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Abstract

The discrete element method (DEM) is a numerical technique widely used to sim-
ulate granular materials. The temporal evolution of these simulations is often per-
formed using a Verlet-type algorithm, because of its second order and its desirable
property of energy conservation. However, when dissipative forces are considered
in the model, such as the nonlinear Kuwabara-Kono model, the Verlet method no
longer behaves as a second order method, but instead its order decreases to 1.5. This
is caused by the singular behavior of the damping force in the Kuwabara-Kono model
at the beginning and in the end of particle collisions. In this work, we introduce a
simplified problem which reproduces the singularity of the Kuwabara-Kono model
and prove that the order of the method decreases from 2 to 1 + q, where 0 < q < 1
is the exponent of the nonlinear singular term. Furthermore, we propose a regular-
ized normal force model based on the concept of mollifiers. We show numerically
that the Verlet method combined with this regularized force model can integrate
collisions with second order accuracy and that the coefficient of restitution of the
system tends to increase as a function of the regularization parameter. Further-
more, using the DEM algorithm, we construct a granular Taylor-Couette computer
simulation to generate coarse-grained data that will be fed into a SINDy machine
learning algorithm in order to infer constitutive laws for granular flows based on the
µ (I) rheology.



Resumo

O método do elemento discreto (abreviado como DEM, do inglês) é um método nu-
mérico amplamente usado para simular materiais granulares. A evolução temporal
destas simulações é frequentemente feita usando algoritmos tipo Verlet, por causa de
sua segunda ordem e propriedade desejada de conservação de energia. No entento,
quando forças dissipativas são incluídas no modelo, como, por exemplo, o modelo
não-linear de Kuwabara-Kono, o método de Verlet não mais se comporta como um
método de segunda ordem, tendo sua ordem reduzida para 1.5. Isso é causado pelo
comportamento singular das forças viscosas no modelo de Kuwabara-Kono no iní-
cio e fim de colisões de partículas. Neste trabalho, nós introduzimos um problema
simplificado que reproduz a singularidade presente no modelo de Kuwabara-Kono
e provamos que a ordem do método diminui de 2 para 1 + q, sendo 0 < q < 1 o
expoente do termo não-linear singular. Além disso, nós propomos um modelo re-
gularizado para forças normais baseado no conceito de mollifiers. Nós mostramos
numericamente que o método de Verlet combinado com esse modelo regularizado
de forças é capaz de integrar colisões com precisão de segunda ordem e que o coefi-
ciente de restituição do sistema tende a aumentar como uma função do parâmetro
regularizador. Além disso, utilizando o algoritmo DEM, nós construimos uma si-
mulação computacional de um escoamento granular de Taylor-Couette para gerar
dados coarse-grained que serão inseridos no algoritmo de aprendizado SINDy para
inferir as equações constitutivas para escoamentos granulares baseado na reologia
µ (I).
Título em português: Sobre alguns aspectos de modelos matemáticos e compu-
tacionais para a simulação de materiais granulares.



2 |



Acknowledgements

The acknowledgements are likely the most read part of nearly all theses since
its non-technical nature allows the layperson to understand it. It may also be the
only part of a highly technical thesis on the exact sciences capable of evoking strong
emotions of both kinds: eyes tearing up of joy upon reading the heartfelt words of
a peer or a sad sigh after finishing and not finding any mentioned of oneself. This,
in my opinion, makes it as hard to write as the remaining of the thesis, and almost
as important.

However, I trained for four and a half years —the duration of my Ph.D. —to write
this thesis, but I did not enjoy such training on how to write proper and eloquent
thank you statements. As such, I hope that I will not be too harshly judged for what
I written here. Nevertheless, I apologize for any names that I might have missed.
You were so many, and the time I had to write this, so little.

To the UnB, UW, CAPES, CNPq, FAPDF and NSF for the funds and services
provided to me.

To Prof. Yuri Dumaresq Sobral, my advisor during this Ph.D., for taking me in
when I decided to change the direction of my studies to applied mathematics and
for going above and beyond in guiding me on academic matters, as well as in life.
Language as a tool is not enough to describe how grateful I am to you.

