run simulations
on 7195 out of 69696 possible configurations of the problem, which would take approximately
135 hours to simulate without occurring errors in its execution. This measure of time only takes
in consideration the execution time of each of the simulations which the minimum, mean, me-
dian and maximum execution time are 44.11 seconds, 67.12 seconds, 72.45 seconds, and 138.35

seconds respectively.

Figure 6.9 depicts the results of the surrogate-based optimization process, which the first-
generation surrogate model was built with 15 training points and 3 additional filing points were
added on each update call, and the periodic update curve Mode A prescribes 5 model updates.

75

-3.5 -3 -2.5 -2 -1.5

- Safety Factor

400

450

500

550

600

650

700

750

M
as

s
(g

)

Actual Cost Function

Surrogate Model - #n 40

Best Pareto Front - #n 7195

Figure 6.9 – Coffee Table - Pareto Front

Figure 6.10 depicts when these cost functions evaluations happen during the execution of the
optimization, and also indicates the amount of them that were already in the solution’s database.

0 20 40 60 80 100 120 140 160

Iteration

0

5

10

15

20

25

30

35

40

Fx
 E

va
lu

at
io

ns

Total

Recovery

Figure 6.10 – Coffee Table - Cost Function Evaluations

That way, during the experiment, 40 simulations were executed to build the models of the op-
timization process, and 30 additional evaluations were also done to evaluate the candidate candi-
dates solution, which indicates that the surrogate-based optimization only had access to the actual
cost function 70 times. Nonetheless, the developed methodology was able to identify an accurate
Pareto Front with less than 2% of the number of cost functions evaluations of the conventional
method (70 out of 4500).

Figure 6.11 depicts the results regarding the Local Accuracy (PoC #1), and Global Accuracy
(PoC #2), which are measures of coefficient of correlation (R) between the values of the actual
function and the model’s estimations, where values close to 1 indicates that the models outputs

76

good estimations. In here, a grid with one intermediate points between the dimensions boundary
was used to measure the global accuracy, in which it was composed by 243 points.

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- -

 S
af

et
y F

ac
to

r

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

as
s

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- D

ef
or

m
at

ion

PoC #1

PoC #2

(a) Safety Factor

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1
R

- -
 S

af
et

y
Fa

ct
or

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

as
s

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- D

ef
or

m
at

io
n

PoC #1

PoC #2

(b) Mass

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- -

 S
af

et
y F

ac
to

r

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

as
s

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- D

ef
or

m
at

ion

PoC #1

PoC #2

(c) Deformation

Figure 6.11 – Coffee Table - Proof Of Concept

As can be seen in Figure 6.11, throughout the optimization, the model was able to estimate
all the cost functions with exceptional accuracy. Nonetheless, the measures of Global Accuracy
reveals the effects of the Global Improvement of the Model Update Strategy, which graphically
translates into improvement of the PoC #2’s measures.

Figure 6.12 depicts the disposition of the Pareto Set on each Design Variable in the domain,
where the curve in red describe the nonparametric kernel-smoothing distribution of the data.

20 30 40 50

bar1-pos (mm) [20.00 - 35.00]

0

2

4

6

8

P
a
re

to
 S

e
t

-5 0 5

bar2-left (mm) [0.00 - 10.00]

0

10

20

30

P
a
re

to
 S

e
t

-20 0 20

bar2-right (mm) [0.00 - 10.00]

0

5

10

15

20

P
a
re

to
 S

e
t

-5 0 5 10

bar1-depth (mm) [0.00 - 5.00]

0

2

4

6

8

P
a
re

to
 S

e
t

-10 0 10 20

bar2-depth (mm) [0.00 - 5.00]

0

5

10

15

20

P
a
re

to
 S

e
t

Figure 6.12 – Coffee Table - Pareto Set

77

As can be seen in Fig. 6.12, the design variables bar2_left, and bar2_right possess the same
values for almost all solutions, which indicates that the Pareto Set resides in a particular region of
the search space. Therefore, the five-dimension problem has only three meaningful design vari-
ables, which translates into a three-dimension problem that has only 576 possible configurations,
which makes even feasible sweeping the entire search space of solutions.

6.3 EXOSKELETON KNEE COUPLING

In this final case study, the target structure is a critical component of an exoskeleton’s knee join
designed by the author in conjunction with the other researchers of the Laboratory of Embedded
Systems and Integrated Circuits Applications (LEIA) from the University of Brasilia - Brazil.
This piece in particular is responsible to connects the shaft of the gearbox to the moving parts of
the exoskeleton. Therefore, its structure has to support the torque and loads of the coming from
the exoskeleton and the its user.

6.3.1 Problem’s Description

Figure 6.13 describes a simulation scenario built at the software ANSYS version R19.1 to ex-
ecute a Static Structural, wherein the image A indicates a bearing load of 1000N (approximately
100Kg) at the central hole, B represents the actuation of an external supporting bearing, C in-
dicates a bearing load of 250N (approximately 25Kg) at each of the small holes, D a torque of
35Nm at the keyway (square hole), and E a torque of 35Nm at the small holes.

Figure 6.13 – Exoskeleton Knee Coupling - Simulation Scenario

Table 6.7 holds the mechanical properties of the selected materials used in the case study,
where the coffee table is made of brass.

78

Material Density Tensile Yield Strength Young’s Modulus Poisson’s Ratio
Structural Steel 8150Kgm−3 87.7MPa 96000Mpa 0.345

Table 6.7 – Exoskeleton Knee Coupling - Engineering Data

6.3.2 Design Variables

This experiment was build into a four-dimension shape optimization problem, where five ge-
ometric features of the Coffee Table’s structure were select as Design Variables: a) The depth
describes, b) outer_r, c) screw_r, and d) screw_ang. The depth describes the depth of the fixing
holes. The outer_r indicates the outer radius of the structure. The screw_r indicates the circum-
ference’s radius in which the holes are positioned. At last, the screw_ang describe the angle of
aliment between the holes and the keyway.

