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ABSTRACT 

This research investigates damage detection using Discrete Wavelet Transform (DWT) as 

the method of analysis on beam-like structures. This kind of structure is found in engineering 

applications such as bridges, aeronautic fuselages and navy ports. The study proposes 

indexes for damage localization (d1-index) and quantification (d2-index). The indexes 

analyze the displacement and mode shapes data of the beams which are treated with the 

DWT. Static and dynamic analysis are conducted. The displacement of the beams is 

obtained with finite elements method (FEM) subjected to static transversal load applied in 

selected nodes along its length. For the modal analysis, the first five mode shapes are 

considered. The investigated structures have three support types: simply supported, 

cantilever and double-clamped. Ahead, the influence of the boundary conditions, the wavelet 

type and the load application points are also investigated to guarantee the reliability of the 

method. The influence of the usage of a baseline function, the decomposition level, the 

wavelet mother type and the damage severity are also aim of the research. Damage is 

simulated through an elasticity module reduction of one or more elements. Results show 

great potential to the proposed method based on DWT, once the developed indexes are 

capable to detect, localize and quantify damage with precision. The approach showed 

accordance between the localization indexes while for quantification it is noted that the 

damage severity prediction curves are identified to be very similar independent of the beam 

and parameters involved.  

 

Keywords: Damage, Localization, Quantification, Structural Health Monitoring, Wavelet 

Transform. 
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RESUMO 

 

LOCALIZAÇÃO DE DANO EM ESTRUTURAS DO TIPO VIGA COM BASE EM ONDALETAS 

DISCRETAS 

Esta pesquisa investiga a detecção de dano utilizando a Transformada Discreta de Wavelet 

(DWT) como método de análise em estruturas do tipo viga. Este tipo de estrutura é 

encontrada em aplicações da engenharia como pontes, fuselagens aeronáuticas e até 

portos. O estudo propõe indicadores de dano para localização (d1-index) e quantificação 

(d2-index). Os indicadores analisam dados de deslocamento da viga que são tratados com 

a DWT. Análises estáticas e dinâmicas foram conduzidas. O deslocamento das vigas é 

obtido através de método de elementos finitos (MEF) submetidos a cargas estáticas 

transversais aplicadas em pontos selecionados ao longo de seu comprimento. Para a 

análise Modal, os cinco primeiros modos de vibração são considerados. As estruturas 

investigadas possuem três tipos de suportes: bi-apoiada, cantilever e bi-engastada. 

Adiante, a influência das condições de contorno, dos tipos de Wavelet e do ponto de 

aplicação da carga também são investigados para garantir a confiabilidade do método. A 

influência do uso de uma função de baseline para comparação, nível de decomposição, tipo 

de wavelet mãe e severidade do dano também são alvos da pesquisa. O dano simulado é 

aplicado à estrutura através da redução local do módulo de elasticidade de um ou mais 

elementos. Os resultados mostram grande potencial para a metodologia proposta com base 

em DWT, uma vez que os indicadores propostos são capazes de identificar, localizar e 

quantificar o dano com precisão. A abordagem mostra concordância entre os índices de 

localização, enquanto para a quantificação, é notado que as curvas de previsão de 

severidade do dano foram identificadas muito similares independentemente do tipo de viga 

e parâmetros considerados. 

 

Palavras-chave: Dano, Localização, Quantificação, Structural Health Monitoring, 

Transformada de Wavelet. 
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T  Transpose Vector 
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W  Window Function 
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   Scale Function 

Φ  Mode shape of Vibration 

Ω Squared Diagonal Matrix of the natural frequencies 
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1 INTRODUCTION 

Naturally, a beam is under the influence of many forces and stresses. Structural 

health monitoring (SHM) is used to assure safe operational levels. This monitoring 

approach is studied by Yang and Huang (2021) and Nick et al. (2021). Beams are 

found in many engineering applications, from aerospace structures, such as 

aeronautic fuselages, to civil construction, such as bridges and navy ports. 

The Structural Health Monitoring is defined by Farrar and Worden (2007) as a 

method to observe, monitor, obtain readings, and by these readings, detect, localize, 

and identify the damage, so to allow a preventive maintenance. A review on this field 

is made by Sohn et al. (2003). 

Rytter (1993) classified SHM in four stages: damage detection, damage 

localization, damage severity assessment and the determination of the remaining 

useful life-time. 

The analysis is constituted mainly from three stages: data acquisition, which may 

be through a continuous observation of a structure in periodic intervals of time via 

sensors attached to the structure, data treatment, and finally the critical analysis with 

damage indexes. 

Meanwhile, a beam is designed to operate under severe load-service regime, 

regardless of the static or dynamic nature of the load, that can stimulate degradation 

and sometimes damage. Damage is understood as a level of degradation enough to 

reduce the beam structural characteristics, hence failing to meet the initial design 

requirements. SHM exists to monitor the development of such kind of behavior.  

In this regard, the Wavelet Transform (WT) technique is of great application. It 

consists into decoding the signal and treating so it can be easier analyzed, as does 

the FFT. The wavelets are composed by basic functions which describe a signal in a 

certain time and frequency domain, (Daubechies, 1992). 

Misiti et al. (1996) defined that the Wavelet Transform is based on that any signal 

can be split into smaller waves, preserving the space and scale. 

Wavelets have two main branches: continuous (CWT) and discrete (DWT). 

Besides, there are two other important concepts: mother wavelets and wavelets 
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discretization into details and approximations. Some wavelet mother types are 

daubechies, haar and coiflets. The best suited type depends on the application. Other 

aspect of wavelets is the discretization of a function or signal into sub-bands of 

frequency. During these processes, details and approximations are generated.  

This research presents a numerical campaign for damage detection, localization 

and quantification through a discrete wavelet analysis approach, based on 

displacement data of beam-like structures with elastic behavior. Three types of beams 

were studied: simply supported, cantilever, and double-clamped. For the analyses, 

damage is simulated by a percentage reduction on the elasticity module of one or 

more elements.  

Two statistical indexes are proposed for localization (d1-index) and quantification 

(d2-index). 

 

1.1 Motivation 

 

Beam-like structures are present on a daily basis on our lives. One must assure 

its operational safety. A great part of the industry is heavily invested into designing, to 

calculate tolerable loads and stresses, define work parameters and so on. Although 

its monitoring and maintenance is of equal importance. Engineers need to guarantee 

a safe work life for these structures. 

There comes SHM, so to stablish a monitoring approach to enable predictive and 

preventive maintenance on these structures and contribute to the safety of the users. 

On this field, there are great authors such as Farrar and Worden (2007) and 

Katunin et al. (2021) whom utilizes the discrete wavelet transform (DWT) along the 

SHM to develop methods to analyze the data with damage indexes. The DWT stands 

out from other methods for is ability to describe a signal at the time-frequency domain. 

SHM is constituted of four levels: detection, localization, quantification and the 

determination of the remaining useful life of the structure (Rytter, 1993). In most 

papers, analysis is presented up to the second level. 

This research aims up to the third level. 
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1.2 Objectives 

1.2.1 General Objective 

Develop a method for damage detection, localization and quantification with a 

Discrete Wavelet Transform based on both Static and Modal signals on beam-like 

structures with elastic behavior.  

This approach deals with some parameters which might influence results. This is 

clarified on the specific objectives section. 

1.2.2 Specific Objectives 

 

The following specific objectives can be cited: 

  

a. damage detection and localization of undamaged elements. 

b. damage quantification of undamaged elements. 

c. investigation of the influence of variables which might influence damage 

detection, localization and quantification: 

i. Location of the Load application; 

ii. Load type (punctual or distributed); 

iii. Damage element Location; 

iv. Beam’s boundary conditions, regarding the type of supports; 

v. DWT Level of decomposition; 

vi. Influence of the Mode shapes for damage detection and localization; 

vii. Usage of Baseline function or not; 

viii. Damage severity; 

ix. Mother Wavelet type;  

x. The polynomial degree of the quantification function; 
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1.3 Text Organization 

 

The thesis is composed of six chapters. 

Chapter 1 introduces the proposed research theme, as well as some important 

authors on the field. It also presents the motivation for the study and the objectives. 

Chapter 2 presents a review on the state of the art of the theme. 

Chapter 3 stablishes the necessary theoretical background needed to develop the 

proposed approach utilized for the numerical campaign, and proposes the two 

statistical damage indexes for localization (d1-index) and quantification (d2-index), 

further described on chapter 4. 

Chapter 5 covers the results for d1-index, read localization, while Chapter 6, for 

quantification, d2-index. 

Chapter 7 organizes the main conclusions observed through the study, and 

suggests possible future continuation for the research. 
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2 STATE OF THE ART 

This chapter presents relevant research on the field as well as some important 

contributions to guide the following investigations. 

2.1 Structural Health Monitoring  

During the last decades, a lot of research has been dedicated to systems of 

Structure Health Monitoring (SHM), which consists of a method to detect possible 

changes on physical and geometric properties of a structure from data gathered at two 

different states: damaged and non-damaged (Grooteman, 2012). 

SHM is a process for damage detection and characterization with the basic 

objective of monitoring structures and guarantee safety standards (Friswell and 

Penny, 2002). It is a periodic process, with continuous observation and measurements 

to analyze and determine the state of health of a structure (Farrar and Doebling, 1999). 

According to Rytter (1993), a complete and advanced SHM system consists of 

four levels: 

 I) Damage detection; 

II) Damage localization;  

III) Damage severity assessment;  

IV) Remaining useful lifetime determination;  

Level I aims to determinate whether the structure is damaged or not while level II 

considers whether the structure is damaged and the location of the damage. At level 

III, the detection and location must be quantified in severity and at level IV, the 

remaining useful life is determined considering the damage. 

Damage is understood as any alteration to the structure that may affect its current 

or future performance. Based on this concept, the identification of damage is made by 

comparing two states of the structure, a non-damaged one and a damaged structure. 

Damage affects the performance of the structure and results in a loss of 

functionality. SHM serves as an approach to assure structural integrity to a certain 

engineering case. To monitor the health of structures, diverse methods of damage 

detection exist.  
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The SHM flowchart process of analysis is presented in Figure 2.1. It is constituted 

of three phases, the monitoring which consists in data acquisition, which may be done 

with sensors distributed through the structure. The second and third phases processes 

the obtained data and converts it through statistical tools into damage indexes capable 

of revealing the health state of the analyzed structure, stablishing the existence of 

damage or not, where it is and how much, depending on the SHM levels developed. 

 

 

Figure 2.1. Structural heal monitoring flowchart. 

2.2 Damage Detection and Localization 

 

There are many ways to detect damage. This section reviews some methods, 

as well as some classic publications. 

Back in 1992, Kam and Lee (1992) used a modal test data approach to identify 

cracks. The structure was first discretized into a set of elements and the crack was 

assumed to be in one of these. The damage on these elements was analyzed with a 

reduced stiffness model method which uses measured vibration frequencies and 

mode shapes as a basis for detection. The author used static deflection to gather data 

from the usual approach of damaged and non-damaged beams.  

Further, Kam and his co-author (Kam and Lee, 1992) used a strain energy 

equilibrium equation to determine the size of a crack. The authors developed a method 

capable of detecting damage on structures with single cracks, but they resembled that 

with a few modifications it could serve to detect multiple cracks as well. 

Five years later, Salawu (1997) made a review based on an approach to detect 

damage based on periodical vibration monitoring. The author measured changes of 

natural frequency. An advantage of this approach is that the global nature of the 

identified frequencies allows the measurement points to be customized. Although, 

methods usually require a theoretical model to be computed before physical 
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measurements. The author then concluded that natural frequencies alone are not 

enough for unique identification of the damaged region. 

 Beskhyroun et al. (2005) went for another direction. He used a power spectral 

density approach to develop a damage identification algorithm, which analyzes global 

characteristics such as natural frequencies itself and others like, mode shapes, modal 

damping, modal participation factors, impulse response, and others. The algorithm is 

able to detect damage, predict its location and determine damage extension.  

The authors then, Beskhyroun et al. (2010), utilized a steel bridge as the 

experimental setup. The model, disposed on Figure 2.2 consists of two girders and six 

cross beams. Each cross beam is connected to the girders with four bolts, 2 bolts in 

each side. The actuator is located at the center of the upper flange of the main girder. 

The excitation force amplitude is 0.2 kN for both damage and non-damage beams. 

Frequency of excitation ranged from 0.1 to 400 Hz.  

 

Figure 2.2. Schematic setup of the steel bridge. Source: [Beskhyroun et al. 2010]. 

 

 The main advantages of the Beskhyroun et al. (2010) algorithm is the ability to 

use vibration as an excitation for continuous SHM. Ambient vibration is a natural 

excitation induced by nature and has the advantage of being inexpensive since no 

equipment is needed to excite the beam. The method also encompasses the three 

fields of damage detection: existence, localization and monitoring the damage 

increase. Also, it has shown better damage identification through PSD than vibration-

based damage identification methods. As a downside the accuracy is sometimes 

reduced when the damage occurs at a node of the used mode shapes. 

Lopes et al. (2011), used rotation fields spatial differences to calculate modal 

curvature fields for detection damage in plates. The study is experimentally and 
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numerically applied to isotropic and laminated plates. An interferometer is used to 

measure rotation, while the plate is analyzed with FEM. The author concludes that the 

Gaussian differentiation is the most adequate to calculate curvature fields. Results 

show that the Gaussian differentiation is the best suited, since it deals with high 

frequencies at local levels. The author also noted that the technique deals well with 

discontinuities at the edges of the structure.  

Continuing his research, Lopes et al. (2012) applied his method based on 

interferometer data acquisition in aluminum beams. The interferometer was used to 

measure displacement. Cantilever and double-clamped beam boundary conditions 

were analyzed. Damage is reproduced with small cuts on the beam, as represented 

on Figure 2.3. The method was validated by a comparison of experimental and 

numerical results.  
 

 

Figure 2.3. Schematic of the cantilever beam with two cuts. Source: [Lopes et 

al. 2012]. 

 

 Lopes and his co-authors determined the bending moments and shear forces 

of static and modal responses for a cantilever and a double-clamped beam. Results 

based on static forces showed better results than a modal analysis. The bending 

moment indicator was found to be better suited for damage localization when it is 

based on rotation fields, since the experimental high frequency noise becomes 

dominant during the calculation of spatial derivatives.  

Palechor et al. (2014) used the wavelet transform (WT) approach as a non-

destructive method for damage detection in beams. This method was based on the 

numerical treatment of experimental data and is better explained the last section of 

this chapter.  

At this section it is important to understand that the damage was simulated 

through saw cuts in the top and bottom flanges of the beam, like made by Palechor et 
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al. (2014), see Figure 2.4. From the WT perspective, the authors concluded that usage 

of Coiflets 2, Symlet 6, Biorthogonal 6.8, Daubechies 10, Daubechies 9, Symlet 3, and 

Symlet 7 as wave-mother were very efficient in detecting the damage. Further, the 

author noticed that this method was found very sensitive closed to the boundary 

conditions, causing discontinuities in the wavelet coefficients.  

 

Figure 2.4. Schematic of load and damage positions on the beam.  Source: 

[Palechor et al. 2014]. 

 

Continuing the research on structural health monitoring (SHM) and damage 

detection, authors have been creating and enhancing the existent methods.  

In this regard, Gomes et al. (2018) united most successful and recent models 

and published a review. More than a hundred studies around the theme are reviewed. 

Gomes et al. (2018) concluded that the greatest challenge on SHM is to adjust the 

parameters of the chosen method to enhance efficiency in detection and identification, 

avoiding or, even, reducing, false positives. Some of the investigated methods were 

the use of mechanical vibrations, natural frequency, mode shapes, no-baseline and 

hybrid methods.  

 Yu et al. (2019), carried out a study on a deep learning-based method for 

damage identification on smart structures. The technique is based on deep 

convolutional neural networks to identify and localize damages of constructions 

equipped with smart sensors. The proposed technique is to extract high-level features 

from raw data features via a multi-layer fusion to satisfy any damage identification 

objective. Experimental data was obtained on a scaled building model equipped with 

adaptive smart isolators subjected to the seismic loads. Loads and excitations are 

generated with a shaking table that can generate horizontal random and seismic 

excitations. The DCNN-based (Deep Convolutional Neural Network) method was used 
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to validate the analysis of vibrations. Results showed a great generalization capacity 

and higher accuracy than most machine learning methods. The study aims to develop 

a model to predict the health condition of real smart structures.  

 Gillich et al. (2021) studied damage detection for multiple cracks through a 

simplified method based on a relative frequency shift (RFS) index. This indicator 

involved the square of modal curvatures of a non-damage and deflection from 

damaged and non-damaged beams. The authors, with superposition calculation, 

observed that when cracks are too close to each other the method is not capable of 

detecting damage. In other words, the method limitation happens because it reads the 

beam segment between the two cracks as only one. Note that this distance between 

the cracks is infinitesimally small.  
 

 

Figure 2.5. Beam model with a crack utilized by Gillich et al. (2021). Source: [Gillich 

et al. 2021]. 
 

