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RESUMO

PAPEL DOS VÓRTICES LAGRANGIANOS COMO BARREIRAS DE TRANSPORTE DE MATERIAIS EM UM

MODELO DE PLASMAS DE TOKAMAK

No plasma de fusão, simulações numéricas são comumente utilizadas para investigar as propri-
edades de confinamento do plasma na região de borda dos tokamaks. As equações modificadas
de Hasegawa-Wakatani (MHW) são usadas para modelar o comportamento do plasma, o que nos
permite entender o transporte radial em simulações numéricas bidimensionais de turbulência de
ondas de deriva resistivas eletrostáticas. Ao utilizar as equações de MHW, obtivemos melhor
entendimento sobre as transições de confinamento baixo-para-alto (L-H) que ocorrem esponta-
neamente no plasma quando o mesmo passa de um estágio de baixo confinamento, caracteri-
zado por fluxo turbulento, para um regime que suprime a turbulência conhecido como fluxo zonal.
Para investigar essas transições, variamos o valor de um parâmetro de controle α, que está re-
lacionado à adiabaticidade, em simulações numéricas, e observamos a transição entre os dois
regimes. Este modelo simplificado de transições L-H pode fornecer informações valiosas para to-
kamaks. As propriedades de mistura caótica do fluxo são caracterizadas por meio de estruturas
coerentes Lagrangeanas (LCS). Primeiro, calculamos o expoente de Lyapunov de tempo finito
(FTLE) do campo de velocidade calculado derivado do potencial eletrostático para melhor carac-
terizar a mistura caótica dos regimes de fluxo turbulento e zonal. Em seguida, comparamos as
estatı́sticas da mistura caótica dos dois regimes utilizando funções de distribuição de probabili-
dade (PDFs). Por fim, identificamos os vórtices Lagrangeanos utilizando a teoria geodésica para
aprofundar a nossa compreensão da mistura caótica dos dois regimes, implementando também
o cálculo da energia cinética para os vórtices e domı́nio total. Estes resultados podem contribuir
para a compreensão dos processos de transporte turbulento em plasmas de fusão por confina-
mento magnético.

Palavras-chave: plasma de fusão, confinamento baixo-a-alto, estruturas coerentes Lagrangea-
nas, Expoente de Lyapunov de tempo-finito, barreiras de transporte de materiais.
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ABSTRACT

In fusion plasma, numerical simulations are commonly employed to investigate the confine-
ment properties of plasma in the bulk region of tokamaks. The modified Hasegawa-Wakatani
(MHW) equations are used to model the behavior of plasma, which enables us to understand
the radial transport in two-dimensional numerical simulations of electrostatic resistive drift-wave
turbulence. By utilizing the MHW equations, we have gained insights into the low-to-high con-
finement (L-H) transitions that occur spontaneously in the plasma when it moves from a low
confinement stage, characterized by turbulent flow, to a turbulence-suppressed regime known
as zonal flow. To investigate these transitions, we vary the value of a control parameter α,
which is related to adiabaticity, in numerical simulations, and observe the transition between
the two regimes. This simplified model of L-H transitions can provide valuable information for
tokamaks. The chaotic mixing properties of the flow are characterized by means of Lagrangian
coherent structures (LCS). First, we compute the finite-time Lyapunov exponent (FTLE) of
the calculated velocity field derived from the electrostatic potential to better characterize the
chaotic mixing of the turbulent and zonal flow regimes. Then, we compare the statistics of
the chaotic mixing of the two regimes using probability distribution functions (PDFs). Lastly,
we identify the Lagrangian vortices using geodesic theory to further our understanding of the
chaotic mixing of the two regimes, by also implementing the calculation of the kinetic energy for
the vortices and total domain. These results can contribute to the understanding of turbulent
transport processes in magnetic confinement fusion plasmas.

Keywords: fusion plasma, low-to-high confinement, Lagrangian coherent structures, finite-time
Lyapunov exponent, material transport barriers.
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1 INTRODUCTION

Due to global population growth and industrialization, the world’s growing energy depen-
dency has become a pressing concern. This concern revolves around our energy supply, as
fossil fuels, a finite resource and significant contributor to climate change, emphasize the is-
sue. Consequently, there is an escalating need for a clean, safe, and carbon-neutral form of
electricity generation (Dewhurst, 2010). Nuclear fusion has gained recognition as an alterna-
tive solution for both energy dependency challenges and climate change. As a result, fusion
reactors are being constructed worldwide, exemplified by projects like ITER in France and the
recently inaugurated JT-60SA in Japan.

Nuclear fusion occurs in the interior of stars. Fusion reactions, wherein nuclei fuse to-
gether, power the Sun, producing a mass that is smaller than the combined mass of the reac-
tants. This small mass loss results in released energy (Dewhurst, 2010). There are ongoing
efforts to reproduce fusion reactions in experimental facilities. In laboratory experiments, there
are two main methods to recover the energy from fusion collision, namely, magnetic confine-
ment and inertial fusion (Chen, 2016).

In magnetic confinement devices, a magnetic field is employed to take advantage of the
forces acting on charged particles in plasmas for their confinement (Dewhurst, 2010). A plasma
is an ionized gas or a quasineutral gas of charged and neutral particles exhibiting collective
behavior (Chen, 2016) and serves as the required fuel for fusion to occur. The tokamak is a
fusion reactor regarded as one of the most promising magnetic confinement devices to achieve
energy production from thermonuclear fusion.

When investigating fusion plasma, turbulent processes pose a substantial engineering
challenge, because they are responsible for the radial transport toward the edge of a toka-
mak, which leads to plasma loss to the walls (Farge et al., 2006). A fundamental challenge
of fusion research is to understand the dynamics of turbulent radial particle transport and heat
flux in magnetized plasmas because it holds the potential to enhance the confinement charac-
teristics of fusion devices, including tokamaks (Bos et al., 2008). Numerical simulations are a
valuable tool to model this behavior, allowing the study of the overall plasma dynamics within
the bulk region.

In this thesis, we employ numerical simulations of a fluid model of turbulence in fusion
plasmas that displays a low-to-high confinement (L-H) transition, which is a transition observed
in experiments with fusion plasmas. Spontaneously occurring, these transitions occur as the
plasma shifts from a low confinement regime, referred to as turbulent flow, to a turbulence-
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suppressed state characterized by the presence of zonal flows, resulting in a high confinement
regime. The significance of this transition lies in its capacity to enhance confinement (Numata
et al., 2007), making the study of L-H transitions an avenue for advancing nuclear fusion.

Turbulence can be defined as the coexistence between advecting coherent structures and
random fluctuations of the velocity fluid (Davidson, 2015). The Hasegawa-Wakatani equa-
tions, employed in two-dimensional numerical simulations of electrostatic resistive drift-wave
turbulence, aid in comprehending radial transport. The detection of Lagrangian coherent struc-
tures (LCSs) in turbulent flows has received much attention since the last two decades (Haller,
2001; Beron-Vera et al., 2010). Furthermore, the computation of the finite-time Lyapunov ex-
ponent (FTLE), in conjunction with the utilization of Geodesic Theory, is employed to identify
Lagrangian coherent structures (LCS). These approaches contribute to a more comprehensive
understanding of chaotic mixing during the L-H transition.

This thesis is organized as follows. Chapter 2 provides the theoretical background on
plasma and nuclear fusion. Chapter 3 describes the model employed and the numerical tools.
Chapter 4 presents the numerical results, and Chapter 5 provides the conclusion.

1.1 OBJECTIVE

1.1.1 General Objective

This thesis aims to characterize the chaotic mixing properties within a simplified two-
dimensional model of a tokamak undergoing a transition from low-to-high confinement. The
investigation employs numerical simulations based on the modified Hasegawa-Wakatani equa-
tions. Lagrangian coherent structures are identified through the application of finite-time Lya-
punov exponent and the Geodesic theory approach, focusing on electrostatic resistive drift-
wave turbulence.

1.1.2 Specific Objective

• To acquire the electrostatic potential patterns (φ) from the modified Hasegawa-Wakatani
equations, using two variations in the parameter α, to display the turbulent and zonal flow
regime.

• To calculate the particle density flux and kinetic energy of the whole domain for both
turbulent regime and zonal flow.

• To identify the material transport barriers, known as Lagrangian coherent structures
(LCS), in both turbulent regime and zonal flow, using finite-time Lyapunov exponent
(FTLE) approach.

• To use FTLE results to calculate the probability distribution functions (PDFs) of both
regimes as to compare and to further characterize the chaotic mixing.
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• To identify LCS vortices, in both turbulent regime and zonal flow, using Geodesic theory
approach.

• To calculate the kinetic energy of the vortices identified in both of the regimes.

3



2 PLASMA AND THERMONUCLEAR FUSION

2.1 PLASMA AND ITS CRITERIA

In a gaseous state, atoms exhibit a distribution of thermal energies, and an atom under-
goes ionization when subjected to a collision of sufficient kinetic energy to dislodge one of
its electrons. Upon ionization, an atom retains its charge until it encounters an electron, at
which point it undergoes recombination with the electron, reverting to a neutral state. The rate
at which this occurs is known as the recombination rate, and it is dependent on the density
of electrons (ne), where ne is interpreted as equal to the density of ionized atoms (ni). The
low recombination rate establishes one of the distinguishing characteristics separating plasma
from other ionized gases (Chen, 2016).

Plasma is distinguished from any ionized gas by its unique characteristics, as it is defined
as “a quasineutral state of matter composed of charged and neutral particles that manifest col-
lective behavior” (Chen, 2016). The “quasineutral” component of plasma is a result of electrons
exhibiting greater mobility than ions, mainly due to their lower mass, which promptly screens
out any charge imbalance through the swift motion of electrons, ultimately establishing the
plasma’s predominant state of neutrality (Dewhurst, 2010). This implies that the quasineu-
trality of plasma is sufficiently neutral that n ≃ ne ≃ ni, where n is a common density called
plasma density, yet not to the extent that all the electromagnetic forces cease to exist (Hazeltine
and Meiss, 2003).

The concept of “collective behavior” applies to motions that are not solely influenced by
local conditions but are also affected by the state of the plasma in remote regions. Plasma,
containing charged particles, possesses the ability to generate local accumulations of positive
or negative charges as these particles move, thereby leading to the rise of electric fields. The
movement of charges also results in the generation of electric current, and subsequently, the
induction of a magnetic field. The long-range electromagnetic forces significantly surpass the
forces resulting from local collisions, leading to the fields’ capacity to influence the motion of
charged particles at a distance (Chen, 2016).

This relationship among the electric field, current, and magnetic field is summarized in
Maxwell’s equations of Ampere’s law including displacement current, and Faraday’s law (Young
et al., 2012),

∮
B⃗ · d⃗l = µ0

(
ic + ϵ0

dΦE

dt

)
encl

, (2.1)
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∮
E⃗ · d⃗l = −dΦB

dt
, (2.2)

where B⃗ is the magnetic field,E⃗ is the electric field, d⃗l is the length vector, ϵ0 and µ0 are,
respectively, the permittivity and permeability of free space. The ic is the conduction current,
ΦE is the electric flux, ΦB is the magnetic flux, and ϵ0dΦE/dt is the displacement current. The
encl means it has been enclosed within the surface. Eq. 2.2 corresponds to Ampere’s law
including displacement current, and Eq. 2.1 corresponds to Faraday’s law. When we introduce
the definition of electric flux and magnetic flux as ΦE =

∫
E⃗·dA⃗ and ΦB =

∫
B⃗·dA⃗, respectively,

and assume it’s in empty space, where ic = 0, we can finally substitute into Eqs. 2.1 and
2.2 (Young et al., 2012),

∮
B⃗ · d⃗l = µ0ϵ0

d

dt

∫
E⃗ · dA⃗, (2.3)

∮
E⃗ · d⃗l = − d

dt

∫
B⃗ · dA⃗, (2.4)

as to arrive at the aforementioned relationship, where A⃗ is the vector area.