To Prof. Marcelo Fernandes Furtado, my advisor during the first year of my
Ph.D., for volunteering to advise me when I naively submitted my Ph.D. application.
If you had not taken me in when you did, I would probably not have gotten in at
all.

To Prof. John Hinch, the seniorest member on the examining committee of my
thesis defense and the former advisor of my advisor, for having imparted in my
advisor so many good lessons that he has passed forward to me and for taking the
time in your visit to Brazil to attended my thesis defense. I hope I can extract the
gold that certainly lies within your suggestions.

To Prof. Cássio Machiaveli Oishi, the external member on the examining com-
mittee of my thesis defense and my coworker when I was in Washington state, for
accepting the first task when given such short notice and for the support given to
me in both those roles. To me, you were a piece of our homeland even when it was
10,000 km away.

To Prof. Taygoara Felamingo de Oliveira, the internal member on the examining
committee of my thesis defense. Your insightful suggestions helped me enrich the
final version of this thesis.

To Prof. Leandro Martins Cioletti, the alternate member on the examining
committee of my thesis defense, for performing such role to the extent of your
capabilities even amidst personal issues.

To Prof. Steven L. Brunton, currently the associate director of the AI Institute



4 |

in Dynamic Systems, for accepting my request for a Ph.D. internship under your
supervision. My entire life I had been waiting for the opportunity that you gave me,
and the remaining of my life will now be better because of it.

To Prof. J. Nathan Kutz, currently the director of the AI Institute in Dynamic
Systems, for corroborating the decision to take me in as an intern in the aforemen-
tioned institute. You treated me (and everyone else in the research group) as a
friend, and that goes an incredible long way.

To Lauren D. Lederer, currently the managing director of the AI Institute in
Dynamic Systems, for all the supply chain issues you dealt with to accommodate
me in the institute.

To Dr. Joseph Bakarji, currently a postdoctoral fellow in the University of
Washington, who closely assisted my work when I was in Seattle. All your Python
and machine learning lessons have been invaluable to the last part of this thesis.

To Prof. Camila de Oliveira Vieira, who was the first Ph.D. graduate from my
advisor, for sharing the knowledge that comes with being a pioneer. You never
denied help when I asked for it.

To Prof. Igor Lima, Sávio Henrique Chaves Mendes and Saulo Rodrigo Medrado,
for all the help in acquiring, setting up and testing the necessary equipment for a
hybrid thesis presentation.

To Renato Bufolo, my father, for providing for our family and our home, and for
keeping both of my feet on the ground. I would not have had the choice to get here
if it weren’t for you.

To Roberta de Farias Nóbrega Bufolo, my mother, for caring about my well-being
and never giving up on me; for managing our family and our home; for showing me
just how powerful motherly love is. Whenever I need, you will cry with and for me
and, afterwards, will wipe away my tears.

To Ravena Nóbrega Bufolo, my sister, for, when I found myself in times of
trouble, making time amidst your busy schedule to knock on my door to talk to me
and cheer me up. You are my standard for work ethic and an inspiration in dealing
with adversities.

To Claúdia Maria de Farias Nóbrega, my aunt, for always taking the initiative to
offer any help you could. Your active show of support, even when matters were too
technical for you to help me with, served as a driving force for me to strive further.

To Laurence Nóbrega, my grandfather, for fostering my curiosity since I was a
child, continuously staying open to listen and offer guidance, and always treating
my thoughts and concerns with utmost sincerity. “Conosco, ninguém podemos!”

To Lúcia Maria de Farias Nóbrega, my grandmother, for all her prayers. You
are my most enthusiastic supporter!

To Víctor Carvalho de Oliveira, who shared a room in the department of math-
ematics with me, for all the blood, sweat and tears. You were like a brother to me
during the time we spent together.

To Anastasia Bizyaeva, Andrei Klishin, Cássio Oishi, Doris Voina, Jonas Kneifl,
Joseph Bakarji, Paolo Conti, Prerna Patil, Ryan Raut, and Samuel Otto, my cowork-
ers in the AI Institute in Dynamic Systems, for embracing my presence during my
time in Washington state. You made me feel like I belonged and I will forever cherish
the memories of the moments we shared.

