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Agradeço à Fundação Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - CA-
PES, pelo aux́ılio financeiro, crucial para o densenvolvimento do presente trabalho.

v



Resumo
Teoria da informação aplicada à simulação numérica de plasmas de tokamaks na transição
do baixo para o alto confinamento

A turbulência exerce influência significativa sobre o transporte radial na região de borda dos plas-
mas no interior de tokamak, um fator cŕıtico no confinamento magnético para experimentos de
fusão. Apesar do seu impacto substancial, a compreensão da turbulência neste contexto perma-
nece limitada. Estruturas coerentes são fundamentais no domı́nio do transporte turbulento dentro
de plasmas de fusão. A entropia e a complexidade, derivadas da teoria da informação, servem
como uma ferramenta valiosa para quantificar o ńıvel de ordem ou desordem em plasmas turbu-
lentos. Notavelmente, essas estruturas coerentes contribuem para a observação de baixos valores
de entropia espectral em dados obtidos de plasmas espaciais e simulações numéricas de turbulência
magnetohidrodinâmica.

Nesta análise, nos concentramos em simulações numéricas bidimensionais das equações modificadas
de Hasegawa-Wakatani, que fornecem um modelo não linear simplificado para turbulência de ondas
de deriva resistivas eletrostáticas em plasmas, constrúımos um diagrama de bifurcação que ilustra
a transição de um regime turbulento para um dominado por fluxos zonais, suprimindo efetivamente
a turbulência. Para avaliar o ńıvel de ordem ou desordem espacial durante esta transição, calcu-
lamos o ı́ndice de complexidade-entropia de Jensen-Shannon da velocidade, derivado do potencial
eletrostático. Este ı́ndice usa a potência normalizada dos coeficientes de shearlet como distribuição
de probabilidade. As nossas descobertas revelam que o regime turbulento apresenta um maior grau
de entropia e um menor grau de complexidade, contrastando com o regime dominado por fluxos
zonais caracterizados por valores de entropia mais baixos e um maior grau de complexidade. Esses
resultados têm potencial para avançar nossa compreensão de processos não lineares na turbulência
de ondas de deriva em plasmas de fusão.

Palavras-chave: Plasma, teoria da informação, dinâmica não-linear, turbulência.
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Abstract

Turbulence exerts significant influence over radial transport in the edge region of tokamak plas-
mas, and is a critical factor in magnetic confinement for fusion experiments. Despite its sub-
stantial impact, our understanding of turbulence in this context remains limited. Coherent
structures are fundamental in the realm of turbulent transport within fusion plasmas. Entropy
and complexity, derived from information theory, serves as a valuable tool to quantify the level
of order or disorder in turbulent plasmas. Notably, these coherent structures contribute to the
observation of low spectral entropy values in data obtained from space plasmas and numerical
simulations of magnetohydrodynamic turbulence.

In this analysis, we focus on two-dimensional numerical simulations of the modified Hasegawa-
Wakatani equations, which provide a simplified nonlinear model for electrostatic resistive drift-
wave turbulence in plasmas. We construct a bifurcation diagram illustrating the transition from a
turbulent regime to one dominated by zonal flows, effectively suppressing turbulence. The degree
of spatial order or disorder during this transition is obtained by computing the Jensen-Shannon
complexity-entropy index of the velocity, derived from the electrostatic potential. This index uses
the normalized power of shearlet coefficients as a probability distribution. Our findings reveal
that the turbulent regime exhibits a higher degree of entropy and a lower degree of complexity,
contrasting with the regime dominated by zonal flows characterized by lower entropy values and
a higher degree of complexity. These results hold the potential to advance our understanding of
nonlinear processes within drift-wave turbulence in fusion plasmas.

Keywords: Plasma, information theory, nonlinear dynamics, turbulence.
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1 Introduction

Thermonuclear fusion refers to a reaction that commonly occurs in stars, such as the Sun,
and is regarded as a clean and safe solution to the growing energy demand as the global pop-
ulation evolves and finite resources such as fossil fuels are depleted (Dewhurst, 2010). In this
reaction, the nuclei fuse together, releasing energy. For this to occur an electrostatic barrier
must be overcome, due to the integration of attractive nuclear forces with the positively charged
nuclei, thus causing mutual electrostatic repulsion. The nuclear fuel is heated to high tempera-
tures and completely ionized. The resulting plasma can be then confined by means of a magnetic
field.

Maintaining the confinement of fusion plasmas is a major engineering challenge. A signif-
icant experimental breakthrough in the field of nuclear fusion research involved the detection
of a low-to-high (L-H) transition of plasma confinement (Wagner et al., 1982). This transition
markedly diminishes particle and energy losses from the core of magnetically confined plasma,
thereby enhancing the prospects for successful nuclear fusion. Subsequently, L-H transitions have
become commonplace observations in numerous contemporary tokamaks and stellarators. The
designs of advanced facilities such as International Thermonuclear Experimental Reactor (ITER)
place significant importance on achieving H-mode operation, largely influenced by these findings
(Pushkarev, 2013a).

One of the explanations the L-H transition involves the suppression of turbulence through
E⃗ × B⃗ flow shearing. This suppression effect can be attributed to mean E⃗ × B⃗ flows and/or
to zonal flows (Burrell, 1997). The theoretical characterization of the L-H transition and non-
linear turbulent states in fusion devices is a considerable challenge since this complexity arises
from the multitude of crucial physical parameters, scales of motion and intricate magnetic field
geometries (Krommes, 2012).

In the pursuit of enhanced plasma confinement, a profound understanding of the low-to-high
(L-H) confinement transition holds pivotal importance in the control of plasma within fusion
experiments. This transition is crucial as it elevates plasma confinement by mitigating the
effects of anomalous or turbulent plasma particles and heat fluxes. Notably, the emergence zonal
flows plays a fundamental role in achieving high-confinement regimes. These flows effectively
reduce anomalous transport by absorbing energy from drift waves and organizing eddies, thereby
mediating turbulent transport. (Diamond et al., 2005; Numata et al., 2007).

By utilizing a simplified model to describe turbulence in tokamak plasmas, we can under-
stand the L-H confinement transition as an outcome of the interaction among three energy
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subsystems: the kinetic energy associated with turbulence, shear flow, and potential energy re-
sulting from density or pressure gradients (Numata et al., 2007). This transition involve processes
such as turbulence generation through drift waves, destabilization, and the self-organization of
zonal flows, collectively leading to instabilities that represent a bifurcation of the equilibrium
solution. These instabilities can be categorized into primary instabilities originating from the
accumulation of potential energy that generates turbulence, secondary instabilities that sup-
port shear and zonal flows using the kinetic energy of turbulence, and tertiary instabilities that
destabilize both of these flow types (Numata et al., 2007).

The structure of this work unfolds as follows: It commences with a theoretical foundation in
Chapter 2, delving into the fundamental concepts of thermonuclear fusion and magnetic confine-
ment. This chapter provides insights into the workings and physics underpinning the Tokamak
mechanism designed for plasma confinement, with a dedicated section on the L-H transition.
Chapter 3 explores the definition of plasma and its interaction with an electromagnetic field,
elaborates on concepts such as turbulence and zonal flow, and presents the theoretical underpin-
nings of the Hasegawa-Wakatani model utilized. In Chapter 4, we present the tools for analyzing
plasma behavior as well as their implementation. Subsequently, Chapter 5 contains the results
and ensuing analyses. Finally, the report concludes in Chapter 6.

1.1 Objectives

1.1.1 General Objective

This work aims to characterize the degree of ordering of turbulent fusion plasma during its
transition from low-to-high confinement through two-dimensional numerical simulations of the
modified Hasegawa - Wakatani equations. We will apply information theory, more specifically
entropy and complexity, to quantify the degree of disorder in the spatial patterns in the numerical
simulations.

1.1.2 Specific Objectives

• To obtain the patterns of electrostatic potentials φ from the modified Hasega-Wakatani
equations for different α values.

• To calculate the 2D Fourier transform from the images obtained from the electrostatic
potential to generate the power spectrum of the transition for the x and y components of
the velocities.

• To obtain the values of total and zonal kinetic energy to distinguish the different regimes
of confinement.

• To calculate the normalized entropy of Shannon H(t) and the complexity of Jesen-Shannon
CJS .

• To construct bifurcation diagrams of the respective properties for the control parameter α
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and to analyze their behavior.

• To build the local entropy and the local complexity maps and the C-H plane.

• To analyze the obtained results and describe the transition regime.

3



2 Thermonuclear Fusion

2.1 Fusion Reaction

Nuclear fusion occurs naturally in stars and is responsible for energy production in the
sun (Graham, 2002). The process of nuclear fusion occurs when two light nuclei combine to
form a heavier nucleus, however the final mass of the resulting nucleus is slightly less than the
sum of the initial masses of the reacting nuclei, this is due to the conversion of mass into energy
released, this relation is explained by Einstein’s famous equation (Bittencourt, 2013)

E = mc2, (2.1)

where c represents the speed of light. For this reaction to take place, the ions or heavier reactant
nuclei need to have enough thermal energy to overcome the electrostatic repulsion arising from
the repulsive Coulomb forces and come close sufficiently to each other for the strong nuclear
force (responsible for binding the nucleons together inside the nucleus) attract them and then
fuse by means of quantum tunneling, or the tunnel effect (Kikuchi et al., 2012).

One of the most important fusion reactions occurs between the isotopes of hydrogen, deu-
terium (D) and tritium (T ), which fuse to form a Helium atom (4He), called the α particle,
releasing a neutron (n) and energy (Wesson and Campbell, 2004). Is described below

D + T −→ 4He+ n+ 17.6MeV. (2.2)

Conforming to Kikuchi et al. (2012), the energy released by a nuclear fusion reaction is
considerably greater than the energy from chemical reactions, since the binding energy, which
holds the particles together inside the atomic nucleus, is greater than the electron binding energy,
which holds atoms and molecules together.

In order to use this resource as an energy source and recreate it in a terrestrial environment,
it is necessary to generate a plasma from the reactant elements of the fusion at high temperatures
and confine it for long enough for the reactions to take place (Kikuchi et al., 2012). For Dolan
(2013b), this confinement can be accomplished in six different ways:

• Solid walls: Used for low-temperature plasma, these are contained by means of the recip-
ients to which they are confined, such as glass or metal tubes. For hot plasma, prolonged
contact with the walls cools them down and damages the boundary walls.
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• Gravity: A method of confinement that occurs in stars, in which they use their own
gravitational field to contain the plasma generated.

• Inertia: Fusion is obtained by means of micro-explosions of the reactant fuel induced by
laser or particle beams, these compress the fuel increasing the pressure and temperature,
the inertia then restricts the rate of expansion of the plasma confining it.

• Eletromagnetic waves: Used for low-pressure plasma, it uses radiofrequency and mi-
crowaves for containment. Electromagnetic waves can also be used to increase magnetic
confinement.

