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Abstract: This paper proposes a homotopy-based approach to solve the power flow problem (PFP) in
islanded microgrid networks with droop-controlled distributed generation (DG) units. The technique
is based on modifying an “easy” problem solution that evolves with the computation of intermediate
results to the PFP solution of interest. These intermediate results require the solution of nonlinear
equations through Newton–Raphson (NR) method. In favor of convergence, the intermediate
solutions are close to each other, strengthening the convergence qualities of the technique for the
solution of interest. The DG units are modeled with operational power limits and three types of
droop-control strategies, while the loads are both magnitude voltage- and frequency-dependent. To
evaluate the method performance, simulations are performed considering the proposed and classical
NR methods, both departing from a flat start estimation. Tests are carried out in three test systems.
Different load and DG unit scenarios are implemented for a 6-, 38-, and 69-bus test system. A base
case is studied for all systems, while for the two larger models, a loading factor is used to simulate
the load augmenting up to the maximum value. The results demonstrated that for the largest-size
model system, only the homotopy-based approach could solve the PFP for stringent requirements
such as the diversification of the load profile and hard loading operation point.

Keywords: homotopy; Newton–Raphson method; distributed generation; energy management;
islanded microgrid; distributed energy resources

1. Introduction

In the last decades, transmission/distribution companies, governments, and society
have been working to overcome power shortages, energy diversification, energy saving,
and eliminating environmental pollution due to fossil fuels, which can not be solved only
through the traditional electrical grid [1]. Distribution generation (DG) units, such as full
cell technology [2], photovoltaic systems, and wind turbines [3], have been added to the
existing grids. Places that need a continuous power supply, such as hospitals, educational
centers, airports, and ports, may be eligible for using DG. The penetration of DG into the
existing distribution grids has led to the concept of microgrids. Microgrids (MG) are formed
by the accumulation of DG units, energy storage systems [4], and loads that operate in
conjunction with each other to ensure a reliable power supply to the microgrid network [5].
The hybrid energy sources integrated into the MG requiring embedded DC/AC, DC/DC,
AC/DC, and/or AC/AC converters, with different management control, as fuzzy logic
controllers [6,7] to supply the AC grid. The choice of control strategies can have technical
and financial impacts on the network [8]. They can operate in grid-connected mode by
connection to the distribution grid through a point of common coupling or independently
of the distribution grid in islanded mode. The last operation mode exists when an outage
occurs in a previously grid-connected microgrid. Thus, the islanding phenomenon is one
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of the greatest challenges for microgrids. Associated with challenges are low-inertia [9];
system stability [10]; power sharing among DGs [11]; the maintenance of voltage and
frequency [12,13]; and, predominantly, power flow (PF) studies [14–16].

Traditional PF solvers, such as one that uses the Newton–Raphson (NR) method, and
their decoupled versions have been used in the grid-connected operation mode. In this case,
the main grid controls both the voltage and frequency [17] of the microgrid (distribution
system). In operation in the islanded mode, the voltage and frequency of the microgrid must
be controlled according to load variations through appropriate control techniques. The
insertion of DG units has gained considerable interest with the increasing use of renewable
energy sources (RES). Associated with the DG units, an essential strategy for controlling
the power distributions and frequency is the operation in the droop mode control [18,19].
It should be noted that the computational tools used in PF studies for islanded microgrid
systems have the following particularities: an absence of slack bus, frequency as an inherent
variable in load flow, and generators with the option to control the generated power
and frequency through droop units. In large power systems, the conventional PF is a
computational tool for planning, analyzing, controlling, and operating purposes. Generally,
PF consists in solving nonlinear equations relating voltage and power injection in each
system node but in the synchronous frequency. The solution of these equations represents
the steady state conditions. Conventional PF programs cannot solve the problem of isolated
microgrids. Thus, several works have been proposed for this aim. In [20], the conventional
power flow in conjunction with a large distribution generator was proposed to simulate a
slack bus to solve an isolated microgrid problem. Recently, research has been conducted on
the developing of power flow algorithms for isolated microgrids [14,21–23].

In the literature, various methods and techniques have been proposed for obtaining
the PF solution of the islanded microgrids via Newton methods [5,24] and their deriva-
tives [18,21]. According to [25,26], the power flow algorithms for islanded microgrids allow
for the following classification:

• Jacobian-based methods—these include NR methods and their variants to solve the
nonlinear system related to power flow through Jacobian matrix calculation [18,21,27];

• Backward/forward methods—these use the Kirchhoff law [28,29] and radial topology
to attractively solve the power flow equations based on the fixed-point method;

• Gauss-Zbus methods—these use an iterative process to obtain the solution of a power
network through nodal matrix analysis [30,31];

• Approximations—these utilize the first order Taylor expression to obtain the Jacobian
matrix through nodal matrix analysis using the current injection [32,33].

Among the methods listed previously for obtaining the power flow solution in is-
landed microgrids, different techniques are available in the literature [5,18] based on NR
approaches. In the present day, industry and researchers have been using these approaches
with different electrical variables [12,14,34,35]. In [5], an algorithm is presented based
on the Newton trust region (NTR) that includes the consideration of the distinguishable
characteristics of a microgrid to overcome the limitations of conventional power flow
methods. An improved modified NR (IMNR) is proposed in [34]. It proposes to extend the
traditional Newton–Raphson technique to the islanded microgrid case with complex loads.
A nested-iterative Newton–Raphson (NINR) for islanded microgrids was proposed in [36]
to adjust the voltage of a slack bus and grid frequency to force active and reactive power
flowing through a slack bus be zero. In turn, in [18,37], a non-linearity in the droop control
equation is presented with a modified NR (MNR) method. Recently, linear-based NR ap-
proximation [32] and linear power flow formulation [38], both based on NR and depending
on the Jacobian matrix for a solution in islanded microgrids, have been proposed.

