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ABSTRACT

Due to the technology progress, particularly in electronics the satellite development has

become more accessible, allowing its manufacturing by startup companies and universities.

Such satellites use low cost components, for general purpose, where one seeks for exchanging

a high cost and high reliability platform for a low cost vehicle constellation, less reliable, more

advanced technologically and with easy replacement. In this context, an adaptive attitude

determination system is an alternative to deal with sensors that have time-varying statistics

or they are not completely known. An adaptive ADCS grants more reliability to the platform,

increasing its life-cycle and reducing the replacement cost. Taking it as a motivation, the work

presents the analysis of algorithms for adapting the filtering method in sensor measurements in

the attitude estimation of a small satellite. It is limited to the study of stochastic methods for

such goal, as the estimation of the process and observation noise covariance matrices, along with

the hypothesis test regarding the fault occurrence and the adaptation of matrices by multiple

scale factors. The results obtained show that the adaptation of covariance matrices allows the

faulty measurements to be accommodated, reducing their influence in the filter and providing

the attitude accuracy preservation for the satellite when comparing with the estimator without

the fault detection and isolation mechanism.

Keywords: small satellites; spacecraft dynamics; attitude estimation; Kalman filter; sensor

fusion; adaptive Kalman filter.



RESUMO

Título: Filtragem de Kalman Adaptativa para Estimação de Atitude de Pequeno Satélite

Devido à evolução da tecnologia, particularmente a eletrônica, o desenvolvimento de satélites

tornou-se mais acessível, permitindo sua construção por empresas startups e universidades.

Tais satélites utilizam componentes de baixo custo, de uso geral, no qual busca-se trocar uma

plataforma de alto custo, e confiabilidade, por uma constelação de veículos de baixo custo,

menos confiáveis, mais avançados tecnologicamente, e de fácil reposição. Neste contexto, um

sistema de determinação de atitude adaptativo é uma alternativa para lidar com sensores que

possuem estatísticas que variam ao longo do tempo ou que não são completamente conhecidas.

Um ADCS adaptável garantiria maior confiabilidade à plataforma, aumentando a vida útil e

reduzindo o custo de reposição. Tendo isto como motivação, o presente trabalho apresenta

a análise de algoritmos para adaptação do método de filtragem em medições de sensores na

estimação da atitude de um pequeno satélite. Limita-se ao estudo de métodos estocásticos para

tal fim, como a estimação das matrizes de covariância dos ruídos do processo e observação, e a

adaptação de tais matrizes por múltiplos fatores de escala. Os resultados obtidos mostram que

a adaptação das matrizes de covariância permite acomodar as medidas degradadas, diminuindo

a sua influência no filtro e proporcionando a manutenção da precisão da atitude do satélite em

relação ao estimador sem mecanismo de adaptação.

Palavras-chave: pequenos satélites; dinâmica de veículos espaciais; estimação de atitude; filtro

de Kalman; fusão sensorial; filtro de Kalman adaptativo.
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CHAPTER 1

INTRODUCTION

1.1 CONTEXTUALIZATION

The rapid growth of electronic systems technologies, specifically the consumer electronics

devices, allowed the development of spacecrafts and instruments by universities and research

institutions. Furthermore, the evolution of space launch vehicles provided the reduction of the

cost related to such services and the access to space, once restricted to government organizations

and large corporations, now became affordable for innovative business (WESTON; YOST,

2023).

Small satellites (smallsat) has became one drive factor of the called New Space, which is

a paradigm defined by the vast commercialization of space services by start-up companies,

technology innovation and short development cycles. Currently, such spacecrafts are used by

emerging business for optical and synthetic aperture radar (SAR), remote sensing imagery ac-

quisition, telecommunications, radiofrequency-based geolocation and even deep-space missions.

The low-cost and fast manufacturing also allowed the implementation of satellite constellati-

ons, with hundred of platforms covering the Earth and providing services with high quality and

availability.

The traditional space market is characterized by highly reliable vehicles designed in a long

development cycle, in complex verification and validation (V&V) architecture, using legacy

technologies, with redundant subsystems and specific devices for space environments, in order

to reduce the risk of failure. All those aspects generates high-cost missions in which only

governments and big companies were able to implement.

In contrast, small satellites utilizes components with less rigorous process of manufacturing

and certification for space applications. Such vehicles rely on miniaturized technologies, as

the Micro-Electro-Mechanical Systems (MEMS) sensors. In educational and scientific missions,
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commercial off-the-shelf (COTS) devices can be considered in the satellite design which may

increases the risk of failure. Besides, cutting-edge technologies are also used in spacecrafts

for research applications. Table 1.1 presents the spacecraft classification by weight and the

categories which are considered small satellites.

Table 1.1. Satellite classification by weight.
Class name Weight range (kg)

Large ≥ 1000
Medium 500 − 1000

Sm
al

ls
at

s Mini 100 - 500
Micro 10 - 100
Nano 1 - 10
Pico 0.1 - 1

Femto < 0.1

An important class of smallsat is the CubeSat standard which was created for universities

and colleges educational programs to provide training in the field of space sciences and tech-

nologies. Such standard specifies platform of sizes multiple of 1U (10 × 10 × 10 cm) and the

possible configurations are shown in Table 1.2. CubeSats are also adopted for science missions

and experiments, technology demonstrations and even commercial applications.

Table 1.2. Cubesats size.
Cubesat

configuration
Dimensions (cm) Maximum

Weight(kg)
1U 10×10×10 2.00
3U 10×10×30 6.00
6U 20×10×30 12.00
12U 20×20×30 24.00

Within this scenario, Brazil, as a country of vast extensions, has an increasing demand and

potential opportunities in the space market. Applications such as communications for remote

areas, remote sensing towards to environment and natural resources monitoring, surveillance

and weather research can bring economics and social benefits along with the technological

development. This range of applications and the pursue for the aerospace industry’s growth

have promoted Cubesat missions initiatives by Brazilian educational and research institutions.

One of the most recent missions is the AlfaCrux CubeSat, launched in 2022 as a project

of the University of Brasília (UnB) for radio amateur and educational purposes, where the
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learning was focused in project management, risk analysis and space operations (BORGES et

al., 2022).

1.2 MOTIVATION

Attitude Determination and Control Systems (ADCS) perform a very important role in

spacecraft navigation, once the satellite orientation is substantial for both the mission and the

safe operation. The ADCS enables the pointing of antennas and cameras to the desired position,

also providing means to rotates the solar panels direction for electrical energy generation. The

system performance will depend on the sensor’s quality and the estimation algorithm design.

Figure 1.1 shows the block diagram of a typical ADCS components in which the attitude

estimation problem is represented by the feedback flow.

Figure 1.1. Attitude Determination and Control System.

Source: Author.

In inertial navigation the sensors can be divided in grades according to their measurement

accuracy, stability and noise levels. Space-grade and military-grade components have high re-

liability level, but the cost is also high. The automotive-grade and industrial-grade elements

have a moderate reliability level enough to work in harsh environments. Small satellites com-

monly use low-cost components, like the ones for general-purpose market which are the COTS

products.

In this conception, the small satellite manufacturers seek to change high-cost and reliable

platforms for reduced cost, less reliable spacecraft constellations, but more advanced technolo-

gically with fast replacement. Therefore, the use of techniques that mitigates the system failure
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risk is fundamental for the mission success.

For that reason, a fault-tolerant attitude determination system is an approach for the detec-

tion of sensor measurements faults and adaptation mean against induced errors. A robust and

adaptive ADCS will grant more reliability to the satellite, increasing the lifespan and reducing

the replacement cost. Also, the fault tolerance feature will improve the mission availability and

the products delivery.

1.3 LITERATURE REVIEW

The attitude estimation is an important research field concerning space vehicles design and

a problem that draw attention of others areas that work with navigation, as robotics, and the

fusion of inertial and Global Navigation Satellite System (GNSS). Currently, with the advent

of small satellites, the development of spacecraft ADCS had reached the universities and the

academy, where thousands of vehicles were launched until now (WESTON; YOST, 2023).

In the beginning of the space exploration, attitude determination systems were based on

static or deterministic methods (MARKLEY; CRASSIDIS, 2014). However, algorithms which

consider the stochastic nature of the measurements are the most used today due to their

performance. In this approach, the Kalman filtering is the main technique for vehicles pose

estimation and the study of new variations are in the recent advances in technology.

The commonly used methods for small satellites are the Extended Kalman Filter (EKF)

and the Unscented Kalman Filter (UKF) (CRASSIDIS et al., 2007). In Ivanov et al. (2015) a

study of attitude determination algorithms using the EKF is presented, where a series different

sensors set and state vectors were compared in terms of estimation accuracy. Esit et al. (2021)

presented several filtering configurations, such as the dynamics-based and gyro-based process

model, in the EKF and UKF filters also with integration of the static method Quaternion

Estimator (QUEST) algorithm.

Ovchinnikov & Ivanov (2014) presented a performance analysis of the EKF using a magne-

tometer and Sun sensors. The asymptotic estimated error is derived in a analytical approach

for a quasi-stationary motion. Soken & Hacizade (2019) discuss the problem of Kalman filter

tuning, where the empirical and adaptive approaches are used in the noise covariance matrices
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values in order to improve the filter accuracy.

In Battistini et al. (2016) a variation of the UKF is used for the attitude reconstruction

of a small satellite and its performance is proved through an onboard camera imaging the

Earth. Also about the attitude reconstruction problem, Ivanov et al. (2021) considered a

magnetometer-only and dynamics-based EKF for the sensor bias estimation and rotational

motion analysis. The initial state is found through a least squares problem.

Soken & Sakai (2020) used the Triaxial Attitude Determination (TRIAD) algorithm for a

coarse orientation acquisition and the UKF for a fine attitude estimation and magnetometer

calibration with the aid of a gyroscope. When the parameters meet the steady-state, a UKF

is executed just for the attitude estimation. A statistical test is applied to verify if a change

occurred on the parameters, so the parameter estimation is run again. Chagas et al. (2021)

applied the EKF to calibrate attitude sensors considering the presence of bias, misalignment

and non-orthogonality. It showed that the attitude estimation accuracy is improved with the

calibration process.

One approach for attitude estimation is the particle filtering which considers the propagation

of several state vector samples under different assumptions (CHENG; CRASSIDIS, 2004). In

Silva et al. (2022) a Rao-Blackwellized particle filtering is used for attitude and gyroscope

bias estimation, where this method reduces the number of particles and keep the re-sampling

consistent. Garcia et al. (2019) evaluates the EKF, UKF and the Cubature Kalman Filter with

real sensors data and compare each approach performance.

Mesquita et al. (2017) applies the State-Dependent Riccati Equation (SDRE) for a Cube-

sat attitude estimation problem, in which the system is linearized through matrices of state-

dependent coefficient. Besides the spacecraft, in (GUIMARãES et al., 2017) the EKF is used

for the pose estimation of a testbed platform intended for attitude determination and control

experiments of nano-satellites.

1.3.1 Adaptive Attitude Estimation

Due to the reliability issue concerning the attitude sensors in small satellites, which are

low-cost sensors in general, the adaptive Kalman filtering is solution to deal with external
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disturbances, time-varying parameters and faulty measurements (HAJIYEV; SOKEN, 2020).

This approach allow the noise covariance matrices to be estimated in order to keep the filter

capabilities.

In Hajiyev et al. (2019) a Singular Value Decomposition (SVD)- aided UFK is used for

attitude estimation. Also, both process and measurement noise covariance matrices are adapted

simultaneously while noise increment and bias were added to the sensors measurements. Soken

& Sakai (2015) used the adaptation in the process noise covariance matrix in order to improve

the UKF performance for attitude and sensor biases estimation.

(CHIELLA et al., 2019) proposed a robust adaptive UKF which is able to estimate the at-

titude of a robotic manipulator in the presence of fast and slow variations of external perturba-

tion. The algorithm contains an outlier detection scheme which provides an abrupt disturbance

change rejection. In the work of Soken & Hajiyev (2014) a robust EKF and a robust UKF are

compared in situations of sensor measurement faults, where both filters are adaptive and have

the capability of fault detection.

(NARASIMHAPPA et al., 2020) developed a robust version of the Sage-Husa Adaptive Kal-

man Filter for the drift minimization in a Inertial Measurement Unit (IMU). The work showed

that the algorithm deal with time-varying noise of a MEMS gyroscope and accelerometer, also

the uncertainty in the measurements. In Cilden-Guler et al. (2019) several adaptive Kalman

filters configurations were compared in a system with a magnetometer heavy-tailed noise and

sensor fault.

1.4 OBJECTIVE

The main objective of this work is to provide a detailed analysis of attitude estimation

algorithms that can provide robustness against sensor failures for small satellite applications.

For that, adaptive Kalman filter are used in the sensor fusion and stochastic methods are

applied for the measurement fault detection and isolation.
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1.5 CONTRIBUTIONS

This work concerns the attitude estimation of small satellites with a sensor fault tolerant

technique in order to the spacecraft to become more robust and reliable. Furthermore, the

proposed approach combines physics-based and data-driven models, numerical simulations,

sensor updates, and historical data. Two case studies are considered, a numerical one for

comparison and validation of the methods, and a real application to the AlfaCrux CubeSat.

The environment models concerning the spacecraft dynamics were implemented and will be

used in the Laboratório de Simulação e Controle de Sistemas Aeroespaciais (LODESTAR),

UnB, for the AlfaCrux mission control platform and future missions simulations.

Regarding the academic production, the following articles were published:

• MELLO, B. T. de; BORGES, R. A.; BATTISTINI, S. Attitude reconstruction of the

AlfaCrux CubeSat using onboard sensors and solar panels in-orbit data. In: Proceedings

of the Joint 5th IAA Latin American CubeSat Workshop and 3rd IAA Latin American

Symposium on Small Satellites. [S.l.]: International Adademy of Astronautics, 2022.

• BORGES, R. A.; SANTOS, A. C. dos; SILVA, W. R.; AGUAYO, L.; BORGES, G. A.;

KARAM, M. M.; SOUSA, R. B. de; GARCíA, B. F.-A.; BOTELHO, V. M. de S.;

FERNáNDEZ-CARRILLO, J. M.; AGRA, J. M. L.; AGELET, F. A.; BORGES, J. V.

Q. S.; OLIVEIRA, A. C. A. de; MELLO, B. T. de; AVELINO, Y. da C. F.; MODESTO,

V. F.; BRENAG, E. C. The AlfaCrux CubeSat mission description and early results.

Applied Sciences, v. 12, p. 9764, 9 2022. ISSN 2076-3417.

• BRENAG, E. C.; MELLO, B. T. de; ARRUDA, M. L.; BORGES, R. A.; IVANOV, D.;

MONAKHOVA, U.; MASHTAKOV, Y.; OVCHINNIKOV, M. Magnetic parameters es-

timation and attitude motion reconstruction using in-flight magnetometer measurements

of the AlfaCrux CubeSat. In: Proceedings of the Joint 5th IAA Latin American CubeSat

Workshop and 3rd IAA Latin American Symposium on Small Satellites. [S.l.]: Internati-

onal Academy of Astronautics, 2022.

• BRENAG, E. C.; ARRUDA, M. L.; MELLO, B. T. de; BORGES, R. A.; OVCHIN-

NIKOV, M.; IVANOV, D. AlfaCrux CubeSat magnetic dipole determination and atti-
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tude motion estimation using magnetometer measurements only. In: Proceedings of the

74th International Astronautical Congress. [S.l.]: International Astronautical Federation

(IAF), 2023.

1.6 WORK STRUCTURE

The work is organized as the following structure:

• In the Chapter 2, the fundamentals of space related mathematical models are presented.

The concepts of rigid-body kinematics and dynamics are discussed along with the sensors

and environment models.

• The Chapter 3 presents the theoretical formulation of the Kalman filtering and state

estimation, also with its application in sensor fusion towards attitude estimation for spa-

cecrafts.

• In the Chapter 4, sensor faults detection methods are discussed and measurement ano-

malies accommodation techniques in state estimation are presented. The covariance mat-

ching approach is explained and its application to the noise covariance matrix adaptation

is developed.

• In the Chapter 5, the main results and computational simulations are presented discussed.

All parameters and implementation details are presented along with the technologies used.

• The Chapter 6 presents the conclusions obtained from the simulation analysis and the

result performance, along with the proposal of future works.



CHAPTER 2

SPACECRAFT ATTITUDE DYNAMICS

This chapter presents the mathematical models involved in the spacecraft dynamics and

control analysis. First, the coordinate systems used in space navigation are defined. Then,

the attitude representations and the rotational motion of satellites are discussed. Next, the

models related to the space environment are explained and the sensor models accounted for the

filtering problem are presented.

