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Abstract: An Integrated Assessment Model (IAM) was employed to develop a Narrative Policy
Framework (NPF) and a quantitative model to investigate the changes in land use within the Brazil-
ian Amazon. The process began by creating a theoretical NPF using a ‘systems thinking’ approach.
Subsequently, a ‘system dynamic model’ was built based on an extensive review of the literature
and on multiple quantitative datasets to simulate the impacts of the NPF, specifically focusing on
the conversion of forests into open land for ranching and the implementation of soil management
practices as a macro-level policy aimed at preserving soil quality and ranching yields. Various fallow
scenarios were tested to simulate their effects on deforestation patterns. The results indicate that
implementing fallow practices as a policy measure could reduce deforestation rates while simultane-
ously ensuring sustainable long-term agricultural productivity, thus diminishing the necessity to clear
new forest land. Moreover, when combined with payments for avoided deforestation, such as REDD+
carbon offsets, the opportunity costs associated with ranching land can be utilized to compensate
for the loss of gross income resulting from the policy. A sensitivity analysis was conducted to assess
the significance of different model variables, revealing that lower cattle prices require resources for
REDD+ payments, and vice-versa. The findings indicate that, at the macro level, payments between
USD 2.5 and USD 5.0 per MgC ha−1 have the potential to compensate the foregone cattle production
from not converting forest into ranching land. This study demonstrates that employing an IAM
with a systems approach facilitates the participation of various stakeholders, including farmers
and landowners, in policy discussions. It also enables the establishment of effective land use and
management policies that mitigate deforestation and soil degradation, making it a robust initiative to
address environmental, climate change, and economic sustainability issues.

Keywords: systems thinking; systems modeling; soil conservation; REDD+; Amazon deforestation

1. Introduction

Most of the soils in the Amazon region are fragile and prone to rapid fertility deple-
tion. As the productivity of agricultural and ranching land declines with use, farmers
and ranchers are prompted to move to new land and clearcut native tropical forests to
maintain land production [1]. Soil management practices can be used to reduce the rate
of deforestation because they maintain soil quality and biomass production of cleared
areas [1–4]. Many studies have emphasized that fallow regimes can greatly reduce the
‘deforestation trajectory’ in tropical regions by maintaining the productivity of cleared land
and consequently reducing the need to clear new forest lands [5–10]. Nepstad et al. [11,12],
Stabile et al. [13], and Koch et al. [14] recognized that incentive-based mechanisms have
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an important role in slowing Amazon deforestation, but they have not been implemented
so far.

Currently, several methodologies are being used to estimate Verified Carbon Units
(VCUs) to promote or propose payments for Reduced Emissions from Deforestation and
Degradation (REDD+) [15] (Verra methodologies: for example, (a) VM0007—REDD+
Methodology Framework (REDD + MF) v1.6, (b) VM0011 Methodology for Calculating
GHG Benefits from Preventing Planned Degradation v1.0, (c) VM0015—Methodology for
avoided unplanned deforestation v1.1, (d) VM0017—Adoption of sustainable agricultural
land management v1.0). These and other methods (TREES—The REDD+ Environmental Ex-
cellence Standard. Available online: www.artredd.org (accessed on 21 June 2023). The Gold
Standard. Available online: www.goldstandard.org (accessed on 21 June 2023). Climate
Action Reserve. Available online: www.climateactionreserve.org (accessed on 21 June 2023).
ACR—American Carbon Registry. Available online: www.americancarbonregistry.org
(accessed on 21 June 2023)) are being debated at national, state, or province levels in many
countries to customize programs according to their reality and needs, since new meth-
ods can be proposed based on a scientific peer review process [14,15]. REDD+-oriented
initiatives can provide payments for poor countries that lack the resources to conserve
forests and implement sustainable management programs. REDD+ could also serve to
compensate or complement opportunity costs that would accrue from the conversion of
forests to agricultural land [12,16–20]. As a trade-off, the emission of greenhouse gases
(GHG) to the atmosphere could be reduced. This initiative could help countries such as
Brazil to achieve their national emission commitments and other conservation goals and to
advance towards a jurisdictional REDD+ program (J-REDD+).

Brazil has advanced in that direction by approving the Federal Law #14,119/21, which
establishes the National Policy for Payment of Environmental Services, and by resuming
the National Plan for Prevention and Control in the Legal Amazon—PPCDAm. There is
an extensive published literature that explores the main direct and underlying causes of
deforestation in the Brazilian Legal Amazon [21–35]. Most of these studies adopt a ‘global
approach’ (for the whole region, state, and municipal levels), and rank as (a) the major
correlated drivers: cattle ranching, forest stocks, timber value, road networks, and rural
population, and as having (b) a negative correlation: GDP, planted crops, access to rural
credit, and delimited Protected Areas. These articles evidence that the more formal, so-
phisticated, and costly agricultural activities, such as soybeans plantations, are subsequent
activities of selective logging, land opening, and ranching. Assunção et al. [23] estimate that
deforestation is responsive to agricultural product prices, and that conservation policies
and controlling the effects of agriculture prices do have an important role in avoiding
deforestation. Barona et al. and Mammadova et al. [28] developed an exercise related
to the bovine leather industry in the Brazilian Amazon and reinforced the importance to
assess the “systemic trap that cause the production sector to continue with nature’s destruc-
tion”. Barona et al. [27] relate that this debate is complex and the interlinkages between
deforestation and policy “need further exploration, in order to make a conclusive case for
‘displacement deforestation’”. Further, the literature indicates that there is no evidence
that there will be a slowdown in the agricultural expansion frontier in the Amazon in the
near future.

Several studies have considered a systems approach to analyze the drivers and effects
of land utilization in Colombia [28], the Philippines [30], Myanmar [31], Indonesia [32,33],
and China [34]. Other studies analyzed the potential effects of REDD+-related policies.
West et al. [35] applied a spatial explicit model, with an optimization model to simulate
REDD+ and forest degradation combined with forest management and conservation. The
study considered a local-level approach, specific to an agriculture settlement, State of
Rondônia in the Amazon. Wehkamp et al. [36] analyze the perception of deforestation
drivers by African policy makers as a possible response to a REDD+ policy. They relate
the importance of developing logical frameworks, with long-term impacts and measurable
indicators, to support decision-making activities [35,36]. Hiratsuka et al. [10] studied the
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potential of fallow vegetation for receiving REDD+ payments in Northern Laos. Certainly,
there is a growing literature on these topics, and the given recommendations for future
studies have encouraged the development of this article.