In light of the previous discussion, most of these algorithms are well-suited for the
operating conditions of microgrids. However, in some cases, the application of these
different algorithms is limited or restricted to various constraints/limitations. In the
context presented in this paper, motivate the research by a new power flow algorithm
for microgrid use. A technique to solve complex nonlinear systems as the power flow
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problem is homotopy. From a mathematical point of view, homotopy theory systematically
studies situations where maps of a “difficult” problem are handled [39]. Despite this theory
originating from abstract aspects of algebraic topology [40], nowadays, this theory has
also been used in other areas of mathematics, such as algebraic geometry (for example,
homotopy theory), electric circuits [41,42], and electric power networks [43]. In [44],
homotopy methods and their numerical implementation for a load flow multi-solution of
power systems are investigated. Since then, several applications of power flow studies of
electrical networks with DGs [43] have been studied. In [45], a set of sufficient conditions
for the uniqueness of the power flow solution is proposed using the uniqueness of a
continuation path in a homotopy method. Recently, a flat start guess homotopy-based
power flow method was investigated in [27]. In this publication, the homotopy technique
was used to solve ill-conditioned power flow problems in grid.

The isolated microgrid for relatively large-scale systems tends to present hard PFP con-
vergence when solved by the traditional Newton–Raphson and departing from a flat start
guess. Motivated by this fact and the publication in [27], this paper presents a homotopy-
based approach to solve the power flow for isolated microgrid considering droop-controlled
DG units and different load characteristics and loading factors. The PF is conceived of
so that a flat start guess always initializes the problem formulation. However, a final
solution is successfully obtained through the computation of intermediate PF solutions
along the homotopy path. Simulations using an isolated microgrid system demonstrate
that the traditional NR solver cannot solve the same problem. The problem considers
detailed modeling for loads and DGs, as found in several publications [5,18,46]. The loads
are represented in different forms through an exponential model considering voltage and
frequency dependency. The DG units are droop-control mode dependent and have the
traditional inductive, resistive, or complex impedance characteristics. Simulations consid-
ering the proposed approach and the traditional NR method with flat start initialization
are performed in three test systems with 6, 38, and 69 buses.

The primary contributions of this paper are:

• The presentation of a homotopy-based approach appropriate to deal with the PFP
for hard loading scenarios, considering a frequent variation of DG unit limits and
diversity in load modeling;

• The use of the NR method to determine the homotopy path solution (intermediate
results) considering the limitations of the DG units at each point of the path;

• The exemption from the analytical calculation of the terms of the Jacobian matrix,
in preference to the computation through numerical derivatives, thus facilitating the
manipulation of frequent calculations when variable limits are exceeded;

• The initialization of the PFP always departing from a flat start guess.

The paper is organized as follows. Section 2 details the primary element models
composing the isolated microgrid, i.e., three DG unit droop-control strategy models are
addressed, besides a series feeder circuit and a magnitude- and frequency-dependent
load model. Additionally, a discussion on the reference bus of the isolated microgrid is
presented. Section 3 introduces the power flow problem. It is shown that the power balance
equations can be handled as a complex-valued function (power injections), and the Jacobian
matrix entries can be computed numerically, which is beneficial for including equipment
operational limits and system operational conditions. This section also addresses the
proposed homotopy-based technique and outlines the details that are required to compute
the points of homotopy path through the NR method. Tests and experiments are assessed
in Section 4. In this section, several simulations are presented in three systems with 6, 38,
and 69 buses to demonstrate the performance of the proposed technique compared with
the classical NR method. Finally, Section 5 presents the conclusions of the paper.

2. Islanding Microgrid Modeling

This section presents the basics of static MG network modeling. The fundamentals
are well documented in [5,18,46] and other publications in such a way that additional



Energies 2023, 16, 5323 4 of 19

information can be accessed in those references. The focus is on the power flow in the
microgrid, considering studies with different load profiles and DG unit representations.
Therefore, a primary aspect to consider is the components’ modeling for use in the power
flow problem (PFP).

It is well-known that the treatment given to the isolated microgrid load flow problem
differs from that used for the classical grid. Mainly because, in the case of MG, the frequency
becomes an additional variable of the problem. In this case, the components also depend
on this variable, which should be the same in all parts of the MG. A second aspect that
strongly impacts pursuing PFP solutions is that distributed generation units contribute
with small generation amounts. Then, imposing limit values for all generation units is
mandatory because a possible hard reverse power flow in the network depends on the
loads’ on/off status and DGs. Thus, nonlinearity associated with the ceiling values of
distributed generators can dramatically affect the search for the power flow problem as
performed in cases where limits are little required.

In conventional PFP, DG units are modeled through a PV/PQ type representation.
However, when this type of representation is preferred, it is ignored that DG unit responses
are sensitive to both voltage and frequency variations. However, these aspects must also
be incorporated into the representation of DG in isolated microgrids into a denomination
known as droop, besides the generation limits. Therefore, considering all of these aspects,
a DG unit needs to be adjusted locally.

Balanced power flow calculations are assumed in such a way that the focus of this
paper considers only data and representation for the positive sequence network.

2.1. Distributed Generator Modeling

All DG units represented in this paper are assumed to be controlled through a droop
scheme, with each DG having its maximum active and reactive power limited. The DG unit
operation droop allows for the proper supply of load in MG. Therefore, droop modeling
must be properly represented.

The droop representation must be addressed according to the DG type of output
impedance [18], i.e., depending on how the real and imaginary part of the output impedance
is considered, a droop type is characterized as resistive, inductive, or a combination of both
types. Each DG unit is treated as connected to a PQ bus for the modeling of the PFP.