• Electrostatic fields: The plasma is confined by an electrostatic potential well generated by
an electric field, where the positive potentials repel the ions that are accelerated towards
the center of the fusion reactor, while the electrons are repelled by the negative potential
of the electrodes; usually polarized concentric spherical grids with high voltages are used
for this confinement.

• Magnetic fields: The confinement takes place by means of the magetic field, since the
Lorentz force (the result of the superposition of electromagnetic forces on a moving charged
particle) spreads the movement of electrons and ions around the field lines, preventing
the particles from penetrating it. This mechanism will be discussed in more detail in
section 2.2.

2.2 Magnetic Confinement

Magnetic confinement occurs through the interaction of the magnetic field with the charged
particles in the plasma. This mechanism restricts the movement of the particles across the field
lines, but allows them to move freely along them. This is due to the Lorentz force, F⃗ = qv⃗× B⃗,
which forces ions and electrons to spiral around these field lines (Conn, 2008).

According to Najmabadi and Prager (2007), part of the fusion problem lies in obtaining a
magnetic field configuration that effectively confines the plasma inside. To this end, the authors
defined three criteria that this configuration must meet in order to be considered successful:

1. The plasma must be in a state of equilibrium invariant in time;

2. This equilibrium must be macroscopically stable;

3. Energy losses from the plasma to the wall must be small.

For the plasma to be in equilibrium, magnetic forces must counteract the expansive pressure
force caused by the thermal energy of all present particles. Furthermore, this state of equilibrium
must be stable, meaning the plasma must return to its initial state even after experiencing small
disruptions. Conversely, an unstable plasma would not return to its initial state and would
escape the magnetic field after such disruptions.
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Finally, the stable equilibrium must be maintained indefinitely as long as the plasma’s energy
losses are balanced with the energy input into the system. If the losses are significant, achieving
ignition (the moment the fusion reaction becomes self-sustained) may not be possible, resulting
in energy diffusion along the magnetic field line, where energy is carried from the hot core to
the walls (Najmabadi and Prager, 2007).

In this manner, we can classify magnetic field configurations into two types based on their
geometry and topology: open linear configurations and closed toroidal configurations (Dolan,
2013b). In the case of open-type configurations, confinement occurs through the use of mirrors
and magnetic cusps, as shown in Figure 2.1.

Figure 2.1. Representation of magnetic mirrors (top) and spindle cusps (bottom), both
fields generated on the left by magnets and on the right by circular magnetic coils.

Source: (Dolan, 2013b)

The plasma ions are confined in the center of the magnetic mirrors. As they move towards
the coils, they experience an increase in field strength. In this region, the particle’s rotational
velocity component (v⊥0) increases while its parallel component (v∥0) decreases until it reaches
zero. Then, the particle is reflected back to the center, similar to a mirror effect (Dolan, 2013b).
The ions and electrons restricted in this arrangement would oscillate between areas of high
magnetic fields as depicted in Figure 2.2, delineated by the letters ’a’ and ’b’.

Figure 2.2. Trajectory of particles inside magnetic mirrors. Source: (Dolan, 2013b)
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Although some particles are reflected by the high magnetic fields, others manage to escape
due to their high velocities along the field lines. Consequently, confinement is limited to the time
required for Coulomb collisions to increase the particles’ v∥0, making it impractical to achieve
substantial energy gains (Dolan, 2013b). To avoid these losses, we can adopt a closed magnetic
field configuration, altering the linear topology to a toroid.

According to Chen (2012, 2016), in a simple toroidal magnetic field, electrons and ions drift
outwards, this charge separation indicates poor confinement. However, if the magnetic field lines
are distorted, these drifts become neutralized. There are two mechanisms that can provide this
twisting effect: In tokamaks, a plasma current is induced in a toroidal direction and a poloidal
magnetic field is generated, the combination of the poloidal and toroidal fields gives rise to
helical magnetic field lines, as discussed in Section 2.3; the second mechanism is Stellarators,
which deploy helical coils to twist the magnetic field, reducing the need for a strong toroidal
plasma current and allowing long term operation (Dolan, 2013b).

2.3 Tokamaks

Magnetic confinement fusion stands out as the preeminent approach to effectively trapping
plasma particles along magnetic field lines - this concept is applied in practice in reactors of the
tokamak type (Kikuchi et al., 2012). The term tokamak is an acronym of the Russian words
"Tороидальная камера с магнитными катушками", which in free translates means "toroidal
chamber with magnetic coils". Created in the then Union of Soviet Socialist Republics, the now
extinct USSR, in 1955, the first model was called the TMB and little is known about it due to
the secretive nature of the project at the time (Kadomtsev, 1988).

Within a tokamak, plasma takes on a toroidal shape. This geometry is established by encir-
cling a solenoidal array of ring-like coils, effectively creating a toroidal magnetic field. However,
a purely toroidal magnetic field proves inadequate for containing plasma particles due to the
curvature of the field lines, which induces opposing drifts in ions and electrons, resulting in
charge separation. This charge separation, in turn, generates an electric field that accelerates
the rapid loss of plasma towards the chamber walls (Chen, 2012, 2016; Kikuchi et al., 2012).

To prevent the occurrence of charge separation, an additional magnetic field component is
required, one that encircles the minor cross-section of the torus, known as the poloidal magnetic
field (Kikuchi et al., 2012). In tokamaks, the creation of the poloidal magnetic field involves
inducing a toroidal current within the plasma itself. This leads to the formation of spiraling
magnetic field lines resulting from both the toroidal and poloidal components, extending in-
finitely around the torus and giving rise to nested toroidal surfaces. These surfaces collectively
constitute globally closed magnetic flux surfaces.
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However, this toroidal plasma configuration, influenced by both toroidal and poloidal mag-
netic fields, encounters a hoop force, which exerts pressure to expand the plasma torus radially
outward. Achieving radial equilibrium necessitates the introduction of vertical magnetic fields
through vertical field coils, which are typically current-carrying rings aligned concentrically with
the torus (Kikuchi et al., 2012).

In summary, confinement in tokamaks occurs as shown in Fig. (2.3). Toroidal field coils
with a specific shape are employed to establish a magnetic field oriented in the toroidal direction.
These coils delineate the toroidal shape within which the plasma will be confined. To induce a
changing flux through the center of the torus, a current is passed through the inner poloidal field
coils. Essentially, the inner poloidal field coils function as the primary winding in a transformer,
while the plasma itself serves as the secondary winding. This setup induces a toroidal current
within the plasma, which, in turn, generates a poloidal magnetic field. This poloidal magnetic
field combines with the toroidal field to produce the resultant helical magnetic field

Figure 2.3. Schematic representation of a tokamak. Source: (Kikuchi et al., 2012)

The plasma finds its confinement within a designated region known as the plasma column,
encircled by what’s termed the last closed (magnetic) flux surfac (LCFS) and is frequently
utilized to delineate the plasma boundary (Dewhurst, 2010). In the cross-section of the toroidal
chamber, the radial position of this surface is determined by either the limiter—a material at
the plasma edge intercepting field lines extending beyond its position—or a diverter, a magnetic
field configuration that confines the plasma within an area marked by a separatrix. The region
between the LCFS and the chamber wall is commonly referred to as the Scrape-Off Laye (SOL).
This nomenclature arises from the magnetic field lines that are exposed and scrape against the
limiter (or diverter) or the chamber wall within this zone (Stangeby et al., 2000). These two
configurations are illustrated below
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Figure 2.4. Configuration of tokamaks utilizing limiter (Left) and diverter (Right).
Source: (Stangeby et al., 2000)

The edge region of plasma assumes a crucial role in controlling the overall plasma con-
finement. In many tokamak plasma scenarios, two main confinement states emerge: L-mode,
representing low confinement, and H-mode, indicating high confinement. Under certain opera-
tional conditions, there is a sudden improvement in confinement, transitioning from L-mode to
H-mode. Consequently, significant temperature and density gradients accumulate in proximity
to the plasma edge, similar to the creation of a transport barrier (Wesson and Campbell, 2004;
Dewhurst, 2010).

2.4 L-H Transition

In tokamaks, as well as in other magnetic confinement devices, plasma can spontaneously
transition from a low-confinement (L) to a high-confinement (H) state due to the suppression of
turbulence and the formation of a transport barrier in the plasma edge region, this is called the
L-H transition (Numata et al., 2007; Burrell, 1997; Guosheng and Xingquan, 2017).

This transition was first reported by Wagner et al. (1982) in the ASDEX tokamak where
the H mode was observed (Wagner et al., 1982). This confinement regime is marked by longer
confinement time, reduced plasma fluctuations, and the creation of transport barriers in the
region. When the input power exceeds the called limit Pth of the confinement device - which is
directly proportional to the toroidal magnetic field Bt and the plasma density n, meaning that
Pth ∝ Btn - the L-H transition occurs (Diamond et al., 1994).

According to Numata et al. (2007), this suppression of turbulent transport is due to a non-
linearly self-generated poloidal E×B shear flow, also called zonal flows. This in turn, according
to the author, plays a crucial role in turbulent transport, reducing anomalous transport, ab-
sorbing the energy of drift waves and delimiting the turbulent region characterized by eddies
(Numata et al., 2007).
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3 Plasma

3.1 Fundamentals

The word plasma is of Greek origin and means "something molded or manufactured" (Bit-
tencourt, 2013). The term was coined by Langmuir (1928) in his article "Oscillations in ionized
gases" published in Proceedings of the National Academy of Sciences in 1928, to describe the
region containing balanced charges of ions and electrons. Also known as the fourth state of
matter, is found in nature through atmospheric electrical discharges, in polar auroras, stars,
nebulae and more. (Chen, 2016).

Plasma can be defined as an ionized gas made up of ions and electrons (Wesson and Camp-
bell, 2004). To determine this degree of ionization is used the Saha equation described below

ni
nn

≈ 2.4× 1021
T 3/2

ni
exp

(
− Ui

kBT

)
, (3.1)

where ni represents the density of ions, nn the density of neutral atoms, T the temperature of
the gas, Ui the ionization energy and kB the Boltzmann constant.

When analyzing the equation (3.1), it can be seen that as the temperature rises, the ni/nn
component remains low until the ionization energy is slightly lower than the kBT term, so the
degree of ionization rises abruptly and the gas can then be considered to be in a plasma state.

However, not every ionized gas can be considered a plasma. With this, according to Chen
(2016) plasma can be defined as "a quasi-neutral gas of charged and neutral particles that
exhibit collective behavior". In this way, the two fundamental characteristics described are
evident: quasi-neutrality and collective behavior.

For the first, macroscopic neutrality is implied, in which the densities of ions and electrons
are sufficiently close to the point of considering ni ≃ ne ≃ n, with n being the common density,
generalized as the plasma density, however this does not make it completely neutral, to the point
where the electromagnetic forces disappear (Chen, 2016).

With regard to collective behavior, there is the movement of charged particles within the
plasma, which leads to the generation of local concentrations of positive or negative charges
giving rise to electric fields, this movement also results in electric current, which in turn induces
magnetic fields and thus influences the movement of more distant particles denoting the so-called
"collective behavior".