While it may not be readily evident, Maxwell’s equations encompass all the fundamen-
tal relationships between electromagnetic fields and their sources. When we incorporate the
equations defining the electric and magnetic fields in terms of the forces they exert on charges,

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
, (2.5)

we encompass all the foundational relationships of electromagnetism, known as the Lorentz
force Law (Eq.2.5) (Gallagher, 2013). The Lorentz force represents the influence of a force
(F⃗ ) exerted on a charged particle (q) moving with velocity (v⃗) through an electric field (E⃗) and
magnetic field (B⃗). This law will serve as a fundamental concept for comprehending motion
within an electromagnetic field.

A plasma can, also, be conceptualized as a colloidal suspension of charged particles that
interact with and generate electromagnetic fields. In the absence of an electric field and under
the influence of a uniform magnetic field, charged particles will exhibit helical motion along
magnetic field lines. This is illustrated by disassembling Eq 2.5 and decomposing the uniform
velocity into its constituent components aligned parallel (v⃗||) and perpendicular (v⃗⊥) to the
magnetic field (B⃗),

F⃗ = qv⃗⊥ × B⃗. (2.6)

Since there is no parallel force to the magnetic field (v x B equals zero), the particles are un-
restricted in their movement along the magnetic field lines. The perpendicular force, however,
applies force that acts both perpendicular to the magnetic field lines and the particle’s velocity.
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As a result, the particle follows a helical path, moving along the magnetic field and undergo-
ing rapid simple harmonic oscillations, a phenomenon referred to as gyration. This gyration
is characterized by the gyrofrequency, also known as the cyclotron frequency (ωc), is given
by (Dewhurst, 2010; Gallagher, 2013; Chen, 2016),

ωc =
qB

m
. (2.7)

While, the equation for the radius of the circular particle motion that orbits the field line, also
known as the Larmor radius (rL), is given by (Chen, 2016; Dewhurst, 2010; Gallagher, 2013),

rL =
mv⊥
qB

, (2.8)

where m is the mass of the particle, v⊥ is the velocity perpendicular to the field line.

In the presence of an electric field, the particle’s motion becomes a composite of two
elements: the conventional circular Larmor gyration and a drift of the guiding center. The drift
is aligned with both the magnetic and electric fields, and it is denoted as the E⃗ × B⃗ drift. The
guiding center of the particle will drift with a velocity (v⃗E),

v⃗E =
E⃗ × B⃗

B2
. (2.9)

The drift is unaffected by the mass and charge of individual particles, resulting in the entire
plasma drifting in this direction. This Equation 2.9 serves as a fundamental component of the
guiding center drifts of plasma particles and plays a pivotal role in the physics of magnetic
confinement. This phenomenon will be discussed in greater detail in Section 2.2.2.

For now, we define the three distinct criteria that plasma must adhere to differentiate from
other ionized gases, which will be discussed in the following sections, Debye Shielding (Sec-
tion 2.1.1), Debye Sphere (Section 2.1.2), and Collision Frequency (Section 2.1.3).

2.1.1 Debye Shielding

A fundamental characteristic of plasma behavior lies in its capacity to shield out applied
electric potentials (Chen, 2016). This phenomenon is referred to as Debye Shielding, and it
is this shielding mechanism that ensures the quasineutrality of plasma, as described in the
preceding section. Due to the presence of freely roaming charged particles in plasma, the
application of any electric potential results in the accumulation of charged particles around this
potential, giving rise to this shielding effect.

However, due to thermal motion driven by the finite thermal energy, particles located at
the edge of the shielding cloud, where the electric field is relatively weak, possess sufficient
thermal energy to overcome the electrostatic potential well and escape, leading to an imperfect
shielding. The extent of the edge of the shielding cloud is determined by a radius at which the
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Figure 2.1. Debye Shielding. Source: (Schaub et al., 2006)

potential energy is roughly equivalent to the thermal energy of the particles. This measurement
of the shielding distance or thickness of the sheath is referred to as the Debye length (λD)
(Wesson and Campbell, 2004),

λD ≡
(
ϵ0KTe

ne2

)1/2

, (2.10)

where ϵ0, K and e are constants, known as, respectively, the permittivity of free space, the
Boltzmann’s constant and the charge of an electron. The Te is the electron temperature and
n is the number density. As anticipated, an increase in density results in a decrease in the
λD. Furthermore, the λD increases with the rise in thermal energy, represented by KTe. In the
absence of thermal agitation, the charge cloud would condense into an infinitely thin layer. The
electron temperature is incorporated into the definition of the Debye length due to the fact that
electrons, being more mobile than ions, primarily contribute to the shielding by their motion,
leading to the creation of an excess or deficit of negative charge (Hazeltine and Meiss, 2003).

The first criterion for an ionized gas to be classified as a plasma is that it must possess
sufficient density such that the λD is significantly smaller than L (Crepaldi, 2021; Chen, 2016),

λD ≪ L, (2.11)

where L is the dimension of a system. This implies that, in summary, Debye shielding must
ensure that the sheath’s thickness is several orders of magnitude smaller than the system’s
dimensions, thereby preserving the quasineutral state of the majority of the plasma by ensuring
that the majority of the plasma remains free of significant electrostatic potentials and electric
fields.
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2.1.2 Debye Sphere

The second criterion that distinguishes plasma from other ionized gases is associated with
its collective behavior. The Debye Shield depicted in Fig. 2.1 is only applicable when a sufficient
number of particles are present to create a charged cloud around the applied potential, often
referred to as the Debye Sphere. If there are only one or two particles present in the sheath
region, the statistical validity of Debye shielding would be unfounded. The calculation of the
number of particles ND present in the Debye Sphere is determined by (Souza, 2012),

ND = n
4π

3
λ3
D, (2.12)

where n is the plasma density and λD is the Debye length. This implies that, in addition to
L ≫ λD, plasma particles interact with a large number of other particles, ensuring the collective
behavior (Chen, 2016),

ND ≫ 1. (2.13)

2.1.3 Collision Frequency

The final criterion that an ionized gas must meet to be classified as a plasma pertains
to a condition related to collisions. If the charged particles experience collisions with neutral
atoms at such a high frequency that their motion is governed by conventional hydrodynamic
forces rather than electromagnetic forces, then the ionized gas does not qualify as plasma. For
charged particles to be primarily governed by electromagnetic forces, it is necessary that the
typical frequency of plasma oscillations (ωp) exceeds the frequency at which these particles
collide with neutral atoms (Gallagher, 2013),

ωpτc > 1, (2.14)

where τc is is the mean time between collisions with neutral atoms. If this phenomenon does
not take place, and collisions with neutral particles dominate, the ionized gas would transition
to a neutral state.

The frequency of plasma oscillation (Souza, 2012),

ωp =

(
ne2

mϵ0

)1/2

, (2.15)

is a cyclical process that leads to the generation of plasma waves. This occurs because when a
plasma is perturbed, its charged particles acquire kinetic energy through acceleration induced
by the local electric field created in response to the perturbation. The electric field drives the
motion of charged particles, resulting in the reversal of both the direction of the field and the
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direction of acceleration. Electrons endeavor to neutralize positive charges, and due to inertia,
they traverse beyond the point, leading to a periodic reversal of the direction of both the electric
field and their movement. This reversal is a consequence of plasma’s macroscopic neutrality,
often referred to as its quasineutrality.

2.2 CONTROLLED THERMONUCLEAR FUSION

The terminology ’thermonuclear’ is derived from plasma being in a state of thermal equi-
librium (Chen, 2016), whereas the label ’controlled’ is associated with the utilization of the
thermonuclear reaction as a manageable and sustainable energy source contributing to the
energy matrix (Crepaldi, 2021). As previously mentioned, the fusion process occurs naturally
in the sun, and substantial efforts have been invested in making it attainable on Earth. It is note-
worthy that, in contrast to nuclear fission, fusion reactions do not entail the risk of catastrophic
runaway events and result in minimal radioactive waste generation. Any radioactive waste that
does arise typically consists of small quantities of short-lived isotopes resulting from neutron
bombardment and the activation of the fusion device (Dewhurst, 2010).

To make fusion viable on Earth, one approach is to increase the inertia of the reaction
through head-on collisions with heavier isotopes. This heightened inertia is critical for over-
coming the electric repulsion of ions with like charges. Overcoming an electric potential barrier
is a necessity for the fusion reaction to progress, with the barrier’s magnitude contingent upon
the specific reactants involved. The most promising reaction is the fusion of deuterium (D)
and tritium (T ) to produce a neutron and a helium nucleus (or an alpha particle) (Kikuchi et al.,
2012),

D + T → He(3.5MeV ) + n(14.1MeV ) (2.16)

where the fuel is composed of heavy hydrogen isotopes, specifically deuterium with one proton
and one neutron and tritium with one proton and two neutrons. Deuterium exists naturally,
constituting approximately one part in 6000 of water (Chen, 2016). In the fusion reaction, the
mass disparity between deuterium and tritium (D + T ), resulting in the formation of an alpha
particle (He), corresponds to a difference of 0.01875 proton masses (Gallagher, 2013). This
discrepancy gives rise to the liberation of 17.6 MeV of energy, as calculated by the equation
E = Mc2 (Chen, 2016).

There are two primary methods for harnessing energy from D-T fusion reactions: magnetic
confinement and inertial fusion. This thesis predominantly explores magnetic confinement. In
the context of the D-T fusion reaction, the majority of energy is carried by the 14.1-MeV neu-
tron, while the 3.5-MeV alpha particle is trapped within the magnetic field confining the plasma.
By confining plasma within a magnetic field, both ions and electrons achieve thermal equilib-
rium characterized by Maxwellian distributions. (Wesson and Campbell, 2004). Consequently,
any energy gained or lost during electric collisions is reabsorbed into the thermal distribution.
Achieving this thermal equilibrium requires heating the plasma to extremely high tempera-
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tures, making confinement by a physical wall unfeasible. Instead, magnetic fields are utilized
to confine the plasma and keep it isolated from the walls of a vacuum chamber. These walls
are maintained under near-vacuum conditions by adjusting the magnetic field to balance the
internal plasma pressure.(Gallagher, 2013).

Figure 2.2. The Lawson criterion product for D-T fusion. Adapted from source: (Chen,
2016)

There are two principal methods to surpass the Lawson criterion, one of which is magnetic
confinement. The Lawson criterion(Lawson, 1957; Dewhurst, 2010),

nτe (2.17)

defined by the product of the density of fusing nuclei (n) and the mean time for plasma en-
ergy leakage (τe), is a key factor for achieving breakeven and ignition in fusion (see Fig.2.2).
Breakeven is attained when the fusion energy produced equals the energy used to create the
plasma. In contrast, ignition occurs when the alpha particles generated by the fusion reaction
are trapped within the magnetic field for a sufficient duration to maintain the plasma’s temper-
ature without the need for additional energy input. In magnetic confinement, the minimum nτe

is attained by maintaining a dense plasma within a magnetic field for a duration of time (τe)
(Chen, 2016).

2.2.1 Tokamak

The Tokamak is a leading approach in the pursuit of controlled nuclear fusion through mag-
netic confinement. It effectively traps ions and electrons engaged in Larmor orbits, enabling
movement along magnetic field lines while preventing their escape through toroidal confine-
ment. In a toroidal configuration, magnetic field lines avoid forming closed loops and instead
follow irregular paths along magnetic surfaces. The torus (Figure 2.3) takes on a doughnut-like
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Figure 2.3. The Torus. Source: (Dewhurst, 2010)

shape, characterized by two radii: the major radius, extending from the center of rotation to the
center of the circular structure, and the minor radius, defining the radius of the smaller internal
circle. Within the torus, two distinct directions of movement exist: the long, toroidal direction,
and the short, poloidal direction.