(a) Design Variable:
depth

(b) Design Variable:
outer_r

(c) Design Variable:
screw_r

(d) Design Variable:
screw_ang

Figure 6.14 – Exoskeleton Knee Coupling - Design Features

Table 6.8 describes the characteristics of domain and precision of each of the five design
variables, which taking in consideration the precision of each of them results in a search space of
17920 possible solutions.

Design Variable Inital Domain Final Domain Precision
depth 5 mm 20 mm 0
outer_r 18 mm 20 mm 0
screw_r 12 mm 15 mm 0
screw_ang 0◦ 89◦ 0

Table 6.8 – Exoskeleton Knee Coupling - Design Variables

6.3.3 Cost Functions

The cost functions of the optimization process are the weight and the safety factor on the
knee coupling, which the first depends on its geometry while the second indicates the actual
load-bearing capacity of a structure or component. Moreover, the information regarding total
deformation on the coffee table feeds the Validation system.

In order to configure the surrogate-based optimization process, several simulations manually
executed to determine the typical range of values of the cost functions, in which Tab. 6.9 holds

79

the identified values for the specified structure.

Cost Function Lower Image’s Value Upper Image’s Value
Safety Factor 3 9
Mass 150g 230g
Total Distortion 0mm 0.003mm

Table 6.9 – Exoskeleton Knee Coupling - Cost Functions’ Range of Values

6.3.4 Results

In all instances of optimization process execution, the implemented solution run simulations
on 5621 out of 17920 possible configurations of the problem, which would take approximately
106 hours to simulate without occurring errors in its execution. This measure of time only takes
in consideration the execution time of each of the simulations which the minimum, mean, me-
dian and maximum execution time are 60.87 seconds, 67.48 seconds, 67.66 seconds, and 189.45

seconds respectively.

Figure 6.15 depicts the results of the surrogate-based optimization process, which the first-
generation surrogate model was built with 800 training points and 10 additional filing points were
added on each update call, and the periodic update curve Mode D prescribes 20 model updates.

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

- Safety Factor

140

145

150

155

160

165

170

175

180

185

190

M
as

s
(g

)

Actual Cost Function

Surrogate Model - #n 1211

Best Pareto Front - #n 5621

Figure 6.15 – Exoskeleton Knee Coupling - Pareto Front

That way, during the experiment, 1211 simulations were executed to build the models of
the optimization process, and 30 additional evaluations were also done to evaluate the candidate
candidates solution, which indicates that the surrogate-based optimization only had access to
the actual cost function 1241 times. Nonetheless, unlike the previous examples, the developed
methodology was not able to identify an accurate Pareto Front, even utilizing almost 7% of the
number of possible configurations of the search space.

Figure 6.16 depicts when these cost functions evaluations happen during the execution of the
optimization, and also indicates the amount of them that were already in the solution’s database.

80

0 20 40 60 80 100 120 140 160

Iteration

0

200

400

600

800

1000

1200

Fx
 E

va
lu

at
io

ns

Total

Recovery

Figure 6.16 – Exoskeleton Knee Coupling - Cost Function Evaluations

Figure 6.17 depicts the results regarding the Local Accuracy (PoC #1), and Global Accuracy
(PoC #2), which are measures of coefficient of correlation (R) between the values of the actual
function and the model’s estimations, where values close to 2 indicates that the models outputs
good estimations. In here, a grid with one intermediate points between the dimensions boundary
was used to measure the global accuracy, in which it was composed by 192 points.

0 50 100 150

Iteration

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
- -

 S
afe

ty
Fa

cto
r

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- M

as
s

PoC #1

PoC #2

0 50 100 150

Iteration

0

0.2

0.4

0.6

0.8

1

R
- D

efo
rm

ati
on

PoC #1

PoC #2

Figure 6.17 – Exoskeleton Knee Coupling - Proof Of Concept

As can be seen in Figure 6.17, throughout the optimization, the Global Accuracy’s measures
indicate that the model had an acceptable generalization of all the cost functions with excep-
tional accuracy. Nonetheless, the measures of Local Accuracy reveals fails to estimate both cost
functions, which resulted in the activation of several updates triggers during its execution.

Figure 6.18 depicts the disposition of the Pareto Set on each Design Variable in the domain,
where the curve in red describe the nonparametric kernel-smoothing distribution of the data.

81

10 15 20 25

depth (mm) [5.00 - 20.00]

0

0.5

1

1.5

2

P
a
re

to
 S

e
t

5 10 15 20

screw-r (mm) [12.00 - 15.00]

0

1

2

3

4

P
a
re

to
 S

e
t

0 50 100

screw-ang (degree) [0.00 - 89.00]

0

0.5

1

1.5

2

2.5

3

P
a
re

to
 S

e
t

15 20 25

outer-r (mm) [18.00 - 20.00]

0

1

2

3

4

5

6

P
a
re

to
 S

e
t

Figure 6.18 – Exoskeleton Knee Coupling - Pareto Set

As can be seen in Fig. 6.18, the optimization process was only able to locate six non-
dominated solution. Nonetheless, due to the models’ deficiencies, these results can not be used to
draw any conclusion. Thus, this case study outputs an inconclusive outcome because the proposed
methodology fails to build precise models for the cost function.

6.4 OVERVIEW

The cost functions at a structural optimization are the outputs of a series of simulations, which
its simulation scenario changes dynamically. Nonetheless, during this work, it was possible to
perceive that even utilizing the automatic setting procedures of the software Ansys, there was still
the occurrence of errors that demanded the user interaction, which interrupts the operation flow
of the optimization procedure.

Therefore, these experiments reveal that the complete execution of the optimization process
is a challenge itself, due to thirty-party issues related to the execution of the simulations at the
software Ansys.

Nonetheless, the method’s database feature was fundamental to mitigate the effects of these
external failures, because it enables an almost seamless recovery of the experiment in the occur-
rence of reboot or re-execution.

This chapter utilized three case studies to evidence the capabilities and limitations of the
new surrogate-assisted optimization technique in conjunction with the space-filling algorithm, in
which the case study regarding the Heatsink (see Chapter 6.1) and Coffee Table (see Chapter 6.2)
shown that the method is capable of promoting an expressive performance gain reconciled with a
small loss in accuracy, whereas the case study of Exoskeleton Knee Coupling (see Chapter 6.3)
reveals that it could also fail to output satisfactory results.