From these two characteristics it is possible to extract three conditions that must be met in
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order to consider an ionized gas as a plasma. These are:

3.1.1 Debye Shielding

To maintain its quasi-neutrality, plasma has the ability to shield electrical potentials applied
to it. This is due to the free charges present; when an external potential is applied or appears
spontaneously through the movement of particles, an accumulation of charges arises around it,
creating a shield and ensuring quasi-neutrality (Chen, 2016).

Debye’s shielding is represented in the following figure, in which there are two charged
spheres, one with a positive charge and the other with a negative electrical charge, both immersed
in a plasma, and the formation of an accumulation of opposite charges around the spheres is
observed, characterizing this shielding.

Figure 3.1. Debye shield. Source: (Hasegawa and Wakatani, 1983)

The efficiency of this shielding is restricted to a radius of action in which the thermal energy
of the particle equals the electrostatic potential of the barrier; this radius, or thickness of the
shielding, is called the Debye length and can be represented as

λD ≡
(
ε0kBT

ne2

)1/2

, (3.2)

where ε0 is the vacuum permittivity constant, kB is the Boltzmann constant, T is the particle
temperature, n is the plasma density and e is the Euler number. With this, the first criterion
for characterizing a plasma can be defined

λD ≪ L, (3.3)

in which L is the dimension of the system. It can then be concluded that the Debye shield must
have a thickness less than the size of the system to ensure the quasi-neutrality of the whole.
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3.1.2 Debye Sphere

For the Debye shield to be effective, there must be enough particles around the potential
(Bittencourt, 2013). Thus, considering the Debye length as the radius of a sphere of the same
name, we can consider the number of particles inside it to be equal to

ND = n
4

3
πλ3D. (3.4)

With this, the second criterion for the definition is described as

ND ≫ 1. (3.5)

3.1.3 Collision Frequencies

In order to ensure the characteristic of collective behavior, it is necessary for the oscillation
frequency of the plasma to be higher than the frequency of collisions with the neutral atoms,
otherwise the collisions would force the electrons to enter into equilibrium with the neutral
particles and, thus, it would be a neutral gas, since the collisions between the electrons and the
neutral particles tend to dampen the collective oscillations (Bittencourt, 2013).

Thus, considering ω as the typical frequency of plasma oscillations and τ as the average
time between collisions with neutral atoms, the third condition is described as

ωτ > 1. (3.6)

3.2 Particle Motion in the Presence of an Uniform Electromagnetic Field

To analyze the motion of a charged particle considering the action of both electric and
magnetic fields, which are invariant in time and uniformly distributed in space. We can use the
nonrelativistic equation of motion described below:

m
dv⃗

dt
= q(E⃗ + v⃗ × B⃗) (3.7)

where m is the mass and q is the charge of the particle, which move with velocity v⃗, under the
electric and magnetic fields, E⃗ and B, respectively. Considering the components parallel and
perpendicular to the magnetic fields of v⃗ and E⃗, the Eq. (3.7) can be rewrite into two component
equations:

m
dv⃗∥

dt
= qE⃗∥ (3.8)

m
dv⃗⊥
dt

= q(E⃗⊥ + v⃗⊥ × B⃗) (3.9)

For Eq. (3.8), it can be solve it by separating the variables dv⃗∥/dt and integrating to
both sides of the equality, thus achieving the equation describing its velocity v⃗∥, integrating the
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obtained equation 3.10, we obtain its position r∥ expressed by 3.11.

v⃗∥(t) =

(
qE⃗∥

m

)
t+ v⃗∥(0) (3.10)

r∥(t) =
1

2

(
qE⃗∥

m

)
t2 + v⃗∥(0)t+ r∥(0). (3.11)

Concerning the second equation of motion, as given by (3.9), it is appropriate to separate
the velocity v⃗⊥ into two constituent components: v⃗′⊥ and v⃗E . Notably, v⃗E , also known as
electromagnetic drift velocity, constitutes a constant velocity within the plane perpendicular to
the magnetic field B⃗ and v⃗′⊥ represents the particle’s velocity as observed from a reference frame
moving at the velocity v⃗E . Hence,

v⃗⊥(t) = v⃗′⊥(t) + v⃗E . (3.12)

Substituting (3.12) into (3.9) and considering E⃗⊥ = −
(
E⃗⊥×B⃗
B2

)
× B⃗, we get

m
dv⃗′⊥
dt

= q

(
v⃗′⊥ + v⃗E − E⃗⊥ × B⃗

B2

)
× B⃗. (3.13)

It is known that the drift velocity v⃗E = E⃗⊥ × B⃗/B2, so the equation (3.13) becomes

m
dv⃗′⊥
dt

= q(v⃗′⊥ × B⃗). (3.14)

With this, we can conclude that the particle’s movement in the plane perpendicular to B is
solely affected by the magnetic field. The circular motion of the particle, for v⃗′⊥, is described by
the cyclotron frequency ωc, and its radius rc, also called the Larmor radius. Thus, the equation
results

v⃗′⊥ = ωc × rc, (3.15)

where the cyclotron frequency described by ωc = |q|B⃗/m, represent the angular frequency of
circular motion. Therefore, the radius of this motion is defined by the particle orbit being
rc = v⃗⊥/ωc, i.e rc = mv⃗⊥/|q|B⃗.

Based on the findings up to this point, it is evident that the resultant particle trajectory
can be characterized as a combination of two fundamental motions: circular motion within the
plane perpendicular to B⃗; and uniform motion with a constant velocity v⃗E that is perpendicular
to both B⃗ and E⃗⊥.

Additionally, there is an element of uniform acceleration along B⃗, quantified as qE⃗/m.
The particle’s velocity can be mathematically expressed in vector form, free from any specific
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coordinate system, as follows:

v⃗(t) = v⃗⊥(t) + v⃗∥(t) (3.16)

v⃗(t) = v⃗′⊥(t) + v⃗E + v⃗∥(t) (3.17)

v⃗(t) = ωc × rc +
E⃗⊥ × B⃗

B2
+
qE⃗∥

m
t+ v⃗∥(0) (3.18)

The particle’s motion within the plane perpendicular to B⃗ typically takes the form of a
cycloid, as exemplified in Fig. 3.2. According to Bittencourt (2013) this cycloidal motion occur
because simultaneously with the magnetic force, the electric force qE⃗⊥ accelerates the particle,
either boosting or reducing its velocity. This effect hinges on the particle’s motion relative to
the direction of E⃗⊥ and the charge’s sign.

Figure 3.2. Cycloidal trajectory of particles when subjected to crossed electric and
magnetic fields. Source: (Bittencourt, 2013)

3.2.1 Particle Drifts

In magnetized plasma, different drift phenomena may cause single particles’ guiding centers
to travel along the magnetic field lines. The general equation for particle drift is commonly ex-
pressed by adding a force, F⃗ , to the equation of motion, (3.7). Through algebraic manipulation,
we can obtain the equation:

v⃗f =
1

q

F⃗ × B⃗

B2
, (3.19)

where q its the charge of particle, and B⃗ the magnetic field. These drifts can occur due to the
presence of an electric field perpendicular to B (E ×B), a gradient in the magnetic field (∇B),
or the curvature of the magnetic field, as well as a transient electric field (Wesson and Campbell,
2004). Which will be discussed in detail below.
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3.2.1.1 E⃗ × B⃗ drift

In the presence of an electric field, particle motion is associated with Larmor’s circular
motion and the drift of the guiding center. This confers cycloidal trajectory to the particles, as
discussed in the previous section 3.2. In this way, the electromagnetic drift is induced by the
electric force qE imparted by the electric field. By substituting Eq. (3.19), the drift velocity
can be determined.

v⃗d = v⃗E =
E⃗ × B⃗

B2
. (3.20)

This particular drift remains unaffected by the mass and charge of individual particles,
resulting in the collective drift of the entire plasma in the same direction (Chen, 2016). The
establishment of an electric field for this drift can occur locally due to fluctuations and plays a
significant role in the occurrence of drift waves, as will be discussed in the following sections.

3.2.1.2 ∇|B| drift

The presence of a magnetic field, with a transverse gradient can lead to a drift perpendicular
to both. This is due to the size of the radius of curvature of the particle’s orbit associated with
the strength of the magnetic field, i.e. for a strong magnetic field the radius of curvature is small
(Wesson and Campbell, 2004).

Figure 3.3. Particles drifts in opposite directions under a gradient of |B| perpendicular to
B. Source: (Wesson and Campbell, 2004)

Thus, the magnitude of the drift can be expressed from the equation of motion for a magnetic
field oriented in the z-direction and its gradient in the y-direction,

m
dv⃗y
dt

= qv⃗xB⃗. (3.21)

Assuming a small gradient of |B|, such that the magnetic field variation across the Larmor
radius is significantly smaller than B itself, the magnetic field can be expressed as B⃗ = B⃗0+

dB⃗
dy y

where y = 0 is at midplane of the orbit.

When considering the entire velocity component perpendicular to the direction of the mag-
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netic field, it can be observed as the outcome of sum the velocity related to ∇|B| and the
perpendicular velocity. The resulting expression is

v⃗x = v⃗x0 + v⃗d, (3.22)

rewriting Eq. (3.21) inserting the expressions for v⃗x and B⃗, we get

m
dv⃗y
dt

= −qv⃗x0

(
B⃗0 +

dB⃗

dy
y

)
− qv⃗dB⃗0 − qv⃗d

dB⃗

dy
y, (3.23)

as v⃗d and dB⃗/dy are very small, we can ignore the last term of the equation (Gallagher, 2013).
In this way, for v⃗x0 = v⃗⊥ sin (ωct) and y = v⃗⊥

ωc
sin (ωct), the Eq. (3.23) becomes

m

q

dv⃗y
dt

= −v⃗⊥ sin (ωct)

(
B⃗0 +

dB⃗

dy

v⃗⊥
ωc

sin (ωct)

)
− v⃗dB⃗0. (3.24)

for time average of this equation, considering ⟨dv⃗y/dt⟩ = 0, the drift velocity in the x-direction
is equal to

v⃗d = −1

2

v⃗⊥

ωcB⃗

dB⃗

dy
v⃗⊥,

in vector form

v⃗d =
1

2

v⊥
ωc

B⃗ ×∇|B|
B2

v⊥, (3.25)

the sign of the equation depends on the particle being analyzed. As a result, the ∇|B| drift
generates a drift in opposite directions for particles with different electric charges, as shown in
Fig. 3.3 (Wesson and Campbell, 2004).

3.2.1.3 Curvature drift

Curvature drift occurs when the guiding center of a particle follows the curvature of the
magnetic field lines so that it undergoes a drift perpendicular to the plane of curvature, as
shown in Fig. 3.4.