2.1.1. Inductive-Type Droop DG Unit

In this type of characterization, the imaginary part of the DG output impedance is
greater than the resistive. For this situation, the droop equations representing the DG
active and reactive power are dependent on frequency and terminal voltage magnitude,
respectively. According to [18], for the ith DG, the output powers are calculated as

PGi − P0
Gi =

1
mpi

(ω0 −ω), (1)

QGi −Q0
Gi =

1
nqi

(Vre f i −Vi), (2)

where PGi and QGi are the injected active and reactive powers of the ith DG unit into the
terminal bus in pu, and P0

Gi and Q0
Gi are the active and reactive power setpoints, which

are set zero in this paper. ω0 is the nominal frequency in pu and set in 1.0 pu; ω is the
variable frequency in pu; Vre f i is the voltage magnitude in the reference bus; Vi is the
voltage magnitude in the DG unit terminal bus; and mpi and nqi stand for frequency droop
and voltage magnitude droop coefficients, respectively, in pu(rad/s)/pu(power) or simply
pu. The latter notation will be adopted in this work.
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2.1.2. Resistive-Type Droop DG Unit

The distribution network can be predominantly resistive. This can be verified because
of the absence of the coupling inductor or the presence of highly resistive feeders in the
distribution network. For this situation, the droop type is called “inverse droop”, and
now active and reactive powers are associated with voltage magnitude and frequency,
respectively [18]. Power Equations (3) and (4) below characterize this type of DG unit:

PGi − P0
Gi =

1
nqi

(Vre f i −Vi), (3)

QGi −Q0
Gi =

1
mpi

(ω−ω0). (4)

2.1.3. Complex-Type Droop DG Unit

This situation occurs when no assumption is assumed concerning the DG output
impedance, and it can be considered complex. In this case, the active and reactive power of
the DG unit are not decoupled as presented in the previous models. Therefore, following
the model of DG unit output power suggested in [18], the expressions adopted for the
power are:

PGi − P0
Gi =

1
2

[
1

mpi
(ω0 −ω) +

1
nqi

(Vre f i −Vi)

]
, (5)

QGi −Q0
Gi =

1
2

[
1

nqi
(Vre f i −Vi)−

1
mpi

(ω0 −ω)

]
. (6)

For all DG unit power outputs in (1)–(6), the outputs are constrained according to
the inequalities 0 ≤ PGi ≤ PGmaxi and QGmini ≤ QGi ≤ QGmaxi, in which PGmaxi is the
maximum active power set for the ith DG unit; QGmini and QGmaxi are the minimum and
maximum reactive power set for the ith DG, respectively.

2.2. Feeders Modeling

The system frequency ω is a variable in islanded MG. Then, the impedance considered
in the modeling of line and feeders in the conventional PFP must be modified according to
the frequency. The changes need to be implemented only in the reactance because assuming
that the interest is in the computation of frequency near the nominal, the resistance of the
cables is kept constant. Additionally, the capacitance of the cables is neglected. Then, for a
feeder interconnecting buses #i and #j, the impedance is Zij = Rij + jωLij, in which Rij
and Lij are the resistance and inductance of the feeder, respectively, and it is assumed that
Lij = X0

ij/ω0, where X0
ij is given for the nominal frequency ω0.

2.3. Load Modeling

Active and reactive power demanded in the distribution system characterizing the
loads can be represented as a function of the bus voltage magnitude Vi and angular
frequency deviation. A well-accepted model is given by the exponential form [5] is:

PLi = P0i

[
Vi
V0i

]αi

(1 + Kpi∆ω), (7)

QLi = Q0i

[
Vi
V0i

]βi

(1 + Kqi∆ω), (8)

where ∆ω = ω − ω0 is the angular frequency deviation in pu; P0i and Q0i are the active
and reactive power measured for the voltage V0i, respectively; αi and βi are the active and
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reactive power exponents, respectively; and Kpi and Kqi are frequency load coefficients
in pu.

2.4. Reference Bus and System Losses

The modeling of the isolated MG requires a reference bus. It differs from the conven-
tional PFP, in which a slack bus is assigned. In the case of the slack bus, the voltage is wholly
defined in this bus, and it supplies the power to balance loads and losses of the whole
network. In the case of an isolated MG, only the angular reference is set, and the voltage
magnitude of the bus needs to be computed as a state variable. However, the reference bus
alone cannot supply the power to balance the losses in the system. On the other hand, all
DG units and PV buses connected to the MG must contribute to this balance. In this paper,
we assume the connection of only DG units in the isolated MG, in such a way that the total
power generated by DGs are:

Ptotal
G =

NDG

∑
k=1

PGk, (9)

Qtotal
G =

NDG

∑
k=1

QGk, (10)

in which NDG is the number of DG units, and PGk is the injected active power into the bus
#k according to a type of DG unit defined in (1), (3), or (5); similarly, QGk is the injected
reactive defined in (2), (4), or (6). All individual powers are limited to meeting the physical
requirements of each DG unit.

3. The Power Flow Problem

The standard power flow problem for a grid network of Nb buses is formulated to
determine the nodal voltages at the network [47]. However, its formulation for an isolated
MG must also include the frequency as a state.

3.1. Power Balance Equations

In the isolated MG, the problem is similar to the standard PFP except that now the
voltage magnitude in the reference bus and the frequency ω must be considered, in which
NDG is the number of DG units and PGk is the injected active power into the bus #k according
to a type of DG unit defined in (1), (3), or (5); similarly, QGk is the injected reactive defined
in (2), (4), or (6). All individual powers are limited to meeting the physical requirements of
each DG unit. Mathematically, the power balance equations (PBEs) to solve the PFP for
an isolated MG can be presented from the current Kirchoff law in each bus (11), combined
with the power injection for each bus (12).

Ik(ω) = Ybk(ω)V(ω), k = 1, 2, . . . , Nb, (11)

0 = Vk(ω)I∗k (ω)− Sk(Vk, ω), k = 1, 2, . . . , Nb. (12)

In (11) and (12), Ik(ω) ∈ C is the current injection in bus #k; Nb is the number of bus
in the isolated MG; Ybk ∈ C1×Nb is the kth row of the matrix of nodal admittance (YBUS);
and V(ω) ∈ CNb is the vector of nodal voltages, whose entry is Vk ∈ C.