 More recently damage detection modes have been used for design 

optimization. An et al. (2022) used a model of uncertainty based on mode shapes to 

try to define the minimum possible number of vibration sensors in order to have a 

reliable method. The number of mode shapes was determined based on the sum of 

modal fractions. The author then developed an MKE-index (modal kinetic energy) to 

narrow the design. Through the campaign, An and his co-authors observed that the 

usage of a Gaussian progress recession method, alongside with MAC – Modal 

Assurance Criterion, the minimum calculations were achieved. 
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2.2.1 Damage Detection and Localization Methods 

 

There are many methods of damage detection. They generally permeate 

between static and dynamic analysis. Doebling et al. (1998) classified the dynamic 

methods as the most common. Dynamic methods are based in dynamic 

measurements, being one of the most important techniques for damage assessment 

in bridges. It is worth to mention: MAC (Modal Assurance Criterion), Flexibility change, 

Curvature, and Wavelet Transform methods. Such methods are recognized as the 

most promising tools for damage detection in beams (Salgado et al., 2006). 

A big part on damage detection is concerned to vibration monitoring, based on 

the assumption that structural damage causes variation on the structure key-

parameters, changing the dynamic parameters of the structure (natural frequencies, 

mode shapes, damping ratio). However, these alterations are often too small to 

measure and further identify damage. 

2.2.1.1 MAC Method 

In damage detection, the simplest method is the MAC, it indicates the degree 

of correlation between two modes and varies from 0 to 1. For a MAC equal to 0 it 

represents that there is no correlation while equal to 1 it represents a perfect 

correlation. If the displacements at node 𝑖 of a set of mode shapes are identical, then 

the MAC value is 1 for this node. In contrast, when we have a disturbance generated 

by the damage, the displacements at node 𝑖 will be different for the set of mode 

shapes. The deviation from a MAC of 1, can be interpreted as an indication of damage 

to the structure. 

 Allemang (2003) described the method equation and its development. He also 

defined it as a statistical indicator, with a purpose of providing a consistency 

measurement (degree of linearity) between estimates of a modal vector. Then, the 

author defined as a scalar constant which relates linearity degree between modal 

vectors. The complete equation is shown by Allemang (2003) in his work. Following 

the modal vector, two branches exist: MAC Zero, where the modal assurance criterion 

has a value near zero indicating that the modal vectors are not consistent, and MAC 
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Unity, where the modal assurance criterion has a value near unity leading to consistent 

modal vectors. MAC Zero fails might occur due to a non-stationary system, noises and 

specific modal parameters. 

2.2.1.2 Flexibility Change Method 

Pandey et al. (1991) proposed a method to identify and locate damage using 

the modal parameters of the structure. The method uses a normalized mode shape in 

relation to mass, stiffness and flexibility matrices. It also compares matrices from intact 

and damaged structures. Although, the authors stated that the use of mode shapes 

for damage detection has some drawbacks, as the presence of damage may not 

significantly influence mode shapes smaller than those usually measured. In addition, 

signal noise and the choice of sensors used can considerably affect the accuracy of 

the damage detection procedure (Kim et al., 2003). 

2.2.1.3 Curvature Method 

 

The referred technique is based on the curvature of the mode shapes is related 

to the flexural stiffness of the structure.  

Pandey et al. (1991) showed that the curvature of the mode shapes, as the 

second derivative of the vibration mode, is more sensitive to damage than the vibration 

mode itself. The author stated that damage is detected through the highest peaks 

presented on a function between the modal curvature of a damaged and a non-

damaged beam. Meanwhile, Farrar and Jauregui (1997) found that this method is only 

able to detect two or three points and that the method is unlikely to be as successful 

for detecting larger regions of damage.  

Alvandi and Cremona (2006) formulated this curvature method with the 

introduction of damage or a crack in the structure is simulated with a stiffness reduction 

(EI) at the damaged region and hence, the magnitude of curvature in the section will 

increase. These alterations can be used to damage detection. Still, a stiffness 

reduction associated with damage leads to an increase in curvature. Further, an 
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estimation of the extent of damage can be obtained by measuring the amount of 

change in the mode shapes curvatures. 

2.2.1.4 Wavelets for Damage Detection  

 

Surace e Ruotolo (1994) were the first ones to study damage detection with 

Wavelet Transform (WT). The authors studied a cantilever beam subjected to dynamic 

loading using a simple finite element model (FEM), as illustrated in Figure 2.6.  

At the investigation, a damaged cantilever beam was excited with a punctual load 

at its free-end. The study has been undertaken by simulating a cracked beam using 

FEM. Damage was simulated in the beam via thickness (h) reduction, represented in 

percentages, from 15% up to 45%. The approach adopted a sampling frequency of 

6.67 kHz, aiming to avoid numerical errors and aliasing.  

The authors, through the method, were able to detect damage at the free-end of 

the cantilever and detecting the alterations in the dynamic behavior at the crack 

appearance. Although for lower amounts of damage severity, damage was poorly 

detected. Crack location was seen influent on the damage localization, although to 

work it around, the height of the non-stationary signals was used to determine its size.  

 

 

Figure 2.6. Finite element model of the cantilever beam. Modified: [Surace and 

Ruotolo 1994]. 

 

 A few years later, Wang and Deng (1999) used WT to detect damage in a simply 

supported beam with a transverse crack, subjected to a static load (Figure 2.7 (a)). 

They also investigated damage in a plate containing a crack (Figure 2.7 (b)). The beam 
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displacement was obtained using the FEM method while the plate response was 

obtained analytically. Wand and Deng chose Haar as the Mother Wavelet due to it 

revealing the clearest results. The authors found that wavelet scales equal or superior 

to 8 were able to detect the perturbated region through a peak of the wavelet 

coefficient (y-axis) at the location (x-axis). Further, it was observed that damage can 

create structural distortions and that these can be read with the wavelet transform. 

 

(a)  (b) 

 

Figure 2.7. (a) Simply supported beam with a crack and subjected to static loading;     

     (b) Plate containing a fissure. Source: [Wang and Deng 1999]. 

  

In 2000, Okafor and Dutta (2000) used ANSYS to model a cantilever aluminum 

beam (Figure 2.8) to obtain the first of six mode shapes for the cases with and without 

damage. The damage was reproduced by a reduction of the stiffness in a certain 

element. The damage was localized from the wavelet coefficients, obtained with 

Daubechies mother wavelet. A correlation between the damage severity and the 

magnitude of the wavelet coefficients in the damaged region was observed. The 

authors used both DWT and CWT and observed that the magnitude of the wavelet 

coefficients is increased as the damage became severe. They also noted that the 

increase of damage in a certain element, affects the displacement behavior in vicinity. 

Further, it was also noted that as damage was more severe, wavelet coefficients were 

also raised proportionally. 
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Figure 2.8. Numerical model of the beam using SOLID45 element. Source:     

[Okafor and Dutta 2000]. 

 

Quek et al. (2001) analyzed the WT sensitivity on beams crack detection. The 

research focused on boundary conditions, crack length and width, and the type of the 

mother wavelet (Haar and Gabor were considered). The results showed that the 

continuous wavelet transform is useful for beam damage detection. The authors 

concluded that the method could also predict the size of a crack along its longitudinal 

direction. They also stated the sensitivity to the detection profile as a function of the 

boundary condition. Quek obtained reasonable results with the Haar mother wavelet. 

 Han et al. (2005) proposed a damage index named as Wavelet Packet Energy 

Rate Index (WPERI), which works under an arbitrary time-frequency domain. The 

process of signal decomposition is better explained in chapter 3. Han and co-workers 

used the method to decompose the signal into wavelet components and then the 

energy is computed to indicate damage. At first, the approach is simulated on a simply 

supported beam. The authors were able to find a damage pattern in satisfactory 

agreement with the tests. Also, they investigated the first eight levels of decomposition 

and justified the importance of this study, claiming that the use of the lowest 

decomposition level, which can correctly identify damage, leads to a reduction in 

usage of computational power. 

 Estrada (2008) made a comparative study on damage detection methods in 

bridges, with focus on the WT. The methods were evaluated through three different 

points: 1D and 2D cracked beams and bridges, experimental tests and dynamic tests 

on bridges. The author concluded that the effectiveness of the methods depends on 

factors such as: the number of sensors on the damaged region, the noise level, and 

the length and severity of the damage. 
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 Grabowska et al. (2008) investigated the ability of each mother wavelet, aside 

of a comparison of decomposition level and a central frequency analysis of each level, 

to identify damage. The authors adopted the biorthogonal, coiflets, daubechies, haar, 

meyer and symlets mother wavelets. Further, Grabowska even exposes a method to 

determine exactly the size of the discontinuity when both the local coefficients of 

wavelet transformation and the relative changes of the energy of the reflected signal 

from the discontinuity indicate the failure size. He also noticed that the approach has 

allowed the analysis of all frequency bands hidden in a system response while it is 

also able to examine the time–frequency domain. 

 Beskhyroun et al. (2010) used DWT for damage detection. The author proposed 

a method using the difference between the DWT decomposition approximation 

coefficients of two signal series obtained from the operational mode shapes of the 

undamaged and damaged structures (Figure 2.9). The graphic shows a comparison 

of damage detection through DWT coefficients (y-axis) from a difference of damaged 

and undamaged beams. Each channel represents a beam element. Frequency of 

testes ranged from 1 to 800 Hz. As a negative side, the author could not quantify 

damage severity, however, they observed that the amplitude levels are higher for the 

cases of more severe damage, which can represent the damage severity to some 

extent. 

 

Figure 2.9. Monitoring damage analysis with damaged and undamaged DWT 

coefficients. Source: [Beskhyroun et al. 2010]. 

 

 Yun et al. (2011) used the DWT to identify damage based on data acquired 

from wireless smart sensors. The approach uses wavelet entropy to serve as a 
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signature to detect damage obtained from the sensors. The author used a method of 

wavelet packet decomposition to see changes which would be difficult to read on other 

damage detection methods. This decomposition level approach is illustrated on Figure 

2.10. The referred image used a 70 Hz cut-off frequency from acceleration 

measurements which is then split into further sub-bands of frequencies. Yun 

concluded that the choice of a specific sub-band is important to increase detection 

reliability. Thus, selecting the sub-band correspondent to the natural frequency when 

calculating the total energy increases damage specificity. 

 

 

Figure 2.10. Approximate frequency content of the discrete wavelet transform 

(DWT). Source: [Yun et al. 2011]. 

 

 Yu et al. (2016) implemented a new approach: the use of a moving load along 

the beam. This approach gives damage detection an interesting aspect, it proved that 

the method is able to determine the damage element independent of load location. 

The author also considered the influence of different damage severity, multiple 

damage, different sensor locations, load velocity and load magnitude. With the use of 

the CWT, the authors observed that damage severity does not influence its detection, 

as well as the number of damaged elements do not influence the reading of each one 

of these on the beam. 

 Gogolewski (2019) studied the edge effect. A beam can be constructed through 

a numerical model by nodes and elements, while each element is constituted by two 

nodes. The first and the last node of a beam are so called edges. A discrete wavelet 
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analysis which considers the full length of a beam suffers from what the author 

determines as the edge effect (Figure 2.11).  

The author investigated the behavior of the DWT approach on some surface 

profiles. The decomposition level was also considered, while the author found the least 

influence of the effect on the fifth level. Gogolewski remarked that the size of the edge 

influence depends on the decomposition level. The author also noted that the length 

of the supports depends on the type of mother wavelet, however the size of the 

deformation is not equal to this size. Interestingly, the author also concluded that for a 

certain group of results there is a slight difference between the results obtained on 

both sides of a beam.  

 

Figure 2.11. Edge effect analysis with DWT approach. Source: [Gogolewski 2019]. 

 

 Katunin et al. (2021), named this effect as the boundary effect. At this time, the 

authors presented a new approach for the reduction of this influence, which allows an 

improved visualization of the resulting maps using the proposed damage identification 

method. As follows, Katunin and co-workers investigated damage detection with a 

CWT transform. They stated that the DWT has some disadvantages over the CWT 

such as compact support or orthogonality and the decrease of the number of available 

wavelets accordingly. This making the use of CWT approach for 1D and 2D boundary 

signal treatment more suitable for boundary effect investigation. 
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2.3 Damage Quantification  

As important as the damage detection and localization is the quantification and 

the prediction of the remaining useful life of the structure (Doebling et al., 1998). To 

predict the remaining work-life under safety constraints, it is crucial to quantify 

damage. 

As said in the previous sections, SHM consists of four stages. The first three, 

deal with detection, localization and quantification, (Han et al., 2005, and Chaupal and 

Rajendran, 2023). The fourth estimates the remaining useful lifetime of the structure. 

Over the decades, diverse methods have been presented to monitor the 

structures integrity. In this context, numerical techniques are required to identify signs 

of damage and, moreover, to determine the type of damage and its extent (qualification 

and quantification). 

 Han et al. (2005), developed a WPERI-index damage indicator based on a 

version of the DWT, called WPT (Wavelet Packet Transform). The author used it in a 

simply supported beam under an impact excitation to identify damage. The author 

aimed not only to localize but to also quantify. For this, the WPERI-index was 

calculated from the energy stored in a specific band of frequency subtracted from a 

damaged and a non-damaged beam. In other words, it is a baseline analysis. Damage 

was simulated through reducing the stiffness from 10% to 20% in two of four elements 

of the beam.  

The authors, Han et al. (2005), first used FFT and WPD methods to identify 

damage but without success. The WPERI-index was able to localize damage in a 

single element. In situations where various elements are subjected to different types 

of damage simultaneously, the outcomes struggled to quantify the severity of the 

damage. 

 Umesha et al. (2009), proposed a method to detect location and also quantify 

damage in a beam by using beams response of deflection. The measurement of 

deflection at a specific location on the beam was conducted for different positions of a 

concentrated load. This recorded static deflection profile served as the input signal for 

wavelet analysis, specifically using the Symlet wavelet. Damage was identified 
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through peaks in the wavelet coefficient plots. The authors had issues with these 

peaks on the near-supports region.  

Umesha and co-authors turned it out by using wavelet transform on the 

deflection measured at another point. They also conducted a study to define 

parameters for better damage localization and quantification, by varying the damage, 

location of damage, intensity of load, flexural rigidity, and length of the beam.  

Finally, the authors observed that the wavelet coefficients are dependent of 

these parameters, so it presented through Figure 2.12 the variation of damage 

quantification, where d/D is the crack depth ratio between the size of the crack and the 

beams cross-section area, and z/L is the distance of the concentrated load by the 

length of the beam. Through damage quantification, the author concluded that the 

wavelet coefficients are directly proportional to the load’s magnitude and the square 

length, while inversely proportional to the crack length and square value of depth. 

 

 

(a) 

 

(b) 

Figure 2.12. Wavelet coefficients for (a) damage localization, and (b) damage 

quantification, based on deflection profiles. Source: [Umesha et al. 2009]. 

 

 Viet and Golinval (2010) proposed a damage study based on variations of PCA 

(principal components analysis) results. The deflection was measured at a particular 

point for various locations of a concentrated load in the beam. This static deflection 

profile was used as the input basis for wavelet analysis, specifically using the Symlet 

wavelet. In the frequency domain, linear-form structures were analysed.  



 

21 

Viet and co-authors objective was not only to detect the presence of damage 

but also to localize and evaluate it. The frequency response functions measured at 

different locations on the beam were considered as data for the PCA process. 

Sensitivities of principal components obtained from PCA to beam parameters were 

computed and inspected according to the location of sensors.  

The variation of the PCA components from the healthy state to the damaged 

state indicated damage locations. Figure 2.13 presents damage quantification curve 

from an interval of 5% to 50% damage severity. It showed that the number of iterations 

needed to process the damage curve are directly proportional to the damage severity.  

 

Figure 2.13. Evaluation of damage, for an interval of 5% to 50%. Source: [Viet and 

Golinval 2010]. 

 

 Machado et al. (2017) used a spectral approach for damage quantification. The 

Spectral Element Method (SEM) is a numerical technique based on wave principles 

that is utilized for modelling structures. Additionally, the SEM has been developed to 

incorporate the representation of parameters as spatially correlated random fields 

within its formulation. The authors, presented through Figure 2.14, the results for a 

specific crack depth versus its flexibility. Investigated polynomial degrees were: 2, 5, 

7 and 10.   is the crack flexibility coefficient and α is the crack depth coefficient. 
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The flexibility of a crack did not change significantly for every degree. For crack 

depth values higher than that, the divergence among curves increased as the degree 

of the polynomial increased. The authors furthered the investigation by correlating 

damage quantification and the polynomial degree, stating that the polynomial order is 

directly proportional to the crack’s flexibility. 

 

Figure 2.14. Crack depth. Source: [Machado et al. 2017]. 

 

 Fallahian et al. (2022) also investigated damage through DNNs (deep neural 

networks), together with CSC (coupled sparse coding), the vibration data (acceleration 

or displacement) from a three-level frame, as a method of damage detection. This 

approach was employed to address challenges such as low-level damages, noisy 

signals (uncertainties), and structures with a large number of degrees of freedom 

(DOFs). The data was decomposed into Discrete Wavelet Transform (DWT) 

coefficients, which were then utilized to train four distinct damage models based on 

either Deep Neural Network (DNN) or CSC.  

To simulate damage and noise, the authors (Fallahian et al., 2022) reduced the 

stiffness of one or a group of elements by percentages ranging from 6% to 40%. 

Additionally, Gaussian noise was added to the signal, constituting 20% of the noise 

signal ratio. In their final remarks, the authors concluded that by applying wavelet 

analysis, prior to training the ensemble system with vibration data, it was possible to 

detect even very low-level damage accurately, even in the presence of noise. 

Furthermore, this approach enabled accurate localization and quantification of the 

damage. 
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2.4 Wavelets and SHM  

 

The Structural Health Monitoring is a system aimed to assure safe conditions to 

a certain structure. It consists into three steps: data acquisition, data treatment and 

analysis through a damage index, see Figure 2.1. 