And to all classmates, staff and other coworkers.

Thank you!



Contents

Introduction 9

I Preliminaries 13

Introduction 15

1 Computer simulations of granular materials 17
1.1 The discrete element method . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.2 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.3 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.4 Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.5 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Spatial hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Force Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Normal force schemes . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 Tangential forces . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Numerical integration methods for the equations of motion . . . . . . 29
1.4.1 Explicit Euler method . . . . . . . . . . . . . . . . . . . . . . 31
1.4.2 Symplectic Euler and leapfrog methods . . . . . . . . . . . . . 31
1.4.3 Verlet’s method for damped systems . . . . . . . . . . . . . . 32

2 Validation of the implementation 35
2.1 Validations for binary collisions . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Physical validations . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.2 Method validations . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Results for granular collapses . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Setup of initial conditions . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

II Order of timestepping of DEM with a nonlinear force
model 49

Introduction 51

5



6 | Contents

3 The order of the leapfrog method with the Hertz-Kuwabara-Kono
force scheme 53
3.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Normal collision between two particles . . . . . . . . . . . . . 53
3.1.2 A simplified problem . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Analysis of the global truncation error . . . . . . . . . . . . . . . . . 55
3.2.1 Preliminary results on the solution to the simplified problem . 56
3.2.2 The leapfrog method and its local and global truncation errors 59

3.2.3 Computing an explicit expression for
n−1∏
i=1

An−i . . . . . . . . . 72

3.2.4 Bounds for the entries of
n−1∏
i=1

An−i . . . . . . . . . . . . . . . . 91

3.2.5 Error bounds and order of the method . . . . . . . . . . . . . 102
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 A regularized force model 107
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Mollifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.2 Extended square root and ϵ-shift . . . . . . . . . . . . . . . . 108
4.2.3 Efficiently computing ϵ

√
· . . . . . . . . . . . . . . . . . . . . 109

4.3 Regularized normal force model . . . . . . . . . . . . . . . . . . . . . 111
4.3.1 Description and computational validation . . . . . . . . . . . . 111
4.3.2 Physical behavior of the regularized model . . . . . . . . . . . 113
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 On the relation between trajectories of individual particles and
the order of numerical integration 117
5.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Mollifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.2 Higher precision storage formats . . . . . . . . . . . . . . . . . 119
5.2.3 A metric for simulations . . . . . . . . . . . . . . . . . . . . . 120

5.3 Influence of order of numerical integration method . . . . . . . . . . . 120
5.3.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

III Machine learning and continuum models of granular
materials 123

Foreword 125

Introduction 129

6 Prerequisites 131
6.1 Granular Taylor-Couette flows . . . . . . . . . . . . . . . . . . . . . . 131

6.1.1 Viscous Taylor-Couette flows . . . . . . . . . . . . . . . . . . . 131



Contents | 7

6.1.2 The µ (I) rheology . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Coarse-graining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.1 Coarse-grained fields . . . . . . . . . . . . . . . . . . . . . . . 137
6.2.2 Coarse-graining near boundaries . . . . . . . . . . . . . . . . . 139

6.3 The SINDy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Preliminary developments 143
7.1 Preliminary developments . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153



8 | Contents



Introduction

Rice provides more than 20% of the calories consumed worldwide [28]. Between
the full maturation of the grain in the fields and the neatly packaged bags of rice
in your local supermarket there exists many different processes that have been de-
liberately performed, among which are the harvest, transport, storage, filtering and
packaging. During the aforementioned processes, the most relevant characteristic
of rice is not its energy content or its chemical composition, but the fact that it
is composed of individual grains. Because of this property, the behavior of large
amounts of this substance is not completely akin to a solid or fluid, but something
in between... and sometimes, it can even have a gas-like behavior. These materi-
als —the ones formed by macroscopic grains —are called granular materials, and
they are incredibly important in the processes that shape the literal and figurative
landscapes of our world.

(a) (b)

Figure 1: Grains of rice flowing from a combine harvester (a) and an old rice mill (b).