Figure 3.4. Ion drift due to the curvature of the magnetic field. Source: (Wesson and
Campbell, 2004)
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As of motion equation, 3.7, considering the motion of the particle with angular velocity
v⃗∥/R, being v⃗∥ the velocity parallel to the field and R the radius of curvature of the field lines.
For the centrifugal force mv⃗2∥/R acting on the particle, the equation results in

m
dv⃗

dt
=
mv⃗2∥

R
ic + q(v⃗ × B⃗), (3.26)

where ic is unit vector along the radius. Thus, according to Eq. (3.19), para F⃗ = mv⃗2∥/R, the
curvature drift is given by

v⃗d =
v⃗2∥

ωcR
. (3.27)

The cyclotron frequency ωc will determine the sign of the particle in the above equation, since
ions and electrons drift in opposite directions, so for ions ic×B⃗. In the absence of electric current,
both the ∇|B| drift and the curvature drift behave in the same way, so for ∇|B| = −icB⃗/r the
drift is given by

v⃗d =
1

2

v⃗⊥
ωcR

associating both derivatives found, we obtain

v⃗d =
v⃗2∥ +

1
2 v⃗

2
⊥

ωcR
(3.28)

with vector form

v⃗d =
v⃗2∥ +

1
2 v⃗

2
⊥

ωc

B⃗ ×∇|B|
B2

(3.29)

Both the gradient drift of the magnetic field modulus (∇|B|) and the curvature drift are
responsible for the drift of particles inside toroidal magnetic fields, as illustrated in Fig (3.5).
The tendency for particles to drift in a toroidal magnetic field (B⃗t) is compensated for by the
insertion of the poloidal magnetic field, see Section 2.3. The electrons flowing along the field
lines neutralize the electric field generated by the separation of charges, consequently reducing
the effects of the electromagnetic drift v⃗E (Dolan, 2013a).

Figure 3.5. Particle drifts in a toroidal magnetic field. Source: (Jassby, 1977)
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3.2.1.4 Polarization drift

Polarization drift occurs when an electric field perpendicular to the magnetic field changes
with time. A polarization current proportional to dE⃗/dt results from the drift of ions and
electrons in opposite directions Wesson and Campbell (2004). This drift is illustrated below:

Figure 3.6. Polarization drift of an ion. Source: (Wesson and Campbell, 2004)

Considering that the acceleration of the electric field is the result of the derivative of the
electric drift velocity vE , which is given by

d

dt
v⃗E =

d

dt

E⃗ × B⃗

B2
. (3.30)

From the acceleration found, we can deduce that the force responsible for the drift is given
by

F⃗ = m
d

dt

E⃗ × B⃗

B2
, (3.31)

substituting into the equation (3.19), the polarisation drift is

v⃗d =
1

ωcB0

dE⃗

dt
. (3.32)

The drift occur in the same direction of the current dE⃗/dt for ions and in other for electrons.
The polarization drift causes charge separation, as ∇|B| drift creates a time-varying electric field,
which in turn induces a polarization drift (Gallagher, 2013).

3.3 Turbulence

Turbulence represents a state of fluid motion distinguished by its unpredictability across
a broad spectrum of temporal and spatial scales. This state of motion, seemingly chaotic, is
characterized by a succession of cascading eddies. Initially, the system’s energy is driven on
larger scales, forming substantial eddies that subsequently fragment into numerous smaller ones.
This fragmentation process continues until the eddies reach a scale where energy dissipation can
occur due to viscosity (Dewhurst, 2010; Gallagher, 2013).

In fluid dynamics, a control parameter known as the Reynolds number can be obtained by
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balancing the nonlinear and dissipative terms within the momentum equation. Given by

Re =
vL

ν
, (3.33)

where v is the fluid velocity, L is a length scale, and ν is viscosity. In general, high Reynolds
numbers are associated with turbulent behavior, while low Reynolds numbers result in laminar
flow. This distinction arises from the ability of the Reynolds number to measure the relative
dominance of the nonlinear term (v⃗∇v⃗) of Navier-Stokes equations, (3.34), compared to the
linear term (ν∇2v⃗) within the system. At low Reynolds numbers, the Navier-Stokes equation
behaves effectively linearly, while at high Reynolds numbers the nonlinear terms become the
primary driving force behind the evolution of the system.

∂tv⃗ + v⃗∇v⃗ = −∇p+ ν∇2v⃗, (3.34)

∇v⃗ = 0. (3.35)

Similar parameters are frequently employed in the context of magnetized plasma, where
the Reynolds number (Re) and its magnetic analog, denoted as Rm, are defined (Biskamp,
1997). Nevertheless, these constructs are not equivalent, owing to the presence of non-diffusive
dissipation processes, such as Landau damping, which operate on scales significantly smaller
than the conventional collisional dissipation (Dewhurst, 2010).

According to Dewhurst (2010), in the Richardson-Kolmogorov perspective on three-dimensional
hydrodynamic turbulence depicts a fluid undergoing a process of fragmentation into large eddies
as a result of instability in the mean flow. These large eddies, in turn, experience their own
instability and disintegrate into smaller eddies, continuing this cascade of energy transfer from
larger to smaller scales.

Finally, at a very small scale, as the Reynolds number (Re) approaches about 1, the influence
of viscosity becomes significant and leads to the dissipation of energy. The scales at which this
cascade transpires, denoted as ’k’, are commonly referred to as the ’inertial range. Therefore,
energy spectrum of the system for three-dimensional isotropic, homogeneous and incompressible
turbulence, taken out of Frisch and Kolmogorov (1995) is

E(k) ∼ k−
5
3 . (3.36)

The 3D turbulence model used by Frisch and Kolmogorov (1995) is not suitable for tokamak
physics. One of the reasons for this mismatch is the presence of a magnetic field, which gives the
turbulence a distinct direction. The high-speed motion of electrons along magnetic field lines
tends to dampen parallel gradients, effectively rendering turbulence in tokamaks 2D (Gallagher,
2013). In this scenario, the enstrophy, which is the square of the vorticity, is also conserved. In
the context of the plasma physics considered here, enstrophy takes the following form

ε = |∇2φ|2, (3.37)
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being φ is the electrostatic potential. When considering the conservation of enstrophy, the
system exhibits two distinct cascades, as discussed by Kraichnan (1967). In this context, energy
embarks on an ’inverse cascade,’ directing its transfer towards large, low-wavenumber structures,
including vortices and potentially zonal flows (Gallagher, 2013).

3.3.1 Resistive Drift Waves

Turbulence in the context of fusion plasma is commonly addressed through a formulation
centered on drift waves and drift instabilities (Gallagher, 2013). Drift waves are of particular
importance due to their prevalence in the edge regions of thermonuclear fusion plasma. These
micro-scale drift wave instabilities are believed to be the primary drivers of most of the anomalous
transport observed in tokamaks (Dewhurst, 2010; Pushkarev, 2013a).

Drift waves are characterized by their low frequency, when compared to the cyclotron fre-
quency of the ion, and are instigated by gradients in either density or temperature. In general,
they exhibit an electrostatic nature, described as E = −∇φ, and encompass the principles of
two-fluid physics (Dewhurst, 2010). From the Branginskii momentum equation for electrons,
given by

mn

(
∂

∂t
+ u⃗ · ∇

)
u⃗ = nq(E⃗ + u⃗× B⃗)−∇p−∇ · Π⃗ + R⃗ (3.38)

where p = nT is the scalar pressure, Π⃗ is the component of the pressure tensor, R⃗ is the transfer
of momentum, q is the heat flux, and u⃗ is the velocity of particle. Considering an isothermal
and quasi-neutral plasma, where ne = ni = n. The motion equation, obeying the Boltzmann
relation, we get

ñ

n0
=
eφ

Te
(3.39)

being n0 the constant background density, ñ is the perturbation of density and φ the electrostatic
potential of this perturbation. Thereat, the mechanism of the resistive drift waves can be seen
in the Fig. 3.7

Figure 3.7. Geometry of a drift instability, on the left, and Drift-wave mechanism in
details, on the right. Source: (Chen, 2016)
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In Figure 3.7 we observe a plasma in a plane perpendicular to a magnetic field, denoted
B0, with a pronounced density gradient ∇n0 in the negative x-direction. The figure illustrates a
small density perturbation, represented by a continuous line, which corresponds to a perturbation
in the potential φ. This perturbation leads to the generation of an electric field, denoted E1,
directed from positive to negative potential, accompanied by a corresponding E⃗×B⃗ drift velocity,
v1. The direction of this E⃗×B⃗ velocity varies along the perturbation, resulting in a displacement
of the entire density perturbation in the positive y-direction. Consequently, a drift wave can
propagate along the wave vector k, which is perpendicular to both the magnetic field and the
density gradient.

When the electron parallel response follows an adiabatic behavior, as described by Equation
(3.39), the density and potential fluctuations associated with drift waves remain in phase, result-
ing in no overall density transport. However, when the electron response deviates from adiabatic
conditions, perhaps due to factors such as resistivity, the potential and density fluctuations can
fall out of phase, rendering drift waves unstable. This phenomenon is identified as the drift wave
instability, which, through nonlinear interactions, ultimately gives rise to drift wave turbulence
(Dewhurst, 2010).

3.3.2 Zonal Flow

Zonal flows, characterized by mean azimuthally symmetric band-like shear flows, are a
commonly observed phenomenon both in the nature and within laboratory (Diamond et al.,
2005). Notable examples include the atmospheric belts and zones on Jupiter, as well as the
terrestrial atmospheric jet streams. In laboratory contexts, such as tokamak plasma, zonal flows
are a prominent feature within magnetic confinement devices, exerting significant influence over
the formation of transport barriers and their dynamic behavior. This influence is evident in the
transition from sheared E⃗ × B⃗ flows to the development of L-mode confinement and also plays
a pivotal role in the L-to-H transition (Horton, 1999; Diamond et al., 2005).

According to Diamond et al. (2005) the zonal flow characterizes a toroidally symmetric elec-
tric field perturbation within a toroidal plasma. It remains constant on magnetic surfaces while
exhibiting rapid variations in the radial direction, as depicted in Figure 3.8. The accompanying
E⃗× B⃗ flow operates in the poloidal direction, with its polarity changing as a function of radius.
Essentially, the zonal flow represents a significantly asymmetric limit of a convective cell. The
crux of zonal flow dynamics lies in the process of turbulent eddies being sheared by flows of a
larger scale. This shearing mechanism plays a vital role in diminishing turbulence and associated
transport.
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Figure 3.8. Zonal flows within a tokamak from a poloidal cross-section. The hatched area
signifies positive charge, while the dotted region represents negative charge, the prominent

large arrows provide insight into the flow direction. Source: (Diamond et al., 2005)

According to Numata et al. (2007), the transition from the turbulent to the zonal flow regime
can be explained by calculating the ratio between the kinetic energy of the zonal flow (KZ) and
the total kinetic energy (KT ). Thus, the energy of zonal flows is given by

KZ =
1

2

∫ (
∂ ⟨φ⟩y
∂x

)2

dx, (3.40)

where ⟨φ⟩y represent the average of φ in the y direction. The total kinetic energy by

KT =
1

2

∫
|∇φ|2 dx. (3.41)

3.4 Hasegawa-Wakatani Model

The Hasegawa-Wakatani equations provide a simplified model depicting the behavior of
drift wave turbulence within the edge region of a tokamak. This model takes into account a
magnetically confined plasma and a non-uniform background density gradient ∇n0 (Hasegawa
and Wakatani, 1983; Wakatani and Hasegawa, 1984).