Figure 2.4. Principle of a Tokamak. Source: (Smith and Cowley, 2010)

The term ”Tokamak” is, in fact, a Russian acronym that translates to ”toroidal compart-
ment with magnetic field coils” (Zohm, 2014). The Tokamak originated in the Soviet Union
during the 1950s (Kadomtsev, 1988), with its design aimed at producing both a poloidal and
a toroidal magnetic field, resulting in an overall magnetic field configuration exhibiting a helical
shape (Fig.2.4), with each magnetic field line positioned on one of a nested series of toroidal
flux surfaces (Wesson and Campbell, 2004), demonstrated by Fig.2.5. The employment of
a helical magnetic field within a toroidal structure serves to counteract the outward pressure
exerted by the plasma. This pressure equilibrium can be explained using the principles of
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Figure 2.5. Magnetic flux surfaces forming a series of nested toroids. Source: (Stangeby
et al., 2000)

Magnetohydrodynamics (MHD), where the plasma is treated as a unified electrically neutral
conducting fluid. This analysis aligns with the ideal MHD model, which disregards resistivity.
The ideal MHD equations, also known as the simplified MHD equations (Bittencourt, 2004,
p. 235), can be written as (Dendy, 1990; Bittencourt, 2004),

∂ρ

∂t
+∇ · (ρv⃗) = 0, (2.18)

ρ
Dv⃗

Dt
= J⃗ × B⃗ −∇p, (2.19)

E⃗ = −v⃗ × B⃗, (2.20)

∇× B⃗ = µ0J⃗ , (2.21)

where ρ is the mass density, v⃗ is the mass velocity, and J⃗ is the current density. The closure
of these equations is achieved by incorporating the equations of state, Faraday’s Law (Eq 2.2)
and Ampere’s Law (Eq 2.1). The MHD describes the behaviors of magnetized plasma, pri-
marily serving as a foundation for researching the equilibrium and stability of plasmas. The
equilibrium state of the conducting fluid is attained when, utilizing the force balance equation
(Eq 2.19), the pressure gradients (∇p) are balanced by the Lorentz force (Eq 2.5) (Dewhurst,
2010; Gallagher, 2013),

∇p = J⃗ × B⃗ = 0. (2.22)

This implies that ∇ · J⃗ = 0, which is the equation of conservation of electric charge in the
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absence of alterations in the overall macroscopic charge density ρ, signifying that the ρ must
remain constant along both the magnetic field lines and the current lines (Bittencourt, 2004;
Gallagher, 2013). In fact, the simplest geometric configuration that fulfills Lorentz force Law
(Eq. 2.5) and Ampere’s law is the toroidal shape (Dewhurst, 2010).

In the presence of collisions, particles undergo stochastic forces, inducing resistance to
current flow. Their impact can be better understood within the framework of MHD by incorpo-
rating resistivity (η) into Eq.2.20,

E⃗ + v⃗ × B⃗ = ηJ⃗, (2.23)

where Equation 2.23 represents the classical description of transport phenomena in a plasma
tokamak. Collisions induce cross-field transport of plasma particles along the pressure gradi-
ent, leading to a decrease in confinement efficiency (Dewhurst, 2010).

The high-temperature plasma necessary for magnetic fusion needs to be effectively con-
fined, preventing contact with the vessel wall to avoid wall melting and plasma disruption.
Within a tokamak, a specifically designed region with closed magnetic lines, surrounded by
open field lines, is engineered to manage significant heat and particle fluxes. These closed
field lines trace paths on magnetic flux surfaces, adopting the configuration of concentric tori
within the tokamak. The outermost flux surface, where the field lines are closed, is termed
the last closed (magnetic) flux surface (LCFS) and is frequently utilized to define the plasma
edge. On the other hand, the zone characterized by open magnetic field lines is identified
as the scrape-off layer (SOL). The implementation of divertors in tokamaks is instrumental in
achieving this configuration (Stangeby et al., 2000), as illustrated in Fig.2.6.

Figure 2.6. Simplified magnetic field configuration of a diverted tokamak. Adapted from
source: (Kubic, 2012)
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2.2.2 Edge Plasma and Turbulence

The edge region (Fig.2.6) of magnetically confined plasma presents a highly complex envi-
ronment with substantial pressure gradients and intricate geometric structures. The equilibrium
of pressure gradients is upheld by a strong magnetic field (Eq.2.22), serving as a source of free
energy capable of instigating instabilities and turbulence. Macroscale instabilities, including
MHD instabilities, can lead to plasma disruptions, resulting in the potential loss of confinement.
This phenomenon appears from the capacity of turbulent motions to alter gradients through
nonlinear interactions (Dewhurst, 2010).

When examining the geometric influences at the edge region, there is an increase in clas-
sical transport known as neoclassical transport (Hinton and Hazeltine, 1976). Neoclassical
transport incorporates toroidal geometry and introduces an enhanced theoretical diffusion co-
efficient. Nonetheless, neoclassical transport falls short when compared to experimentally
measured transport rates, which are consistently orders of magnitude higher (Furth, 1975).
This disparity in values is referred to as anomalous transport and is commonly attributed to the
presence of turbulence induced by microscale instabilities.

The treatment of turbulence in fusion plasmas often involves the consideration of drift
waves and drift wave instability. Microscale instabilities, such as drift waves, are believed to be
the primary contributors to anomalous transport in tokamaks (Horton, 1990; Weiland, 2000).
Drift waves are characterized by low frequencies compared to the ion cyclotron frequency, and
they are driven by gradients in density or temperature. In drift waves, electrons can move along
the magnetic field, establishing thermodynamic equilibrium in accordance with the Boltzmann
relation (Pushkarev, 2013; Dewhurst, 2010),

∂n

n
=

e∂φ

T
, (2.24)

This equation indicates that perturbations in density (n) are linked to perturbations in elec-
trostatic potential (φ). The derivation of the governing equations for the evolution of drift waves
will be explored in greater detail in section 3.1.

Plasma fluctuations resulting from drift wave instability were initially detected in linearly
magnetized plasma devices (D’Angelo, 1961; Lashinsky, 1964). Resistivity contributes to the
out-of-phase behavior of potential and density fluctuations, triggering drift wave instability. This
instability, in turn, evolves into drift wave turbulence through nonlinear interactions. When
density and potential fluctuations are out of sync, a net density flux arises, contributing to the
transport of plasma along the density gradient. In tokamaks, this turbulent plasma transport
is most pronounced in the edge region where gradients are substantial (Mazzucato, 1976),
causing a radially outward flow and, consequently, a reduction in confinement.
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2.2.3 Low-to-High Confinement Transitions

The tokamak plasma, in a quasi-two-dimensional (2D) geometry, can experience a self-
induced spontaneous transition from a low-confinement (L) state to a high-confinement (H)
state, entering a turbulence-suppressed regime where the formation of a transport barrier oc-
curs at the LCFS (Horton, 1990; XU and WU, 2017). This phenomenon is recognized as
the low-to-high confinement (L-H) transit and was initially discovered in 1982 (Wagner et al.,
1982). It is characterized by an effective enhancement of confinement achieved through the
suppression of anomalous transport. The L-H transition in a tokamak is linked to the nonlinear
self-generation of poloidal E⃗ × B⃗ shear or zonal flow in the edge region (Moyer et al., 1995;
Burrell, 1997). Zonal flows play a critical role in mitigating anomalous transport by absorbing
energy from drift waves and disrupting the eddies responsible for turbulent transport, for this
reason, zonal flows are a key factor in achieving improvements in confinement (Diamond et al.,
2005).

The transitions between the turbulence-dominated regime (L-mode) and the zonal-flow-
dominated regime (H-mode) can be outlined through three principal governing processes:
firstly, the initiation of turbulence induced by drift waves; secondly, the inherent self-organization
of zonal flows; and thirdly, the destabilization of the zonal flow (Numata et al., 2007). The insta-
bilities driving these transitions correspond to a bifurcation of the momentum equilibrium at the
plasma edge, instigated by alterations in neoclassical transport or momentum boundary con-
ditions (XU and WU, 2017). The primary instability materializes at a linear stability threshold
within the equilibrium featuring a zero-background flow, aligning physically with the initiation
and amplification of drift waves (Connor and Wilson, 2000; Bishop, 1986; Rogers et al., 1998).
This instability generates the L-mode through density or temperature gradients responsible for
drift waves (Fig.2.7).

Figure 2.7. Mechanism of L-H transition. Zig-zag green arrows symbolize channels of
dissipation. Adapted from source: (Numata et al., 2007)

The secondary instability is responsible for the zonal flow onset (Fig.2.7). In plasmas, zonal
flows manifest beyond the primary threshold, stemming from an instability in drift waves that
effectively suppresses drift wave activity. Zonal flows are characterized as ”azimuthally sym-
metric band-like shear flows” (Diamond et al., 2005)(Fig.2.8), driven by nonlinear and nonlocal
interactions that facilitate the transfer of energy from drift waves to zonal flows. The transition
from drift waves to zonal flows is governed by two distinct processes. The first process in-
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volves a mechanism of secondary instability, wherein small-scale turbulence drives a sheared
zonal flow through a nonlinear mechanism, facilitated by an inverse cascade of energy (Kim
and Diamond, 2003; Diamond et al., 1994). A rapid increase in the energy transfer rate from
turbulence to zonal flows is crucial, facilitated through the turbulent Reynolds stress (XU and
WU, 2017).

Figure 2.8. Zonal flows, in tokamaks, refer to toroidally invariant velocity fields within the
azimuthal plane, localized in proximity to the plasma edge. Source: (Pushkarev, 2013)

The second process, constituting a secondary instability mechanism leading to the gener-
ation of zonal flows, involves the Kelvin-Helmholtz (KH) instability (Rogers et al., 2000; Jenko
et al., 2000). In this context, the KH instability is instigated by radially elongated drift wave
eigenmodes. The KH mode of the drift waves inherently possesses a zonal flow component,
offering a natural mechanism for the growth of zonal flows (Numata et al., 2007). The zonal
flow functions to suppress small-scale turbulence by shearing turbulent eddies and/or drift wave
packets, thereby eliminating the source of anomalously high transport and losses of plasma
particles and energy (Diamond et al., 2005). The total energy of drift waves and zonal flows
remains conserved; thus, as the zonal flow grows, the energy of drift waves diminishes. This
implies that zonal flows can store energy without inducing a deterioration in plasma confine-
ment (Gallagher, 2013).

As zonal flows intensify, they undergo tertiary instability, leading to the disintegration of the
coherent zonal structure into turbulent small-scale eddies through KH instabilities of the zonal
flows. The small-scale turbulence may subsequently reorganize through secondary instabilities
(Numata et al., 2007) (Fig.2.7).
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3 NUMERICAL METHODS

3.1 HASEGAWA-WAKATANI EQUATIONS

The Hasegawa-Wakatani (HW) equations were formulated to explore the origins of anoma-
lous edge transport caused by collisional drift waves. These equations encompass fundamen-
tal principles for analyzing turbulence, as well as the emergence and dissipation of coherent
macroscopic structures (Hasegawa and Wakatani, 1987).

Consider the edge region of a plasma magnetically confined by a uniform magnetic field B⃗

in the presence of a background density gradient ∇n0. The ion temperature Ti = 0, and for the
electron temperature Te = T = constant. Assuming an electrostatic approximation, we have:

E⃗ = −∇φ, (3.1)

where E⃗ is the electric field and φ is the electrostatic potential. Furthermore, the plasma is in
a quasinuetral state,

n = ne = ni. (3.2)

The HW equations can be obtained by analyzing the two-fluid equations of motion in the
parallel (section 3.1.3) and perpendicular directions (sections 3.1.1 and 3.1.4) with respect to
the magnetic field and the continuity equations of ions and electrons (sections 3.1.5 and 3.1.4,
respectively).