Since Brazil needs to develop mechanisms to support decision-making and design
policies related to deforestation and conservation in the Amazon, this study had as its
general objective the development of an Integrated Assessment Model (IAM) based on
a Narrative Policy Framework (NPF). Specifically, the study aimed to estimate: (1) the
biological and economic effects of soil management systems, (2) its relationship with
avoided deforestation, (3) the identification of possible outcomes for REDD+ payments to
compensate the forgone income and opportunity costs of ranching, and (4) alternatives to
incentive-based mechanisms for forest and land conservation in Brazil.

2. Methods
2.1. Study Area

The Brazilian Amazon area was taken as the study site (Figure 1). It comprises an
area of approximately 5.0 million km2 of which 75% are covered by tropical rainforest
and the remaining 25% by other land uses, including farms, ranches, and mines. It covers
nine Brazilian states (States of Acre, Amapá, Amazonas, Mato Grosso, Pará, Tocantins,
Maranhão, Rondônia, and Roraima) and 772 municipalities, which have independent
governments but abide by the same federal laws. The current population of the region is
28.1 million inhabitants (13% of the Brazilian population), which has grown 243% since
1972 [37].
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Figure 1. The Brazilian Legal Amazon region used as the case study. Source: [21].

In November 2022, the total area of deforestation amounted to 837,653 km2, which
accounts for 17% of the region [38]. This area is currently experiencing drastic changes and
is being subject to close examination, both domestically and internationally. It requires
the development and implementation of policies that can reconcile conflicting interests
between development and conservation.
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2.2. Modeling Approach

In the Integrated Assessment Model (IAM), two methods were applied, namely:
(a) systems thinking and (b) systems modeling and simulation. A system is described as
“an assemblage of physical objects or components which interact, intercommunicate, or
are dependent on each other so as to operate as an integrated whole” [39]. Additionally,
in the context of natural resource management, the systems approach provides a basis
for the sustainable, multiple use of natural resources by facilitating multidisciplinary
planning and the creation of an effective communication interface between scientists and
policymakers [40]. IAM has an important role in facilitating the improvement of science-
driven policy issues, such as climate change [41]. The systems modeling and simulation
approach was used to transform the system thinking model into a quantitative model to
simulate the effects of the system. The software STELLA® (V.9.0.3) was used to simulate
the demand of forest conversion into new open lands and of ranching productivity rates. A
fallow regime was incorporated into the model as a soil management practice to restore
soil properties and ranching productivity. Lastly, the effects and sensitivity of gains from
ranching expansion and from carbon offsets from avoided deforestation were assessed.

2.3. The System Thinking Concept

The system thinking process employed in this study aimed to explore and develop
a theoretical understanding of the fundamental components and interrelationships in-
volved in land-use change processes in the Amazon. It considers the holistic nature of the
process of change, incorporating their dynamic complexities [42]. The term “dynamics”
suggests that instead of following conventional linear patterns, change processes should
be organized into loops of cause–effect relationships [43]. These feedback loops can either
reinforce or balance actions, and they involve the active participation of humans who
share responsibility for the problems arising from the process and affecting the system.
A systems archetype was used to structure a conceptual model of deforestation in the
Brazilian Amazon. The method is based on causal loop diagrams, organizing patterns for
behavior, and proposing alternative solutions for the problems. The system archetype that
best fits the pattern of deforestation in the Amazon is ‘shifting the burden’ [43] (Figure 2).
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The archetype is composed of three main parts (circles of causality): The first part
theorizes the problem and the adoption of a short-term ‘symptomatic solution’; the second
part theorizes that even though there are some ‘benefits’ in using the short-term solution,
it brings ‘unwanted consequences’; and in the third part a ‘fundamental solution’ to the
problem is sought to induce the sustainable use of resources [43].
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The literature indicates this approach can be qualitative, quantitative, or mixed
mode [30,31]. In this study, the approach was centered on a quantitative approach only.
This decision is supported by the literature, given that quantitative data is considered
critical for the model-building exercise [30].

2.4. The Systems Modeling and Simulation of Soil Management on Avoided Deforestation

Following the structure of the system thinking concept, a quantitative simulation model
was developed as a stock and flow system, using the STELLA® software (V. 9.0.3). Initially,
the structure of the model was laid out, followed by the specification of the values of
conditions, parameters, and functions. The model was divided into four parts for practical
and logical reasons (also, for better understanding the concept, the factors are labeled by
numbers (1, 2, 3, etc.). For the system modeling, the model is stratified by parts (A, B, C,
and D) and subcomponents labeled in lowercase letters (a, b, c, etc.)):

Part A: population effects on land requirements;
Part B: stock of natural forests and stock of open land;
Part C: the fallow regime;
Part D: the accounting of land use.

The quantitative model description, subdivisions, equations, and data sources are
presented and explained in Section 3.2, since it is a result of the systems thinking concept, ex-
plained in Section 3.1. Data from the literature [1,44–50] and a statistical database [38,51–55]
were used to develop the model. The main outputs (estimates) of the model were: (i) the
stocks of natural forests and farmland associated with the soil management practice, (ii) the
revenues from ranching expansion and from avoided deforestation, and (iii) the opportu-
nity cost of land. A sensitivity analysis was carried out to assess the significance of the
price range of cattle and carbon offsets.

The Opportunity Costs of Land

The economic concept of ‘opportunity cost’ refers to the benefits that are forgone when
choosing to use one resource over another, whether in qualitative or quantitative terms.
Smallhorn-West and Pressey [56] point out that publications tend to downplay several
aspects of opportunity costs, particularly regarding conservation interventions, which
can mislead stakeholders’ understanding of land use. In this study, the opportunity cost
was analyzed based on two dominant land uses in the study area: (1) cattle ranching and
(2) avoided deforestation.

The opportunity cost of cattle ranching was considered because revenues from REDD+
(Reducing Emissions from Deforestation and Forest Degradation) are believed to com-
pensate for potential income arising from ranching if the fallow cycle is not implemented.
By avoiding deforestation and thus preventing the release of carbon from forests into the
atmosphere, a monetary value can be provided to certain stakeholders. These multiple
interests can be aligned, promoting exchanges and fostering behavior change with positive
reinforcement. Moreover, this approach can contribute to a more honest and accountable
communication of conservation progress, targets, and planning [55]. This article considers
the suggestions found in the literature, particularly the notion that income from both
ranching and REDD+ can be seen as complementary components of the farm-production
portfolio rather than substitutes. This is because REDD+ cannot exist without ranching and
forest conservation [15,20,57–60].