Based on experimental observations, as indicated by Dewhurst (2010) it is apparent that
fluctuations within the edge region of numerous magnetically confined plasma closely resemble
electrostatic phenomena. Consequently, for the Hasegawa-Wakatani (HW) model, the assump-
tion is made that electric fields E⃗ can be described in relation to an electrostatic potential φ,
thus E = −∇φ.

Assume that the ions are considered cold for simplification purposes, Ti = 0, and the plasma
is isothermal with Te = T = constant. The electron inertia is neglected due to the electron’s
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significantly smaller mass in comparison to the ion. In addition, all of the viscosity terms for
the anisotropic pressure tensor are ignored and quasineutrality is assumed, where ne = ni = n.

The derivation of the Hasegawa-Hakatani equations is done as described by Dewhurst (2010)
in his PhD thesis (See Dewhurst, 2010, pp. 56–61) . Thus, applying the above assumptions, we
start from the equation of motion of the ions in the direction perpendicular to the magnetic
field, which has the following form:

min

(
∂

∂t
+ v⃗i · ∇⊥

)
v⃗i = ne(−∇⊥φ+ v⃗i × B⃗), (3.42)

where mi is the ion mass and v⃗i is the ion velocity.

The lowest-order ion perpendicular velocity is determined by equating the left-hand side to
zero and subsequently performing a cross product with B, resulting in the E⃗ × B⃗ drift velocity.

v⃗E =
B⃗ ×∇⊥φ

B
, (3.43)

where B = |B⃗|. By substituting v⃗E into the momentum equation and taking the cross product
with B, we obtain the polarization drift velocity.

v⃗p =
mi

eB
B⃗ ×

(
∂

∂t
+ v⃗E · ∇⊥

)
v⃗E , (3.44)

Therefore, the ion perpendicular equation of motion is simplified to a velocity equation

v⃗i⊥ = v⃗E + v⃗p, (3.45)

v⃗i⊥ =
B⃗ ×∇⊥φ

B
+
mi

eB
B⃗ ×

(
∂

∂t
+ v⃗E · ∇⊥

)
v⃗E . (3.46)

Similarly, the equation of motion for electrons perpendicular to a magnetic field is expressed
as a velocity. The electron perpendicular equation of motion is given by

0 = −ne(−∇⊥φ + v⃗e ×B)− T∇⊥n. (3.47)

Thus, for the electron perpendicular velocity taking the cross product

v⃗e⊥ =
B⃗ ×∇⊥φ

B
− B⃗ × T∇⊥n

neB
, (3.48)

v⃗e⊥ = v⃗E + v⃗de, (3.49)

v⃗de is the electron diamagnetic drift velocity. It is important to note that the polarization drift
of electrons is not considered because of their small mass, and for the ions, the diamagnetic drift
is neglected under the assumption that Ti = 0.

After establishing the equations of motion perpendicular to the magnetic field for particles,
we will now investigate their motion in the parallel direction. The parallel dynamics is controlled
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by the electrons due to the electron/ion mass ratio that only considers the movements of the
electrons, assuming a stationary character for the ions, that is, vi∥ = 0. Hence the parallel
electron equation of motion is described how

0 = ne∇∥φ− T∇∥n− ηe2n2v⃗e∥, (3.50)

being η is the resistivity, the term ηe2n2v⃗e∥ is responsible for models the collisions between the
particles. If η = 0 the equation would lead to adiabatic electron response, therefore, there be no
drift wave instability. Rewriting the Equation (3.50) in function of parallel current density, we
get

J⃗∥ =
T

eη

[∇∥n

n
−
e∇∥φ

T

]
. (3.51)

In this context, we can obtain the Hasegawa-Wakatani equations from the Branginskii con-
tinuity equations by associating the motion of particles and their velocities (Braginskii, 1965).
The electron continuity equation is given by

∂n

∂t
+ v⃗e⊥ · ∇⊥n+ n∇⊥ · v⃗e⊥ − 1

e
∇∥ · J⃗∥ = 0, (3.52)

considering that ∇⊥ · v⃗E = 0, ∇⊥ · v⃗de = 0, v⃗de · ∇⊥n = 0. Assuming v⃗e⊥ = v⃗E + v⃗de, (3.49), we
get (

∂

∂t
+ v⃗E · ∇⊥

)
n− 1

e
∇∥ · J⃗∥ = 0. (3.53)

For the ions, the continuity equation is

∂n

∂t
+ v⃗i⊥ · ∇⊥n+ n∇⊥ · v⃗i⊥ = 0, (3.54)

where v⃗i⊥ = v⃗E + v⃗p, ∇⊥ · v⃗E = 0 and neglecting the nonlinear term v⃗p · ∇⊥n. The equation
becomes (

∂

∂t
+ v⃗E · ∇⊥

)
n+ n∇⊥ · v⃗p = 0. (3.55)

Due to quasi-neutrality, the equations for the continuity of electrons and ions, (3.53) and
(3.55), can be equated, leading to

n∇⊥ · v⃗p = −1

e
∇∥ · J⃗∥, (3.56)

knowing that v⃗p is given by (3.44), the term ∇⊥ · v⃗p can be written as

∇⊥ · v⃗p = −mi

e

1

B2

(
∂

∂t
+ v⃗E · ∇⊥

)
∇2φ, (3.57)

thus, the Equation (3.56) is rewritten as(
∂

∂t
+ v⃗E · ∇⊥

)
∇2φ =

B2

nmi
∇∥ · J⃗∥, (3.58)
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being ∇2φ the vorticity. This leads to the three-dimensional Hasegawa-Wakatani equations
that can be reduced to two spatial dimensions (Hasegawa and Mima, 1978). Therefore, the
variables are separated into background and fluctuating components n = n0+ ñ, where n0 ≫ ñ,
∂n0/∂t = 0 and ∇∥n0 = 0.

Considering the background density is zero, i.e. φ = φ̃, the equation for parallel current
density described by (3.51) can be written by

J⃗∥ =
T

eη

[∇∥ñ

n0
−
e∇∥φ̃

T

]
. (3.59)

For the two-dimensional model, a single parallel wavenumber k - characteristic of the fluc-
tuations of the drift waves along the magnetic field lines in the toroidal direction - is assumed,
whereby ∇2

∥ = −k2, thus, the divergence of J∥ is given by

∇∥ · J⃗∥ =
Tk2

eη

[
eφ̃

T
− ñ

n0

]
. (3.60)

In the reference geometry, the magnetic field is oriented in the z-direction, denoted as
B⃗ = ẑ, and there exists a background density gradient along the negative x-direction, given by
∇n0 = −x̂n0/Ln, with Ln representing the length scale of the gradient. Consequently, the x
and y directions can be associated with the radial and poloidal directions, respectively, within
a tokamak.

The nonlinear terms can be expressed utilizing the Poisson bracket notation as

v⃗E · ∇⊥ =
1

B

[
φ̃,
]
, (3.61)

the notation being described by

[A,B] =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
. (3.62)

For the normalization of equations we can use the following non dimensional variables

eφ̃

T
≡ φ,

ñ

n0
≡ n, ωct ≡ t,

x

ρs
≡ x, (3.63)

being ωc is the ion cyclotron frequency and ρs =
√
miT/eB is the hybrid Larmor radius. As a

result, the Hasegawa-Wakatani equations can be expressed by

∂

∂t
ζ + [φ, ζ] = α (φ− n)−D∇4ζ, (3.64)

∂

∂t
n+ [φ, ζ] = α (φ− n)− κ

∂φ

∂y
−∇4n, (3.65)

being ζ is the vorticity, D is the dissipation coefficient, and κ characterizes the background
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density gradient which drives the system and is represented by

κ = −∂ lnn0
∂x

, (3.66)

with regards to α, the parameter controls the strength of the resistive coupling between n

and φ through the parallel current. The adiabaticity parameter dictates the extent to which
electrons can rapidly move along magnetic field lines and establish a perturbed Boltzmann
density response (Anderson and Hnat, 2017). The α parameter is given by

α =
Tk2

n0e2ηωc
, (3.67)

when α → ∞ (adiabatic limit) and n → φ the density fluctuations are strongly associated
with electrostatic potential fluctuations, the Hasegawa-Wakatani equations transform into an
equivalent form, resembling the one-field, indirectly forced Charney-Hasegawa-Mima equation
(Hasegawa and Mima, 1978).

When α→ 0 is called hydrodynamic limit, the equations are decoupled and is equivalent to
the incompressible Euler equation in 2D being the vorticity is determined by 2D Navier-Stokes
equation. Additionally, for non-zero α , there is a growth rate that induces random stirring,
preventing the vorticity from decaying to zero. According to Anderson and Hnat (2017), this
deviates from the typical behavior observed in the unforced Navier-Stokes equation.

3.4.1 Modified Hasegawa-Wakatani Model

In tokamaks, it has been observed that the zonal components of the potential and den-
sity do not contribute to the parallel current, since the zonal fluxes are considered damped
in the Hasegawa-Wakatani equations described in Section 3.4 (Dewhurst, 2010). The modified
Hasegawa-Wakatani equations, are obtained by removing the zonal components from the parallel
coupling terms enabling the self-generation of zonal flows. Thus, the Equations (3.64), (3.65)
can be rewritten as

∂

∂t
ζ + [φ, ζ] = α (φ̃− ñ)−D∇4ζ, (3.68)

∂

∂t
n+ [φ, ζ] = α (φ̃− ñ)− κ

∂φ

∂y
−∇4n, (3.69)

where the zonal and non-zonal components of φ, n are given by

zonal : ⟨φ⟩ ≡ 1

Ly

∫
φdy, ⟨n⟩ ≡ 1

Ly

∫
ndy, (3.70)

non− zonal : φ̃ ≡ φ− ⟨φ⟩, ñ ≡ n− ⟨n⟩. (3.71)

The square brackets ⟨...⟩ denotes an average in the poloidal direction, and φ̃, ñ represent the
fluctuating in with the surface averaged component removed, i.e. the turbulent parts of the total
fluctuating fields φ, n.
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From the Equations (3.68)-(3.69) for electrostatic potential the velocity field is defined by

vx ≡ −∂φ̃
∂y
, vy ≡ −∂φ̃

∂x
. (3.72)

This chapter concludes the presentation of the theoretical background, in which the physical
fundamentals necessary for a proper understanding of this work have been presented, from the
definition of the plasma to its application in nuclear fusion and its behavior in confinement. The
acquired knowledge has been applied to the necessary analysis tools, as explained in subsequent
chapters.