Some data treatment methods were presented in previous sections. The 

Wavelets Transform (WT) is the method of choice for this numerical campaign.  

Due to its attributes, it works well alongside SHM. In comparison to other 

methods, it has a special advantage to monitor most of the modal aspects. This gives 

the approach the possibility to work with not only a part of the structure, but the 

structure in its entirety (Wang et al., 2019). 

Comparing with the Fast Fourier Transform (FFT) and the Short Time Fourier 

Transform for an example, the WT stands out for being able to work on both time and 

frequency domains while the FFT only deals with the frequency domain, not being able 

to work with nonstationary signals (Sifuzzaman et al., 2009). The STFT in its turn can 

work on the same domains as the WT but has resolution issues with time and 

frequency (Amezquita-Sanchez et al., 2013).  

Kankanamge et al. (2020) investigated a bridge based on acceleration data 

acquired with sensors along the 13.7 meters of the beam length. The author compared 

the WT and the FFT potential to detect damage, see Figure 2.15. The FFT was not 

able to define precisely the damaged region based on the frequency parameter. 

 

(a) 

 

(b) 

Figure 2.15. Damage detection comparison when utilizing (a) FFT and (b) CWT. 

Source: [Kankanamge et al., 2020]. 
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Kankanamge et al. (2020) published a review on the peculiarities that makes the 

WT so efficient to work with SHM. The author described the advantages and 

disadvantages of WT usage. As the positive aspects the author lists: excellent ability 

to work in both time and frequency domains, elimination of aliasing problems and 

reduced computational resources requirements. Meanwhile as a downside, it cites the 

mother wavelet selection and the possible spectral leakage. 

Saranya et al. (2022) proposed a methodology based on WT. Data was acquired 

with non-destructive methods with sensors installed along the structure to monitor 

vibration and acoustic emission signals. The authors were able to detect damage, see 

Figure 2.16, but they did not develop a damage index for analysis. The damage is 

observed due to the wavelet coefficients value, when superior to 1 it indicates damage 

existence. 

 

Figure 2.16. Non-destructive monitoring techniques. Source: [Saranya et al. 2020]. 
 

 

(a) 

 

(b) 

Figure 2.17. Wavelet coefficients of a (a) damaged, and a (b) undamaged 

beam. Source: [Saranya et al. 2020]. 
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Santos et al. (2022) studied damage detection with discrete wavelet transform 

(DWT) based on mass discontinuity. A Timoshenko beam was considered. The 

authors used a roving mass to measure the frequency-shift curve. The method was 

able to determine damage along the beam span for different levels of damage and 

element positions. 

Saadatmorad et al. (2022) investigated damage on steel beams using DWT. The 

wavelet analysis is based in mode shapes data. The approach involves damaged and 

undamaged results so a comparison may highlight the damage existence and location, 

Figure 2.18. The authors brought a new aspect to the field which is the suggestion to 

use a regression index, to be used as the original signal. It was observed that this 

regression index is positive specially for low severity damages, enabling great 

sensitivity to the approach. 

 

 
Figure 2.18. Damage detection based on pearson-based mode shape signal. 

Source: [Saadatmorad et al. 2022]. 
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3 THEORETICAL BACKGROUND 

This chapter presents the theory for the methodology to be developed in Chapter 

4. The approach investigates the first three levels of structural health monitoring, 

regarding detection, localization and quantification.  

As presented in previous sections, this process starts from data acquisition, then 

signal processing and finally the damage index analysis.  

For the numerical campaign, data for analysis were obtained through a Matlab 

toolbox, detailed at Chapter 4. This toolbox is able to model the beam-like structures 

with finite elements and calculate both displacement and mode shapes.  

This data was then treated with the discrete wavelets transform (WT) and 

presented with a boxplot statistical tool. 

3.1 Signal Processing for Damage Detection 

Signal processing techniques are classified as an analysis in the time domain, 

frequency domain and time-frequency domain (Silva, 2015). Time-frequency domain 

analysis represents the signal at a certain interval of time, while simple frequency 

domain analysis decomposes the signal into a set of sines and cosines, in the case of 

Fast Fourier Transform (FFT). 

To investigate these domains, the Fourier transform is commonly used to 

reconstruct the signal, enabling the analysis at a certain band of frequency. For 

damage detection the Wavelet Transform deserves a highlight due to its ability to aim 

a certain portion of the signal and investigate it statistically while working for both the 

time and frequency domain. This double localization property brings an equilibrium to 

the calculations on each of the domains. 

3.1.1 Signal Analysis on the Frequency Domain 

The wavelet transform is a robust method of signal analysis, enabling the view of 

both time and frequency domains, differently from the Fourier Transform for example. 

Fourier itself shows what frequency components appear in the function or signal. The 

construction of a time-frequency analysis starts from splitting the signal into windows 
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and then transforming it into the frequency domain through a convolution of the signal 

within the window.  

3.1.1.1 Fourier Transform 

 

The Fourier Transform (FT) is a useful tool that makes it possible to determine 

the contribution that each sine and cosine function, present in a time series (periodic). 

It decomposes the signal into these two functions and then the signal is reconstructed 

through Fourier Coefficients, which can be analyzed in a specific band of frequency. 

The FT is defined by Eq. (3.1): 
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                                                                                                                  (3.1) 

 

where ( )x f  are the Fourier coefficients and the basic functions eift are pure frequency 

waves f, in other words, these are periodic functions with a 2π period.  

Equation (3.1) has a problem regarding the decomposition of the frequencies 

of a signal with respect to its location in time. Gabor (1946) noticed its deficiency in 

non-stationary time series, which in fact is the most common case in real world. 

Therefore, he improved the FT to represent this type of series. His solution was to split 

the time series into equal intervals and then apply the FT to each of these. This method 

is known as the Window Fourier Transform (WFT), detailed on the next section. 

 For signals represented in a discrete form, the Discrete Fourier Transform 

(DFT) is used. Equation 3.2 presents its coefficients. 
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 The probability density function FT is named characteristic function: 
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 The Fourier Transform of the autocorrelation function is called energy spectrum 

or power and relates with the second momentum (variance) on each frequency: 
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The energy spectrum is defined by Eq. (3.5): 
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A usual method for calculation of the power spectrum of a discrete function 

consists in splitting the series into small segments and then applying the FT to each 

one of these segments and finally calculating the mean between the parts for each 

frequency. This process reduces random error on the spectrum determination (Bendat 

and Piersol, 1971).  

3.1.1.2 Signal Analysis on the Time-Frequency Domain 

Time-frequency domain approach is guided by the WFT. The difference between 

the FT and the WFT is that the signal is divided into small segments, while being 

assumed as stationary. For this purpose, a “W” window function is chosen. The width 

of this window shall be equal to the part of the signal where stationarity is valid (Polikar, 

1994). Through WFT the presence of intermittences and transitory phenomena may 

be observed (or not), whereas will be totally dissimulated on the Fourier space, since 

x̂ (f) coefficients refer to all the time-series domain. Fourier components have finite 

support, localized in frequency, but extends through the time-series domain. Thus, x̂

(f) represent a mean value for the domain for f  frequency. 

The WFT is an attempt to enable a temporal analysis, using FT. Windows are 

applied to the signal, as given by Eq. (3.6). Thus, the WFT is basically the product of 

the FT and a window function. For each t and ω value, a new WFT coefficient is 

calculated by: 
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2
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where t0 is the instant when a transform is calculated and g the window function.  

Despite its large usefulness, WFT is also affected by the Heisenberg 

uncertainty principle (KAISER, 1994). The principle states that the exact time-

frequency of a signal cannot be determined, so one cannot know which spectral 

components belong to a certain time interval. Polikar (1994) said that what can be 

determined are the time intervals in which a certain frequency band exists.  

In addition, WFT has another problem: its window has a finite length. Hence, it 

can only analyze a portion of data, not being possible to determine the exact frequency 

component, but the existing frequency band. On the other hand, for a window of infinite 

length, the FT gives perfect frequency resolution but no time information.  

3.2 Wavelet Transform  

 

This section presents the definition, some aspects and details of the Wavelet 

Transform, as well as the Wavelet Mother Types. The mathematical formulation is also 

described, for both Continuous and Discrete Transforms. 
 

3.2.1 Introduction to Wavelets 

The Wavelet transform is a mathematical microscope. It consists of the idea that 

any signal can be split into a series of basic functions called “waves”. This approach 

allows the the compressing and dilating a window, maintaining the same functions, 

therefore allowing a better temporal localization on both high and low frequencies, 

Figure 3.1. 

 

Figure 3.1. Wavelet Transform. Source: [Misiti and Poggi, 2001]. 
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The basis of the Wavelets Transform (WT) are both the time and frequency domain. 

This double localization property brings an equilibrium to the calculations in each of 

the domains.  

Daubechies (1992) stated that the temporal resolution gain is compensated with a 

loss of frequential resolution. The opposite is also valid. This relation between domains 

is explained by the Heisenberg uncertainty principle which determines that for any 

given function the exact location on time and frequency is mutually exclusive.  

From another point of view, Kaiser (1994) stated that the measurements of time 

and frequency are incompatible once both cannot be measured simultaneously. 

Moreover, Vallens (1999) said that due to this acquisition problem a signal cannot be 

shown through a point in the space of time-frequency.  

Thus, signal characteristics are properly given through coefficients associated to 

infinite area rectangles resulted from the product of the time considered by the scale, 

or frequency, being necessary a greater acquisition time to observe lower frequencies, 

again the inverse is also true. 

As wavelets are not exact periodic functions, an alternative way to calculate scale 

correspondent frequencies is a periodic approximation with the Fourier Transform 

(FT). The frequency of the maximum approximation module of the FT is considered 

as a pseudo-frequency F  of the wavelet, while the correspondent frequency to each 

scale is given by Eq. (3.7). 

 

s
a

f
f F

a
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       The above equation is useful when the function does not have an analytical 

expression and then F cannot be determined.  

A  (t)  function with an R domain is satisfied with two basic properties: 
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( ) 0t dt



−

 =                                                                                                                                               (3.9) 

 

where Eq. (3.9) indicates that the  (t)  function has an effective support limited to a 

finite interval [-T, T], tending towards zero outside this interval. Beyond, it has values 

different of zero. From Eq. (3.9), positive values are cancelled by the negatives, as in 

a wave. This property is known as the admissibility and is due by Eq. (3.10): 
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       Other important wavelet properties are: orthogonality, regularity, null moments, 

temporal localization and frequential localization.  

       Orthogonality ensures fast calculation of wavelet coefficients. Two wavelet 

functions 𝑢(𝑥) and 𝑔(𝑥) are orthogonal if their inner product is zero: 
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       Regularity is given by the number of times this function is continuously variable. 

       The number of null moments, M, is related with the regularity and is calculated by 

Eq. (3.12): 
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       A wavelet with M null moments is orthogonal to M-1 degree polynomials (Mallat, 

1998). Thus, the analysis conducted on a wavelet with M null moments ignores the 

regular part (polynomial) of the analyzed function to M-1 degree. It determines the 

degree of the polynomial that can be approximated. This property is used to select the 

most suitable mother wavelet for damage detection.  

       The temporal and frequential localization of a wavelet is related with its support 

width respectively in the time and frequency domains and indicates the ability to 
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localize singularities in the respective domains. In general, smooth wavelets are better 

to be localized on the temporal domain. Haar function for example, which is very well 

localized on the temporal domain, is a discontinuous function and its frequential 

localization is poorly defined. 

       The wavelets basis is generated through dilatations and translations of a single 

wavelet: 
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where a is the scale and b is the position of the wavelet. Following, associated to each 

wavelet there is a scale function,  (t), which satisfies the basic property: 
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the scale function also generates a basis through dilatations and translations: 
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     The objective of this scale function is to obtain coefficients which represent the 

weighted average of the signal for the considered scales. Meanwhile, the wavelet 

function obtains oscillations around this weighted average, based on the same scales. 

The wavelet transform associates a signal to wavelet coefficients, as follows: 
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the inverse transform is calculated by Eq. (3.17). 
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where C  is defined by Eq. (3.10). Following, the WT conserves the energy of the 

signal with Eq. (3.18). 
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       Energy conservation is calculated for a scale with Eq. (3.19). The energy of the 

signal is represented on the time or frequency-scale originates the wavelets spectrum. 
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       Furthermore, the generated basis with Equations (3.13) and (3.14) are 

continuous, with coefficients a and b varying continuously. Meaning that even if a 

discrete signal is being analyzed, the study is done for each possible scale and each 

point on the domain. These bases are not orthogonal since the information is seen in 

more than one coefficient and therefore generate a great amount of redundant data. 

       From another point of view, this redundant representation uses a much greater 

number of values of scale and position than the orthogonal representation. Thus, it 

has a greater number of coefficients. The relation of redundancy is given by the 

division between number of coefficients of the transform and the number of space 

dimensions of the transform. For a time-series the number of dimensions is the number 

of points of the series. Thus, an orthogonal transform must have the same number of 

coefficients than the original. 

       Finally, according to Ovanesova (2000) the main advantages of using wavelets 

for damage identification are:  

       1. Ability to perform local analysis of a signal in the domain of space or time. Thus, 

wavelets can reveal aspects that other signal analysis techniques cannot detect. 

       2. Ability to analyze the signal in any space or time interval where the function 

changes are fast, which causes problems for the fast Fourier transform. Fourier 

analysis spreads a rapid change over a small-time interval across the frequency 

spectrum. The WT, however, produces not only frequency information, but also time 

information. 
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       3. Elimination of aliasing problems (noise), displayed by Fast Fourier Transform 

(FFT). 

       4. Offer a potential reduction in computational resources needed to process a 
signal transformation 

3.2.2 Wavelet Mother Types 

       Mother wavelets are transformation functions responsible for forming the basis for 

the diverse transformations processes that the wavelets impose on data. A complete 

review on all wavelet mother types is presented by Misiti and Poggi (2001). 

There are some mother types that may be best suited for a certain application. Each 

is characterized by its properties such as symmetry, orthogonality and compact 

support. In other words, mother waves are such as a toolbox of wavelet types which 

deals with data processing in its own manner, being handful aspect of wavelets. 

The first and simplest of the wavelets is the Haar wavelet. The Haar wavelet 

resembles a step function. It represents the Daubechies db1 wavelet even. 

 

Figure 3.2. Haar wavelet function. Source: [Misiti and Poggi 2001]. 

 

       Originally, Haar function is given by: 
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       It is the only wavelet mother orthogonal and with compact support which is 

symmetric. However, different from the others, it is not continuous. Only the first 

moment is null. The scale function associated to the Haar wavelet is defined by: 
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       Ingrid, Daubechies (1992), invented the orthonormal wavelets. This mother 

wavelet is divided into ten families “dbN”, where N goes from level 1 up to 10. Db1 is 

the same as the Haar mother wavelet. 
 

 

Figure 3.3. Wavelet-Daubechies functions. Source: [Misiti and Poggi 2001]. 

 

       The Daubechies wavelets have a problem in the frequency domain where they 

have a high degree of superposition between their levels. Their main advantage is that 

they are orthogonal, which means that an error in the input signal does not increase 

with the transformation, and computational numerical stability is ensured. 

       Symlets have also been created by Ingrid Daubechies, but with the intention of 

being the most symmetrical possible. It is orthogonal and has compact support. 

       Symlet wavelets are nearly symmetrical and are proposed by Daubechies as 

modifications to the db family. The properties of the two families (dbN and Sym) are 

similar, but the symlet functions tend to be symmetrical. Here are the main wavelet 

functions. 

 

Figure 3.4. Symlet wavelet function. Source: [Misiti and Poggi 2001]. 
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 Developed by Daubechies, on a demand from R. Coifman, the wave function 

has 2n moments equal to 0, and the scale function has 2n-1 moments equal to 0. Figure 

3.5 presents the Coiflets wave function. The functions have a support length of 6n-1. 

 

 

Figure 3.5. Coiflets wavelet function. Source: [Misiti and Poggi 2001]. 

3.2.3 CWT – Continuous Wavelet Transform 

       The Continuous Wavelet Transform (CWT) is defined as the sum over all time (or 

space) of the temporal signal multiplied by the scale. It can be described as an analytic 

.a b function, which depends on the parameter a (scale), and the parameter b 

(translation) that changes continuously over all ℝ, excluding 𝑎 ≠ 0. The continuous 

transform of wavelet is represented by the linear convolution exposed by Eq. (3.22). 

The wavelet spectrum, or spectrogram, is defined by Eq. (3.23). 
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where .a b  is associated with the scale (a) and translation parameters (b). It oscillates 

at a frequency a-1 and is positioned in time (or space) “b”.  

       The scale parameter works similarly to a map: higher scales present lesser 

detailing. Following this idea, high frequencies present a detailed part of a signal while 

a low frequency a larger portion, hence with lesser detailing. 

       The Scalogram process is summarized by the following steps: 
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1) The wavelet is located through a translation of b0, at a a0 scale, at the beginning 

of the signal f(t) to be studied. 

2) The wavelet is then compared with a portion of the signal contained in its 

beginning, through the inner product given by Eq. (3.22), generating a 

coefficient ( , )a bX , for b0 and a0 given initially. This coefficient represents the 

correlation of the transform with the fraction of the analyzed signal. 

3) The wavelet is moved to a second location b1 and steps 1) and 2) above are 

started again with b1 in place of b0. This process is repeated until the entire 

signal is covered by the a0-scale wavelet. 