Therefore, it is admissible to state that the new surrogate-assisted optimization technique is
capable of achieving its proposed aims given reasonable conditions of operation.

82

7 CONCLUSION

This manuscript focused on the study and development of a new surrogate-assisted optimiza-
tion technique. Here we have explored the different concepts in the literature and developed a
series of procedures and auxiliary algorithms in order to implement our optimization algorithm,
thus contributing to strengthening a relatively new field of research.

At the beginning of this work, we set out not only to develop the technique, but also, to under-
stand the source of the problem, namely the Design Process, and how it becomes an optimization
problem. Our approach was built in a bottom-Up format, describing each of the steps that lead to
the main topic of this work: surrogate-assisted optimization algorithm.

Our technique develops a novel management strategy, which it is capable of actively updating
the surrogate models based on violations of the expected cost functions’ range of values. Indeed
we noticed from our case studies that our management strategy was able to improve the accuracy
of low-efficiency models, which enables the utilization of a small initial population to build the
surrogate models.

One particularity of our implementation is that we have also introduced a mechanism that pe-
riodically tries to recuperate suitable solutions that were previously discarded due to the model’s
deficient. That happens because the early models have lower trustworthy due to their correspond-
ing amount of training points.

Complementary to improvements of the optimization algorithm itself, three new space-filling
algorithms were created to assist in the process responsible for updating the surrogate model.
These algorithms identify a set of additional training points that would best improve the coverage
of the model while taking into consideration the position of the points that already compose an
already existing surrogate model. More so, we also were able to develop a space-filling metric to
measure the presence of gaps in a population of points within a search space, which enables the
tracking of the coverage capabilities of the surrogate model.

Finally, three case studies were used to verify the new surrogate-assisted optimization tech-
nique in conjunction with the space-filling algorithm, which has shown that our solution is capable
of promoting a significant performance gain at the cost of a small accuracy decrease. Nonetheless,
it also reveals that it could also fail to output satisfactory results. Therefore, we believe that our
approach is on the right track, which indicates that it is indeed possible to represent the dynamics
of cost functions with a small set of points but does not apply to all kind of problems.

So with this notion, we also believe the foundation provided in this manuscript opens up the
possibilities of several subsequent research with surrogates model to solve complex problems, no
restricting to the context of structural optimization.

83

7.1 FUTURE WORK

Although we were able to describe a new surrogate-assisted optimization approach to create
three space-filling algorithms, and to validate its functionality in three distinct mechanical struc-
tural design’s problems, there are still several aspects that can be done to improve and extend this
research.

As for now, the current implementation still has dependencies of the problem at hand, namely
the process responsible for the identification of cost functions’ range of values. Therefore, the
implementation of an automated, and adaptive process of identification of cost functions’ range
of values would enable the utilization of the technique regardless of the target problem.

Moreover, improvements would also be possible at update triggers mechanism, as seen in the
case study of the Heatsink and Coffee Table there are problems that a relatively small number
of training points are sufficient to model the cost functions. Nonetheless, the violations-based
trigger mechanism is only capable of indicating the necessity of updates, but not unnecessariness.

Although the initial proposal utilizes the justification of loss of useful information to prevent
the utilization of a validation population in order to measure the models’ accuracy, nonetheless,
such a mechanism could prevent the execution of periodic updates on surrogate models that pos-
sess reasonable accuracy. Moreover, these validation population could utilize the evaluations
points used to identify the range of values of the cost functions.

At last, as shown in the case study of Exoskeleton Knee Coupling, creating a single model
for the entire domain is not always the best-indicated method to build the problem’s model. A
mechanism that tries different manners to build the surrogate models would complement this
deficiency of the algorithm (130, 91, 90).

84

BIBLIOGRAPHIC REFERENCES

1 CHRISTENSEN, P. W.; KLARBRING, A. An introduction to structural optimization. [S.l.]: Springer
Science & Business Media, 2008. v. 153.

2 JIN, Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm
and Evolutionary Computation, Elsevier, v. 1, n. 2, p. 61–70, 2011.

3 REGIS, R. G. Particle swarm with radial basis function surrogates for expensive black-box
optimization. Journal of Computational Science, Elsevier, v. 5, n. 1, p. 12–23, 2014.

4 MÜLLER, J.; SHOEMAKER, C. A.; PICHÉ, R. So-mi: A surrogate model algorithm for
computationally expensive nonlinear mixed-integer black-box global optimization problems. Computers
& Operations Research, Elsevier, v. 40, n. 5, p. 1383–1400, 2013.

5 WANG, C.; DING, J.; CHENG, R.; LIU, C.; CHAI, T. Data-driven surrogate-assisted multi-objective
optimization of complex beneficiation operational process. IFAC-PapersOnLine, Elsevier, v. 50, n. 1, p.
14982–14987, 2017.

6 HO-HUU, V.; NGUYEN-THOI, T.; VO-DUY, T.; NGUYEN-TRANG, T. An adaptive elitist
differential evolution for optimization of truss structures with discrete design variables. Computers &
Structures, Elsevier, v. 165, p. 59–75, 2016.

7 CAI, X.; GAO, L.; LI, X.; QIU, H. Surrogate-guided differential evolution algorithm for high
dimensional expensive problems. Swarm and Evolutionary Computation, Elsevier, v. 48, p. 288–311,
2019.

8 BHOSEKAR, A.; IERAPETRITOU, M. Advances in surrogate based modeling, feasibility analysis,
and optimization: A review. Computers & Chemical Engineering, Elsevier, v. 108, p. 250–267, 2018.

9 PASSOS, J. C.; SANTOS, C. E.; SAMPAIO, R. C.; COELHO, L. S.; LLANOS, C. H. Sizing
optimization of an exoskeleton structure utilizing finite element analysis and multi-objective search. CBA
- Congresso Brasileiro de Automática, 2018, v. 1, p. 1–8, 2018.