2.1 COORDINATE FRAMES

For the study and analysis of vehicles navigation in the physical three-dimensional space,

the associated vector quantities must be described in reference coordinates systems. Such

vectors considered in this work are described in four different reference frames common to the

spaceflight dynamics.

2.1.1 Earth-Centered Inertial Frame (ECI)

The inertial frame is considered fixed with respect to distant stars, but its axes moves slightly

over time. The system’s origin is located in the Earth’s center (geocentric), the x axis points

towards the vernal equinox, the y axis lies in the equatorial plane and the z axis points toward

the North pole (MARKLEY; CRASSIDIS, 2014; VALLADO; WERTZ, 2013). The frame is

called Earth-Centered Inertial Frame (ECI) and it is shown in Figure 2.1.
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Figure 2.1. Inertial and orbital frames.
zI

xI

yI

o1o3

o2

Source: Author.

The ECI frame is commonly used in spacecraft orbit propagation models and also in celestial

bodies position calculation, as in the Sun model.

2.1.2 Earth-Centered Earth-Fixed Frame (ECEF)

The Earth-Centered Earth-Fixed Frame (ECEF) is a geocentric equatorial reference system

which rotates with the Earth, unlike the ECI frame. In this frame one axis points towards the

Greenwich meridian direction, the second axis is perpendicular to the first and the last points

towards to the North Pole (VALLADO; WERTZ, 2013).

The Earth rotation motion has the effects of precession and nutation. First, for the co-

ordinates conversion, one needs to account the Greenwich Mean Sidereal Time (GMST) as a

reference of the Earth’s rotation. The relation between ECI and ECEF frames is given by the

rotation matrix as(VALLADO; WERTZ, 2013)

R(θGAST1982) =

 cos θGAST1982 sin θGAST1982 0
− sin θGAST1982 cos θGAST1982 0

0 0 1

 , (2.1)

in which θGAST1982 is the Greenwich angle defined as

θGAST1982 = θGSMT1982 + Eqequinox1982, (2.2)
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with θGSMT1982 computed by

θGSMT1982 =67,310.54841s + (876,600h + 8,640,184.812866s)TUT1

+ 0.093104T 2
UT1 − 6.2× 10−6T 3

UT1,
(2.3)

and the Equinox determined by

Eqequinox1982 = ∆Ψ1980 cos(ϵ̄1980) + 0.00264′′ cos(ΩMoon) + 0.000063′′ sin(2ΩMoon). (2.4)

In the previous equation, ∆Ψ1980 is the nutation of the longitude and ϵ̄1980 is the obliquity

of the ecliptic central angle. For simplicity, such terms can be neglected once ∆Ψ1980 ≈ 0. In

addition, ΩMoon is the Moon longitude defined as

ΩMoon = 125.04452222◦ + (−6962890.5390′′TTT + 7.455′′T 2
TT + 0.008′′T 3

TT )/3600
′′. (2.5)

Besides the aforementioned phenomena, in order to get a more precise spacecraft position,

the Earth’s polar motion must be accounted as given by

W =

cosxp cos s′ − cos yp sin s
′ + sin yp sinxp cos s

′ − sin yp sin s
′ − cos yp sinxp cos s

′

cosxp sin s
′ cos yp cos s

′ + sin yp sinxp sin s
′ sin yp cos s

′ − cos yp sinxp sin s
′

sinxp − sin yp cosxp cos yp cosxp

 ,
(2.6)

in which xp and yp are the Earth’s pole axis displacement and s′ is a correction term given by

s′ = −0.000047′′TTT in which TTT is the Terrestrial Time obtained as the sum of UT1 and the

Lenght of Day (LOD) (VALLADO; WERTZ, 2013).

Finally, the coordinates conversion is defined by

rE = W T (xp, yp, LOD)RT (θGSMT1982)rI . (2.7)

The polar motion and the LOD data are part of the Earth Orientation Parameters (EOP).

The values of such parameters can be retrieved from the United States Naval Observatory

(USNO) or the International Earth Rotation and Reference Systems Service (IERS).

Due to the fact that the ECEF rotates with the Earth, the position vector can be specified

also as the radial distance, longitude and latitude, that is, a point with coordinates (xE, yE, zE)

can be described also in terms of geodetic coordinates according to a set of conversion equations,

as described in Markley & Crassidis (2014).
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2.1.3 Orbital Local-Vertical/Local-Horizontal Frame (LVLH)

The orbital frame is dependent of the satellite position in the orbit trajectory and allows

vectors to be described in relation to the orbit plane (MARKLEY; CRASSIDIS, 2014). This

frame is centered in the spacecraft center-of-mass, with components in radial direction, normal

to the orbital plane and tangential to the trajectory, which results in the Local Vertical Local

Horizontal Frame (LVLH). Figure 2.1 shows the orbital frame.

The third orthonormal vector is the radial component, defined as

o3I = − rI
∥rI∥

, (2.8)

in which rI is the spacecraft center-of-mass position in the ECI frame. The second vector has

its direction normal to the orbital plane, that is

o2I = − rI × vI

∥rI × vI∥
, (2.9)

in which vI as the spacecraft velocity in the ECI frame. The first vector form an orthonormal

basis, which is

o1I = o2I × o3I . (2.10)

The attitude matrix which transforms a vector from the LVLH frame to the ECI is given

by

AIO =
[
o1I o2I o3I

]
. (2.11)

The LVLH frame is important for Earth pointing spacecrafts once it allows the computing

of off-nadir angles and the line-of-sight direction to determined ground positions (MARKLEY;

CRASSIDIS, 2014).

2.1.4 Spacecraft Body Frame

The spacecraft body frame has its origin in the vehicle center-of-mass and its basis vectors

are the structure axes. This reference frame is important for the subsystems assembly and also

for the inertial matrix determination. Figure 2.2 illustrates the reference system.
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Figure 2.2. Spacecraft body frame.
zb

xb
yb

Source: Author.

Components such as thrusters, solar panels, antennas and the payload are mounted following

the spacecraft body frame axes in order to work properly. Besides, the attitude control system

considers this frame for the spacecraft pointing.

2.2 ATTITUDE REPRESENTATIONS

The space vehicle orientation at any time instant can be represented by a set of parameters.

There are several attitude representation parameters in which some of them have singularities

and others have constrains (SHUSTER, 1993; MARKLEY; CRASSIDIS, 2014). In this work,

the most common parameters set used for the mathematical models are presented next.

2.2.1 Euler Axis/Angle

The Euler’s Rotation Theorem (MARKLEY; CRASSIDIS, 2014) states that any rotation

can be represented by an axis of rotation given by an unit vector and an angle value (MAR-

KLEY; CRASSIDIS, 2014). That is, an arbitrary rotational motion is equivalent to a rotation

about an axis e ∈ R3 by an angle ϑ and it can be represented as a rotation vector by

ϑ = eϑ. (2.12)

Although the Euler axis/angle is not used in dynamics systems modeling, others represen-

tations can be related to presented definition.
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2.2.2 Quaternions

For the filtering problem, a common used representation is the quaternion q, an extension

of the complex number described by four components where the first three ones constitutes a

vector and the last one is a scalar (CRASSIDIS et al., 2007). The quaternion formulation is

given by

q =

[
esin(ϑ/2)
cos(ϑ/2)

]
=

[
ϱ
q4

]
=

[
q1 q2 q3 q4

]T
, (2.13)

in which e is the rotation vector, ϑ is the rotation angle and qi, i = 1, . . . 4 are the four

components. Also, ϱ is the vector part of the quaternion.

An advantage of these parameters is that the only constraint regarding the quaternion

attitude representation is the unit norm, that is

qTq = 1. (2.14)

The unit norm quaternion has no singularity region and the rotational motion equations

have a close form (SHUSTER, 1993). Furthermore, a rotation can be described as a sequence

of rotations through the quaternion multiplication operation as

q = q̄⊗ q̆, (2.15)

in which q is the resulting quaternion, q̆ is the first rotation quaternion and q̄ represents

the second rotation. The multiplication between two quaternions is defined as (MARKLEY;

CRASSIDIS, 2014)

q̄⊗ q =

[
q4ϱ̄+ q̄4ϱ− ϱ̄× ϱ

q̄4q4 − ϱ̄ · ϱ

]
. (2.16)

Finally, the attitude matrix is computed from the quaternion using the following relation

A(q) = (q24 − ∥ϱ∥2)I3×3 − 2q4 [ϱ×] + 2ϱϱT , (2.17)

in which [ϱ×] is the skew-symmetric matrix from the cross-product (MARKLEY; CRASSIDIS,

2014).

2.2.3 Generalized Rodrigues Parameters

Besides the quaternion, another parameterization that will be considered in the filtering

problem is the called Generalized Rodrigues Parameters (GRP) (SCHAUB; JUNKINS, 1996),
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p ∈ R3, a three-component vector related to the quaternion by

p = f
ϱ

(a+ q4)
, (2.18)

in which f and a are scalars that can be arbitrarily chosen. Attitude parameters express the

satellite orientation in one frame with respect to a reference system.

For f = 1 and a = 0, the representation is called Gibbs vector, considered another set of

parameters and denoted by g. When f = 1 and a = 1 then one gets the Modified Rodrigues

Parameters (MRPs), which is also another representation (SHUSTER, 1993). Finally, when

f = 2(a + 1) the GRP is approximately equivalent to the rotation angle for small rotations

(CRASSIDIS; MARKLEY, 2003).

2.2.4 Euler Angles

Let two reference frames, F and G, both defined in the three-dimensional Euclidean space.

Any rotation between such frames can be decomposed into a sequence of rotations along three

orthogonal directions, that is, a orthonormal basis {e1, e2, e3} (MARKLEY; CRASSIDIS, 2014).

The attitude matrices that describe the rotation along each direction are

A1(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 , A2(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 , A3(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 .
Markley & Crassidis (2014) states that for spacecraft attitude analysis, the 3−2−1 sequence

is commonly used. Defining three rotation angles ϕ, θ and ψ, a rotation can be described as

A321(ϕ, θ, ψ) = A1(ψ)A2(θ)A3(ϕ). (2.19)

Such angles are also called roll, pitch and yaw, for asymmetric sequences and this termino-

logy is used for rotations specified in vehicles’ body frame (MARKLEY; CRASSIDIS, 2014).

2.3 RIGID-BODY KINEMATICS EQUATION

Given a rigid body with rotational motion in the physical (three-dimensional) space, the

kinematics of the body’s attitude parameterized in quaternions is given by

q̇(t) =
1

2
Ξ[q(t)]ω(t) =

1

2
Ω(ω(t))q(t), (2.20)
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where ω(t) ∈ R3 is a vector composed by the angular velocity in each dimension with

Ξ(q) =

[
q4I3×3 + [ϱ×]

−ϱT

]
, (2.21)

and

Ω(ω) = [ω⊗] =

[
−[ω×] ω
−ωT 0

]
, (2.22)

in which [ϱ×] represents the cross-product matrix of ϱ, defined for any three-dimensional vector

by

[x×] ≡

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (2.23)

2.4 RIGID-BODY DYNAMICS EQUATION

The dynamics equation considers the torques acting over the rigid body that produce the

motion described by the kinematics equation. For the spacecraft rotational motion, the equation

is as follows (MARKLEY; CRASSIDIS, 2014)

Jω̇ + ω × (Jω) = Tnet, (2.24)

where Tnet is the sum of all torques acting over the body, which are divided as

Tnet = Tctrl +Tdist, (2.25)

with Tctrl as the control torque generated by internal devices, such as magnetorquers and re-

action wheels, and Tdist is the disturbance torques from the environment (MARKLEY; CRAS-

SIDIS, 2014). And the term J is the spacecraft inertia tensor given by

J =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 , (2.26)

in which Iij are the moments of inertia for i = j or products of inertia if i ̸= j, with respect to

i and j axes. The inertia tensor is defined in the spacecraft body frame.

As the attitude control subsystem is not considered in this work, the analysis will be based

on a small satellite in free movement, that is, there is no internal equipment generating torque

on the spacecraft. There is no loss of generality in this approach.
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In the case of free rotational motion, the only torques acting over the spacecraft are the

disturbing ones (WERTZ, 1978). For a small spacecraft in Low Earth Orbit (LEO), the most

significant disturbing torques are the gravity-gradient, aerodynamic drag and the residual mag-

netic moment dipole, which will be presented next (WERTZ, 1978; MARKLEY; CRASSIDIS,

2014).

2.4.1 Gravity-Gradient Torque

On a rigid body subject to a gravitational field, variable Earth’s gravitational forces will

act over the object point masses due to the field’s non-uniformity and its inverse square law

(WERTZ, 1978). The gravitational force on the i-th mass element if given by

Fi
g = −miµ⊕

roi
r3oi
, (2.27)

in which µ⊕ is the Earth’s gravitational constant and roi is the mass element distance to the

Earth’s center. The torque produced by such point mass is

Ti
gg = ric × Fi

g, (2.28)

with ric being the distance between the body center-of-mass and the mass element.

Through the integration of infinitesimal point masses or the sum of discrete mass elements,

the resulting gravity-gradient torque is given by

Tgg = 3
µ⊕

r5oc
(roc × Jroc), (2.29)

with roc being the distance between the body center-of-mass and the center of Earth. Equiva-

lently (WERTZ, 1978),

Tgg = 3ω2
o(ABIo3I)× J(ABIo3I), (2.30)

in which o3I is the radial LVLH vector in nadir direction and ω0 is the angular orbital velocity,

given by

ωo =
2π

To
=

√
µ⊕

r2
, (2.31)

with To as the satellite orbital period. For more details, see (WERTZ, 1978).
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2.4.2 Aerodynamic Torque

Satellites in Low Earth Orbits (LEO) may interact with the atmosphere, which is considered

to exists up to 10,000 km. A rigid body moving in this conditions will suffer a drag force due

to the contact between the air particles and the vehicle. The drag force computation needs an

atmospheric model (MARKLEY; CRASSIDIS, 2014).

The basic assumption is that the atmosphere is rotating with the Earth. Also, the air density

is simplified through an exponential function of the altitude (MARKLEY; CRASSIDIS, 2014).

The relative velocity between the satellite and the air flow is given by

vrel = vECI + ω⊕ × rECI , (2.32)

in which ω⊕ is the Earth’s rotation angular velocity

ω⊕ = 0.000072921158553 ·

00
1

 [rad/s]. (2.33)

Transforming the relative velocity from the inertial frame to the body frame will leads to

vaero = ABIvrel. (2.34)

The spacecraft’s body surface can be considered as a set of planar faces (MARKLEY;

CRASSIDIS, 2014). The air flowing trough a face will produce a aerodynamic drag force given

by

Fdrag =
1

2
ρCD∥vaero∥2Siv̂aero max{(n̂i · v̂aero), 0}, (2.35)

in which Si is the spacecraft i-th face area, v̂aero is the relative velocity unit vector and ni · v̂aero

is the cosine of the angle between such face normal vector and the air flux velocity. The terms

above inform the effective face area that is perpendicular to the air.

The total drag force acting on the vehicle will be the sum of the forces on all spacecraft’s

faces. The point in the body where one considers the resulting force is applied is called Center

of Pressure (CoP) (MARKLEY; CRASSIDIS, 2014). Once the Center of Mass (CoM) and the

CoP may be different locations, the drag force will produce a torque over the CoM given by

Taero = raero × Fdrag, (2.36)
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with raero given by

raero = rCoM − rCoP , (2.37)

in which rCoM is the center of mass location and rCoP is the center of pressure, both described

in the body frame (MARKLEY; CRASSIDIS, 2014). Finally, the aerodynamic torque is given

by

Taero = −1

2
ρCDV

2Si(vaero × raero)max{(ni · vaero), 0}, (2.38)

in which ρ is the atmospheric air density, CD is the dimensionless drag coefficient, raero is the

distance between the spacecraft center of mass and the center of pressure.

2.4.3 Residual Magnetic Dipole Torque

Electric current loops and magnetized materials produce a magnetic field, acting as a mag-

net, what is called magnetic dipole moment (IVANOV et al., 2018). The generated field inte-

racts with the external magnetic field resulting in a torque that seeks to align both fields. The

magnetic torque is given by

Trm = m×B, (2.39)

where Trm is the torque, m is the magnetic moment and B is the external magnetic field. For

spacecrafts orbiting the Earth, the external field is the geomagnetic one.

The magnetic dipole generated by a current loop I in a wire forming a circular enclosed

area of radius R is given by

m = I ·Aloop, (2.40)

in which Aloop = πR2 n̂A is the enclosed area and n̂A is the associated normal vector.

Such current loop produces a magnetic flux density given by:

B =
µ0

4π

2πIR2

(d2m +R2)3/2
n̂A, (2.41)

in which dm is the distance of an arbitrary point related to the center of the wire loop area, in

the normal vector direction.