3.1.1 The Perpendicular Equation of Momentum of Ions

The ion equation of motion is,

min

(
∂

∂t
+ v⃗i · ∇

)
v⃗i = −∇pi + ne

(
E⃗ + v⃗i × B⃗

)
− R⃗+ ν∇2v⃗i (3.3)

where mi is the ion mass, v⃗i is the velocity of ions, pi is the pressure of ions, ν is the kinematic
viscosity and R⃗ is a term that represents collisions between ions and electrons, and is given by

R⃗ = −nme (v⃗e − v⃗i) fei,
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where me is the electron mass, v⃗e is the electron velocity, and fei is the frequency of Coulomb
collisions between electrons and ions. Neglecting the pressure, collisions, the dissipation
terms, and considering a direction perpendicular to the magnetic field, Eq.(3.3) becomes,

min

(
∂

∂t
+ v⃗i · ∇⊥

)
v⃗i = ne

(
−∇⊥φ+ v⃗i × B⃗

)
, (3.4)

where,

∇⊥ =
∂

∂x
+

∂

∂y
,

and
B⃗ = Bẑ.

The E⃗ × B⃗ drift velocity can be obtained by setting the left-hand side of Eq.(3.4) to zero,

−∇⊥φ+ v⃗i × B⃗ = 0. (3.5)

Taking the cross-product of Eq.(3.5) with B⃗ yields,

−B⃗ ×∇⊥φ+ B⃗ ×
(
v⃗i × B⃗

)
= 0. (3.6)

Applying the identity,

A⃗×
(
B⃗ × C⃗

)
=
(
A⃗ · C⃗

)
B⃗ −

(
A⃗ · B⃗

)
C⃗,

into Equation (3.6) we obtain,

−B⃗ ×∇⊥φ+
(
B⃗ · B⃗

)
v⃗i −

(
B⃗ · v⃗i

)
B⃗ = 0. (3.7)

Since,

v⃗i = vixx̂+ viyŷ + viz ẑ,

and the term
(
B⃗ · v⃗i

)
= Bviz = Bvi∥, Eq. (3.7) becomes,

−Bẑ ×∇⊥φ+B2v⃗i −Bvi∥B⃗ = 0. (3.8)

Decomposing the ion velocity into parallel and perpendicular components,

v⃗i = v⃗i⊥ + v⃗i∥,
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and inserting into Eq.(3.8), we obtain,

−Bẑ ×∇⊥φ+B2v⃗i⊥ +B2v⃗i∥ −B2vi∥ẑ = 0. (3.9)

Since vi∥ẑ = v⃗i∥, Eq.(3.9) becomes,

v⃗i⊥ =
Bẑ ×∇⊥φ

B2
=

ẑ ×∇⊥φ

B
(3.10)

Equation (3.10) represents the perpendicular ion drift velocity ((v⃗i)E⃗×B⃗) analogous to Eq.(2.9),

(v⃗i)E⃗×B⃗ =
E⃗ × B⃗

B2
=

Bẑ ×∇⊥φ

B2
=

ẑ ×∇⊥φ

B
. (3.11)

Inserting Equation (3.11) into the left-hand side of Eq.(3.4) we obtain,

min

(
∂

∂t
+ (v⃗i)E⃗×B⃗ · ∇⊥

)
(v⃗i)E⃗×B⃗ = ne

(
−∇⊥φ+ v⃗i × B⃗

)
. (3.12)

Taking the cross-product with B⃗ we obtain the next order correction of v⃗i⊥.

mi

eB
ẑ ×

(
∂

∂t
+ (v⃗i)E⃗×B⃗ · ∇⊥

)
(v⃗i)E⃗×B⃗ + (v⃗i)E⃗×B⃗ = v⃗i⊥. (3.13)

In the presence of a temporally varying uniform electric field, a new ion velocity emerges.
The first term in the left-hand side of Eq.(3.13) corresponds to the ion polarization drift velocity,

v⃗p = − mi

eB2

D

Dt
∇⊥φ =

mi

eB

D

Dt

[
ẑ × (v⃗i)E⃗×B⃗

]
, (3.14)

where the D/Dt = ∂/∂t+(v⃗i)E⃗×B⃗ ·∇⊥. The polarization drift is due to the time-varying electric
field. From Equations (3.13) and (3.14) we have that the perpendicular equation of momentum
of ions is reduced to a velocity,

v⃗i⊥ = (v⃗i)E⃗×B⃗ + v⃗p. (3.15)

3.1.2 The Perpendicular Equation of Momentum of Electrons

The electron equation of motion can be written as,

men

(
∂

∂t
+ v⃗e · ∇⊥

)
v⃗e = −ne

(
−∇⊥φ+ v⃗e × B⃗

)
− T∇⊥n. (3.16)

Again, by setting the left-hand side to zero we can obtain the lowest order velocity of electrons:
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0 = −ne
(
−∇⊥φ+ v⃗e × B⃗

)
− T∇⊥n. (3.17)

Taking the cross-product with B⃗ gives,

B⃗ × 0⃗ = B⃗ ×
[
−ne

(
−∇⊥φ+ v⃗e × B⃗

)
− T∇⊥n

]
⇒ 0 = ne (v⃗e)E⃗×B⃗ − ne ⃗ve⊥ − nevez ẑ + nevez ẑ − T

ẑ ×∇⊥n

B
. (3.18)

From Equation (3.18)

⃗ve⊥ = (v⃗e)E⃗×B⃗ − T

neB
ẑ ×∇⊥n. (3.19)

Equation (3.19), ultimately, represents the perpendicular equation of momentum of electrons,

⃗ve⊥ = (v⃗e)E⃗×B⃗ + v⃗de, (3.20)

where v⃗de represents the electron diamagnetic drift velocity. The polarization drift is neglected
for electrons, because mi ≫ me. The diamagnetic drift for ions is neglected, because we
assumed Ti = 0.

Since, (v⃗e)E⃗×B⃗ = (v⃗i)E⃗×B⃗ making it analogous to v⃗E (Eq.(2.9)), we can rewrite the per-
pendicular equations of momentum of ions and electrons as,

v⃗i⊥ = v⃗E + v⃗p, (3.21)

⃗ve⊥ = v⃗E + v⃗de. (3.22)

3.1.3 The parallel momentum

The ions are assumed to be immobile in the parallel direction with reference to the mag-
netic field. Therefore, the parallel dynamics are dominated by the electrons. Neglecting the
inertial term, the equation of motion of electrons parallel to the magnetic field can be written
as,

men

(
∂

∂t
+ v⃗e ·

∂ẑ

∂z

)
v⃗e = −∂pe

∂z
+ ne

(
∂

∂z
φẑ + v⃗e × B⃗

)
+ R⃗

⇒ 0 = −∂pe
∂z

+ ne

(
∂

∂z
φẑ + v⃗e × B⃗

)
+ R⃗. (3.23)

The electrical resistivity is a measurement of how strongly a given material opposes the flow
of electric current. Here, we introduce the Spitzer resistivity,
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η =
me

ne2
fei.

The collision term can be rewritten as,

R⃗ = enηJ⃗. (3.24)

where J⃗ = ne (v⃗i − v⃗e). Note that Jz = −nevez. Substituting Equations (3.24) into (3.23) we
obtain,

0 = −∂pe
∂z

+ ne

(
∂

∂z
φẑ + v⃗e × B⃗

)
+ enηJz ẑ. (3.25)

From Equation (3.25) we obtain the parallel current density,

enηJz =
∂pe
∂z

− ne
∂

∂z
φ. (3.26)

From the state equation of electrons pe = neT = nT , also known as the electron pressure, we
obtain,

Jz =
T

eη

(
1

n

∂n

∂z
− e

T

∂φ

∂z

)
. (3.27)

The parallel electron motion (Jz) plays a crucial role in initiating, maintaining, and disrupting
zonal flow. The electron’s parallel response, as described by the generalized Ohm’s law, results
in the resistive coupling between the electrostatic potential (φ) and the density fluctuations (n).

3.1.4 The electron continuity equation

For electrons, the continuity equation is,

∂n

∂t
+ ⃗ve⊥ · ∇⊥n+ n∇⊥ · ⃗ve⊥ − 1

e

∂

∂z
Jz = 0, (3.28)

substituting into Eq.(3.27) the electron velocity (Eq.(3.22)), and then considering that some
terms vanish such as ∇⊥ · v⃗E = 0, ∇⊥ · v⃗de = 0 and v⃗de · ∇⊥n = 0, we obtain,

(
∂

∂t
+ v⃗E · ∇⊥

)
n− 1

e

∂

∂z
Jz = 0. (3.29)

3.1.5 The ion continuity equation

The ion continuity equation is given by,
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∂n

∂t
+ v⃗i⊥ · ∇⊥n+ n∇⊥ · v⃗i⊥ = 0, (3.30)

when substituting in Eq. (3.21), where ∇⊥ · v⃗E = 0 and neglecting the non linear term v⃗p·, the
equation becomes,

(
∂

∂t
+ v⃗E · ∇⊥

)
n+ n∇⊥ · v⃗p = 0. (3.31)

Considering quasineutrality, the electron and ion continuity equations (Eqs.(3.29) and (3.31))
are equated, resulting in,

n∇⊥ · v⃗p = −1

e

∂

∂z
Jz. (3.32)

The term on the left-hand side can be rewritten by substituting in Eq.(3.14),therefore, Equation
(3.32) becomes,

(
∂

∂t
+ v⃗E · ∇⊥

)
∇2φ =

B2

nmi

∂

∂z
Jz, (3.33)

where ∇2φ ≡ ζ is the ion vorticity.

Equations 3.27, 3.29 and 3.33 form the three-dimensional HW equations. In the original
HW equations, presented in the early papers by Hasegawa (Hasegawa and Wakatani, 1983)
and Wakatani (Wakatani and Hasegawa, 1984), were set to describe, in a 3D system setting
(Hasegawa and Wakatani, 1987), the resistive drift wave turbulence that occurs in magnetized
plasma. These equations describe this phenomenon using the perturbations of plasma density
(n) and electrostatic potential (φ). By eliminating Jz from equations (3.29) and (3.33) using
Eq. (3.27), we obtain, respectively:

(
∂

∂t
+ v⃗E · ∇⊥

)
n− 1

e

∂

∂z

(
T

eη

(
1

n

∂n

∂z
− e

T

∂φ

∂z

))
= 0, (3.34)

(
∂

∂t
+ v⃗E · ∇⊥

)
∇2φ =

B2

nmi

∂

∂z

(
T

eη

(
1

n

∂n

∂z
− e

T

∂φ

∂z

))
, (3.35)

where a coupled nonlinear equations for φ and n is constructed using the normalization (Hasegawa
and Wakatani, 1983),

eφ

T
≡ φ,

n1

n0
≡ n,

ωcit ≡ t,

x

ps
≡ x.

where ps ≡ (T/mi)
1/2/ωci is the ion Larmour radius. For the purpose of this thesis, we interpret

the HW coupled nonlinear equations as is written from Numata et al. (2007):
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∂

∂t
ζ + {φ, ζ} = α (φ− n)−D∇4ζ, (3.36)

∂

∂t
n+ {φ, n} = α (φ− n)− κ

∂φ

∂y
−∇4n, (3.37)

where ζ is the ion vorticity, α = −T/(ηn0ωcie
2)∂2/∂z2 is the adiabacity operator, and D is

the dissipation coefficient. κ ≡ (∂/ ∂x) lnn0 is a constant that represents the background
density. The term {a, b} ≡ (∂a/∂x)(∂b/∂y) − (∂a/∂y)(∂b/∂x) represents the Poisson bracket.
Within a Tokamak, the x and y directions are associated with the radial and poloidal directions,
respectively. The importance and relevance of these parameters will be further explained in
Section 3.2. The HW equations take into account the influence of non-uniform background
density and the parallel motion of electrons, as defined by Ohm’s law. The density gradient is
responsible for driving the drift waves, which, in turn, are made unstable by the parallel electron
resistivity (Numata et al., 2007).