10 SIMPSON, T.; TOROPOV, V.; BALABANOV, V.; VIANA, F. Design and analysis of computer
experiments in multidisciplinary design optimization: A review of how far we have come-or not. In: 12th
AIAA/ISSMO multidisciplinary analysis and optimization conference. [S.l.: s.n.], 2008. p. 5802.

11 QUEIPO, N. V.; HAFTKA, R. T.; SHYY, W.; GOEL, T.; VAIDYANATHAN, R.; TUCKER, P. K.
Surrogate-based analysis and optimization. Progress in aerospace sciences, Elsevier, v. 41, n. 1, p. 1–28,
2005.

12 FORRESTER, A. I.; KEANE, A. J. Recent advances in surrogate-based optimization. Progress in
aerospace sciences, Elsevier, v. 45, n. 1-3, p. 50–79, 2009.

13 SER, J. D.; OSABA, E.; MOLINA, D.; YANG, X.-S.; SALCEDO-SANZ, S.; CAMACHO, D.; DAS,
S.; SUGANTHAN, P. N.; COELLO, C. A. C.; HERRERA, F. Bio-inspired computation: Where we stand
and what’s next. Swarm and Evolutionary Computation, Elsevier, v. 48, p. 220–250, 2019.

14 ALEXANDROV, N.; LEWIS, R.; GUMBERT, C.; GREEN, L.; NEWMAN, P. Optimization with
variable-fidelity models applied to wing design. In: 38th aerospace sciences meeting and exhibit. [S.l.:
s.n.], 2000. p. 841.

85

15 SIMPSON, T. W.; MAUERY, T. M.; KORTE, J. J.; MISTREE, F. Kriging models for global
approximation in simulation-based multidisciplinary design optimization. AIAA journal, v. 39, n. 12, p.
2233–2241, 2001.

16 SINGH, G.; GRANDHI, R. V. Mixed-variable optimization strategy employing multifidelity
simulation and surrogate models. AIAA journal, v. 48, n. 1, p. 215–223, 2010.

17 WESSING, S.; RUDOLPH, G.; TURCK, S.; KLIMMEK, C.; SCHÄFER, S. C.; SCHNEIDER,
M.; LEHMANN, U. Replacing fea for sheet metal forming by surrogate modeling. Cogent Engineering,
Taylor & Francis, v. 1, n. 1, p. 950853, 2014.

18 GONG, W.; DUAN, Q. An adaptive surrogate modeling-based sampling strategy for parameter
optimization and distribution estimation (asmo-pode). Environmental modelling & software, Elsevier,
v. 95, p. 61–75, 2017.

19 VOUTCHKOV, I.; KEANE, A. Multi-objective optimization using surrogates. In: Computational
Intelligence in Optimization. [S.l.]: Springer, 2010. p. 155–175.

20 ULLMAN, D. G. The mechanical design process. [S.l.]: McGraw-Hill New York, 1992. v. 2.

21 BUDDIES, S. The Engineering Design Process. 2018. <https://www.nasa.gov/audience/foreducators/
best/edp.html>. [Online; accessed 19-July-2019].

22 LIU, L. Failure in the Design Process. 2018. <https://uxdesign.cc/
failure-in-the-design-process-baed825f1f48>. [Online; accessed 19-July-2019].

23 DUNBAR, B.; MAY, S. NASA BEST - Engineering Design Process. 2018. <https://www.nasa.gov/
audience/foreducators/best/edp.html>. [Online; accessed 19-July-2019].

24 DUAN, Q.; SOROOSHIAN, S.; GUPTA, V. K. Optimal use of the sce-ua global optimization method
for calibrating watershed models. Journal of hydrology, Elsevier, v. 158, n. 3-4, p. 265–284, 1994.

25 COYETTE, A.; KIEFFER, S.; VANDERDONCKT, J. Multi-fidelity prototyping of user interfaces.
In: SPRINGER. IFIP Conference on Human-Computer Interaction. [S.l.], 2007. p. 150–164.

26 PHAM, D. T.; GAULT, R. S. A comparison of rapid prototyping technologies. International Journal
of machine tools and manufacture, Elsevier, v. 38, n. 10-11, p. 1257–1287, 1998.

27 VIRZI, R. A. What can you learn from a low-fidelity prototype? In: SAGE PUBLICATIONS SAGE
CA: LOS ANGELES, CA. Proceedings of the Human Factors Society Annual Meeting. [S.l.], 1989. v. 33,
n. 4, p. 224–228.

28 SAUER, J.; SEIBEL, K.; RÜTTINGER, B. The influence of user expertise and prototype fidelity in
usability tests. Applied ergonomics, Elsevier, v. 41, n. 1, p. 130–140, 2010.

29 MCCURDY, M.; CONNORS, C.; PYRZAK, G.; KANEFSKY, B.; VERA, A. Breaking the fidelity
barrier: an examination of our current characterization of prototypes and an example of a mixed-fidelity
success. In: ACM. Proceedings of the SIGCHI conference on Human Factors in computing systems. [S.l.],
2006. p. 1233–1242.

30 SCHINDLER, M.; EPPLER, M. J. Harvesting project knowledge: a review of project learning
methods and success factors. International journal of project management, Elsevier, v. 21, n. 3, p.
219–228, 2003.

31 CHARVAT, J. Project management methodologies: selecting, implementing, and supporting
methodologies and processes for projects. [S.l.]: John Wiley & Sons, 2003.

86

https://www.nasa.gov/audience/foreducators/best/edp.html
https://www.nasa.gov/audience/foreducators/best/edp.html
https://uxdesign.cc/failure-in-the-design-process-baed825f1f48
https://uxdesign.cc/failure-in-the-design-process-baed825f1f48
https://www.nasa.gov/audience/foreducators/best/edp.html
https://www.nasa.gov/audience/foreducators/best/edp.html

32 WEEBER, K.; HOOLE, S. R. H. Geometric parametrization and constrained optimization techniques
in the design of salient pole synchronous machines. IEEE transactions on magnetics, IEEE, v. 28, n. 4, p.
1948–1960, 1992.