4) The wavelet scale is changed from a0 to a1 and the process from 1) to 3) is 

repeated. 

5) The processes 1) to 4) are repeated for the entire signal and for all scales. 

One of the disadvantages of CWT is that a very large number of wavelet 

coefficients are generated during the analysis. Furthermore, few wavelets have an 

explicit expression, and many are defined with recursive equations. CWT is redundant 

in this sense, and it is necessary to use the entire domain to reconstruct the signal f(t). 

Therefore, instead of using continuous dilation and translation, discrete values 

of these parameters are used to perform the Discrete Wavelet Transform (DWT) 

(Ovanesova and Suaréz, 2004). 

3.2.4 DWT – Discrete Wavelet Transform 

       Discrete basis can be obtained through the choice of discrete values to scales 

and positions. This usual choice is the dyadic discretization, in powers of two. By 

replacing, in Eq. (3.22) and Eq. (3.23), a with 2j and b with k2j,(j,k) € Z2, Eq. (3.24) and 

Eq. (3.25) are created: 
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where j and k are the dilatation and translation coefficients. In this work, the adopted 

discretization is made with j ≥ 0 and k > 0. 

       Percival and Walden (2000) defined the DWT as a well-structured sub-sampling 

of the CWT but in dyadic scales. The discrete wavelets spectrum is given by Eq. (3.26). 
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       The time-series number of points limits the number of possible transformation 

levels. Differently from Fourier, the wavelet coefficients are related to lower 

frequencies. Hence, the DWT of a 2N series is calculated until a certain J < N. The 

mean values information is given by Eq. (3.28): 
 

, ,C ( ) ( )j j k j k

k Z

t C t


=                                                                                         (3.28) 

     

where the Cj(t) tends to the µx mean for a J sufficiently large. For small values of J, the 

approximation is the mean added to the higher scale fluctuations. The calculation of 

the vector coefficients  , ,1 2N j

j j kd d k −=    and  , ,1 2N j

j j kc c k −=    for each DWT 

j level is done through a pyramidal algorithm, developed by Mallat (1989). This 

algorithm enables the calculation of the coefficients by a number of multiplications of 

2N order, this being the length of the sample.  

 Thus, if the functions of the wavelets base have compact support on the 

frequency domain, they will act as filters on the real space, maintaining only the signal 

fraction that corresponds to its frequency interval.  

 The first stage of this pyramidal algorithm for the DWT calculus consists in 

transforming the x(t) time-series with a 2N and 2N/2 wavelet coefficients and 2N/2 scale 

coefficients of first level (d1 and c1 vectors). There are (N – 1) subsequent stages of 

the algorithm. The generic j stage transforms the cj-1
 of 2N/2j-1 length is considered the 

same way as x(t) on the first stage: its elements are filtered separately by the scale 

and wavelet filters. Figure 3.6 shows the behavior of the WT through of a binary tree. 
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(a) 

 

(b) 

Figure 3.6. Wavelets tree for a j = 3 level of decomposition for (a) wavelets and (b) 

wavelets package. Source: [Indrusiak and Moller, 2004]. 

 

       The original function may be reconstructed through the sum of the latter 

approximation and all details, which contain the lost information between two 

successive approximations: 

 

3 3 2 1( )x t C D D D= + + +                                                                                                               (3.29) 

 

where C3, D3, D2 and D1, are the wavelet coefficients. 

       An important characteristic of the DWT, with its dyadic scales, is that the wavelets 

coefficients of a j level may be associated to frequencies at the interval [1/2j+1 , 1/2j] 

while the scale coefficients at the same level are associated to the frequencies [0 , 

1/2j+1]. These levels of resolution or scales are however dyadic, the following scale is 

always the double of the previous. Thus, the frequency intervals are also dyadic, and 

the following interval is always half of the previous size. To analyze intervals of 

frequency of equal size, the DWT is used.   

       Furthermore, DWT enables us to compute a set of coefficients connected to either 

lower or higher frequencies from an original signal “S”. The frequencies (or scales) 

associated to the coefficients are computed by passing the original signal through a 

low-pass filter, h, and high-pass filter, g, (LPF and HPF). The LPF (h) gives a set of 

coefficients called approximation, “A”, while the details, set of coefficients which 

contains the higher frequencies of the signal, are so-called details, “d” and give rise 

from the HPF (g). The process of filtering downsamples the original signal “S” 



 

40 

whenever a new filtering step is performed in the approximation coefficients. The 

process can be repeated by providing different levels of decomposition, “J”. For each 

J level of decomposition, J+1 subbands of frequencies will be provided. For instance, 

for J = 3, the signal “S” will be split into A3, D3, D2, and D1 levels for frequency. A sketch 

of the DWT decomposition, at J=3, is shown in Figure 3.7. 

 

 

Figure 3.7. Sketch of DWT transform. 

 

       Filters h and g, come from the wavelet mother, whose functions are carefully 

chosen, taking into account some necessary features such as compactness and 

orthogonality. Each wavelet mother possesses its very own low and high 

decomposition filters coefficients, h and g, respectively, and the approximation, “A” and 

the details, “D”, coefficients arise from the convolution of the signal “S” and the filters, 

as follow in Eq. (3.30) and Eq. (3.31). Thus, approximation (A) and details (D) are 

products of the discretization of the DWT. 

 

     
0

.
k

n n k n
k

A S h
−

=

=                                                                                                              (3.30) 

     
0

.
k

n n k n
k

d S g
−

=

=                                                                                                              (3.31) 

 

 It is important to note that this research deals only with the details, d. 
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3.3 Static Analysis 

This section presents the necessary concepts and equations for the obtention of 

the displacement data necessary for the damage detection methodology further 

developed in chapter 4. 

Hence, it covers the theory of deflection, how a beam behaves when submitted to 

transversal static loads, the diagrams of bending and shear stress, the elastic line 

equation and finally the maximum deflection. 

3.3.1 Deflection  

 

A beam is a projected to support some structural phenomena, such as pure 

bending, bending moment, shear stress, tensions, and the beam’s deflection. 

All these factors, have a maximum admissible value. The beam deflection is 

illustrated in Figure 3.8, where P is the concentrated load, xy is the symmetry plane, v 

is the deflection, and the deformations only obey the pure flexion. 

 

(a) 
 

(b) 

Figure 3.8. Deflection curve of a cantilever beam (a) beam under a punctual load;  

(b) deflection curve diagram. Source: [Gere, 2009]. 

 

 A beam, only submitted to pure bending while at an elastic regime, is deflected 

in a circumference arch which can be expressed as Eq. 3.32, where M is the bending 

moment, E is the elasticity module, I is the moment of inertia, and ρ is the curvature 

radius. 

 

 
1 M

EI
=                                                                                                                   (3.32) 

  

The same beam, but now with a transversal static load, as illustrated in Fig. 3.8, has 

a different bending moment and curvature radius for each section. While the principle 

of Saint-Venant is respected, Eq. 3.32 may be rewritten into: 
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1 Px

EI
=                                                                                                                  (3.33) 

 

while x being the distance of the section from the left end of the beam. P is the 

concentrated load at the beam’s free end, at Fig. 3.8 (a). 

 In this sense, the comprehension of how this deflection develops is necessary. 

The elastic line equations define this behavior.  

3.3.2 Diagram of Bending Moment and Shear Stress 

 

Before the elastic line, the concept of bending moment (M) and shear stress (V) 

is extremely important to understand deflection. 

These diagrams, Figure 3.9, are elaborated from the analysis of moments and 

forces on the beam. Initially a cut is made in the beam in regards to external and 

internal forces. The shear stress is positive when the forces external factors acting on 

it tend to break it. Meanwhile, the bending moment is positive when external forces 

tend to flex it. Figure 3.9 illustrates the step-by-step elaboration of the bending moment 

and shear stress diagrams for a simply supported beam. 

 

(a) 
 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 3.9. Bending moment and shear stress of a simply supported beam. (a-d) 

diagram development; (e) shear stress; (f) bending moment. Source: [Beer, 2011]. 
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Initially the reactions, P/2, are determinate with a free body diagram, Fig. 3.9 (b), 

due to a L/2 distance from the supports. Then, cuts are made on sections AD and AB. 

Free body diagrams writes that the sum of the vertical components and the sum of the 

moments with respect to the forces acting on the free body are equal to zero.  

Thus, V = -P/2 and M = P(L-x)/2, therefore, the shear force is negative and the 

bending moment is positive. To complete the diagram, the shear force has a constant 

value V = -P/2 between C and B, while the bending moment decreases linearly from 

M = PL/4 in x = L/2 up to M = 0 at x = L. 

3.3.3 Equation of the Elastic Line 

The elastic line, by definition is the deflection diagram of the longitudinal axis that 

passes through the centroid of each beam cross-sectional area. The understanding of 

the elastic line is easier when started with the bending moment diagram, see Fig. 3.10. 

 

Figure 3.10. Elastic Line. Source: [Hibbeler, 2010]. 

 

       On point E, the slope of the elastic curve is zero and therefore the deflection of 

the beam is maximum. 

       Equation 3.32 represents the curve of the elastic line in terms of the curvature 

radius, ρ, the deflection, y, and the location along the beam, x. Considering a beam 

under pure flexion its elastic solution may be simplified as: 

 

2

2

d y M

dx EI
=                                                                                                             (3.34) 
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       Equation 3.34 is then differentiated two times in terms of x, substituting                        

(V= dM/dx) and (-w=dV/dx), to obtain the Equation of the beam, Eq. 3.35.  

 

4

4
( )

d y
EI w x

dx
= −                                                                                                             (3.35) 

 

        Then, it is successively integrated to obtain the shear stress, the bending 

moment, the rotation and finally the elastic line equation, respectively.  

 

3

3
( )

d y
EI V x

dx
=                                                                                                             (3.36) 

 

2

2
( )

d y
EI M x

dx
=                                                                                                             (3.37) 

 

)
dy

EI x
dx

(=                                                                                                             (3.38) 

 

( )EI y f x=                                                                                                             (3.39) 

 

where EI is the flexural stiffness of the beam, w is the load/weight, V is the shear stress, 

M is the bending moment,   is the rotation and y is the deflection. To obtain the elastic 

line equation, the four integration steps yield four integration constants: 

 

4

4

3

13

2

1 22

2

1 2 3

3 2

1 2 3 4

( )

( ) ( )

( ) ( )

1
( ) ( )

2

1 1
( ) ( )

6 2

d y
EI w x

dx

d y
EI V x w x dx C

dx

d y
EI M x dx w x dx C x C

dx

dy
EI x dx dx w x dx C x C x C

dx

EI y f x dx dx dx w x dx C x C x C x C



= −

= = − +

= = − + +

= = − + + +

= = − + + + +



 

  

   

                                   (3.40) 
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        The integration constants of Figure 3.40 are determined by the boundary 

conditions applied to each support type, as presented by Figure 3.11. The illustration 

exhibits these conditions for a double-clamped, a simply supported and a cantilever 

beam, respectively.  

        For the double-clamped, rotation and deflection are null at both supports. For the 

cantilever, these are null at the fixed end and at the free-end, the shear stress and the 

bending moment are null instead. For the simply supported, deflection and the bending 

moment are the null conditions at both supports. 

 

 

(a) 
 

(b) 

 

(c) 

Figure 3.11. Boundary conditions for a (a) double-clamped; (b) simply supported;    

(c) cantilever beam. Adapted from: [Beer, 2011]. 

 

        The presented formulation yields the following elastic line equation for the double-

clamped, Eq. 3.41, the simply supported, Eq. 3.42, and the cantilever Eq. 3.43. 

 

          ( )4 3 2 22
24

w
y x Lx L x

EI
= − + −                                                                                                      (3.41) 

 

          ( )4 3 32
24

w
y x Lx L x

EI
= − + −                                                                                                        (3.42)   

             

          ( )4 3 2 24 6
24

w
y x Lx L x

EI
= − + −                                                                                                    (3.43)

  

        Another particularization that needs to be made is regarding the type of load. The 

above approach is adequate for beams submitted to continuous distributed loads. In 

the case of punctual loads, the reactions on the supports cause discontinuity on the 

shear force. Thus, the boundary conditions now need to be analyzed through a free 
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body diagram, regarding the loads, reactions and moments on each support and load 

locations. 

        These boundary conditions can now be used in the bending moment, Eq. 3.37, 

to define the integration constants. The following mathematical steps are the same as 

for the distributed loads. 

        Hence, the elastic line equations for the analyzed beams for a punctual load, are 

given by equations 3.44 to 3.46 for the double-clamped, the simply supported and the 

cantilever, respectively. 

 

          ( )2 33 4
48

P
y Lx x

EI
= −                                                                                                      (3.44) 

 

          ( )3 24 3
48

P
y x L x

EI
= −                                                                                                        (3.45)   

             

          ( )2 33
6

P
y Lx x

EI
= − +                                                                                                    (3.46) 

 

        Furthermore, to define the value of the maximum deflection, the x correspondent 

to the position of maximum deflection determined by the elastic line must be 

substituted into the elastic line equation. 

        The equations for the maximum deflection for each beam and load type is 

disposed in Appendix A. 

3.4 Modal Analysis 

 

This investigation deals with discrete structures, hence involving a geometry 

defined by differential equations only at the temporal variable. This type of structure 

requires a dynamic analysis via FEM – Finite elements method. 

The equations of movement of these models are amplifications of the static 

equilibrium equations, through the inclusion of inertia and damping forces, in addition 

to consideration of external actions as functions of time. Thus, the structural dynamics 

analysis methods are independent of the form in which the equations of motion are 

obtained. This section describes the necessary theory for understanding and obtaining 

the mode shapes for the investigated beams. 
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3.4.1 Equation of Motion in Free Vibration 

 

This section defines through an analytical model, the equation of motion and its 

solution for a free-vibration at a continuous analysis system.  

The Euler-Bernoulli theory, states that when a beam flexes, the cross-section of 

the beam remains in a plane shape. Figure 3.12 illustrates a simply supported beam 

and it’s free body diagram for a dx discrete element, with notation to the loads, bending 

moment, shear stress, and the moment of inertia.   

 

(a) 

 

(b) 

Figure 3.12. (a) simply supported bam and it’s (b) elements free body diagram. 

Source: [Paz and Kim, 2019]. 

 

 The theory states, as described in section 3.3, that if the deflection is small 

enough when compared to the beam’s length, the inclination of the element from the 

unloaded position is also small. By this condition, the equation of motion is given: 

 

 
2

2
( , )

V y
m p x t

x t

 
+ =

 
                                                                                             (3.47) 

 

where m  is the mass per unit length. As described in section 3.3, the bending moment 

and the shear stress are given by Equations 3.48 and 3.49: 

 

 
2

2

y
M EI

x


=


                                                                                                                               (3.48) 

 

 
M

V
x


=


                                                                                                                                 (3.49) 

 

 Then, Eq. 3.50 is combines Equations 3.47, 3.48 and 3.49. It is a fourth order 

differential equation. As an approximate equation, it considers only the flexural 
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deflections. This equation when considered the shear deformation and moment of 

inertia is named as Timoshenko equation. 

 

 
4 2

4 2
( , )

y y
EI m p x t

x t

 
+ =

 
                                                                                       (3.50) 

 

 Ahead, considering a free-vibration [ p(x,t)=0 ], Eq. 3.50 is reduced to: 

 

 
4 2

4 2
0

y y
EI m

x t

 
+ =

 
                                                                                            (3.51) 

 

 This equation solution is then found by the separation variables method, when 

it is expressed as a product of position ( )x  and time f(t). Then, it is solved as: 

 

 ( ) sin cos sinh coshx A ax B ax C ax D ax = + + +                                                            (3.52) 

 

where A, B, C and D are integration constants. These constants determine the shape 

and amplitude of the free-vibration beam. 

3.4.1.1 Simply Supported Mode Shape 

The integrations of Eq. 3.51 leads to four constants that need definition. The same 

approach as used to determine the equation of the elastic line is given. Also, the same 

boundary conditions presented in Figure 3.11 are valid.  

For a simply supported beam, the boundary conditions determine that at both 

supports the displacement and the bending moment are null: 

 

 
(0, ) 0, (0, ) 0

( , ) 0, ( , ) 0

y t M t

y L t M L t

= =

= =
 

 

These conditions yield Equations 3.54 and 3.55. 

 

(0) 0 0for x() =  = =                                                                                                                  (3.54) 

 

( ) 0L L for x L( ) =  = =                                                                                                            (3.55) 
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The first five natural frequencies and mode shapes for a simply supported beam 

are disposed in Table 3.1. 

 

Table 3.1. Simply supported beam natural frequencies and mode shapes. 

Source: [Paz and Kim, 2019]. 

 

3.4.1.1 Double-Clamped Mode Shape 

Now for a double-clamped beam, with initial boundary conditions being: 

 

(0, ) 0, '(0, ) 0

( , ) 0, '( , ) 0

y t y t

y L t y L t

= =

= =
  

 

The substituting these into the Frequency equation is given: 

 

cos cosh 1 0n na L a L− =                                                                                                                          (3.56) 

 

Further, through Eq. 3.56 the mode shapes are obtained with the following 

equations: 

 

( ) cosh cos (sinh sin )n n n n n nx a x a x a x a x = − − −                                                                       (3.57) 

 

cos cosh

sin sinh

n n
n

n n

a L a L

a L a L

−
 =

−
                                                                                                                          (3.58) 
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The first five natural frequencies and mode shapes for a double-clamped beam 

are disposed in Table 3.2. 

 

Table 3.2. Double-clamped beam natural frequencies and mode shapes.        