For simulation purposes, the distance of the magnetic dipole to the spacecraft devices can

be neglected, that is, dm ≪ R, and the relation between the magnetic dipole and the magnetic



2.4 – Rigid-Body Dynamics Equation 20

flux density is given by

B =
µ0

2π

m

R3
. (2.42)

Once the magnetic dipole vector and the generated magnetic field vector are aligned on the

same axes, there is no contribution to the torque. The additional field will only interfere in the

magnetometers measurements.

The residual magnetic moment is the dominant source of disturbance torque for small satel-

lites in LEO orbit, since its magnitude is higher than the others torques (HAJIYEV; SOKEN,

2020).

2.4.4 Solar Radiation Pressure Torque

The solar radiation when falls over satellites bodies will produce a force on the illuminated

area due to the exchange of momentum with the radiation. Such force may generate a torque

on the spacecraft with respect to its center-of-mass. Both the force and torque will disturb the

orbit and attitude, respectively. Vehicle with high area-to-mass ratio will be more affected by

this phenomena.

The solar radiation pressure (SRP) force is given by (MARKLEY; CRASSIDIS, 2014)

FSRP = −P⊙Si

[
2

(
Rdiff

3
+Rspec(n̂i · r̂sat⊙)

)
n̂i + (1−Rspec)r̂sat⊙

]
max{(n̂i · r̂sat⊙), 0},

(2.43)

in which P⊙ is the solar radiation power density, Rdiff is the diffuse reflectivity coefficient,

Rspec is the specular reflectivity coefficient, Si is the i-th face area and n̂i is the related normal

vector.

Analogous to the aerodynamic torque, the SRP torque is given by

TSRP = rSRP × FSRP , (2.44)

with rSRP as

rSRP = rCoM − rCoP−S, (2.45)

where rCoM is the center of mass location and rCoP−S is the center of solar radiation pressure,

both described in the body frame.
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Due to the reduced dimensions of small satellites, the SRP toque is less significant than

the other disturbance sources. In this work this disturbance will not be accounted for the

simulations with no loss of reliability in the results.

2.5 ENVIRONMENT MODELS

2.5.1 Satellite Orbital Motion Propagation

For the mission analysis, the spacecraft motion is one of the primaries concern. The formu-

lation considered in this work is the Simplified General Perturbations-4 (SGP4) model, which

uses the Two-line Elements (TLE) file as the only orbital data source and provide a prediction

for the satellite position and velocity over time (HOOTS; ROEHRICH, 1980). TLE files are

daily published by the United States Aerospace Defense Command.

The SGP4 propagator considers secular, short-periodic and long-periodic effects of pertur-

bations on the mean motion through simplified models. The coordinate reference system is

the True Equator Mean Equinox (TEME), which is a kind of ECI frame with a simplification

related to the uniform equinox (VALLADO et al., 2006; MEEUS, 1991).

It considers the zonal harmonic of the Earth gravitational field, J2, J3 and J4. The model

includes the third-body influence (Sun and Moon) in secular, long-period and short-period

periodic effects. Also, the secular effects of the atmospheric drag is taken into account for LEO

satellites (VALLADO; WERTZ, 2013).

2.5.2 Earth Magnetic Field

As described in Vallado & Wertz (2013), the Earth Magnetic Field is modeled as the gradient

of the magnetic potential, which is approximated by a spherical harmonic series expansion.

One of the standard models is called International Geomagnetic Reference Field (IGRF) and it

consists of the mathematical description along with the coefficient values for the series expansion

(ALKEN et al., 2021). The model allows computing the geomagnetic field at any point in space

given its spherical coordinates. Furthermore, it allows not only computational simulations but
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also serves as input data for laboratory experiments in Helmholtz cages.

The magnetic field is defined as (ALKEN et al., 2021)

B(r,θ,ϕ,t) = −∇V (r,θ,ϕ,t), (2.46)

in which V (r,θ,ϕ,t) is the magnetic potential as given by

V (r,θ,ϕ,t) = a
N∑

n=1

n∑
m=0

(a
r

)n+1

[gn
m(t) cosmϕ+ hn

m(t) sinmϕ]Pm
n (cos θ) (2.47)

with r being the distance from the Earth’s center, θ the geocentric co-latitude, ϕ the geocentric

longitude and a = 6371.2 km the mean Earth’s radius. The terms Pm
n (cos θ) are Schmidt

semi-normalized associated Legendre functions of degree n and order m.

The current available model is the IGRF-13 (ALKEN et al., 2021), which means the model

order is N = 13. For any time instant t, the related coefficients can be computed as

gmn (t) = gmn (Tt) + (t− Tt)ġ
m
n (Tt), (2.48a)

hmn (t) = hmn (Tt) + (t− Tt)ḣ
m
n (Tt), (2.48b)

with Tt being the time instant in which the coefficients are provided by the model. The time

derivatives are computed as follow (ALKEN et al., 2021)

ġmn (Tt) =
1

5
(gmn (Tt + 5)− gmn (Tt)) , (2.49a)

ḣmn (Tt) =
1

5
(hmn (Tt + 5)− hmn (Tt)) . (2.49b)

The magnetic field components in geodetic coordinates then can be obtained from the

gradient operator and are given by (WERTZ, 1978)

Br = −∂V
∂r

=
N∑

n=0

(n+ 1)
(a
r

)n+2
n∑

m=0

[gn
m(t) cosmϕ+ hn

m(t) sinmϕ]Pm
n (cos θ), (2.50a)

Bθ = −1

r

∂V

∂θ
= −

N∑
n=0

(a
r

)n+2
n∑

m=0

[gn
m(t) cosmϕ+ hn

m(t) sinmϕ]
∂Pm

n (cos θ)

∂θ
, (2.50b)

Bϕ = − 1

r sin(θ)

∂V

∂ϕ
= −

N∑
n=0

(a
r

)n+2
n∑

m=0

m [−gnmgmn (t) sinmϕ+ hn
m(t) cosmϕ]Pm

n (cos θ),

(2.50c)
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The Schmidt semi-normalized Legendre polynomials must be computed for obtaining the

full model. They can be defined through the Legendre polynomials, Pn(x), which are the

solution for the Legendre differential equation and are given by (WERTZ, 1978)

Pn(x) =
1

2nn!

(
d

dx

)n

(x2 − 1)n. (2.51)

The associated Legendre polynomials have the following definition

Pn,m(x) = (1− x2)m/2 d
m

dxm
(Pn(x)). (2.52)

The Gaussian normalized Legendre polynomials are defined as functions of the associated

polynomials by

P n,m =
2n!(n−m)!

(2n)!
Pn,m. (2.53)

Finally, the Schmidt and Gaussian normalized polynomials are related by

Pm
n = Sn,mP

n,m, (2.54)

with

Sn,m =

[
(2− δ0m)(n−m)!

(n+m)!

]2
(2n− 1)!!

(n−m)!
(2.55)

in which n!! is the double factorial and δij = 1 if i = j and δij = 0, if i ̸= j (Kronecker delta).

In order to compute efficiently the polynomials, a recursive form is considered where the

Schmidt functions are obtained from the Gaussian polynomials calculated as (WERTZ, 1978)

P 0,0 = 1, (2.56a)

P n,n = sin θP n−1,m−1, (2.56b)

P n,m = cos θP n−1,m −Kn,mP n−2,m, (2.56c)

with

Kn,m =
(n− 1)2 −m2

(2n− 1)(2n− 3)
, n > 1 and Kn,m = 0, n = 1. (2.57)

The recursive solution for the factor Sn,m is given by

S0,0 = 1, (2.58a)

Sn,0 = Sn−1,0
2n− 1

n
, (2.58b)

Sn,m = Sn,m−1

√
(n−m+ 1)(δ1m + 1)

n+m
. (2.58c)
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Finally, the recursive form of the polynomials derivatives is given by

∂P 0,0

∂θ
= 0, (2.59a)

∂P n,n

∂θ
= sin θ

∂P n−1,n−1

∂θ
+ cos θP n−1,n−1, n ≥ 1, (2.59b)

∂P n,m

∂θ
= cos θ

∂P n−1,m

∂θ
− sin θP n−1,m −Kn,m∂P

n−2,m

∂θ
. (2.59c)

The IGRF-13 code used in this work is provided by the British Geological Survey (BGS) 1

with modifications made by the author for the spacecraft attitude simulation purposes.

2.5.3 Sun Inertial Position

The Sun position is another fundamental model, since it is the primary power source for

the most of the spacecrafts. According to Vallado & Wertz (2013), a more precise approach

to determine the position is through the data set DE430, a set of celestial bodies’ ephemerides

provided by the Jet Propulsion Laboratory (JPL) and generated by laser observations and the

numerical integration of a dynamic system. However, this model requires the access to the data

and the need of numerical methods. A simpler and less precise model is based on analytical

equations that may be considered in simulations and is also useful for implementing in the

onboard software. This model considers the Sun elliptic motion, containing polynomials and

trigonometric terms only (MEEUS, 1991; URBAN; SEIDELMANN, 2013).

In order to compute the Sun position, the date must be converted to Julian date, JDUT1,

as follow

JDUT1 = 367y − INT
{
7 {y + INT[(m+ 9)/12]}

4

}
+ INT

{
275m

9

}
+
h+min/60 + s/3600

24
+ d+ 1721013.5,

(2.60)

where the date is a set of {y,m, d, h,min, s} and INT{·} is the function that return the integer

part of a number.

The Julian centuries is given by

TUT1 =
JDUT1 − 2451545.0

36525
. (2.61)

1available on <https://www.ngdc.noaa.gov/IAGA/vmod/pyIGRF.zip>

https://www.ngdc.noaa.gov/IAGA/vmod/pyIGRF.zip
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The Sun mean longitude is computed by (VALLADO; WERTZ, 2013)

λM⊙ = 280.460◦ + 36000.770 TUT1, (2.62)

and the mean anomaly by

M⊙ = 357.5277233◦ + 35999.05034 TUT1. (2.63)

Then, the longitude of the ecliptic is defined as

λecliptic = λM⊙ + 1.914666471◦ sin(M⊙) + 0.019994643◦ sin(2M⊙). (2.64)

Next, the ecliptic obliquity is computed by

ε = 23.439291◦ − 0.0130042 TUT1. (2.65)

The Sun distance to the Earth in Astronomic Unit (AU) is given by the following equation

r⊙ = 1.000140612− 0.016708617 cos(M⊙)− 0.000139589 cos(2M⊙) [AU ] . (2.66)

The Sun direction with respect to the Earth in the ECI frame is given by

SECI =

 cos(λecliptic)
sin(λecliptic) cos(ε)
sin(λecliptic) sin(ε)

 . (2.67)

Finally, given the Sun and the satellite inertial positions computed with the presented

models, it is possible to determine the Sun direction with respect to the spacecraft as Ssat =

r⊙ − rsat.

2.5.4 Earth’s Albedo

An important phenomenona that affects the Sun sensor accuracy is the Earth albedo, which

is the solar radiation reflected by the planet surface. When such energy is captured by the

onboard sensors, it can interfere in the Sun direction estimation (CILDEN-GULER et al., 2021).

In order to estimate such index, Bhanderi & Bak (2005) presents a source of measurements

constituting a grid of data points, an 180× 288 matrix, dividing the Earth surface into cells.
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Albedo is measured as the reflectivity index, which vary according to the cloud coverage,

geographic location, season of the year and type of surface. In (BHANDERI; BAK, 2005) the

reflectivity index is provided by NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite,

which recorded the measurements observations constituting a grid of data points.

The energy reflected by a surface area cell located at latitude and longitude (ϕg, θg) that is

perceived by the spacecraft is given by the equation

Ec(ϕg, θg) =


ρ(ϕg, θg)EAM0Ac(ϕg)r̂

T
Sunn̂cr̂

T
satn̂c

π∥rsat∥2
if (ϕg, θg) ∈ VSun ∩Vsat

0 otherwise
, (2.68)

in which ρ(ϕg, θg) is the reflectivity index, Ac(ϕg) is the cell area size, n̂c is the cell normal

vector, r̂Sun is the Sun direction vector with respect to the cell and r̂sat is the satellite line

of sight also with respect to the same cell. The set VSun ∩Vsat is formed by all surface cells

illuminated by the Sun and visible by the satellite. The scalar EAM0 is the solar intensity at air

mass zero, which means the flux density upper the atmosphere, where the value is 1367W/m2.

Figure 2.3 illustrates the geometry related to the Albedo model.

The total energy, Ea, that reaches the satellite is the sum of the radiation from all cells in

the set, that is

Ea =
∑

VSun∩Vsat

Ec(ϕg, θg). (2.69)

Figure 2.3. Solar radiation reflection geometry(left) and effective area(right).
n̂g

ŝsat

ŝSun

αi

αr

φg, θg

αi

αi

n̂

ŝ

Source: Author.

Finally, the Earth albedo resulting direction can be approximated as the radial vector ac-

cording to the satellite’s orbit position, that is, the satellite’s nadir opposite direction (BHAN-

DERI, 2006).
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2.6 SENSORS MODELS

The attitude determination problem consists in the processing of sensor observations in order

to compute the spacecraft pose. For that purpose the correct sensor model must be considered

to obtain a reliable result. There are vector measurement sensors, such as magnetometers, Sun

sensors, Earth horizon sensors and star trackers, and there are the rate of change sensors, as

gyroscopes.

Each sensor of the satellite is modeled as a true measurement corrupted by noise and the

error components are treated as random processes. The sensor noise features are considered

in the filtering process for optimizing the solution. A more complete model also includes

misalignment, scale factors and non-orthogonality. In this work, the attitude determination

and control system will have a tri-axial gyroscope, a tri-axial magnetometer and Sun sensors,

which is a broadly used set of sensors concerning small satellites.

2.6.1 Gyroscopes

The rate gyroscope measures the angular velocity of a rigid body relative to the inertial

frame. The integration of the observations over time will result in the body’s angular displa-

cement, hence its orientation (MARKLEY; CRASSIDIS, 2014). The model consist of a true

angular velocity vector along with a bias value and a noise signal as in the following equations

ω̃(t) = ωtrue(t) + β(t) + ηv(t), (2.70a)

β̇(t) = ηu(t), (2.70b)

in which ωtrue(t) is the unknown true angular velocity vector, β(t) is the sensor bias, the ηv(t)

and ηu(t) are uncorrelated zero-mean Gaussian white-noise processes with variance, respecti-

vely, given by

E{ηv(t)η
T
v (τ)} = σ2

vI3×3δ(t− τ), (2.71a)

E{ηu(t)η
T
u (τ)} = σ2

uI3×3δ(t− τ), (2.71b)

in which δ(t− τ) is the Kronecker delta defined as

δ(t− τ) =

{
1, if t = τ,

0, if t ̸= τ.
(2.72)
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For simulations purposes, in (MARKLEY; CRASSIDIS, 2014) is developed a gyroscope

model which generates discrete-time observations. This solution considers the trapezoidal rule

for integration. As result, the sensor measurements will be given by

ω̃k = ωtrue
k +

1

2
(βtrue

k + βtrue
k−1) +

(
σ2
v

∆t
+

1

12
σ2
u∆t

)1/2

Nvk, (2.73a)

βtrue
k = βtrue

k−1 + σu∆t
1/2Nuk, (2.73b)

in which Nu ∼ N (0,1) and Nv ∼ N (0,1) are zero-mean Gaussian processes with unit variance.

2.6.2 Magnetometer

The magnetometer measures the magnetic field where the sensor is immersed in, as the

geomagnetic field and electric current generated fields. Such instrument is one of the most

common ones in Low Earth Orbit (LEO) vehicles due to its simplicity, low cost, low power

consumption and availability in any condition (like eclipses). Furthermore, there are many

magnetometer-only attitude determination algorithms. The observation model is given by

B̃B(t) = ABRB
true
R (t) + ηm(t), (2.74)

where B̃(t) is the sensor output reading, Btrue(t) is the true field value and ηm(t) is a zero-mean

Gaussian random process with variance

E{ηm(t)η
T
m(τ)} = σ2

mI3×3δ(t− τ), (2.75)

the true quantity can be considered as the observation computed through the environment

model rotated to the sensor body frame (HAJIYEV; SOKEN, 2020).

Attitude determination algorithms makes use of the Earth’s magnetic field model as the

IGRF already mentioned. In this context, the magnetic field generated by other sources cons-

titutes disturbances in the sensor measurements (HAJIYEV; SOKEN, 2020). Spacecrafts have

electronics circuits working in different levels of electric current, which produces magnetic flu-

xes according to the Àmpere’s Law. Some LEO vehicles may employ permanent magnets for

passive attitude stabilization methods. Besides, metallic materials in the satellite structure can

suffer the process of magnetization, acting also as magnets.
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The effects in the magnetometer readings can be divided into two categories of distortions,

that is hard iron and soft iron. The first type is characterized as a constant bias in the

observations.The second one is characterized as deformations or deflections in the measured

magnetic field.