Note that (12) comprises a set of Nb complex-valued equations. Therefore, it consists
of 2Nb real-valued equations. Additionally, the voltage phasor in the bus #k is Vk = Vk∠θk,
for which Vk ∈ R is the voltage magnitude and θk ∈ R is the voltage phase angle.

From (12), we can form the 2Nb real-valued equations:

grk(x) = real
[
Vk(ω)I∗k (ω)− Sk(Vk, ω)

]
, gr(x) =

[
gr1 gr2 . . . grNb

]T , (13)
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gmk(x) = imag
[
Vk(ω)I∗k (ω)− Sk(Vk, ω)

]
, gm(x) =

[
gm1 gm2 . . . gmNb

]T . (14)

Finally, a 2Nb real-valued equation set is formed as

g(x) =
[
gT

r (x) gT
m(x)

]T
= 0, x =

[
θT VT Vre f ω

]T
∈ Rn, g(x) ∈ Rn, (15)

where n = 2Nb; θ is the vector with the phase angles in PQ buses (loads and DG units); V
is the voltage magnitude vector for PQ buses; Vre f is the voltage magnitude in the reference
bus; and the phase in the reference bus is assumed zero and is not included in the vector θ
in (15).

In (12), the complex power injection is defined according to the active and reactive powers
computed for the load or DG unit. For a DG in the bus #k, Sk(Vk, ω) = PGk + jQGk (see
expressions (1)–(6)). However, for a load Sk(Vk, ω) = −PLk − jQLk (see expressions (7)–(8)).

In summary, the PFP for isolated MG can be resolved following the modeling for the
components and determining the solution of the nonlinear equations system defined by
(15) and organized as

g(x) = 0, x =
[
θT VT Vre f ω

]T
∈ Rn, g(x) ∈ Rn. (16)

3.2. Solving the Nonlinear Equations System by the Newton–Raphson Method

The nonlinear equations system in (15) can be resolved by an iterative method. In the
sequence, we describe how the PFP is solved by employing the classical NR method.

In [18], the problem was solved by the NR method. In that work, the elements of
the Jacobian matrix, J(x(i)) = ∂g(x)

∂x , in x = x(i), are analytically determined. We propose to
solve the procedure carrying out the computations of the elements numerically. This procedure
is effective when several limit violations are present along the iterative process, where
frequent analytic formulae switching to limit values is verified.

For the implementation of the numerical computation of the Jacobian matrix elements,
we have assumed a perturbation h = 10−6 for each variable and then used numerical
differentiation [48] to compute the derivative of g(x) in (15) in relation to the perturbed
variable numerically. In case of the derivative for the variable x(i)k , the perturbed vari-

able has the value x(i)k + h and the kth column of the Jacobian matrix is calculated as

J(:, k) = g(x(i)+h)−g(x(i))
h . Therefore, the use of explicit analytic derivatives is given up.

The iterative solution of the NR method [47] for the ith iteration is obtained as

x(i+1) = x(i) + ∆x(i), (17)

where, considering a given initial estimate, x(0), the increment ∆x(i) is computed for the
mismatch g(x(i)) as

∆x(i) = −
[
J
(

x(i)
)]−1

g(x(i)). (18)

The update x(i+1) is computed, while a given tolerance for the mismatch is not reached,
i.e., ||g(x(i+1))||∞ < ε. After, DGs’ powers are calculated and checked to determine
whether the limits are satisfied. Figure 1 exhibits a flowchart for the NR solver algorithm,
and Figure 2 shows the flowchart for the control of limits of DGs.

In controlling the DG unit limits, active and reactive power control is carried out in
different forms. In case the active power of the `th DG is violated, the power of the DG
is fixed in its maximum value, i.e., PG` = PGmax`, and an inductive power factor equal
0.9 is imposed. However, in case a negative value for PG` is computed, the value is set
for PG` = 0, and the reactive power is QG` in the situation that the reactive power is kept
within limits. When the reactive power is violated, QG` is set in its limit.
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When the DG unit violates any limit, the generated power is converted into a constant
negative load.

The NR method faces difficulties depending on the network loading level and the
requirement to control the limits of the DG units in the isolated MG. For this reason, in some
situations, the method may fail. Consequently, searching for a robust method for these
situations in an isolated network should be encouraged. To improve the performance of
the NR solver, a homotopy based-approach using the NR technique is proposed.
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i := i + 1 End

Figure 1. Flowchart for the NR solver algorithm

3.3. Homotopy-based Approach for Solving the PFP 304

Homotopy-based techniques have robust characteristics for solving numerically non- 305

linear algebraic equation systems as (15) considering limit violations of DGs [49]. The 306

method allows the transformation of a "difficult" problem into an "easy" one through the 307

manipulation of a parameter t in the parametric space t ∈ [0, 1]. The primary objective is to 308

calculate the roots of the nonlinear equations system g(x) = 0. However, the user needs to 309

introduce an auxiliary function g0(x) = 0 to form a mixed function G(x, t). The function 310

g0(x) = 0 must be chosen in such a way that for t = 0, the solution is easily found. On 311

the other hand, for t = 1, the solution of g(x) = 0 is determined. A good strategy to select 312

g0(x) = 0 is to establish a practical starting point for this function. The point should stay 313

around the solution, which is searched for the increments of the homotopy parameter until 314

reaching t = 1. 315

The modified problem, including t, g(x) = 0, and g0(x) = 0 can be presented as the 316

nonlinear set of equations: 317

G(x, t) = tg(x) + (1 − t)g0(x) = 0, (19)

where t ∈ R is the homotopy parameter and the solution set x∗ for all t ∈ [0, 1] forms the 318

homotopy trajectory (path). 319

Now, the focus is determining the root of G(x, t) in (19). The definition of g0(x) is 320

crucial to varying the parameter t and calculating the solution of interest in t = 1. In [27], 321

Figure 1. Flowchart for the NR solver algorithm.