Source: [Paz and Kim, 2019]. 

 

 

3.4.1.1 Cantilever Mode Shape 

At last, for a cantilever beam, with the boundary conditions: 

 

(0, ) 0, '(0, ) 0

( , ) 0, ( , ) 0

y t y t

M L t V L t

= =

= =
  

 

Leads to the Frequency equation: 

 

cos cosh 1 0n na L a L + =                                                                                                                                (3.59) 

 

And the mode shape by Equations 3.60 and 3.61. 

 

( ) (cosh cos ) (sinh sin )n n n n n nx a x a x a x a x = − − −                                                                        (3.60) 

 

cos cosh

sin sinh

n n
n

n n

a L a L

a L a L

+
 =

+
                                                                                                                           (3.61) 
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The first five natural frequencies and mode shapes for a cantilever beam are 

disposed in Table 3.3. 

 

Table 3.3. Cantilever beam natural frequencies and mode shapes.                  

Source: [Paz and Kim, 2019]. 

 

 

3.4.2 Numerical Model for Natural Frequencies and Mode Shapes 

 

Natural frequency and mode shapes have great importance in the dynamic 

analysis. This section defines the equations for a discrete numerical analysis, to be 

conducted on a FEM – finite elements method, regarding these two parameters. 

The FEM is summarized in five major steps: 

 

1. Definition of the problem – this includes the material properties, the beam type, 

loads and the boundary conditions; 

2. Discretization – in this phase the analyzed body is defined through elements 

connected via nodes; here the elements types are determined; 

3. Definition of the stiffness and mass matrices – this step consists into defining 

the matrices for all the finite elements of the body, individually;  
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4. Assemble the global stiffness and mass matrices – this matrix defines how the 

body responds to forces, stresses and strains; 

5. Solve – as the name, it solves the eigenvalue problem to obtain natural 

frequencies and mode shapes. 

6. Post processing – this phase deals with the analysis of the results calculated 

with FEM; 

 

The discretization defines the type and number of elements, its arrangement and 

the mesh geometry. For each element there is a {u} vector that contains all the 

possible displacements for the nodes, including rotations. 

In a 2D analysis, each node has 3 degrees of freedom (DOF). The nodes can 

along on the x and y-axis and rotate on z-axis. 

 

 

Figure 3.13. 2D beam nodes degrees of freedom for x, y and z-axis. 

 

Figure 3.13 illustrates a single LINE element with 3 DOF in each node, hence 6 

total DOF at the observed single element beam. The degrees of freedom presented 

may vary regarding the boundary conditions of each structure. The conditions for this 

research are presented in previous sections 3.3 and 3.4.1. 

The described model is governed by Equation 3.62, where {F} is the vector for 

the nodal forces and moments, {u} is the vector of nodal displacements and [k] is the 

stiffness matrix of the element. 

 

{ } [ ]{ }F k u=                                                                                                           (3.62) 

 

The element stiffness matrix determines how much each node in a certain 

element will displace under specific conditions.  
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For a 2D structure beam with 6 DOF, undergoing bending and extension, 

illustrated in Figure 3.13, the stiffness matrix has the format: 

 

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 6
0 0

6 4 6 2
0 0

[ ]

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

AE AE

L L

EI EI EI EI

L L L L

EI EI EI EI

L L L L
k

AE AE

L L

EI EI EI EI

L L L L

EI EI EI EI

L L L L

 
− 

 
 −
 
 
 −
 

=
 
− 
 
 

− − − 
 
 

−  

                                                   (3.63) 

 

With [K], a system of linear equations can be solved with Eq. 3.62. As described, 

each element has its own stiffness matrix. Then, each of these matrices are combined 

to form the global matrix. 

A statical problem is solved with the global matrix. Meanwhile a modal problem, 

the solution of the eigenvalues and eigenvectors with mass and stiffness matrices, 

both global. 

The mass matrix might be defined by two methods, the lumped-mass and the 

consistent mass. Equation 3.64 gives the consistent mass matrix, for a prismatic 

beam, and with 6 DOF, illustrated in Figure 3.13, the relation between modal axial 

forces and accelerations: 

 

2 2

2 2

140 0 0 70 0 0

0 156 22 0 54 13

0 22 4 0 13 3
[ ]

70 0 0 140 0 0420

0 54 13 0 156 22

0 13 3 0 22 4

L L

L L L LL
m

L L

L L L L



 
 

−
 
 − − −

=  
 
 − −
 

− 

                                                             (3.64) 
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where  is the mass per unit length. The calculation of the consistent mass matrix 

needs to fist, stablish the displacement functions regarding an axial unit displacement 

at a modal coordinate. Then, the equations are governed as followed by Eq. 3.33. 

Furthermore, in the case of an undamped free-vibration, we have Eq. 3.65, while 

assuming that an initial perturbation is given to the system, the harmonic solution of 

the nodal displacements is given by Eq. 3.66. 

 

( ) ( ) 0Md t Kd t+ =                                                                                                        (3.65) 

 

ˆ( ) cos( )j j jd t t=   −                                                                                                  (3.66) 

 

In this solution, ˆ
j  is the i-th natural vibration mode, 

j  is the free vibration 

natural frequency and 
j  is the phase angle. Substituting Eq. 3.66 into 3.65, a n 

homogenic algebraic equations have a non-singular solution given by: 

 

2ˆ ˆ
j j jK M =                                                                                                            (3.67) 

 

where 2

j  expresses the eigenvalue and ˆ
j  the eigenvector. With n DOF, an equal 

number of eigenpairs are numerated in increasing order of frequency magnitude, 

which are positive if there are sufficient restrictions to prevent rigid body displacements 

and the formation of mechanisms internal to the structure. 

Equation 3.66 expresses that all DOF execute harmonic movement 

characteristic of a vibration mode at the corresponding natural frequency. Thus, 

natural frequencies and natural modes of vibration are independent of external forces, 

as functions only of the mass and stiffness distributions of the model. Further, Eq. 3.68 

groups the natural frequencies: 

 

2

1

2

2

2

0 ... 0

0 ... 0

0 0 ... n

 
 

  =
 
 

  

                                                                                      (3.68) 

 

Then, the mode shapes may be united in the modal matrix: 
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 1 2
ˆ ˆ ˆ ˆ

n =                                                                                                                (3.69) 

 

With these matrices, the eigenvalue acquires the Eq. 3.70 form.  

 

ˆ ˆM =                                                                                                            (3.70) 

 

Equation 3.70 solution is the modal analysis. 
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4 METHODOLOGY 

A method is proposed for the detection, localization and quantification of damage. 

This chapter sets the boundaries and the parameters for the investigation, such as the 

model description, the toolboxes utilized for obtaining the displacement and modal 

data for analysis, and the wavelets transform, finally the damage indexes. 

The methodology was validated through the analytical equations presented in 

section 3.3 for the static analysis and section 3.4 for the modal analysis. 

4.1 Model Description 

 

A beam, in structural terms, is a structural element, designed to withstand loads 

and stresses, while having supports and fixed-edges.  

Three beam types were investigated: simply supported, cantilever and double-

clamped. Figure 4.1 shows an schematic of each beam, as well as its discretization. 

The mesh is consituted by 100 elements, and 1 meter long, hence each element 

having 10 mm. Analysis were made on a 1D dimension enabling 3 DOF for each node 

(x and y – displacements and z-rotation). 

 

  

Figure 4.1. Discretized beams models for the finite element method. 

 

The double-clamped beam has two fixed supports with the three DOF restricted. 

The simply supported has two supports and both have the z-rotation DOF free, having 

x and y displacement restricted. Finally, the cantilever has only one support and a free-
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edge. This beam has a support which restricts the three DOF while the free-edge has 

the three degrees enabled. 

Damage was simulated as an elasticity module (E) percentual reduction in its 

value. The reduction of E simulates an approximate reduction on the stiffness, 

provoking a fragility into the beam’s elements, which could be caused by diverse 

natures, such as corrosion, natural wear and tear, cracks, impacts, and others. This 

approach was also used by several authors, such as: Surace and Ruotolo (1994), 

Okafor and Dutta (2000), Alvandi and Cremona (2006), and Katunin et al. (2021). 

During all procedure, damage severity ranged from 5% to 50%, and was analyzed 

along the structures.  

Damaged elements of choice were 5, 25, 50, 76 and 96, being 5% 25% and 50% 

distant from the supports. These specific positions were defined so to have an equal 

analysis on both side of the beam, enabling to understand if locating damage or load 

near to both of the supports on an equal distance, results into the same readings. 

Damage detection was made through a comparison between damaged and intact 

beams for a baseline value. 

Finite elements (FE), methodology was used to numerically model the 

computational setup for analysis. The FE considered a uniform and isotropic beam.  

       Beam structural properties are given:  is the mass density of 0.783 kg.m-1, A is 

the cross-section area, 1E-4 m2, l is the element length, 10 mm, I is the cross-section 

moment of inertia, 8.3E-10 m4, and E is the elastic (or Young’s) module of the material, 

200 GPa. These values are due to the material being Steel. The Euler-Bernoulli beam 

model assumption does not consider the transversal section rotational inertia and 

shear deformations on the differential equation.  

4.1.1 Static Analysis 

 

Two types of loads were investigated: concentrated and distributed load. On both 

cases, the load was set to a value of 1 Newton. For the distributed one, this magnitude 

was split along the beam nodes. 
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Regarding to the punctual load, transverse static loads are applied at different 

locations on the beam to evaluate possible effects of force location relative to the 

damaged sites. 

Load location points for this study were chosen in nodes 5, 25, 51, 77 and 97, this 

due to 51 being located on the center of the beam, 5 and 97 at a distance of 5% of the 

beam length distant from the supports, and 25 and 77 a distance of 25% from the 

supports. Nodes 5 and 97 are equally distant, 4 nodes, from the beam extremities, 

while 25 and 77 are equally distant 24 nodes from the edges of the beam. 

 

 

Figure 4.2. Finite element beam discretization. 

4.1.2 Modal Analysis 

 

For the modal analysis, the mode shapes are investigated instead of loads on 

specific nodes. Another difference is that a mode is set on the entire structure of the 

beam and not just a single node or region. It determines the dynamic characteristics, 

damping factors and mode shapes, and uses them to determine its dynamic behavior.  

Section 3.4 deeply details these factors. 

For this research, the first five mode shapes were presented, due to the efficacy 

of the method, while for higher modes no change in results were noticed. 

Mode shapes and natural frequencies are obtained from the frequency response 

function. This function relates excitation and structure vibrational responses. 

In this investigation, the Damage Sensitivity Technique (DST), Du et al. (2019), is 

employed to analyze the disparities between the mode shapes of a structure before 
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and after it incurs damage. The modal properties are derived through the conventional 

eigenvalue problem of an undamped MDOF discrete system. 

Meanwhile, when simulating damage through stiffness reductions in specific 

elements of the discretized structure, the matrix is recalculated for each damage 

scenario, while the mass matrix remains constant and unchanged. 

Damage does impact both the natural frequencies and mode shapes, these 

alterations are typically minimal when the damage levels are small. In the suggested 

approach, only the Damage Sensitivity Technique (DST) applied to mode shape 

differences is employed for damage identification and quantification. This preference 

is due to the fact that modal deflections are better suited for a comprehensive 

assessment applied across the entire structural span. 

4.2 Wavelet Toolbox – MATLAB® 

 

The Wavelet toolbox is a collection of functions built into MATLAB software, 

technical computing environment. The complete theory behind the method is 

described in section 3.2. It provides tools for analysis and synthesis of signals and 

images, and tools for statistical applications, using wavelets and wavelet packages 

within MATLAB. The toolbox provides two tool categories: 

• Command line functions; 

• Interactive graphics and tools; 

The first category of tools is made up of functions, called directly from the 

command line or from your own applications. Most of these functions are M – files. A 

summary of the Wavelet Toolbox functions that are available in MATLAB. 

The second category of tools is a set of interface tools graphic that allows access 

to extensive functionality. Access to these tools is do so by typing “wavemenu”, where 

a window is appeared, Figure 4.3. 
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Figure 4.3. “Wavemenu” window - MATLAB. 

 

The different wavelet functions available in the program tools MATLAB are: 

• Haar Wavelet – “haar” 

• Daubechies Wavelet – “db” 

• Symlets Wavelet – “sym” 

• Coiflets Wavelet – “coif” 

• Biorthogonal Wavelets – “bior” 

• Meyer Wavelets – “mey” 

• Gaussian Wavelets – “gaus” 

• Morlet Wavelets – “mor” 

• All wavelet mother types are described in Misiti and Poggi (2001). 

4.3 Damage Indicator: d1-index and d2-index 

 

This work aimed to detect, localize and quantify damage. The approach used was 

based on the Discrete Wavelet Transform (DWT) to the beam’s deflection function and 

mode shapes. To achieve such goal different indexes were created. All the wavelet 

coefficients of DWT were generated at J=1 using the wavelet mother Coiflets 2. 
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According to Katunin (Katunin, 2010 and Katunin, 2011), the analysis based on 

approximation coefficients was seen to be the most efficient for damage localization, 

therefore considering the wavelet tree represented on Figure 3.6, a0 coefficients, 

approximation, were used in this investigation. To perform such analysis, we first found 

the approximation vector of DWT coefficients for non-damaged beam, producing a d0-

vector, at level of decomposition, J=1. 

In sequence, the same steps were followed for the damaged beam, yielding also 

a dd-vector with the same length of d0. To perform the final evaluation a damage 

indicator, d1 is then created, by subtracting dd, and d0. To eliminate negative values of 

this vector, the resulting vector was then squared and normalized by its maximum 

value, as follows in Eq. (4.1): 
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The vector is then plotted along the beam. The idea behind this is to identify and 

localize the damaged region of the beam through a normalization by the maximum 

value of the index, hence being the most probable region of damage. 

Further, the d2-index was created for damage quantification. An adjustment was 

made to enable the analysis of a damage severity prediction curve. This adjustment 

scaled the squared wavelet coefficient variation by using the squared variation of the 

intact and damaged beam with 25% of damage as the maximum damage severity due 

to the this being the range where the most precise results were found. 

 

( )

( )

2

02

2

max 0

d

index

d d
d

d d

−
=

−
                                                                                          (4.2)  

Figure 4.4 presents the scheme for damage localization (d1-index) and for 

quantification (d2-index). The difference between the two indicators is the dividend, 

where for the d1-index, it is the maximum of the squared difference between the 

damaged and the undamaged DWT coefficients, and for the d2-index, it is the square 

between the maximum DWT coefficient amongst all analyzed cases and the 

undamaged coefficient.  



 

62 

 

 

Figure 4.4. d1-index and d2-index flowchart for damage detection, localization and 

quantification. 
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5 RESULTS OF DAMAGE IDENTIFICATION AND LOCALIZATION 

Damage detection and localization is aimed to determine most probable regions 

of having damage. During these processes diverse variables are involved. 

In this sense, chapter 5 presents the technique to be used to investigate damage 

identification and localization through wavelet transform. Also, chapter 5 adds to the 

study an investigation on the effects of the load location, mother wavelet, 

decomposition level, beam type supports, and the severity of the damage over the 

probable damaged region identification and localization. 

Throughout this campaign, analysis is done with the use of the two statistical 

indexes exposed in section 4.3, based on damaged and undamaged beam 

displacement and vibration mode shapes. 

First, section 5.1 validates the model presenting a comparison between the 

analytical and the numerically obtained results for displacement and natural 

frequencies. 

Section 5.2 investigates damage localization with data simulated through a static 

analysis. This case analyses displacement data over damaged and non-damaged 

beams to detect damage.  

Section 5.2.1 investigates the three beam support types: simply supported, 

cantilever and double-clamped beam, respectively. In each of these, the d1-index 

approach is applied. The visualization of the functions is presented with boxplot tools 

median values. Following, section 5.2.2 presents a study of influence of damage 

localization parameters regarding damage severity, decomposition level, boundary 

conditions and wavelet mother type. It is aimed to structure the optimum setup for 

damage localization based on the proposed d1-index parameters. 

Section 5.3 investigates damage localization by means of a dynamic analysis 

based on the vibration mode shapes of the beams. This study aims the first five modes. 

5.1 Model Validation 

 

As presented, the approach consists into obtaining the displacement and the 

mode shapes trough the vtb engineering toolbox. Then, these data are treated with 
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the wavelets transform, and finally the results are presented trough two damage 

indexes regarding localization (d1-index) and quantification (d2-index). 

Damage is simulated with a module of elasticity percentage reduction on one or 

more elements. This phase is conducted during the structure’s discretization inside 

the vtb toolbox (vtb8_1). Results presented in section 5.2.1 and 5.2.2.6 shows that the 

method is able to localize the exact element which was previously set to be damaged, 

during the discretization phase. 

Before the wavelets transform, the presented method simulates the structural 

behavior of the beams, based on the equations disposed in sections 3.3 and 3.4, and 

generate the displacement and mode shapes. 

These numerical values are validated through a comparison with analytical 

values from the presented equations.  

Table 5.1 presents the analytical results for the maximum deflection on the 

investigated beams for both concentrated and distributed loads. The results verify the 

numerical model due to the great accordance observed, where a margin of error under 

1% is noted in all cases.  

 

Table 5.1. Maximum deflection for the analyzed beams. 