2.5. Model Verification and Validation

Model verification was performed to check if: (i) the model was programmed cor-
rectly, (ii) data reflected and replicated the correct values, (iii) the algorithms have been
implemented properly, (iv) the model did not contain errors, oversights, or bugs, and (v) if
the data generated by the model were consistent with the scenarios [61].

Model validation used an ordinary least squares (OLS) regression, evaluating the
statistical significance and adjustment of the observed versus the predicted (a) deforestation
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rates and (b) income from cattle ranching. Also, the results of the estimated opportunity
costs were confronted with the results of similar exercises found in the literature (non-
parametric analysis).

2.6. Model Limitations

As suggested by Looking-bill et al. [62], “general models have been effective for
simulating change over large areas and long timeframes” and they are also ideally suited
for characterizing the consequence of climate-induced changes in disturbance regimes that
ultimately affect the evolution of landscape pattern over timescales ranging from centuries
to millennia”. Additionally, Merckx and Pereira [63] argue that modeling exercises and
policy considerations should adopt a broad-scale perspective, incorporating less productive
lands and protected areas to promote the resilience of functioning ecosystems.

One of the main limitations of general models, including the one used in this study,
is that it is lumped (space-independent); therefore, it does not target a specific location in
the Brazilian Amazon. So, for its application to field-level management, it needs a higher
spatial complexity to account for the spatial heterogeneity of various dynamic factors that
lead to variations in model outcomes [64]. This complexity should include considerations of
scale and historical behaviors related to land use and biology [63,65]. However, increasing
modeling complexity also introduces potential sources of error, particularly when relying
on secondary data. For instance, additional factors that could be considered for further
improvement in this research are economic, institutional, physical, human, behavioral, and
agricultural aspects.

Examples of modeling limitations in the present research include (a) other sources of
income beyond ranching and REDD+ abatements, such as timber and grain production;
(b) alternative or combined strategies of land management to fallow areas and characteris-
tics at the local level; (c) variation in population size and behavior; (d) factors of production;
(e) different types of land tenure [66]; and as suggested by [28], (f) indirect drivers of defor-
estation, such as trade and consumption, land speculation, and other sources of uncertainty.
Including these factors can permit the model application for specific selected regions.

3. Results and Discussion
3.1. The Narrative Policy Framework (NPF)

The Narrative Policy Framework (NPF) and systems thinking design are presented
in Figure 3. It starts with the fundamental premise that human beings require food for
their subsistence. With the emergence of the market economy, land has become a form of
capital where goods and services are produced. Consequently, food and natural resources
are exchanged for other goods, addressing the needs of the (1) population, which generates
rents that are then transferred to other levels of the economy, (2) rent supplies and demands.
In the model, in order to fulfill the population’s rent supplies and demands, (3) natural
forests must be (4) slashed and burned, resulting in (5) available land for (6) cattle and
agriculture production.

This system operates within a balancing feedback process (B1), as the population either
grows or declines, leading to a (7) gap between target and actual production. Therefore,
as the population increases, this gap also increases. Consequently, a larger area of forest
needs to be slashed and burned to produce sufficient food. Conversely, if the population
decreases, less deforestation occurs since existing cropland can meet the reduced demands.

The study draws an inference based on the shifting of the burden archetype, suggesting
that clearing up more land is a ‘symptomatic solution’ to the problem, which creates
‘undesirable consequences. The consequences of deforestation encompass the loss of forest
cover and biodiversity, depletion of water resources, and increased carbon emissions. A
critical consequence that falls into a reinforcing feedback process (R) is element (8) in
Figure 3, namely, the depletion of production capacity resulting from the loss of soil fertility.
Therefore, as land productivity declines, the need for deforestation increases.
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In the Amazon Forest, nutrients are lost through volatilization during burning, ex-
ported through timber and crop harvesting, and further depleted due to poor soil manage-
ment practices, all of which contribute to a rapid decline in soil fertility. As a result, the
regrowth potential of vegetation is greatly reduced [47]. Following a clearcut, the region’s
high-intensity rainfall regime leads to nutrient leaching and runoff, caused by recurrent
erosivity [43]. Surprisingly, it has been estimated that only 7% of the land in the Amazon is
naturally fertile and free from significant nutrient limitations [50].

Consequently, the third and final loop of the system archetype (B2) focuses on iden-
tifying a long-term corrective measure (fundamental solution) to address the reliance on
symptomatic solutions (B1) and mitigate the ‘unwanted consequences’ of soil fertility
depletion (R). By implementing another balancing feedback process (9), actions aimed at
improving soil productivity should be adopted to sustain or increase cattle production
while meeting the population’s land demand without resorting to deforestation. Soil man-
agement practices offer a potential means to achieve this objective. Several ongoing studies
are currently exploring soil management and carbon stocks in the Amazon [50,67–69].

In conclusion, the system thinking diagram above reinforces the notion that soil
fertility depletion significantly influences land use and emphasizes the beneficial impact of
soil management practices on the conservation of natural forests, thereby reducing pressure
on pristine forests.

Figure 4 illustrates an example of the land use dynamics in the municipality of Apuí,
located in the State of Amazonas. It demonstrates how overgrazed land (a) leads to
the clearing of native forests (b) in the surrounding areas, ultimately resulting in the
establishment of new pastures (c). Typically, land clearings progress from more accessible
regions to more remote ones as new roads are constructed, expanding the reach into
previously inaccessible areas (Figure 4c).
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3.2. System Modeling of Land Use in the Amazon

The developed Systems Model is presented in Figures 5 and 6. The model has been
divided into Parts A–D and the elements that comprise each part are indicated by lowercase
letters. Part D of the model is presented in Figure 6.
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(a) Part A—Land net requirements and land productivity rate:

In this study, we made certain assumptions about the drivers of deforestation, namely:
(a) population growth and its demand for land, limited by (b) the decrease in soil fertility.
We estimated the annual population growth rate in Brazil to be 1.4% using data from the
Brazilian Institute of Geography and Statistics for the years 1988–2021 [70].

To estimate the individual demand for land, we used a proxy measurement called
the ecological footprint, which is assumed to be 10 hectares per person for the Brazilian
Amazon [71]. The ecological footprint does not directly influence land use behavior in our
model, but it does affect the rate at which land is used as soil fertility declines. Consequently,
a higher ecological footprint corresponds to a greater land requirement. In our model, we
calculated the net land requirement for a growing population by multiplying the first-order
derivative of the population growth rate by the ecological footprint.

