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Abstract

This work addresses, through a model predictive control (MPC) approach, the consensus
problem for discrete-time nonlinear multi-agent systems subjected to switching communica-
tion topologies. For systems following a random switching law, there is not anyMPC solution
that results in a reliable optimization in real-time. We propose a new neural-network-based
algorithm that reduces the effects of communication deficiencies, caused by Markovian
switching, by approximating and minimizing, in real-time, the MPC’s cost function. The
convenience of the proposed method is certified in simulations for different applications
and scenarios. Finally, the future steps of the current research are detailed.

Keywords: Consensus control. Neural networks. Model predictive control. Multi-agent
systems.



Resumo

Este trabalho aborda, através do método de controle preditivo, o problema de consenso para
sistemas multiagentes não lineares a tempo discreto sujeitos a topologias de comunicação
chaveadas. Para sistemas multiagentes não lineares que seguem uma lei de chaveamento
aleatório, não há soluções baseadas em controle preditivo que resultam em uma otimização
confiável em tempo real. Nós propomos um novo algoritmo baseado em redes neurais que
reduz os efeitos das deficiências de comunicação, causados pelo chaveamento Markoviano,
aproximando e minimizando, em tempo real, a função de custo do controle preditivo. A
conveniência do método proposto é certificada em simulações para diferentes cenários e
aplicações. Finalmente, os passos futuros da atual pesquisa são detalhados.

Palavras-chave: Controle de consenso. Redes neurais. Modelo de controle preditivo. Sis-
temas multiagentes.
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1 Introduction

Researchers have successfully applied cooperative control of multi-agent systems
(MAS) to handle a broad range of robotics applications, see, for instance, applications in
mobile robots (Han, 2018), in formation flight (Floriano et al., 2021), and in networked
manipulators (Liu; Li; Guo, 2021), to mention a few. One essential feature studied for
cooperative control is to achieve agents’ state consensus. Further, developing a protocol that
leads to consensus demands a practical design that makes all agents reach an agreement on
their states (see, e.g., Lewis et al. (2013), Wang et al. (2020), Ren, Beard, and Atkins (2007)).

According to Li et al. (2019), to reach consistent agreement and consensus, it is neces-
sary to ensure a reliable communication system. In real-time experiments, however, certain
physical features can degrade the communication topology, thus generating uncertainties in
the information exchange (Savino et al., 2015). In this scenario, consensus should work even
if the system is subject to switching topologies (Olfati-Saber; Murray, 2004). Studies suggest
using Markov chain to model that switching topology (Wang et al., 2020; Gao et al., 2020;
Savino et al., 2015; Ming et al., 2016), even though it is possible to assure consensus when
the switching topology is arbitrary (Valcher; Zorzan, 2017; Sakthivel et al., 2019; Kaviarasan
et al., 2018). Wang et al. (2020), for instance, have studied a class of multi-agent system
with Markovian switching topologies for linear dynamics. In this case, consensus is proven
to be obtained in terms of linear matrix inequalities. In another work, Gao et al. (2020)
have obtained similar achievement for systems with disturbances and nonlinearities. It was
provided sufficient conditions to obtain consensus in such system by using a event-triggered
mechanism. However, both works have solutions based on offline strategies, which might
not reflect unknown factors during the operation.

Similar to (Gao et al., 2020), other works have contributed to the study of nonlinear
MASwith switching topologies once nonlinear systems are widely present in importantMAS
applications. For instance, (Liu; Huang, 2017) developed an adaptive control technique for
the leader-following consensus problem for a class of nonlinear MAS subjected to switching
topologies and external disturbances. Although it provides a great solution for higher-order
nonlinearities, the communication switching is still modeled with deterministic functions.
Another relevant work, (Zou et al., 2019) has investigated random switching applied for
MAS with nonlinear dynamics (including manipulators), successfully proving the event-
triggered efficiency in tracking the leader with no Zeno behavior. Nevertheless, the switching
mechanism was applied to the individual dynamics, not the communication topology.

Due to their flexibility in dealing with unknown parameters, and their significant
capacity to estimate nonlinear functions, machine learning algorithms have been used for
consensus control in online strategies (Li et al., 2020; Zhang; Zhang; Feng, 2017; Zhao et al.,
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2017). For instance, Zhang, Zhang, and Feng (2017) used neural network-based adaptive
dynamic programming to solve the consensus problem for systems with unknown dynamics.
In another study, Zhao et al. (2017) have created an adaptive neural network (NN) con-
troller for finite-time consensus problems in uncertain MAS. Note that both studies have
systems modeled for fixed topologies only. By contrast, Li et al. (2020) have contemplated
a time-varying topology. In summary, all of these studies have designed their systems for
deterministic topologies.

On the other front, stochastic topology has allowed researchers to expand the applica-
tion of consensus in multi-agent systems. For instance, controllers based on neural networks
have provided significant results with Markov jumps in single-agent systems. Zhong et al.
(2015) have proposed an online system based on neural network optimization of an adaptive
dynamic programming protocol for discrete-time nonlinear Markov jump systems (MJS).
In another study, Yang, Yin, and Kaynak (2020) have applied neural networks to estimate
nonlinearities in fault-tolerant MJS. It is then reasonable to extend the application of neural-
network-based methods for MAS subject to the stochastic topology. This work contributes to
this direction, as detailed next.

Recall that model predictive control (MPC) has been popular in industrial applica-
tions due to its predicting characteristics and capacity of working with varying operating
conditions, providing performance robustness (Cheng et al., 2015; Han et al., 2015; Namara
et al., 2013). Recently, researchers have expanded the knowledge of MPC to deal with neural
networks and MAS (Wang; Gao; Qiu, 2015; Chen et al., 2018; Xiao; Chen, 2018). While
only Xiao and Chen (2018) have studied MAS with switching topologies, the consensus
problem was solved only for a particular system (wheeled robots) and the switching between
topologies was modeled as deterministic and not stochastic. Indeed, to the best of the au-
thor’s knowledge, there is not any work in the literature that applies MPC technique for the
consensus protocol design of nonlinear MAS with Markovian switching topology. Studying
the stochastic effects of Markovian models on MPC-based MAS is particularly relevant to
provide practical applicability since these models are convenient tools to represent real
communication imperfections (such as disconnection, noise and disturbances, preeminent
adversities faced in the current consensus problem).

1.1 Contributions
The main contribution of this research is to show a novel neural-network-based

model predictive control for the consensus problem of nonlinear multi-agent systems with
Markovian switching topology. In this approach, the cost function of MPC considers the
expected value of a certain Lyapunov function that in turn accounts for the error of the
system. The function cost also weights the behavior of the communication topology. A
feedforward neural network is used to adaptively approximate the cost function of MPC and,
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by minimizing it, obtain the solution for the corresponding control problem. Simulations
with different systems are performed in order to verify the protocol’s effectiveness as well
as to compare it with other existing methods such as the approaches developed by Wang et
al. (2020) and Gao et al. (2020). Finally, the approach’s practical relevance is illustrated in
numerical evaluations by verifying the proposed method in disturbed systems as well as in a
group of quadrotors.

To summarize, this work contributes in the following:

• For nonlinear MAS with MPC-based protocol design, this study expands the class
of allowed topologies in the literature. Here, Markovian switching topologies are
allowed, contrasting to deterministic switching topologies of (Xiao; Chen, 2018);

• The difficulty of MPC optimization caused by random processes is sorted out by a
novel online neural-network-based algorithm that mitigates the effects of communi-
cation failures;

• The developed algorithm advances the studies of nonlinear multi-agent consensus
with random switched topologies of (Gao et al., 2020) by introducing adaptive neural
networks that improve the system capacity to handle unknown external changes;

• The proposed protocol can be applied to a broad class of nonlinear systems due to
the neural network estimation properties. As exemplified in simulations, the class of
allowed nonlinear dynamics enables us to deal with important practical nonlinear
systems such as quadrotors and robot cars and encompass those dynamics considered
in the work of (Xiao; Chen, 2018), limited to wheeled robots, and of (Gao et al., 2020),
which is restricted to a specific class of nonlinearities.

Moreover, our research has been rigorously tested in a larger and more intricate
application, exemplified by the monitoring of hurricanes using a swarm of buoyancy-driven
balloons. This comprehensive case study, as presented in chapter 5, serves as a litmus test
for our architecture, particularly in the context of a problem characterized by conflicting
objectives: the simultaneous optimization of area coverage and communication. This dual-
goal challenge enables us to showcase not only the real-time adaptability of the NN-based
MPC approach but also the model’s ability to contend with a highly noisy and disturbance-
prone environment, replete with communication constraints. The outcomes and findings
presented in this chapter also represent a significant advancement in the existing literature
for several reasons, which will be further elaborated, but can be summarized as following:

• Expands the buoyancy-driven balloon control in a stratified flowfield of Meneghello,
Luchini, and Bewley (2016), Meneghello, Luchini, and Bewley (2018) to multiple
agents which increases area coverage and data collection;

• Builds an effective trade-off between area coverage and repositioning for connection
by optimizing a weighted cost function via the neural-network-based approach of
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Floriano et al. (2022);

• Establishes a constant restoring interest function, driven by the Fokker–Planck equa-
tion, to characterize the requirement of updating a previously covered region after
some time

This document is organized as follows: chapter 2 provides the theoretical background
on the main topics that are relevant to the proposed work, which includes: graph theory,
neural networks, model predictive control, and the overall description of the problem to
be solved; chapter 3 presents the proposed consensus protocol based on MPC and neural
network; chapter 4 illustrates the results of the proposed method in simplified models; chap-
ter 5 evaluates the performance of the proposed architecture in a more complex operation,
exemplified by the hurricane monitoring application; and finally chapter 6 presents the final
remarks.
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2 Theoretical background

2.1 Multiagent systems

2.1.1 Graph theory

Adirected graph, denoted byG(V,E,A), is composed by a set of nodesV = {𝑣1, . . . , 𝑣𝑁},
a set of edges E ⊆ V × V, and an adjacency matrix A = [𝑎𝑖𝑗]𝑁×𝑁 . The Laplacian matrix
𝐿 = [𝑙𝑖𝑗]𝑁×𝑁 corresponding to G(V,E,A) is defined as 𝑙𝑖𝑖 =

∑𝑁
𝑗=1,𝑗≠𝑖 𝑎𝑖𝑗 and 𝑙𝑖𝑗 = −𝑎𝑖𝑗 , if

𝑖 ≠ 𝑗 (Ren; Beard; Atkins, 2007; Bapat, 2010).

For systemswith switching topologies, the graph is denoted asG(𝜃(𝑘)) = (V,E(𝜃(𝑘)),
A(𝜃(𝑘))) and the Laplacian matrix 𝐿(𝜃(𝑘)) of the switching network is built as 𝑙𝑖𝑖 (𝜃(𝑘)) =∑𝑁
𝑗=1,𝑗≠𝑖 𝑎𝑖𝑗 (𝜃(𝑘)) and 𝑙𝑖𝑗 (𝜃(𝑘)) = −𝑎𝑖𝑗 (𝜃(𝑘)), if 𝑖 ≠ 𝑗. Where the variable 𝜃(𝑘) represents the

mode of the communication topology at step 𝑘, takes values in the finite set S = {1,2, . . . , 𝑆},
and follows a Markov chain with probability matrix

Π =


𝜋11 𝜋12 . . . 𝜋1𝑆

𝜋21 𝜋22 . . . 𝜋2𝑆
...

...
. . .

...

𝜋𝑆1 𝜋𝑆2 . . . 𝜋𝑆𝑆


. (2.1)

The value 𝜋𝑝𝑞 indicates the probability of transition from 𝑝 to 𝑞, 𝑝,𝑞 ∈ S, and we have∑𝑆
𝑞=1 𝜋𝑝𝑞 = 1 for each 𝑝 ∈ S.

2.1.2 Consensus

Let us consider a multi-agent system (MAS) composed of 𝑁 discrete-time nonlinear
subsystems:

𝑥𝑖 (𝑘 + 1) = 𝑓(𝑥𝑖 (𝑘),𝑢𝑖 (𝑘)), (2.2)

where 𝑥𝑖 (𝑘) ∈ ℝ𝑛 and 𝑢𝑖 (𝑘) ∈ ℝ𝑚 denote, respectively, the state and the input signal of the
𝑖-th subsystem (𝑖 ∈ {1, . . . ,𝑁}) at time 𝑘 ∈ ℤ. The dynamics of the communication topology
follows a Markovian process on a fixed, filtered probability space (Ω,{ℱ𝑘},ℱ,Π). The setℱ𝑘

denotes the filtration corresponding to the 𝜎-field generated by {𝑥(0), 𝜃(0), . . . ,𝑥(𝑘), 𝜃(𝑘)}
(see, e.g., Costa and Fragoso (1995)). The mode of the topology at time 𝑡, conditioned to
the filtration up to the step 𝑘 > 0, is determined by the probability distribution 𝜇𝑡 |𝑘 (𝑝) =
Pr(𝜃(𝑡) = 𝑝 |ℱ𝑘) 𝑡 > 𝑘.

Notice that equation (2.2) supports to extent the system’s deficiencies beyond the
Markovian communication topology. Accordingly, it is possible to model other imperfections
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in the MAS or the environment, including other types of random switching, delay or distur-
bances. Indeed disturbances will be considered in the numerical experiments, indicating the
scope of practical possibilities. In addition, it is possible to observe in equation (2.2) that, due
to the generality of the function 𝑓(𝑥𝑖 (𝑘),𝑢𝑖 (𝑘)), the range of possible nonlinear applications
is wider than in previous works (such as Gao et al. (2020), Xiao and Chen (2018)), which
will be reinforced by the numerical evaluations in chapter 4.

Assumption 2.1. The system described in equation (2.2) is BIBO (Bounded Input,
Bounded Output) stable. This means that, if the input is bounded, i.e. ∃𝑈𝑖𝑛 ∈ ℝ+, s.t.
|𝑢𝑖 (𝑘) | ≤ 𝑈𝑖𝑛, ∀𝑘 ∈ ℤ, then the output will also be bounded, i.e.

∃𝑋𝑜𝑢𝑡 ∈ ℝ+ s.t. |𝑥𝑖 (𝑘) | ≤ 𝑋𝑜𝑢𝑡, ∀𝑘 ∈ ℤ. (2.3)

It is noteworthy that assumption 2.1 introduces the critical consideration of BIBO
(Bounded Input, Bounded Output) stability for the individual system delineated in equa-
tion (2.2). This stability assumption enables the exploration of group dynamics behavior and
facilitates the pursuit of consensus within a noisy environment characterized by dynamically
switching communication topologies. The adherence to individual BIBO stability is also
pivotal for the effective operation of the proposed method because it relies on predictive con-
trol and artificial intelligence employing a real-time learning mechanism. This assumption
underpins the reliability of the methodology in the face of dynamic interactions and varying
communication patterns.

Based on the information that each individual agent has on its neighbours (which
depends on the topology at each instant), the consensus control protocol takes the form (e.g.,
Savino et al. (2015), Ming et al. (2016))

𝑢𝑖 (𝑘) = −𝐾𝑘

𝑁∑︁
𝑗=1

𝑎𝑖𝑗 (𝜃(𝑘))𝜀𝑖𝑗 (𝑘), ∀𝑘 ≥ 0, (2.4)

where 𝐾𝑘 ∈ ℝ𝑚×𝑛 represents the feedback gain matrix and 𝜀𝑖𝑗 (𝑘) ≡ 𝑥𝑗 (𝑘) − 𝑥𝑖 (𝑘). The
structure of the communication and control of each 𝑖-th agent is shown as a block diagram
in figure 2.1.