In this scenario, a more complete model considers a constant bias vector, bm, in the obser-

vations resulting in the following equation

B̃B(t) = ABRB
true
R (t) + bm + ηm(t). (2.76)

Due to the disturbances sources inherent to the space vehicles, the magnetometer’s calibra-

tion process is fundamental and a variety of algorithms are present in the literature (HAJIYEV;

SOKEN, 2020). Another approach to reduce the distortions in the sensor observations is the

use of boom deployed magnetometer, which isolates the instrument from the satellite body.

2.6.3 Sun Sensor

Sun sensors are used for the determination of the solar radiation direction with respect to

the sensors assembly. Once the Sun is the primary power source for almost all spacecrafts, the

Sun vector estimation is primordial for the satellite survivability. Also, such vector can be used

for attitude determination in methods that use vector measurements, as the Geomagnetic field

direction vector (MARKLEY; CRASSIDIS, 2014).

Such sensors convert the light radiation into electrical current signal which can be read by

the onboard microcontroller. The signal is proportional to the irradiation flux density, the irra-

diation incidence angle with respect to the sensor plane and the area size of the photodetector

(light-sensitive material). Cubesats use photodiodes as Sun sensors due the low cost, small

size and simplicity of integration, as photovoltaic cells constitute sensors for larger satellites.

Currently, there are also components based on Complementary Metal-Oxide-Semiconductor

(CMOS) and Charge-Coupled Device (CCD) imagers.

With a set of Sun sensors mounted in the spacecraft body, covering different directions, it is

possible to infer the Sun direction. Then, a unit vector in the satellite body frame is obtained
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along with the related noise as (HAJIYEV; SOKEN, 2020)

S̃(t) = ABRS
true
R (t) + ηs(t), (2.77)

where S̃(t) is the sensor output reading, Strue(t) is the true field value and ηs(t) is a zero-mean

Gaussian random process. The true quantity can be considered as the observation computed

through the environment model rotated to the sensor body frame.

The previous equation is the general observation model for vector measurements. The Sun

direction computing will depend on the sensor type and configuration. The basic method to

determine the solar direction is based on photodiodes mounted on different faces of the satellite

body, where the electric current generated by each device is a function of the incidence angle

and has a co-sine profile curve, that is

Icss−j = Imax cos(αj), 0◦ ≤ αj ≤ 90◦, (2.78)

in which Icss−j is the electric current generated by the j-th coarse sun sensor (CSS), Imax is

the maximum electric current value (null incidence angle) which depends on the solar radiation

intensity and αj is the incidence angle of the Sun flux.

Considering the theoretical minimum configuration of six sensors aligned to the satellite

body frame and opposite directions, the Sun direction vector can be determined by (MAR-

KLEY; CRASSIDIS, 2014)

S̃ =
1

Imax

I+X − I−X

I+Y − I−Y

I+Z − I−Z

 , (2.79)

in which {+X,−X,+Y,−Y,+Z,−Z} are the sensors normal vector direction towards the spa-

cecraft body frame. The result is the unit vector compound of the direction cosine. In practice,

it is necessary more than six photodiodes, once the field-of-view may be reduced.

For simulation purposes, the observation model can consider the fact that in cosine sensors,

that is, it is a function of an angle cosine, the noise level is higher for small incidence angles and

the level reduces as the elevation increases (ASUNDI et al., 2021). In this case, the measurement

can be modeled as

S̃ = ABRS
true + ηs(1− ABRS

true), (2.80)

or each photodiode sensor may be defined as

Icss−j = ImaxS
true · n̂T

j + ηs(1− Strue · n̂T
j ), (2.81)
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in which n̂T
j is the normal vector relative to the j-th sensor plane.

Another approach is to add the sensor noise in the azimuth and elevation angles related

to the detector plane (BARONI, 2017). So the unit vector is transformed from the Cartesian

coordinates to the spherical ones for this operation and transformed back to the Cartesian

system. The Sun vector (x,y,z) can be then obtained as

r =
√
x2 + y2 + z2, (2.82a)

θ = arccos (z/r) , (2.82b)

φ = arctan (y/x) . (2.82c)

After adding the noise, the Cartesian vector can be retrieved by

x = r sin(θ + ηs) cos(φ+ ηs), (2.83a)

y = r sin(θ + ηs) sin(φ+ ηs), (2.83b)

z = r cos(θ + ηs). (2.83c)

An important consideration regarding unit vector measurements is the noise covariance

matrix. Crassidis et al. (2007) states that the measurement model noise constitutes a rank-

deficient matrix, once the errors may be given in the elevation and azimuth directions. But

Shuster (1990) has shown that an approximation in which the matrix is non-singular and provide

consistent results is given by R = σ2I3×3.

Finally, it is important to mention that Sun sensors suffer the interference of the Earth’s

Albedo, which can produce an error of considerable magnitude. In such cases, the Albedo

estimation must be computed for a more precise attitude determination. However, the Albedo

computing is attitude-depended and it is a time consuming process, which may be impracticable

for on-board applications. So it can be considered in simulations or offline telemetry processing.

Finally, Figure 2.4 presents the proposed approach in this work to estimate the attitude.

It shows how the models and data are related to each other in order to generate an attitude

determination and control environment.
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Figure 2.4. Attitude Determination and Control System.

Source: Author.



CHAPTER 3

ATTITUDE ESTIMATION AND FILTERING

This chapter discuss the Kalman filtering theory and its application to the attitude determi-

nation problem. The linear filter algorithm is presented and its extensions to nonlinear systems

also described. The chapter presents the rotational motion equations used in the process and

observation models.

3.1 KALMAN FILTER

Given a mathematical model as function of a vector of variables, x, and a set of measured

observations ỹ, the filtering problem concern the solution of the following conditional expected

value

x̂k = E{xk|Yk}, (3.1)

where E{·} is the expectation operation and Yk = {y1, . . . ,yk} is a random process of observa-

tions in which yi are realizations taken in discrete instants (BAR-SHALOM et al., 2002). For

the case of the system evolving over time, the solution for such problem is a recursive algorithm

for the state estimation called Kalman filter.

A discrete-time linear dynamic system is described by the following set of equations

xk = Fk−1xk−1 +Bk−1uk−1 +Gk−1wk−1, (3.2a)

yk = Hkxk + vk, (3.2b)

in which xk ∈ Rn is the state vector, Fk−1 ∈ Rn×n is the dynamical system function that

updates the state in time, wk−1 ∈ Rp is the model error vector, Gk−1 ∈ Rn×p is a function that

maps the process errors to the state space. The vector uk−1 ∈ Rl is the control inputs and the

matrix Bk−1 ∈ Rn×l maps the control effects into the system. Besides, yk ∈ Rm is the output

or measurement vector, while Hk ∈ Rm×n maps the state vector into the observation space and

vk ∈ Rm is the measurement error vector.
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Both process and observation error vectors are modeled as uncorrelated Gaussian random

variables, that is

E{wkw
T
j } = Qkδkj, (3.3a)

E{vkv
T
j } = Rkδkj, (3.3b)

E{wkv
T
j } = E{vkw

T
j } = 0, (3.3c)

with δkj = 1 if k = j and δkj = 0, k ̸= j (Kronecker delta).

In this work, the control problem will not be accounted in the filtering analysis. That is,

the spacecraft has no actuator which results in input control vector uk = 0.

The Kalman filter is a minimum mean square error (MMSE) estimator, which solution is

given as

x̂k = x̄k +K(ỹk − ŷk), (3.4)

where x̄ is E{x} = x̄, x̂ = E{x|y = ỹ} and K is a weighting factor. This result is called the

Gauss-Markov Theorem (CRASSIDIS; JUNKINS, 2012).

Let xk be the true system state and x̂k be the state estimate, then the a priori error x̃k is

defined by

x̃k = xk − x̂−
k , (3.5)

which results in the following statistics for an unbiased estimator

E{xk} = x̂−
k , (3.6)

E{(xk − x̂k)(xk − x̂k)
T} = E{x̃kx̃

T
k } = Pk. (3.7)

The Kalman filter considers the following system for the filtering process

x̂k = Fk−1x̂k−1 +Gk−1wk−1,

ŷk = Hkx̂k + vk,
(3.8)

where x̂ is the estimated state vector and ŷ is the predicted or estimated output vector.

The Kalman filter algorithm is divided into two stages called prediction and update steps

(KALMAN, 1960). The prediction is the computing of the a priori information, denoted with

the superscript (−), as follow for the expectation

E{xk} = E{Fk−1xk−1 +Gk−1wk−1},
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therefore,

x̂−
k = Fk−1x̂k−1, (3.9)

and for the state error covariance matrix

E{x̃kx̃
T
k } = E{(Fk−1x̃k−1 +Gk−1wk−1)(Fk−1x̃k−1 +Gk−1wk−1)

T}

= Fk−1E{x̃k−1x̃
T
k−1}FT

k−1 +Gk−1E{wk−1w
T
k−1}GT

k−1.

Finally,

P−
k = Fk−1P

+
k−1F

T
k−1 +Gk−1Qk−1G

T
k−1, (3.10)

since E{x̃k−1w
T
k−1} = E{wk−1x̃

T
k−1} = 0 due to the fact that the state error and process noise

are uncorrelated variables.

Physical dynamic systems are modeled in the continuous-time domain, while the measure-

ments are observed at discrete time instants (BAR-SHALOM et al., 2002). Given the system

counterpart in continuous-time ẋ(t) = Ax(t), A is a constant matrix, the propagation of the

state from instant tk−1 to tk is computed as

Φ(tk, tk−1) = exp {A(tk − tk−1)} ,

=
∞∑
n=0

1

n!
An(∆t)n,

(3.11)

in which Fk = Φ(tk, tk−1) is called state transition matrix and ∆t = tk − tk−1 is the sample

period.

The update phase, also called correction phase computes the a posteriori information, de-

noted with the superscript (+). First, consider the following a posteriori error defined by

x̃+
k = xk − x̂+

k

= [xk +Kk(ỹk −Hkxk)]−
[
x̂−
k +Kk(ỹk −Hkx̂

−
k )
]

= [xk +Kk(ỹk −Hkxk)]−
[
x̂−
k +Kk(ỹk −Hkx̂

−
k − vk)

]
= (x− x̂−

k )−Kk(Hkxk −Hkx̂
−
k )−Kkvk,

therefore,

x̃+
k = x̃−

k −KkHkx̃
−
k +Kkvk = (I−KkHk)x̃

−
k +Kkvk. (3.12)
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The state error covariance matrix P+
k = E{x̃kx̃

T
k } is given by

E{x̃kx̃
T
k } = E{

[
(I−KkHk)x̃

−
k +Kkvk

] [
(I−KkHk)x̃

−
k +Kkvk

]T},
= (I−KkHk)E{(x̃−

k )(x̃
−
k )

T}(I−KkHk)
T +KkE{vvT}KT

k ,

since E{x̃kv
T
k } = E{vkx̃

T
k } = 0 due to the fact that the state error and measurement noise are

also uncorrelated. Then,

P+
k = [I−KkHk]P

−
k [I−KkHk]

T +KkRkK
T
k . (3.13)

The optimal value of Kk is the one that minimizes the state error covariance (KALMAN,

1960). In that case, the matrix Kk is called Kalman gain. The gain matrix is found through

the minimization of the following cost function

Jcost = tr(P+
k ) (3.14)

= tr
[
(I−KkHk)P

−
k (I−KkHk)

T +KkRkK
T
k

]
(3.15)

= P−
k −KkHkP

−
k −P−

k H
T
kK

T
k +KkHkPHT

kK
T
k +KkRKT

k , (3.16)

where tr {·} is the trace of a matrix.

The minimization is obtained by

∂Jcost

∂Kk

= 0

∂Jcost

∂Kk

= −P−T
k HT

k −P−
k H

T
k +Kk(HkP

−
k H

T
k + (HkP

−
k H

T
k )

T ) +Kk(R+RT ).

The covariance matrix is positive-definite, so M = MT . Therefore,

−2P−
k H

T
k + 2Kk(HkP

−
k H

T
k +R) = 0,

Kk(HkP
−
k H

T
k +R) = P−

k H
T
k .

Then, the Kalman gain which results in the optimal estimation in the MMSE sense is given

by

Kk = P−
k H

T
k

[
HkP

−
k H

T
k +Rk

]−1
. (3.17)

Such Kalman gain matrix is considered in the a posteriori state error covariance matrix as

already shown

P+
k = [I−KkHk]P

−
k [I−KkHk]

T +KkRkK
T
k . (3.18)
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Then, substituting the optimal Kalman gain definition into the equation of P+, the following

simplification will be achieved as

P+
k = [I−KkHk]P

−
k . (3.19)

Finally, the optimal estimation of the state vector is computed by

x̂+
k = x̂−

k +Kk(ỹk −Hkx̂
−
k ). (3.20)

The filter is initialized again in the prediction stage for the next time instant, recursively.

An important characteristic of the Kalman filter is the Orthogonality Principle. In (CRAS-

SIDIS; JUNKINS, 2012) it is stated that the state vector estimate and the state error are

orthogonals, which can be written as

E {x̃kx̂k} = 0, (3.21)

that is, the error is uncorrelated to the estimate. From a least-squares (LS) point of view, the

filter generates the optimal estimate in which the error is minimum (CRASSIDIS; JUNKINS,

2012; BAR-SHALOM et al., 2002).

The Kalman Filter was formulated for linear systems with Gaussian noises, for which it

gives the optimal state estimation. For nonlinear systems, a series of approaches are proposed

in the literature. The most common solutions are the extended Kalman filter and the unscented

Kalman filter, a type of sigma-point filter.

3.2 EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) is an approach for estimation of nonlinear systems using

the structure of the linear Kalman filter. The EKF is based on the first-order linearization of

the dynamic system related functions and the algorithm will provide a sub-optimal solution for

the state estimate. Consider the following discrete-time dynamic system given by

xk = f(xk−1,uk−1,wk−1, k − 1),

yk = h(xk,vk, k − 1),
(3.22)

where f(·) ∈ Rn×n is the nonlinear dynamic system function and h(·) ∈ Rm×n is the nonlinear

measurement function (LEFFERTS et al., 1982). All remaining variables are defined as in the

case of the linear system.
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The linearization is based on the Taylor series expansion which states that any function

can be expressed by an infinite sum of polynomials compound with the function’s derivatives

(CRASSIDIS; JUNKINS, 2012). Regarding the nonlinear dynamic system, a linear approxima-

tion of first order around a nominal state x̄ is given by

f(x(t), t) ≈ f(x̄(t), t) +
∂f(x, t)

∂x

∣∣∣∣
x̄(t)

(x(t)− x̄(t)). (3.23)

Denoting the state transition matrix derivatives as follow

F(x, t) =
∂f(x, t)

∂x

∣∣∣∣
x(tk)

, (3.24)

one gets the Jacobian matrix F(x, t). Then, the state equation is

∆ẋ(t) = F(t)∆x(t) +G(t)w(t). (3.25)

Considering the same process for the observation model, the linear approximation is given

by

h(x(t), t) ≈ h(x̄(t), t) +
∂h(x, t)

∂x

∣∣∣∣
x̄(t)

(x(t)− x̄(t)), (3.26)

and the measurement function derivatives can be denoted by

H(x, t) =
∂h(x, t)

∂x

∣∣∣∣
x(tk)

, (3.27)

with H(x, t) being the Jacobian matrix of the observation model, which is also called measu-

rement sensitivity matrix.

Finally, with the linear approximation of both models, the state error covariance matrix

and the Kalman gain can be computed as the same in the linear filter. Figure 3.1 presents the

EKF workflow.

3.2.1 Multiplicative Extended Kalman Filter

The quaternion is widely used for attitude representation due to the advantages previously

presented. However, such parameter set has a unit norm constraint, which may not be satisfied

in the state update equation where there is an additive term of the innovation. In order

to preserve the quaternion unit norm in the Kalman filter with no brute normalization, a
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Figure 3.1. Extended Kalman Filter Structure.

Source: Author.

multiplicative formulation was proposed in literature (FARRENKOPF, 1978; LEFFERTS et

al., 1982).

In the multiplicative approach, the global or absolute attitude is represented by a quaternion

while a three-parameter set is used for the local attitude representation (MARKLEY, 2003).