27



4 Analysis Tools

4.1 Modified Hasegawa-Wakatani Model

The modified Hasegawa-Wakatani equations, (3.68)-(3.69), were implemented in Fortran
90 and solved using the finite difference method for spatial derivatives and the fourth-order
Runge-Kutta method for integration over time. The Poisson brackets were tackled utilizing the
Arakawa method that conserves energy and entropy with third-order accuracy.

The equations were discretized on a 256× 256 2D spatial grid, ensuring accurate solutions
and reasonable computing time. The initial conditions comprise of small amplitude random
noise. Parameters D and κ were respectively assigned values of 10−4 and 10−1, being α was
chosen as a control parameter. Solving equations (3.68)-(3.69) needed 108 time steps to achieve
a steady-state solution.

4.2 Fourier Transform

Spectral analysis, or Fourier analysis, is a statistical technique used to analyze time series
data using Fourier analysis methods. These methods consist of series and transforms first in-
troduced by the French mathematician and physicist Jean-Baptiste Joseph Fourier in the 18th
century during his studies on heat diffusion and propagation phenomena (Carslaw, 1930; Op-
penheim et al., 1997; Aguirre, 1995).

The Fourier transform normally uses a time series or a continuous function in the time
domain and transforms it into a frequency spectrum, in other words, it converts a function from
the time domain to the frequency domain, decomposing the function into sinusoids of different
frequencies (Press, 2007; Aguirre, 1995). The function that makes this change of domain possible
is called the analysis equation, or Fourier integral, and is given by

X(ω) =

∫ +∞

−∞
x(t)eiωtdt, (4.1)

where i =
√
−1 and ω = 2πf . Thus, to obtain the inverse function, that is, the origin function in

the time domain from the function given in the frequency domain without losing any information,
the synthesis equation, or inverse Fourier transform, is utilized. This equation is expressed as:

x(t) =
1

2π

∫ +∞

−∞
X(ω)e−iωtdω. (4.2)
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For discrete domain, integrals give way to summation. Therefore, we can rewrite Equations
(4.1)-(4.2) as follows:

X(ω) =
1

M

M−1∑
t=0

x(t)e−iωt/M (4.3)

x(t) =
1

M

M−1∑
t=0

X(ω)eiωt/M (4.4)

Transforms are not limited to temporal frequencies and time domain functions, they are
also applicable in analyzing spatial frequencies. Thus, for the Fourier transform of a 1D scalar
field u(x,t), we have

u(x, t) =
1

M

M−1∑
k=0

û(k, t)ei2πtkxx/M , (4.5)

where û(t) represents the complex Fourier coefficient and for each coefficient there is an amplitude
define to |ûk(t)| =

√
Re{ûk(t)}2 + Im{ûk(t)}2.

For images, which can be regarded as a two-dimensional signal in the spatial domain, the
two-dimensional implementation of Fourier transforms is necessary, thus, the Equation (4.5)
becomes

u(x, y, t) =
1

MN

M−1∑
kx=0

N−1∑
ky=0

û(kxky, t)e
i2πt

(
kxx
M

+
kyy

N

)
(4.6)

From the Fourier transformation we can obtain the power spectrum that will provide the
power distribution of the signal among different frequencies, therefore, revealing the existence
of periodic patterns or correlation structures, which is a crucial information for characterizing
the signal (Aguirre, 1995; Vaseghi, 2000).

In summary, as mentioned by Vaseghi (2000), signals that have higher correlation or pre-
dictability exhibit a more concentrated power spectrum, while signals that are more random or
unpredictable tend to display a more dispersed power spectrum. Thus, by analyzing the power
spectrum of a signal, we can identify the presence of repetitive structures or correlated patterns.
In the following section we will use this tool to explain the concept of spectral entropy.

4.3 Spectral Entropy

In this work we seek to characterize the L-H transition through the spectral entropy, or
Shannon entropy, which can be defined in the context of information theory as the quantization
of the information contained in a message, relating it to the occurrence of groups of transmitted
symbols (Shannon, 1948). This information entropy can be written as a probabilistic function
described by

H = −
n∑

i=1

P (xi) log2 P (xi) (4.7)

where P (xi) is the probability of occurrence of an event associated with a set x of n events.
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Applying to the present context, spectral entropy measures the degree of spatial disorder,
with the propagation of the energy of the system being reflected in the increase of this disorder
(Xi and Gunton, 1995; Rempel et al., 2007). Thus, the spectral entropy for one dimension is
given by

S(t) = −
N∑
k=1

pk,t ln pk,t, (4.8)

where pk,t is the relative Fourier weight of the spatial mode k in the power spectrum, which is
represented by

pk,t =
|û(k, t)|2∑
k |û(k, t)|2

(4.9)

being u(k, t) is a real function obtained from Fourier transforms, vide Section 4.2. Normalizing
Equation 4.9 we infer that pk,t ∈ [0, 1] and

∑N
k=1 pk,t = 1. We can conclude that entropy will be

maximum when p(k, t) = 1/N , that is, when the distribution is uniform, in wich case S(t) = lnN

(Badii and Politi, 1997). Thus, the normalized Shannon entropy is given by

H(t) =
S(t)

lnN
. (4.10)

For two-dimensional analysis, the Equation (4.8) is analogous to

S(t) = −
M∑

kx=1

N∑
ky=1

pkxky ,t ln pkxky ,t, (4.11)

and the Fourier weight can be rewritten as

pkxky ,t =
|û(kxky, t)|2∑M

kx=1

∑N
ky=1 |û(kxky, t)|2

. (4.12)

To better illustrate the concept, figure 4.1 shows two opposite cases, a sinusoidal wave
and a random noise. Figure a) shows the plot of a sinusoidal function, while in b) depicts its
power spectrum acquired through Fourier transform. The signal exhibits order and occupies
only a narrow frequency band, as demonstrated by the magnitude peak X(ω) = 1 in the power
spectrum. This indicates the presence of structure and predictability in the signal, allowing it
to conclude that the Shannon entropy is minimum, i.e., H = 0. Fig. c) displays a signal with
noise characteristics. In d), a uniform distribution in the power spectrum is evident where the
signal is characterized by numerous frequencies, indicating the lack of structure in the signal.
As a result, the entropy is maximum, and, therefore, H = 1.
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Figure 4.1. Representation of the maximum and minimum values of spectral entropy for a
sinusoidal signal in a) and a noise in c), with their respective power spectra, b) and d).

The calculation of spectral entropy in 2D, as defined by Equation (4.11), was coded in the C
programming language. The Fastest Fourier Transform in the West (FFTW) library was utilized
to perform the Fourier transform.

FFTW is a C subroutine library created at the Massachusetts Institute of Technology (MIT)
for to calculate the discrete Fourier transform in one or more dimensions, comprising arbitrary
input sizes as well as real and complex data, besides data even and odd (discrete transforms of
cosines and sines) (Frigo and Johnson, 2005).

This library is based on the so-called fast Fourier transform (FFT) developed by Cooley
and Tukey (1965) at IBM. This algorithm reduces the computational time in the order N2 to
N(log2N with N being the number of elements.

4.4 Wavelet Transform

Wavelet transforms arose through the collaborative work of Grossman and Morlet (1985) in
the analysis of seismic signals, in which they saw the need for a better representation of signals
and images characterized by abrupt changes than those provided by Fourier analysis(Meyer
et al., 1992; Farge, 1992).

In Fourier analysis, the transform provides a frequency spectrum for the entire time interval
of the analyzed signal, making it ideal for analyzing stationary signals. Nonetheless, for non-
stationary signals with varying power spectra, the signal information tends to spread out, which
can make it indistinguishable from possible computational noise (Farge, 1992).

31



To enhance this technique, Gabor (1946) proposed modifications in the Fourier transforms
to analyze small signal portions over a specified time interval, which resulted in the development
of the windowed Fourier transform or short-time Fourier transform. This method employs
an observation window that moves across the time domain, and at each location, the Fourier
transform is computed for the signal segment that lies within the window. Although, once the
window size is defined, it remains constant for all signal frequencies, which makes local frequency
analysis difficult (Daubechies, 1990; Bianchi, 2006).

In this way, wavelets can be understood as an application of the windowed Fourier transform
to regions of variable dimensions. In contrast to the Fourier Transform, wavelets are based on
functions of compact support, that is, limited duration. This means that these functions are
nonzero only to a finite extent and equal to zero everywhere else. This characteristic makes
wavelets particularly useful in image analysis, as they allow more effective detection of changes
in regions or edges of the image (Meyer et al., 1992; Bianchi, 2006).

Through the wavelet transforms, a signal, or field, can be decomposed into function bases
both in space and in scale, at different levels of resolution. This method provide a time-scale
description enabling local analysis of the signal (Farge, 1992). The scale decomposition results
from of the dilation or contraction of wavelets, which are analysis functions located in space and
given by

ψa,b(t) =
1√
|a|
ψ

(
t− a

a

)
, a, b,∈ R, (4.13)

where a ̸= 0, represent the scale parameter (contraction/dilation), b correspond to displacement
parameter, and ψ(t) ∈ L2(R) is the generating function, called the mother wavelet. This function
must satisfy the admissibility condition, such that

∫
ψ(t)dt = Ψ(0) = 0, and be limited in time

and frequency.

After obtaining the generating function, the windowed transform is used, whose window
function is a translation/compression in time/frequency of the mother wavelet. Thus, the con-
tinuous wavelet transform for a signal u(t) can be described by

Wa,b(t) =

∫ ∞

−∞
u(t)ψa,b(t)dt. (4.14)

For the discrete domain, the multiresolution analysis (MRA) developed by Mallat (1989)
is used, in which the decomposition of signals or images occurs at different resolution scales,
allowing the analysis of information at multiple levels of detail. Thus, we have the following
scaling relation in discrete time, for the scaling function φ(x) and the mother wavelet ψ(x), both
∈ L2(R):

φ(n) =

N−1∑
i=0

h(i)φ(2n− i) (4.15)

ψ(n) = φ(n) =

N−1∑
i=0

g(i)φ(2n− i) (4.16)

being g a discrete high-pass filter and h a discrete low-pass filter. Both filters are related to each
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other as follows
g(n) = h(2N − 1− n). (4.17)

Wavelets are widely recognized for their importance in signal processing, especially in the
context of one-dimensional piecewise continuous functions, where they provide optimal approx-
imations. However, their effectiveness diminishes in higher dimensions (Kutyniok and Labate,
2012; Labate et al., 2005).

According to Labate et al. (2005) this becomes apparent when attempting to depict natural
images using a 2D wavelet basis. The spatial dispersion of edges results in non-sparse represen-
tations, requiring a large number of coefficients for accuracy. To address this problem, several
new approaches have been introduced, such as directional wavelets, complex wavelets, ridgelets,
curvelets, and contourlets (Labate et al., 2005).