 

Beam 
Concentrated Load Distributed Load 

Analytical Numerical % error Analytical Numerical % error 

Simply 

Supported 
1,25E-4 1,25E-4 0,72% 7,84E-5 7,81E-5 0,38% 

Cantilever 2,00E-3 1,98E-3 0,75% 7,53E-4 7,49E-4 0,53% 

Double 

Clamped 
3,17E-5 3,14E-5 0,71% 1,57E-5 1,58E-5 0,63% 

 

Mode shapes are also validated trough the equations presented in section 3.4. 

This research considers the first five mode shapes of the beams. Table 5.2 compares 

the natural frequencies obtained for the analytical and numerical approaches. 
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Table 5.2. Natural frequency for the analyzed beams. 

 

Mode Model 

Simply Supported Cantilever Double-Clamped 

n
  [Hz] % error n

  [Hz] % error n
  [Hz] % error 

1st 
Analytical 22,8482 

0,101% 
8,10354 

0,545% 
51,8460 

0,002% 
Numerical 22,8714 8,14791 51,8469 

2nd 
Analytical 91,3929 

0,100% 
51,0592 

0,004% 
142,917 

0,001% 
Numerical 91,4857 51,0610 142,918 

3rd 
Analytical 205,634 

0,102% 
142,972 

0,001% 
280,176 

0,001% 
Numerical 205,842 142,974 280,176 

4th 
Analytical 365,571 

0,101% 
280,171 

0,001% 
463,141 

0,001% 
Numerical 365,942 280,173 463,146 

5th 
Analytical 571,205 

0,103% 
463,141 

0,001% 
691,855 

0,001% 
Numerical 571,795 463,146 691,860 

 

Table 5.2 presents very low difference between the numerically obtained results 

and the analytical natural frequencies values. Percentage of error was kept under 

0,004% in most cases, and 0,101% at the highest variations. 

Furthermore, Figure 5.1 compares the fifth mode shape obtained with the 

method and the theoretical mode shape.  
 

 

(a) 

 

(c) 

 

(e) 

 

(b) 

 

(d) 

 

(f) 

Figure 5.1. Mode shape comparison for a (b,d,f) theoretical behavior and (a,c,e) 

numerical obtained results for the simply supported, the cantilever and the double-

clamped beams respectively. 
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5.2 Static Analysis 

5.2.1 d1-index Damage Detection and Localization 

This section presents the results for the first two levels of SHM: detection and 

localization. Results are presented in terms of the d1-index for the three studied beam 

types. 

5.2.1.1 Simply Supported Beam 

 

A simply supported beam, see Figure 4.1, has two supports, both enabling 

rotation in the x-y plane. Figure 5.2 (a) shows the displacement for a non-damaged 

beam for different positions of load application for a simply supported with 100 

elements, each with a length of 10mm. The displacement is observed to be higher 

when the force is applied on the center of the beam. The same result was compared 

for different positions of damage, see Figure 5.2 (b-f). Damage was set 50% of the 

original elasticity module value.  

 

 
(a) 

 

(d) 

 
 

(b) 

 

(e) 
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(c) 

 

(f) 
Figure 5.2. Beam displacement for the same load applied to different nodes with a 

(a) undamaged and damaged beams on elements (b) 5; (c) 25; (d) 50; (e) 76; (f) 96. 

 

       It is noticed from Figure 5.2 that the displacement function varies symmetrically 

based on the load location, in other words the displacement curve of a load 4 nodes 

distant from the supports, which is the case of N5 and N97, is mirrored. To enlighten 

this displacement behavior regarding load location, Figure 5.3 exhibits the 

displacement along the beam for different damaged elements. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 5.3. Beam displacement for the same load applied to different damaged 

elements; load was located on node (a) 5; (b) 97; (c) 25 and (d) 77. 
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       The impact of the location where the load is positioned is observed. Figure 5.3 (a-

b) shows displacement for loads on nodes 5 and 97 respectively. In comparison to (c-

d), it is observed that in both cases the curve bends to the near-edge part of the beam, 

although this proximity to the supports is shown in the magnitude of the displacement, 

five times smaller when near to the supports. The graphics show that the damage 

location do not affect the displacement curve, only being sensitive to load location.  

Ahead, the displacement data is now treated with the DWT – Discrete Wavelet 

Transform. Coiflets 2 wavelet mother at J=1 level of decomposition was adopted. 

Figure 5.4 shows the DWT coefficients resulted from the displacement data from load 

on nodes 5, 25, 77 and 97, for different damaged elements. Further, the damage 

severity was kept constant at 10%. Figure 5.4 shows the difference between a 

damaged and an undamaged beam (dd-d0)2. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.4. Squared difference of (dd-d0)2 coefficients of displacement for the same 

load applied to different damaged elements: (a) 5; (b) 96; (c) 25 and (d) 76. 

 

 

       The analysis from Figure 5.4, shows the most likely damaged region. A cloud of 

points is clearly manifested along the damaged stretch. As expected, the coefficients 

are higher on the nodes next to the damaged element. Notice that the parts of the 
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graph where there is no damage, there are almost zero appearance of points, with 

non-significant value.  

        Continuing the investigation, Figure 5.5 shows d1-index as a function of the beam 

length, by using the boxplot tool, instead. Damaged elements were: 25, 50 and 76. 

Boxplot has many statistical indexes, between them the ones which led to the best 

results were the median and the box height (3rd quartile). Both indexes are disposed, 

in each column of Figure 5.5.  

 

(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 5.5. d1-index for simply supported beam for different load application point 

using COIF2, considering the: (a-c) median values; (d-f) box height. 
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       Figure 5.5 (a-f) shows that the damage was successfully localized by both                    

d1-index, the median and the box height. The point where the concentrated load was 

applied did not cause any affect in terms of location of the damage.  

Moreover, many questions remain, such as the precision of the localization and 

the sensitivity regarding damage severity. A study regarding what is the wavelet 

decomposition level which best obtains the clearest results and the most adequate 

wavelet mother type. Section 5.2.2 presents a study on the influence of these damage 

localization parameters. Nonetheless, a detailed study on near-supports readings is 

needed while intense indicators have been noted.        

5.2.1.2 Cantilever Beam 

In this section and the following, two different cases of degrees of freedom at the 

support are presented. At first the cantilever beam is studied using the same wavelet 

mother and level studied before. To promote a thorough understanding of the problem 

we also applied the same load at different nodes. In Figure 5.6, the deflection of an 

undamaged cantilever beam is shown. Curves are displayed according to the point 

where the load is applied. For instance, curve named N25 is addressed to the load 

applied at node 25. Despite the different points of application, the load was constant 

at 1 Newton, while damage was applied on element 25 while the severity was set 10%. 

 

  

(a) 

  

(b) 

Figure 5.6. Analysis of beam displacement for distinct load application node for a 

cantilever beam (a) with and (b) without damage. 
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       The deflection of a cantilever beam, Figure 5.6 (a,b), under punctual transverse 

load show two parts along its length with very distinct characteristics. The stretch from 

the fixed edge to the load application point deflects in accordance with the resulting 

bending moment, while the stretch from the load application point to the free edge has 

zero shear force and bending moment, resulting in an undeformed pattern. Therefore, 

it is expected that damage in this second stretch would not cause any differences in 

the total deflection curve of the damaged beam when compared to the undamaged 

one. Hence, damage can only be detected if applied to an element before the load 

location. For all cases of load application, simulations considered damage only in the 

part of the beam subjected to non-zero bending moment and shear force. 

       Figure 5.7 shows the d¹-index distribution along the beam damaged in the element 

25. Forces were applied at nodes 25 and 77. A case with damage in elements 25 and 

76 is presented, for a Coiflets 2 wave at J=1, while damage severity remains 10%. 

Despite the displacement behavior being completely different for each beam, as seen 

in Figure 5.5, the application of DWT makes it possible to identify possible regions of 

probable damage. 

 
(a) 

 
(b) 

Figure 5.7. Damage localization for DWT coefficients for a cantilever beam with 

damage on element 25 for load location on node (a) 25 and (b) 77. 

Figure 5.7 (a, b) shows two distinct behaviors. In the first case, the load was 

applied on node 25 and the damaged is on element 25, as well, it means that the node 

is located before the damaged element (see nodes and elements distribution in Figure 

4.2). Such load configuration leads the stretch, where the damaged element is located, 

to undeformed pattern, due to the zero shear force and bending moment. In the second 
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case the load application force is the number 77 and the damage was applied on the 

element 25. To prove this fact, for the first case if to the load is moved one node, now 

to 26, which is located to the right of the damaged element, damage is identified. The 

reader must see that this time damaged element belongs to the stretch subject to 

bending moment and shear force, and therefore, deflects in accordance to these 

efforts.  In short, only in the second case (Figure 5.7 b), the damage could be 

successfully identified and localized. 

       Ahead, Figure 5.8 shows another three examples, holding the damaged element 

location, at number 25, but varying the load positioning 5, 51 and 97, respectively. 

Again, for the first case, Figure 5.8 (a), the technique could neither identify nor locate 

the damage, but as the load go farther both identification and localization were 

successfully achieved. 

 
(a) 

 
 (b) 

 
(c) 

Figure 5.8. Damage localization for DWT coefficients for a cantilever beam with 

damage on element 25 for load location on nodes (a) 5, (b) 51 and (c) 97. 

 

       For the cantilever beam, damage localization was performed using the d1-index 

alongside boxplot tool approach in a damaged and undamaged beam. As for the 

simply supported beam, Coiflets 2 at J=1 level of decomposition produced the clearest 

readings. Figure 5.9 (a-e) shows the median values of d1-index distribution throughout 

the beam. For these results, the damage severity was kept constant of 10% of 

elasticity module, at elements e = 5, 25, 50, 76 and 96. For each damage value, the 

same load was applied at nodes 5, 25, 51, 77 and 97 at once. 

       Damages at the vicinity of the clamping are very well detected, as in the case of 

Figure 5.9 (a), whose damaged element was the fifth one. It is verified that damage is 

well localized independent of the load location. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.9. median d1-index distribution in a cantilever beam for a fixed damage and 

different nodes load application (a-e) damage at e=5, 25, 50, 76 and 96, 

respectively. 

      

       However, higher coefficients of d1-index nearby the free border of the beam are 

noted on Figure 5.9 (a-e) for the cases of load positioned on the damaged stretch. 

Again, as observed in Figure 5.7 the part of the where the shear force and the bending 

moment are null, damage identification and localization is not precise. 
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5.2.1.3 Double-Clamped Beam 

The double-clamped beam has a deflection similar to the simply supported but 

now with zero rotation at the supports (rotxy = 0 at x =0 and x= L). Mathematically, this 

corresponds to a continuous and smooth function with null first derivatives at the 

boundary points of its domain. Figure 5.10 illustrates the deflection curves for an (a) 

undamaged and a (b) damaged double-clamped beam for different load locations. 

Damage was put on element 25 with severity remaining at 10% and a 1 Newton load. 

 

 

(a) 

 

(b) 

Figure 5.10. Analysis of beam displacement for distinct load application node for a 

double-clamped beam (a) with and (b) without damage. 

 

       Figure 5.11 (a-e) displays the difference between the d1-index. Damage was 

successfully localized on the damaged element 25, with no peaks at the endpoints, as 

observed for the cantilever. Thus, the damaged region was clearly identified by the 

method. Results are presented for a Coiflets 2 at J=1. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5.11. d1-index distribution or a damaged double-clamped beam at element 25 

for load location of nodes (a) 5; (b) 25; (c) 51; (d) 77 and (e) 97. 

 

As for the other beam types discussed, the analysis under the double-clamped 

shows that the method can detect the probable region of damage, regardless the load 

location. As in the previous cases, the d1-index was used to identify and localize 

damage on the double-clamped beam. Figure 5.12 (a-e) presents the median of           

d1-index distribution for different points of load application and damaged element. 

Again, the d1-index successfully localized the damaged element, no matter where the 

load or the damaged element was placed.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 5.12. d1-index distribution in a double-clamped beam for a fixed damage and 

different nodes load application a-e) damage at e=5, 25, 50, 76 and 96, respectively. 

5.2.2 Influence of the Several Parameters of Damage Identification and 
Localization 

 

This chapter presents a study of influence of parameters of the wavelet transform 

with regards the damage identification and localization. Analysis is presented with the 

d1-index through the boxplot. The section investigates parameters such as: the use of 

a baseline function; damage severity (ds); wavelet decomposition level; wavelet 

mother type; boundary conditions (beam support types); multiple damaged elements. 

5.2.2.1 Baseline and Baseline-Free  

The use of a baseline value, obtained from an intact beam, to identify and localize 

damage is the matter of this section. As a rule, researchers have been using methods 

to detect damage which consists in comparing some characteristic of the intact and a 

damaged structure to identify and localize differences that can be associated to 
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damages. Solis and his co-authors Solis et al. (2013 and 2018), reported that damage 

detection can be greatly enhanced by the use of an appropriate baseline. Katunin et 

al. (2021) conducted comparative studies on the baseline approach. The authors 

observed that the baseline increases damage identification ability due to a reduction 

of the measured noise, which is a WT liability.  

The intact curve is called a baseline function. The original d1-index localizes 

damaged through a difference between damaged and non-damage results (dd-d0), 

with this non-damaged being the baseline value. A baseline-free do not considers this 

d0 value. Figure 5.13 presents the damage localization for a double-clamped beam 

with damage on element 76. Hence, results are presented in terms of dd
2/max(dd

2). 

Figures 5.13 (a-e) have loads applied on five different points of the beam. Results are 

presented for a Coiflets 2 with J=1. Damage severity was set 10%, while the load 

magnitude, 1 Newton. Non-baseline damage localization results shows that with the 

absence of the baseline it is not able to localize damage. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure 5.13. Double-clamped beam non-baseline (dd
2/max(dd

2) damage localization 

analysis for damaged elements (a) E5, (b) E25, (c) E50, (d) E76, and (e) E96. 

 

 In each of these cases, it is observed the presence of spurious peaks. Peaks 

seems to be placed around the vicinity of the node where the load was applied, see 

Figure 5.13 (a-c). The only location and identification that could be worth to notice was 

the case whose load was applied on the near-edge regions. 

Figure 5.14 compares the damage identification and localization for a baseline 

and non-baseline analysis. The damaged element was the number 76. Both analyses 

were done by placing the load at different nodes at each test. Non-baseline graphic 

presents a confuse result, with diverse peaks indicating some possible locations for 

damage. The highest peaks are shown near supports region and for the specific case 

where load is applied at the vicinity of the damaged element (Force N 77). Figure 5.14 

(a) presents damage localization through dd
2/max(dd

2), since it eliminates the baseline 

value of the intact beam. On the other hand, Figure 5.14 (b), which uses baseline for 

describing d¹-index, exhibits a much clear and well-defined result of the damaged 

element. All the five curves have collapsed at the damaged region, without any false 

positive.    

(a)  (b) 

Figure 5.14. Double-clamped beam damage localization for a (a) baseline-free, and 

a (b) baseline considered simulation. 
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5.2.2.2 Damage Severity 

 

The damage severity (ds) influence was also target of this research. In this sense 

low severity damage was applied to elements. Figure 5.15 displays the d1-index using 

the boxplot for different levels of damage severity. Load location points were 

positioned at nodes 25 and 77, since these two are equivalent distant from the beam 

supports. Damage was simulated at element 25, decomposition level at J=1, and the 

wavelet mother type of choice was the Coiflets 2, while the damage severity was 

ranged from 10% of 50% of the elasticity module. Figure 5.15 presents this analysis 

for a Simply supported beam. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.15. d1-index for a simply supported beam at different damage severity (10% 

up to 50%). (a-b) Median values of d1-index for load application at nodes 25 and 77. 

(c-d) Box height values of d1-index for load application at nodes 25 and 77. 

 

       The reader can see that the d1-index was able to localize the damaged element, 

using either the median of the height of the boxplot (meaning the difference between 
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the 25th and 75th percentiles). Peaks of d1-index coefficient were seen at element 25, 

independent to damage severity. Further, it is worth to note that curves of the d1-index 

distribution were completely overlapped, no matter the severity of the damage (10% 

up to 50% of the elasticity module). However, again, the boundary condition plays 

important role on the d1-index distribution. 

       As seen for the comparisons between d1-index results, the severity of the damage 

did not show an impact on the detection of the region, so that the curve for the five 

levels of severity presented the same behavior. Thus, proving the method being able 

to detect small damage regardless of the severity of the damage on the load location. 

5.2.2.3 Decomposition Level 

 

This analysis starts from Figures 3.6 (a-b) where each level of decomposition 

results into a fraction of an approximation and a detail. This study focuses on the 

details. Each decomposition level is divided into details and approximations following 

Equations (3.30) and (3.31), for approximation and for detail, respectively. This 

fractioning means dividing an initial band of frequency in intervals of time-series so 

that for each level this frequency decreases, affecting the reading of the signal. This 

section aims to study the wavelet decomposition level ‘‘J’’ which obtains the clearest 

readings. This research investigates levels of ‘‘J’’ from 1 to 3. 

Figure 5.16 compares these three levels of decomposition for the three studied 

beam support types. Damage was simulated on element 25 and element 76 with 10% 

of elasticity module reduction, while the magnitude of the load was set 1 N. Wavelet 

mother applied was the Coiflets 2. Load was applied as a punctual force on the center 

of the beam at node 51. The d1-index used was the median value through the boxplot. 

 
(a) 

   
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.16. Test of influence of wavelet decomposition level ‘’J’’ with damage on 

elements (a) 25 and (b) 76 for a Simply supported Beam; (c) 25 and (d) 76 for a 

Cantilever Beam; and (e) 25 and (f) 76 for a Double-Clamped Beam. 