In this case, the spacecraft pose is defined as

qtrue = δq(ξ)⊗ q̂, (3.28)

in which ξ is any three-parameter representation, such as the Rodrigues Parameters, Gibbs

vector or rotation vector, qtrue is the true unknown quaternion and q̂ is the estimated one. The

quaternion multiplication operation denoted by ⊗ preserves the unit norm when the operands

are also unit norm quaternions (MARKLEY et al., 2005).

Concerning the filtering problem, the global attitude representation is propagated in time

with the rotational motion equations while the EKF is used for the local attitude estimation.

An attitude-error formulation is considered in which a small deviation or rotation is estima-

ted, transformed into a quaternion and the global one is updated (MARKLEY, 2003). It is

important to mention that the three-parameter representations as cited above have no norm

constraint which make them suitable for the Kalman filter.

This formulation is called Multiplicative Extended Kalman Filter (MEKF). The attitude
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error representation is denoted by ϑ(t) and the equivalent quaternion is defined by

δq ≡
[
δϱ δq4

]T
, (3.29)

where the δq is also called error-quaternion and for small rotations, one gets the following

relation

δϱ ≈ δϑ

2
. (3.30)

In Markley & Crassidis (2014) the attitude-error kinematics is developed. As a result such

model is given by

ϑ̇(t) = − [ω̂×]ϑ(t) + δω(t), (3.31)

where ω̂ is the estimated angular velocity vector and the angular rate error, δω, is given as

δω ≡ ωtrue − ω̂. (3.32)

Considering the bias estimation error, which is

∆β ≡ βtrue − β̂, (3.33)

then, from the gyroscope measurement model, one gets

δω = − (∆β + ηv) . (3.34)

For spacecraft attitude estimation there are two structures for the Kalman filter: the gyro-

based and dynamics-based model. In the first case, the process model is the kinematics equation

with the angular velocity provided by the gyroscope measurements. While in the second case,

the process model is given by the dynamics equation and the angular velocity is estimated in

the state vector (MARKLEY; CRASSIDIS, 2014).

In this work the process model will be given by gyro-based kinematics equation. The error-

state vector to be estimated is defined by

∆x̂(t) =

[
δϑ(t)
δβ(t)

]
, (3.35)

where δϑ is the small angle deviation and δβ is the gyroscope bias.

The state transition matrix can be computed from the attitude-error kinematics equation

as

F =

[
−[ω̂×] −I3×3

03×3 03×3

]
, (3.36)
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in which the estimated angular velocity vector is the measured one corrected by the estimated

bias as

ω̂ = ω̃ − β̂. (3.37)

For small sampling period, the time propagation of the quaternion can be given by an appro-

ximation of power series (MARKLEY; CRASSIDIS, 2014). One gets a closed form equation for

the discrete-time kinematics equation. From the continuous to discrete state matrix transform

and the attitude kinematics for quaternion one gets

exp

{
1

2
Ω(ω̂)t

}
=

∞∑
k=0

[
1

2
Ω(ω̂)t

]k
k!

(3.38)

=
∞∑
k=0


[
1

2
Ω(ω̂)t

]2k
(2k)!

+

[
1

2
Ω(ω̂)t

]2k+1

(2k + 1)!

 (3.39)

= cos

(
1

2
∥ω̂∥t

)
I4×4 +

sin

(
1

2
∥ω̂∥t

)
∥ω̂∥

Ω(ω̂). (3.40)

Then, the global attitude representation can be updated in time as

q̂−
k = Θ̄(ω̂k−1)q̂

+
k−1, (3.41)

where

Θ̄(ω̂k−1) ≡

cos
(
1

2
∥ω̂k−1∥∆t

)
I3×3 −

[
Ψ̂+

k−1×
]

Ψ̂+
k−1

−Ψ̂+
k−1

T
cos

(
1

2
∥ω̂k−1∥∆t

)
 , (3.42)

with ∆t = tk − tk−1 being the sampling period and

Ψ̂+
k−1 ≡ sin

(
1

2
∥ω̂k−1∥∆t

)
ω̂k−1

∥ω̂k−1∥
. (3.43)

For the defined state vector, the state transition matrix can also given through power series

approximation as developed in (MARKLEY; CRASSIDIS, 2014). Such matrix has the following

form

Φ(ω̂k−1) =

[
Φ11 Φ12

Φ21 Φ22

]
, (3.44)
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where each sub-matrix is given by

Φ11 = I3×3 − [ω̂k−1×]
sin (∥ω̂k−1∥∆t)

∥ω̂k−1∥
+ [ω̂k−1×]2

{1− cos (∥ω̂k−1∥∆t)}
∥ω̂k−1∥2

,

Φ12 = [ω̂k−1×]
{1− cos (∥ω̂k−1∥∆t)}

∥ω̂k−1∥2
− I3×3∆t− [ω̂k−1×]2

{∥ω̂k−1∥∆t− sin (∥ω̂k−1∥∆t)}
∥ω̂k−1∥3

,

Φ21 = 03×3,

Φ22 = I3×3.

The process noise covariance matrix in continuous-time form can be defined with the gy-

roscope noise parameters as (MARKLEY; CRASSIDIS, 2014)

Q(t) =

[
σ2
vI3×3 03×3

03×3 σ2
uI3×3

]
, (3.45)

and the related mapping matrix is

G(t) =

[
−I3×3 03×3

03×3 I3×3

]
, (3.46)

The discrete-time equivalent process noise covariance matrix, Qk−1, can be computed fol-

lowing the development in (FARRENKOPF, 1978; MARKLEY; REYNOLDS, 2000), which

will results in

Qk−1 =

[
(σ2

v∆t+
1
3
σ2
u∆t

3)I3×3 −(1
2
σ2
u∆t

2)I3×3

−(1
2
σ2
u∆t

2)I3×3 (σ2
u∆t)I3×3

]
, (3.47)

The state vector and error covariance matrix are updated following the prediction phase of

the Linear Kalman filter.

Next, the observation model which will provide the predicted output is given by

ŷk =


A(q−

k )r1
A(q−

k )r2
...

A(q−
k )rn

 . (3.48)

For the computing of the Kalman gain and the covariance update, the measurement sensi-

tivity matrix Hk must be found. The attitude matrix built from angle rotation is

A(δq(δϑ)) ≈ I3×3 − [δϑ×]− 1

2
(∥δϑ∥2I3×3 − δϑδϑT ), (3.49)

in which the second-order term and higher can be neglected.
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From the quaternion multiplication equation, the related attitude matrix is given by

A(qref ) = A(δq(δϑ))A(q̂−). (3.50)

Let r be a measurement vector described in a reference frame, then such vector in the

spacecraft body frame is computed as

bref = A(qref )r, (3.51)

b̂− = A(q̂−)r. (3.52)

The deviation in the body frame vector is then

∆b ≡ bref − b̂− = − [δϑ×]A(q̂−)r =
[
b̂−×

]
δϑ. (3.53)

Following that, the observation sensitivity matrix is defined as

Hk =


A(q−

k )[r1×]
A(q−

k )[r2×]
...

A(q−
k )[rn×]

 . (3.54)

After the computing of the a posteriori state vector, the global attitude quaternion is

updated through the multiplication with the quaternion-error defined as

δq(δϑ) =
1√

4 + δϑ2

[
δϑ
2

]
, (3.55)

and the gyroscope bias is also updated by

β̂
+

k = β̂
+

k−1 + δβ̂k. (3.56)

Finally, the state vector is reset, that is, ∆x̂ = 0, and another iteration is executed. Table

3.1 summarizes the MEKF equations and the workflow.

3.3 UNSCENTED KALMAN FILTER

This method is based on the Unscented Transform (UT), which approximates a non-linear

function by a set of points in the state-space according to a probability density function, usually
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Table 3.1. MEKF algorithm steps.
Initialization q̂0 = q0, x̂+

0 = 0, P+
0 = P0, β̂0 = β0

Propagation

ω̂k−1 = ω̃k−1 − β̂k−1

q̂−
k = Θ̄(ω̂k−1)q̂

+
k−1

x̂−
k = Φk−1x̂

+
k−1

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Gk−1Qk−1G

T
k−1

Update Hk =


A(q−

k )[r1×]
A(q−

k )[r2×]
...

A(q−
k )[rn×]


Kk = P−

k H
T
k

[
HkP

−
k H

T
k +Rk

]−1

ŷk =


A(q−

k )r1
A(q−

k )r2
...

A(q−
k )rn


x̂+
k = x̂−

k +Kk(ỹk − ŷk)

P+
k = [I−KkHk]P

−
k

q̂+
k = δq̂(δϑ)⊗ q̂−

k , β̂
+

k = β̂
+

k−1 + δβ̂k

Reset x̂+
k = 0

assumed Gaussian (JULIER; UHLMANN, 1997). That is, the UT provides the computing of

a random variable statistics after a nonlinear transform operation.

Let X be an independent random variable with known first and second moments of the

probability density function (p.d.f.), the dependent variable Y given by the nonlinear function

g(·) of X is defined as

Y = g(X ). (3.57)

Taking the sample points {Xi} from the p.d.f of X through a deterministic rule, the expected

value and variance of Y is given by:

E{Y} = E{g(X i)}, (3.58)

V ar{Y} = V ar{g(X i)}. (3.59)

That is, the expected value and variance of Y is given by a weighted average of the trans-

formed sample points (JULIER; UHLMANN, 1997). Figure 3.2 presents the structure of the
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UKF used by (CRASSIDIS; MARKLEY, 2003) for attitude filtering.

Figure 3.2. Uscented Kalman Filter Structure.

Source: Author.

3.3.1 Unscented Attitude Filter

The Unscented Quaternion Estimator (USQUE) is a filter based on the UT and also con-

siders the multiplicative approach with respect to the attitude parameters. As for the MEKF,

a global attitude represents the actual spacecraft pose while a local attitude parameter repre-

sents the attitude error. Such error will be estimated by the filter and it will correct the global

representation after one iteration.

The local attitude-error quaternion, δq, is represented using a vector of GRP. As stated in

(CRASSIDIS; MARKLEY, 2003), when f = 2(a + 1) then ∥δp∥ is equivalent to δϑ for small

errors. Therefore, the state vector is composed by the attitude error in GRP parameterization

and the gyroscope biases, as expressed by

x̂ ≡
[
δp
δβ

]
. (3.60)

The UT generates a set of points, called sigma-points, which are taken from the state vector’s

probability density function by a deterministic rule (JULIER; UHLMANN, 1997). Then, the

2n + 1 σ-points are generated from the state vector for i = 0, . . . , 2n, with n = 6 being the
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state dimension, as presented below

M =
[
0 S −S

]
, where: S =

√
(n+ λ)(P+

k−1 + Q̄k−1), (3.61)

where M is a matrix with each column is a σ-point deviation sample (MARKLEY, 2003). With

the estimated state vector x̂+
k−1 the σ-point vectors are given by

χk−1(i) =Mi + x̂+
k−1, and

χk−1(0) = x̂+
k−1.

(3.62)

Each σ-point is propagated in time using the process model. First, the GRP parameters

are converted into quaternions, which have a closed form equation for the kinematics model

(BATTISTINI et al., 2016). A small angle in GRP can be converted to a quaternion such as

δq =

[
δϱ
δq4

]
, (3.63)

where the GRP is related by

δp = f
δϱ

a+ δq4
. (3.64)

Then, the inverse transform to get the quaternion is given by

δq4 =
−a∥δp|2 + f

√
f 2 + (1− a2)∥δp∥2

f 2 + ∥δp∥2
, (3.65a)

δϱ =
(a+ δq4)

f
δp. (3.65b)

The full σ-points quaternions are obtained by the product of the estimate q̂+
k−1 and the

error quaternions converted from GRP, as

q̂+
k−1(i) = δq+

k−1(i)⊗ q̂+
k−1, (3.66a)

q̂+
k−1(0) = q̂+

k−1, (3.66b)

where δq+
k =

[
δϱ+

k δq+4
]T is the attitude-error quaternion retrieved from the GRP.

The predicted state is obtained from the numeric integration of the attitude kinematic

equation presented previously as χ−
k (i) = f [χk−1(i), k].

The gyroscope measurements are used in the kinematic model and computed as ω̂ = ω̃ −

χβ
k−1(i), where ω̂ is the estimated quantity, ω̃ the observed one and χβ

k−1(i) is the state vector

part related to the bias estimation (MARKLEY, 2003).
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After the σ-points propagation in time, the error quaternions are retrieved by

δq−
k (i) = q̂−

k (i)⊗
[
q̂−
k

]−1
, (3.67)

where q̂−
k = q̂−

k (0). The σ-points error-quaternions are converted back to GRP parameters.

Then, the mean state vector and mean covariance error matrix are computed as a weighted

sample mean and covariance such as

x̂−
k =

1

n+ λ

{
λχ−

k (0) +
1

2

2n∑
i=1

χ−
k (i)

}
, (3.68)

and

P−
k =

1

n+ λ

{
λ
[
χ−

k (0)− x̂−
k

] [
χ−

k (0)− x̂−
k

]T
+

1

2

2n∑
i=1

[
χ−

k (i)− x̂−
k

] [
χ−

k (i)− x̂−
k

]T }
+ Q̄k.

(3.69)

The discrete-time process error covariance matrix is derived in (MARKLEY, 2003) for

high sample rate systems. They consider an approach similar to the trapezoidal rule for the

integration which gives

Φ(∆t)Q̄kΦ
T (∆t) + Q̄k = GkQkG

T
k , (3.70)

where Φ(∆t) is the state transition matrix. The solution of the previous equation is given by

(MARKLEY, 2003)

Q̄k =
∆t

2

[
(σ2

v −
1

6
σ2
u)∆tI3×3 03×3

03×3 σ2
u∆t

]
. (3.71)

In the correction phase, the mean predicted output is computed from the observation model

as

ŷ−
k =

1

n+ λ

{
λγk(0) +

1

2

2n∑
i=1

γk(i)

}
, (3.72)

where each σ-point is transformed by the observation function γk(i) = h [χk(i), k].

The observation model for any vector measurement taken by a sensor is given by

ỹk =


A(q)r1
A(q)r2

...
A(q)rn

+


ν1

ν2
...
νn

 , (3.73)

where A(q) is the rotation matrix from inertial to the body frame, ri are reference vectors

obtained from models and νi is the measurement error associated to the i-th sensor. For the
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predicted output, the matrix A(q) is the attitude matrix built with the predicted quaternion

from the prediction step. This is also the form of the observation function h(·) when computing

γk(i).

The output covariance matrix, Pyy
k , the innovation covariance matrix, Pυυ

k , and the cross-

correlation matrix, Pxy
k , are computed as the equations below

Pyy
k =

1

n+ λ

{
λ [γk(0)− ŷk] [γk(0)− ŷk]

T +
1

2

2n∑
i=1

[γk(i)− ŷk] [γk(i)− ŷk]
T

}
, (3.74)

Pυυ
k = Pyy

k +Rk, (3.75)

Pxy
k =

1

n+ λ

{
λ
[
χ−

k (0)− x̂−
k

]
[γk(0)− ŷk]

T +
1

2

2n∑
i=1

[
χ−

k (i)− x̂−
k

]
[γk(i)− ŷk]

T

}
. (3.76)

With the covariance matrices, the Kalman gain can be obtained as

Kk = Pxy
k (Pυυ

k )−1. (3.77)

The innovation is computed as the difference between the sensors observations and the

predicted output

υk ≡ ỹk − ŷ−
k = ỹk − h(x̂−

k , k). (3.78)

The final step is the state vector update with the innovation and the gain as for the error

covariance matrix

x̂+
k = x̂−

k +Kkυk, (3.79)

P+
k = P−

k −KkP
υυ
k KT

k . (3.80)

The attitude error is transformed to a quaternion and it is used to update the global attitude

representation which is the new attitude estimate, as in the equation below,

q̂+
k = δq+

k ⊗ q̂−
k . (3.81)

Finally, the attitude-error in the state vector is set to zero (reset procedure) before the

beginning of the next iteration. Table 3.2 presents the USQUE workflow, in which Wi are the

sigma-points weights.
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Table 3.2. USQUE algorithm steps.
Initialization q̂0 = q0, x̂+

0 = 0, P+
0 = P0, β̂0 = β0

Propagation

χk−1(i) =Mi + x̂+
k−1 =⇒ δq+

k−1(i)

q̂+
k−1(i) = δq+

k−1(i)⊗ q̂+
k−1

ω̂k−1 = ω̃k−1 − β̂k−1

q̂−
k (i) = Θ̄(ω̂k−1)q̂

+
k−1(i) =⇒ χ−

k (i)

x̂−
k =

∑2n
i=0Wiχ

−
k (i)

P−
k =

∑2n
i=0Wi

[
χ−

k (i)− x̂−
k

] [
χ−

k (i)− x̂−
k

]T
+ Q̄k

Update

γk(i) =


A(q−

k (i))r1
A(q−

k (i))r2
...