Regarding land productivity rates, it is well known that farmland has varying pro-
duction capacities in different years and that it declines over time, especially when poor
soil management practices are employed. In our model, we adopted the principle of soil
fertility depletion over time proposed by [44], as illustrated in Figure 7. The authors of
that study found that immediately after clearcutting, the carrying capacity of Amazon
tropical soils is 0.25 cattle per hectare due to the presence of stumps and slash, which hinder
pasture growth. This limitation persists until the second year when the organic matter left
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by deforestation starts decomposing after the first wet season. During the second year,
the carrying capacity increases to 2.0 cattle per hectare. However, the carrying capacity
subsequently declines over the following years until the ninth year and beyond, at which
point, production stabilizes at a carrying capacity of 0.20 cattle per hectare per year.
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Figure 7. Cattle ranching carrying capacity in the Amazon without soil management. Source: [44].

Due to the non-convex nature of the production function [44], the first year of produc-
tion was excluded from the analysis. Instead, the production capacity for the second year
was calculated as the value for the first year, resulting in a production value of 2.0 cattle
heads per hectare. This adjustment was made to obtain a convex function of productivity.
The rationale behind this assumption is that in the first year, forest clearcutting does not
occur all at once but rather happens throughout the year due to various constraints, such
as climate, resources, and access.

Therefore, the net land requirements can be determined by multiplying the popula-
tion’s net requirements for production with the land productivity rates over time, as specified
in Equation (1).

Land net requirement = population × population growth rate × ecological footprint (1)

(b) Part B—Stock of natural forests and stocks of farmland:

The second part of the model incorporates the inclusion of the stock of natural forests
(c) and how, once the forest is cleared through deforestation, these areas transition into
stocks of farmland (d) (Figure 5). In the initial year of agricultural use, the cleared land is
referred to as farmland year 1. As time progresses, this stock of land transitions to farmland
year 2, and so on (The model design developed is an open view of the function named
‘queue’ in STELLA. The intent here is to facilitate the understanding of this process, as
in its ‘closed’ modeling form). The extent of deforestation is influenced by the land net
requirements (Part A), excluding the fallow land that is allowed to regenerate for future
production. Based on these factors, estimates were made for the stocks of natural forest
(Equation (2)) and the available farmland for production (Equation (3)).

Stock of natural forests = ∑n
i=1 land net requirements ∗ (∑n

i=1 deforestation−∑n
i=1 land fallow returned to production) (2)

Farm land = ∑n
i=1 land deforested + ∑n

i=1 land fallow returned to production (3)

A dummy variable was included in the model to capture the effect of the National
Plan for Prevention and Control in the Legal Amazon—PPCDAm, created in 2004 [72]. The
policy effect was considered after 2009, with a reduction of 60% in the deforestation rates.

(c) Part C—The soil management system and total area lie fallow:

As the third part of the model, a fundamental solution to improve soil productivity
was pursued in which farmland is subjected to a fallow regime of natural regeneration. The
proposed land-use system is plot rotation. A farmer can let varying percentages of land to
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fallow from year to year (e). For practical reasons, only one level of fallow was tested; this
is to allow 100% of the farmland stock in one given year (year 5, 6, 7, 8, or 9).

The model assumed that if land is allowed to (f) lie fallow, land recovers a certain rate
of its original productivity; this is the measure of (g) fallow efficiency. In this model, land
stays fallow for five years, going back to the system for production at the 6th year and it is
assumed that the rate of fallow efficiency is 100%. The model permits adaptation to allow
the fallow regime to have a longer or shorter length of time (in years), and to have different
rates of fallow efficiency. Those were not reported here given space limitations. Also, other
types of additionalities from fallow were not considered for analysis in this study.

The premises above consider the regenerative capacity of tropical secondary forests to
sequester carbon and to rebuild the nutrient capital following pasture abandonment [6,73–76].
Styger and Fernandes [77] (p. 425) define fallow as a “resting period for agricultural
land between two cropping cycles during which soil fertility is restored, [nevertheless]
it has more roles than just fertility restoration”. Fallow can also: (a) control weeds and
pests, produce wood, fibers, and medicinal plants, (b) produce structural benefits to the
soil (physical, biological, organic, and inorganic), and (c) be combined with the natural
regeneration or planted trees, shrubs, and herbs, which can generate other associated
economic benefits. Nevertheless, they cautioned that “fallowing alone may not be sufficient
to achieve a productive sustainable system”, noting that other types of supplementations
may be necessary [77] (p. 433).

(b) Part D—The accounting of land use:

The final part of the model is where the ‘accounting of land use’ is measured (Figure 5).
Here, the model simulated: cattle ranching revenue, REDD+ revenue (from VCUs), and
their sum as the total revenue. For easier understanding, the model is separated into two
boxes (Figure 6). The box on the top of the page simulates the cattle ranching system and
the box on the lower part simulates the fallow system and avoided deforestation. The total
revenue is the sum of the cattle ranching revenue and the REDD+ remuneration.

Here, the accounting of land use excludes the following factors: (a) leakage, (b) VCUs
generated from fallow itself, and (c) VCUs from improved land management (VM0042). It is
assumed that control and management practices lead to a neutral estimate. Two equations
were specified to estimate revenues from ranching and the REDD+ revenues from carbon
offsets. They were:

Cattle ranching revenue = total cattle production × average cattle carcass weight × average price (4)

where (the equation factors are represented in letters (h), (i), and (j) in the STELLA model
(Figure 5)):

Total cattle production = stock of land available in a given year * land productivity rate in time (variable value)

The land productivity rate is based on Hecht et al. [44].
The average cattle weight of 250 kg (fixed value). Average third quarter 2022 [51].
The average price in 2022 for the cattle arroba (@ = Brazilian weight measurement = 15 kg)

at slaughter was ~USD 50 (in Paragominas, Pará ((a) Exchange rate Brazilian Reais (BRL)
to US Dollars ~5.0 (minimum rate in 2021 and 2022). (b) Average price for cattle arroba:
2019 = BRL 152~USD30, 2020 = BRL 200~USD 40, 2021 = BRL 300~USD 60, 2022 = BRL
250~USD 50) [52]. The average price USD 30 and USD 40 were used to test the sensitivity.

REDD+ revenues = area of avoided deforestation * CO2 equivalent/ha * average C price (5)

where (the equation factors are represented in letters (k), (l), and (m) in the STELLA model
(Figure 5)):

Area of avoided deforestation = (total area * fallow efficiency).

The total area available for abatements is equal to the area fallowed multiplied by
the fallow efficiency (variable value). This is the area of forests that will not need to be
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slashed and burned to maintain cattle production stable. This is a generalized and reduced
complexity formula that considers the elements of planned and unplanned deforestation,
and forest degradation considered on the VCS VM0007 [14].