The HW equations originate from the Hasegawa-Mima equations presented in 1977 (Mima
and Hasegawa, 1977) and can be reduced to two spatial dimensions (Hasegawa and Mima,
1978). In the HW equations, the α operator is responsible for making the system 3D. The α

operator governs the degree to which electrons can swiftly navigate along the magnetic field
lines and induce a perturbed Boltzmann density response (Anderson and Hnat, 2017). The
approach taken in this thesis is turning α into a parameter to establish a 2D system setting.
The values of α are presented in Section 3.2.

When the HW equations are restricted to such a setting, 2D system setting, it does not
contain the zonal flow, however, Numata et al. (2007) presented an approach that permits
the modification of the HW equations, allowing the capture of the zonal flow. This is done by
subtracting the zonal components from the resistive coupling term α (φ− n) which turns it into
α (φ̃− ñ). The resistive coupling term requires careful consideration due to the fact that zonal
components of fluctuations do not contribute to the parallel current. In the Tokamak edge
region, any potential fluctuation on the flux surface is effectively neutralized by the parallel
motion of electrons. The zonal and nonzonal components, respectively, of a variable f are
defined as (Numata et al., 2007):

zonal : ⟨f⟩ = 1

Ly

∫
f dy (3.38)

nonzonal : f̃ = f − ⟨f⟩ (3.39)

where Ly is the length in y, and f stands for ζ and n (Numata et al., 2007). The <> denotes
an average in the poloidal direction and f̃ symbolizes the fluctuation on the flux surface av-
eraged component removed. This yields the modified Hasegawa-Wakatani (MHW) equations
presented in the next section.
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3.2 MODIFIED HASEGAWA-WAKATANI EQUATIONS

The MHW equations represent a simplified model of the drift-wave turbulence in a tokamak
plasma, setting it up in a 2D system setting (Numata et al., 2007),

∂

∂t
ζ + {φ, ζ} = α (φ̃− ñ)−D∇4ζ, (3.40)

∂

∂t
n+ {φ, n} = α (φ̃− ñ)− κ

∂φ

∂y
−∇4n. (3.41)

In this physical configuration, the model is situated within a tokamak plasma characterized by
a constant magnetic field equilibrium B⃗ = B0∇z, and a nonuniform density n0 = n0(x) in
the edge region. Within Equations (3.40) and (3.41), several parameters {a, b} are utilized to
represent the Poisson bracket, with n signifying the density fluctuations, and the ion vorticity
ζ ≡ ∇2φ which is a 2D Laplacian (∇2 = ∂2/∂x2 + ∂2/∂y2) depending on the electrostatic
potential (φ). The background density κ ≡ (∂/ ∂x) lnn0 maintains an unvarying exponential
profile and remains constant, while D represents the dissipation coefficient. In this physical
setup, the adiabaticity operator α is assigned as a constant coefficient (Numata et al., 2007).
The velocity field equations are obtained from the electrostatic potential,

vx≡− ∂φ̃

∂y
, (3.42)

vy ≡ ∂φ̃

∂x
. (3.43)

The velocity field describes the instantaneous velocities of fluid elements across the studied
domain. It refers to the movement of any fluid element that is currently passing through a
specific area. The particle density flux Γr, is a correlation between the particle density (n) and
radial velocity (vr = -∂φ̃/ ∂y) (Bos et al., 2008),

Γr = ⟨nvr⟩ . (3.44)

In this model the radial direction is represented by the x direction, therefore vr ≡ vx, whereas
the poloidal direction is represented by the y direction. The MHW system, also, possesses a
dynamic invariant, known as kinetic energy (EK):

EK =
1

2
m|v⃗|2 = 1

2
m
(
v2x + v2y

)
(3.45)

where m = 1 .

By changing the value of α and D, the MHW equations can display two different regimes,
namely, a regime with turbulent patterns and formation of vortices, and a regime dominated by
zonal flows (Numata et al., 2007). We fix D = 10−4 and κ = 10−1, and set the α parameter
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to two different values, namely α = 0.0010 and α = 0.0018. The first value leads to numerical
solutions with turbulent behavior (i.e., the low-confinement regime), whereas the second value
leads to the zonal-flow regime (i.e., the high-confinement regime). We solve Eqs. (3.40)-(3.41)
employing the 4th-order accuracy finite difference method with a grid resolution of 256x256 for
the spatial derivatives, and the 4th-order Runge-Kutta method for time integration. The initial
conditions are set to small-amplitude random fluctuations. Periodic boundary conditions are
set for simplicity. The code is implemented it using a Fortran-90, and runs in parallel using the
MPI protocol implemented by the MPICH library.

The 4th-order accuracy finite difference method and 4th order Runge-Kutta Method, that
are implemented, are further explained in the following sections, Section 3.2.1 and Section 3.2.2,
respectively.

3.2.1 4th-order Accuracy Finite Difference Method

The finite difference method is used to approximate differential equations into large alge-
braic systems of equations to facilitate computational calculations. The approach involves sub-
stituting the derivatives in the differential equations with finite difference approximations (LeV-
eque, 2005).

Figure 3.1. Finite Difference Method with Boundary Value Problem. Source: (Gilat and
Subramaniam, 2013)

As illustrated in Fig. 3.1, the solution domain is divided into N subintervals of equal length
h, defined by (N + 1) points known as grid points. Each subinterval, represented as the step
size, is denoted by h = (b−a)/N . The endpoints, a and b, are situated at the extremities, while
the remaining points are interior points. At each of these interior points, we formulate the differ-
ential equation. This process yields a system of linear algebraic equations for linear differential
equations or a system of nonlinear algebraic equations for nonlinear ones. Solving this system
provides the numerical solution for the differential equation (Gilat and Subramaniam, 2013).
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Often, finite difference methods employ central difference formulas due to their superior
accuracy. Consider a function y(x) provided at equally spaced points (x1, y1), . . . , (xi, yi), . . . ,

(xN+1, yN+1) with a uniform spacing h = xi+1−xi for i = 1, . . . , N . The finite difference approx-
imations of the first and second derivatives at the interior points, utilizing 4th order accuracy
and central difference formulas, are expressed as (Gilat and Subramaniam, 2013):

dy

dx

∣∣∣∣∣
i

=
yi+2 − 8yi+1 + 8yi−1 − yi−2

12h
,

d2y

dx2

∣∣∣∣∣
i

=
−yi−2 + 16yi−1 − 30yi + 16yi+1 − yi+2

12h2
,

where h is the uniform spacing between adjacent points.

3.2.2 4th-order Runge-Kutta Method

Runge-Kutta methods represent a family of single-step, explicit, numerical techniques de-
signed to solve first-order ordinary differential equations (ODEs). In the single-step approach,
the solution at the following point, xi+1, is derived from the known solution at the current point,
xi. Explicit methods, characteristic of Runge-Kutta techniques, employ a direct formula for
computing the dependent variable’s value at the next increment of the independent variable.
These methods are categorized based on their ”order,” indicating the number of points used
within a step to determine the value of coefficients. The fourth-order Runge-Kutta method
requires four evaluations for each step, utilizing four points in its computation (Gilat and Subra-
maniam, 2013).

Runge-Kutta methods offer a more precise solution when compared to the simpler Euler’s
explicit method, and this precision improves (truncation error decreases) with higher orders.
However, with each step, multiple evaluations of the derivative function f(x, y) are required,
conditional to the method’s order. The predominant Runge-Kutta method in use is of order four
in difference-equation form, expressed as follows (Burden and Faires, 2011):

yi+1 = yi +
1

6
(K1 + 2K2 + 2K3 +K4)h,

where,

K1 = f(xi, yi),

K2 = f(xi +
1

2
h, yi +

1

2
K1h),

K3 = f(xi +
1

2
h, yi +

1

2
K2h),

K4 = f(xi + h, yi +K3h).
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For this thesis, we solved the time integration using the values of h = 0.5 and a time step
= 5× 10−2.

3.3 LAGRANGIAN COHERENT STRUCTURES

The concepts situated at the intersection of nonlinear dynamics, which serves as the
mathematical foundation for chaos theory and fluid dynamics, have yielded the concept of
Lagrangian coherent structures (LCS). These structures offer a unique perspective on compre-
hending transport within intricate fluid flows. In a two-dimensional context, the LCSs manifest
as material lines, which represent continuous, smooth trajectories of fluid elements transported
by the flow. The LCS approach offers a mechanism for identifying crucial material lines respon-
sible for structuring fluid-flow transport. This approach relies on identifying material lines that
exhibit predominant influence in attracting and repelling neighboring fluid elements over a de-
fined time frame. These critical lines are LCSs of the fluid flow (Peacock and Haller, 2013;
Padberg et al., 2007).

Two distinct viewpoints can be adopted when describing fluid flow. The Eulerian perspec-
tive involves assessing the characteristics of a flow field at specific time, while, the Lagrangian
viewpoint is concerned with the identity of individual fluid elements, specifically tracking the
changing velocity of individual particles along their trajectories as they are transported by the
flow. The LCS approach embodies the principle of objectivity or frame invariance. Descriptions
of flow structures using Eulerian field characteristics frequently lack objectivity due to their fail-
ure to remain invariant under time-dependent rotations and translations of the reference frame
(Peacock and Haller, 2013; Haller and Yuan, 2000).

The ongoing challenge lies in identifying the dynamic frameworks forming material patterns
in flows characterized by complex spatial and temporal structures. Typically, the flows that
demand the most comprehensive understanding are usually aperiodic, with information about
the associated velocity field available only in the form of observational or numerical simulation
data sets over finite time intervals. Given the observation of the velocity field, the LCSs of the
flow over a finite interval are the material lines that exhibit the highest local rate of repelling or
attracting nearby fluid trajectories compared to other material lines in proximity. The repelling
LCSs guide particles toward distinct regions compared to those influenced by the attracting
LCSs (Peacock and Haller, 2013; Haller, 2011). See Figure 3.2 for a visual representation of
repelling and attracting LCSs.

The identification of LCSs through the equivalence with finite-time Lyapunov exponents
(FTLE) ridges presents a direct and computationally efficient approach. This method, initially
introduced by Pierrehumbert and Yang (1993), offers insights into Lagrangian features within
velocity-field data through plots of the FTLE field. The FTLE will be discussed further in section
3.3.1.

Another methodology, the Geodesic theory introduced by Haller and Beron-Vera (2012),
provides a metric of geodesic deviation. This metric serves to establish the minimal compu-
tational time scale required for the robust numerical identification of generalized LCSs. The
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Geodesic theory is presented in section 3.3.2.

3.3.1 Finite-Time Lyapunov Exponent

The FTLE represents a useful tool to analyze the chaotic mixing properties of fluids. Sub-
sequently, we observe the resulting LCS that arise from the velocity field. These LCSs can be
defined as local maxima of the FTLE fields (Haller, 2001), representing special gradient lines
that are transverse to the direction of minimum curvature (Shadden et al., 2005) (see Fig. 3.2).