Energies 2023, 16, 5323 9 of 19
Version July 7, 2023 submitted to Journal Not Specified 9 of 19

Start
Update results for iteration i

PG := P(i+1)
G ; QG := Q(i+1)

G

k = 0

PGl > PGmaxl PGl < 0
no

PGl = 0
yes

Smaxl = PGmaxl /0.9; PGl = PGmaxl

QGmaxl =
√

S2
maxl − P2

maxl ; QGl = QGmaxl

yes

QGl > QGmaxl
or

QGl < QGminl

no

Conversion to negative load
SGk = −PGk − jQGk

Violated (k + 1)= l; k := k + 1

QGl = QGmaxl
or QGminl

yes

l := l + 1

no

k = 0

No violation of DG

k DG in violation
and converted

to negative load
yes

no

Return

l = 1, 2, . . . , NDG

Figure 2. Flowchart for checking of DG unit limits violation procedure

a homotopy approach was proposed to solve an ill-conditioned problem for a large-scale 322

grid. The method is modified and extended in this paper to consider the isolated MG with 323

constraining in DG units. As in [27], the interest is also to initialize the homotopy problem 324

from a flat start estimation. i.e., all voltages in 1.0 pu (including the reference) and nodal 325

phase angles zero for all buses. 326

The idea in [27] for t = 0 is to set g0(x) in such a way that, given an initial estimate 327

x(0) the solution, x(0)∗ , for the nonlinear equations system G(x, 0) = 0 is also x(0)∗ = x(0). 328

Therefore, we conclude that g0(x) = x − x(0). This means that in t = 0, we solve a power 329

flow where each bus has its load and a fictitious generation to supply this local load. 330

Hence, no power flow leaves the bus, or arrives from other adjacent buses. Similarly, 331

for a DG unit bus, a fictitious load consumes the power generated locally. However, for 332

t > 0, increasing at discrete step ∆t, such that ti+1 = ti + ∆t, until ti+1 = 1, the fictitious 333

loads and generations are gradually removed according to (19). Obviously, for ti+1 = 1, 334

G(x, 1) = g(x) = 0 and the PFP solution is determined. 335

Some remarks concerning the homotopy process can be stated as follows: 336

Figure 2. Flowchart for checking of DG unit limits violation procedure.

3.3. Homotopy-Based Approach for Solving the PFP

Homotopy-based techniques have robust characteristics for solving numerically nonlin-
ear algebraic equation systems as (15) considering limit violations of DGs [49]. The method
allows for the transformation of a “difficult” problem into an “easy” one through the ma-
nipulation of a parameter t in the parametric space t ∈ [0, 1]. The primary objective is to
calculate the roots of the nonlinear equations system g(x) = 0. However, the user needs to
introduce an auxiliary function g0(x) = 0 to form a mixed function G(x, t). The function
g0(x) = 0 must be chosen in such a way that for t = 0, the solution is easily found. On the
other hand, for t = 1, the solution of g(x) = 0 is determined. A good strategy to select
g0(x) = 0 is to establish a practical starting point for this function. The point should stay
around the solution, which is searched for the increments of the homotopy parameter until
reaching t = 1.
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The modified problem, including t, g(x) = 0, and g0(x) = 0, can be presented as the
nonlinear set of equations:

G(x, t) = tg(x) + (1− t)g0(x) = 0, (19)

where t ∈ R is the homotopy parameter, and the solution set x∗ for all t ∈ [0, 1] forms the
homotopy trajectory (path).

Now, the focus is on determining the root of G(x, t) in (19). The definition of g0(x) is
crucial to varying the parameter t and calculating the solution of interest in t = 1. In [27],
a homotopy approach was proposed to solve an ill-conditioned problem for a large-scale
grid. The method is modified and extended in this paper to consider the isolated MG with
constraining in DG units. As in [27], the interest is also to initialize the homotopy problem
from a flat start estimation, i.e., all voltages in 1.0 pu (including the reference) and nodal
phase angles zero for all buses.

The idea in [27] for t = 0 is to set g0(x) in such a way that, given an initial estimate
x(0) the solution, x(0)∗ , for the nonlinear equations system G(x, 0) = 0 is also x(0)∗ = x(0).
Therefore, we conclude that g0(x) = x − x(0). This means that in t = 0, we solve a
power flow where each bus has its load and a fictitious generation to supply this local
load. Hence, no power flow leaves the bus or arrives from other adjacent buses. Similarly,
for a DG unit bus, a fictitious load consumes the power generated locally. However,
for t > 0, increasing at discrete step ∆t, such that ti+1 = ti + ∆t, until ti+1 = 1, the fictitious
loads and generations are gradually removed according to (19). Obviously, for ti+1 = 1,
G(x, 1) = g(x) = 0 and the PFP solution is determined.

Some remarks concerning the homotopy process can be stated as follows:

• A nonlinear system G(x, ti+1) = 0 must be solved for each parameter ti+1, but the
only one whose results are of interest is the one for ti+1 = 1;

• The resolution of G(x, ti+1) = 0 can also be performed by the standard NR method
according to the procedure presented in Figure 1;

• The initial estimate used to solve G(x, ti+1) = 0 is the solution x∗ found for G(x, ti) = 0
in the step ti;

• The solution is closer when ∆t is small, facilitating the convergence of the NR solver;
• As at each step ti+1, a NR solver is used and provides a solution for the homotopy

path (solutions of G(x, ti+1) = 0). In the case of DG units, all their limits are verified
at the point ti+1 before proceeding to the next point. This procedure differs from the
case without homotopy (only the classical NR) when the violation condition is only
verified for the solution of g(x) = 0.

Considering the aspects listed for the homotopy-based approach, its application to
solve the PFP for isolating MG exploits other qualities not found in the standard NR solver,
mainly because it allows one to depart from a desired initial estimate and “guide” the
solutions along the homotopy path considering solutions that are initializations for the
next points of the path. Additionally, devices submitted to the control of limits of variables
are monitored gradually along the homotopy path.