A(q−
k (i))rn


ŷk =

∑2n
i=0Wiγk(i)

Pyy
k =

∑2n
i=0Wi [γk(i)− ŷk] [γk(i)− ŷk]

T

Pυυ
k = Pyy

k +Rk

Pxy
k =

∑2n
i=0Wi

[
χ−

k (i)− x̂−
k

]
[γk(i)− ŷk]

T

Kk = Pxy
k (Pυυ

k )−1

x̂+
k = x̂−

k +Kk(ỹk − ŷ−
k )

P+
k = P−

k −KkP
υυ
k KT

k

q̂+
k = δq+

k ⊗ q̂−
k , β̂

+

k = β̂
+

k−1 + δβ̂k

Reset x̂+
k = 0



CHAPTER 4

ADAPTIVE APPROACH FOR KALMAN FILTERING

After a spacecraft being launched in space the maintenance of its components is impracti-

cable. Some platforms allows software corrective update or a reconfiguration of the subsystems

parameters for the minimization of errors. Besides, the on-board sensors may have time-varying

noise statistics or uncertain parameters. In such cases the mission may have a deteriorated ope-

ration or the satellite may be lost if the failure is critical. This chapter presents an adaptive

strategy for attitude estimation which provide reliable satellite pose estimate in conditions such

of change in sensor measurements statistics or unknown noise characteristics.

4.1 APPLICATIONS TO NOISE COVARIANCE MATRIX ESTIMATION

In order to the Kalman filter converges and provides the optimal estimate, it is necessary an

accurate knowledge of the system a priori information, such as the dynamics model, disturbance

influence and the noise statistics (MAYBECK, 1979; MYERS; TAPLEY, 1976; SAGE; HUSA,

1969). Mehra (1972) states that the use of wrong noise statistics may generate large estimation

errors or the filter’s divergence.

Small satellites’ on-board sensors commonly are low cost, with no qualification or certifica-

tion process for space applications. Therefore, the noise characteristics and the error modeling

are not completely known. Due to such facts, the tuning of the process and measurement noise

matrices is a challenging task (SOKEN; HACIZADE, 2019).

In general, stochastic errors may be the angle random walk, bias instability and rate random

walk ,as examples. The deterministic errors are bias, misalignment and non-orthogonality. With

such characterization it is possible to increase the estimation accuracy. To this end, the Allan

Variance (AV) test is a commonly used method for noise identification (NARASIMHAPPA et

al., 2020).
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In dynamics-based system model, several parameters must be considered for the process

noise covariance definition. Frequently, small satellites inertia tensor are computed through

Computer Aided Design (CAD) softwares which may not reflect the true parameters. Also,

the disturbance torques must be known and they are not completely identifiable. The gravity-

gradient perturbation depends on the inertia tensor and satellite position, the residual magnetic

moment depends on the magnetic dipole value which may be time-varying. The aerodynamic

torque is a function of the air density, the relative velocity with respect to the spacecraft and

the effective area.

The application of adaptive filtering for estimation performance improvement have been

widely investigated in the last decades (DUNÍK et al., 2017). This is an approach considered

for inertial navigation systems which also make use of gyroscopes and magnetometers, as the

same for smallsats (CHIELLA et al., 2019). Therefore, the attitude estimation problem can

take advantage of such advances.

4.2 APPLICATION TO FAULT DETECTION, ISOLATION AND RECOVERY (FDIR)

In order to handle abnormal behaviour, spacecrafts have a Fault Detection, Isolation and

Recovery (FDIR) system on-board. Also, an common approach that improves the spacecraft

reliability and reduces the whole system failure is the use of redundant devices. The FDIR is

responsible for the management of the equipment when an error occurs.

According to Gao et al. (2015), the fault diagnosis comprises three sequential functions.

The first phase is the failure detection which is the recognition of a erroneous behaviour in a

subsystem. After, the failure isolation is the process of identifying the faulty component and

the type of error it is generating. Last, the failure recovery is the procedure for the normal

condition restoration. It can be done by switching to redundant element, by a reset of the

equipment or by ignoring the abnormal data.

Some sensors may suffer variation in their noise statistics as the temperature changes, which

is the case of a LEO satellite when it is heated by the Sun or in eclipse. Such devices are

prone to large stochastic errors and to the degradation from vibration and pressure levels

(NARASIMHAPPA et al., 2020). Besides, intense space weather phenomena may degrade the
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sensor observations, for example when a magnetic storm occurs, the magnetometer may suffer

interference. The exposure to radiation in-orbit also contributes to the change in the sensor’s

characteristics.

In all operations phase, the ADCS perform a critical role for the platform safety as such

system can provide the Sun pointing function, once the Sun is the primary source of energy.

In critical situations, the FDIR system can change the satellite’s operations mode to what

is commonly called safe (or survival) mode where only the strictly necessary subsystems are

powered-on and a complete recovery process is executed. In this context, the attitude sensors

play an important role and special attention is required.

4.3 ADAPTIVE KALMAN FILTERING

For a system to be tolerant against sensor faults, a stochastic fault diagnosis method in

one of the solutions that can be considered for the implementation of this characteristic (GAO

et al., 2015). Furthermore, to be robust against time-varying disturbances and parameters,

an identification method also must be used (MEHRA, 1970; DUNÍK et al., 2017). Either

way, an approach is to use Adaptive Kalman Filtering (AKF) which allows statistical tests

for measurement assessment (GAO et al., 2015). Differently from the traditional KF, in the

adaptive method the filter parameters can be adjusted in order to improve the estimation

accuracy (HAJIYEV; SOKEN, 2020).

The parameters that may be adapted are the process and measurement noise covariance

matrices, Q and R, respectively (MEHRA, 1972; MYERS; TAPLEY, 1976; SAGE; HUSA,

1969). This technique can reject disturbances and outliers present in the sensor’s observations

which increases the filter’s robustness. As the space is a harsh and dynamic environment, low-

cost sensors may suffer temporary disturbances or malfunctions along time (CHIELLA et al.,

2019).

A method for the adaptation of the system and observation noise covariance matrices is

the Covariance Matching (CM) which is presented in (MEHRA, 1972). In such approach,

the theoretical statistics of the innovations vector are compared to the innovations sequence

statistics over time and then the noise covariance matrices are scaled in order to keep the filter’s
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accuracy.

4.4 COVARIANCE MATCHING TECHNIQUE

In the Kalman filter, the innovation process is defined as the difference between the measured

observation vector and predicted output vector such as

υk ≡ ỹk − ŷk, (4.1)

and the innovation covariance is computed as

E
{
υkυ

T
k

}
= E

{
(ỹk − ŷk)(ỹk − ŷk)

T
}
,

= E
{
(Hkxk + vk −Hkx̂

−
k )(Hkxk + vk −Hkx̂

−
k )

T
}
,

= E
{
(Hkx̃

−
k + vk)(Hkx̃

−
k + vk)

T
}
,

= HkE
{
x̃−
k x̃

−T
k

}
HT

k + E
{
vkv

T
k

}
,

with E
{
x̃−
k v

T
k

}
= E

{
vkx̃

−T
k

}
= 0. Therefore, the innovation covariance Sk is given by

Sk = HkP
−
k H

T
k +Rk. (4.2)

Kailath (1968) states that a filter working optimally generates an innovations process which

is characterized as a white noise random process. Therefore, the innovation’s mean value is

E {υk} = 0 and the covariance matrix is Sk (MEHRA, 1970).

Bar-Shalom et al. (2002) affirms that the innovation sequence is also an orthogonal sequence,

in which there is no correlation between sample vectors. Such sequence is zero-mean and white.

Besides, the innovation has the same information that the measurements (BAR-SHALOM et

al., 2002). A whiteness test of the innovation sequence can verify the filter’s consistency and

optimality.

4.5 ADAPTIVE EKF

In the EKF, both the process and measurement noise covariance matrices may be adapted

according to the source of the change in the noise statistics. Once the designed filter uses

the gyroscope measurements in the process model, the Qk matrix is associated to the sensor

behavior. In the following, the adaptation of each covariance matrix is presented.
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4.5.1 Measurement noise Covariance Matrix Adaptation

In case of change in the statistical characteristics of a sensor, the analysis of the innovation

sequence can provide means to detect such change and an adaptation of the measurement

covariance matrix R may be performed in order to deal with the abnormal behavior. Let N

be the number of samples in a moving window of the innovation sequence, then the innovation

sequence covariance matrix is given by

Ĉυk =
1

N

k∑
j=k−N+1

υjυ
T
j , (4.3)

in which the innovation vector is defined as

υk = ỹk −Hkx̂
−
k . (4.4)

However, the theoretical innovation covariance is given as

Sk = HkP
−
k H

T
k +Rk. (4.5)

The innovation sequence covariance matrix, Ĉυk , is the sample innovation process covari-

ance. Then, one gets

Ĉυk = HkP
−
k H

T
k + S(k)R, (4.6)

in which S(k) is the multiple scale matrix that matches the innovation sequence and theoretical

matrices. The solution for the scale factors is given by

S(k) =
{
Ĉυk −HkP

−
k H

T
k

}
R−1. (4.7)

In order to guarantee that the measurement noise covariance matrix is a positive definite

matrix, Hajiyev & Soken (2020) uses a diagonal matrix defined as

S∗(k) = diag(s∗1, . . . , s
∗
m), (4.8)

where the elements of the principal diagonal are the ones from multiple scale factors retrieved

by the following rule

s∗i = max {1, Sii(k)} , for i = 1, . . . ,m. (4.9)

Therefore, the multiple scale factor matrix S∗(k) is used to weight the observation noise

matrix in order to the innovations sequence covariance matches its theoretical value. The
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considering of the innovation sample covariance matrix by N and not N − 1, which results in

a biased estimate, is justified by the fact that it produces a smaller error (MEHRA, 1972).

4.5.2 Process Noise Covariance Matrix Adaptation

According to (MOHAMED; SCHWARZ, 1999), given the adaptive parameter α, the mea-

surements conditional probability density function with respect to α is given by

p(y|α) = 1√
(2π)m|Cυk |

exp

{
−1

2
υT

kC
−1
υk
υk

}
, (4.10)

in which m is the number of measurements and | · | is the determinant operator.

The Maximum Likelihood Estimation (MLE) is used to find the adaptive parameter. The

previous equation can be written as

ln {p(y|α)} = −1

2

{
m ln(2π) + ln(|Cυk |) + υT

kC
−1
υk
υk

}
, (4.11)

and by the MLE, the maximization of p(y|α) is the minimization of the right-side of the above

equation (MOHAMED; SCHWARZ, 1999). Besides, the maximum likelihood as a function of

the adaptive parameter is given by
∂p(y|α)
∂α

= 0. (4.12)

which gives (MAYBECK, 1979)

k∑
j=0

[
tr
{
C−1

υj

∂Cυj

∂α

}
− υT

j C
−1
υj

∂Cυj

∂α
C−1

υj
υj

]
= 0. (4.13)

The innovation covariance and its derivative as a function of R and Q is given as

Cυk = HkP
−
k H

T
k +Rk, (4.14a)

∂Cυk

∂α
= Hk

∂P−
k

∂α
HT

k +
∂Rk

∂α
. (4.14b)

Substituting P−
k = Φ(ω̂k−1)P

+
k−1Φ

T (ω̂k−1)+Qk−1 and assuming the system in steady-state

(MOHAMED; SCHWARZ, 1999), then

∂P−
k

∂α
=
∂Qk−1

∂α
. (4.15)
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As a result the maximum likelihood expression for the adaptive approach is (MOHAMED;

SCHWARZ, 1999)

k∑
j=0

{[
C−1

υj
−C−1

υj
υjυ

T
j C

−1
υj

] [
Hj

∂Qj−1

∂α
HT

j +
∂Rj

∂α

]}
. (4.16)

in which α = αk is the adaptive parameter at instant k.

In order to find the solution for the above equation, Mohamed & Schwarz (1999) considers

the measurement noise covariance matrix to be completely known and independent of the

adaptive parameter. Also, considering αi = Qii, that is, the adaptive parameters are the

process noise variances which one wants to estimate, it follows

k∑
j=0

{
Hj

[
C−1

υj
−C−1

υj
υjυ

T
j C

−1
υj

]
HT

j

}
. (4.17)

Let the residual state vector be defined as the difference between the a priori and a posteriori

estimation, that is

∆xk = x̂+
k − x̂−

k . (4.18)

From the Kalman filter update equation, one gets the following relation

∆xk = Kkυk. (4.19)

Considering the previous expressions, Mohamed & Schwarz (1999) derived the solution for

the maximum likelihood problem. Then, the estimated process noise covariance matrix Q̂k is

given by

Q̂k =
1

N

k∑
j=k−N+1

∆xj∆xT
j +P+

k −P−
k +Qk−1, (4.20)

in which P−
k +Qk−1 = FkP

+
k−1F

T
k can be used equivalently.

In order to avoid abrupt changes in the Q matrix, which may causes the filter divergence,

a low-pass filter can be considered as (HAJIYEV; SOKEN, 2020)

Qk = ηQ̂k + (1− η)Qk−1, (4.21)

in which η ∈ [0,1] is a scale factor.
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4.6 ADAPTIVE UKF

The adaptation method for the USQUE filter is analogous to the one presented for the EKF

case. The main differences are in the definition of the noise covariance matrices due to the

Unscented Transform.

4.6.1 Measurement Noise Covariance Matrix Adaptation

Similarly to the adaptation provided for the EKF, the USQUE algorithm considers the

theoretical innovation covariance matrix as (HAJIYEV; SOKEN, 2020)

Pυυ
k = Pyy

k +Rk, (4.22)

and the innovation sample sequence covariance as

Ĉυk = Pyy
k + S(k)R. (4.23)

Matching both covariance matrices through a multiple scale factors matrix, one gets

S(k) =
{
Ĉυk −Pyy

k

}
R−1. (4.24)

In order to keep the adapted covariance matrix as a positive definite one, the used scale fac-

tors matrix S∗(k) can be computed as the same for the EFK case. As before, the multiple scale

factor matrix S∗(k) is used to weight the observation noise matrix in order to the innovations

sequence covariance matches its theoretical value.

4.6.2 Process Noise Covariance Matrix Adaptation

The expression for the process noise covariance matrix adaptation presented next can be

found in (MOHAMED; SCHWARZ, 1999) and in (HAJIYEV; SOKEN, 2020) and it is de-

monstrated here for the understanding of the method. Following the derivation for the process

noise adaptation described for the EKF, once the problem statement is independent of the filter

structure, the relation below is also true for the UKF
k∑

j=0

[
tr
{
C−1

υj

∂Cυj

∂α

}
− υT

j C
−1
υj

∂Cυj

∂α
C−1

υj
υj

]
= 0, (4.25)



4.6 – Adaptive UKF 58

in which α is the adaptive parameter to be defined, υk is the innovations vector at instant k

and Cυk is its covariance matrix.

However, in the linear Kalman filter, the cross-covariance is computed as

E
{
(xk − x̂−

k )(ỹk − ŷk)
T
}
= E

{
x̃−
k (Hkx̃

−
k + vk)

T
}

= E
{
x̃−
k x̃

−T
k

}
HT

k + E
{
x̃−
k v

T
k

}
= P−

k H
T
k ,

(4.26)

in which E
{
x̃−
k v

T
k

}
= 0 and Hk is the measurement sensitivity matrix.

Once Pxy
k = E

{
(xk − x̂−

k )(ỹk − ŷk)
T
}
, therefore, the state-output cross-covariance matrix

is given by

Pxy
k = P−

k H
T
k . (4.27)

Taking the relation above for the UKF structure, one gets the following measurement sen-

sitivity matrix

Hk = (Pxy
k )T P−

k . (4.28)

Such result is discussed in Lefebvre et al. (2002), in which it stated that the UT is a

Linear Regression Kalman Filter (LRKF), an estimator based on the approximation of nonlinear

functions by statistical linear regression through points in the state-space.