Figure 3.2. (a) The velocity field at t0 instant is indicated by the magnitude and direction of
the blue arrows. (b) Following advection by the time-dependent velocity field, the dye and
the field are depicted at time t1. (c) A candidate representing the most robust repelling LCS
is delineated by the white line at time t0. The lightest background shading corresponds to
the largest positive FTLE. (d) A candidate identified as the most potent attracting LCS,
illustrated by the black line at time t1. The darkest background shading highlights the most
prominent negative FTLE. Source: (Peacock and Haller, 2013)

The FTLE field is determined by the procedure that involves allowing fluid particles to
evolve under the influence of the velocity field from time t0, observing the extent of separation
between initially neighboring particles at a specific location after the time τ . Regions charac-
terized by substantial particle separation exhibit elevated FTLE values, signifying local zones
where the flow experiences pronounced divergence (Peacock and Haller, 2013).

Let D ⊂ R2, and let v⃗(x⃗, t) the vector field defined in D. Recall that,

v⃗ =
dx⃗

dt
, v = |v⃗|.

The trajectory x⃗(t, t0, x⃗0) with initial condition x⃗ at time t0 is given by,

·
x⃗(t, t0, x⃗0) = v⃗(x⃗(t, t0, x⃗0), t), (3.46)
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where the dot represents d/dt . The solution to Eq. (3.46) can be viewed as a mapping process,
referred as the flow map, denoted by ϕt0+τ

t0
:

ϕt0+τ
t0

:

D −→ D

x⃗ −→ ϕt0+τ
t0

= x⃗(t, t0, x⃗0)
(3.47)

The FTLE is defined as a finite time average of the maximum expansion rate for a pair of
particles that are advected in the flow (Shadden et al., 2005). Another definition characterizes
the Lyapunov exponent as a measure of the sensitivity of a fluid particle’s future behavior (Pea-
cock and Haller, 2013). To define the FTLE mathematically, we must first consider the evolution
of a perturbed point x⃗

′
= x⃗ + δx⃗, where δx⃗ is infinitesimal and arbitrarily oriented. After an

interval τ , this perturbation becomes,

δx⃗ = x⃗
′ − x⃗,

δx⃗τ = ϕt0+τ
t0

(
x⃗

′
)
− ϕt0+τ

t0
(x⃗) . (3.48)

Recall that, for a given function f , evaluated at a given position x, one can write the Taylor
expansion around x = a,

f(x)|a = f(a) +
1

1!

df(a)

dx
(x− a) +

1

2!

df(a)

dx
(x− a)2

where the flow map is denoted as ϕt0+τ
t0

, a map which takes a point in the domain at time t0 to
its location at time t0 + τ , and can be expanded into a Taylor series in the neighborhood of x⃗,

ϕt0+τ
t0

(
x⃗

′
)∣∣∣

x⃗
= ϕt0+τ

t0
(x⃗) +

dϕt0+τ
t0

dx⃗

∣∣∣∣∣
x⃗

(
x⃗

′ − x⃗
)
+ . . .

≈ ϕt0+τ
t0

(x⃗) +
dϕt0+τ

t0

dx⃗

∣∣∣∣∣
x⃗

(
x⃗

′ − x⃗
)
, (3.49)

where,

dϕt0+τ
t0

dx⃗
=

dx⃗(t+ τ, t0, x⃗0)

dx⃗
=

[
∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

]
.

Substituting Equations (3.49) into (3.48) we obtain:

δx⃗τ = ϕt0+τ
t0

(x⃗) +
dϕt0+τ

t0

dx⃗

∣∣∣∣∣
x⃗

δx⃗0 − ϕt0+τ
t0

(x⃗) =
dϕt0+τ

t0

dx⃗

∣∣∣∣∣
x⃗

δx⃗0. (3.50)
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The growth of the infinitesimal perturbation, also obtained by applying the modules of δx⃗τ ,
will be given by;

∥δx⃗τ ∥ = ∥
dϕt0+τ

t0

dx⃗

∣∣∣∣∣
x⃗

δx⃗0 ∥ = ∥
dϕt0+τ

t0
(x⃗)

dx⃗
δx⃗0 ∥

=

√√√√(dϕt0+τ
t0

(x⃗)

dx⃗
δx⃗0

)
·

(
dϕt0+τ

t0
(x⃗)

dx⃗
δx⃗0)

)
. (3.51)

By applying the identity,

(Av⃗) · (Av⃗) = v⃗ ·
(
ATAv⃗

)
we obtain the initial perturbation:

∥δx⃗τ ∥ =

√√√√√δx⃗0 ·

(dϕt0+τ
t0

(x⃗)

dx⃗

)T (
dϕt0+τ

t0
(x⃗)

dx⃗

)
δx⃗0

 (3.52)

The Cauchy-Green tensor, in a 2D fluid flow, is a positive-definite 2 x 2 symmetric matrix
computed for every initial position within the fluid (Peacock and Haller, 2013). Let us define a
finite-time version of the right Cauchy-Green deformation tensor as:

Ct0+τ
t0

=

(
dϕt0+τ

t0
(x⃗)

dx⃗

)T [
dϕt0+τ

t0
(x⃗)

dx⃗

]
, (3.53)

and denote the eigenvectors of Ct0+τ
t0

as ξ⃗1 and ξ⃗2, with corresponding eigenvalues λ1 > λ2

satisfying,

Ct0+τ
t0

ξ⃗i = λiξ⃗i, i = 1, 2, (3.54)

and
∥∥∥ξ⃗i∥∥∥ = 1. In addition, if we assume that the perturbation δx⃗ is aligned with the direction of

maximum stretching ξ⃗1, then we can write:

δx⃗0 = ∥δx⃗0∥ ξ⃗1. (3.55)

Inserting Equation (3.55) into (3.52), we obtain:
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∥δx⃗τ ∥ =

√√√√√ ∥δx⃗0∥2 ξ⃗1 ·

(dϕt0+τ
t0

(x⃗)

dx⃗

)T (
dϕt0+τ

t0
(x⃗)

dx⃗

)
ξ⃗1

. (3.56)

Substituting Equation (3.53) into (3.56),

∥δx⃗τ ∥ ≈
√

∥δx⃗0∥2 ξ⃗1 · Ct0+τ
t0

ξ⃗1. (3.57)

then using Eq.(3.54), we obtain:

∥δx⃗τ ∥ ≈
√

∥δx⃗0∥2 ξ⃗1 ·
(
λiξ⃗1

)
= ∥δx⃗0∥

√
λiξ⃗1 · ξ⃗1

∥δx⃗τ ∥ =
√
λ1 ∥δx⃗0∥ . (3.58)

Finally, the definition of the FTLE can be derived from Eq. (3.58) (Shadden et al., 2005),
where Eq. (3.58) can be written as,

∥δx⃗τ ∥ ≈ eσ
t0+τ
t0

(x⃗)|τ | ∥δx⃗0∥ ,

resulting in:

σt0+τ
t0

(x⃗) =
1

|τ |
ln
√
λ1, (3.59)

where the largest/maxima FTLE is given by Eq. (3.59) and can be computed for both positive
and negative integration times (τ ) due to the absolute value operation. The positive integration
time is a forward-time integration that reveals a repelling LCS (Haller, 2001; Shadden et al.,
2005; Lekien et al., 2007). Note that the spatial dependence of σt0+τ

t0
is implicit on λ1.

The FTLE is computed with a grid resolution of 1024x1024 and 2048x2048, and the results
obtained are visualized and analyzed using Matlab, we also compute probability distribution
functions (PDFs) of FTLE values with Matlab.

3.3.2 Geodesic Theory

The Geodesic theory functions as a systematic approach for identifying essential mate-
rial transport barriers within two-dimensional non-autonomous dynamical systems (Haller and
Beron-Vera, 2012). This methodology involves the characterization of transport barriers as
exceptional material lines exhibiting minimal deformation compared to their neighboring lines.
The primary goal is to identify the material lines with the least stretching locally in forward or
backward time. This theoretical framework represents an extension of the concept of LCSs
from hyperbolic material lines (Haller, 2011) to encompass elliptic and parabolic material lines.
It is set in temporally aperiodic flows defined over finite time intervals (Haller and Beron-Vera,
2012).
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Figure 3.3. (a) Diagram illustrating an elliptic transport barrier. It features a closed shear-
line where the advected material γt0+T possesses the same arclength and encloses the
same area as γt0 . (b) Diagram depicting a parabolic transport barrier. It includes an
open shearline where the advected material γt0+T has the same arclength as γt0 . (c)
Diagram illustrating forward- and backward-hyperbolic transport barriers. These involve
strainlines where the arclength of γt0+T and γt0 shrinks exponentially under forward-time
and backward-time advection, respectively, as governed by the flow map. Source: (Haller
and Beron-Vera, 2012)

This approach leads to trajectories of ODEs for forward- and backward-time hyperbolic
and shear transport barriers. The trajectories they describe are snapshots of instant frozen-in-
time influential material lines in the phase space. These influential material lines, termed as
strainlines and shearlines, act as strong transport barriers, particularly when closely aligned
with least-stretching geodesics derived from the metric induced by the Cauchy-Green strain
tensor(Haller and Beron-Vera, 2012). Strainlines are curves tangent to the eigenvector field of
the Cauchy-Green strain tensor computed over a specific time window (Peacock and Haller,
2013). Strainlines that are more locally repelling than their neighbors are identified as hyper-
bolic LCSs (Farazmand and Haller, 2012). Shearlines are further categorized into closed and
open shearlines, with closed shearlines representing elliptic barriers in incompressible, finite-
time, non-autonomous dynamical systems on the plane. These elliptic barriers play a role as
generalized Lagrangian eddy barriers. On the other hand, open shearlines are conceptual-
ized as frame-independent extensions of non-stretching streamlines forming steady shear jets,
referred to as parabolic barriers (Haller and Beron-Vera, 2012). See Figure 3.3 for a visual
representation of hyperbolic, elliptic and parabolic barriers.

The Cauchy-Green metric functions operate within the spatial domain of initial fluid particle
positions, wherein strainlines and shearlines delineate the initial locations of transport barriers.
Proximity to the least-stretching geodesics is measured through the geodesic deviation, rep-
resenting the pointwise C2 - distance between a curve and the most shrinking Cauchy-Green
geodesic passing through the same point. The analysis of transport barriers involves the inte-
gration of trajectories, which can be concluded when the geodesic deviation on strainlines and
shearlines falls below a specified error threshold (Haller and Beron-Vera, 2012).

The next sections are focused on defining the Lagrangian shear and its locally maximal
directions, to further our understanding of the Geodesic Theory. The maximized Lagrangian
shear permits the boundary condition for the identification of shear transport barriers, which is
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the main focus of this thesis when utilizing the geodesic method.

3.3.2.1 Definition of Lagrangian shear

Let M(t) be an evolving material line. At a point x⃗0 ∈M(t), a unit n0 to M(t) can be written
as,

n⃗0 = Ωe⃗0 (3.60)

where,

Ω =

[
0 −1

1 0

]
,

and e⃗0 ∈ Tx0M(t) is a unit tangent vector. Due to the invariance of the flow map, the tangent
space is carried forward by the linearized flow map, as defined by Haller and Beron-Vera (2012)
as ∇F t

t0(x⃗0), into the tangent space,

Tx⃗tM(t) = ∇F t
t0(x⃗0)Tx⃗0

M(t0),

where (Peacock and Haller, 2013),

F t
t0(x0) = x (t, t0, x0) ,

∇F t
t0(x0) =

[
∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

]
.