A single control vector can be obtained by stacking the individual signals, i.e. 𝑢(𝑘) =[
𝑢𝑇1 (𝑘) . . . 𝑢𝑇𝑁 (𝑘)

]𝑇
. Similarly, one has the state 𝑥(𝑘) =

[
𝑥𝑇1 (𝑘) . . . 𝑥𝑇𝑁 (𝑘)

]𝑇
. It follows

that the consensus protocol stated in equation (2.4) is represented for the overall cooperative
system by

𝑢(𝑘) = (𝐿(𝜃(𝑘)) ⊗ 𝐾𝑘) 𝑥(𝑘). (2.5)

Equation (2.5) expresses that the control vector 𝑢(𝑘) is a function of the state 𝑥(𝑘)
and the mode 𝜃(𝑘). Let 𝜃(𝑘) = 𝑝, then the MAS state can be expressed as

𝑥(𝑘 + 1) = 𝐹𝑝 (𝑥(𝑘)) =
[
𝑓𝑇𝑝1(𝑥(𝑘)) . . . 𝑓𝑇𝑝𝑁 (𝑥(𝑘))

]𝑇
, (2.6)
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Figure 2.1 – Block diagram of a MAS consensus control with switching topology
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where 𝑓𝑝𝑖 (𝑥(𝑘)) is the function 𝑓(𝑥𝑖 (𝑘),𝑢𝑖 (𝑘)) in equation (2.2) with the control given by
equation (2.4) in mode 𝑝.

Assumption 2.2. The nonlinear function 𝐹𝑝 (𝑥) satisfies the Lipschitz condition with
scalar 𝛼 > 0, i.e.,

| |𝐹𝑝 (𝑥) − 𝐹𝑝 (𝑦) | | ≤ 𝛼 | |𝑥 − 𝑦 | |, (2.7)

for all 𝑥,𝑦 ∈ ℝ𝑛𝑁 and for all 𝑝 ∈ S.

The Lipschitz condition provides that the multiagent system dynamics 𝐹𝑝 (𝑥(𝑘)) has
a uniform continuity property (Sohrab, 2003) assuring a limited growth. This property is
a reasonable assumption since any real platform has limitations for sharp changes (with
infinite derivatives) and is common in MAS literature (see, e.g. Gao et al. (2020), Dong and
Nguang (2020), Li and Duan (2017)).

Let 𝑒𝑖 (𝑘) = 𝑥𝑖 (𝑘) − 𝑥0(𝑘) be the error between the states of the 𝑖-th agent and of a
virtual agent, which is driven the following dynamics:

𝑥0(𝑘 + 1) = 𝑓(𝑥0(𝑘),0). (2.8)

One can stack the errors into the vector 𝑒(𝑘) = [𝑒𝑇1 (𝑘) . . . 𝑒𝑇𝑁 (𝑘)]𝑇 to obtain the
recurrence

𝑒(𝑘 + 1) = 𝐹𝑝 (𝑥(𝑘)) − 1𝑵 ⊗ 𝑓(𝑥0(𝑘),0), (2.9)

where 1𝑵 is the vector composed by 𝑁 entries of 1.

The main problem to be solved for the MAS under analysis is consensus, which then
requires a proper definition. A system is said to achieve consensus when certain information
(in this case, the individual state 𝑥𝑖 (𝑘)) is the same for all the agents. In other words, the
difference between any pair of individual states must reach zero. However, since the system
under study has stochastic properties, the expected value of that difference (given the initial
conditions) is applied. Therefore, the formal definition can be stated as follows:
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Definition 2.1. We say the MAS dynamics (2.2) subject to (2.4) reaches consensus if

lim
𝑘→∞

𝐸
[
| |𝑥𝑗 (𝑘) − 𝑥𝑖 (𝑘) | | | 𝑥(0), 𝜃(0)

]
= 0 (2.10)

holds true for all pairs (𝑖,𝑗), with 𝑖 ≠ 𝑗, and for all 𝑥(0) ∈ ℝ𝑛 and all 𝜃(0) ∈ S.

Although works such as Cheng et al. (2014), Su, Shi, and Sun (2019) have developed
MPC algorithms that directly obtain the input signal, there are still some significantmodeling
differences with our approach. None of those works have modeled the systems with Marko-
vian switching topologies (or any random switching whatsoever). Another relevant contrast
is that our framework is suited for nonlinear functions. Therefore, the solutions mentioned
above do not apply to the designed system. Given those differences, it was proposed that a
neural network generates the feedback gain to solve the consensus problem.

Note that there may be infinite sequences of gains {𝐾𝑘}∞𝑘=0 that lead to consensus.
However, finding even one such sequence is not an easy task. In the next section, we propose
to obtain one optimal sequence of gains that leads to consensus through the MPC framework
based on a neural network.

2.2 Neural Networks

2.2.1 Introduction

Neural networks (NN) are machine learning models inspired by brain behavior to
approximate a given function and ultimately perform a classification or regression task
(Alpaydin, 2020).

The NN’s most basic processing element, the perceptron, was designed to mimic the
behavior of the nerve cell, which gets electrically excitable if a linear combination of inputs
reaches a particular value (Russel; Norvig, 2012). By using multiple perceptrons in parallel is
possible to obtain the classical structure of a feedforward neural network. In addition, other
NN structures can be built depending on the application, among them there is the multilayer
NN, recurrent NN (RNN), radial basis function (RBF) NN, convulition NN (CNN), Long
Short Term Memory (LSTM) and others (LeCun; Bengio; Hinton, 2015).

In the last decade, NN’s use has been spreading to wide variety of applications. Its
most recurrent implementation has been for classification, recommendation algorithms and
computer vision (see Lee and Shin (2020), Abiodun et al. (2018)). Popular frameworks such
as PyTorch and Tensorflow are among the most used in the current software development
industry.

The success of the NNs is due to their universal approximation property. This property
states that if there is a sufficient number of parameters, then it can approximate any function
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(Alpaydin, 2020). What makes it specially interesting is that such accuracy is possible even
though there is no prior knowledge on the function structure, i.e. NN is a nonparametric ma-
chine learning algorithm (e.g. it is not necessary to know if the function is linear, sinusoidal,
exponential and etc).

In the robotics context, specially for MAS applications, it has been use for multi-
ple objectives such as estimate states and outputs, learn unknown nonlinearities or for
optimization purposes (see Choi and Cha (2019)).

2.2.2 Neural network structure

2.2.2.1 The perceptron

The perceptron (or neuron) is the basic element that builds up a neural network. It
has a set of 𝑙 + 1 inputs (that may be associated with the dataset or can be the output of
other neurons), activation function 𝜎 and an output 𝑦. The graphical representation of a
perceptron can be seen in figure 2.2.

Figure 2.2 – Representation of a perceptron
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Consider the vector 𝑧 ∈ ℝ𝑙+1 as follows

𝑧 =

[
1 𝑧1 . . . 𝑧𝑙

]𝑇
. (2.11)

The inclusion of a 1 in the vector is to include a term for bias, which makes the model
more general (see Alpaydin (2020)). There is a weight 𝑤𝑖 for each input 𝑧𝑖, as well a bias
weight 𝑤0. Therefore, the weighted sum, 𝑦′, is given as

𝑦′ =
𝑙∑︁
𝑖=1

𝑤𝑖𝑧𝑖 + 𝑤0 = 𝑤𝑧, (2.12)

considering 𝑤 =

[
𝑤0 . . . 𝑤𝑙

]
.
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Finally, the output of the perceptron requires an activation function, i.e. a function
that defines if the neuron is excitable, and if so, the activation extent. Choosing such function
depends on the application, e.g. sigmoid and softmax are used for classification, while linear
and Rectified Linear Unit (ReLU) are used for regression tasks (Alpaydin, 2020). For now,
we will leave the activation function as 𝜎(·) in order to be chosen later as the application
demands. Therefore, the output 𝑦 of the perceptron in given as

𝑦 = 𝜎(𝑦′) = 𝜎 (𝑤𝑧) . (2.13)

2.2.2.2 Parallel perceptrons

If the application requires multiple outputs, it is possible to add several perceptrons
in parallel as seen in figure 2.3.

Figure 2.3 – Representation of perceptrons in parallel
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𝑦𝑗 = 𝜎

(
𝑙∑︁
𝑖=1

𝑤𝑗𝑖𝑧𝑖 + 𝑤𝑗0

)
. (2.14)

In this case, there is a weight 𝑤𝑗𝑖 for each conection between the 𝑗-th perceptron and
𝑖-th input. Each perceptron can result in an output if the application requires (generally for
classification applications).

Building a matrix𝑊 = [𝑤𝑗𝑖], 𝑗 ∈ {1, . . . ,𝑑}, 𝑖 ∈ {0, . . . , 𝑙} then

𝑦 = 𝜎(𝑊𝑧), (2.15)

where 𝑦 =

[
𝑦1 . . . 𝑦𝑑

]𝑇
.

2.2.2.3 Multilayer neural networks

The perceptron structures seen so far has only a single layer of weights, which are
not able to perform nonlinear classification or regression (Alpaydin, 2020). To solve this
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problem, a common solution is to add an intermediate layer between the input and the
output, the so called hidden layer, due to its position in the structure.

In addition, it is possible to perform another weighted sum, to generate a single output.
This structure is the most basic form of neural network, called Shallow Neural Network. It
is said that this structured is constructed with 3 layers: the input layer, the hidden layer (the
perceptrons), and the output layer (figure 2.4).

Figure 2.4 – Representation of a shallow neural network
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Consider the intermediate signal 𝑣 ∈ ℝ𝑔, in which 𝑔 ∈ {1, . . . ,𝑀}, given by

𝑣 = 𝜎(𝑊𝑧), (2.16)

where𝑊 ∈ ℝ𝑀×(𝑙+1) is the neuronsweightmatrix and𝑀 is the number of hidden perceptrons.
It is common practice that the the output layer is only the linear combination of the the
last layer (without any activation function), since the nonlinearity part of the NN is already
present in the hidden layer. Therefore, the output vector of the multylayer NN is given by

𝑦 = Ψ𝑣 = Ψ𝜎(𝑊𝑧), (2.17)

with Ψ ∈ ℝ𝑑×𝑀 is the output weight matrix and 𝑑 the number of outputs.

More hidden layers can be included between the input and output layer, which
makes the NN’s structure more complex, but capable of approximating highly nonlinear
and discontinuous functions to fit a desired functionality (see Russel and Norvig (2012)).
However, considering the scope of this work, a single layer is sufficient for the dynamic
systems and online controller to be presented in the chapter 3.

2.2.2.4 The universal approximation property

Feedforward neural networks as shown so far hold the universal approximation prop-
erty. This theorem states that any arbitrary function can be approximated with a multilayer
neural network, provided that a sufficient number of perceptrons are available (see Hornik,
Stinchcombe, and White (1989), Alpaydin (2020)).
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Assumption 2.3. The function 𝑦𝑓 : ℝ𝑙 → ℝ𝑑, which is being approximated by a neural
network in a compact input set, is continuous across that set.

The condition specified in assumption 2.3 asserts that the function 𝑦𝑓, which a
neural network endeavors to approximate in compact input set, is presumed to exhibit
continuity across that set. This assumption is consistent with the criteria established in the
literature (Hornik, Stinchcombe, and White (1989), Hornik (1991), Alpaydin (2020)) for
the universal approximation property to be valid, particularly in the context of a shallow
neural network with a single hidden layer. With this continuity condition met, the neural
network is capable of approximating 𝑦𝑓 with an arbitrary number of neurons, illustrating the
network’s ability to effectively capture and represent the underlying continuous function.
This adherence to continuity aligns with established principles for achieving universal
approximation capabilities within the specified neural network architecture.

This property has great significance in machine learning applications, because it
provides high approximation accuracy without a previous knowledge on the function char-
acteristics (since NNs are nonparametric algorithms).

Therefore, NNs are great tools that have been used in many scientific and engineering
fields, including robotics, as they can estimate states, outputs, nonlinearities, disturbances,
uncertainties and other functions while modeling a system or designing a controller.

Neural networks have the universal approximation property, which means they are
well suited to approximate functions (Zhang; Zhang; Feng, 2017). For that reason, the NNs
are used in this work to approximate the relation of the function 𝐽 (𝑒(𝑘)) with the sequence
of feedback gain matrices {𝐾𝑘, . . . ,𝐾𝑘+ℎ}.

2.2.3 Learning with backpropagation

Learning, in the context of neural networks, is to derive the values for the weights
that better fit the dataset. In the shallow NN, it means to find the matrices𝑊 and Ψ.

The error function used to verify the learning process differs with the application. For
classification purposes, cross-entropy is preferable. However, for regression problems (as it
is our case), the mean squared error is used more often. Therefore, in a single perceptron
the error of the 𝑡-th sample of the dataset is stated as

𝐸𝑡
𝑁𝑁 (𝑤 |𝑧

𝑡,𝑟𝑡) = 1
2 (𝑟

𝑡 − 𝑦𝑡)2 = 1
2 (𝑟

𝑡 − (𝑤𝑧𝑡))2, (2.18)

where 𝑟𝑡 is the dataset output, 𝑦𝑡 is the predicted output and 𝑧𝑡 is the dataset input.

The online update law that adjusts the weights is given as

∆𝑤𝑡
𝑖 = 𝜂(𝑟𝑡 − 𝑦𝑡)𝑧𝑡𝑖 , (2.19)
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where 𝜂 is the learning factor, which generally decreases during the process for a better
convergence.

The learning process to find the weights that guarantees the minimum error is called
stochastic gradient descent (Alpaydin, 2020). In this method, the gradient of the weights,
shown in equation (2.19), are computed so that the weights are adjusted in the "direction" of
decreasing the error. The process continues until a point of local minimum is reached.

In the case of multilayer NN, on top of the gradient descent, the learning process uses
the backpropagation algorithm, name given due to its process of propagating the error from
the output 𝑦 back to to the input, passing through the hidden layer. The error is given by

𝐸𝑁𝑁 (𝑊,Ψ|𝑧,𝑟) = 1
2
∑︁
𝑡

∑︁
𝑗

(𝑟𝑡𝑗 − 𝑦
𝑡
𝑗)
2. (2.20)

The output weights are trained the same way a single perceptron, as

∆𝜓𝑗𝑔 = 𝜂
∑︁
𝑡

(𝑟𝑡𝑗 − 𝑦
𝑡
𝑗)𝑣

𝑡
𝑔, (2.21)

while the weights of the hidden layer are adjusted with

∆𝑤𝑡
𝑔𝑖 = 𝜂

∑︁
𝑡

[
(𝑟𝑡𝑗 − 𝑦

𝑡
𝑗)𝜓𝑗𝑔

]
𝑣𝑡𝑔 (1 − 𝑣𝑡𝑔)𝑧𝑡𝑖 . (2.22)

2.3 Model predictive control
Model predictive control (MPC) is a control strategy, based on predicting the future

behavior of a dynamic system, subjected to a set of constraints, and computing a control
signal that optimizes a cost function within a given horizon (Kouvaritakis; Cannon, 2016).

Consider the following dynamic:

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘),𝑢(𝑘)), (2.23)

with the constraints 𝑥(𝑘) ∈ X, 𝑢(𝑘) ∈ U.

The MPC problem is to optimize a cost function 𝐽, such as

𝐽 =

ℎ∑︁
𝑘=0

𝑔(𝑥(𝑘),𝑢(𝑘)). (2.24)

in which ℎ is the horizon. Ideally, the horizon should go to infinity, or as large as possible,
however due to processing limitation it is often set with a value sufficiently large for the
application. In general, 𝑔 is chosen as a quadratic function to guarantee the convexity of the
problem, and consequently, its convergence. Hence, 𝑔 usually is written as

𝑔(𝑥(𝑘),𝑢(𝑘)) = 𝑥𝑇 (𝑘)𝑃𝑥(𝑘) + 𝑢𝑇 (𝑘)𝑄𝑢(𝑘), (2.25)
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with 𝑃 and 𝑄 being respectively the state and control weight matrices.

Therefore, solving an MPC is to solve an optimization problem of the form

minimize 𝐽 =

ℎ∑︁
𝑘=0

𝑔(𝑥(𝑘),𝑢(𝑘)), (2.26)

subject to 𝑥(𝑘) ∈ X,𝑢(𝑘) ∈ U. (2.27)

The result of that optimization is a sequence of control inputs 𝑢∗(0),𝑢∗(1), . . . ,𝑢∗(ℎ),
that if applied in the system will result in the minimum cost 𝐽.