As for the EKF, taking αi = Qii, which means that the adaptive parameters are the process

noise variances which one wants to estimate, then the adaptation problem can be reduced to

the following expression (MOHAMED; SCHWARZ, 1999; HAJIYEV; SOKEN, 2020)

k∑
j=0

{
Hj

[
C−1

υj
−C−1

υj
υjυ

T
j C

−1
υj

]
HT

j

}
. (4.29)

From the USQUE filter, one gets the following relation

Pυυ
k = Pyy

k +Rk. (4.30)

For a moving window of N innovations vector samples, the innovations theoretical value is

given by

Cυk = Pyy
k +Rk. (4.31)
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However, the output covariance matrix for the linear case is given by

E
{
(yk − ŷk)(yk − ŷk)

T
}
= E

{
(Hkxk −Hkx̂

−
k )(Hkxk −Hkx̂

−
k )

T
}

= HkE
{
x̃−
k x̃

−T
k

}
HT

k

= HkP
−
k H

T
k ,

(4.32)

in which yk is the true unknown observation vector and x̃−
k = xk − x̂−

k . Therefore, the output

covariance matrix is written as

Pyy
k = HkP

−
k H

T
k . (4.33)

Considering the definition of the sensitivity matrix for the UKF, one gets

Pyy
k = Pxy

k
T (

P−
k

)−1
Pxy

k . (4.34)

Then, the innovation covariance becomes

Cυk = Pxy
k

T (
P−

k

)−1
Pxy

k +Rk, (4.35)

and its derivative with respect to the adaptive parameter is

∂Cυk

∂α
= −Pxy

k
T (

P−
k

)−1 ∂Qk

∂α

(
P−

k

)−1
Pxy

k +
∂Rk

∂α
, (4.36)

in which Pxy
k is not a function of α. Besides, taking P−

k = P∗
k +Qk, where P∗

k is the state error

covariance propagated without the additive process noise, then P∗
k is also independent of the

adaptive parameter.

Considering the measurement noise covariance matrix as a completely known matrix and

independent of α, one gets the following equation
k∑

j=0

{[
C−1

υj
−C−1

υj
υjυ

T
j C

−1
υj

] [
Hj

−∂Qj−1

∂α
HT

j

]}
. (4.37)

Again, Mohamed & Schwarz (1999) derived the solution for the maximum likelihood pro-

blem. Then, the estimated process noise covariance matrix Q̂k is given by

Q̂k =
1

N

k∑
j=k−N+1

∆xj∆xT
j +P+

k −P−
k +Qk−1. (4.38)

In order to avoid abrupt changes in the Q matrix, which may causes the filter divergence,

a low-pass filter can be considered as (HAJIYEV; SOKEN, 2020)

Qk = ηQ̂k + (1− η)Qk−1, (4.39)



4.6 – Adaptive UKF 60

where η ∈ [0,1] is a scale factor.

In such way, the process noise covariance matrix can be adapted by a multiple scale factors

depending upon the innovation covariance. If the innovation covariance increases due to a

disturbance, then the process noise matrix will be scaled in order to compensate the noise.



CHAPTER 5

MAIN RESULTS AND NUMERICAL ANALYSIS

This chapter presents the main results and simulations of small satellites in orbit along with

the environment models and disturbance torques. In the first analysis, a set of on-board sensors

is considered and the attitude estimation results are discussed. Also, the adaptive filtering is

presented with simulated sensor’s fault injection and disturbance. The second part of this

chapter presents the proposed procedure for the AlfaCrux CubeSat mission control platform.

Specifically, the data processing configuration and EKF results are evaluated along with an

adaptation scheme.

5.1 NUMERICAL SIMULATION OF A SATELLITE MODEL

In this first case study, a simulated satellite is considered. The spacecraft position is defined

by the SGP-4 model using the orbital parameters of the AlfaCrux Cubesat (BORGES et al.,

2022). The two-line elements (TLE) for the small satellite is the following one:

1 52160U 22033D 23174.00581841 .00034043 00000+0 96046-3 0 9999

2 52160 97.3553 255.9084 0008294 156.8196 203.3424 15.36288620 68227

From the TLE file, the following information related to the spacecraft orbit is retrieved

• TLE Epoch: 23 Jun 2023 00:08:22.711 UTC

• Period: 95 min;

• Inclination: 97.3553◦;

• Apogee: 488 km;

• Perigee: 454 km.
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The simulation of the true model is given by the following system[
q̇(t)

ω̇(t)

]
=

 1

2
Ξ[q(t)]ω(t)

J−1 [Tgg +Trm +Taero − ω(t)× Jω(t)]

 , (5.1)

in which the inertia tensor matrix for the attitude dynamics equation modeling was taken from

Markley & Crassidis (2014) as

J =

100 0 0
0 75 0
0 0 50

 kg ·m2. (5.2)

The initial true state vector of the smallsat is defined as

q0 =
[
0 0 0 1

]T
, (5.3a)

ω0 =
[
0.1 0.01 0.01

]T
[rad/s]. (5.3b)

For the simulation the main disturbance torques are the gravity-gradient, residual magnetic

moment and the aerodynamics torque. For this case, the solar radiation pressure torque can

be neglected due to its magnitude. The residual magnetic moment is

mrm =
[
0.1 0.5 0.3

]T × 10−3 [Am2]. (5.4)

The aerodynamics torque considers the distance between the spacecraft center-of-mass and

the center-of-pressure which the value is given by

mrm =
[
0.05 0 0

]T
[m], (5.5)

and the atmosphere density is given by the exponential model as (MARKLEY; CRASSIDIS,

2014)

ρair(h = 500km) = 1.6× 10−13 [kg/m3]. (5.6)

The drag coefficient commonly used value is CD = 2.2 and the total effective area is 100×

10−4m2. The sensors noise parameters used in the simulation are shown in Table 5.1. The chosen

values are close to the ones found in the literature. The eclipse events were not simulated. Also,

the Earth’s Albedo is not considered in the simulation, therefore, the Sun sensors noise value

was increased in order to account such disturbance.

The dynamics models were executed using the Runge-Kutta 4th/5th order and the samples

were generated at every 0.5 seconds. The true quaternions are presented in Figure 5.1.
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Table 5.1. Attitude Sensors Noise Parameters.
Sensor Parameter Value Unit

Gyroscope σv 10−6 (rad/s)
√
Hz

σu 10−10 (rad/s)/
√
Hz

Magnetometer σm 700 nT
Sun sensors σs 5 ◦

Figure 5.1. Satellite true quaternions.
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The Earth’s magnetic field generated by the IGRF-13 is presented in Figure 5.2 described

in the ECI frame.

Figure 5.2. Earth magnetic field in ECI frame.
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And the Sun position model in ECI frame is shown in Figure 5.3.

Figure 5.3. Sun direction vector in ECI frame.

0 2000 4000 6000 8000 10000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Sx

Sy

Sz

Source: Author.



5.1 – Numerical Simulation of a Satellite Model 64

The satellite position and velocity, along with the geomagnetic field and Sun position were

all compared with the results from the software System Tool Kit (STK), developed by Ansys

Government Initiatives (AGI), which is used in the aerospace industry. A difference of 5%

on average were found between the variables, which indicates that such models are reliable

solutions for the simulation purpose.

After the variables are given in the ECI frame, the measurements in body frame can be

derived using the true quaternion. As result, in Figure 5.4 can be found the true angular

velocity vector and the simulated measured one which is corrupted by the noise.

Figure 5.4. Satellite true angular rate.
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The Figure 5.5 shows the Gaussian white noise which is added to the gyroscope bias.

Figure 5.5. Angular rate bias noise simulated data.
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Figure 5.6 and Figure 5.7 show the geomagnetic field and Sun direction vector in body

frame, respectively. Both Figures present the true value and the sensor observation with noise.
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Figure 5.6. Geomagnetic field in body frame simulated data.
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Figure 5.7. Sun direction vector in body frame simulated data.
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5.1.1 Initial Conditions

The initial global quaternion is given as q̂+
0 =

[
0.01 0.01 0.01 0.99

]T . Also, the initial

state error covariance matrix is given by P0 = diag(
[
10−2 10−2 10−2 10−12 10−12 10−12

]
).

For the simulations, it will be considered the filter in steady-state.

The Kalman filters are parameterized with σu = 10−10 rad/s3/2 and σv = 10−6 rad/s1/2,

which will be used for computing of the process noise covariance matrix, Qk. The measurement

noise covariance matrix is given as R = diag(
[
7002 7002 7002 (0.03)2 (0.03)2 (0.03)2

]
).

For the filters performance assessment, it will be given by the angular error between the

estimated and true attitudes. Both quaternions are related by

qtrue = δq(∆ϑ)⊗ q̂+. (5.7)

Then, the error-quaternion can be generated as

δq(∆ϑ) = qtrue ⊗
[
q̂+

]−1
, (5.8)

and the error angle is given by

∆ϑ = 2arccos(δq4). (5.9)
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besides the rotation angle error, from the error-quaternion it is possible to retrieve the Euler

angles, which will be given in the 3− 2− 1 rotation sequence, that is

A321(δq(∆ϑ)) −→ ∆ϕ,∆θ,∆ψ.

in which A321(δq(∆ϑ)) = A321(q
true)AT

321(q̂
+).

5.1.2 MEFK

For the Multiplicative Extended Kalman filter, Figure 5.8 presents the state error covariance

convergence when the estimator works with no disturbance.

Figure 5.8. EKF standard deviation of the rotation angle state vector.
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The Euler angles and the error angle are shown in Figure 5.9 and Figure 5.10, respectively.

In normal conditions, the MEKF provides an estimate with less than 1◦ of error.

5.1.3 USQUE

For the Unscented filter, Figure 5.11 presents the state error covariance convergence when

the estimator works with no disturbance.

Analogous to the MEKF case, the Euler angles and the error angle are shown in Figure 5.12

and Figure 5.13, respectively. In normal conditions, the USQUE provides an estimate with less

than 0.2◦ of error.
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Figure 5.9. MEKF Euler angles error between the true and estimated quaternions.
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Figure 5.10. MEKF true angle error.
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Figure 5.11. USQUE standard deviation of the rotation angle state vector.
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5.1.4 Adaptive MEKF

In the adaptive MEKF, three cases of perturbations will be considered in order to evaluate

the adaptation process performance in the attitude estimation. Both filters, with adaptation
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Figure 5.12. USQUE Euler angles error between the true and estimated quaternions.
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Figure 5.13. USQUE estimated angle error.
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and without the feature will be compared and the results discussed.

5.1.4.1 Magnetometer Noise Increase

In this simulation, the magnetometer noise suffered an increase of 100 times in its magni-

tude, changing the statistical characteristics. Figure 5.14 presents the angle error due to this

disturbance. The increase of the noise level occurs in the gray area of the graphs and then the

noise level return to its original value.

The Figure 5.15 shows the Euler angles error, where it is possible to see each individual

contribution into the total error.

Figure 5.16 presents the angle error of the MEKF with the measurement noise covariance
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Figure 5.14. MEKF angle error when noise level increase.
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Figure 5.15. MEKF Euler angles error when noise level increase.
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matrix adaptation in which the sliding window is of 100 samples, where the sampling period is

500ms. It is possible to verify the algorithm capability to accommodate the perturbation, that

is, the magnetometer noise was scaled in a form that the measurements weight were lower than

the nominal case, reducing its contribution to the estimation.

Figure 5.16. Adaptive MEKF angle error when noise level increase.
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In the Figure 5.17 the Euler angles errors are presented in which the curves are similar to

the nominal case.

Figure 5.17. Adaptive MEKF Euler angles error when noise level increase.
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Table 5.2 shows that the adapted filter performance is very close from the filter in the

nominal operation. The filter without adaptation almost doubled the angular error. The root

mean squared (rms) error is used for the filter assessment.

Table 5.2. Euler angles rms errors.
Angle Nominal Non-Adaptive

filter
Adaptive

filter
ϕ 0.53884 0.99652 0.54588
θ 0.51512 1.07070 0.47122
ψ 0.04244 0.71306 0.04715

5.1.4.2 Gyroscope Bias Abrupt Change

In this simulation the gyroscope bias will suffer an abrupt change in its bias. It will be

added
[
1 1 1

]
× 10−5 rad/s into the measurements. The performance of the non-adaptive

filter is shown in Figure 5.18.

Figure 5.19 shows that the yaw angle suffered an increase of error, while the pitch and roll

almost had no changes.
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Figure 5.18. MEKF angle error with bias abrupt change.
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Figure 5.19. MEKF Euler angles errors with bias abrupt change.
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The adaptive filter had a smaller overshoot in the angular error, as presented in Figure

5.20, despite in both cases the error has the same behavior. The MEKF had its process noise

covariance matrix adapted in which the sliding windows is of 100 samples. The low-pass filter

for the matrix update is α = 0.8.

Figure 5.20. Adaptive MEKF angle error with bias abrupt change.
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Figure 5.21 shows that as for the non-adaptive case, the yaw angle is the most impacted

with the bias change.

Figure 5.21. Adaptive MEKF Euler angles errors with bias abrupt change.
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Table 5.3 shows that the adapted filter performance is better than the non-adaptive version

and even the nominal one. The filter without adaptation presented an error 23% higher in the

ψ angle when compared with the adaptive algorithm. The ϕ angle of the adaptive estimator

is smaller than the error in the nominal case, which shows that the covariance matrix can be

optimized in the nominal situation in order to improve the overall estimation.

Table 5.3. Euler angles rms errors with bias abrupt change.
Angle Nominal Non-Adaptive

filter
Adaptive

filter
ϕ 0.53884 0.56868 0.35200
θ 0.51512 0.52046 0.54394
ψ 0.04244 0.58882 0.47806

5.1.4.3 Sun Sensor Degradation

For the Sun sensor degradation, it will be considered a negative bias of
[
−0.8 −0.3 −0.5

]
applied to the computer solar direction vector. The angle error for the non-adaptive filter is

shown in Figure 5.22.
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Figure 5.22. MEKF angle error with Sun sensor degradation.
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The Euler angles for this case is presented in Figure 5.23. The three Euler angles are affected

due to the degradation, however the yaw angle returned to its original value faster than the

others two.

Figure 5.23. MEKF Euler angles errors with Sun sensor degradation.
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For the filter executed with adaptation in the measurement noise covariance matrix and

sliding windows of 100 samples, the result is shown in Figure 5.24. The error is close to the

original case, with no degradation.

Figure 5.25 shows that no change in the Euler angles errors are perceived. As for the

magnetometer case, the measurement weighting reduces the contribution of the Sun sensors

observation in the estimation.

Table 5.4 summarizes the rms values of the Euler angles errors. It shows that the adaptation
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Figure 5.24. Adaptive MEKF angle error with Sun sensor degradation.
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Figure 5.25. Adaptive MEKF Euler angles errors with Sun sensor degradation.
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mechanism keeps the errors almost unaltered, while the non-adaptive filter had a considerable

increase in the errors.

Table 5.4. Euler angles rms errors.
Angle Nominal Non-Adaptive

filter
Adaptive

filter
ϕ 0.53884 0.92519 0.54636
θ 0.51512 0.83785 0.50922
ψ 0.04244 0.22524 0.04280
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5.1.5 Adaptive USQUE

For the adaptive USQUE, the same three cases of perturbations will be considered. Both

filters, with adaptation and without the feature will be compared and the results discussed.

5.1.5.1 Magnetometer Noise Increase

For this simulation, the magnetometer noise suffered an increase of 200 times in its magni-

tude, changing the statistical characteristics and generating outliers. Figure 5.26 presents the

angle error due to this disturbance. The increase of the noise level occurs in the gray area of

the graphs and then the noise level return to its original value.

Figure 5.26. USQUE angle error when noise level increase.
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The individual contribution of each Euler angle can be seen in Figure 5.27. After the

disturbance stops, the error slowly approach to its original value.

Figure 5.28 presents the angle error of the USQUE with the measurement noise covariance

matrix adaptation in which the sliding windows is of 100 samples. The algorithm is able to

accommodate the perturbation, that is, the magnetometer noise was scaled in a form that

the measurements weight were lower than the nominal case, reducing its contribution to the

estimation.

In the Figure 5.29 the Euler angles errors are presented in which the curves shows and

increase of the error level in the pitch and yaw angles.

Table 5.5 shows that the adapted filter performance is close from the filter in the nominal

operation. The filter without adaptation had an increase of 10 times on average in the angular

error while the adaptive filter kept the same error magnitude order.
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Figure 5.27. USQUE Euler angles error when noise level increase.
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Figure 5.28. Adaptive USQUE angle error when noise level increase.
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Table 5.5. Euler angles rms errors.
Angle Nominal Non-Adaptive

filter
Adaptive

filter
ϕ 0.06026 0.39760 0.07070
θ 0.06098 0.89456 0.05910
ψ 0.03256 0.43359 0.03190

5.1.5.2 Gyroscope Bias Abrupt Change

In this simulation the gyroscope bias will suffer an abrupt change in its bias. It will be

added
[
1 1 1

]
× 10−5 rad/s into the measurements. The performance of the non-adaptive

filter is shown in Figure 5.30.

Figure 5.31 shows that the roll and yaw angles suffered an increase of error, while the pitch

angle almost had no changes. The total error was about 2◦.
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Figure 5.29. Adaptive USQUE Euler angles error when noise level increase.
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Figure 5.30. USQUE estimated angle error.
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The adaptive filter had a smaller overshoot in the angular error, almost a half of the previous

case, as presented in Figure 5.32. The USQUE had its process noise covariance matrix adapted

in which the sliding windows is of 100 samples. The low-pass filter for the matrix update is

α = 0.8.