Therefore a unit tangent vector in Tx⃗tM(t) can be selected as,

e⃗t =
∇F t

t0(x⃗0)e⃗0

|∇F t
t0
(x⃗0)e⃗0|

. (3.61)

Figure 3.4. The definition of the Lagrangian shear σt
t0 . Source: (Haller and Beron-Vera,

2012)
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Let us define the Lagrangian shear σt
t0 as the normal projection of the linearly advected

unit normal ∇F t
t0(x⃗0)n⃗0 onto the advected unit tangent e⃗t (Haller and Beron-Vera, 2012), as

shown in Fig.3.4, and can be computed as:

σt
t0(x⃗0, e⃗0) =

〈
e⃗t,∇F t

t0(x⃗0)n⃗0

〉
. (3.62)

By substituting Equations (3.61) into (3.62), and applying the identity ⟨Au⃗,Av⃗⟩ =
〈
u⃗, ATAv⃗

〉
we obtain:

σt
t0(x⃗0, e⃗0) =

1

|∇F t
t0
(x⃗0)e⃗0|

〈
Ωe⃗t,

(
∇F t

t0(x⃗0)
)T (∇F t

t0(x⃗0)
)
e⃗0

〉
. (3.63)

The Cauchy-Green strain tensor is formally identified as a classical positive definite tensor
field employed for characterizing the deformation of moving continua (Truesdell et al., 2004;
Ottino, 1989). Defining the Cauchy-Green strain tensor as Ct

t0(x⃗0) =
(
∇F t

t0(x⃗0)
)T (∇F t

t0(x⃗0)
)

and substituting into Eq. (3.63) and simplifying, we obtain:

σt
t0(x⃗0, e⃗0) =

1

|∇F t
t0
(x⃗0)e⃗0|

〈
Ωe⃗t, C

t
t0(x⃗0)e⃗0

〉
=

1√〈
e⃗t, Ct

t0
(x⃗0)e⃗0

〉 〈Ωe⃗t, Ct
t0(x⃗0)e⃗0

〉
. (3.64)

3.3.2.2 Directions and magnitude of maximal Lagrangian shear

We write the tangent vector e⃗0 as a linear combination of eigenvectors ξ⃗1 and ξ⃗2:

e⃗0 = αξ⃗1 + βξ⃗2

α2 + β2 = 1
(3.65)

where α = α(x) and β = β(x) are constants yet to be determined. Substituting Equations
(3.65) into (3.64) we obtain:

σt
t0(x⃗0, α, β) =

1√〈
αξ⃗1 + βξ⃗2, Ct

t0
(x⃗0)(αξ⃗1 + βξ⃗2)

〉 〈Ω(αξ⃗1 + βξ⃗2), C
t
t0(x⃗0)(αξ⃗1 + βξ⃗2)

〉
.

(3.66)

The terms
〈
αξ⃗1 + βξ⃗2, C

t
t0(x⃗0)(αξ⃗1 + βξ⃗2)

〉
= α2λ1 + β2λ2 and (...)〈

Ω(αξ⃗1 + βξ⃗2), C
t
t0(x⃗0)(αξ⃗1 + βξ⃗2)

〉
= αβ(λ2 − λ1), where λ1 and λ2 are corresponding eigen-

values. Substituting these terms into Eq. (3.66), we obtain:
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σt
t0(x⃗0, α, β) =

1√
α2λ1 + β2λ2

· αβ(λ2 − λ1) =
αβ(λ2 − λ1)

(α2λ1 + β2λ2)1/2
. (3.67)

Since we are seeking extrema of σt
t0(x⃗0, α, β) with the constant α2 + β2 = 1, we can apply

the method of Lagrange multipliers.

The method of Lagrange multipliers allows to find local maxima and minima of a func-
tion with constraints. For example, let f and g be functions with first partial derivatives. The
Lagrange function is defined by:

L(x, y, λ) = f(x, y)− λg(x, y),

λ is the Lagrange multiplier. Local extremas are given by:

∇x,y,λL(x, y, λ) = 0,

where ∇x,y,λ = (∂/∂x, ∂/∂y, ∂/∂λ). Applying this method to the Lagrangian shear σt
t0(x⃗0, α, β),

we have that:

L(x, y, λ) = σt
t0(x⃗0, α, β)− λ(α2 + β2 − 1) =

αβ(λ2 − λ1)

(α2λ1 + β2λ2)1/2
− λ(α2 + β2 − 1). (3.68)

Next, we write Eq. (3.68) in terms of each component of the gradient of the Lagrange
function,

∇α,β,λL(α, β, λ) = 0.

The first component gives:

∂

∂α

{
αβ(λ2 − λ1)

(α2λ1 + β2λ2)1/2
− λ(α2 + β2 − 1)

}
= 0 ⇒ β3λ2(λ2 − λ1)

(α2λ1 + β2λ2)3/2
− 2λα = 0. (3.69)

The second component gives:

∂

∂β

{
αβ(λ2 − λ1)

(α2λ1 + β2λ2)1/2
− λ(α2 + β2 − 1)

}
= 0 ⇒ α3λ2(λ2 − λ1)

(α2λ1 + β2λ2)3/2
− 2λβ = 0. (3.70)

The third and last component gives:
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∂

∂λ

{
αβ(λ2 − λ1)

(α2λ1 + β2λ2)1/2
− λ(α2 + β2 − 1)

}
= 0 ⇒ − ∂

∂λ

{
λ(α2 + β2 − 1)

}
= 0 ⇒ α2+β2−1 = 0,

which is the constraint itself α2 + β2 = 1.

When combining Equations (3.69) and (3.70) it yields α
β = ± 4

√
λ2
λ1

. Solving for α and β,
and then substituting into the constraint itself α2 + β2 = 1, it gives:

α = ±

√ √
λ2√

λ1 +
√
λ2

, β = ±

√ √
λ1√

λ1 +
√
λ2

. (3.71)

Substituting into Equation (3.65) the values in (3.71), we can finally write the tangent vec-
tors that maximize the Lagrangian shear as:

η⃗± =

√ √
λ2√

λ1 +
√
λ2

ξ⃗1 ±

√ √
λ1√

λ1 +
√
λ2

ξ⃗2.

Note that η⃗+ gives the same result as η⃗−. Substituting these vectors into Eq.3.64 it gives the
extremum values (Haller and Beron-Vera, 2012),

σt
t0(x⃗, η±(x⃗)) = ±

√
λ2(x⃗)−

√
λ1(x⃗)

4
√

λ1(x⃗)λ2(x⃗)
, (3.72)

which means that σt
t0 will be maximum along the vectors (η⃗±). Therefore, the values in Eq. 3.72

represent locally maximal positive and negative Lagragian shear values (Haller and Beron-
Vera, 2012).

The Geodesic theory’s Lagrangian shearlines is computed with a grid resolution of 1024x1024,
and the results obtained are visualized and analyzed using GNUPLOT and MATLAB.
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4 SIMULATION RESULTS AND DISCUSSIONS

4.1 MODIFIED HASEGAWA-WAKATANI EQUATIONS

A transition from L-H regimes in tokamaks can be modeled by varying the control param-
eter α in Eqs. (3.40)-(3.41). This transition can provide insight into the behavior of tokamak
plasmas under different confinement conditions. Figure 4.1 depicts the 2D spatial patterns of
the electrostatic potential φ obtained from numerical solutions of Eqs. (3.40)-(3.41) in two dif-
ferent regimes. The left panel of Figure 4.1 displays the patterns of φ in the turbulent regime,
whereas the right panel of Figure 4.1 shows the patterns of φ in the zonal flow regime. The
patterns were obtained by setting the value of the adiabaticity parameter α = 0.010 (turbulent
regime) and α = 0.018 (zonal flow regime). Note that the color bars are set to the same scale,
to facilitate the comparison between regimes. In this model, the left panel represents L-mode,
while the right panel represents H-mode.

Figure 4.1. The electrostatic potential in the turbulent regime (left panel, α = 0.010) and
zonal flow (right panel, α = 0.018).

The right-hand side of Fig. 4.1 shows that φ displays zonally elongated structures vis-
ible as large-scale structures in the Y direction. These structures correspond to the zonal
flows that emerge as a consequence of the KH instability of the drift waves, which effectively
dampens drift wave activity (Numata et al., 2007). Consequently, the zonal flow exhibits high
confinement properties, rendering it a crucial element in comprehending plasma turbulence
and confinement in tokamaks. Conversely, in the turbulent regime (left-hand side of Fig. 4.1),
φ displays a disordered pattern, which enhances drift wave activity and particle flow in the
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radial direction (i.e., the horizontal direction).

Table 4.1. Numerical values of Γr for the two regimes

Turbulent regime 0.0132

Zonal flow 0.0029

Following Bos et al. (2008), we calculate the particle density flux Γr (Eq. (3.44)) of the
turbulent and zonal flow regimes across the entire simulation domain. The computed values
are shown in Table 4.1. These results show that the turbulent regime displays a higher Γr value
compared to the zonal flow regime. This is expected since the elongated patterns of the zonal
flow act as transport barriers for the flow. This result emphasizes the importance of controlling
turbulent flows for the confinement of plasma in a Tokamak.

Table 4.2. Numerical values of EK for the two regimes

Turbulent regime 0.0352

Zonal flow 0.0831

In accordance with Numata et al. (2007), we calculate the kinetic energy EK (Eq. (3.45)) for
both turbulent and zonal flow regimes spanning the entire simulation domain. The calculated
values are outlined in Table 4.2. The findings indicate that the zonal flow exhibits a notably
higher EK value in comparison to the turbulent regime. This outcome is anticipated, as the
zonal flow acts as a carrier of kinetic energy absorbed from the energy of drift waves (Numata
et al., 2007).

Patterns of φ such as those shown in Figure 4.1 can offer clues about the presence of
coherent structures. For instance, vortices can be associated with areas of localized minima
and maxima of φ. These areas are readily discernible in the turbulent regime. Nonetheless,
employing snapshots of fields (i.e., an Eulerian approach) for the detection of coherent struc-
tures such as vortices can yield misleading outcomes (Peacock and Haller, 2013). Coherent
structures can be objectively identified using a Lagrangian approach, which will be applied in
the next section.

4.2 FINITE-TIME LYAPUNOV EXPONENT

Figure 4.2 depicts the FTLE field (σt0+τ
t0

) obtained from the time-dependent velocity fields
in the turbulent and the zonal flow regimes. The FTLE field was computed by setting t0 = 0

and τ = 40 Ω−1
ci , where Ωci represent the ion cyclotron frequency, which is a fundamental time

scale in plasmas. The value of τ must be obtained after some trial-and-error, checking the
convergence of patterns of the FTLE field (Miranda et al., 2013). Figure 4.2 offers a more de-
tailed understanding of the spatiotemporal patterns of both the turbulent regime and the zonal
flow regimes, for example, the locations of transport barriers within the flow. The numerical
values of (σt0+τ

t0
) are represented using a color gradient, and fluid barriers can be identified in

yellow. It becomes evident when comparing both panels of Figure 4.2 that these barriers seem
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to highlight locations of vortex structures in the turbulent regime (left panel), whereas in the
zonal-flow regime, there seems to be a fewer number of vortices.

Figure 4.2. The FTLE in the turbulent regime (left panel) and zonal flow (right panel).

Figure 4.3. PDFs of FTLE in the turbulent regime (red line) and the zonal flow regime
(blue line).

The FTLE field provides a clear identification of coherent structures such as vortices, com-
pared to an analysis based on an instantaneous snapshot such as those shown in Fig. 4.1. For
example, a comparison between Figures 4.1 and 4.2 reveals that not every localized maximum
or minimum of φ from Figure 4.1 corresponds to a vortex. Moreover, the definition of vortex
boundaries using instantaneous φ patterns can be a difficult task, and it is not certain that
Eulerian vortices have a long duration. Lagrangian techniques such as the FTLE field allow
to distinguish vortex boundaries by ridges of the FTLE field. This observation suggests that
the FTLE is more effective at detecting vortices when compared to a visual inspection of the
electrostatic potential.