The carbon stock equivalent (C/ha) in forests is 200 MgCha−1 (fixed value) (Forest
Type = Dense forest + Open Forest/simple average = (212 + 188)/2 = 200 MgCha−1. The
Project “Canindé Grouped REDD+ Project” registered at Verra = 744.29 tCO2/ha * 0.27
(constant) = ~200 MgCha−1) [53,54].

The average price set for carbon ton equivalent was USD 1.00, USD 2.50, or USD
5.00—variable value (conservative values were considered) [46,54,55].

Since this is a modeling study of a macroscale policy strategy, only the gross revenue
was considered, representing the businesses’ values, growth potential, and how much
money can be earned with each activity. The gross revenue would allow general compar-
isons to be better comprehended. At the microscale, each farm has its production and cost
functions, and net revenue is dependent on each farm administration strategy. This specific
analysis goes beyond the scope of the article.

The complete specification of the algorithms used for modeling and the programming
syntax are presented in Appendix A.

3.3. Model Verification and Validation

A robust model verification process was developed, to minimize the effects of errors
on the results of the simulation. Model validation indicates that the proposed model has
good accuracy in interpolations of:

(a) the deforestation pattern in the Brazilian Amazon, from 1988–2022 (Figure 8)—the
statistical evaluation based on OLS single regression of the (1) data from the Brazilian
Institute of Spatial Research [38], versus the (2) simulated data resulted in a R2 = 0.93,
with no intercept (regression with the intercept, shown no significance on the parame-
ter. R2 estimates = 0.75, confidence > 99%) (confidence level of 99%, F = 784.1, Durbin
Watson = 1.244, no auto correlation with 5% significance (Critical values→ n = 35,
k’ = 1, dL = 1.402, dU = 1.519), and good fit of residuals).

(b) the income from ranching (Appendix B)—the (1) data from the Ministry of Agriculture,
Ranching [78], versus the (2) data produced from simulation resulted in an R2 = 0.90
for income in USD and R2 = 0.99 for income in Brazilian Reais (BRL), both with no
intercept (confidence level of 99%, F = 94.5 for USD, F = 2190 for BRL).
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Figure 9 illustrates the projected impacts of cumulative land deforestation in the
Brazilian Amazon forests under a business-as-usual (BAU) scenario, without any fallow
periods, as well as the potential effects of different fallow regimes on soil productivity.
According to the simulations, natural forests would experience a reduction of 9.8% within
a 50 year period. However, implementing fallow periods can help mitigate deforestation.
The estimated deforestation rates with fallow range from 2.9% to 3.7%, depending on
when the fallow periods begin, with rates increasing from 2.9% for fallow starting in year
5, to 3.7% for fallow starting in year 9. These findings highlight the importance of early
implementation of fallow periods to minimize deforestation in the region and preserve
soil productivity.
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Figure 9. Simulation results—effects of deforestation trends on the Amazon Forest cover, with and
without fallow (in 103 km2).

The fallow management regime alone is not able to halt deforestation of natural forests,
though it has a significant impact in easing deforestation trends in at least 62% of the cases
(with fallow starting in year 9). The earlier the fallow regime starts, the more effective it is
in diminishing deforestation. These findings indicate that soil management practices can
have a large impact on deforestation and land-use trends.

3.4. Income from Ranching and Fallow

The simulation of cattle production and farmer income shows positive trends with
and without the fallow practices (Figure 10). The estimates for cattle heads are equivalent
to the income and will not be presented since the results are proportional to income.

Figure 10 indicates that ranching without fallow promotes higher returns and yields,
compared to ranching with fallow systems. Specifically, the earlier fallow is started, the
lower the returns from ranching if the practice starts at later years (i.e., less in the fifth year,
less in the sixth year, and so forth). In conclusion, considering only ranching income, the
adoption of fallow could be seen a “loss of returns” for the landowner, and if adopted, it
would be better in later years.
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3.5. Income from Avoided Deforestation

Simulation of the income generated from avoided deforestation (REDD+) also shows a
positive trend over time (Figure 11). When fallow is not adopted, the accounting of avoided
deforestation is not computed, and no income is generated. Conversely, when fallow is
adopted, the earlier it starts, the larger the returns from REDD+ if initiated at later years
(i.e., greater in the fifth year, greater in the sixth year, and so forth). In conclusion, adopting
fallow could be seen as “gain in returns” for the landowner, and if adopted, it would be
preferred at later years.
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3.6. Income Sensitivity to Carbon and Cattle Prices

In the general Amazon model, the primary outcome was the estimation of the sensitiv-
ity of income generated from ranching and the REDD+ policy. This analysis considered
various price scenarios for cattle and carbon, such as cattle prices of USD 30, USD 40, and
USD 50 per unit weight (@), and carbon prices of USD 1.00, USD 2.50, and USD 5.00 per
metric ton of carbon sequestered (MgCha−1).

Figure 12 and Table 1 display the results for a fallow period starting in year 7, which
is the midpoint between year 5 and year 9. Comparing the results, it is evident that the
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profitability of each activity can vary depending on the prevailing market prices. In some
cases, one activity may yield higher returns compared to the other, depending on the
specific market conditions.
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Table 1. Total income from cattle ranching and REDD+ activities—year 20 (in USD billion).

Sources of Income
Ranching Income 1

USD 0 USD 30 USD 40 USD 50

REDD+
income 2

$0.0 0.0 13.0 19.4 25.9
$1.0 8.7 21.6 28.1 34.6
$2.5 21.7 34.6 41.1 47.6
$5.0 43.4 56.3 62.8 69.3

Note: results for fallow starting at year 7. 1 Arroba price (15 kg). 2 C/ton price.

The simulation indicates that when the carbon price is USD 1.00/MgCha−1, the income
accrued from avoided deforestation (USD 8.7 billion) is smaller compared to cattle prices of
USD 30/@, USD 40/@ and USD 50/@ (13.0, 19.4, 25.9 billion). But, when the price of carbon
is USD 2.50/MgCha−1 the revenue from REDD+ can be equivalent to cattle ranching at
USD 40/@ (21.7 and 19.4, respectively). Finally, when the price of carbon is USD 5.00 per
ton, the income from avoided deforestation is higher than those of cattle ranching with the
price USD 50/@ (43.4 and 25.9, respectively). In all, the price paid for carbon can provide
a real stimulus to landowners to change land-use behavior and adopt soil management
practices to compensate and complement the rents that could accrue from land use.