When the algorithm runs online, a different optimization is performed at each time
step. So at time 𝑘 = 𝑡, the minimization can be stated as

minimize 𝐽 =

𝑡+ℎ∑︁
𝑘=𝑡

𝑔(𝑥(𝑘),𝑢(𝑘)), (2.28)

subject to 𝑥(𝑘) ∈ X,𝑢(𝑘) ∈ U, (2.29)

which results in the optimal control 𝑢∗(𝑡).
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3 Neural-network-based model predictive
control for consensus of nonlinear multi-
agent systems

3.1 Introduction
Model predictive control (MPC) is one of the most accepted control strategies, and it

has been historically used in several industrial applications (Kouvaritakis; Cannon, 2016).
One of the reasons for its great acceptance is the compromise between optimality and com-
putation speed, i.e., it is not necessary for too powerful hardware to compute the control
signal that will lead to the application’s objective. In addition, MPC holds the convenience
of providing some degree of robustness to uncertainties in the model as well as to system
constraints (Su; Shi; Sun, 2019). Those characteristics are highly valuable for multiagent
applications, such as unmanned aerial vehicles (UAVs) or autonomous underwater vehicles
(AUVs), since they are inserted in noisy environments with limited processing or communi-
cation capacity while still requiring a reliable level of precision. Accordingly, as one of the
most fundamental issues in MAS, the consensus problem has been greatly developed with
MPC approaches (as seen in works of Ferrari-Trecate et al. (2009), Cheng et al. (2014), Su,
Shi, and Sun (2019)). Therefore, it would be straightforward to use this control scheme for
solving the consensus problem described in chapter 2.

However, while MPC-based protocols include a variety of advantages, there are still
some drawback to their use. For instance, MPC requires a knowledge of the model dynamics
to provide the prediction up to a given horizon, which jeopardizes applications where the
model is uncertain or changes with time (e.g., switching systems). Moreover, if the system
has nonlinear characteristics, the MPC’s computational burden increases, discarding the
optimization trade-off advantage of the protocol (Venkatesan; Kamaraj; Vishnupriya, 2020).

In that context, neural networks (NN) are valuable solutions for those MPC draw-
backs. For starters, NNs hold the universal approximation property, which assigns them
the possibility to estimate any function. Therefore, NNs can increment MPC by estimat-
ing the model functions and other uncertainties, removing the immediate necessity of the
knowledge of the system dynamics. Furthermore, that estimation can be extended to nonlin-
earities, maintaining the optimization with an acceptable computational burden. In addition,
NNs are suited for learning in real-time, which can adapt the model for systems that can
change with time, such as switching systems. Algorithms with NN-based MPC have already
been tested in the literature in works such as Wang, Gao, and Qiu (2015), Wu, Rincon, and
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Christofides (2020), showing relevant results.

While significant results have been achieved for single-agent applications, the only
contribution of an NN-based MPC protocol in the context of multiagent systems has been
developed by Xiao and Chen (2018). However, some issues can be stated in such work: the
communication topology and the class of systems. By modeling the communication topology
with deterministic switching instead of stochastic, the work restricts the application to
specific scenarios in which the topology switching is already established. Modeling random
switching allows a better representation of real environmental characteristics. In addition,
the protocol was developed for a specific class of systems (wheeled robots), which reduces
the range of applications.

In this context, our method solves the consensus problem of a generic MAS (the
dynamics can be generalized to a broad class of robots, even with nonlinear characteristics)
withMarkovian switching topology (the communication between agents changes randomly).
The solution is an algorithm built with an MPC framework powered by an NN-based opti-
mizer. The NN is applied to estimate the cost function of the expected states within a given
horizon. This approximation allows the system to search for the minimized cost even though
the system is subjected to random processes.

In this chapter, amodel predictive control (MPC) algorithmbased on aneural-network
(NN) is presented in order to obtain an optimal feedback gain matrix 𝐾𝑘 that makes the
MAS reach a consensus in the sense of definition 2.1. First, we present conditions on the
nonlinear system that will ensure the feasibility of the MPC consensus problem. Later on,
the protocol for achieving consensus will be presented by applying a NN-based optimization
procedure inside an MPC framework.

3.2 Conditions for consensus
In this section we will derive the conditions for achieving consensus of themultiagent

system subjected to Markovian switching communication described in the previous chapter.

Lemma 3.1. Assume that there exist a gain sequence {𝐾𝑘}∞𝑘=0 and a constant 𝛼 < 1
such that assumption 2.2 holds for all 𝑘. Then the multi-agent system with individual
dynamics (2.2) subject to (2.4) reaches consensus.

Proof. Note that 𝐹𝑝 (1𝑵 ⊗ 𝑥0(𝑘)) = 1𝑵 ⊗ 𝑓(𝑥0(𝑘),0). Then, from (2.7) with the identifi-
cations 𝑥 ← 𝑥(𝑘) and 𝑦 ← 1𝑵 ⊗ 𝑓(𝑥0(𝑘),0), we have, for all 𝑘, that

| |𝐹𝑝 (𝑥(𝑘)) − 1𝑵 ⊗ 𝑓(𝑥0(𝑘),0) | | ≤ 𝛼 | |𝑥(𝑘) − 1𝑵 ⊗ 𝑥0(𝑘) | |, ∀𝑝 ∈ S. (3.1)
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Considering both the definition of the error 𝑒(𝑘) and (2.9), we have from (3.1) that

| |𝑒(𝑘 + 1) | | ≤ 𝛼 | |𝑒(𝑘) | |. (3.2)

Using the assumption that there exits 𝐾 such that 𝛼 = 𝛼(𝐾) < 1, we can write

| |𝑒(𝑘) | | ≤ 𝛼𝑘 | |𝑒(0) | | → 0 as 𝑘 →∞. (3.3)

The result then follows because

𝑥𝑗 (𝑘) − 𝑥𝑖 (𝑘) = 𝑒𝑗 (𝑘) − 𝑒𝑖 (𝑘), ∀𝑖,𝑗 = 1, . . . ,𝑁,

and (3.3) assures that each error component 𝑒𝑖 (𝑘) tends to zero as 𝑘 tends to infinity. □

Remark 3.1. Lemma 3.1 allows us to obtain consensus if one can restrict the dynamic
system (2.2) to find a convenient sequence of gains such that assumption 2.2 is satisfied.
However, one can note that finding a convenient sequence of gains is still a challenging
task even within this restricted class of dynamic functions. Therefore, in the following
section, we propose to search for the best candidate for the sequence of gains through
an MPC framework.

3.3 Model predictive control
Let us define the model predictive control (MPC) problem. For this purpose, consider

the cost function 𝑉 (𝑒(𝑘),𝜃(𝑘)) as

𝑉 (𝑒(𝑘),𝜃(𝑘) = 𝑝) = 𝑒𝑇 (𝑘)𝑃𝑝𝑒(𝑘), (3.4)

where 𝑃𝑝, 𝑝 ∈ S, denotes a positive-definite matrix of dimension 𝑛 (to be defined later). The
cost (3.4) weights the error of 𝑒(𝑘) while the topology mode is at 𝜃(𝑘) = 𝑝 ∈ S.

Let

𝐽 (𝑒(𝑘)) =
𝑘+ℎ+1∑︁
𝑡=𝑘+1

𝐸𝑥𝑘 ,𝜇𝑡 |𝑘 [𝑉 (𝑒(𝑡),𝜃(𝑡))] , (3.5)

where 𝐸𝑥𝑘 ,𝜇𝑡 |𝑘 [.] ≡ 𝐸 [.|𝑥(𝑘) = 𝑥𝑘, 𝜃(𝑡) ∼ 𝜇𝑡 |𝑘].

The objective of theMPC is to find𝐾 such that the predicted cost 𝐽 (𝑒(𝑘)) isminimized.
The optimal feedback gain matrix, say 𝐾∗

𝑘
, satisfies

𝐾∗𝑘 = arg1 min
𝐾𝑘 ,...,𝐾𝑘+ℎ

𝐽 (𝑒(𝑘)), (3.6)

where arg1 denotes the first argument of the sequence of the gains {𝐾𝑘, . . . ,𝐾𝑘+ℎ}.

Several algorithms are possible to solve the optimization problem (3.6). However,
due to the nonlinear nature of the involved functions, an online optimization is usually
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prohibitive for most optimization algorithms. In the next subsection, we propose a simplified
(yet online) solution for the “best” gain 𝐾𝑘 based on neural network.

Notice that the cost function is subjected to random processes due to the switching
communication topologies. The current MPC solutions for MAS face difficulties during
optimization due to such stochastic effects. The proposed solution for this issue is to perform
a neural-network-based cost function estimation to reduce the fallout of communication
deficiencies. The protocol is detailed next.

3.4 Neural network optimization
Neural networks have the universal approximation property, which means they are

well suited to approximate functions (Zhang; Zhang; Feng, 2017). For that reason, the NNs
are used in this work to approximate the relation of the function 𝐽 (𝑒(𝑘)) with the sequence
of feedback gain matrices {𝐾𝑘, . . . ,𝐾𝑘+ℎ}.

To do the optimization stated in equation (3.6), a shallow neural network is used.
Shallow NNs are composed of at least three layers: one input layer, at least one hidden layer,
and one output layer. In this work, only the value of one gain (of the gain 𝐾𝑘) is sought
(by setting 𝐾𝑘+ℎ = . . . = 𝐾𝑘+1 = 𝐾𝑘), and we use only one hidden layer. According to the
optimization purpose, the 𝑙 = 𝑚𝑛 entries of𝐾𝑘 = [𝐾𝑎𝑏

𝑘
], 𝑎 ∈ {1, . . . ,𝑚}, 𝑏 ∈ {1, . . . ,𝑛} form

the input layer.

The output layer is formed by the value of 𝐽 (𝑒(𝑘)). The hidden layer is composed of
𝑀 neurons to be defined now. Let

𝑧 =

[
1 𝐾11

𝑘
. . . 𝐾1𝑛

𝑘
. . . 𝐾𝑚1

𝑘
. . . 𝐾𝑚𝑛

𝑘

]𝑇
∈ ℝ𝑙+1. (3.7)

The hidden layer results in the signal 𝑣 ∈ ℝ𝑀 given by

𝑣 = 𝜎(𝑊𝑧), (3.8)

where𝑊 ∈ ℝ𝑀×(𝑙+1) is the neurons weight matrix and 𝜎 is the sigmoid function. The output
layer approximation 𝐽 for the cost function, given the parameters of 𝐾𝑘, is

𝐽 = Ψ𝑣, (3.9)

with Ψ ∈ ℝ1×𝑀 is the output weight matrix. The learning process of the NN is based on
optimizing the weights of𝑊 and Ψ that better fit the data.

3.5 NN-based MPC protocol for consensus
Provided the equations for the MPC prediction cost and the NN approximation of 𝐽,

the control algorithm can be stated. Algorithm 3.1 provides the pseudocode of the NN-based
MPC control protocol. All codes were written in Matlab 1.

1 Available at https://github.com/brunofloriano/NN_MPC

https://github.com/brunofloriano/NN_MPC
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Algorithm 3.1 NN-based MPC pseudocode for consensus control
1: System Initialization at 𝑥(0), 𝜃(0)
2: 𝐽 = 𝐽0 = 𝑉 (𝑒(0),𝜃(0))
3: 𝐾𝑎𝑏

0 = 0 ∀(𝑎 ,𝑏)
4: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← [𝐾0,𝐽0]
5: for 𝑘 = 0 : 𝑘𝑚𝑎𝑥 do ⊲ Simulation loop
6: while 𝐽 ≥ 𝜉 do
7: (𝑊,Ψ) ← 𝑡𝑟𝑎𝑖𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
8: 𝐽 = Ψ𝜎(𝑊𝑧) ∀𝐾𝑎𝑏

𝑘
± 𝛿𝐾

9: �̃�∗
𝑘
= argmin𝐾𝑘 (𝐽)

10: 𝑢(𝑘) =
(
𝐿(𝜃(𝑘)) ⊗ �̃�∗

𝑘

)
𝑥(𝑘)

11: �̂�(𝑘) = 𝑥(𝑘); �̂�(𝑘) = 𝜃(𝑘)
12: for 𝑡 = 𝑘 : 𝑘 + ℎ + 1 do ⊲ Prediction loop
13: 𝑝 = �̂�(𝑡)
14: �̂�(𝑡) =

(
𝐿(𝑝) ⊗ �̃�∗

𝑘

)
�̂�(𝑡)

15: �̂�(𝑡 + 1) = 𝐹𝑝 (�̂�(𝑡))
16: 𝑥0(𝑡 + 1) = 𝑓(𝑥0(𝑡),0)
17: 𝑒(𝑡) = 𝐹𝑝 (�̂�(𝑡)) − 1𝑵 ⊗ 𝑓(𝑥0(𝑡),0)
18: �̂�𝑡 = 𝑒𝑇 (𝑡)𝑃𝑝𝑒(𝑡)
19: �̂�(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑀𝑎𝑟𝑘𝑜𝑣(�̂�(𝑡),Π)
20: end for
21: 𝐽 =

∑𝑘+ℎ+1
𝑡=𝑘+1 �̂�𝑡

22: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← [�̃�∗
𝑘
,𝐽]

23: end while
24: 𝐾𝑘 = �̃�∗

𝑘
25: 𝑥(𝑘 + 1) = 𝐹𝑝 (𝑥(𝑘))
26: 𝑥0(𝑘 + 1) = 𝑓(𝑥0(𝑘),0)
27: end for

In addition, figure 3.1 shows the algorithm as a flow diagram that provides a more
general perception on its functionality.

3.5.1 Initialization

Firstly, the system is initialized at the initial condition 𝑥(0) and initial mode 𝜃(0)
resulting in the cost function 𝐽0. The gain 𝐾0 is started with null value, i.e. 𝐾𝑎𝑏

0 = 0 ∀𝑎 ∈
{1, . . . ,𝑚}, 𝑏 ∈ {1, . . . ,𝑛}. Then, 𝐾0 and 𝐽0 initialize a dataset that will be used to train the
NN. A further discussion on the parameters choice is presented in chapter 4.

3.5.2 Online learning

At each iteration, the NN is trained and provides a prediction, 𝐽, of the cost function
for every different combination of the previous 𝐾𝑘 with a slight variation of ±𝛿𝐾 in each
entry 𝐾𝑎𝑏

𝑘
. The one with the smallest cost is chosen as the optimized approximation gain �̃�∗

𝑘
,

which will be used in the control protocol, 𝑢(𝑘).
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Figure 3.1 – Flow diagram of the NN-based MPC algorithm
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This training process is repeated until the cost reaches a minimum condition 𝜉, when
the optimization objective is considered achieved and the training can be finalized.

3.5.3 Prediction with MPC

To compute a proper approximation of �̂�𝑡 for the ℎ future instants, a prediction loop is
used. Firstly, the algorithm generates a randomMarkovian mode �̂�(𝑡) based on the previous
instants and the matrix Π. Then, a virtual control signal, �̂�(𝑡) is computed as well as the
systems predicted states, �̂�(𝑡). Furthermore, an approximation �̂�𝑡 is made that can be used
to estimate the cost. At the end of each iteration, an approximation, 𝐽 of the cost function
is computed by summing up all �̂�𝑡 within the horizon. Finally, 𝐽 is stored in the dataset
together with 𝐾∗

𝑘
.

The NN-basedMPC algorithm for nonlinear MAS underMarkovian switching topolo-
gies, presented in this chapter, as well as its results (to be shown in the next chapter), was
published in the journal Engineering Applications of Artificial Intelligence as Floriano et
al. (2022). The journal was ranked as A1 by the CAPES’ Qualis classification system in the
quadrennium 2017-2020.
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4 Performance Evaluation of Simplified
Models

In order to test the proposed NN-based MPC for consensus control in switching
topologies, different scenarios were proposed. Distinct system dynamics were chosen from
the literature for a comparison with the current state-of-the-art models of MAS controls.
In section 4.1, a quadrotor fleet based on the work of Wang et al. (2020) is tested. Later
on, in section 4.2 the proposed control protocol is investigated in a system with nonlinear
components and external disturbances based on the work of Gao et al. (2020). Section 4.3
investigates the proposed algorithm in a nonlinear system, based on the work of Zhong et al.
(2015). Finally, section 4.4 investigates the proposed algorithm in a nonlinear system that
represents a fleet of robot cars. For each system, the number of neurons in the hidden layer
was chosen based on the cross-validation procedure.