Figure 5.33 shows that the yaw angle suffered an increase of error, while the others two

angles almost had no change.

Table 5.6 shows that the adapted filter performance is better than the non-adaptive version

and even the nominal one. The filter without adaptation presented errors around 50% higher

than the adapted version.
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Figure 5.31. USQUE Euler angles errors with bias abrupt change.
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Figure 5.32. Adaptive USQUE estimated angle error.
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Table 5.6. Euler angles rms errors with bias abrupt change.
Angle Nominal Non-Adaptive

filter
Adaptive

filter
ϕ 0.06026 0.09886 0.06129
θ 0.06098 0.06274 0.06317
ψ 0.03256 0.99916 0.48626

5.1.5.3 Sun Sensor Degradation

For the Sun sensor degradation, it will be considered a negative bias of
[
−0.8 −0.3 −0.5

]
applied to the computed solar direction vector. The angle error for the non-adaptive filter is

shown in Figure 5.34.

The Euler angles for this case is presented in Figure 5.35. The three Euler angles are affected

due to the degradation, however the pitch angle had an increase higher the roll and yaw angles.
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Figure 5.33. Adaptive USQUE Euler angles errors with bias abrupt change.
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Figure 5.34. USQUE angle error with Sun sensor degradation.
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For the filter executed with adaptation in the measurement noise covariance matrix and

sliding windows of 100 samples, the result is shown in Figure 5.36. The error is close to the

original case, with no degradation.

Figure 5.37 shows that no change in the Euler angles errors are perceived. As for the

magnetometer case, the measurement weighting reduces the contribution of the Sun sensors

observation in the estimation.

Table 5.7 summarizes the rms of the Euler angles errors. It shows that the adaptation

mechanism keeps the errors almost unaltered, while the non-adaptive filter had a considerable

increase in the errors.
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Figure 5.35. USQUE Euler angles errors with Sun sensor degradation.
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Figure 5.36. Adaptive USQUE angle error with Sun sensor degradation.
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Table 5.7. Euler angles rms errors with bias abrupt change.
Angle Nominal Non-Adaptive

filter
Adaptive

filter
ϕ 0.06026 2.32153 0.05898
θ 0.06098 6.71206 0.06511
ψ 0.03256 0.88447 0.03367

5.1.6 Outlier Detection

The abrupt or fast and intense disturbances in the on-board sensor observations may cause

the filter divergence even with the adaptation mechanism once the innovations sequence can

introduce an abrupt change in the noise covariance matrices. Also, for on-board applications

with constrained computation resources, which is the case of small satellites, the execution of
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Figure 5.37. Adaptive USQUE Euler angles errors with Sun sensor degradation.
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the filter adaptation is computationally consuming.

In order to execute the adaptive algorithm only when a change is perceived, an outlier or

fault detection technique may be executed. The outlier detection is a statistical test that verify

if a fault had occurred. (HAJIYEV; SOKEN, 2020) uses the innovations vector for the fault

detection as

d2k = υT
k

[
HkP

−
k H

T
k +Rk

]−1
υk, (5.10)

for the EKF filter and for the UKF it is given as

d2k = υT
k [Pyy

k +Rk]
−1 υk, (5.11)

which is the squared Malahanobis distance for the innovations vector at instant k. The Ma-

lahanobis distance is a measure of similarity between two samples, normalized by the standard

deviation. The figure 5.38 shows d2k for the MEKF with the magnetometer noise increase

perturbation of 2 times.

The function d2k has a χ2 probability distribution with m degrees of freedom, where m is

the innovation vector dimension. A hypothesis test can considers two options

H0 = the system is nominal,

H1 = fault have occurred in the system.
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Figure 5.38. Outlier detection
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Defining a confidence level, it is possible to set a lower bound to the value of d2k through a

χ2 test, which will indicate the presence of outlier.

5.2 ALFACRUX’S CUBESAT ATTITUDE MOTION RECONSTRUCTION USING

ON-BOARD SENSORS DATA

The second part of this chapter concerns the attitude reconstruction of a Cubesat by means

of its telemetry data. The AlfaCrux CubeSat is an 1U nanosatellite launched in orbit on

April 1st of 2022 in a Sun-synchronous orbit. It is an amateur radio and educational mission

conducted by the University of Brasília, which provided the learning in areas such as project

management, risk analysis and space missions design (BORGES et al., 2022). The satellite’s

payload is a software-defined radio (SDR), working in the ultra-high frequency (UHF), which

serves as an digital packet repeater and a store-and-forward system (BORGES et al., 2022).

One objective of the research involving the AlfaCrux is the development of a Digital Twin

(DT) model, which is an virtual representation of the CubeSat features, subsystems, capabilities

and environment (KONTAXOGLOU et al., 2021). This model also considers the attitude

motion of the small satellite, since it is part of the spacecraft state (BORGES et al., 2022).

The attitude can be estimated using the telemetry data regarding the on-board sensors.
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Such CubeSat has a on-board computer (OBC) with a tri-axis magnetometer and gyroscope.

AlfaCrux has no embedded attitude control system, neither a filtering algorithm for the attitude

determination. However, the sensor’s data can be retrieved from the telemetry packets stored

in a database. Currently, the nanosatellite transmits telemetry data with a sampling period of

30 seconds.

In (MELLO et al., 2022), it is used the USQUE filter for the AlfaCrux attitude recons-

truction using a gyroscope-based process model, the magnetometer measurements and the Sun

direction estimation through the solar panels data. In (BRENAG et al., 2022) and (BRE-

NAG et al., 2023) a different approach using magnetometer-only data was considered, based

on (IVANOV et al., 2021).

The approach first step is the estimation of the magnetometer bias, which is considered

constant in the time interval of analysis. The telemetry data is compared with the IGRF

model and the mean bias is computed using the least squares method. With a small on-orbit

sensors dataset, the determination of the initial state vector is fundamental for the filter fast

convergence. Figure 5.39 shows the attitude reconstruction workflow.

Figure 5.39. AlfaCrux’s attitude motion reconstruction procedure.

Source: Author.

In order to find the initial attitude parameters and angular rate, an optimization problem
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was formulated. Based only on the magnetometer data, now corrected with the estimated

mean bias, the initial state is found by minimizing the cost function defined as the difference

between the sensor data and the predicted magnetic field provided by a attitude kinematics and

dynamics set of equations propagated on time. That is, let Γ(ξ) be the cost function defined

as

Γ(ξ) =
N∑
k=0

(
Bk

model −Bk
meas

)2
, (5.12)

in which Bmodel is the geomagnetic field from the dynamics model, Bmeas is the magnetometer

data and ξ =
[
q(0) ω(0) mres bm

]
is the state vector. The parameter bm is the small

fluctuation in the estimated mean bias.

The nonlinear batch least squares is solved using the Differential Evolution (DE) technique.

This is a stochastic search algorithm in which a population of state vector samples are generated

randomly in the state space, and the best cost vector is used in the next iteration in place of

an state vector with higher cost value. Some operations are included in order to increase the

samples variability. More details can be found in (BRENAG et al., 2022), (BRENAG et al.,

2023) and in (STORN; PRICE, 1997).

As results from previous works presented in (MELLO et al., 2022), (BRENAG et al., 2022)

and (BRENAG et al., 2023), the preliminary analysis of AlfaCrux’s attitude motion is perfor-

med using telemetry data from September 16th of 2022 at 13h50 to 13h56 UTC. The set of

date comprises 10 telemetry packets with sampling period of 30 seconds. Figure 5.40 presents

the magnetometer data and the corrected values without bias.

Figure 5.40. AlfaCrux magnetometer measurements and corrected data.
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From the batch processing of the magnetometer data, the initial state vector can be es-
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timated and propagated in time through a precise dynamics model in order to verify if the

observations are consistent with the predicted values from the model. Figure 5.41 present

the magnetometer observations and the predicted measurements computed using the dynamics

model.

Figure 5.41. AlfaCrux’s magnetometer measurements and model.
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It is possible to verify the correspondence between the telemetry data curves and the model

generated ones. That is, the initial state vector found through the optimization problem is

consistent regarding the generated model data comparing with the sensors corrected data.

Although the estimation is based on magnetometer-only data, the gyroscope measurements

can be used to assess the estimation accuracy. In this approach, the telemetry data and the

estimated angular rate can be compared in order to verify if the model produces the same

profile than the observations. Figure 5.42 shows the gyroscope telemetry data.

Figure 5.42. AlfaCrux’s gyroscope measurements.
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By comparing the estimated angular rates and the observations from the gyroscope, one

can detect the presence of a bias which produce a vertical shift in the graphs. The Figure 5.43

shows the modeled and observed angular rates after subtracting the bias from the gyroscope
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measurements.

Figure 5.43. AlfaCrux’s modeled and observed angular rate with bias correction.
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As for the magnetometer observations, in the gyroscope data one can verify that both

modeled and measured curves are correlated, that is, the angular rates provided by the model

have the same behaviour of the sensors data, when a bias is considered, which is a valid

statement since the MEMS gyroscope bias vary on time.

In order to improve the system estimation and prediction, the Kalman filtering techniques

can be used. To deal with the under-sampled small dataset, synthetic magnetometer data

can be generated using the dynamics model propagation. It will allow the attitude motion

estimation and the accuracy computing.

The Dynamics-based MEKF is formulated as described in (IVANOV et al., 2021). First, a

linearization is considered such as

∆ẋ = F(x,t)∆x, (5.13)

in which the state vector is given by

x̂ =
[
ϱT ωT mT

res bT
m,
]T (5.14)

where ϱ is the quaternion vector part, ω is the angular rate, mres is the residual magnetic

moment and bm is the magnetometer bias (IVANOV et al., 2017).

The first-order approximation of the process model given by the Taylor Series is defined as

F(x,t) =


− [ω̂×] 1

2
I3×3 03×3 03×3

J−1 (Fg + Fm) J−1Fgir −J−1 [(ABR)×] 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

 , (5.15)
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in which Fg is the gravity-gradient linear torque, Fm is the residual magnetic linear torque and

Fgir is the gyroscopic linear torque (IVANOV et al., 2017). Such forces are given as

Fg = 6ω2
0 ([(Ao3)×]J [(Ao3)×]− [(JAo3)×] [(Ao3)×]) , (5.16a)

Fm = 2 [mres×] [(ABR)×] , (5.16b)

Fgir = 2 ([(Jω)×] [ω×]− [ω×]J [ω×]) . (5.16c)

Therefore, the discrete-time state transition matrix is given by

Fk = I12×12 + F(x,t)∆t, (5.17)

in which ∆t is the sampling period.

The process noise covariance matrix is given by

Q(t) =


σ2
dynI3×3 03×3 03×3

03×3 σ2
rmI3×3 03×3

03×3 03×3 σ2
bmI3×3

 , (5.18)

in which σdyn is the process model noise, σrm is the residual magnetic dipole noise and σbm is

the magnetometer bias noise, the uncertainty sources of the associated dynamics model. And

the matrix that maps the noise covariance matrix to the state vector space is written as

G(t) =


03×3 03×3 03×3

J−1 03×3 03×3

03×3 I3×3 03×3

03×3 03×3 I3×3

 . (5.19)

The equivalent discrete-time process noise covariance matrix is computed as

Qk = FkG(t)Q(t)GT (t)FT
k∆t, (5.20)

in which ∆t is the sampling period.

Regarding the measurement model, the first-order linearization is given by

∆y = H(x,t)∆x, (5.21)

in which the predicted observation vector is defined as

∆y = 2 [BR×] ∆ϱ+∆bm. (5.22)



5.2 – AlfaCrux’s Cubesat Attitude Motion Reconstruction Using On-board Sensors Data 88

Therefore, the sensitivity matrix is written as

Hk =
[
2 [BR×] 03×3 03×3 I3×3

]
. (5.23)

Following the workflow from the EKF algorithm, an estimated error-quaternion is obtained

from its vector part as

∆q(∆ϱ) =

[
∆ϱ√

1−∆ϱ2

]
. (5.24)

Finally, the global quaternion is updated and the next iteration is executed. The initial

state vector for the EKF is given by

q̂0 =
[
0.9133 0.1994 −0.34558 −0.0820

]T
, (5.25a)

ω̂0 =
[
−0.0030 −0.0174 0.0003

]T
[rad/s], (5.25b)

m̂res,0 =
[
0.0081 0.0174 0.0052

]T
[Am2], (5.25c)

b̂m,0 =
[
−171.2992 35.7578 140.8970

]T
[nT]. (5.25d)

5.2.1 Process Noise Adaptation

For the attitude determination of AlfaCrux CubeSat, a Q-adaptation procedure will be

considered in order to improve the estimation accuracy of the filter. This adaptive method is

used for the identification of the process noise, which is composed of the attitude kinematics

and dynamics uncertainty, the residual magnetic moment and magnetometer bias noises.

In this problem, the adaptive rule is described in Chapter 4, but considering an approxima-

tion presented in (MOHAMED; SCHWARZ, 1999). From the definition of state residual, one

obtains

∆xk = x̂+
k − x̂−

k = Kkυk (5.26)

Therefore, considering the equation for the Q matrix adaptation, the estimated process

noise covariance matrix can be approximated by

Q̂k ≈ KkCυkK
T
k (5.27)

in which the covariance of the sample innovation sequence is computed using a moving windows
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of N samples and can be written as

Cυk =
N∑
i=1

υiυ
T
i . (5.28)

Using such dynamics-based MEKF (BRENAG et al., 2022), the estimation accuracy of the

magnetic dipole moment is shown in Figure 5.44 for the standard filter and its adapted version

with window length of 100 samples.

Figure 5.44. AlfaCrux’s magnetic dipole moment estimation accuracy in the EKF (left) and in the Adaptive
EKF (right).
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The attitude angle estimation accuracy of the CubeSat is presented in Figure 5.45 for the

standard filter and its adapted version.

Figure 5.45. AlfaCrux’s attitude angle estimation accuracy in the EKF (left) and in the Adaptive EKF (right).
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The mean attitude angle error for the traditional filter is 14.8033◦, while for the adaptive

filter is 0.4312◦. One can verify that the adaptation scheme provides a filtering process with

better accuracy, once it tunes the covariance matrix based of the innovation. Besides, the
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magnetic dipole estimation error converges faster than the standard filter, as the same happens

to the attitude error. However, the second overshoot decreases slower for the adapted filter.



CHAPTER 6

CONCLUSIONS

The filtering algorithms presented an accuracy of less than ±1 degree, which was improved

considering the process and measurement noise covariance matrices estimation in order to miti-

gate the errors caused by the disturbances effects and sensors unknown parameters. In adapting

the attitude filter, the unknown or uncertain parameters from the sensors measurements, such

as bias instability and noise statistics, could be derived from the innovations vector. For such

cases, the error increase rate was around 10% from the nominal error. Without the adaptation

mechanism the error when the disturbance was present was around 47%, which is considerable

for hight precision platforms.

As first analysis, both the MEKF and USQUE filters are able to accommodate small increa-

ses in the noise level. As the statistics changes over time, both filters will lead to a higher error

level. Therefore, the attitude estimation algorithm must consider adaptive parameters in order

to keep the accuracy in a predictable interval. In real small satellite missions, the disturbance

can degrade the performance of the related products. In cases of intense disturbances caused

by the harsh space weather like the solar activities and cosmic radiation, the observations noise

levels can increase to the point where the pointing error will be too large. The covariance

matching can detect the disparity through the innovation moving window and the covariance

matrices can be updated using analytical relations with the residuals.

One important aspect of the covariance matching adaptation technique is the size of the

sliding window. If the sample set is to small, then both the measurement and process estimated

covariance matrices may differ too much from their current values and the filter will diverge in

case of abrupt variation in the sensor noise. in the same way, if the sample set length is large,

then the filter may not be able to accommodate the disturbance due to the fact that the new

covariance estimates will be closer to their current values.

Regarding the AlfaCrux attitude motion estimation, the adaptive filter showed its capability
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to improve the estimator performance when the process noise matrix is identified using the

innovations sequence. This CubeSat is a case in which there is no a priori information about

the system, such as sensors noise statistics and measured inertia tensor, which was computed

using CAD software. Therefore, the aforementioned adaptive procedure is an solution to the

covariance matrix tuning problem.

For future works, there is the analysis of the optimal length of the sliding window in the

covariance matching algorithm. Another topic is the study of disturbance or fault detection

methods, such as the ξ2 hypothesis test, so the adaptation will be executed only in specific

scenarios. Also, there is the opportunity to investigate the joint of the covariance matching

adaptation along with machine learning algorithms for sensor fault detection and isolation.
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