3.7. Opportunity Cost of Land

In Figure 13 are presented the results from the model simulation of the income from
ranching and the impact that fallow regimes have on long-term ranching revenues. Conven-
tionally, the opportunity cost would be thought of as an implication of the result presented
in Figure 10, in which fallowing would diminish the opportunity cost of land and of the
ranching activity [58,59].
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Figure 13 indicates that the opportunity cost of land for ranching would have a lower
value when the fallow regime is not adopted. Thus, with fallow, more value is aggregated
to the land, increasing opportunity costs. This was because the environmental services
provided by the land starts to be measured and paid (e.g., carbon payments and the
promotion of soil conservation, which consequently permits the ranching production with
more cattle heads per hectare).

The results of the general model indicate that, in the long run, when fallow is not
adopted, the average income will continuously decline until it is stabilized at approximately
USD 70 per hectare (after year 55). The income decrease happens because general land
productivity is lowered in later years with grazing. So, even when new forests are cleared
and incorporated into the system with the intent of maintaining cattle production, the
average revenues will continually decline over time until stabilization.

With the fallow regime, cycles of soil fertility are created, which reflects on stabilized
(increasing and decreasing) trends of income in the long run. Thus, a stable system is
created, so production and income increase.

The estimated opportunity cost of ranching land (per year) over in the long run was:
(a) no fallow = USD 138, (b) fallow at year 5 = USD 420, (c) fallow at year 6 = USD 383,
(d) fallow at year 7 = USD 348, (e) fallow at year 8 = USD 318, (f) fallow at year 9 = USD
295. So, the opportunity cost of land is higher the earlier the fallow system starts.

Another justification for adopting soil management practices is that agriculture expan-
sion moves into old, consolidated ranching areas, converting them to soybeans farms [71].
Soybean growing is more profitable and promotes more carbon sequestration compared to
ranching [69,72], and this would consequently increase the opportunity cost in the future.

The REDD+ income per hectare varies according to the market MgCha−1 price. For this
model, the carbon stock (C/ha) in forests is fixed at 200 MgCha−1 per hectare. The estimated
opportunity cost per hectare of preserved forest would be: (a) USD 250 considering USD
1.00/MgCha−1, (b) USD 625 considering USD 2.50/MgCha−1, and (c) USD 1250 considering
USD 5.00/MgCha−1. So, the opportunity cost of land tends to be higher with REDD+ at
USD 2.50/MgCha−1 than with ranching alone, even with the best fallow strategy.
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Therefore, here we estimated that the compensation value for the conversion pro-
gram would be between USD 2.5 and USD 5.0, considering the cattle ranching at a USD
50/@. Nepstad et al. [16] also estimated the Brazilian “national opportunity costs” of
the forgone profits from forest-replacing agricultural and livestock production systems
to forest maintenance. They indicated that USD 3.0/MgCha−1 could be the opportunity
cost of avoiding the Amazon Forest emissions, and of USD 5.5/MgCha−1 in the best sce-
nario. In the entire Amazon region, they estimated the compensation of USD 450 billion
(~15 billion/year/average) for a 30-year program [17]. de Figueiredo Silva [60] estimated
an average shadow price to a range of USD 6.76 to USD 16.64/MgCha−1 to preserve the
Amazon carbon stocks, but without considering the effects of soil fertility depletion, and
therefore tending to increase the value of the estimate. They estimated a total cost of
USD 257 billion, but with a phase in and phase out strategy [17]. The results obtained by
other authors are approximate to the ones generated in the present study, validating the
proposed method.

West et al. [35] found that zero gross deforestation was unattainable, but zero net
carbon emission could be reached at approximately two-thirds the cost, with reduced
impacts on food production. For instance, they found that the revenue transference initiated
at USD 5/MgCha−1 and increased with the MgCha−1 price. They suggest that shifts in food
production are directly a consequence of the “optimal bundle” of returns, and households
tend to opt out of the program if they perceive that there would be a reduction of revenue,
because of the shift in the opportunity cost of land use. These results are also equivalent to
those developed in the present study, but here they were obtained with a more generalized
and simpler model. This indicates that the proposed method can indeed work as a Narrative
Policy Framework (NPF).

Using an integrative approach named “FALLOW model” on an aggregated scale of
Upper Konto, Indonesian researchers concluded that a land zoning approach is the most
promising way to balance (a) fodder availability, (b) farmers’ welfare (total profits gained),
and (c) increase ecosystem functions (such as carbon stocks) [9]. Similar factors were used
in the present study, including the livestock carrying capacity, soil fertility recovery during
fallow, and carbon sequestration, along with manure and livestock dynamics.

Results of the Indonesian authors follow the same findings here, by capturing the
dynamics of agricultural expansion, and welfare (income). They recommend the use of
results at the mesoscale level of decision-making, subsidizing the debate of GHG emissions.
All systems models must be simplified, and should not be used for numerical predictability,
but rather should provide an understanding of possible outcomes, and guidance to the
type of acceptable application.

The final decision of land allocation (size, period, etc.) for different management
strategies is dependent on the optimization state of the income accrued from agriculture
and REDD+. As suggested by West et al. [35], the “optimal bundle” is a consequence of
implicit returns from land use. We conclude that land-use behavior is based on the perceived
opportunity cost of the land, so that policy scientists should seek changes in conventional
ways of thinking and behavior [56,79].

3.8. Sinergies of the Conservation Policy, Socio-Economic Objectives, and Practical Applications

Brazil already has a National Strategy for Reducing Emissions from Deforestation and
Forest Degradation (ENREDD+), which regularly receives incentive-based payments for
forest conservation from various international sources, in particular the Green Climate Fund
(GCF). The National Strategy aims at fostering sustainable productive activities through
the following steps: (a) strengthen the productive chains that constitute alternatives to
deforestation; (b) promote good practices in agriculture, including alternatives to the use of
fire; (c) increase the production of wood and promote market growth for sustainable forest
management; (d) promote environmental compliance and foster sustainable production in
agrarian reform settlements and smallholdings; and (e) generate sustainable-development-
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related science, technology, and innovation in the Amazon [80]. This study is closely related
to these objectives.

Recently, on 5 June 2023, the President of Brazil instituted a National Commission to
coordinate, monitor, and revise the ENREDD+ (Decree 11548/2023). One of the Commis-
sion’s mandates is “to issue certificates recognizing the payment for REDD+ results in the
country” (Article 9), and to entitle the Brazilian development bank-BNDES to receive the
payments of its proceedings (Article 11).

Given this institutional context, the proposed method and its results can be instructive
for the government and private stakeholders as a pathway for agreements and for policy
implementation related to land conservation. The allocation of resources is necessary, and
BNDES could anticipate future payments by covering the expenses of projects, especially
in deforestation hot spots.