 

       From the analysis it is noted that for higher levels of ‘’J’’, the method loses 

precision on determining the probable damage region. In Figure 5.16 (a), for a J=1 the 

damage is well seen at element 25 with marginal influence of the function near the 

support. In the same graphic but for J=2, there is an indication at element 25 but the 

function has higher values of d1-index near the support. For J=3 the analysis is poorer, 

where the index determines a probable region of damage between elements 5 and 30. 

The same is observed for Figures 5.16 (b,c,e,f), with the exception for (d) which is not 

able to detect damage but due to the bending moment of the beam. 

       To investigate the effectiveness of the ‘’J’’ level on the near-supports region, 

Figure 5.17 repeats the same analysis from the previous graphic but for damaged 

elements being 5 and 96. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.17. Test of influence of wavelet decomposition level ‘’J’’ with damage on 

elements (a) 5 and (b) 96 for a Simply supported Beam; (c) 5 and (d) 96 for a 

Cantilever Beam; and (e) 5 and (f) 96 for a Double-Clamped Beam. 
 

       It is observed that the d1-index gives accurate damage detection readings but with 

the same comments of Figure 5.16. A new aspect is that for damage near supports, 

there is some confusion between the damage on the element itself and the 

appearance of the d1-index near the support as observed before. 
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The comparison between decomposition levels showed that a higher level of J 

does not localize damage with the precision of lower levels. The analysis shows that 

the J=1 decomposition level presented the best results, since for decomposition levels 

greater than 1, the d¹-index distribution becomes scattered. 

5.2.2.4 Wavelet Mother Type 

In sequence, a study regarding the type of the wavelet mother was conducted. 

Katunin et al. (2021) states that damage detection regarding sensitivity and accuracy 

are strongly dependent on the wavelet mother type. As exposed on chapter 2.4, a 

wavelet is a windowing technique with variable sized regions. There are many types 

of wavelet mother type, also called families: haar, daubechies, coiflets, symlets and 

many others. Figure 5.18, 5.19 and 5.20 present a wavelet mother type analysis for a 

simply supported, a cantilever and a double-clamped beam respectively. Four wavelet 

mother types are compared, for a beam damaged on element 25. The force is applied 

at the center of the beam on node 51. Wavelet decomposition level was set J=1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.18. Wavelet mother type comparison for a simply supported beam with 

damage on element 25 for (a) haar, (b) coif2, (c) db5 and (d) sym8. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.19. Wavelet mother type comparison for a cantilever beam with damage on 

element 25 for (a) haar, (b) coif2, (c) db5 and (d) sym8. 

 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.20. Wavelet mother type comparison for a double-clamped beam with 

damage on element 25 for (a) haar, (b) coif2, (c) db5 and (d) sym8. 
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       Results shows greater precision for the Coiflets 2, regarding damage identification 

and localization, while for the other mother waves each had its disadvantages. Symlet 

8 produced good results but with heavy influence of the supports, having d1-index 

coefficients on the near-edge region higher than at the actual damage location. The 

Daubechies 5 also presented the near-edge problem, but with lower intensity. While 

for Haar, localization was imprecise being unsuccessful to determine damage location. 

        Coiflets 2 was the wavelet mother type which presented the best results, this 

being the one which developed the clearest readings on the damaged element. At the 

same time, this wavelet mother presented the results with the lowest coefficients of 

the d1-index values on the near-supports region.  

5.2.2.5 Boundary Conditions Influence on the Coefficients Near the 
Supports 

This section presents a study of influence of the support type of the beam. 

Wavelet decomposition level and wavelet mother type have shown great influence on 

how the function develops on this region.  

Figure 5.21 presents damage identification and detection for near-supports region 

for the three different types of boundary conditions. The Wavelet mother is Coiflets 2 

with DWT decomposition at J=1. Load is applied as a punctual force on nodes 5, 25, 

51, 77 and 97. Two cases of damage are investigated, on element 5 and 25. As one 

can see, Figure 5.21 shows damaged element is quite well identified and localized, 

regardless the kind of support. A very small coefficient peak appears at the wrong 

localization for a simply supported case, Figure 5.21 (b), but the damage localization 

is clear. For a double-clamped case (Figure 5.21 e and f), the identification and 

localization are even better, no spurious peak is seen. In the case of the cantilever 

beam, Figure 5.21 (c and d), the spurious peaks are in those cases whose load is out 

of the damaged stretch, as said in the previous section.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.21. Comparison of boundary conditions influence on the d1-index 

coefficients with damage on elements (a) 5 and (b) 25 for a Simply supported; (c) 5 

and (d) 25 for a Cantilever; and (e) 5 and (f) 25 for a Double-Clamped Beam. 

5.2.2.6 Multiple Damaged Elements 

This section analyzes the cases involving two simultaneous damaged elements. 

Figures 5.22 exhibits the damage identification and localization for a double-clamped 

beam damaged at different elements at once. The degree of the severity of the 

damage is also different. Five different beams set are studied: (a) case 1: 15% damage 
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on element 25 and 35% on element 76; (b) case 2: 35% damage on element 25 and 

15% on element 76; (c) case 3: 10% damage on element 25 and 10% on element 76; 

(d) case 4: 10% damage on element 25 and 15% on element 76; (e) case 5: 10% 

damage on element 50 and 40% on element 96. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.22. Damage localization for double-clamped beam with multiple 

damaged elements. (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case5. 

 

 From the observations a pattern is not distinguished, despite the fact that the 

damaged element is successfully identified and localized in most cases, except for the 

result presented by Figure 5.22 (e) where the peaks are not seen proportional to the 

damage imposed to the element. For instance, the damage of 10% imposed to 

element 50 barely appears. For this research, further investigations consider a single 

damaged element at a time. 
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5.2.2.7 Distributed Loads 

The same analysis conducted on section 5.2.1 is now presented for Distributed 

loads, for the three analyzed beams. The load, 1 Newton per meter, was distributed 

along the 100 elements. Damage was defined on element 76 with a severity of 10%. 

Figure 5.23 presents damage localization on both elements 25 and 76 for a simply 

supported, a cantilever and a double-clamped beam. The results show great precision 

on damage localization, as found during concentrated load investigations. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.23. d1-index damage localization for distributed loads for a simply 

supported beam with damage on elements (a) 25 and (b) 76; and for a cantilever at 

elements (c) 25 and (d) 76; and for a double-clamped beam at (e) 25 and (f) 76. 
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5.3 Modal Analysis 

This section presents the dynamic part of the investigation, based on the mode 

shapes of the structure. 

The current approach for identifying and locating damage was also used in modal 

analysis, where the vibration patterns of both damaged and non-damaged beams 

were utilized to calculate the d1-index. 

The FEM followed the same discretization of the static analysis is used. On the 

other hand, no external loads were necessary for the analysis, the distribution of 

coefficients was presented based on element numbers and mode shapes. The 

methodology focused on the first five vibration mode shapes, using wavelet mother 

Coiflets 2, decomposed at level J = 1.  

5.3.1 Mode Shapes Analysis 

The structure of this section disposes three sub-sections for each beam, while 

containing the results of the follow analysis for identification and localization of the 

damaged element:  

i. The influence of the support types; 

ii. The influence of the baseline; 

iii. Influence the mode shape 

iv. Elements 5, 25, 50, 76 and 96 were the damaged element considered for 

the analyses; 

5.3.1.1 Simply Supported Beam 

Figure 5.24 presents the first five mode shapes for the simply supported beam. 

It presents the results for the complete range of damage severity of this research. 

Damaged element simulated was the 76. It is noted that the curves had no impact in 

their shapes, regardless how much the damage severity is. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.24. Simply supported beam (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th, mode 

shapes for a damage severity range from 0% to 50%; (f) 5th mode shape 

approximated peak. 

 

 Figure 5.25 presents the first five modes but varying the damaged element. 

Damage was kept at 10% severity. It is observed through the results that the location 

of the damage is also unimportant for the mode shapes. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.25. Simply supported beam (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 5th, mode 

shapes for five different damaged element locations; (f) 5th mode shape 

approximated peak. 

 

Damage localization is presented in Figure 5.26. Damage severity was kept 10%. 

It shows that, as well as for the static analysis, this method is capable to identify and 

locate damage with great precision independent of the analyzed mode shapes and 

damage location. All mode shapes were able to locate the correct position of damage. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.26. Damage localization for the Simply supported beam for damaged 

elements (a) E5, (b) E25, (c) E50, (d) E76, (e) E96. 

 

The investigation of the effectiveness of the baseline on the damage identification 

and localization was also made for the modal analysis. Figure 5.27 presents damage 

localization without the baseline.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.27. Non-baseline damage localization for the Simply supported beam 

for damaged elements (a) E5, (b) E25, (c) E50, (d) E76, (e) E96. 

 

The results for the simply supported beam show that the absence of a baseline 

do not result into a conclusive analysis, as seen on Figure 5.27. On the other hand, 

the method is very effective when using a baseline, as presented on Figure 5.26. So, 

the use of a baseline enabled the identification and localization of damage for all the 

mode shapes analyzed. 
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5.3.1.2 Cantilever and Double-Clamped Beams 

This section presents damage identification and localization for a simply 

supported based on mode shapes. Figure 5.28 (a,c) dispose the first mode shapes for 

the cantilever, while Figure 5.28 (b,d) for the double-clamped beam. From the 

analysis, one observes that damage severity does not affect the results, as well as 

damaged element location. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.28. Vibration mode shapes (a and c) 1st mode for the cantilever beam. 

(b and d) 1nd mode for the double-clamped beam. 

 

Moving on, Figure 5.29 disposes the damage localization with a damage severity 

of 10%. As for the simply supported, it shows that the method is capable to locate 

damage with good precision independent of the mode shapes analyzed and damage 

location. For all vibration mode shapes, d¹-index was able to locate the correct position 

of damage with precise peaks and did not present the edge-effect near the supports. 

An advantage that must be noted is, since no loads are required to produce modal 
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analysis the d¹-index distribution did not show any spurious peak due to the load 

positioning, as found in the static case for punctual loads.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.29. Damage localization for the Cantilever beam for damaged 

elements (a) E5, (b) E25, (c) E50, (d) E76, (e) E96. 
 

Finally, Figure 5.30 presents the damage localization results for the Double-

clamped beam. As before mentioned for the cantilever beam type, it has great 

precision independent of the analyzed mode shapes and damage location.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.30. Damage localization for the Double-Clamped beam for damaged 

elements (a) E5, (b) E25, (c) E50, (d) E76, (e) E96. 

 

Results obtained with the mode shapes analysis on the double-clamped beam 

follow the same aspects of the ones of the simply supported and the cantilever. 

Damage localization with great precision and independent of the variables involved. 
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6 RESULTS OF DAMAGE QUANTIFICATION 

This section presents a study on the damage severity and its relationship with 

proposed index d²-index. To achieve our results a new index, called d²-index, was 

figured out, ranging the damage severity from 5% up to 50% for each kind of the 

support beams. 

6.1 d2-index Damage Quantification 

6.1.1 Concentrated Loads 

This section presents damage quantification to the beams subjected to static 

concentrated loads.  

Tables 6.1-6.3, present the d2-index, see Equation (4.2), for a cantilever beam. 

The d2-index is constructed as a ratio between ( )
2

0dd d−  and  ( )
2

max 0d d− , where dd is 

the DWT coefficient of the damaged beam, d0 is the same but for an intact beam, and 

dmax is the same but for the maximum severity of 25%. As previous analysis, damage 

is set for elements 5, 25, 50, 76 and 96. Concentrated loads were applied on nodes 6, 

26, 51, 77 and 97. The aim of this study is to investigate the correlation between the 

d2-index coefficients, the damaged element and the load location so to create a 

correlation with the d2-index and the damage severity (ds).   

Tables 6.1-6.3 exhibit these coefficients for a damage severity of 5%. Meanwhile, 

damage quantification considers a damage interval of 5% to 25% to build the function.  

 

Table 6.1. Squared wavelet coefficients variation ( )
2

0dd d−  for a cantilever 

beam with 5% damage. 

 

Element n# 
Load location (Node) 

6 26 51 77 97 

E5 2.8369E-23 6.6207E-20 3.3191E-19 8.2021E-19 1.3436E-18 

E25 6.9994E-39 2.8369E-23 1.0254E-19 4.1905E-19 8.0815E-19 

E50 5.4069E-37 2.7181E-34 9.6394E-23 1.3402E-19 4.0901E-19 

E76 4.0182E-40 2.3137E-37 3.1494E-36 9.6394E-23 8.0688E-20 

E96 1.7339E-37 9.3529E-35 1.2261E-33 5.2350E-33 8.0795E-22 
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Table 6.2. Squared maximum wavelet coefficients variation ( )
2

max 0d d−  for a cantilever 

beam with 5% damage. 

 

Element n# 
Load location (Node) 

6 26 51 77 97 

E5 1.1379E-21 2.6957E-18 1.3313E-17 3.2900E-17 5.3895E-17 

E25 2.9273E-38 1.1379E-21 4.1131E-18 1.6809E-17 3.2416E-17 

E50 4.7980E-37 2.6063E-34 3.8665E-21 5.3758E-18 1.6406E-17 

E76 5.5444E-38 3.0164E-35 4.0004E-34 3.8665E-21 3.2365E-18 

E96 3.2930E-39 1.7893E-36 2.3215E-35 9.5634E-35 3.2402E-20 

 

It is noted that coefficients have a small magnitude, varying from E-17 to E-40. 

The hatched area highlights the cases where the part of the cantilever beam whose 

shear stress and bending moment do not cause any displacement. It is noted that, the 

wavelet coefficients are almost zero for the cases with damage applied in element 50 

when the loads are out of the stretch (nodes 6 and 26). 

Table 6.3 presents the d2-index ratio between the values of Tables 6.1 and 6.2. 

It shows only the values correspondent to the detectable damage zone, where the 

load is applied after the damaged element. It is noted that constant values are 

obtained. This behaviour was found to all damage severities from 5% to 50%. Higher 

values were found proportional to higher severities values. Further, d2-index was seen 

not affected by the damaged element position. It is observed that the index is affected 

only by the damage severity. 

 

Table 6.3. d2-index values ( )
2

0dd d− / ( )
2

max 0d d−  for a cantilever beam with 5% 

damage. 

 

Element n# 
Load location (Node) 

6 26 51 77 97 

E5 2.4931E-02 2.4931E-02 2.4931E-02 2.4930E-02 2.4930E-02 

E25  2.4931E-02 2.4930E-02 2.4930E-02 2.4931E-02 

E50    2.4931E-02 2.4930E-02 2.4931E-02 

E76     2.4931E-02 2.4931E-02 

E96     2.4931E-02 
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The same approach was conducted for the other two types of beams: double-

clamped and the simply supported. Interestingly, the calculated d2-index was almost 

the same for the three beam types, despite the squared wavelet coefficients ( )
2

0dd d−

and ( )
2

max 0d d−  being different. The d2-index values, again, were not influenced by the 

location of the load application. The double-clamped beam is the only one, whose d²-

index values, showed marginal differences, but still very slightly. Tables 6.4 and 6.5 

present the adapted d2-index values for the double-clamped and the simply supported, 

respectively.  

 

Table 6.4. d2-index values ( )
2

0dd d− / ( )
2

max 0d d−  for a simply supported beam with 5% 

damage. 

Element n# 
Load location (Node) 

5 25 51 77 97 

E5 2.4930E-02 2.4930E-02 2.4930E-02 2.4930E-02 2.4930E-02 

E25 2.4931E-02 2.4930E-02 2.4930E-02 2.4930E-02 2.4931E-02 

E50 2.4930E-02 2.4930E-02 2.4931E-02 2.4931E-02 2.4931E-02 

E76 2.4931E-02 2.4930E-02 2.4930E-02 2.4930E-02 2.4931E-02 

E96 2.4931E-02 2.4931E-02 2.4931E-02 2.4931E-02 2.4930E-02 

 

Table 6.5. d2-index values ( )
2

0dd d− / ( )
2

max 0d d−  for a double-clamped beam with 5% 

damage. 

Element n# 
Load location (Node) 

5 25 51 77 97 

E5 2.5421E-02 2.5422E-02 2.5420E-02 2.5421E-02 2.5420E-02 

E25 2.5180E-02 2.5180E-02 2.5294E-02 2.5182E-02 2.5181E-02 

E50 2.5069E-02 2.5069E-02 2.5073E-02 2.5073E-02 2.5074E-02 

E76 2.5189E-02 2.5192E-02 2.5271E-02 2.5181E-02 2.5180E-02 

E96 2.5405E-02 2.5404E-02 2.5403E-02 2.5403E-02 2.5405E-02 

 

 The analysis of these results need attention. Cantilever damage quantification 

table, Table 6.3, has a singularity due to bending moment where some damage 

locations cannot be correctly pointed depending on the load location. Cantilever and 

simply supported beams have d2-index values of almost the same magnitude 

independent of load location, ~2.49E-2. The double-clamped beam also has very 

similar values independent of the load location but have a slightly variation on its 

coefficients, and has a different value of ~2.52E-2.   
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 Furthermore, Table 6.5 shows very small difference in the d2-index regarding 

the double-clamped, which leads to the calculation of the maximum (d2
max) and 

minimum (d2
min) values, as well as the mean average (d2

avg). For the double-clamped, 

the greatest variation percentage was noticed to be 1.4%, observed for the lowest 

values of damage severity. For the simply supported and the cantilever beams, only 

residual values were observed.   