33 COTTRELL, J. A.; HUGHES, T. J.; BAZILEVS, Y. Isogeometric analysis: toward integration of
CAD and FEA. [S.l.]: John Wiley & Sons, 2009.

34 KRULL, F. N. The origin of computer graphics within general motors. IEEE Annals of the History of
Computing, IEEE, n. 3, p. 40–56, 1994.

35 FIELD, D. A. Education and training for cad in the auto industry. Computer-Aided Design, Elsevier,
v. 36, n. 14, p. 1431–1437, 2004.

36 KASIK, D. J. Viewing the future of cad. IEEE Computer Graphics and Applications, IEEE, v. 20,
n. 1, p. 34–35, 2000.

37 LLEWELYN, A. Review of cad/cam. Computer-Aided Design, Elsevier, v. 21, n. 5, p. 297–302, 1989.

38 GOODACRE, C. J.; GARBACEA, A.; NAYLOR, W. P.; DAHER, T.; MARCHACK, C. B.;
LOWRY, J. Cad/cam fabricated complete dentures: concepts and clinical methods of obtaining required
morphological data. The Journal of prosthetic dentistry, Elsevier, v. 107, n. 1, p. 34–46, 2012.

39 AOUAD, G.; WU, S.; LEE, A.; ONYENOBI, T. Computer aided design guide for architecture,
engineering and construction. [S.l.]: Routledge, 2013.

40 MÜLLER, T. E.; KLASHORST, E. v. d. A quantitative comparison between size, shape, topology
and simultaneous optimization for truss structures. Latin American Journal of Solids and Structures,
SciELO Brasil, v. 14, n. 12, p. 2221–2242, 2017.

41 COELLO, C. A. C.; LAMONT, G. B.; VELDHUIZEN, D. A. V. et al. Evolutionary algorithms for
solving multi-objective problems. [S.l.]: Springer, 2007. v. 5.

42 KHUNKITTI, S.; WATSON, N. R.; CHATTHAWORN, R.; PREMRUDEEPREECHACHARN,
S.; SIRITARATIWAT, A. An improved da-pso optimization approach for unit commitment problem.
Energies, Multidisciplinary Digital Publishing Institute, v. 12, n. 12, p. 2335, 2019.

43 MATLOCK, K.; BERLOW, N.; KELLER, C.; PAL, R. Combination therapy design for maximizing
sensitivity and minimizing toxicity. BMC bioinformatics, BioMed Central, v. 18, n. 4, p. 116, 2017.

44 DOERNER, K.; GUTJAHR, W. J.; HARTL, R. F.; STRAUSS, C.; STUMMER, C. Pareto ant
colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of operations
research, Springer, v. 131, n. 1-4, p. 79–99, 2004.

45 BAUMGARTNER, U.; MAGELE, C.; RENHART, W. Pareto optimality and particle swarm
optimization. IEEE Transactions on magnetics, IEEE, v. 40, n. 2, p. 1172–1175, 2004.

46 BENSON, H. P. Multicriteria Optimization, Matthias Ehrgott, Springer (2005), 323 pages, ISBN:
3-540-21398-8. [S.l.]: North-Holland, 2007.

47 VOUTCHKOV, I.; KEANE, A. Multiobjective optimization using surrogates. 2006.

48 KOLAR, J. W.; BIELA, J.; MINIBOCK, J. Exploring the pareto front of multi-objective single-phase
pfc rectifier design optimization-99.2% efficiency vs. 7kw/din 3 power density. In: IEEE. 2009 IEEE 6th
International Power Electronics and Motion Control Conference. [S.l.], 2009. p. 1–21.

49 WALL, W. A.; FRENZEL, M. A.; CYRON, C. Isogeometric structural shape optimization. Computer
methods in applied mechanics and engineering, Elsevier, v. 197, n. 33-40, p. 2976–2988, 2008.

87

50 BENDSØE, M. P.; SIGMUND, O. Optimization of structural topology, shape, and material. [S.l.]:
Springer, 1995. v. 414.

51 PAINCHAUD-OUELLET, S.; TRIBES, C.; TRÉPANIER, J.-Y.; PELLETIER, D. Airfoil shape
optimization using a nonuniform rational b-splines parametrization under thickness constraint. AIAA
journal, v. 44, n. 10, p. 2170–2178, 2006.

52 MANH, N. D.; EVGRAFOV, A.; GERSBORG, A. R.; GRAVESEN, J. Isogeometric shape
optimization of vibrating membranes. Computer Methods in Applied Mechanics and Engineering,
Elsevier, v. 200, n. 13-16, p. 1343–1353, 2011.

53 LIU, G.-R.; QUEK, S. S. The finite element method: a practical course. [S.l.]: Butterworth-
Heinemann, 2013.

54 DING, Y. Shape optimization of structures: a literature survey. Computers & Structures, Elsevier,
v. 24, n. 6, p. 985–1004, 1986.

55 XIE, Y. M.; STEVEN, G. P. Basic evolutionary structural optimization. In: Evolutionary structural
optimization. [S.l.]: Springer, 1997. p. 12–29.

56 FOURIE, P.; GROENWOLD, A. A. The particle swarm optimization algorithm in size and shape
optimization. Structural and Multidisciplinary Optimization, Springer, v. 23, n. 4, p. 259–267, 2002.

57 SHOJAEE, S.; MOHAMMADIAN, M. Structural topology optimization using an enhanced level set
method. Scientia Iranica, Elsevier, v. 19, n. 5, p. 1157–1167, 2012.

58 PICELLI, R.; TOWNSEND, S.; BRAMPTON, C.; NORATO, J.; KIM, H. Stress-based shape
and topology optimization with the level set method. Computer Methods in Applied Mechanics and
Engineering, Elsevier, v. 329, p. 1–23, 2018.

59 SUN, S.; YU, T.; NGUYEN, T. T.; ATROSHCHENKO, E.; BUI, T. Structural shape optimization
by igabem and particle swarm optimization algorithm. Engineering Analysis with Boundary Elements,
Elsevier, v. 88, p. 26–40, 2018.