Some of the systems are presented in continuous-time form, so in order to convert
for the model stated in chapter 2, a zero-order-hold discretization process took place. The
sampling period 𝑇 was chosen based on the time constant of each system. Appealing to the
results of the original works Wang et al. (2020), Gao et al. (2020), it is possible to identify
the order of magnitude of the systems time constant performing around 4 to 6 s. It is then
feasible to adopt a sampling period one or two orders of magnitude smaller, depending on
the available bandwidth. In this work, 𝑇 = 0.01 s.

In this work, the search method of looking for a local minimum point is based on
gradient descent since it has a good trade-off between performance and simplicity in general
optimization problems (Chong; Zak, 2004). In addition, this approach was adequate for
the applications based on the neural network treated here. The parameter 𝐾0 can be set as
zero without jeopardizing the system’s response (see Soltero, Schwager, and Rus (2014)).
However, the established techniques of optimization literature for choosing the step size 𝛿𝐾
in the gradient descent algorithm do not work in neural-network-based control problems,
and only ad hoc solutions can be pursued (see Qiu et al. (2021), Huynh, Wu, and Kuo (2019)).
In the example, by searching for a value that achieves convergence relatively fast, one is led
to 𝛿𝐾 = 0.25. The learning stop condition parameter was chosen as a value that allows for
a break in learning while still ensuring a satisfactory approximation of the MPC cost (that
does not compromise consensus). The value reached was 𝜉 = 0.01.

The horizon parameter was established as ℎ = 100, but will be further analysed in
more detail in section 4.5. Throughout the results section, several simulations are performed
with different values for the transition matrix Π. It is set as one of the distinct matrices Π𝑠
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(𝑠 ∈ {1,2,3,4}), given as follows:

Π1 =

[
0.95 0.05
0.02 0.98

]
, Π2 =

[
0.6 0.4
0.3 0.7

]
, Π3 =

[
0.5 0.5
0.5 0.5

]
, Π4 =

[
0.05 0.95
0.98 0.02

]
. (4.1)

To weight the communication topology effects, the matrix 𝑃𝑝, as shown in (3.4), was
chosen for all simulations as follows:

𝑃𝑝 =
1
2 (𝐿(𝑝) + 𝐿

′(𝑝)) . (4.2)

The results data can also be found in the online repository1.

4.1 Quadrotor fleet
The first system to be tested represents a group of three networked quadrotors based

on the work of Wang et al. (2020). Considering 𝜑𝑖 (𝑡) as the position of the 𝑖-th quadrotor with
respect to one of its coordinate axis (Savino et al., 2015), then its continuous-time dynamics
has the form:

¥𝜑𝑖 (𝑡) + 𝑎 ¤𝜑𝑖 (𝑡) + 𝑑𝜑𝑖 (𝑡) = 𝑢𝑖 (𝑡), 𝑖 = 1,2,3, (4.3)

where 𝑎 and 𝑑 are the damping and spring constants and ¤𝜑𝑖 (𝑡) and ¥𝜑𝑖 (𝑡) are the 𝑖-th agent
speed and acceleration, respectively. Figure 4.1 shows a diagram of the dynamics which the
quadrotor is subjected to.

Figure 4.1 – Representation of the 𝑖-th quadrotor dynamics

φi(t)

aφ̇i(t)

dφi(t)
ui(t)

Equation (4.3) can be rewritten as

¤𝑥𝑖 (𝑡) = 𝐴𝑐𝑥𝑖 (𝑡) + 𝐵𝑐𝑢𝑖 (𝑡), 𝑖 = 1,2,3, (4.4)

with

𝐴𝑐 =

[
0 1
−𝑑 −𝑎

]
, 𝐵𝑐 =

[
0
1

]
, 𝑥𝑖 (𝑡) =

[
𝜑𝑖 (𝑡)
¤𝜑𝑖 (𝑡)

]
. (4.5)

1 Available at https://github.com/brunofloriano/NN_MPC

https://github.com/brunofloriano/NN_MPC
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In the linear case, the zero-order-hold discretization process provides the function

𝑓(𝑥𝑖 (𝑘),𝑢𝑖 (𝑘)) = 𝐴𝑥𝑖 (𝑘) + 𝐵𝑢𝑖 (𝑘), (4.6)

in which, 𝐴 = 𝑒𝐴𝑐𝑇 and 𝐵 =
∫ 𝑇

0 e𝐴𝑐𝜏𝐵 d𝜏. The damping and spring parameters are set

to 𝑎 = 0.3 and 𝑑 = 0.8 and the initial conditions are set to 𝑥0(0) = 𝑥1(0) =

[
0 3

]𝑇
,

𝑥2(0) =
[
4 2

]𝑇
and 𝑥3(0) =

[
7 −1

]𝑇
, and the Laplacian matrices to:

𝐿(1) =

1 0 −1
0 0 0
0 0 0

 , 𝐿(2) =

0 0 0
0 1 −1
0 −1 1

 . (4.7)

4.1.1 Cross-validation

This section aims to determine the value of 𝑀, i.e. the number of neurons at the
hidden layer of the NN. In order to do that, a cross-validation is performed. This procedure
consists in sweeping𝑀 from𝑀 = 1 until𝑀 = 𝑀𝑚𝑎𝑥 and verifying the final error for each
simulation. The optimum value, called elbow point, is the one in which the error stops
decreasing significantly, in such way that the further increase in the number of neurons
would not result in a relevant error reduction and would raise the simulation complexity
unnecessarily (Alpaydin, 2020).

For the quadrotor system, a value of 𝑀𝑚𝑎𝑥 = 50 was chosen and let us consider
the transition matrix set as Π = Π1. The error parameter used for cross-validation was the
mean-squared error (MSE) of the state, i.e.

𝑀𝑆𝐸 =
1
𝑘𝑓

𝑘𝑓∑︁
𝑘=0
| |𝑒(𝑘) | |2, (4.8)

where 𝑘𝑓 is the last instant of the simulation.

The results for the cross-validation procedure can be seen in figure 4.2. It is possible
to observe that values between 1 and 10 perform well in comparison to larger values such as
𝑀 = 30. Therefore, it is required to verify the details of this range which can be seen in the
zoomed figure. This picture provides the information that the value of𝑀 = 2 is well fitted
for this particular objective. Further increase of𝑀 is not necessary, characterizing the elbow
point. Therefore,𝑀 = 2 was chosen.

4.1.2 Consensus result for the quadrotor fleet

Considering the optimized value of neurons, figure 4.3 shows the quadrotor fleet
system result for one realization of the chain {𝜃(𝑘)} with the NN-based MPC compared
with Wang et al. (2020), in which 𝑥𝑟𝑖 (𝑘) is the 𝑟-th entry of the individual state vector 𝑥𝑖 (𝑘).
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Figure 4.2 – Cross-validation of the linear system
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Figure 4.3 – States’ progression in linear system for Π = Π1 with NN-based MPC and the method
fromWang et al. (2020)

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

kT

kT

x
1 i
(k
)

x
2 i
(k
)

Wang et al. (2020)

NNMPC

Graphically, it is possible to see that the MAS reaches a consensus relatively fast, at around
8 seconds.

To get a more detailed view of the improvements of the proposed method when
compared with the original work of Wang et al. (2020), table 4.1 specifies the settling time
(defined with the ±2% criteria) and mean-squared error of the 𝑟-th element of the 𝑖-th state
(𝑀𝑆𝐸𝑟

𝑖 ) from both control protocols. The later is given by

𝑀𝑆𝐸𝑟
𝑖 =

1
𝑘𝑓

𝑘𝑓∑︁
𝑘=0
|𝑒𝑟𝑖 (𝑘) |2, (4.9)

where 𝑒𝑟𝑖 is the 𝑟-th entry of the error vector 𝑒𝑖 (𝑘).
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Table 4.1 – Performance comparison of quadrotor fleet system for 𝑖-th agent and 𝑟-th state

Parameter (𝑖,𝑟) Wang et al. (2020) NN MPC Decrease (%)

Settling
Time (s)

(1,1) 6.82 4.59 32.6
(1,2) 7.80 5.16 33.8
(2,1) 8.66 2.70 68.9
(2,2) 7.72 3.18 58.8
(3,1) 9.45 4.41 53.4
(3,2) 9.82 3.97 59.6

𝑀𝑆𝐸𝑟
𝑖

(1,1) 0.7831 1.0223 -30.5
(1,2) 0.8542 0.3409 60.1
(2,1) 0.0463 0.0424 8.3
(2,2) 0.1141 0.1284 -12.5
(3,1) 0.0147 0.0124 15.6
(3,2) 0.0340 0.0467 -37.4

It is possible to observe that indeed the NN-based MPC is faster, providing a response
which can be up to 68.9% quicker than Wang et al. (2020), depending on the state. However,
the same can not be said about𝑀𝑆𝐸𝑟

𝑖 , once there are some states that perceive an increase
(instead of a reduction) in the error.

4.1.3 Quadrotor fleet results with different switching matrices

In order to verify the protocol’s effectiveness in different arrangements, the system
also can be tested with all four values for the switching matrix Π = Π𝑠. To measure the
system’s performance in each case, the parameters settling time and𝑀𝑆𝐸𝑟

𝑖 were used.

The results can be seen in table 4.2. It is possible to observe that in all four cases,
consensus is achieved, even though the four scenarios are built with very distinct topology
transitions. This difference is indeed observed in the results of settling time and MSE as
they present some fluctuation depending on the transition matrix Π𝑠 . Naturally, as the
switching probabilities change, so as the control protocol (equation (2.4)) which depends on
the communication at each time. However, it is particularly meaningful that for all of those
dynamics, consensus is always achieved.

4.2 System with disturbances
Real platforms are subjected to many noises and disturbances. As much as possible, it

is necessary to show the practical significance of the proposed protocol. The first experiment,
for example, was performed as the simulation of a group of quadrotors. Therefore, it would
be plausible to perform a test with believable difficulties such as systems with nonlinearities
and disturbances. It can be accomplished by performing simulations with the system based
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Table 4.2 – Performance comparison of quadrotor fleet system with different switching for 𝑖-th agent
and 𝑟-th state

Parameter (𝑖,𝑟) Π1 Π2 Π3 Π4

Settling
Time (s)

(1,1) 4.59 16.34 4.96 9.97
(1,2) 5.16 17.11 5.78 11.74
(2,1) 2.70 7.88 4.05 8.74
(2,2) 3.18 8.21 4.20 9.87
(3,1) 4.41 8.83 4.16 9.64
(3,2) 3.97 9.40 4.32 10.66

𝑀𝑆𝐸𝑟
𝑖

(1,1) 1.0223 3.4833 1.1100 1.5400
(1,2) 0.3409 0.4762 0.3324 0.9136
(2,1) 0.0424 0.0917 0.0401 0.0458
(2,2) 0.1284 0.0800 0.1048 0.0932
(3,1) 0.0124 0.0364 0.0025 0.0046
(3,2) 0.0467 0.0245 0.0305 0.0226

on Gao et al. (2020), not only to compare the proposed method with the original work but
also to perform a robustness analysis that could verify the practical feasibility of the protocol.

Gao et al. (2020) considered the continuous-time dynamics of the form:

¤𝑥𝑖 (𝑡) = 𝐴𝑐𝑥𝑖 (𝑡) + 𝐵𝑐𝑢𝑖 (𝑡) + 𝑓𝑐 (𝑡,𝑥𝑖 (𝑡)) + 𝐵𝜔𝜔𝑖 (𝑡), 𝑖 = 1,2,3,4. (4.10)

in which, 𝜔𝑖 (𝑡) is the external disturbance for the 𝑖-th agent. Let 𝑓𝑐 (𝑡,𝑥𝑖 (𝑡)) = 0.01 sin(𝑥𝑖 (𝑡)),

𝐴𝑐 =

[
0 1
0 −0.5

]
,𝐵𝑐 =

[
0.8
1.2

]
,𝐵𝜔 =

[
1 0
0 1

]
, (4.11)

𝜔𝑖 (𝑡) =
[
0.02 sin(𝑡)
0.02 cos(𝑡)

]
, (4.12)

with initial conditions of 𝑥0(0) = 𝑥1(0) =
[
3 −1

]𝑇
, 𝑥2(0) =

[
1 −1

]𝑇
, 𝑥3(0) =

[
1 −3

]𝑇
and 𝑥4(0) =

[
3 −3

]𝑇
and Laplacian matrices as

𝐿(1) =


1 0 0 0
−1 1 0 0
0 −1 1 0
−1 0 0 1


, 𝐿(2) =


1 −1 0 0
0 1 0 0
−1 0 1 0
0 0 −1 1


. (4.13)

The discretization was performed with forward Euler’s method with the same time
period 𝑇 = 0.01𝑠 (Biswas et al., 2013).
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4.2.1 Cross-validation

The cross-validation was performed in the disturbed system with 𝑀𝑚𝑎𝑥 = 69 and
Π = Π1. The error metric was set as the mean squared error (MSE). The result can be seen
in figure 4.4. It is possible to observe that the optimum point occurs around𝑀 = 10, after
which any increase in the number of neurons does not result in a significant reduction on
the MSE, instead the are points which show an increase in the error. Therefore, the number
of neurons to be used is𝑀 = 10.

Figure 4.4 – Cross-validation of the system with disturbances
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4.2.2 Consensus result for system with disturbances

Figure 4.5 shows the results of the disturbed system with NN-based MPC control
protocol and the optimum value of𝑀 = 10. It is possible to see that the system’s response was
still capable of reaching consensus in a relatively fast way. Another noteworthy observation
pertains to the slight susceptibility of the NNMPC system to noise in the initial time steps,
as compared to the findings in Gao et al. (2020). This susceptibility is attributed to the early
stages of the algorithm, where the system is in the initial learning phase. During this stage,
the try-and-error nature of the learning curve results in increased variations in the states. It is
important to emphasize, however, that this learning curve is characterized by its rapid pace,
with the system swiftly converging to consensus even faster than the approach presented in
Gao et al. (2020).

The detailed parameters of the MAS response and its comparison with the results of
Gao et al. (2020) can be examined in table 4.3. Once again the majority of the states displayed
a faster response with the NN-based MPC, with a reduction of up to 87.9%. A few states
showed a smaller decrease (e.g. 1.4%). However, the mean-squared error, just as in the linear
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Figure 4.5 – States’ progression in system with disturbances for Π = Π1 with NN-based MPC and the
method from Gao et al. (2020)
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Table 4.3 – Performance comparison of the system with disturbances for 𝑖-th agent and 𝑟-th state

Parameter (𝑖,𝑟) Gao et al. (2020) NN MPC Decrease (%)

Settling
Time (s)

(1,1) 8.91 2.21 75.3
(1,2) 23.20 21.86 5.8
(2,1) 22.90 2.76 87.9
(2,2) 23.28 22.95 1.4
(3,1) 22.63 3.16 86.0
(3,2) 5.42 3.15 41.9
(4,1) 9.39 2.72 71.0
(4,2) 6.44 3.62 43.8

𝑀𝑆𝐸𝑟
𝑖

(1,1) 0.3395 0.3169 6.6
(1,2) 0.0781 0.1119 -43.4
(2,1) 0.0588 0.0314 46.6
(2,2) 0.0194 0.0287 -47.5
(3,1) 0.0824 0.0136 83.5
(3,2) 0.1029 0.1602 -55.8
(4,1) 0.4142 0.2133 48.5
(4,2) 0.1823 0.2497 -37.0

case, remained variable with some states obtaining a decreased amount, but the others
performing with an increased error.
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4.2.3 System with disturbances with different switching matrices

Similar to the linear case, the disturbed system is tested for distinct scenarios in order
to test the NN-MPC on a broader range of possibilities. Therefore, testing for Π = Π𝑠, for
all 𝑠 = 1, . . . ,4, results in table 4.4. Once again, consensus is achieved in all four scenarios,
with some variations on the parameters of settling time and MSE. Such outcome allows
to conclude that the NN-MPC approach has significant performance while dealing with
distinct scenarios of topology switching.