Figure 6.1 (a, b and c) presents the damage quantification curve for the 

cantilever, the simply supported and the double-clamped, respectively. It relates 

damage severity (ds) (x-axis) and the damage index (y-axis), for the three beam 

support types with concentrated loads for an interval of damage severity between 5% 

to 25%. The function for all beams has an ax3+bx2+cx form. It is observed, for the three 

cases that the function is not affected by the boundary conditions, but only the load 

magnitude and the displacement value itself.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.1. Relationship of damage severity and d2-index for the (a) cantilever, (b) 

simply supported, and the (c) double-clamped beam, under concentrated loads. 
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6.1.2 Distributed Loads 

 

The same analysis of the previous section is carried out, but for distributed loads 

this time. The load magnitude was 1 Newton per meter. Unlike for the concentrated 

load analysis, the d2-index values were only observed on the damaged element, 

independent of the beam type. On the other hand, values for intact elements were 

found null.  

Figure 6.2 exhibits the damage quantification curves for the three beam types 

under distributed loads, where the x-axis represents the damage severity and the y-

axis, the d2-index.  
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 6.2. Relationship of damage severity and d2-index for the (a) cantilever, (b) 

simply supported, and the (c) double-clamped, under distributed loads. 

 

The same pattern is observed from the concentrated load analysis. The best fit is 

again a 3th degree polynomial equation, ax3+bx2+cx. The same result was observed 

on the concentrated loads analysis.  
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6.1.3 Vibration Mode Shapes 

 

The investigation was furthered using the d²-index coefficients to obtain the 

damage severity for modal analysis. The d2-index was investigated for the first five 

mode shapes. Again, the same characteristics of previous sections were observed, 

however, a slight increase of the d2-index values was noted as the mode shapes 

increases. Moreover, independent of damage severity, the difference ratio between 

the maximum and minimum d2-index values was found to be about 1%. The minimum 

value was obtained in the 1st mode shapes and the maximum from the 5th mode. 

Figure 6.3 exhibits the damage quantification curves for the three beams’ support 

types, based on mode shapes. The x-axis represents the damage severity and the y-

axis, the d2-index. The third order polynomial precisely fit the quantification curves. 

Different from the static analysis of both previous sections, d2-index functions for the 

cantilever and the simply supported were not found to be similar. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.3. Relationship of damage severity and d2-index for the (a) cantilever, (b) 

simply supported, and the (c) double-clamped beam, from mode shapes. 
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From these observations, damage quantification needs further investigation 

regarding its calculation and analysis. Results from of damage quantification for a 

static analysis, for concentrated and distributed loads are presented in Figures 6.1 and 

6.2, respectively, while for a modal analysis, in Figure 6.3. Table 6.6 disposes the 

coefficient values of these polynomials. It shows that the best results were found with 

a third order degree function. It also compares results obtained for other polynomial 

formats, from 2nd to 4th orders.  

 

Table 6.6. Polynomial degree influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Punctual 

Load 

Double-Clamped ax3+bx2+cx+d 4.027E-5 5.174E-4 1.869E-3 1 

ax3+bx2 3.475E-5 7.281E-4 n/a 0.999 

ax3 6.615E-5 n/a n/a 0.989 

ax2 1.513E-3 n/a n/a 0.981 

ax2+bx 1.962E-3 9.756E-3 n/a 0.977 

Simply Supported ax3+bx2+cx 4.123E-5 4.9E-4 1.948E-3 1 

Cantilever ax3+bx2+cx 4.123E-5 4.9E-4 1.948E-3 1 

Double-Clamped ax3+bx2+cx 3.943E-5 5.41E-4 1.801E-3 1 

Distributed 

Load 

Simply Supported ax3+bx2+cx 4.123E-5 4.9E-4 1.948E-3 1 

Cantilever ax3+bx2+cx 4.123E-5 4.9E-4 1.948E-3 1 

Double-Clamped ax3+bx2+cx 3.899E-5 5.534E-4 1.766E-3 1 

Modal 

Simply Supported ax3+bx2+cx 3.882E-5 5.583E-4 1.749E-3 1 

Cantilever ax3+bx2+cx 3.982E-5 5.3E-4 1.834E-3 1 

Double-Clamped ax3+bx2+cx 3.899E-5 5.534E-4 1.766E-3 1 

 

 It is observed that a third-degree order, y=ax3+bx2+cx function is capable of 

predicting the severity of damage with great precision for the range of damage 

investigated. Further, no complex functions were needed to fit the relationship 

between the damage severity and the d²-index.  

Figure 6.4 presents a comparison on the damage quantification curves obtained 

on each case of analysis (concentrated and distributed loads, and modal) for the 

analyzed beams. Note that each modal curve contains all first five vibration mode 



 

104 

shapes for all the damaged cases studied, while the concentrated and the distributed 

loads, also are constituted of all cases of load position versus damage location. 

 

(a) 

 

(b) 

 

(c) 

Figure 6.4. Damage quantification analysis over each type of load or mode shapes 

for the (a) cantilever, (b) simply supported, and the (c) double-clamped beam. 

 

It is observed that the functions for each case (concentrated and distributed loads, 

and modal) and each beam (cantilever, simply supported and double-clamped) 

behave pretty much the same with coefficients varying only on the fifth or the sixth 

order of each, while each coefficient were found with the value: a=3.92E-5; b=5.4E-4; 

c=1.9E-3; R=1. 

6.1.4 Influence of the Beam Material (Elasticity Module) 

 

Previous results show a high level of similarity between the damage quantification 

curves, for all beam types analyzed. Factors such as damage localization, damage 

severity, wavelet mother type, wavelet decomposition level and even the analysis type 
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(static and modal) did not influence these quantification functions at all. Thus, a study 

on the alteration on the beam material is presented. 

This section investigates the influence on the d2-index for damage quantification 

regarding the material of the beam. Two types were investigated: steel (200 GPA) and 

aluminum (70 GPA). Table 6.7 presents the damage quantification curve coefficients 

for a double-clamped beam with damage on element 76 for a static analysis data. A 

DWT Coiflets 2 at j=1, with baseline was used; F=1 Newton. 

 

Table 6.7. Elasticity Module influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Static Double-Clamped Steel 4.123E-5 4.9E-4 1.948E-3 1 

Aluminum 4.123E-5 4.9E-4 1.948E-3 1 

 

The analysis presents two exactly the same damage severity prediction functions. 

The results show that the elasticity module does not influence the d2-index damage 

quantification calculations. 

6.1.5 Influence of Other Parameters Investigation 

 

From the observations throughout this chapter, damage quantification needs 

further investigation regarding its calculation and analysis. Interestingly, for a static 

analysis the same functions have been found for the cantilever and the simply 

supported, while for a modal analysis, this did not happen. The double-clamped beam 

behaved properly independently. 

Therefore, as conducted for the d1-index, in section 5.2.2, an investigation on the 

influence of some parameters involved were also analyzed for the d2-index. 

The variation of the polynomial degree of the damage severity prediction curves 

is presented in Table 6.6. Meanwhile, the variation of the material of the beam, is 

presented in Table 6.7. 

Other parameters are shown in following Tables 6.8 up to Table 6.13, which 

present the wavelet mother type and its decomposition level, the load location, mode 

shapes and the normalization of the curve, respectively. 
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Table 6.8. Wavelet Mother influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Static Double-Clamped coif2 4.024E-5 5.180E-4 1.867E-3 1 

sym8 4.035E-5 5.152E-4 1.875E-3 1 

db5 3.991E-5 5.276E-4 1.839E-3 1 

Modal coif2 4.053E-5 5.099E-4 1.89E-3 1 

sym8 4.054E-5 5.097E-4 1.891E-3 1 

db5 4.061E-5 5.078E-4 1.896E-3 1 

Static Simply Supported coif2 4.123E-5 4.9E-4 1.948E-3 1 

sym8 4.123E-5 4.9E-4 1.948E-3 1 

db5 4.123E-5 4.9E-4 1.948E-3 1 

Modal coif2 4.087E-5 5.003E-4 1.918E-3 1 

sym8 4.087E-5 5.003E-4 1.918E-3 1 

db5 4.084E-5 5.012E-4 1.916E-3 1 

Static Cantilever coif2 4.123E-5 4.9E-4 1.948E-3 1 

sym8 4.123E-5 4.9E-4 1.948E-3 1 

db5 4.123E-5 4.9E-4 1.948E-3 1 

Modal coif2 4.120E-5 4.909E-4 1.945E-3 1 

sym8 4.120E-5 4.909E-4 1.945E-3 1 

db5 4.128E-5 4.883E-4 1.964E-3 1 

 

Table 6.9. Decomposition Level influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Static Double-Clamped 

 

 

 

Double-Clamped 

j=1 with F51 4.019E-5 5.195E-4 1.862E-3 1 

j=2 with F51 4.019E-5 5.195E-4 1.862E-3 1 

j=3 with F51 4.019E-5 5.195E-4 1.862E-3 1 

j=1 with F77 4.027E-5 5.175E-4 1.868E-3 1 

Modal j=1 with vibmod1 4.053E-5 5.099E-4 1.890E-3 1 

j=2 with vibmod1 4.053E-5 5.099E-4 1.890E-3 1 

j=3 with vibmod1 4.053E-5 5.099E-4 1.890E-3 1 

j=1 with vibmod2 3.959E-5 5.365E-4 1.813E-3 1 

j=2 with vibmod2 3.959E-5 5.365E-4 1.813E-3 1 
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Table 6.10. Load and Damage Localization influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Static Double-Clamped E5N5 3.943E-5 5.411E-4 1.8E-3 1 

E5N25 3.942E-5 5.421E-4 1.798E-3 1 

E5N51 3.941E-5 5.416E-4 1.799E-3 1 

E25N5 4.031E-5 5.163E-4 1.871E-3 1 

E25N25 4.031E-5 5.163E-4 1.873E-3 1 

E25N51 4.019E-5 5.195E-4 1.862E-3 1 

Simply Supported E5N5 4.123E-5 4.9E-4 1.948E-3 1 

E5N25 4.123E-5 4.9E-4 1.948E-3 1 

E5N51 4.123E-5 4.9E-4 1.948E-3 1 

E25N5 4.123E-5 4.9E-4 1.948E-3 1 

E25N25 4.123E-5 4.9E-4 1.948E-3 1 

E25N51 4.123E-5 4.9E-4 1.948E-3 1 

Cantilever E5N5 2.379E-2 -1.474 21.84 0.669 

E5N6 4.123E-5 4.9E-4 1.948E-3 1 

E5N51 4.123E-5 4.9E-4 1.948E-3 1 

E5N97 4.123E-5 4.9E-4 1.948E-3 1 

E25N51 4.123E-5 4.9E-4 1.948E-3 1 

E25N97 4.123E-5 4.9E-4 1.948E-3 1 

 

Table 6.11. Function Normalization influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Static 

 

 

Modal 

 

 

Double-Clamped coif2 3.636E-22 4.179E-21 1.866E-20 1 

sym8 5.049E-22 5.802E-21 2.591E-20 1 

db5 3.338E-22 3.836E-21 1.713E-20 1 

coif2 9.235E-13 1.252E-12 4.562E-11 1 

sym8 5.867E-13 7.948E-12 2.899E-11 1 

db5 2.455E-13 3.329E-12 1.213E-11 1 
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Table 6.12. Mode shapes influence on damage quantification. 

Analysis Beam Parameter 

Function coefficients 

(y=ax3+bx2+cx) 

a b c R 

Modal Double-Clamped mode 1 4.053E-5 5.099E-4 1.890E-3 1 

mode 2 3.959E-5 5.365E-4 1.813E-3 1 

mode 3 3.873E-5 5.610E-4 1.744E-3 1 

mode 4 3.818E-5 5.765E-4 1.7E-3 1 

mode 5 3.896E-5 5.544E-4 1.763E-3 1 

5 modes 3.899E-5 5.534E-4 1.766E-3 1 

Simply Supported mode 1 4.087E-5 5.003E-4 1.918E-3 1 

mode 2 3.922E-5 5.469E-4 1.784E-3 1 

mode 3 3.881E-5 5.589E-4 1.744E-3 1 

mode 4 3.932E-5 5.441E-4 1.792E-3 1 

mode 5 3.866E-5 5.627E-4 1.739E-3 1 

5 modes 3.882E-5 5.583E-4 1.749E-3 1 

Cantilever mode 1 4.120E-5 4.909E-4 1.945E-3 1 

mode 2 4.074E-5 5.039E-4 1.907E-3 1 

mode 3 3.981E-5 5.302E-4 1.831E-3 1 

mode 4 3.962E-5 5.357E-4 1.816E-3 1 

mode 5 3.947E-5 5.4E-4 1.803E-3 1 

5 modes 3.982E-5 5.3E-4 1.834E-3 1 

 

 Tables 6.8-6.13 show that the variation of the parameters do not influence at all 

the quantification curve results. Noticed variations are far too small to be considered 

alterations on the functions. Although, the double-clamped beam showed to be more 

sensitive to some of these alterations. 

From the damage quantification regarding the static analysis data, the cantilever 

and the simply supported developed the same functions, while the double-clamped 

produced slightly lower coefficients. Additionally, the only beam sensitive to load 

location and the wavelet mother was also the double-clamped. From the vibration 

modes, each beam developed a unique function, while the highest coefficients were 

observed for the cantilever. 
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7 CONCLUSION 

This research investigated the potential of a DWT-based damage localization and 

quantification procedure. The proposed approach consists in examining the DWT 

coefficients of damaged and undamaged beams. Two d-indexes were proposed: d1-

index for damage localization an d2-index for quantification. The indexes were able to 

detect the probable region of damage and also predict the curve of damage severity.  

Three types of beams were studied: simply supported, cantilever and double-

clamped beam. The displacement was the function of choice for damage localization 

on this research, while for the modal analysis were the vibration mode shapes. 

Different structures yielded different structural displacement behavior, although 

the d1-index method was able to localize damage on these diverse scenarios. As well 

as this detail, other parameters which influence damage detection were also studied. 

This investigation explored the parameters of load location, damage severity, wavelet 

decomposition level, wavelet mother type and the influence of the beam boundary 

conditions on damage reading on the near-supports region.  

The first parameter analyzed was the Load location. The d1-index was able to 

detect and localize damage on all beam types, with an exception for the cantilever 

beam at some specific cases due to the bending moment and shear stress. 

Meanwhile, the use of mode shapes also resulted into a precise damage localization. 

The damage severity showed to not influence results, revealing a great 

sensitiveness to the method. Damage was varied from 5% to 50%. Best quantification 

results were presented with a maximum severity of 25%. Multiple damaged elements 

were also investigated. It developed inconclusive results while peaks were not seen 

proportional to the damage imposed to the element, needing further research. 

The wavelet mother type and the decomposition level showed to be very influent 

on damage detection. The best readings were obtained with J=1, since for levels 

greater than 1, signal dispersion occurs. While for the mother type, best results were 

observed with the use of the Coiflets 2. The other wavelet types studied were heavily 

influenced by the near-supports region and hence developed high peaks of 

coefficients on this areas, harming the results. 
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The use of a baseline function showed for both localization and quantification it is 

of significant importance to calculate the wavelet coefficients, while in its absence 

spurious peaks were observed. Baseline-free results were inconclusive. 

For damage localization, both static and dynamic regimes produced precise 

results.The proposed method showed great potential on damage detection for diverse 

beam types, with accuracy and not dependent of severe damage appearances, having 

a great sensitiveness.  

Deepening on the Damage Quantification, the polynomial degree of the curve, the 

beam material and the normalization of the functions were also matter of study. The 

first, produced the best results with third order degree functions. The elasticity module 

variation did not influence an inch on results.  

The d2-index quantification was adimensionalized by the maximum damage 

severity of 25%. This normalization by the maximum damage created quantification 

function coefficients very similar independent of the beam analyzed. For various 

cases, the coefficients were found exactly the same, while for others a slight difference 

was found on the seventh decimal place. This similarity was also noted for all load 

types investigated, while producing similar results for both static and dynamic analysis.  

The damage functions were observed to be only responsive to the severity 

degree, while other variables such as load type, load location, analysis type, wavelet 

mother, wavelet decomposition level and beam material did not influence it. All results 

were approximated by a third order degree polynomium. 

 In general, the d1-index and the d-2index approach produced precise results. 

Both being able to localize of quantify damage independent of the boundary conditions 

and the parameters of the investigation. An optimum set was noticed for a specific 

level of J and mother type, but aside from this, the method works fine independent of 

any configuration. Notice that the baseline value is mandatory for reliable results. 

For the continuation of this research some possibilities are open: furthering the 

multiple damage analysis to comprehend proportional damage; the quantification 

cuves similarity; 2d and 3d structures; the use of STFT instead of WT; the use of 

factorial planning; experimental campaign and the adition of noises.  
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APPENDIX A. TABLE OF MAXIMUM DEFLECTION 

 

Table A1. Maximum deflection and elastic line of the investigated beams. 

 

Case Beam Load Type Max Deflection 

 

 
Simply Supported 

Concentrated 
3

48

Pl
y

EI
=  

 

 

Distributed 
45

384

Pl
y

EI
=  

 

 
Cantilever 

Concentrated 
3

3

Pl
y

EI
=  

 

 

Distributed 
4

8

Pl
y

EI
=  

 

 
Double-Clamped 

Concentrated 
3

192

Pl
y

EI
=  

 

 

Distributed 
4

384

Pl
y

EI
=  

* illustrations are an adaptation from Schiel (1976). 
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