In the next section, experiments are carried out considering some isolated MG and dif-
ferent characteristics of loads and loading cases to demonstrate the numerical performance
of the method presented in this paper.

4. Experiments and Results

This section presents simulations and results for demonstrating the efficiency of the
homotopy-based approach to PFP in isolated MG. All experiments are performed using
a modified version of the MATPOWER tool to incorporate input data for microgrid and
load varying with voltage magnitude and frequency. The MATPOWER tool was prepared
to run in the OCTAVE platform release 6.4.0. Three isolated MG having only DG units
as energy sources supplying the network were studied. The first system is the 6-bus MG
studied in [5,18]. The second MG is the 38-bus system presented in [18,46]. The third and
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largest MG is the 69-bus MG described in [50] and adapted in this work to meet other
requirements of loads.

All the initialization of the methods is of the type flat start, i.e., voltage magnitude
1.0 pu and phase angle zero. Step ∆t = 0.25 is used when the homotopy-based approach
is employed.

The simulation was carried out using a personal computer, Intel(R) Core(TM) i7-8565U
8th Gen, 256 GB SSD CPU, 1.80 GHz, 16 GB RAM, 64-bit OS.

4.1. 6-Bus System Simulations

This subsection describes simulations and results for the 6-bus system. The objec-
tive is to show the results determined with the NR method and the homotopy-based
approach for a tutorial isolated MG presented in [5,18]. The one-line diagram repro-
duced from [18] is depicted in Figure 3. Table 1 shows the parameters Rkm and Lkm of
the network series branches k−m. They were converted to pu for a three-phase power
Sb = 10 kVA and phase-phase voltage base Vb = 220 V. The loads L1 and L3 were calcu-
lated for the nominal voltage, ω0 = 377 rad/s and impedances Z1 = 6.95 + jω00.0122 Ω
and Z3 = 5.014 + jω00.0094 Ω. Assuming these values and constant impedance,
the powers were computed giving P10 = 0.4842 pu, Q10 = 0.3204 pu, P30 = 0.6436 pu,
and Q30 = 0.4549 pu. Then, these power values were adopted for simulations considering
different parameters α and β for load computation as a function of the voltage magnitude
and frequency. We kept the parameters Kpi and Kqi constant for any bus #i, equal to 1 and
−1, respectively.

The DG unit basic data for the network simulations were obtained from [5]. The droop
data parameters mp and nq for the DGs in that reference are given in absolute units,
in (rad/s)/W and V/VAr, respectively. We have used mp = 9.45 × 10−5 (rad/s)/W
and nq = 0.0016 (V/VAr) for all DGs. In our simulations, the data were used in pu.
Then, the values mp(pu) = mpSb/ω0 = 0.0025 pu and nq(pu) = nqSb/Vb = 0.073 pu.
Simulations were performed for all droop types, the NR method, and the homotopy
approach. The homotopy was implemented by using the NR method at each point ti and
step ∆t = 0.25. For all cases, the convergence was successfully obtained for the tolerance
ε = 10−8 pu for no more than 5 iterations. The DGs were assumed with no power limit.

Table 2 shows the simulation results for the NR and homotopy approaches. The results
are similar, considering the given tolerance. The second and third columns in the table
exhibit the voltage magnitude and phase angle for α = 0 and β = 0. For this result,
ω = 0.9990 pu was obtained. The fourth to the ninth columns show similar results but
for other load characteristics. The fourth and fifth columns exhibit the information for
α = 1 and β = 1, and the value determined for ω was 0.9991 pu. The sixth and seventh
columns depict the results for α = 2 and β = 2, for which the frequency ω = 0.9991 pu was
calculated. Finally, the eighth and ninth columns show the results for α = 0 and β = 2,
for which the value ω = 0.9990 pu was computed.

From Table 2, it is observed that the NR method and the homotopy approach provided
the same results, even for different types of loads. Still, these experiments’ respective values
for magnitude voltages and phase angles are close, considering the distinct characteristics
of loads.

The tutorial demonstrates the agreement between the NR method and the homotopy-
based approach performance.

Table 1. 6-bus impedance parameters.

Branches 1–2 1–4 2–3 2–5 3–6

Rkm (Ω) 0.300 0.300 0.150 0.200 0.050
Lkm (mH) 0.318 0.350 1.843 0.250 0.050
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Table 2. Voltages for the 6-bus system considering different load characteristics and determined by
the NR method and homotopy approach.

α = 0, β = 0 α = 1, β = 1 α = 2, β = 2 α = 0, β = 2

Bus V (pu) θ (degree) V (pu) θ (degree) V (pu) θ (degree) V (pu) θ (degree)

#1 0.9564 0.0000 0.9583 0.0000 0.9600 0.0000 0.9582 0.0000
#2 0.9702 −0.5602 0.9714 −0.5401 0.9725 −0.5207 0.9716 −0.5049
#3 0.9609 −2.8716 0.9624 −2.7636 0.9638 −2.6711 0.9631 −2.8156
#4 0.9860 −0.0881 0.9866 −0.0819 0.9872 −0.0737 0.9872 −0.0277
#5 0.9892 −0.4783 0.9896 −0.4629 0.9900 −0.4455 0.9903 −0.3876
#6 0.9668 −3.0697 0.9681 −2.9539 0.9692 −2.8540 0.9689 −2.9953

4 1

6

5 2

DG

3

DG

DG
R14 L14

R25 L25

R36 L36

R12

L12

R23

L23

L3

L1

Figure 3. 6-bus test system circuit. Reprinted with permission from Ref. [18]. 2023, IEEE.

4.2. 38-Bus System

A larger model based on a 38-bus network was studied in this subsection. The 38-bus
system data are based on the network configuration presented in [18], whose one-line
diagram is exhibited in Figure 4. The microgrid has 5 DGs of the P−ω and Q−V droop
type. All loads in the system are characterized according to [46] of three types as industrial
(I), commercial (C), and residential (R) (see the indication I, C, and R in the one-line
diagram). However, in [46], the frequency load dependency is neglected. This dependency
is considered in [5] and is adopted in [18] and in this paper.