60 HUNTER, P.; PULLAN, A. Fem/bem notes. Department of Engineering Science, The University of
Auckland, New Zeland, 2001.

61 TOHAMY, A. S. Critical Shear Stresses for Webs of Plate Girder Subjected to Shear Loading and
Contained Cut-outs. 172 p. Dissertação (Mestrado) — Minia University, 06 2015.

62 FARMAGA, I.; SHMIGELSKYI, P.; SPIEWAK, P.; CIUPINSKI, L. Evaluation of computational
complexity of finite element analysis. In: IEEE. 2011 11th International Conference The Experience of
Designing and Application of CAD Systems in Microelectronics (CADSM). [S.l.], 2011. p. 213–214.

63 KURZYDŁOWSKI, K.; LOBUR, M.; FARMAGA, I.; MATVIYKIV, O. Data-processing method for
determination thermophysical parameters of composite materials. In: IEEE. 2010 Proceedings of VIth
International Conference on Perspective Technologies and Methods in MEMS Design. [S.l.], 2010. p.
264–266.

64 ZHOU, Z.; ONG, Y. S.; LIM, M. H.; LEE, B. S. Memetic algorithm using multi-surrogates for
computationally expensive optimization problems. Soft Computing, Springer, v. 11, n. 10, p. 957–971,
2007.

65 LEIFSSON, L.; KOZIEL, S.; TESFAHUNEGN, Y. A. Multiobjective aerodynamic optimization by
variable-fidelity models and response surface surrogates. AIAA Journal, American Institute of Aeronautics
and Astronautics, v. 54, n. 2, p. 531–541, 2015.

88

66 HAFTKA, R. T.; GRANDHI, R. V. Structural shape optimization—a survey. Computer methods in
applied mechanics and engineering, Elsevier, v. 57, n. 1, p. 91–106, 1986.

67 DAOUD, F.; FIRL, M.; BLETZINGER, K. Filter techniques in shape optimization with cad-free
parametrization. In: Proceedings of 6th World Congress of Structural and Multidisciplinary Optimization.
[S.l.: s.n.], 2005.

68 FIRL, M.; WÜCHNER, R.; BLETZINGER, K.-U. Regularization of shape optimization problems
using fe-based parametrization. Structural and Multidisciplinary Optimization, Springer, v. 47, n. 4, p.
507–521, 2013.

69 CHEN, J.; SHAPIRO, V.; SURESH, K.; TSUKANOV, I. Parametric and topological control in shape
optimization. In: AMERICAN SOCIETY OF MECHANICAL ENGINEERS. ASME 2006 International
Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
[S.l.], 2006. p. 575–586.

70 IMAM, M. H. Three-dimensional shape optimization. International Journal for Numerical Methods
in Engineering, Wiley Online Library, v. 18, n. 5, p. 661–673, 1982.

71 HAN, X.; ZINGG, D. W. An adaptive geometry parametrization for aerodynamic shape optimization.
Optimization and Engineering, Springer, v. 15, n. 1, p. 69–91, 2014.

72 BENDSØE, M. P. Optimal shape design as a material distribution problem. Structural optimization,
Springer, v. 1, n. 4, p. 193–202, 1989.

73 ALLAIRE, G.; JOUVE, F.; TOADER, A.-M. A level-set method for shape optimization. Comptes
Rendus Mathematique, Elsevier, v. 334, n. 12, p. 1125–1130, 2002.

74 LI, H.; LI, P.; GAO, L.; ZHANG, L.; WU, T. A level set method for topological shape optimization
of 3d structures with extrusion constraints. Computer Methods in Applied Mechanics and Engineering,
Elsevier, v. 283, p. 615–635, 2015.

75 LARSSON, R. Methodology for topology and shape optimization: Application to a rear lower control
arm. Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY, Goteborg, 2016.

76 FRANS, R.; ARFIADI, Y. Sizing, shape, and topology optimizations of roof trusses using hybrid
genetic algorithms. Procedia Engineering, Elsevier, v. 95, p. 185–195, 2014.

77 SAVSANI, V. J.; TEJANI, G. G.; PATEL, V. K.; SAVSANI, P. Modified meta-heuristics using random
mutation for truss topology optimization with static and dynamic constraints. Journal of Computational
Design and Engineering, Elsevier, v. 4, n. 2, p. 106–130, 2017.

78 ROZVANY, G. I.; ZHOU, M.; BIRKER, T. Generalized shape optimization without homogenization.
Structural optimization, Springer, v. 4, n. 3-4, p. 250–252, 1992.

79 MAUTE, K.; RAMM, E. Adaptive topology optimization. Structural optimization, Springer, v. 10,
n. 2, p. 100–112, 1995.

80 OLHOFF, N.; BENDSØE, M. P.; RASMUSSEN, J. On cad-integrated structural topology and design
optimization. Computer Methods in Applied Mechanics and Engineering, Elsevier, v. 89, n. 1-3, p.
259–279, 1991.

81 HINTON, E.; SIENZ, J. Aspects of adaptive finite element analysis and structural optimization. [S.l.]:
University College of Swansea, Department of Civil Engineering, 1994.

89

82 LIANG, Q. Q.; STEVEN, G. P. A performance-based optimization method for topology design of
continuum structures with mean compliance constraints. Computer methods in applied mechanics and
engineering, Elsevier, v. 191, n. 13-14, p. 1471–1489, 2002.

83 OSIO, I. G.; AMON, C. H. An engineering design methodology with multistage bayesian surrogates
and optimal sampling. Research in Engineering Design, Springer, v. 8, n. 4, p. 189–206, 1996.

84 YONDO, R.; ANDRES, E.; VALERO, E. A review on design of experiments and surrogate models in
aircraft real-time and many-query aerodynamic analyses. Progress in Aerospace Sciences, Elsevier, v. 96,
p. 23–61, 2018.

85 XU, Q.; WEHRLE, E.; BAIER, H. Knowledge-based surrogate modeling in engineering design
optimization. In: Surrogate-Based Modeling and Optimization. [S.l.]: Springer, 2013. p. 313–336.