These approaches share the fundamental principle that in order to effectively represent multi-
dimensional functions featuring spatially dispersed discontinuities, the fundamental elements
must a greater diversity of shapes and directions compared to classical wavelet bases (Labate
et al., 2005). One of these alternative approaches to the construction of an efficient representation
of multivariable functions are the so-called shearlets, developed by Labate et al. (2005), which are
obtained by dilations, shear transformations, and translations to a generating function (Labate
et al., 2005; Guo et al., 2006; Kutyniok and Labate, 2012). As will be better explained below.

4.4.1 Shearlet Transform

Shearlet transforms represent a sophisticated approach to multiscale, multidirectional anal-
ysis, specifically designed for extracting information from signals and images characterized by
anisotropic structures and preferred orientations. These transforms are particularly relevant to
accurate detection of edges, textures, and elongated structures (Labate et al., 2005; Kutyniok
and Labate, 2012).

Shearlets stand out due to their anisotropic scaling operator, which elongates one direction
more than the other, resulting in heightened directional sensitivity within high-frequency shear-
lets. To address this, a third operator with rotation-like properties is introduced, allowing for
the adjustment of the orientation of generating function. In the shearlet framework, this specific
operator is referred to as the shear operator, from which the name "shearlet" originates (Duflot
et al., 2019).

Thus, considering a 2D image f(x, y), its shearlet transform can be obtained by anisotrop-
ically dilating, shifting, and shearing a basis of generating functions (Labate et al., 2005; Guo
et al., 2006; Kutyniok and Labate, 2012). Shearlets 2D are represented using affine systems in
L2(R2). For generating function ψ(x), the continuous shearlet system can be defined by

SH(ψ) = {ψa,s,t(x) = TtDMasψ(x) : a ∈ R+, s ∈ R, t ∈ R2} (4.18)

where a, s, t are respectively the dilation, shear and translation parameters. Tt is the translation
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operator given by
Ttψ(x) = ψ(x− t), (4.19)

and DMas is associated to the matrix Mas expressed by

DMasψ(x) = |det(Mas)|−
1
2ψ(M−1

as x), (4.20)

being Mas = AaSs, where Aa is a parabolic scaling matrix, so-called of anisotropic dilation
matrix,

Aa =

(
a 0

0
√
a

)
. (4.21)

This matrix regulates the scale of shearlets through the use of distinct dilation factors along
both axes, resulting in a more extended frequency support of shearlets as it moves towards finer
scales (Labate et al., 2005). Matrix Ss is called the shear matrix, responsible for controlling the
orientation of the shealets, and represented by

Ss =

(
1 s

0 1

)
. (4.22)

Thus, Mas is given by

Mas =

(
a 0

0
√
a

)(
1 s

0 1

)
=

(
a

√
as

0
√
a

)
. (4.23)

Therefore, for the affin system

AMas(ψ) = Aa,s,t(ψ) = {ψa,s,t(x) = a−3/4ψ(M−1
as (x− t)) : a ∈ R+, s ∈ R, t ∈ R2}, (4.24)

the shearlet function becomes

ψa,s,t(x) = a−3/4ψ(M−1
as (x− t)) (4.25)

and the continuous sherlet transform, for f(x) ∈ L2(R2) is defined as the function

SHf (a, s, t) = ⟨f, ψa,s,t⟩, a ∈ R+, s ∈ R, t ∈ R2. (4.26)

In the discrete transformation, a set number of decomposition scales and shifts are utilized,
and the number of orientations depends on the scale, with greater orientations introduced at
higher spatial frequencies (Brazhe, 2018; Kutyniok and Labate, 2012). One of the techniques
employed in computing discrete shearlets is the fast finite discrete shearlet transfor (FFST),
which was created by Häuser and Steidl (2014) and utilized by Brazhe (2018) for developing
entropy and complexity metrics.

From this approach, for a square digital image f ∈ RN×N , with the functions sampled on
a grid {(m1/N,m2/N) : (m1,m2) ∈ G}, G := {(m1,m2) : m1 = m2 = 0, · · ·, N − 1}. Let be
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the number of considered scale j0 := ⌊12 log2N⌋, the discretization of the dilation, shear and
translation parameters presented by Häuser and Steidl (2014) are:

aj := 2−2j =
1

4j
, j = 0, · · ·, j0 − 1, (4.27)

sj,k := k2−j , −2j ≤ k ≤ 2j (4.28)

tm :=
(m1

N
,
m2

N

)
, m ∈ G. (4.29)

With these parameters, shearlet is defined as

ψj,k,m(x) := ψaj ,sj,k,tm(x) = a−3/4ψ(A−1
aj S

−1
sj,k

(x− tm)) (4.30)

Brazhe (2018) highlights the importance of the presence of scaling factor a−3/4 to achieving
a uniform distribution of shearlet coefficient power when processing input data consisting of
spatially uncorrelated random images. These images, for the present work, are obtained through
the numerical implementation of the Hasegawa-Wakatani model for confined plasma.

Therefore, Brazhe (2018) formally defines the shearlet transform as a process that maps an
image f to a set of shearlet coefficients. As the translation grid m remains scale-independent
and redundant, these shearlet coefficients can alternatively be represented as a series of images
Sj,k(x, y) sharing the same dimensions as f . Thus, the normalized power of these coefficients can
be utilized to depict local feature statistics and relate it to probability density, and consequently,
estimate of local entropy and complexity.

4.5 Entropy - Complexity Index

Complexity is defined by López-Ruiz et al. (1995) as the interaction between the information
contained within a system and its disequilibrium based on a probabilistic description of a given
physical system. The quantization of this information is related to the normalized Shannon
entropy H(t), (4.10) presented in section 4.3.

The new concept introduced by this approach is the disequilibrium D, which describes a
distance between an observed probabilistic distribution P from an uniform distribution adopted
(Pe) (López-Ruiz et al., 1995; Brazhe, 2018). Thus, there is

D =

N∑
i−1

(Pi − 1/N)2. (4.31)

Similarly, as conducted by Rosso et al. (2007) and Miranda et al. (2021), we will utilize the
normalized Jensen-Shannon divergence as a measure of disequilibrium, thus

QJS =
J(P, Pe)

Jmax
, (4.32)
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being J(P, Pe) is described by

J(P, Pe) = S

(
P + Pe

2

)
− 1

2
S(P )− 1

2
S(Pe). (4.33)

Consequently, the Jensen-Shannon (J-S) complexity

CS
J = QJS(P, Pe)H(P ) (4.34)

According to Miranda et al. (2021) the pair (H,CS
J ) can be graphically represented within

the complexity-entropy (C-H) plane. This plane can be divided into three distinct regions:
a low-entropy and low-complexity region, which characterizes highly predictable systems; an
intermediate-entropy and high-complexity region, representing unpredictable systems with sig-
nificant structure; and a high-entropy and low-complexity region, indicative of stochastic-like
processes (Rosso et al., 2007).

The obtained complexity measure quantifies both the degree of randomness and range of
spatial correlations within the data. As a result, a range of acceptable complexity values exist
for each entropy value H, with an upper limit of Cmax and a lower limit of Cmin, thus giving to
the C-H plane its characteristic half-moon shape (Rosso et al., 2007; Brazhe, 2018).

The study utilized the C-H plane construction by (H,CS
J ). The normalized Shannon entropy

was obtained from Equation (4.10) and normalized shearlet power coefficients were used as a
probabilistic distribution for calculating J-S complexity based on Equation (4.34). A shearlet-
based algorithm is used to calculate both variables. The algorithm is publicly accessible on the
open-source platform https://github.com/abrazhe/shearlexity. The open source software
used is based on the fast finite discrete shearlet transform (FFST) (Häuser and Steidl, 2014).

4.6 Bifurcation Diagram

Bifurcation diagrams are classical tools for studying the dynamics of nonlinear systems;
they represent the possible behaviors of a dynamic system as a parameter of the model being
analyzed is varied (Vaidyanathan et al., 2021; Nusse et al., 1994). In this way, three diagrams
were constructed, one for the ratio between the kinetic energy of the zonal flow and the total
kinetic energy KZ/KT , one related to the normalized Shannon entropy, and finally the Jensen-
Shanon complexity index, all as a function of the control parameter α - adiabaticity parameter.

First, to construct the diagrams, the analysis interval for the control parameter was defined
with αmin = 10−3 and αmax = 1, values determined according to studies carried out by Numata
et al. (2007). After that, α was selected in the middle of the range, that is, α = (αmax−αmin)/2,
for this value we solve the modified Hasegawa-Wakatani equations and store 5000 files containing
the electrostatic potential. These 5000 files will be used to compute average values for that value
of α. The interval was segmented again to obtain a new value of α, now α = (αmax − αmin)/4,
the modified Hasegawa-Watakani equations were solved again obtaining new 500 values of φ.
After that, α was defined as α = 3(αmax−αmin)/4 and once again the simulation of the modified
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Hasegawa-Wakatani Equations was executed. We repeat these last two steps to refine the values
given to α.

At the end of the simulation, 85,000 files were obtained, 5,000 for each value of α, then the
calculations of the mean and variance of the zonal and total energies were performed according
to the equations (3.40)-(3.41), entropy (4.11) and complexity (4.34), to then construct their
respective bifurcation diagrams.

The methodology described above allows us to recognize the different regimes faster than
increasing the control parameter α by a small constant value.
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5 Results

Fig. (5.1) illustrates the electrostatic potential pattern, highlighting two distinct regimes. In
subfigure (a), representing the turbulent regime (α = 0.010182), vortices are evident as regions
with local minima and maxima in φ. The potential in this regime appears diffuse without
well-defined zones. Subfigure (b) depicts the zonal flow regime (α = 0.01747), characterized by
prominent zonally elongated structures in the electrostatic potential, which play a dominant role
in flow dynamics. Zonal flows have the ability to suppress turbulence and diminish the radial
mass flow toward the tokamak walls, thus enhancing plasma confinement. In this model, the
transition between these two states is referred to as the L-H confinement transition.

(a) (b)

φ

Figure 5.1. Electrostatic potential patterns φ, in (a) the turbulent regime (α = 0.010182),
and (b) the zonal-flow regime (α = 0.010747).

We investigate the L-H confinement transition by constructing a bifurcation diagram, as
described in section 4.6. The transition from the turbulent regime to the zonal-flow regime is
evident when calculating the ratio of the kinetic energy of the zonal flow KZ (3.40) to the total
kinetic energy KT (3.41).

In Fig. (5.2), we analyze the transition from the turbulent regime (α < 0.0103) to the zonal-
flow regime (α > 0.0103) and its impact on the electrostatic potential. The upper panel displays
the average of 5000 values of KZ/KT for a given value of α. In the turbulent regime, KZ/KT

values are notably low, indicating minimal zonal flow influence. However, as we transition to the
zonal-flow regime, KZ/KT values approach one, confirming the prevalence of zonal flows. This
L-H transition takes place around α ∼ 0.0103. Error bars in this panel reflect the variability of
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kinetic energy, with larger bars in the turbulent regime, signifying more significant fluctuations
compared to the zonal-flow regime.