One of the downsides of Brazil’s ENREDD+ policy is that direct payments are made
only to Federal and State governments, which invest these resources in local projects
(REDD+ for Early Movers—REM). Decentralizing the incentive-based payments at the
local level could reinforce the behavior change of peasants and farmers after they perceive
the trade-offs and payoffs of their investments in sustainable practices [60]. Torres et al. [81]
relate that in the Ecuadorian Amazon, the adoption of financial incentive programs pro-
moted the implementation of livestock best management practices at the household level,
and also enabled public–private partnerships to develop REDD+ projects. In the end, most
farmers are searching for ways to manage the land and to generate income [10,12,73].

Considering international policies, the EU focus on creating market barriers, such
as banning unsustainable products, is considered to “miss out deeper leverage points to
address the systemic drivers of deforestation”, being considered relevant to put incentives
for more sustainable agricultural production and compensations as REDD+ [28].

Some of the alternatives for policy implementation could be the promotion of programs
for (a) extension services, (b) property regularization, and (c) environmental compliance.
Nevertheless, such programs face many challenges, since illegal and criminal practices are
some of the drivers that expand the agriculture frontier. On the other hand, governments
lack field capillarity and human resources to implement and keep up with the task. This
tends to be a vicious cycle, and tackling this problem is key for governments and citizens.

4. Conclusions

General landscape models are widely recognized as important tools to facilitate de-
bates and decision-making processes for developing improved conservation policies in
developing countries [9,36,62,64,65,69,82,83]. However, when increasing complexity arises
from the incorporation of factors or drivers into the models, it is essential to exercise caution
and prioritize simplicity to effectively induce behavioral changes in conservation-oriented
strategies [43,84].

To advance the discussion surrounding REDD+ initiatives, this study applied an
Integrated Assessment Model (IAM), using systems thinking and systems modeling and
simulation. The objective was the development of a Narrative Policy Framework (NPF) that
could assess the behavior of land conversion and trade-offs between fallow regimes in cattle
ranching. The general model yielded different outcomes for various management scenarios,
considering different cattle and carbon prices, as well as opportunity costs. This facilitated
the construction of a theory of change toward sustainable land use in the Amazon.

The findings of this quantitative study reinforce those obtained in previous studies,
highlighting the beneficial impact of soil management practices on the conservation of
natural forests, making them eligible for payments for environmental services [9,10,82]. In
the case of the Brazilian Amazon, where fallow practices are not common and land is often
overused, system modeling can serve as a tool to educate farmers and managers about the
different outcomes of land use and management.

Additionally, it can enhance dialogue among stakeholders, contributing to the de-
velopment of a political agenda and the customization of lower-level programs toward
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sustainable development. These aspects could be incorporated into the current Brazilian
policy customization, especially since the National Commission of REDD+ has recently
been established, enabling the issuance of certificates for incentive-based payments (RBP).

The proposed model provided a good fit between observed and modeled results, indi-
cating that the fallow management regime alone may not be sufficient to halt deforestation
of natural forests, but still has a significant impact in reducing deforestation trends in at
least 62% of the cases.

The earlier the fallow practice starts, the more effective it tends to be in diminishing
deforestation and increasing income from REDD+. However, from a revenue perspective,
starting later is better. Thus, compensation for avoided production plays a crucial role as
a trade-off policy. The payments collected for avoided deforestation need to be directly
distributed to those implementing the policy, including the landowners. This ensures
that landowners can directly benefit from the opportunity cost voided by the ranching
production [23,60].

Addressing this gap in public policy is crucial in Brazil, since all local REDD+ RBP
payments are currently collected by the Federal and State Governments only. On the other
hand, the literature emphasizes the importance of making REDD+ RBP more distributed
at the local level [12]. Collecting rents from both sustainable agriculture and avoided
deforestation could bring about a change in conventional practices, such as the intensive
and exhaustive use of land, and influence land management behavior towards more
sustainable practices [10,82].

At the macro level, the proposed model suggests that a payment between USD 2.5
and USD 5.0 per MgCha−1 has the potential to compensate for the foregone cattle ranching
production, considering a price of USD 50 per 15 kg (@). These results are similar to
those of other studies that utilized different methods and data [17,35,60], demonstrating
that the model serves as a tool to facilitate multidisciplinary planning and as a commu-
nication interface between scientists, policymakers, citizens, and especially peasants and
farmers [9,40].

The proposed model has a potential for future research, including the incorporation of
additional complexities, such as drivers of deforestation, alternative management strategies,
and downscaling to the local level. As suggested by McGregor et al. [64], the combination
of different scales can produce ‘better solutions’ by capturing a pluralistic perspective and
improving commitment.
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Appendix A. Algorithms Specification and Programming Syntax

� Fallow_Year_1(t) = Fallow_Year_1(t − dt) + (Fallow_1 + Fallow_2 + Fallow_3 + Fal-
low_4 + Fallow_5 − F_t1 ×dt

INIT Fallow_Year_1 = 0
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INFLOWS:
→ Fallow_1 = Farm_Land_Year_5*F_y5
→ Fallow_2 = Farm_Land_Year_6*F_y6
→ Fallow_3 = arm_Land_Year_7*F_y7
→ Fallow_4 = Farm_Land_Year_8*F_y8
→ Fallow_5 = Farm_Land_Year_9*F_y9
OUTFLOWS:
→ F_t1 = Fallow_Year_1

� Fallow_Year_2(t) = Fallow_Year_2(t − dt) + (F_t1 − F_t2) * dt

INIT Fallow_Year_2 = 0
INFLOWS:
→ F_t1 = Fallow_Year_1
OUTFLOWS:
→ F_t2 = Fallow_Year_2

� Fallow_Year_3(t) = Fallow_Year_3(t − dt) + (F_t2 − F_t3) * dt

INIT Fallow_Year_3 = 0
INFLOWS:
→ F_t2 = Fallow_Year_2 OUTFLOWS:
→ F_t3 = Fallow_Year_3

� Fallow_Year_4(t) = Fallow_Year_4(t − dt) + (F_t3 − F_t4) * dt

INIT Fallow_Year_4 = 0
INFLOWS:
→ F_t3 = Fallow_Year_3 OUTFLOWS:
→ F_t4 = Fallow_Year_4

� Fallow_Year_5(t) = Fallow_Year_5(t − dt) + (F_t4 −deforestation_fallow) * dt

INIT Fallow_Year_5 = 0
INFLOWS:
→ F_t4 = Fallow_Year_4 OUTFLOWS:
→ deforestation_fallow = Fallow_Year_5*fallow_efficiency