When rain falls, the water that is continuously deposited on top of the irregular
soil follows the steepest path downhill. As it flows, it carries along a literal piece —or
grain —of soil. Some of those steepest, now lacking some soil that was carried away,
become brooks. Given time and circumstance, a few of those brooks can widen to
creeks. Over years, those creeks can convert to streams and, over eons, the streams
can grow into rivers. These rivers meander and shape the land, carving oxbow lakes,
flattening mountains and widening valleys. All of this is possible because soil is a
granular medium.

The Amazon rainforest, spanning over five million square kilometers, is so large,
that it affects the weather in nearby regions [73]. Being this large, it requires a
Brobdingnagian amount of nutrients to sustain itself —among which is phosphorus.
The source of this phosphorus can be traced back to more than five thousand kilo-
meters away and across the ocean: the Sahara desert. There, a single grain of sand

9
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(a) (b)

Figure 2: The meandering Amazon (a) and Colorado (b) rivers. Note, in (a), that the
many paths it took in the last few decades still remain engraved on the ground. In (b),
note the gargantuan trench it has carved into the land —this is the great Canyon!

is picked up by the wind and raised into the atmosphere, where it then rides air
currents until it is deposited somewhere in the Amazon basin. Yearly, more than
twenty teragrams of dust make this one way trip into the rainforest [88]. However,
if the material composing the desert was not made of fine particulate (i.e., if it was
not a granular medium), this trip would not be possible. In this case, perhaps our
world would be devoid of the Amazon rainforest.

(a) (b)

Figure 3: In (b), a satellite image of an immense plume of dust from the Sahara crossing
the Atlantic ocean. It may have started as a gust of wind on a dune (a).

The Tycho crater, on the moon, is estimated to be 108 million years old [36]. Its
name pays homage to astronomy pioneer Tycho Brahe, who, sadly, died a mere 7
years before the telescope was invented. If he had had access to this invention, even
in its infancy, he would have been able to observe the eponymous crater and would
likely be puzzled by its ray system. Nowadays, most people have seen this crater
and ray system in pictures of the moon —even if they did not notice it. You can see
it in fig. 4(a). Ray systems such as the aforementioned one are not exclusive to the
moon; they are abundant in Mercury and have also been identified in Mars and even
on Earth: the Kamil crater, in the Sahara [80]. In 2018, it was proposed that ray
systems form as a result of impacts of asymmetrical meteorites [61]. This proposition
was supported by experiments that consist of colliding small, asymmetrical objects
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with a granular bed —literally colliding them with sand. Even though the surface
of the moon is not a granular medium, at least not at the scales of the depth of the
Tycho crater, it is still possible to study its morphology by understanding granular
phenomena.

(a) (b)

Figure 4: The moon (a). Tycho and its ray system are visible in the bottom quarter of
the picture, slightly to the left. In (b), an experimental crater [61] that has its own ray
system, due to the non-spherical nature of the impactor. PS: The final version will have
a better resolution of (b).

Hopefully, these examples have elicited interest in granular materials to the
reader; or, at least, convinced them they are fundamental enough to their lives
and the universe that it is a worthwhile endeavor to pursue the advancement of our
fundamental knowledge about them. This thesis is my first, humble contribution to
that end.

In the first part, we review the foundations of discrete granular simulations. In
particular, we describe the standard numerical methods and force schemes used in
these simulations. In the second part, our research into discrete granular simulations
is shown. First, we study the effect of the Hertz-Kuwabara-Kono force scheme on
the order of convergence of the leapfrog integration method. We prove a theorem
asserting quantitatively the order penalization of the method and then propose an
empirical solution to this penalization. Second, we study the impact of the order
of convergence of the chosen integration method into the trajectories of individual
particles in the collapse of a granular column. Finally, in the third part, we report
on our current research: using machine learning to infer equations describing the
velocity field of a granular Taylor-Couette flow.
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Introduction

A granular medium is broadly defined as a collection of rigid macroscopic parti-
cles, whose particle size is larger than 1.00 × 102 µm [3]. This size limitation aims
to restrict the types of interaction among particles that dictate the motion of the
medium. In particular, interactions such as thermal agitation (Brownian motion)
and van der Waals forces can be considered negligible at scales equal or larger than
this value.