Table 4.4 – Performance comparison of the system with disturbances with different switching for 𝑖-th
agent and 𝑟-th state

Parameter (𝑖,𝑟) Π1 Π2 Π3 Π4

Settling
Time (s)

(1,1) 2.21 7.82 3.41 3.00
(1,2) 21.86 10.42 4.15 21.90
(2,1) 2.76 22.70 15.47 3.55
(2,2) 22.95 22.78 23.10 22.90
(3,1) 3.16 5.89 21.23 3.75
(3,2) 3.15 5.18 4.54 3.56
(4,1) 2.72 8.91 3.89 3.41
(4,2) 3.62 7.14 4.74 4.02

𝑀𝑆𝐸𝑟
𝑖

(1,1) 0.3169 1.7580 0.1466 0.2472
(1,2) 0.1119 0.1797 0.2218 0.1520
(2,1) 0.0314 0.0512 0.0287 0.0227
(2,2) 0.0287 0.0292 0.0499 0.0342
(3,1) 0.0136 0.1009 0.0292 0.0099
(3,2) 0.1602 0.3491 0.2122 0.2124
(4,1) 0.2133 0.6871 0.1613 0.1482
(4,2) 0.2497 0.1714 0.4702 0.3340

4.3 Nonlinear system
While the previous section showed results for a disturbed system, it still had a es-

tablished pattern consisting of a linear component, a nonlinear function and a disturbance
signal. For this reason, the previous system was not as generic as the problem had been
stated in chapter 2.

Accordingly, it is relevant to test the proposed method in a more general nonlinear
system. Therefore, a system was built motivated by the work of Zhong et al. (2015), based on
the following function:

𝑓(𝑥𝑖 (𝑘),𝑢𝑖 (𝑘)) =
[
−𝑥1𝑖 (𝑘) − 𝑥2𝑖 (𝑘) + sin(𝑥1𝑖 (𝑘) + 𝑢(𝑘))

1 − cos(𝑥2𝑖 (𝑘) + 𝑢(𝑘))

]
, 𝑖 = 1,2,3. (4.14)
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The parameters were set to: initial conditions of 𝑥0(0) = 𝑥1(0) =
[
−0.6 0.6

]𝑇
, 𝑥2(0) =[

1 −1
]𝑇
and 𝑥3(0) =

[
2.5 0.5

]𝑇
, and Laplacian matrices:

𝐿(1) =

1 0 −1
0 0 0
0 0 0

 , 𝐿(2) =

0 0 0
0 1 −1
0 −1 1

 . (4.15)

4.3.1 Cross-validation

As in the previous sections, the first step consists in a cross-validation procedure
to determine the number of neurons 𝑀. By sweeping 𝑀 from 1 to 50, with Π = Π1 and
verifying the𝑀𝑆𝐸, one obtains the graph shown in figure 4.6. Once again, the elbow point
occurs at𝑀 = 10 and therefore this is the number of neurons to be used for the nonlinear
system.

Figure 4.6 – Cross-validation of the nonlinear system
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4.3.2 Consensus result for nonlinear system

The states development for the nonlinear system with𝑀 = 10 and Π = Π1 can be
seen in figure 4.7. One can observe that the system rapidly achieves consensus, in about 8
time steps.

4.3.3 Nonlinear system with different switching matrices

To compare the performance of the proposed method in different scenarios, one can
test it with all the values of Π = Π𝑟. Measuring the settling time and𝑀𝑆𝐸𝑟

𝑖 in all of the four
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Figure 4.7 – States’ progression in nonlinear system for Π = Π1 with NN-based MPC
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cases results in table 4.5. It is possible to observe that in all cases the consensus is achieved.
Some variation takes place, especially for the settling time. However, they remain withing
the same order of magnitude, without any large oscillation. This shows that the proposed
method is valid to be used in systems with strong nonlinearities and subjected to different
communication variations.

Table 4.5 – Performance comparison of nonlinear system with different switching for 𝑖-th agent and
𝑟-th state

Parameter (𝑖,𝑟) Π1 Π2 Π3 Π4

Settling
Time (s)

(1,1) 7.95 10.86 13.67 9.69
(1,2) 5.9 10.73 10.58 4.96
(2,1) 5.92 7.95 10.16 7.7
(2,2) 4.86 6.94 3.29 3.47
(3,1) 5.41 7.76 9.76 7.45
(3,2) 4.79 5.9 5.79 6.04

𝑀𝑆𝐸𝑟
𝑖

(1,1) 0.06 0.1 0.08 0.06
(1,2) 0.04 0.12 0.08 0.04
(2,1) 0.07 0.18 0.07 0.07
(2,2) 0.1 0.17 0.1 0.1
(3,1) 0.6 1.02 0.6 0.61
(3,2) 0.13 0.2 0.14 0.15
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4.4 Robot car fleet
The previous sections showed the proposed approach applied for quadrotor fleets, a

disturbed system and a nonlinear system. It is relevant to evaluate the performance of the
proposed algorithm in other systems with practical significance, specifically for nonlinear
applications, to expand the range of possibilities.

Therefore, a systemwas built motivated by the application in mobile robot cars, based
on the kinematics bicycle model with individual nonlinear dynamics, for the 𝑖-th agent,
described as follows (see Rajamani (2011), Matute et al. (2019)):

¤𝑥𝑖 =


¤𝑥𝑓𝑖
¤𝑦𝑓𝑖
¤𝜃𝑟𝑖
¤𝛿𝑖


=


𝑣𝑓 cos(𝜃𝑟𝑖 + 𝛿𝑖)
𝑣𝑓 sin(𝜃𝑟𝑖 + 𝛿𝑖)
𝑣𝑓 sin(𝛿𝑖)/𝐿

𝑢𝑖


, (4.16)

where 𝑥𝑓𝑖 and 𝑦𝑓𝑖 are the 𝑥- and 𝑦-position of the front axle, 𝜃𝑟𝑖 is the robot heading, 𝛿𝑖 is the
steering angle and ¤𝛿𝑖 the steering rate, 𝐿 is the length of the wheelbase and 𝑢𝑖 is the control
input. The representation of the corresponding robot car model is shown in figure 4.8.

Figure 4.8 – Representation 𝑖-th robot car dynamics
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Since the current model seeks to simulate a system of multiple cars, it is desired that
each agent keeps a fixed distance with respect to the virtual agent. Therefore, considering
that to maintain a given formation, the position of the 𝑖-th agent has to be distant by the
vector 𝑥∗𝑖 from 𝑥0(𝑘), than the error, previously stated as 𝑒𝑖 (𝑘) = 𝑥𝑖 (𝑘) − 𝑥0(𝑘), will be
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restated as
𝑒𝑖 (𝑘) = 𝑥𝑖 (𝑘) − (𝑥0(𝑘) + 𝑥∗𝑖 ). (4.17)

The discretization was performed with forward Euler’s method (Biswas et al., 2013).
The parameters were set to: initial conditions of 𝑥0(0) = 𝑥1(0) =

[
−3 3 𝜋/2 0

]𝑇
, 𝑥2(0) =[

5 −5 0 0
]𝑇
and 𝑥3(0) =

[
12.5 2.5 −𝜋/2 0

]𝑇
, desired formation of 𝑥∗1 =[

−17 16 0 0
]𝑇
, 𝑥∗2 =

[
9 −18 0 0

]𝑇
and 𝑥∗3 =

[
25 −2 0 0

]𝑇
𝑣𝑓 = 2 m/s, 𝐿 = 0.3

and Laplacian matrices:

𝐿(1) =

1 0 −1
0 0 0
0 0 0

 , 𝐿(2) =

0 0 0
0 1 −1
0 −1 1

 . (4.18)

4.4.1 Cross-validation

As in the previous sections, the first step consists in a cross-validation procedure
to determine the number of neurons 𝑀. By sweeping 𝑀 from 1 to 70, with Π = Π1 and
verifying the𝑀𝑆𝐸, one obtains the graph shown in figure 4.9. The elbow point occurs at
𝑀 = 4 and therefore this is the number of neurons to be used for the nonlinear system.

Figure 4.9 – Cross-validation of the car fleet system
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4.4.2 Consensus result for car fleet system

The states development for the nonlinear system with𝑀 = 4 andΠ = Π1 can be seen
in figure 4.10. One can observe that the system rapidly achieves consensus, in about 6s. All
agents successfully reach their desired point in the formation and remains there for the rest
of the time.
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Figure 4.10 – States’ progression in car fleet system for Π = Π1 with NN-based MPC
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4.4.3 Car fleet system with different switching matrices

We compared the performance of the proposed method in different scenarios by
testing it with all the values of Π = Π𝑟. Measuring the settling time and 𝑀𝑆𝐸𝑟

𝑖 in all of
the four cases results in table 4.6. It is possible to observe that in all cases the consensus is
achieved. Some variation takes place, especially for the settling time. However, they remain
withing the same order of magnitude, without any large oscillation. This shows that the
proposed method is valid to be used in nonlinear systems with practical significance, as the
robot-car fleet.

Table 4.6 – Performance comparison of car fleet system with different switching for 𝑖-th agent and
𝑟-th state

Parameter (𝑖,𝑟) Π1 Π2 Π3 Π4

Settling
Time (s)

(1,1) 5.9 7.91 5.93 3.91
(1,2) 5.87 7.85 5.25 3.85
(2,1) 0.98 0.98 0.98 0.98
(2,2) 0.98 0.98 0.98 0.98
(3,1) 0.98 0.98 0.98 0.98
(3,2) 0.98 0.98 0.98 0.98

𝑀𝑆𝐸𝑟
𝑖

(1,1) 1.25 1.32 1.33 1.21
(1,2) 0.87 0.86 0.85 0.82
(2,1) 1.8 1.8 1.8 1.8
(2,2) 2.22 2.22 2.22 2.22
(3,1) 12.8 12.8 12.8 12.8
(3,2) 0.56 0.56 0.56 0.56
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4.5 Effect of the horizon on the consensus
Another important issue to be considered while deliberating on the method’s ef-

ficiency is to verify the effect of the horizon ℎ on the consensus. Generally in the MPC
literature, it is expected that a smaller value of ℎmight remove the prediction capability of
the method while a larger value can neglect the effect of an unexpected disturbance or noise.

To see if the same goes in the proposed method, one can test the system for different
values of ℎ. In that context, the three previous scenarios (linear, with disturbances and
nonlinear system) were used to test the NN-basedMPCwith horizons ranging between ℎ = 1
and ℎ = 100. The𝑀𝑆𝐸 is the parameter chosen to observe this effect. The results can be
seen in figure 4.11.

Figure 4.11 – Mean squared error with different horizons for each system
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It is possible to see that, in general, the error for smaller values of ℎ are significantly
higher.For sufficiently high values, as ℎ is increased, the error decreases and around ℎ = 50
the𝑀𝑆𝐸 settles with some minor variations. Therefore, it can be concluded that the effect of
the horizon on the consensus is highly nonlinear but follows the overall expected behaviour
in which smaller values result in larger errors.

4.6 Discussion on scalability
As shown in the previous sections, the NN-based MPC approach was tested with

𝑁 = 3 and 𝑁 = 4. However, it is noteworthy to mention that it was designed to be used
with any natural number of 𝑁 agents. Accordingly, some discussion may arise as for the
scalability of the proposed method. In other words, it is relevant to question how is the
method fit for a larger group of agents.
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The scalability problem becomes more intricate as one notes that the NN-based MPC
algorithm is mainly running in a centralized manner (see figure 2.1). As such, the increase in
the number of agents𝑁 particularly affects the length of the state 𝑥(𝑘) and all the operations
that are performed with it while computing the MPC cost. On the other hand, the neural
network learning process is not affected by the number of agents, since it only depends
on𝑚, 𝑛 and𝑀, respectively, the length of the individual control vector, the length of the
individual state vector and the number of neurons. Certainly, the neural network’s inputs
being the entries of 𝐾𝑘 (uniform across all agents) and its output representing the cost
function (a one-dimensional output) implies that the number of agents does not impact
the learning process of the neural network. The consistency in the input structure and the
one-dimensional nature of the output ensures that the neural network’s learning dynamics
remain unaffected by variations in the number of agents. This characteristic contributes to
the scalability and generalization capabilities of the neural network across different MAS
configurations.

Finally, while the centralization characteristics of the method reduce its scalability,
the neural network optimization is not affected by it. Therefore, the method is particu-
larly appealing for an increased number of agents. Further studies on such characteristics,
especially in real platforms are significant for a better understanding on its performance.
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5 Hurricane Monitoring with Balloon-Based
Systems

This chapter is focused on the validation of the NN-based MPC (NNMPC) control
strategy within a complex system, particularly in contexts characterized by extreme condi-
tions such as substantial noise, disturbances, and communication constraints. To exemplify
these challenging scenarios, we have selected the application of a buoyancy-controlled
balloon fleet for hurricane monitoring. This choice holds dual significance—it not only
addresses a real-world problem but also encapsulates an environment rife with disturbances,
encompassing issues such as power management, restricted communication, noise inter-
ference, and conflicting objectives. Consequently, substantial effort has been invested in
the application of the NNMPC strategy to develop a novel architecture tailored to hurricane
monitoring using these specialized vehicles.

5.1 Introduction
On-site monitoring of extreme natural phenomena, particularly hurricanes, plays

a crucial role in acquiring essential data for an accurate forecast (Meneghello; Luchini;
Bewley, 2016). The correct anticipation of such weather conditions can conduct preventive
responses that might effectively safeguard lives (Bewley; Meneghello, 2016). Efficient on-
site monitoring can be accomplished by deploying multiple Unmanned Aerial Vehicles
(UAVs) at the site of the occurrence (Cione et al., 2016; Stampa et al., 2021; Mohsan et al.,
2023). Utilizing Multi-Agent Systems (MAS) enhances the volume of accessible information,
including speed profiles, temperature, pressure, and other sensor data, due to their expanded
coverage capacity (Floriano et al., 2021). For instance, numerous studies have explored the
use of UAV swarms for monitoring wildfires or floods in recent years (Lin; Liu, 2018; Hu et
al., 2022; Tzoumas et al., 2023; Viseras; Meissner; Marchal, 2021; Afghah et al., 2019; Seraj;
Silva; Gombolay, 2022; Baldazo; Parras; Zazo, 2019).

When it comes to monitoring hurricane-affected areas, recent studies have presented
UAV solutions utilizing quadrotors, commonly known as drones. For instance, the impacts
of the 2017 Harvey and Irma hurricanes in the United States were accompanied by numer-
ous studies investigating their effects on roads, buildings, and cities (Greenwood; Nelson;
Greenough, 2020; Yeom et al., 2019; Rojas; Khan; Shahtakhtinskiy, 2022; Congress et al.,
2019). Similar investigations were conducted for other recent incidents, such as the Willa
hurricane (Vizcaya-Martínez et al., 2022) and the Maria hurricane (Schaefer et al., 2020),
employing these types of vehicles. However, as outlined in the survey conducted by Mohsan
et al. (2023), operating quadrotors in adverse weather conditions like hurricanes remains a
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significant challenge due to operational complexities and the difficulty in obtaining precise
data. Furthermore, both quadrotors and fixed-wing aircraft often face limitations in terms of
flight duration due to their energy requirements (Meneghello; Luchini; Bewley, 2016).