We emphasize that the feeder connections found in [18,46] differ concerning the
configuration detected for the two branches. First, the branch 18–37 is present in the
network in [46], but it is modified to 22–37 in [18]. Second, the branch 9–35 in [46] is not
present in [18]. Instead, the branch 29–35 has equal parameters to the branch 9–35 found
in [46]. In view of the explanation, all branch data (line impedance) can be recovered
from [46] for a pu base 12.66 kV and 1000 kVA.

The load data can be obtained from [46], including the load type characterized by the
exponential parameters α and β. For load type I, α = 0.18 and β = 6.00; for load type C,
α = 1.51 and β = 3.40; and for load type R, α = 0.92 and β = 4.04. The frequency-load
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dependency parameters were adopted as Kpi = 1 and Kqi = −1 for the active and reactive
part, respectively, such as in [5,18].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25 38

34 36

26 27 28 29 30 31 32 33

19 20 21 22 37

DG

DG DG DG

35

DG

ICICRCRCCICCR

I

CR

C C C

C I C C R R C

R C I R

C

I

Figure 4. One-line diagram for the 38-bus system reproduced from [18].

DG characterization is considered according to [5,46]. All DGs have inductive droop
type and magnitude reference voltage 1.01 pu. The remaining parameters are exhibited in
Table 3.

Table 3. 38-bus system DG parameters.

Bus mp×10−3 (pu) nq (pu) Pmax (MW) Qmax (MVar)

#34 5.102 0.020 2 0.9
#35 1.502 0.033 2 0.6
#36 4.506 0.020 2 0.9
#37 2.253 0.050 2 0.3
#38 2.253 0.050 2 0.3

Simulations were performed using the NR method proposed in [18] and the homotopy-
based approach. The results are in agreement with those found in [18], where the frequency
converges to 0.9981 pu, and the reactive power limit of the DG in the bus #38 exceeded
its value.

Other experiments were carried out for different loading factors, i.e., modified loads
by a factor λ, such that PLi = λP̂Li and QLi = λQ̂Li, where P̂Li and Q̂Li are the loads for the
original case studied in [18]. Progressive values of λ were used until the reactive power
limits were surpassed or divergence was detected. The last value of λ for which we still
have the power inside the reactive limits occurred for λ = 1.45. Table 4 shows the DG
unit generated powers (PG and QG) and voltages (magnitude V and phase angle θ) for the
loading factors λ = 1.00 and λ = 1.45.

Table 4. Voltages and power in the DG buses for the 38-bus system.

λ = 1.00 λ = 1.45

Bus V (pu) θ (degree) PG (pu) QG (pu) V (pu) θ (degree) PG (pu) QG (pu)

#34 0.9695 −0.7746 0.3668 0.6773 0.9825 −1.1838 0.5296 0.9000
#35 0.9993 1.2888 1.2461 0.3199 0.9904 1.4674 1.7415 0.5885
#36 0.9971 −1.2086 0.4154 0.6443 0.9839 −1.8753 0.5900 0.9000
#37 0.9973 0.6148 0.8307 0.2536 0.9832 0.9954 1.1992 0.3000
#38 0.9848 0.1868 0.8326 0.3000 0.9650 0.4039 1.1992 0.3000

In Table 4, for λ = 1.00, the calculated frequency is ω = 0.9981 pu, while for λ = 1.45,
the frequency is ω = 0.9974 pu. Only the DG unit in the bus #35 for the latter loading kept
the power values within its limits.
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When λ = 1.46, all DG power reactive limits were surpassed despite the frequency
being kept approximately in ω = 0.9974 pu.

Again, as it was also verified for the 6-bus system, both the NR method and homotopy-
based techniques presented a similar performance in relation to the determination of results.
Even with the hard loading and monitoring of the DG unit power limits, both methods
converged and presented the same results.

4.3. 69-Bus System

In this section, the objective is to apply the NR method and homotopy-based approach
for a higher-order model system with different types of loads and DG units, including
loads with year-season profiles. Additionally, it is verified how the two techniques behave
with a progressive loading factor.

A modified 69-bus isolated microgrid was generated based on the original radial
network presented in [50]. The one-line diagram for the modified network that includes
10 DGs is shown in Figure 5. All data of branches are given in [50] and available in [51] as
case69 for pu base 10 MVA and 12.7 kV. The load data (type R, I, or C) were introduced
here and characterized by the parameters in Table 5. The 10 DG units were also proposed
in this paper and are connected at buses #2, #5, #15, #38, #42, #47, #56, #57, #60, and
#63. The DG units are assumed to be of the inductive droop type, with each having
mp = 0.011 pu and nq = 0.02 pu, but with different limits for active and reactive power.
Table 6 provides the upper limits of DGs. In the original configuration, all loads are of a
constant power type, i.e., with α = 0 and β = 0. The load profile was modified in this paper
to reflect a more realistic characterization of a distribution load characteristic. Then, it was
also characterized according to the proposed model presented in [52], as residential (R),
commercial (C), and industrial (I) but with parameters changing according to the season’s
winter or summer, both for day and night. Table 5 exhibits the parameters associated
with these characteristics. The load frequency parameters are equal for all loads, being
Kpi = 1.0 pu and Kqi = −1.0 pu, for any bus #i.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

47 48 49 50

51 52 66 67

68 69

53 54 55 56 57 58 59 60 61 62 63 64 65

36 37 38 39 40 41 42 43 44 45 46

28 29 30 31 32 33 34 35

DGDG

DG

DG DG DG

DG

DGDG

DG

R C IC C R R R

R R

R R R

R R R

R R R

R R RI I

I

II

I I

I

I I I

C C

C CC

C

C C C

C CC

C

R

Figure 5. One-line diagram for the 69-bus sketched according to the branch data used in [50] and
modified through the inclusion of different loads with the characterization proposed in [52].