Despite their medium fitting the same definition given above, flows of granular
media can be wildly different, e.g., even the untrained eye can notice the contrast
between a wind-driven flow of sand over a dune and the flow of grains on an industrial
screw conveyor. Nevertheless, whenever two granular flows share the same macro
behavior, they are said to follow the same flow regime. Some examples of flow
regimes, as detailed in [57], are the plane shear, annular shear, vertical-chute flow,
inclined plane, heap flow and rotating drum. These regimes make the assumption
of a dry, monodisperse granular medium. Another example, one which we shall
particularly concern ourselves with, is of the collapse of a granular column under
the influence of gravity.

Large gravity driven granular flows are abundant in nature and are of particular
importance because of how hazardous they can be. Some examples include rock
avalanches, debris flow, mudslides, underwater avalanches and sudden landslides.
Much research effort has been put into understanding and predicting the triggering
and evolution of these types of granular flows, so that the damages caused by them
can be somewhat mitigated. For the specific case of dry flows, one model has found
much success in the scientific community. This model, described in [5], simplifies
the complex topographies generally involved in natural phenomenon to that of a
column of grains. The collapse of this column under its own weight provides a
surprisingly accurate description of the distances and areas affected by, for instance,
a rock avalanche.

An obvious advantage of the model of granular columns is the relative ease at
which it can be experimentally tested. However, even with state of the art equip-
ment, it proves to be exceedingly hard to observe certain intrinsic characteristics
of the flows performed experimentally. For instance, the force chains that sustain
the entire column prior to the collapse or even the individual trajectories of grains,
specially of those grains which remain buried deep inside the column during the
whole collapse. To circumvent this issue, computer simulations of granular media
have been developed and have proved to be a very helpful and reliable tool. Some
of these computer simulations provide full knowledge of the state of each particle at
each instant in time.

One of the first computational models to simulate granular materials was the one
proposed by [17]. It is based on the idea of solving the motion of individual particles
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by prescribing pairwise contact rules between two particles. This approach is very
similar to the molecular dynamics algorithm used in physico-chemical simulation
of atoms in molecules [79]. At some point in its development, the model proposed
by [17] became known as the “discrete element method” (DEM) and is now one of
the most widespread computational tools used to model granular flows in the most
varied contexts [32]. In recent years, several variations of DEM algorithm have been
proposed [63], and it has also been enhanced by the incorporation of fluid flow using
different techniques [42], [85].

The discrete element method will be a major player in the second part of this
work. Thus, in this part, we review core concepts involved in the computational
simulation of grains with the discrete element method, many of which have been
summarized in [71]. Afterwards, we provide validation for our implementation of this
method. Finally, some simulations of granular columns are presented and compared
to the experimental results of [5].



Chapter 1

Computer simulations of granular
materials

1.1 The discrete element method

1.1.1 Particles

To more precisely explain the DEM, a particle is defined as a quadruple (r, ρ, #»x , θ),
where r ∈ (0,∞) is its radius, ρ ∈ (0,∞) its density, #»x : [0,∞)→ R2 its position on
the plane as a function of time and θ : [0,∞)→ (−∞,∞) its accumulated angle of
rotation around the axis perpendicular to the coordinate system of the simulation
as a function of time. For the sake of simplicity, we chose to have ρ constant for all
the particles.

Based on this definition one can visualize a particle as a perfect sphere of radius
r made of a material of density ρ. The assumption of the particle as a perfect sphere
reduces the computational cost of this model tremendously, at the cost of physical
accuracy. The interested reader can find more information on the effects of particle
shape in [59].

The angle of rotation must be measured against some arbitrarily chosen reference
position, which we chose to be the upwards direction. Also, we follow the convention
of positive sign for counterclockwise rotation (see fig. 1.1).

Figure 1.1: The conventions of angular motion. Here, Pi refers to a specific particle while
the subindex i in θi and ωi means that these properties refer to Pi.

17



18 | Computer simulations of granular materials

Some derivatives of #»x and θ have special notations and meaning. For instance
#»v :=

#»

x′ is the velocity of the particle and #»a :=
#»

v′ =
#»

x′′ is its acceleration. Similarly,
ω := θ′ is the angular velocity of the particle and α := ω′ = θ′′ is its angular
acceleration.