Our team, with a rich background in developing innovative monitoring systems
for hurricanes, has proposed a swarm of balloons as an in situ long-lasting solution (Bew-
ley; Meneghello, 2016). This coordinated system consists of multiple, widely distributed,
buoyancy-driven balloons equipped with sensors, enabling prolonged monitoring for several
days. The concept behind this approach is to employ low-cost balloons, as highlighted in our
previous work (Meneghello et al., 2017). Furthermore, our team has also investigated various
control schemes for buoyancy-driven balloons, with particular emphasis on the three-level
control (TLC) method (Meneghello; Luchini; Bewley, 2018). However, it is worth noting
that the previous TLC approach was limited to a single balloon. Hence, this current work
represents an extension of TLC to address the challenges associated with MAS.

Figure 5.1 – Description of the balloon swarm in a hurricane

(a) Top view

Satellite

Base 

station

Router

Coverage

Only

Speed Flow

Com
m

unica
tio

n

(b) Side view

Base 

station

Router

Coverage

Only

Satellite

C
om

m
un

ic
at

io
n

Balloon Path

Coverage

Radius

H
u

rr
ic

a
n

e
 c

e
n

te
r

Building upon our previous contribution, figure 5.1 illustrates the innovative rep-
resentation of the proposed heterogeneous balloon swarm within a hurricane flowfield.
Positioned at its core is the base station, a single agent embedded with privileged hardware
that connects directly to a satellite. Surrounding the hurricane’s periphery are agents spe-
cialized in coverage, solely focused on collecting sensor data within their designated areas.
Bridging these agents and enabling efficient data transmission are the routers, balloons
endowed with both coverage and routing capabilities. These routers facilitate the transfer of
information from other balloons to the base station, leveraging a LoRa (long-range) network
(Ghazali; Teoh; Rahiman, 2021), a technology that has already been investigated for UAV-
based disaster responses (Saraereh et al., 2020). As the system evolves, the balloons’ roles
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as router or coverage units can change over time based on their positions. This structure
allows the use of a relatively reduced number of multiple cost-effective vehicles that can
share valuable information with the satellite while maximizing area coverage.

Still, the difference between the hurricane’s area (around 200 km radius) (Holland;
Belanger; Fritz, 2010) and the LoRa range (up to 10 km) (Sanchez-Iborra; Cano, 2016) are
significant andmight imperil the balloons’ constant connectivity. Several works have studied
multi-agent monitoring systems with intermittent communication (Hu; Liu; Feng, 2018; Shi
et al., 2023; Wen et al., 2014; Xiao; Dong, 2021; Zhang et al., 2021). However, to the best of the
author’s knowledge, none have established a control architecture to deal with the trade-off
between coverage and communication. To circumvent this problem, our main objective in
this work is to establish a reasonable concession between area coverage (i.e. maximize the
area in which the balloons will cover to collect data from the hurricane) and strategically
repositioning the balloons to establish the communication required for all data to reach the
base station. This is achieved by creating a weighted set of cost function components that
are optimized in real time by an intelligent updating process in a periodic setting, where
both components constantly relax to their steady state.

In recent years, research in the field of artificial intelligence (AI), has yielded signifi-
cant contributions to coverage, monitoring, and communication challenges in the context of
multiple UAVs (Manoharan; Sujit, 2022; Eshaghi; Nejat; Benhabib, 2023; Day; Salmon, 2021;
Puente-Castro et al., 2022). These works have explored various aspects of UAV operations,
including cooperative target defense and coverage (Manoharan; Sujit, 2022), concurrent
planning with different objectives (Eshaghi; Nejat; Benhabib, 2023), stochastic target search
(Day; Salmon, 2021), and path planning (Puente-Castro et al., 2022). Additionally, swarm
intelligence algorithms have been recognized for their role in facilitating collaborations
among multiple UAVs (Tang; Duan; Lao, 2023). The use of AI-based approaches, such as
multi-objective evolutionary optimization (Ramirez-Atencia; Camacho, 2019) has shown
promise in addressing conflicting objectives and enhancing mission planning. Furthermore,
AI algorithms have been applied to MAS problems, effectively managing UAV trajectories,
optimizing load distribution, and enabling targeted communication (Queralta et al., 2020;
Wang et al., 2020; Das et al., 2019). However, none of these solutions have simultaneously
solved intermittent communication while maximizing area coverage.

In terms of AI approaches, Neural Network Model Predictive Control (NNMPC)
has been introduced as an online multi-agent single-objective solution (Floriano et al.,
2022). In our work, NNMPC will be adapted to solve the conflicting objectives, providing a
real-time approach that can adaptively define the best control output. This is particularly
convenient since both problems are constantly being updated. The cost function components
for both communication and area coverage are modeled to relax to a steady state value. The
area interest function is time-marched via the Fokker-Planck equation, an evolution that
represents the recency of an area’s information, while the communication component is
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modeled with a linear decay.

To summarize, this chapter contributes in the following:

• Expands the buoyancy-driven balloon control in a stratified flowfield of Meneghello,
Luchini, and Bewley (2016), Meneghello, Luchini, and Bewley (2018) to multiple
agents which increases area coverage and data collection;

• Builds an effective trade-off between area coverage and repositioning for connection
by optimizing a weighted cost function via the neural-network-based approach of
Floriano et al. (2022);

• Establishes a constant restoring interest function, driven by the Fokker–Planck equa-
tion, to characterize the requirement of updating a previously covered region after
some time

This chapter is organized as follows: Section 5.2 states the system dynamics and the
problem’s objective; Section 5.3 describes the control architecture based on the NNMPC
optimization; Section 5.4 provides the simulation results and corresponding analyzes; and
Section 5.5 presents the conclusion remarks.

5.2 Problem Statement
Let us consider amulti-agent system (MAS) composed of𝑁 buoyancy-driven balloons.

The position of the 𝑖-th balloon (𝑖 ∈ {1, . . . ,𝑁}, where 𝑖 = 1 represents the base station) is
described by 𝑟𝑖 and 𝑧𝑖 denoting radial and vertical positions, respectively. The continuous-
time dynamics of each balloon, as described in Meneghello, Luchini, and Bewley (2018), are
given by the equations:

¤𝑟𝑖 = 𝛼𝑧𝑖 + 𝜉𝑖, (5.1a)

¤𝑧𝑖 = 𝑢𝑖 (𝑡), (5.1b)

where the time-averaged radial velocity’s vertical gradient can be represented by the variable
𝛼. The white Gaussian noise 𝜉𝑖 represents the fluctuations in the radial velocity caused by the
turbulence of hurricanes and has zero mean and 𝑐2 variance. The function 𝑢𝑖 (𝑡) determines
the feedback control law which acts directly on the vertical position of the balloon.

The angular position 𝜃𝑖 of each balloon in the hurricane depends on its angular
velocity 𝜔𝑖 which is a function of its tangential velocity 𝑣𝑖 and its radial position 𝑟𝑖. The
kinematic equation governing the angular velocity of each balloon is given by:

𝑑𝜃𝑖
𝑑𝑡

= 𝜔𝑖 =
𝑣𝑖
𝑟𝑖
. (5.2)

The 2D coordinate, 𝒒𝑖 (𝑡) ∈ ℝ2, of the 𝑖-th balloon at time 𝑡 is given by

𝒒𝑖 (𝑡) =
[
𝑟𝑖 (𝑡) cos(𝜃𝑖 (𝑡))
𝑟𝑖 (𝑡) sin(𝜃𝑖 (𝑡))

]
. (5.3)
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The vector of all balloons’ positions is defined as 𝒒(𝑡) =
[
𝒒1(𝑡) . . . 𝒒𝑁 (𝑡)

]𝑇
.

The tangential velocity 𝑣𝑖 is a function of the balloon’s position in the hurricane. It is
determined by the hurricane model, and for this work, we use the H10 model described in
Holland, Belanger, and Fritz (2010). This model is known for its low sensitivity to observing
system errors. The tangential velocity 𝑣𝑖 is given by:

𝑣𝑖 = 𝑉𝑚

((
𝑅𝑉
𝑟𝑖

)𝜑
exp

[
1 −

(
𝑅𝑉
𝑟𝑖

)𝜑] )𝜒
, (5.4)

where 𝑉𝑚 is the maximum tangential wind speed, 𝑅𝑉 is the radius at which 𝑉𝑚 is attained, 𝜑
is a shape parameter that defines the proportion of pressure near the maximum wind radius,
and the exponent variable 𝜒 is used to account for both the maximum wind values and the
data in the outer circulation.

The objective of the system is to cover a significant portion of the hurricane-affected
areas (to be defined later), collect sensor data such as wind speed, pressure, and temperature,
and transmit it to a satellite.

Due to the limited hardware capacity of small balloons, it is impractical to equip them
with all the necessary gear for satellite communication. Therefore, our communication goal
is for all balloons to transmit their data to a central agent, which we will refer to as the base
station. The base station is a robust agent that collects information from the balloons and
sends it to the satellite.

The communication technology chosen for the system is LoRa (long range) due to its
low power consumption and wide range capacity (Sanchez-Iborra; Cano, 2016). Low power
consumption is crucial for the balloons to remain cost-effective and operate for multiple
hours, enabling them to cover a larger area of the hurricane. The wide range of LoRa is
required to accommodate the magnitude of a hurricane, which can span up to 200 km
(Holland; Belanger; Fritz, 2010).

Although LoRa was the best choice of communication technology for our system
it is still limited to a maximum range of 10 km (Petajajarvi et al., 2015). To address this
communication challenge, two potential solutions are available: significantly increase the
number of balloons to allow for easy neighbor connectivity or design a control strategy that
causes the balloons to periodically move closer to each other to enable data routing until it
reaches the base station. The latter approach was chosen since it requires fewer balloons,
resulting in lower costs.

Finally, we can state the objective of the control protocol as follows:

• Cover a significant portion of the hurricane-affected areas;

• Periodically reposition the balloons to ensure they are within communication range
of each other, thereby enabling reliable data routing.

• Route the information of the balloons until it reaches the base station
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5.3 Control Architecture
Having established the general problem in the previous section, which included

formalizing the equations governing the hurricane and balloons, as well as discussing the
communication limitations and coverage goals, this section is dedicated to presenting our
proposed architecture. The purpose of this architecture is to address the system’s objectives
previously outlined, namely, to control a cooperative team of balloons capable of simultane-
ously covering the hurricane, repositioning themselves for effective communication, and
ensuring the reliable transmission of data to the base station.

To achieve these objectives, we will first develop cost functions that accurately repre-
sent the coverage and communication goals. Subsequently, we will provide themathematical
formulations necessary to optimize both objectives using a neural-network-based model
predictive control (NNMPC), as introduced in Floriano et al. (2022). By employing this ap-
proach, we aim to effectively coordinate the actions of the balloon team, leveraging advanced
control strategies to enhance area coverage and enable efficient communication within the
network.

The code for the implemented control protocol is available online1. A block diagram
of the control architecture is shown in figure 5.2.

Figure 5.2 – Block diagram of the control architecture of the 𝑖-th balloon
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5.3.1 Area Coverage

The first objective of the system is area coverage, i.e. to ensure the balloons coopera-
tively cover the most area affected by the hurricane to gather as much data as possible.

To do so, an interest function must be defined, i.e. a function of the geographical
coordinates that establishes the most relevant area to be covered at time 𝑡.

Let Γ(𝒒(𝑡), ∗ ,𝑡) : ℝ2 → ℝ be the interest function of the hurricane at time 𝑡 and
with the balloons’ positions at 𝒒(𝑡). The interest function’s initial distribution along the
two-dimensional plane, represented by the position vector 𝒙 =

[
𝑥1 𝑥2

]𝑇
∈ ℝ2, is given by:

Γ(𝒒(0),𝒙,0) = 1
(2𝜋 |𝚺 |)1/2

exp
[
−12

((
𝒙 − 𝝁

)𝑇
𝚺−1

(
𝒙 − 𝝁

))2]
, (5.5)

1 Available at https://github.com/brunofloriano/NN_MPC_application

https://github.com/brunofloriano/NN_MPC_application
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where 𝝁 is the position of the hurricane’s center, therefore 𝝁 =

[
0 0

]𝑇
and 𝚺 = 𝜎2

[
1 0
0 1

]
,

where 𝜎 is the interest radius, set according to the radial distance at which the hurricane
provides most relevant data.

The shape of the interest function at time 𝑡 = 0, described in equation (5.5), is visually
depicted in figure 5.3. It is noteworthy that the summit of the function exhibits a flatter profile
compared to a conventional Gaussian distribution. The selection of a 4th power Gaussian
was deliberate, driven by the need to capture this structure, enabling the characterization of
a region of interest with a specific radius in accordance to the hurricane’s most relevant area.

Figure 5.3 – Interest function shape at 𝑡 = 0

The interest function undergoes two steps of updating. The first step involves updating
Γ(𝒒(𝑡),𝒙,𝑡) based on the detection area of the balloons. The second step is a process through
which the interest function is restored when and where it is no longer influenced by any
nearby balloon.

5.3.1.1 Coverage update

As each balloon passes through an area, the value of the interest function in the
vicinity recedes based on the balloon’s coverage influence, Φ𝑖 (𝒒𝑖 (𝑡),𝒙), described by:

Φ𝑖 (𝒒𝑖 (𝑡),𝒙) =
1

(2𝜋 |𝑯 𝑖 |)1/2
exp

[
−12

((
𝒙 − 𝒒𝑖 (𝑡)

)𝑇
𝑯−1𝑖

(
𝒙 − 𝒒𝑖 (𝑡)

))]
, (5.6)

where𝑯 𝑖 = 𝜂2𝑖

[
1 0
0 1

]
, and 𝜂𝑖 is the radius of each observation area, i.e. the area which each

balloon can detect and collect data.
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Therefore, the interest function can be updated as

𝜕Γ(𝒒(𝑡),𝒙,𝑡)
𝜕𝑡

= −
𝑁∑︁
𝑖=1

Φ𝑖 (𝒒𝑖 (𝑡),𝒙). (5.7)

In addition, the interest function should always be limited above by 1 and below by 0.

5.3.1.2 Restoring update

The second update step is dedicated to restoring the interest function to its initial
value, as described by equation (5.5), when and where the balloons’ influence is no longer
present. The time-evolution ofΓ(𝒒(𝑡),𝒙,𝑡) is governed by the two-dimensional Fokker-Planck
equation:

𝜕Γ(𝒒(𝑡),𝒙,𝑡)
𝜕𝑡

= −
2∑︁
𝑖=1

𝜕

𝜕𝑥𝑖
[𝑣𝑖 (𝒙)Γ(𝒒(𝑡),𝒙,𝑡)] +

2∑︁
𝑖=1

2∑︁
𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

[
𝐷𝑖𝑗 (𝒙)Γ(𝒒(𝑡),𝒙,𝑡)

]
, (5.8)

where 𝑣𝑖 (𝒙) is the 𝑖-th component of the drift vector 𝒗(𝒙), and 𝐷𝑖𝑗 (𝒙) is the (𝑖,𝑗)-th compo-
nent of the diffusion tensor 𝑫(𝒙).

𝑣1(𝒙) = −
𝐷11
𝜎4
| |𝒙 | |3 cos𝜑, (5.9a)

𝑣2(𝒙) = −
𝐷22
𝜎4
| |𝒙 | |3 sin𝜑, (5.9b)

where 𝜑 = tan−1( 𝑥2𝑥1 ). Defining 𝑣1(𝒙) and 𝑣2(𝒙) as shown in equation (5.9) ensures that as
𝑡 →∞, Γ(𝒒(𝑡),𝒙,𝑡) approaches its steady-state, balloon-free value.

5.3.2 Communication

5.3.2.1 Routing Protocol

The routing protocol is an algorithm to define which communication will be estab-
lished among the agents of the system. While LoRa allows multiple communications, the
power consumption limitations impose the necessity of optimizing the number of connec-
tions in the communication graph.

The most suitable protocol for that requirement was the tree-based routing (TRP)
designed by Gong and Jiang (2011). The adaptation of that protocol can be seen in algo-
rithm 5.1.