86 EDWARDS, A. L. An introduction to linear regression and correlation. [S.l.], 1984.

87 ELDRED, M.; DUNLAVY, D. Formulations for surrogate-based optimization with data fit,
multifidelity, and reduced-order models. In: 11th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference. [S.l.: s.n.], 2006. p. 7117.

88 LEIFSSON, L.; KOZIEL, S. Simulation-driven aerodynamic design using variable-fidelity models.
[S.l.]: World Scientific, 2015.

89 BENNER, P.; FREUND, R. W.; SORENSEN, D. C.; VARGA, A. Special issue on “order reduction
of large-scale systems”. [S.l.]: North-Holland, 2006.

90 SHAN, S.; WANG, G. G. Survey of modeling and optimization strategies to solve high-dimensional
design problems with computationally-expensive black-box functions. Structural and Multidisciplinary
Optimization, Springer, v. 41, n. 2, p. 219–241, 2010.

91 VIANA, F. A.; HAFTKA, R. T.; STEFFEN, V. Multiple surrogates: how cross-validation errors can
help us to obtain the best predictor. Structural and Multidisciplinary Optimization, Springer, v. 39, n. 4, p.
439–457, 2009.

92 GOEL, T.; HAFTKA, R. T.; SHYY, W.; QUEIPO, N. V. Ensemble of surrogates. Structural and
Multidisciplinary Optimization, Springer, v. 33, n. 3, p. 199–216, 2007.

93 JIN, R.; CHEN, W.; SIMPSON, T. W. Comparative studies of metamodelling techniques under
multiple modelling criteria. Structural and multidisciplinary optimization, Springer, v. 23, n. 1, p. 1–13,
2001.

94 MULLUR, A. A.; MESSAC, A. Metamodeling using extended radial basis functions: a comparative
approach. Engineering with Computers, Springer, v. 21, n. 3, p. 203, 2006.

95 DÍAZ-MANRÍQUEZ, A.; TOSCANO, G.; COELLO, C. A. C. Comparison of metamodeling
techniques in evolutionary algorithms. Soft Computing, Springer, v. 21, n. 19, p. 5647–5663, 2017.

96 POWELL, M. J. The theory of radial basis function approximation in 1990. Advances in numerical
analysis, Clarendon Press, p. 105–210, 1992.

97 BOUHLEL, M. A.; BARTOLI, N.; OTSMANE, A.; MORLIER, J. Improving kriging surrogates
of high-dimensional design models by partial least squares dimension reduction. Structural and
Multidisciplinary Optimization, Springer, v. 53, n. 5, p. 935–952, 2016.

98 ACOSTA, F. M. A. Radial basis function and related models: an overview. Signal Processing,
Elsevier, v. 45, n. 1, p. 37–58, 1995.

90

99 BJÖRKMAN, M.; HOLMSTRÖM, K. Global optimization of costly nonconvex functions using
radial basis functions. Optimization and Engineering, Springer, v. 1, n. 4, p. 373–397, 2000.

100 REGIS, R. G. Multi-objective constrained black-box optimization using radial basis function
surrogates. Journal of computational science, Elsevier, v. 16, p. 140–155, 2016.

101 HOU, H.; ANDREWS, H. Cubic splines for image interpolation and digital filtering. IEEE
Transactions on acoustics, speech, and signal processing, IEEE, v. 26, n. 6, p. 508–517, 1978.

102 HARDER, R. L.; DESMARAIS, R. N. Interpolation using surface splines. Journal of aircraft, v. 9,
n. 2, p. 189–191, 1972.

103 LOWE, D. Multi-variable functional interpolation and adaptive networks. Complex Systems, v. 2, p.
321–355.

104 HARDY, R. L. Multiquadric equations of topography and other irregular surfaces. Journal of
geophysical research, Wiley Online Library, v. 76, n. 8, p. 1905–1915, 1971.

105 BAGHERI, S.; KONEN, W.; EMMERICH, M.; BÄCK, T. Self-adjusting parameter control for
surrogate-assisted constrained optimization under limited budgets. Applied Soft Computing, Elsevier,
v. 61, p. 377–393, 2017.

106 SCHUËLLER, G.; PRADLWARTER, H.; KOUTSOURELAKIS, P.-S. A critical appraisal of
reliability estimation procedures for high dimensions. Probabilistic engineering mechanics, Elsevier,
v. 19, n. 4, p. 463–474, 2004.

107 BOURINET, J.-M.; DEHEEGER, F.; LEMAIRE, M. Assessing small failure probabilities by
combined subset simulation and support vector machines. Structural Safety, Elsevier, v. 33, n. 6, p.
343–353, 2011.

108 KOZIEL, S.; LEIFSSON, L. Scaling properties of multi-fidelity shape optimization algorithms.
Procedia Computer Science, Elsevier, v. 9, p. 832–841, 2012.

109 PAPALAMBROS, P. Y.; MICHELENA, N. F. Trends and challenges in system design optimization.
In: Proceedings of the International Workshop on Multidisciplinary Optimization. [S.l.: s.n.], 2000. p.
1–15.

110 PANOSSIAN, H. Richard bellman and stochastic control systems. Computers & Mathematics with
Applications, Pergamon, v. 12, n. 6, p. 825–829, 1986.

111 GASPAR, B.; TEIXEIRA, A.; SOARES, C. G. Assessment of the efficiency of kriging surrogate
models for structural reliability analysis. Probabilistic Engineering Mechanics, Elsevier, v. 37, p. 24–34,
2014.

112 WANG, H.; JIN, Y.; YAO, X. Diversity assessment in many-objective optimization. IEEE
transactions on cybernetics, IEEE, v. 47, n. 6, p. 1510–1522, 2017.

113 CAWLEY, G. C.; TALBOT, N. L. On over-fitting in model selection and subsequent selection bias
in performance evaluation. Journal of Machine Learning Research, v. 11, n. Jul, p. 2079–2107, 2010.

114 REGIS, R. G.; SHOEMAKER, C. A. Local function approximation in evolutionary algorithms for
the optimization of costly functions. IEEE transactions on evolutionary computation, IEEE, v. 8, n. 5, p.
490–505, 2004.