Given a particle, we call

m :=
4

3
πr3ρ (1.1)

its mass and
I :=

2

5
mr2 (1.2)

its moment of inertia. The motivation for such names is clear and their expressions
could be derived by assuming each particle as a perfect homogeneous sphere.

1.1.2 Collisions
It is usual to have many different particles in DEM applications. We shall denote

them by Pi, with the subindex i ∈ N being used to differentiate among them. This
shall also apply to all their constituent elements and their derived properties. So,
for instance, particle Pi has radius ri, position #»x i (t), and mass mi. The set of all
such indexes will be denoted by I.

For each pair of particles Pi and Pj, we call

di,j := ∥ #»x i − #»x j∥ (1.3)

their distance function and

ξi,j := min {0, ri + rj − di,j} (1.4)

their overlap function. For each t ∈ [0,∞) such that ξi,j (t) > 0, it is said that the
respective particles are “colliding” (or “overlapping” or “in contact”) in the instant t.

Let Pi and Pj be a pair of colliding particles at some instant t ∈ [0,∞) and
consider the largest (in the inclusion sense) interval that satisfies:

• Contains t,

• Only contains instants in which these two particles are still colliding.

The infimum of such type of interval will be denoted by t0 and is called the beginning
of the contact. Similarly, the supremum of that type of interval is called the end
of the collision and will be denoted by tf . One can also say that “Pi and Pj are
colliding during (t0, tf )”.

Then, the normal vector #»n i,j of the collision at that instant is defined as

#»n i,j :=
#»x j − #»x i

∥ #»x j − #»x i∥
. (1.5)

In a similar way, the tangent vector #»
t i,j of the collision at such instant can be

defined as
#»
t i,j := (ny,−nx) , (1.6)

where nx and ny are the x-oriented and y-oriented components of #»n i,j, respectively.
Notice that #»n i,j = − #»nj,i and #»

t i,j = −
#»
t j,i. The overlap between two particles and

the normal and tangent vectors of a collision are illustrated in fig. 1.2.
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Figure 1.2: Visualization of normal and tangent vectors as well as the overlap between
two particles.

The contact point of the collision at the instant t is defined as

#»c i,j :=
#»x i +

(
ri −

ξi,j
2

)
#»n i,j, (1.7)

which can be visualized in fig. 1.3.
One can also define the relative velocity of the collision at the instant t as

#»v i,j :=
#»v j − #»v i. (1.8)

Then, the relative normal velocity of the collision in that moment is merely the
projection of the relative velocity on the normal vector, that is:

vni,j := ( #»v j − #»v i) · #»n i,j, (1.9)

where the symbol “·” is used to denote the Euclidean scalar product. The relative
shear velocity of the collision in that moment can also be defined, but one must be
careful and also take into account the tangential motion at the contact point due to
the rotation of the particles. This leads to the following definition:

vsi,j (t) := ( #»v i (t)− #»v j (t)) ·
#»
t i,j (t)

− ωi (t)

(
ri −

ξi,j (t)

2

)
+ ωj (t)

(
rj −

ξi,j (t)

2

)
.

(1.10)

The definitions for the above quantities at the instant t can be easily extended
to vector functions of time. We will use the same notation for both.

1.1.3 Forces

A force is defined as a triple
(

#»

F , P, #»p
)
, where

#»

F : [0,∞)→ R2 is the (vectorial)
value over time of the force, P is a particle and #»p : R2 → R2 is the point in which
the force acts. We say that

#»

F acts on P at the point #»p .
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Before we proceed, an observation must be made. Generally, the function
#»

F is
what is meant when one talks about a force. However, the DEM model we use needs
these additional informations, which makes us opt to use the definition that has been
presented. Nevertheless, we will use both the symbol

#»

F when referring either to the
triple

(
#»

F , P, #»p
)

or to the first element of this triple, the function
#»

F : [0,∞)→ R2.
This will also happen with other physical quantities, e.g. torques.