For every 𝑗-th balloon which is not the base station (i.e. 𝑗 ≠ 1), the first part is to
determine if it is within the communication range 𝜌 of the base station. The distance between
each pair of balloons is defined as

𝑑𝑖𝑗 (𝑡) = | |𝒒𝑖 (𝑡) − 𝒒𝑗 (𝑡) | |. (5.10)

If 𝑑𝑖𝑗 (𝑡) < 𝜌 then both balloons are considered connected.
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Algorithm 5.1 Routing protocol
1: for 𝑗 = 2, . . . ,𝑁 do
2: if 𝑑1𝑗 < 𝜌 then
3: 𝑙1𝑗 ⇐ −1
4: else
5: 𝐶𝑚𝑖𝑛 = 𝑑1𝑗
6: 𝑝 = 0
7: for 𝑖 = 2, . . . ,𝑁, 𝑖 ≠ 𝑗 do
8: if 𝑑𝑖𝑗 < 𝜌 then
9: 𝐶𝑖𝑗 ⇐ 𝑑𝑖𝑗
10: if (𝑑𝑖1 < 𝑑𝑗1)&(𝐶𝑖𝑗 < 𝐶𝑚𝑖𝑛) then
11: 𝐶𝑚𝑖𝑛 ⇐ 𝐶
12: 𝑝⇐ 𝑖
13: end if
14: end if
15: end for
16: if 𝑝 ≠ 0 then
17: 𝑙𝑝𝑗 ⇐ −1
18: end if
19: end if
20: end for
21: 𝑙𝑖𝑖 ⇐ −

∑𝑁
𝑗=1 𝑙𝑖𝑗∀𝑖 ∈ {1, . . . ,𝑁}

If the balloon is not able to connect directly to the base station, then it will look for
its neighbors (the ones within its connectivity range) and decide which one to send data
to. Another requirement is that a balloon can only send data to an agent nearer to the base
station than itself; this way the graph establishes a tree directed to the base station at the
center. For this work, it was sufficient to establish that data will be sent to the nearest balloon;
in other words, the algorithm chooses 𝑖 that minimizes the cost 𝐶𝑖𝑗 = 𝑑𝑖𝑗 . Once a connection
is established (from 𝑗 to 𝑝), the element 𝑙𝑝𝑗 of the instant Laplacian matrix 𝐿(𝒒(𝑡)) should
be updated as −1. At the end of the algorithm, the diagonal of 𝐿(𝒒(𝑡)) should be corrected
as the sum of each row.

5.3.2.2 Data Storage for Message Forwarding

When a balloon establishes a connection with a neighboring balloon, it gains the
ability to both receive and transmit data. To fulfill one of the objectives outlined in section 5.2,
which is to ensure maximum data accessibility for the base station, it is necessary to differ-
entiate the roles of each balloon. To achieve this, we propose the concept of routing balloons,
which comprise a distinct group of agents capable of receiving and storing data from other
balloons. Subsequently, these routing balloons can efficiently forward the accumulated data
to the base station. By implementing this approach, we can guarantee that the information
reliably reaches its intended destination without compromising the coverage task.

Since we have the advantage of working with a predictive control (to be explained in
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detail in section 5.3.3), the system can plan ahead which balloon will work as the router, i.e.
the agent to transmit from one neighbor to another (or to the final destination, which is the
base station).

Therefore, a mathematical variable is necessary to characterize the cumulative be-
havior of the data that are transmitted and stored from one balloon to the other.

Let �̄�(𝒒(𝑡), 𝑡) ∈ ℝ𝑁 be a cumulative Laplacian matrix. It differs from 𝐿(𝒒(𝑡)), which
only represents the graph of instant communication. Instead, �̄�(𝒒(𝑡),𝑡) characterizes a
cumulative graph, which represents both past and present communication. In that sense,
after a disconnection between 𝑖 and 𝑗, its entry 𝑙𝑖𝑗 keeps a non-null value (denoting that
there was a connection in the past), while 𝑙𝑖𝑗 drops to zero immediately.

As an illustrative example, figure 5.4 shows a comparison between instantaneous and
cumulative connectivity, characterized by the Laplacian matrices 𝐿 and �̄�, respectively. For
each time instant (𝑡1 < 𝑡2 < 𝑡3), agent 𝑖 = 2 connects with one of the 3 other members of an
𝑁 = 4MAS. It is notable that at 𝑡 = 𝑡2, agent 𝑖 = 2 retains a memory of its prior connection
with 𝑗 = 3, despite the current absence of a direct connection. This retention is evident
in �̄� as well since the terms relating the two vehicles are non-zero (in contrast with the
instantaneous matrix 𝐿). Furthermore, agent 𝑖 = 1 exhibits the capability to function as a
router by transmitting previously memorized information to 𝑗 = 4. Finally, at 𝑡 = 𝑡3 a similar
process unfolds as agent 𝑖 = 2 connects with the base station, 𝑖 = 1, transmitting data from
all other members of the MAS, in accordance with our specified requirements.

As the system is designed to operate for extended periods of time, a key consideration
arises regarding the potentially outdated nature of data stored in the routers. By the time

Figure 5.4 – A Comparative Illustration of Instantaneous and Cumulative Connectivity
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the stored data reaches the base station, it may no longer be relevant or representative of
the current conditions. To address this challenge and ensure periodic updating, we propose
the incorporation of a decay factor into the Laplacian matrix. This decay factor indicates
the gradual degradation of stored data over time, signifying the diminishing relevance of
outdated information. Consequently, we can establish the evolution of 𝑙𝑖𝑗 as a means of
capturing the temporal dynamics and mitigating the impact of outdated data on the overall
system performance, as follows

𝑙𝑖𝑗 (𝒒(𝑡),𝑡) =

𝑙𝑖𝑗 (𝒒(𝑡𝑐)), if 𝑡𝑐 ≤ 𝑡 < 𝑡𝑑

𝑙𝑖𝑗 (𝒒(𝑡𝑐))𝜆(𝑡 − 𝑡𝑑), if 𝑡 ≥ 𝑡𝑑
(5.11)

where 𝜆(𝑡) is a decay function, and 𝑡𝑐 and 𝑡𝑑 are the connection and disconnection time,
respectively. Since the communication decay is slow so that the information can be stored
for hours, 𝜆(𝑡) can be set as a linear decay with period 𝑇𝑐𝑐, i.e.

𝜆(𝑡) =

1 − 𝑡

𝑇𝑐𝑐
, if 0 ≤ 𝑡 < 𝑇𝑐𝑐

0, otherwise.
(5.12)

Finally, if at the moment of connection between 𝑖 (recipient) and 𝑗 (sender), the latest
has the information of another agent 𝑘 (𝑘 ≠ 𝑖,𝑗), i.e. 𝑙𝑗𝑘 ≠ 0, then it can forward its data to 𝑖.
In other words, 𝑙𝑖𝑘 = 𝑙𝑗𝑘.

5.3.3 Neural-Network-Based MPC (NNMPC)

The control protocol chosen to achieve the area coverage and communication stated
in section 5.2 is the neural-network-based model predictive control (NNMPC) designed by
Floriano et al. (2022). This method has the advantage of working in random processes and
with unknown external disturbances due to its online learning feature. In addition, it is
designed to work in applications with limited communication capacities.

5.3.3.1 Cost Function

Design of the cost function is of fundamental importance as it will state the systems
goals in the form of a function that must be minimized. Since the objectives are anchored to
the area coverage and the communication requirement, two components must be created.

The cost energy, 𝑉𝑎𝑐 (𝒒(𝑡),𝑡), associated with the area coverage requirement can be
stated as:

𝑉𝑎𝑐 (𝒒(𝑡),𝑡) = 𝛽𝑎𝑐

(
𝐴𝑛 (𝒒(𝑡),𝑡)

𝐴𝑇

)
, (5.13)

where 𝐴𝑛 (𝒒(𝑡),𝑡) =
∫
𝒙∈X Γ(𝒒(𝑡),𝒙,𝑡)d𝒙 is the remaining interest of the area covered by all

the agents and 𝐴𝑇 =
∫
𝒙∈X Γ(𝒒(𝑡),𝒙,0)d𝒙 is the total interest of the area, where X ⊂ ℝ2 is the

studied region. The parameter 𝛽𝑎𝑐 is the weight of the area coverage component in the cost
function.
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The communication component, defined by 𝑉𝑐𝑐 (𝒒(𝑡),𝑡), should reflect the commu-
nication requirement, i.e. that the base station has the data of the maximum number of
balloons. To mathematically state that requirement, we can use the cumulative commu-
nication matrix �̄�(𝒒(𝑡),𝑡) which stores all the past interactions between the balloons. The
communication component is stated as:

𝑉𝑐𝑐 (𝒒(𝑡),𝑡) = −𝛽𝑐𝑐

(
𝑙11(𝒒(𝑡),𝑡) + 𝛾

∑︁
𝑖∈M

𝑙𝑖𝑖 (𝒒(𝑡),𝑡)
)
. (5.14)

where 𝛽𝑐𝑐 is the weight of 𝑉𝑐𝑐 (𝒒(𝑡),𝑡) in the cost function. It is a function of time to address
the necessity of having an increasing urgency for the system not being connected.M ⊂
{1, . . . ,𝑁} is the set of balloons designated as routers and 𝛾 is the weight of the routers
communication.

The inclusion of the negative signal in equation (5.14) serves to characterize the direc-
tion of the communication component 𝑉𝑐𝑐 (𝒒(𝑡),𝑡) in the optimization process. This choice
is motivated by the fact that the parameters intended for optimization (𝑙𝑖𝑖, ∀𝑖 ∈ {1, . . . ,𝑁})
should be maximized. To ensure consistency in the optimization direction, the negative sig-
nal is introduced. Consequently, maximizing 𝑙𝑖𝑖 aligns with the minimization of 𝑉𝑐𝑐 (𝒒(𝑡),𝑡).
This deliberate choice maintains a unified optimization objective while accommodating the
dual nature of the parameters involved.

Finally, both requirements can be stacked in a single energy vector whose norm is
the main numerical energy that should be minimized, which can be stated as:

𝑉 (𝒒(𝑡),𝑡) =
�������� [𝑉𝑐𝑐 (𝒒(𝑡),𝑡)𝑉𝑎𝑐 (𝒒(𝑡),𝑡)

] ��������. (5.15)

By taking its expected value, 𝐸 [𝑉 (𝒒(𝑡),𝑡)], and summing it up in discrete time 𝑡𝑘,
where 𝑘 ∈ ℤ, 𝑘 ≥ 0, until the horizon step ℎ in the MPC framework results in the final cost
function:

𝐽 (𝑡0) =
ℎ∑︁
𝑘=0

𝐸 [𝑉 (𝒒(𝑡𝑘),𝑡𝑘)] , (5.16)

which must be minimized from time to time by the neural network approach, i.e. to find a
𝑢(𝑡0), at time 𝑡 = 𝑡0, that reaches a minimum cost 𝐽 (𝑡0), as in

𝑢∗(𝑡0) = 𝑎𝑟𝑔min
𝑢(𝑡0)

𝐽 (𝑡0). (5.17)

5.3.3.2 Three Level Control (TLC)

The control of each balloon is based on the three level control (TLC) as described in
Meneghello, Luchini, and Bewley (2016), Meneghello, Luchini, and Bewley (2018). This
means that the balloon can control its altitude in three steps, i.e. 𝑍𝑖 ∈ {−�̄�, 0, �̄�}, where �̄�
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is a step change in the altitude. By changing its altitude, the balloon can also control its
radial position due to its dynamics, as described in equations (5.1a) and (5.1b). Therefore
the control output of the neural network should be within the three steps.

In order to combine the NNMPC framework with TLC, we have to modify the pa-
rameter 𝛿𝐾 used in Floriano et al. (2022). This parameter is the variation on 𝐾 (𝑡) to verify
which one results in the smallest cost function. Since the control input 𝑢𝑖 is limited to be in
the set {−�̄�, 0, �̄�}. Therefore 𝛿𝐾 = �̄�.

5.4 Results

5.4.1 Simulation-Based Validation of the Routing Protocol

To verify the effectiveness of the tree-based routing protocol we have developed,
we have conducted a simulation involving 𝑁 = 100 balloons placed within a hurricane
environment, where no external control is applied. In this simulation, the balloons will rely
solely on the movement induced by the hurricane’s wind speed, as defined in equation (5.4).
Since there is no external control mechanism, according to equation (2.5), the radius of
each balloon will remain constant throughout the simulation, except for some random
small oscillations. To facilitate the evaluation of the routing protocol’s performance, we have
intentionally exaggerated the communication range by setting it to 𝜌 = 50 km.

The simulation was configured to run for a duration of 𝑡 = 2 hours, during which
the initial state of the system provides valuable insights into the routing tree established by
our protocol. As illustrated in figure 5.5, this figure depicts the communication tree among

Figure 5.5 – Communication tree established by the routing protocol with 𝑁 = 100 agents. Notice
how several branches are formed to send data to the base station at the center.
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the agents at the initial stage of the simulation. It is noteworthy that several branches have
formed, with the primary objective of efficiently transmitting data to the base station located
at the center of the hurricane.

Our simulation results align with the original concept of the routing protocol, where
the system exhibits a preference for establishing trees that optimize information flow toward
the central base station. This strategic routing approach effectively reduces the communica-
tion effort required by the balloons in the network.

5.4.2 Performance Evaluation of Simplified Altitude Control Strategy

Following the successful validation of our routing protocol, our focus shifted towards
evaluating the performance of the control mechanism, as defined in equation (2.5), in a
system consisting of𝑁 = 100 balloons. To assess the control’s effectiveness, we implemented
a straightforward control strategy referred to as the "Simplified Altitude Control Strategy".
This control strategy is based on the distance of each balloon from the center of the hurricane.
Specifically, if a balloon is situated in a region where its distance from the center exceeds
100 km, the 3-level-control system will activate to lower its altitude, thereby moving it closer
to the center. Conversely, if a balloon is within the circle of a 100 km radius, centered on the
base station, the control remains at zero.

The simulation was conducted with the same communication range of 𝜌 = 50 km
and was executed for a total duration of 𝑡 = 24 hours. The final state of the system at the
conclusion of the simulation is depicted in figure 5.6. Notably, the figure illustrates how
the balloons maintain a uniform distance from the center, staying within a radius of 100

Figure 5.6 – Communication tree with a SimplifiedAltitude Control Strategy. Notice how the balloons
keep a distance to the center up to 100 km.
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km. This outcome serves as compelling evidence that the 3-level-control protocol effectively
regulates the balloons’ positions within the desired range.

With the verification of our control mechanism, we are nowwell-equipped to proceed
with addressing the area coverage and communication trade-off problem.

5.4.3 Area Coverage Validation

5.4.3.1 Binary Interest Function without Restoring

We started our study of area coverage by adopting a progressive approach. Our initial
exploration involved employing straightforward models and gradually augmenting the
complexity of the interest function to align with the system’s evolving requirements outlined
in section 5.2.

In this preliminary model, our interest function, denoted as Γ(𝒒(𝑡),𝒙,𝑡), operated in
a binary fashion. Specifically, at any given time 𝑡, it assumed a value of either 0 if any balloon
had traversed a predefined area near point 𝒙 in a manner that encompassed the point 𝒙
within its observation range, or 1 otherwise.

Crucially, this initial model excluded any temporal restoring component; once the
interest function was decreased to 0 at certain points, it remained unchanged indefinitely.
Consequently, we did not yet address the system’s inherent requirement for revisiting and
re-monitoring specific areas within the hurricane. In essence, it adhered to a "one-time
monitored, forever monitored" principle.

Figure 5.7 presents a time evolution of the area covered percentage. Notably, at the
culmination of the simulation, which spans 24 hours of hurricane development, we observe

Figure 5.7 – Time evolution of the area covered percentage
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that approximately 77% of the area is considered monitored. This outcome underscores
the commendable performance of our control protocol in terms of effectively distributing
the balloons around the hurricane’s perimeter, minimizing overlap, and optimizing area
coverage. Furthermore, the validation of the routing protocol is evident, as all balloons
successfully transmit their data to the base station by the simulation’s end.