Energies 2023, 16, 5323 15 of 19

Table 5. Load characteristics informed from tests on the 69-bus Ontario Hydro system [52].

Summer Day Summer Night Winter Day Winter Night

Load Type α β α β α β α β

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Residential (R) 0.72 2.96 0.92 4.04 1.04 4.19 1.30 4.38
Commercial (C) 1.25 3.50 0.99 3.95 1.50 3.15 1.51 3.40
Industrial (I) 0.18 6.00 0.18 6.00 0.18 6.00 0.18 6.00

Table 6. Maximum limits of active and reactive power of DG units for the 69-bus system.

#2 #5 #15 #38 #42 #47 #56 #57 #60 #63

Pmax
(MW) 0.50 0.5 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5

Qmax
(MVar) 0.25 0.2 0.2 0.2 0.2 0.2 0.9 0.8 0.8 0.8

Simulations were performed with different scenarios using the NR method and the
homotopy-based approach. Experiments were carried out for loading factors changing from
λ = 1 (base case) until divergence was detected. The homotopy approach was performed
with step ∆t = 0.25. Table 7 exhibits the calculated frequency for different load scenarios
and loading factors. It was verified that the two techniques applied to the solution of the
PFP for the 69-bus system behaved differently for high loads. The NR method could no
longer reach a solution for a given load (λ > 1.72). In contrast, the homotopy method
continued to show convergence up to λ = 1.80 (divergence occurred for all scenarios with
λ ≥ 1.81).

Table 7. Convergence frequency profile for the modified 69-bus system using the Newton–Raphson
method and homotopy-based approach with different load characteristics according to Table 5 and
several loading factors.

Summer
Day

Summer
Night Winter Day Winter

Night
Method λ ω

Newton–Raphson

1.00 0.9996 0.9996 0.9996 0.9996
1.70 0.9988 0.9988 0.9988 0.9988
1.72 - 0.9993 0.9991 0.9989
1.73 - - - -
1.75 - - - -
1.80 - - - -

Homotopy

1.00 0.9996 0.9996 0.9996 0.9996
1.70 0.9988 0.9988 0.9988 0.9988
1.72 0.9990 0.9990 0.9990 0.9990
1.73 0.9990 0.9990 0.9990 0.9990
1.75 0.9990 0.9990 0.9990 0.9990
1.80 - 0.9994 0.9992 0.9990

Figure 6 depicts magnitude voltage plots according to the bus for the loads considering
the year season and day/night profile for the loading factors for the base case, i.e., λ1 = 1.00
and a high loading factor λ2 = 1.75. The results obtained with the NR method and
homotopy-based approach coincide with the base case. However, only the homotopy-
based result is available for a higher loading factor since the NR methods diverged for this
condition. A significant difference between the magnitude of voltages from the ninth bus
to the twenty-seventh bus is verified by visualizing the curves. This justifies the difficulty
for the NR method in converging in high-loading scenarios because the technique uses flat
start initialization.
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On the other hand, despite using the NR method and departing from the flat start
guess, the homotopy-based approach uses intermediate results as initialization for the next
NR solver in the homotopy path. This process continues until ti+1 = 1 (the last point of the
homotopy path and the one of interest for the PFP solution). Therefore, the initialization of
the NR method along the homotopy path provides good conditions for the convergence of
the method.

Note that, according to Table 7, for λ > 1.75, the summer day scenario presents a
divergence of the power flow. Then, the plots in Figure 6 show the base case plots and those
for which the maximum loading factor λ is verified for all scenarios. When λ = 1.80, three
scenarios still present convergence of the power flow; however, for λ = 1.81, the Jacobian
matrix is singular, and divergence occurs for all scenarios.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Bus number

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
(p

u
)

1
 = 1.00

2
 = 1.75

WINTER NIGHT

WINTER DAY

SUMMER NIGHT

SUMMER DAY

Figure 6. Voltage magnitude at each bus of the 69-bus system, with different load characteristics,
for loading factors λ1 = 1.00 and λ2 = 1.75

The CPU time was measured only for the largest system, considering it is more
significant among the studied systems. The monitoring was carried out for the base case
(λ = 1.00) and a hard loading (λ = 1.75) of the 69-bus system. For the base case, the NR
method needed 1.43 s to obtain the PFP solution, while the homotopy method required
2.67 s. The higher time for the homotopy-base approach is justified because it needs to
solve more nonlinear systems along the homotopy path to achieve the solution of interest.
However, for the hard loading, just the homotopy method had the time measured as it was
the only one to converge, requiring 4.55 s. The importance of this result is emphasized,
considering that the NR method alone was unable to achieve convergence for the same
initialization conditions of the homotopy-based approach.

5. Conclusions

This paper presented an efficient technique to solve the power flow problem in an
isolated microgrid network. The approach differs from the conventional power flow
problem since instead of using a slack bus, a reference bus is adopted in the isolated
microgrid. Additionally, in the latter, frequency is a state that must be determined.

A homotopy-based approach to determine the power flow solution was proposed.
The technique considers the isolated microgrid based on droop-controlled DG units and
different load characteristics. The PF was always evaluated, departing from a flat start
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guess and computing intermediate solutions to form the homotopy path until the solution
of interest was reached. To compare the performance of the method, the NR solver, also
with initialization of type flat start, was used to solve the same problem. Simulations were
assessed in 6-, 38-, and 69-bus systems with several DG units, loads with different features,
and loading factors.

Experiments for the two smaller systems evidenced the similar performance between
the traditional NR method and the homotopy-based approach. However, only the latter
technique could reach the solution for the largest system with stringent requirements, such
as high loading. This fact is justified since the homotopy approach, despite departing from
the flat start guess, uses intermediate results, which are also obtained via the NR method,
but uses the solution as the initialization for the next point of the homotopy path until the
computation of the last point.

The authors intend to extend the methodology to unbalanced three-phase isolated
microgrid studies in future works.
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