� Farm_Land_Year_1(t) = Farm_Land_Year_1(t − dt) + (deforestation_fallow +
deforestation_natural_forest_t1- t2) * dt

INIT Farm_Land_Year_1 = 0
INFLOWS:
→ deforestation_fallow = Fallow_Year_5*fallow_efficiency
→ deforestation natural_forest_t1 = (net_requirement*year*land_productivity_
rate_in_time)-deforestation_fallow
OUTFLOWS:
→ t2 = Farm_Land_Year_1

� Farm_Land_Year_10(t) = Farm_Land_Year_10(t − dt) + (t10) * dt

INIT Farm_Land_Year_10 = 0
INFLOWS:
→ t10 = Farm_Land_Year_9*(1-F_y9)

� Farm_Land_Year_2(t) = Farm_Land_Year_2(t − dt) + (t2 − t3) * dt

INIT Farm_Land_Year_2= 0
INFLOWS:
→ t2 = Farm_Land_Year_1
OUTFLOWS:
→ t3 = Farm_Land_Year_2

� Farm_Land_Year_3(t) = Farm_Land_Year_3(t − dt) + (t3 − t4) * dt

INIT Farm_Land_Year_3 = 0
INFLOWS:
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→ t3 = Farm_Land_Year_2
OUTFLOWS:
→ t4 = Farm_Land_Year_3

� Farm_Land_Year_4(t) = Farm_Land_Year_4(t − dt) + (t4 − t5) * dt

INIT Farm_Land_Year_4 = 0
INFLOWS:
→ t4 = Farm_Land_Year_3
OUTFLOWS:
→ t5 = Farm_Land_Year_4

� Farm_Land_Year_5(t) = Farm_Land_Year_5(t − dt) + (t5 − Fallow_1 − t6) * dt

INIT Farm_Land_Year_5 = 0
INFLOWS:
→ t5 = Farm_Land_Year_4
OUTFLOWS:
→ Fallow_1 = Farm_Land_Year_5*F_y5
→ t6 = Farm_Land_Year_5*(1-F_y5)

� Farm_Land_Year_6(t) = Farm_Land_Year_6(t − dt) + (t6 − Fallow_2 − t7) * dt

INIT Farm_Land_Year_6 = 0
INFLOWS:
→ t6 = Farm_Land_Year_5*(1-F_y5)
OUTFLOWS:
→ Fallow_2 = Farm_Land_Year_6*F_y6
→ t7 = Farm_Land_Year_6*(1-F_y6)

� Farm_Land_Year_7(t) = Farm_Land_Year_7(t − dt) + (t7 − Fallow_3 − t8) * dt

INIT Farm_Land_Year_7 = 0
INFLOWS:
→ t7 = Farm_Land_Year_6*(1-F_y6)
OUTFLOWS:
→ Fallow_3 = Farm_Land_Year_7*F_y7
→ t8 = Farm_Land_Year_7*(1-F_y7)

� Farm_Land_Year_8(t) = Farm_Land_Year_8(t − dt) + (t8 − Fallow_4 − t9) * dt

INIT Farm_Land_Year_8 = 0
INFLOWS:
→ t8 = Farm_Land_Year_7*(1-F_y7)
OUTFLOWS:
→ Fallow_4 = Farm_Land_Year_8*F_y8
→ t9 = Farm_Land_Year_8*(1-F_y8)

� Farm_Land_Year_9(t) = Farm_Land_Year_9(t − dt) + (t9 − Fallow_5 − t10) * dt

INIT Farm_Land_Year_9 = 0
INFLOWS:
→ t9 = Farm_Land_Year_8*(1-F_y8)
OUTFLOWS:
→ Fallow_5 = Farm_Land_Year_9*F_y9
→ t10 = Farm_Land_Year_9*(1-F_y9)

� Natural_Forests(t) = Natural_Forests(t − dt) +(deforestation_natural_forest_t1) * dt

INIT Natural_Forests = 50
OUTFLOWS:
→ deforestation_natural_forest_t1 = (net_requirement*year*
land_productivity_rate_in_time)-deforestation_fallow

# average_price_@_cattle_U$ = 50 (30,40,50)
# average__C_price = 0 (0,1.0,2.5,5.0)
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# Avoided_deforestation = fallow_efficiency*total_area_fallow
# C_per_ha = 200
# ecological_footprint = 10
# fallow_efficiency = 1
# F_y5 = 0 (0,1)
# F_y6 = 0 (0,1)
# F_y7 = 0 (0,1)
# F_y8 = 0 (0,1)
# F_9y = 0 (0,1)
# land_rent_requirement = Population_Estimate*ecological_footprint
# net_requirement = DERIVN(land_rent_requirement,1)
# prod1 = 2
# prod2 = 1.25
# prod3 = 1
# prod4 = 1
# prod5 = 0.75
# prod6 = 0.5
# prod7 = 0.3
# prod8 = 0.2
# prod9 = 0.2
# prod10 = 0.2
# revenue_U$_ranching = total_cattle_production*weight_conversion_@*average_

price_@_cattle_U$
# revenue_U$_REDD = C_per_ha*average_C_price*Avoided_deforestation
# total_area_fallow = Fallow_Year_1+Fallow_Year_2+ Fallow_Year_3+Fallow_Year_4+

Fallow_Year_5
# total_area_farming = Farm_Land_Year_1+Farm_Land_Year_2

+Farm_Land_Year_3+Farm_Land_Year_ 4+Farm_Land_Year_5
+Farm_Land_Year_6+Farm_Land_Year_7+Farm_Land_Year_8
+Farm_Land_Year_9+Farm_Land_Year_10

# total_revenue = revenue_U$_ranching+revenue_U$_REDD
# total_cattle_production = (Farm_Land_Year_1*prod1)

Farm_Land_Year_2*prod2)+(Farm_Land_Year_3*prod3*)
+(Farm_Land_Year_4*prod4)+(Farm_Land_Year_5*prod5)
+(Farm_Land_Year_6*prod6)+ (Farm_Land_Year_7*prod7)
+(Farm_Land_Year_8*prod8)+(Farm_Land_Year_9*prod9)
+(Farm_Land_Year_10*prod10)

# weight_conversion_@= (average_cattle_weight/2)/15
# year = counter(1,9)
# land_productivity_rate_in_time = GRAPH(year)
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Figure A1. Annual income from cattle ranching (observed and modeled), 2012–2022. Note: Annual 
exchange rate—USD/BRL (‘R$’ in the figure.) [85]. 
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