115 ZHAO, Z.; YANG, J.; HU, Z.; CHE, H. A differential evolution algorithm with self-adaptive
strategy and control parameters based on symmetric latin hypercube design for unconstrained optimization
problems. European Journal of Operational Research, Elsevier, v. 250, n. 1, p. 30–45, 2016.

91

116 HE, J.; YAO, X. From an individual to a population: An analysis of the first hitting time of
population-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation, IEEE, v. 6,
n. 5, p. 495–511, 2002.

117 CHEN, T.; TANG, K.; CHEN, G.; YAO, X. A large population size can be unhelpful in evolutionary
algorithms. Theoretical Computer Science, Elsevier, v. 436, p. 54–70, 2012.

118 KENNY, Q. Y.; LI, W.; SUDJIANTO, A. Algorithmic construction of optimal symmetric latin
hypercube designs. Journal of statistical planning and inference, Elsevier, v. 90, n. 1, p. 145–159, 2000.

119 AGGARWAL, C. C.; HINNEBURG, A.; KEIM, D. A. On the surprising behavior of distance
metrics in high dimensional space. In: SPRINGER. International conference on database theory. [S.l.],
2001. p. 420–434.

120 MORGAN, R.; GALLAGHER, M. Sampling techniques and distance metrics in high dimensional
continuous landscape analysis: Limitations and improvements. IEEE Transactions on Evolutionary
Computation, IEEE, v. 18, n. 3, p. 456–461, 2013.

121 JARA, E. C. Multi-objective optimization by using evolutionary algorithms: The p-optimality
criteria. IEEE Transactions on Evolutionary Computation, IEEE, v. 18, n. 2, p. 167–179, 2013.

122 WANG, H.; JIAO, L.; YAO, X. Two_arch2: An improved two-archive algorithm for many-objective
optimization. IEEE Transactions on Evolutionary Computation, IEEE, v. 19, n. 4, p. 524–541, 2014.

123 RIGET, J.; VESTERSTRØM, J. S. A diversity-guided particle swarm optimizer-the arpso. Dept.
Comput. Sci., Univ. of Aarhus, Aarhus, Denmark, Tech. Rep, v. 2, p. 2002, 2002.

124 COTTER, N. E. DELAUNAY TRIANGULATION - Sphere center point. 2010. <https:
//www.ece.utah.edu/eceCTools/Triangulation/TriangulationSphereCntr.htm>. [Online; accessed
19-July-2019].

125 JALURIA, Y. Design and optimization of thermal systems. [S.l.]: CRC press, 2007.

126 SAUCIUC, L.; CHRYSLER, G.; MAHAJAN, R.; SZLEPER, M. Air-cooling extension-performance
limits for processor cooling applications. In: IEEE. Ninteenth Annual IEEE Semiconductor Thermal
Measurement and Management Symposium, 2003. [S.l.], 2003. p. 74–81.

127 MAHAJAN, R.; CHIU, C.-p.; CHRYSLER, G. Cooling a microprocessor chip. Proceedings of the
IEEE, IEEE, v. 94, n. 8, p. 1476–1486, 2006.

128 GODEFROY, D. Fischer Elektronik heatsink SK47. 2018. <https://grabcad.com/library/
fischer-elektronik-heatsink-sk47-1>. [Online; accessed 19-July-2019].

129 YELER, Y. Coffee Table - Sehpa. 2018. <https://grabcad.com/library/coffee-table-sehpa-1>.
[Online; accessed 12-August-2019].

130 LEARY, S. J.; BHASKAR, A.; KEANE, A. J. A constraint mapping approach to the structural
optimization of an expensive model using surrogates. Optimization and Engineering, Springer, v. 2, n. 4,
p. 385–398, 2001.

92

https://www.ece.utah.edu/eceCTools/Triangulation/TriangulationSphereCntr.htm
https://www.ece.utah.edu/eceCTools/Triangulation/TriangulationSphereCntr.htm
https://grabcad.com/library/fischer-elektronik-heatsink-sk47-1
https://grabcad.com/library/fischer-elektronik-heatsink-sk47-1
https://grabcad.com/library/coffee-table-sehpa-1

	Sumário
	Lista de figuras
	Lista de tabelas
	Introduction
	The Problem and the Method used
	Related Works
	Objectives
	General Objective
	Specific Objectives

	Contributions
	Manuscript Organization

	Theoretical Background
	Design Process
	Engineering Design Process
	Design as Optimization Problem
	Structural Optimization
	Finite Element Method
	Design Variables
	Classification
	Conceptual Solution
	Overview

	Surrogates
	Sampling Strategies
	Management Strategy
	The Model Construction
	Radial Basis Function
	Examples

	Challenges of Surrogate Utilization
	Overview

	Methodology
	Model-based Optimization
	Optimization Algorithm Integration
	Cost Function
	Optimization Population and Training Points
	Search Space Comprehension

	Initialization
	Generation Techniques
	Distinction Criteria

	Overview

	Space-filling Algorithms
	The First Algorithm Proposed: Fill Tri
	Creation Stage
	Elimination Stage
	Selection Stage
	Results
	Auxiliary Population
	Algorithm Implementation
	Limitation of this algorithm

	Second Algorithm Proposition: Fill N-Sphere
	Creation Stage
	Elimination Stage & Selection Stage
	Results
	Algorithm Implementation
	Limitation of this algorithm

	Third Algorithm Proposition: Fill-AVG
	Creation Stage
	Elimination Stage & Selection Stage
	Results
	Algorithm Implementation
	Advantages of this algorithm

	Space-filling Metric
	An Efficiency Analysis about the Algorithm's Internal Operation
	In Loop Operation
	High-dimension Problems
	Overview

	Case Studies
	Heatsink
	Problem's Description
	Design Variables
	Cost Functions
	Results

	Coffee Table
	Problem's Description
	Design Variables
	Cost Functions
	Results

	Exoskeleton Knee Coupling
	Problem's Description
	Design Variables
	Cost Functions
	Results

	Overview

	Conclusion
	Future Work

	BIBLIOGRAPHIC REFERENCES