The chaotic mixing properties of flows can be characterized from statistics of the FTLE
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field (σt0+τ
t0

). For example, the presence of broad PDFs can be linked to heterogeneous mixing
(Beron-Vera et al., 2010; Miranda et al., 2013). The PDFs of the FTLE field depicted in Fig. 4.2,
are presented in Fig. 4.3. Note the incorporation of a Gaussian distribution in the background
of Fig.4.3, strategically employed to accentuate the asymmetry inherent in the PDFs. From this
figure, the PDF of the turbulent regime displays a broader shape compared to the PDF of the
zonal flow regime. This result reveals that the turbulent regime exhibits a more heterogeneous
mixing pattern than the zonal flow regime. The difference in mixing can be attributed to the fact
that the zonal flow is a regime of high confinement that suppresses turbulent transport (Numata
et al., 2007), whereas the turbulent regime is characterized by the presence of vortices that
propagate across the simulation domain, trapping plasma particles and transporting them in
different directions, including the positive X direction, which in this model represents the radial
direction towards the walls. Therefore, the PDFs displayed in Fig.4.3 represent an alternative
technique to quantify chaotic mixing in turbulent flows.

Figure 4.4. The FTLE in the turbulent regime (left panel) and zonal flow (right panel) from
t = 0 to t = 100 for τ = 100 Ω−1

ci .

We extended our investigation of the FTLE by computing it from t = 0 to t = 500 using
a time step of τ = 100 Ω−1

ci , necessitating a higher grid resolution of 2048x2048. The figures
and their corresponding PDFs are presented as follows. Figure 4.4 follows a similar format
as Fig. 4.2, offering a side-by-side comparison of the turbulent regime and the zonal flow.
However, Figure 4.4 illustrates the evolution of the two regimes over a more extended period
with τ = 100Ω−1

ci . Allowing for this extension, we observed a more pronounced formation of
transport barriers, aligning with our expectations. Nevertheless, the previously drawn conclu-
sions from Fig. 4.2 remain valid. The turbulent regime still exhibits a higher prevalence of
stronger transport barriers and the potential formation of vortices. Figures 4.7 and 4.8 depict
the evolution of the turbulent regime and zonal flow for t = 100 to t = 500, respectively. Sim-
ilar conclusions can be drawn about them as well. Their respective PDFs for times t = 0 to
t = 500 are shown in Figures 4.5 and 4.6. Observation of asymmetry is evident across all
PDFs depicted in Figures 4.5 and 4.6

We computed the variance for each PDFs curve from t = 0 to t = 500 for τ = 100 Ω−1
ci

for each regime, and the results are presented in Tab.4.3. Calculating the variance provides
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Figure 4.5. PDFs of the FTLE in the turbulent regime (red line) and the zonal flow regime
(blue line) from t = 0 to t = 100 for τ = 100 Ω−1

ci .

Figure 4.6. PDFs of the FTLE in the turbulent regime (red line) and the zonal flow regime
(blue line) from t = 100 to t = 500.
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Table 4.3. Numerical values of the variance of each PDFs for the two regimes

Time ( Ω−1
ci ) Turbulent Regime Zonal Flow

t = 0 to t = 100
t = 100 to t = 200
t = 200 to t = 300
t = 300 to t = 400
t = 400 to t = 500

8.4161 7.4551
8.3485 7.4398
8.0283 7.5611
8.1720 7.2349
8.1519 7.2515

numerical values, enhancing the interpretability of the PDFs beyond visual analysis alone,
which can sometimes be more difficult to conclude. The values given for the variance further
corroborate the conclusion that the zonal flow has a narrower shape than the turbulent regime.
As shown in Tab. 4.3 the variances of the zonal flow are smaller than the turbulent regime.
This allows us to reinforce that the zonal flow entails a less heterogeneous mixing pattern
when compared to the turbulent regime, aligning with expectations stated in Beron-Vera et al.
(2010) and Miranda et al. (2013).

Figure 4.7. The FTLE in the turbulent regime from t = 100 to t = 500.

4.3 GEODESIC THEORY

Our analysis utilizing the Geodesic theory (Haller and Beron-Vera, 2012) is centered on
identifying the closed Lagrangian shearlines referred to as elliptic barriers. The generated fig-
ures visually showcase the elliptic barriers present in both the zonal flow and turbulent regimes
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Figure 4.8. The FTLE in the zonal flow from t = 100 to t = 500.

for t = 0 to t = 500 with τ = 100 Ω−1
ci (Fig.4.9, 4.12, 4.13). These elliptic barriers are consid-

ered to represent the vortices that arise due to drift wave turbulence. From these vortices, we
computed their kinetic energy EK (Eq. (3.45)) and assessed the extent to which their energy
contributes to the overall kinetic energy of each domain. The results are presented in both
form of figures and tables.

Figure 4.9. The Lagrangian shear in the turbulent regime (left panel) and zonal flow (right
panel) for t = 0 to t = 100.

Figure 4.9 illustrates the presence of elliptic barriers in both the zonal flow and turbulent
regimes for t = 0 to t = 100. The amount of vortices detected in each regime is 27 and 31 for
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Table 4.4. Numerical values of the number of vortices present for each of the two regimes

Time ( Ω−1
ci ) Turbulent Regime Zonal Flow

t = 0 to t = 100
t = 100 to t = 200
t = 200 to t = 300
t = 300 to t = 400
t = 400 to t = 500

31 27
21 22
24 19
27 20
22 26

zonal flow and for turbulent regime, respectively (see table 4.4 for other time frames). However,
the amount of vortices present is not as crucial as how much energy each vortex dissipates.
For this analysis, we initially computed the kinetic energy for a single vortex (EV ) within each
regime for one domain (t = 0 to t = 100). Subsequently, we determined the sum of kinetic
energy released by all vortices (E∑

V ) present in each domain for each regime. These values
were then compared with the total kinetic energy of the entire domain (Etotal) for each regime
and domain. The detailed values are available in Tables 4.5-4.6, and the visual representation
can be found in Figures 4.10, 4.11, 4.14, 4.15.

Figure 4.10. The Etotal and EV for the turbulent regime (left panel) and zonal flow (right
panel) for t = 0 to t = 100, for one selected vortex.

Table 4.5. Numerical values of the Etotal and EV for the two regimes

Turbulent Regime Zonal Flow
Time ( Ω−1

ci ) Etotal EV
EV

Etotal
( %) Etotal EV

EV
Etotal

( %)
t = 0 to t = 100 0.0347 0.0012 3.46 0.0839 0.0011 1.31

Figure 4.10 and Table 4.5 illustrate the visual and numerical values of the relationship
between the total kinetic energy (Etotal) in the domain of t = 0 to t = 100 and the kinetic
energy of a single vortex (EV ) for the turbulent regime and the zonal flow. As shown in Table
4.5, a single vortex alone does not influence much of the total kinetic energy. However, when
comparing both regimes, the kinetic energy present in the vortices in the turbulent regime
is responsible for much more of the total kinetic energy than that of the zonal flow. This is
expected, as stated in Numata et al. (2007), where the zonal flow absorbs the drift wave energy,
so it is expected that the kinetic energy of the total domain is much higher than that of a single
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vortex. This is further corroborated by the results present in figures and tables showing the
relationship between E∑

V and Etotal.

Figure 4.11. The Etotal and E∑
V for the turbulent regime (left panel) and zonal flow

(right panel) for t = 0 to t = 100.

Figure 4.11 presents Etotal and E∑
V , comparing the turbulent regime and the zonal flow

side by side for the t = 0 to t = 100 domain. The corresponding results for this domain
and the others are available in Table 4.6. The table illustrates that the percentage of E∑

V

contributing to Etotal is generally higher in the turbulent regime than in the zonal flow. This
reinforces the previously mentioned from Numata et al. (2007) relationship between drift waves
and zonal flow. The turbulent regime is dominated by drift waves, and thus, the vortices contain
a substantial amount of drift wave energy. The evolution of the other domains (t = 100 to
t = 500) for the turbulent regime and the zonal flow is depicted in Figures 4.14 and 4.15,
respectively (note that the figures are in different scales to facilitate visualization). Similarly,
the conclusions regarding the relationship between Etotal and E∑

V for these domains can be
drawn, that the kinetic energy contained in vortices detected represents, in general, less than
half of the percentage of the total energy integrated over the whole simulation domain.

Table 4.6. Numerical values of the Etotal and E∑
V for the two regimes

Turbulent Regime Zonal Flow
Time ( Ω−1

ci ) Etotal E∑
V

E∑
V

Etotal
( %) Etotal E∑

V
E∑

V

Etotal
( %)

t = 0 to t = 100
t = 100 to t = 200
t = 200 to t = 300
t = 300 to t = 400
t = 400 to t = 500

0.0347 0.0107 30.84 0.0839 0.0273 32.54
0.0361 0.0117 32.41 0.0835 0.0200 23.95
0.0372 0.0191 51.34 0.0831 0.0191 22.98
0.0350 0.0140 40.00 0.0828 0.0170 20.53
0.0330 0.0039 11.81 0.0822 0.0264 32.12
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Figure 4.12. The Lagrangian shear for the turbulent regime from t = 100 to t = 500.

Figure 4.13. The Lagrangian shear for the zonal flow from t = 100 to t = 500 .
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Figure 4.14. The Etotal and E∑
V for the turbulent regime from t = 100 to t = 500.

Figure 4.15. The Etotal and E∑
V for the zonal flow from t = 100 to t = 500.
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5 CONCLUSION

In this thesis we studied numerical simulations of the modified Hasegawa-Wakatani equa-
tions, in two different regimes, namely, a regime characterized by turbulent patterns, and a
regime characterized by the presence of zonal flows. The chaotic mixing properties of the flow
were elucidated by computing the finite-time Lyapunov exponents (FTLE), a commonly used
tool for Lagrangian analysis of turbulent fluids. By constructing probability distribution func-
tions of the FTLE field and comparing their shapes, we demonstrated that the turbulent regime
displayed a more heterogeneous mixing behavior than the zonal flow regime. This result is
consistent with the high-confinement regime associated with the zonal flow because zonal
flows can suppress plasma transport in the radial direction. The radial transport is responsible
for the loss of plasma particles to the walls of a tokamak (Farge et al., 2006).

The computation of the FTLE represents a simple technique for the detection of Lagrangian
coherent structures based on ridges of the resulting field. However, we note that ridges of
the FTLE field can lead to inconsistent results (Haller, 2011). Therefore, we applied a more
advanced technique, the geodesic theory (Haller and Beron-Vera, 2012). The results obtained
can be summarized as follows:

• The kinetic energy contained in vortices detected by the geodesic theory represents in
general less than half of the percentage of the total energy integrated over the whole
simulation domain. This is in contrast with the main findings of Bos et al. (2008), where
they find that vortices carry a large percentage of energy (≈ 98%). Note, however, that
they applied a technique for vortex extraction based on the wavelet transform and instan-
taneous snapshots of the simulation domain, i.e., an Eulerian approach, whereas the
Lagrangian approach applied in this dissertation guarantees that vortices remain coher-
ent over a finite-time period.

• The percentage of kinetic energy contained in vortices is, in general, higher in the tur-
bulent regime compared to the zonal-flow regime. The results are in agreement with
the general characteristics of a fusion plasma during a low-to-high transition. In the low
containment regime, turbulence can carry particles and energy radially toward the walls,
whereas the high containment regime is characterized by a decrease in the radial flux of
particle and energy in the direction of the reactor’s wall.

The methodologies and understandings derived from our study may aid in the comprehen-
sion of drift-wave-induced turbulence in tokamak plasmas. Future work could incorporate inte-
grating the enstrophy within vortices, and the flux of mass as defined by Bos et al. (2008). The
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techniques applied in this thesis are transferable to turbulent flows prevalent in fluid mechanics,
such as pipe flows, airfoils, and aerodynamics. Consequently, the application of Lagrangian
techniques has the capacity to advance our comprehension of turbulent flows in engineering
contexts.
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