5.4.3.2 Binary Interest Function with Forced Reboot

In line with our progressive approach to modeling the interest function, our next
step involves the introduction of a restoring feature. The current objective of this feature is
to implement a forced reboot mechanism once a substantial portion of the hurricane has
been covered. This allows us to assess the adaptability of the established control protocol in
response to changes in the interest function, particularly in scenarios where already covered
areas, marked as 0, have transitioned back to 1.

In this particular configuration, our interest function remains binary, lacking a quan-
titative measure for monitoring other than the binary set. The temporal restoring aspect
of the interest function remains somewhat constrained, as the sole trigger for restoration
is a forced reduction of the entire domain to 1. Consequently, the system is prompted to
revisit and re-monitor the hurricane’s regions following a single change that occurs midway
through the simulation.

As illustrated in figure 5.8, during the initial half of the simulation, the system behaves
in a manner similar to the previous section. The abrupt drop in the interest function occurs
after X hours, causing the entire domain to reset to 1. Importantly, the system successfully
resumes its monitoring efforts for the areas marked for restoration, effectively minimizing

Figure 5.8 – Time evolution of the area covered percentage with forced reboot
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the associated coverage cost. By the simulation’s conclusion, the total covered area stands at
44%. It’s important to note that this percentage is lower than the previous section, primarily
due to the fact that the system had only half the time available for coverage compared to the
previous result.

This outcome confirms the capability of our control approach to handle restoring
features, even in response to sudden changes in the interest function. While the final covered
area percentage is lower, the system demonstrates its adaptability and effectiveness in
responding to shifts in monitoring requirements.

5.4.3.3 Continuous Interest Function with Linear Decay

With the addition of a linear decay to the interest function, we have transitioned from
a binary representation to a continuous measure, where Γ(𝒒(𝑡),𝒙,𝑡) now quantifies the level
of interest in monitoring a specific region within the hurricane. The value assigned to each
region provides a quantitative measure of its priority for observation, with higher values
signifying greater necessity.

Moreover, the restoration mechanism has evolved from a sudden change to a contin-
uous decay over time, following a linear function as described by:

𝜕Γ(𝒒(𝑡),𝒙,𝑡)
𝜕𝑡

= 𝜁 (5.18)

where 𝜁 is the rate of change in which the interest function should increase back to 1 after a
balloon has passed by. In our model, we established 𝜁 = 1.1574 ∗ 10−5 s−1 to accommodate a
slow time decay into the time span of 24 hours.

The simulation results for this scenario are presented in figure 5.9, where you can
observe a noisy curve that has a growing tendency with some decrease after some time. This
behavior indicates the continuous time-restoring feature. In this advanced configuration,
we have introduced a more realistic attribute that aligns with the requirement outlined in
section 5.2, where the hurricane area exhibits a time-restoring characteristic that prompts
the system to remap specific regions while assigning quantitative priorities.

As evident from figure 5.9, the control protocol adeptly adjusts balloon positions in
real-time to accommodate the varying values assigned to each region. Simultaneously, it
manages the communication cost, which will be analyzed in the forthcoming sections.

In the subsequent section, we further enhance the restoring feature of the interest
function byupdating itwith a differential equation based on theFokker-Planck equation. This
advancement allows the function to relax in a smoother manner, with spatial dependency
considerations as well.
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Figure 5.9 – Time evolution of the area covered percentage with continuous interest function and
linear decay
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5.4.4 Full Model Validation

The codes and results used in this work are available online2.

A number of 𝑁 = 9 balloons was used (including the base station). The simulation
was run for 𝑡𝑚𝑎𝑥 = 48 h.We used a total of 501 time samples and 61 space steps per dimension
in a grid with 200 km range.

The communication range of the balloons was set as 𝜌 = 10 km in accordance to the
LoRa capacities as described in section 5.2.

In terms of area coverage, we set 𝜎 = 100 km and 𝜂𝑖 = 10 km ∀𝑖 ∈ {1, . . . ,𝑁}. In the
Fokker-Planck equation, 𝐷11 = 𝐷22 = 1.

The hurricane parameters, used in equation (5.4), were set as 𝜑 = 1.8, 𝜒 = 0.5,
𝑉𝑚 = 60m/s and 𝑅𝑉 = 20 km based on a baseline profile described in Holland, Belanger,
and Fritz (2010).

The control parameters were set as level height �̄� = 558.3m to be consistent with
the three-level control described in Meneghello, Luchini, and Bewley (2016), Meneghello,
Luchini, and Bewley (2018). Also in accordance with those works, 𝛼 = 10−3 s−1, 𝑐2 = 1500
m2/s, 𝛽𝑎𝑐 = 1, and 𝛽𝑐𝑐 = 1. The number of neural network neurons were set as𝑀 = 6 and
the predictive horizon as ℎ = 10.

The first simulation was performed with 𝑇𝑐𝑐 = 𝑇 = 6 h. Figure 5.10 shows 6 instances
of the simulation separated by 100 time steps. Each subfigure shows the heatmap of the

2 Available at https://github.com/brunofloriano/NN_MPC_application

https://github.com/brunofloriano/NN_MPC_application
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interest function at that particular time. Each point represents one of the 𝑖-th balloons.
Observe the contrasting patterns in the figures, some depicting the balloons in clusters and
others showing them spread across the hurricane’s area. This distinction directly reflects the
coverage/communication trade-off, whereby the balloons periodically and interchangeably
gather to establish communication links, and then disperse to extend the covered area. This
dynamic adaptation enables the system to address each objective according to the specific
needs of the moment.

In addition to figure 5.10, table 5.1 complements the information presented. For each
time step indicated in the figure, we provide a communication relative size, denoted by a
numerical value. This parameter, referred to as the communication relative size, represents
the proportion of the communication energy 𝑉𝑐𝑐 (𝒒(𝑡),𝑡) relative to the total energy vector
𝑉 (𝒒(𝑡),𝑡), and it is calculated as follows:

�̄�𝑐𝑐 (𝒒(𝑡),𝑡) =
𝑉𝑐𝑐 (𝒒(𝑡),𝑡)
𝑉 (𝒒(𝑡),𝑡) . (5.19)

A smaller value indicates that the balloons are positioned closer together, prioritizing the
establishment of communication links. Conversely, higher values correspond to situations
where the balloons are spread out, emphasizing area coverage. In this chapter, we have
defined a threshold of �̄�𝑐𝑐 (𝒒(𝑡),𝑡) = −0.25 to categorize the scenarios: above this value, the
system is considered to be in a scattering situation (agents are spread out), while below this
value, it is considered to be clustered. The exception occurs at 𝑘 = 0 (the initial condition),
when the system is in its early stage and coverage and communication may have similar
priorities, given their low achievement levels at this time point.

In order to perform a correct analysis on the area coverage cycles, let the cumulative
interest be given by

�̄�𝑛 (𝒒(𝑡),𝑡) = min
𝜏

𝐴𝑛 (𝒒(𝜏),𝜏), (5.20)

where 𝜏 ∈
[
𝑡 − 𝑇𝑎𝑐 𝑡

]
and 𝑇𝑎𝑐 is the area coverage period. Then, the cumulative area covered

can be defined as
�̄�𝑐 (𝒒(𝑡),𝑡) = 1 −

�̄�𝑛 (𝒒(𝑡),𝑡)
𝐴𝑇

. (5.21)

Table 5.1 – Communication relative size, �̄�𝑐𝑐 (𝒒(𝑡𝑘),𝑡𝑘), at each time step 𝑘. The maximum value
occurs when the balloons are spread

Time step 𝑘 �̄�𝑐𝑐 (𝒒(𝑡𝑘),𝑡𝑘) Situation
0 -0.0330 Initial condition
100 -0.1991 Spread
200 -0.2126 Spread
300 -0.1481 Spread
400 -0.3053 Clustered
500 -0.4051 Clustered
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Figure 5.10 – Interest function at different time steps. Compare the differences when the ballons are:
clustered (indicating the communication priority) or spread (area coverage priority).
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Therefore, our analysis will focus on the cycles of the same duration, i.e. 𝑇𝑎𝑐 = 𝑇𝑐𝑐 =

𝑇 = 6 h. Figure 5.11 shows the cumulative area covered, �̄�𝑐 and the communication energy,
𝑉𝑐𝑐, with 𝑇𝑎𝑐 = 𝑇𝑐𝑐 = 𝑇 = 6 h by the system over time.

Figure 5.11 – Cummulative area covered by the system, �̄�𝑐 (solid line), and communication energy,
𝑉𝑐𝑐 (dashed line), over time with 𝑇 = 6 h. Notice the periodicity in both curves, indicat-
ing the compromise between area coverage and communication.
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Notice the oscillating tendency of both curves. This is due to the effect of the restoring
cost function, powered by the linear decay in the communication component of equa-
tion (5.14), and the dynamics of interest function governed by the Fokker-Planck equation
described in section 5.3.1.2, which makes the interest function relax to its initial state.

As expected, both curves tend to follow the same pattern. As the balloons cover the
interest area, �̄�𝑐 (𝒒(𝑡),𝑡) increases. However, it also increases the communication energy,
due to the fact that past connections are now greatly degraded. Such energy is decreased
when the agents reposition for connection, at the expense of losing previously covered areas.

As an illustration, notice figure 5.12. It shows the exact point in time where the
communication energy is minimum (step 418). It is possible to recognize how the balloons
are positioned in clusters (agents 1, 4, 5, 6, and 8 comprise one, while 3, 7, and 9 comprise
another, with 2 being isolated). This step supports the system’s arrangement that seeks to
augment the communication to the detriment of area coverage. After that moment, the
system is rearranged once more, and the balloons disperse to start covering the area again.

Figure 5.13 shows the cumulative area covered, �̄�𝑐 and the communication energy,
𝑉𝑐𝑐, with 𝑇𝑎𝑐 = 𝑇𝑐𝑐 = 𝑇 = 12 h by the system over time. The longer time period improves the
visualization of the synchronization between the two objectives.

For the next portion, we will reduce the number of agents in order to more clearly
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Figure 5.12 – Interest function when communication energy is at a minimum. Notice how the bal-
loons are gathered in clusters, indicating they are prioritizing communication.
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Figure 5.13 – Cumulative area covered by the system, �̄�𝑐 (solid line), and communication energy, 𝑉𝑐𝑐
(dashed line), over time with 𝑇 = 12 h. Notice the synchronization between the two
objectives.
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illustrate the message routing process. This will allow us to better visualize how the agents
redirect messages when necessary. With fewer agents, this is easier to demonstrate and is
more illustrative. Let us use the same parameters as before, except for 𝑁 = 4 and 𝑇 = 6
h. Here we introduce the concept of “connection frame", which is the window in which a
connection still has more than 60% of its strength; in other words, 𝑙𝑖𝑗 remains between −0.6
and −1. This interval serves as an indicator of the connection’s steadiness between agents 𝑖
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and 𝑗 and provides insight into the consistency of their communication link.

Figure 5.14 shows the entries 𝑙𝑖𝑗 of the cumulative Laplacian matrix �̄�(𝒒(𝑡),𝑡). In
this example, agent 𝑗 = 4 acts as the routing agent, which is why its connection to the base
station (represented by 𝑙14) is almost constant, as seen in the top graph. During most of the
simulation, 𝑙14 is inside the connection frame. In addition, notice in the bottom graph, that
agents 2 and 3, which are coverage-only balloons, have intermittent connections with agent
4 to periodically send their data so they can ultimately reach the base station. Therefore, it
was possible to clearly observe the message being forwarded between the balloons in order
to send the data to the base station and guarantee the agents’ observations are ultimately
sent to a satellite.

Figure 5.14 – Entries 𝑙𝑖𝑗 of the cumulative Laplacian matrix �̄�(𝒒(𝑡),𝑡). Notice how the router 𝑗 = 4 is
mostly connected to the base station (𝑖 = 1) and have intermittent connections with
other agents.
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5.5 Remarks
This chapter introduced a multi-agent control architecture for a swarm of heteroge-

neous low-cost buoyancy-driven balloons to monitor and collect weather data of a hurricane.
The proposed method is composed of two constantly restoring cost function components,
one to represent the communication energy and another for the area coverage energy. The
control scheme builds upon the neural network-based MPC and TLC to generate an adaptive
multi-agent framework that optimizes the cost function.

The proposedmethodwas tested in a simulated environmentwith two distinct periods,
for a time of 48h of coverage each. In both cases, it was possible to clearly distinguish
the cycles and the expected synchronization between area coverage and communication.
Therefore the concession between those conflicting objectives was fulfilled as the MAS
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adaptively switched between them to better accommodate the problem.

The hurricane monitoring system, presented in this chapter, as well as its results,
has been submitted for publication in the journal Engineering Applications of Artificial
Intelligence. The journal was ranked as A1 by the CAPES’ Qualis classification system in
the quadrennium 2017-2020.
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6 Conclusion

This work proposed a novel neural-network-based model predictive control algo-
rithm so that a nonlinear multi-agent system reaches consensus with stochastic switching
topologies. This approach seeks to find a feedback control matrix at each instant 𝑘 such
that a model predictive quadratic cost function is minimized, allowing the agents to reach
stability. It stands out from the current MAS literature by adopting an adaptive strategy,
which allows the system to readjust to real-time changes in the environment as well as to
random communication switching.

TheMPC approach is based on predicting future states up to a given horizon, acknowl-
edging the uncertainties caused by the communication limitations. This way, a quadratic
cost function is built based on the expected value of the predicted state and can beminimized
as a function of the feedback control matrix.

Achieving such optimization was possible thanks to the universal approximation
property of the neural network, used in this work to perform a regression of the cost as a
function of the matrix. A cross-validation procedure was adopted in order to choose the
number of neurons that would achieve a minimummean-squared error.

The resultswere extensively tested in both linear andnonlinear systems,with different
communication scenarios and compared to the literature. As seen in chapter 4, the NN-based
MPC resulted in a faster response, with a decreased settling time. However, the trade-off lies
in the mean-squared error which presents larger values for some states. The simulations also
included systems with relevant practical value such as quadrotors and robot cars, showing
the approach’s applicability for real situations.

It is important to notice that the proposed method was built for stochastic switching
and nonlinear dynamics. Therefore, particular cases of those characteristics, for example
deterministic switching or linear dynamics with or without disturbances, are also included
and can achieve consensus with the NN-based MPC algorithm.

Furthermore, the robustness and efficacy of the proposed architecture were rigorously
assessed in a larger and more intricate scenario, as detailed in chapter 5. In this comprehen-
sive test case, we employed the NN-based MPC protocol to orchestrate the monitoring of a
hurricane using a swarm of buoyancy-driven balloons.

The hurricane, as a naturally occurring extreme environmental phenomenon, pre-
sented a challenge for our model. The vehicles within this swarm faced significant noise,
and disturbances, and operated within an expansive environment spanning approximately
100 km in radius. These were challenges that had not been comprehensively addressed in
prior literature.
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As evidenced by the results, our protocol demonstrated exceptional performance in
fulfilling the dual requirements of area coverage and communication, despite the inherent
conflict between these objectives. This achievement underscores the capability of the NN-
MPC approach to effectively coordinate complex operations within multi-agent systems
operating under communication constraints.

In summary, our research has illustrated that the NNMPC approach is well-suited
for managing the intricate dynamics and communication demands of multi-agent systems,
particularly in challenging and real-world scenarios like hurricane monitoring.

Future research directions include validating the proposed protocol on real platforms
to assess its performance in actual vehicles, especially focusing on adapting scenarios to
address environmental protection issues of national relevance like wildfires and deforesta-
tion in the Amazon rainforest. The need for deep theoretical validation of the algorithm’s
conditions and performance is emphasized. Additionally, suggestions for enhancing the
current system involve integrating a robust adaptation component into the neural network
learning process to improve adaptability, optimizing communication protocols and refining
algorithmic parameters. Furthermore, exploring the application of deep learning and other
artificial intelligence techniques is recommended to broaden the range of solutions for MAS
problems. These research endeavors collectively aim to strengthen the reliability, adaptability,
and practical applicability of the proposed protocol in diverse and dynamic contexts.
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