In the lower panel of Fig. (5.2), we show the normalized spectral entropy applied to the
electrostatic potential φ for the same range of α values. Spectral entropy provides insight into
the degree of order or disorder within the electrostatic potential patterns. In both the turbulent
and zonal flow regimes, averaged spectral entropy values are consistently low (less than 0.3),
This implies that the electrostatic potential exhibits orderly patterns in both regimes.

Comparing spectral entropy values before and after the L-H transition, we observe that
the turbulent regime exhibits higher entropy values than the zonal-flow regime, indicating a
higher degree of disorder in the former. This aligns with the role of zonal flows in suppressing
turbulence, serving as barriers against horizontal plasma particle flux, and ultimately enhancing
plasma confinement.
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Figure 5.2. Bifurcation diagram of the ratio between the kinetic energy of zonal flows and
the total kinetic energy, and the spectral entropy, as a function of the control parameter α.

We conducted a preliminary analysis constructing a bifurcation diagram of the Vx and Vy

velocity field components for electrostatic potential for different values of the control parameter,
α. Figure (5.3) illustrates that the radial component, Vx, which has a small variation in the
transition to zonal flow. This transition is most evident in Vy. Due to the accentuated slope of
the poloidal component of the velocity field, denoted by Vy, two distinct scenarios arise in the
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behavior of potential. Hence, our investigation will be restricted to this component since it has
a significant impact on the course of the electrostatic potential.
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Figure 5.3. Bifurcation diagram of the Vx and Vy velocity field components for
electrostatic potential, as a function of the control parameter α.

We delve into the spectral characteristics of the spatial patterns shown in Fig. (5.1) by
analyzing the power spectra of the Vy component of the velocity field. To do this, we performed
a 2D Fourier transform to obtain the power spectra of Vy. The 2D spectra were then simplified
to 1D spectra by calculating the radial mean of the absolute values of the complex Fourier
coefficients.

Thus, Fig. (5.4) illustrates the power spectra of the Vy(x, y, t) velocity component for both
the turbulent and zonal flow regimes. Each curve represents the average of 20 power spectra
computed from various spatial patterns of Vy at different time instances, with the vertical error
bars indicating the standard deviation. In this figure, it is evident that the zonal flow regime
displays a distinct peak at the lowest wavenumber. This peak is a consequence of the prominent
large-scale structure associated with the zonal flow, as depicted in Fig. 1(b).
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Figure 5.4. The ring-averaged power spectrum of Vy in the turbulent regime (black thin
line) and in the zonal flow regime (red thick line). The vertical lines represent the

standard deviation of the average of 20 spectra computed at each regime.

For the local analysis of entropy-complexity, we apply the shearlets technique as described
in section 4.4.1. First, we applied this technique to a well-known fractal, the Sierpiński carpet.
It is constructed from an initial square that is divided into nine subsquares, forming a 3×3 grid,
with the central subsquare removed. This is done recursively for the remaining eight subsquares,
this process occurs infinitely (Allouche and Shallit, 2003).

The left panel of figure (5.5) shows the Sierpiński carpet obtained after 7 iterations. The
middle panel shows the map of local entropyH and the right panel the map of local complexity C.
Note that the regions surrounding the largest squares have higher entropy and lower complexity,
a result similar to that found for signals characterized by noise. In the regions of the largest
squares themselves, we find higher complexity and lower entropy, which can predict the presence
of structure in this part of the image. This analysis of the Sierpiński carpet demonstrates that
the shearlet technique allows to obtain local values of entropy-complexity, and interpret them
in terms of coherent structures in images.
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Figure 5.5. The local entropy H (middle) and the local complexity maps (right) for the
Sierpiński carpet (left).

The next Figure (5.6) shows the maps of local entropy (H) and local complexity (CJS)

for the Vy component of the velocity field in the turbulent and zonal flow regimes. It is worth
noting that the color bars for H and CJS in these two regimes are set to the same scale, which
facilitates a direct comparison.

Examining Figures 5.6(a) and 5.6(b) in the turbulent regime (α = 0.010182), it is observed
that regions with localized minimum entropy correspond to high complexity, while regions with
elevated entropy values correspond to low complexity. This observation suggests that within
the turbulent regime, spatial patterns exhibit high entropy values (H > 0.75) and intermediate
values of CJS .

In the transition to the zonal flow regime, where α = 0.010747, as shown in Figures 5.6(c)
and 5.6(d), a similar correspondence between low-H regions and high-CJS regions is evident.
In this regime, the dominant spatial patterns have higher complexity values and intermediate
entropy values.
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Figure 5.6. (a) The local entropy H and (b) the local complexity CJS maps for the Vy
component of the velocity field in the turbulent regime, and (c) the local entropy H and
(d) the local complexity CJS maps for the same component of the velocity field in the

zonal flow regime.
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In Figure 5.7(a), illustrates the averaged values of the ratio between zonal flow kinetic en-
ergy and total kinetic energy, represented as KZ/KT . The Figure 5.7(b) displays the averaged
normalized Shannon entropy H, and the Figure 5.7(c) shows the averaged Jensen-Shannon com-
plexity CJS , all as functions of the adiabaticity parameter α applied to the poloidal component
of the velocity field. The vertical bars indicate the standard deviation for each quantity.

In the turbulent regime, KZ/KT exhibits low values due to the coexistence of a large num-
ber of active modes with zonal flow modes. A significant increase in KZ/KT occurs around
α = 0.0103, marking the transition to a zonal flow-dominated regime, where the majority of en-
ergy resides in these modes. This transition results from the suppression of the Kelvin-Helmholtz
instability, responsible for disrupting zonal flows and causing energy dispersion, leading to tur-
bulent patterns. Notably, the standard deviation is larger during the turbulent regime than the
zonal flow regime, attributed to the poloidal velocity field’s large-amplitude fluctuations.

Next, we analyze the global values of entropy-complexity, which are obtained by computing
the average of the local values of entropy-complexity over the whole spatial domain, for a given
time. The Figure 5.7(b), representing the average normalized Shannon entropy H during the
L-H transition, indicates that turbulent patterns exhibit higher entropy compared to the zonal
flow regime. This is because the turbulent regime involves kinetic energy spreading among
modes, while the zonal flow regime confines energy to a smaller number of modes.

Finally, for Figure 5.7(c), the average Jensen-Shannon complexity CJS demonstrates a tran-
sition from lower to higher complexity values. In the zonal flow regime, where most kinetic energy
resides in zonal modes, a disequilibrium state is observed. Conversely, the turbulent state in-
volves energy cascading toward smaller scales. As complexity measures the disequilibrium of a
system, the zonal flow regime is expected to exhibit a higher degree of complexity compared to
the turbulent regime.
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Figure 5.8 illustrates the C-H plane, where the two crescent shaped curves delineate the
maximum and minimum values of CJS for a givenH. The J-S index of the Vy velocity component
in the turbulent regime (represented by crosses) and in the zonal flow regime (represented by
plus signs) is shown. The error bars for both H and CJS are smaller than the symbol size.
This plot shows that the turbulent regime has a higher degree of entropy and a lower degree of
complexity compared to the zonal flow regime. The abrupt change in the J-S index within both
the turbulent and zonal flow regimes is evident in the C-H plane.
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Figure 5.8. The complexity-entropy plane, showing the J-S index of the Vy velocity
component in the turbulent regime (crosses) and the zonal-flow regime (plus signs).

Regarding to Figure 5.8, the J-S index for two fractals were included as a reference, whose
high complexity values and intermediate entropy values were already expected, due to their high
degree of structure and ordering. Thus, the J-S index for the Sierpiński carpet (7th iteration)
is represented in the C-H plane by the green square. The red triangle represents a multifractal
model described by Meakin (1987); Conlon et al. (2008), with a resolution of N ×N = 2048×
2048.
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6 Conclusion

In summary, the significant role of turbulence in radial transport in the edge region of fusion
plasmas inside tokamaks was presented, associated with the appearance of coherent structures,
called zonal flows, fundamental in suppressing turbulent transport. Using a simplified model,
a transition from a low confinement regime to a high confinement regime was identified. The
low-confinement regime presents turbulent patterns of electrostatic potential, while the high-
confinement regime is dominated by zonal flows that suppress plasma transport in the radial
direction.

Overall, the study provided a detailed analysis of the L-H confinement transition, high-
lighting the role of zonal flows in suppressing turbulence and increasing plasma confinement.
We started our analysis with two-dimensional numerical simulations of the modified Hasegawa-
Wakatani equations, which provided a simplified nonlinear model for the turbulence of electro-
static resistive drift waves in plasmas.

From these simulations we obtained the spatial patterns of the electrostatic potential, where
two distinct regimes were evident: the turbulent regime, characterized by vortices and associated
with regions of local maxima and minima of φ; and the zonal flow regime marked by the
appearance of coherent, zonally elongated structures.

The transition between both regimes was studied based on bifurcation diagrams constructed
by varying the control parameter, α, related to adiabaticity. The bifurcation diagram showed
that the ratio between the kinetic energy contained in the zonal modes and the total kinetic
energy increases abruptly during the transition.

We showed that the J-S complexity-entropy index computed using shearlets allows to identify
localized regions of lower entropy and higher complexity related to structures in a simple fractal
image. After that, we applied to the poloidal component of the velocity field. In the turbulent
regime, high entropy values and low complexity values are predominant, whereas in the zonal
flow, the opposite is observed with low entropy values and high complexity values being found.

The bifurcation diagrams associated with the averaged normalized Shannon entropy H, and
the averaged Jensen-Shannon complexity CJS , show what has already been observed in previous
results. For the average normalized Shannon entropy during the L-H transition, indicates that
turbulent patterns exhibit higher entropy compared to the zonal flow regime. While for he
average J-S complexity demonstrates a transition from lower to higher complexity values.
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série de preço spot de energia elétrica do brasil. Universidade Católica do Rio de Janeiro,
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Rosso, O. A., Zunino, L., Pérez, D. G., Figliola, A., Larrondo, H. A., Garavaglia, M., Mart́ın,
M. T., and Plastino, A. (2007). Extracting features of gaussian self-similar stochastic
processes via the bandt-pompe approach. Phys. Rev. E, 76:061114.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical
Journal, 27:379–423.

Stangeby, P. C. et al. (2000). The plasma boundary of magnetic fusion devices, volume 224.
Institute of Physics Pub. Philadelphia, Pennsylvania.

Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the
American Meteorological Society, 79:61–78.

Vaidyanathan, S., Sambas, A., Azar, A. T., Rana, K., and Kumar, V. (2021). Chapter 7
- a new 4-d hyperchaotic temperature variations system with multistability and strange
attractor, bifurcation analysis, its active backstepping control, and circuit realization. In
Vaidyanathan, S. and Azar, A. T., editors, Backstepping Control of Nonlinear Dynamical
Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), páginas 139–164. Academic
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