In this work, there are only two types of forces: individual forces and contact
forces. The former are characterized by being caused by objects outside the scope of
the main model (e.g.: the Earth causing a gravitational force or a magnet causing
magnetic forces) while the latter arises from collisions between two particles. These
collisions are the focus of the DEM. There is only one type of individual force in
this work and, as such, we can write

#»

F i to designate the only individual force
#»

F
that acts on Pi. Since there is also only one contact force for each pair of particles,
we write

#»

F i,j to indicate the only contact force
#»

F that acts on Pi due to its contact
with Pj. The set of all forces acting on Pi is denoted by Fi.

Let Fi be an individual force. Then, its point of action is the center of the
particle Pi, i.e.,

#»p := #»x i. (1.11)

If
#»

F i,j is a contact force, then its point of action is the contact point instead. For-
mally:

#»p := #»c i,j. (1.12)

The vector #»c i,j can be visualized in fig. 1.3. We will discuss more about forces in
section 1.3.

1.1.4 Torques

A torque can be defined as a double (τ, P ), where τ : [0,∞)→ R is its magnitude
and P a particle. It is also said that τ acts on P .

The only torques acting on the particles in this work are due to contact forces.
Given a force

(
#»

F , P, #»p
)
, let

#»

l (t) := #»x (t)− #»p (t), where #»x is the position of P . The

vector
#»

l (t) is called the lever vector and is illustrated in fig. 1.3. Given an instant
t ∈ [0,∞), the Cartesian coordinates of

#»

F and
#»

l are denoted by
#»

F (t) = (Fx, Fy)

and
#»

l (t) = (lx, ly), respectively. Then, this force produces a torque acting on P
with magnitude

τ (t) = lxFy − lyFx. (1.13)

1.1.5 Motion

The movement of the particles is determined by Newton’s laws of motion. As
the reference frame upon which the whole simulation is measured is an inertial one,
the first law is a mere consequence of the second. The latter states that∑

#»
F∈Fi

#»

F = (mi
#»v i)

′. (1.14)
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Figure 1.3: The lever vector and the contact point of a collision.

Since each particle has a constant mass, the above equation may be simplified to∑
#»
F∈Fi

#»

F = miai. (1.15)

The second Newtonian law of motion also describes the rotational dynamics of
objects - particles in our case. Already taking into account the constant moment of
inertia in this model, it can be formulated as∑

τ∈Ti

τ = Iiαi, (1.16)

where Ti is the set of all torques that act on this same particle.
Newton’s third law is incorporated in this model by making all contact forces

appear in pairs with opposite direction, each acting on one of the particles that
partake in such collision. This effect doesn’t happen in individual forces because it
is assumed that the source of the force is outside of the scope of this model (e.g.:
the Earth for gravitational forces or a magnet for magnetic ones).

Finally, to solve the ODEs in eqs. (1.15) and (1.16), one would have to choose
an adequate numerical method. In section 1.4, we introduce our choices of numer-
ical methods for the present work. Then, in section 2.1, we establish some issues
associated with each of these numerical methods.

1.2 Spatial hash

As mentioned previously, one of the drawbacks of the DEM is its computational
cost. Since the DEM requires that each individual particle in a system is simulated,
this means that whenever a contact force

#»

F i,j is calculated, the program must be
able to verify whether Pi and Pj are in contact. A naive implementation would check
each possible pair of particles to determine their collision status. This algorithm is
O(n2) with the number of particles, which would make simulating thousands or tens
of thousands of particles impossible.
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Fortunately, there are more efficient algorithms, such as the Verlet list algorithm,
which was introduced in [81]. The Verlet list algorithm maintains, for each particle,
a list of its closest neighbors and periodically updates theses list. In general, this
algorithm is O(n log (n)) with the number of particles.

Another algorithm for neighbor finding which has become mainstream in DEM
is the cell linked-list algorithm, which was first introduced in [2]. In this algorithm,
the domain of the simulation is partitioned in axis-aligned square regions in such a
way that only the particles in adjacent regions need to be checked for collision. In
general, this algorithm is O(n) with the number of particles. A comparison between
the Verlet list and cell linked-list algorithms can be found in [21].

A third noteworthy neighbor finding algorithm uses a quadtree to subdivide
the domain of the simulation according to the presence and density of particles in
each region of the domain of the simulation. It was first introduced in [24] and is
particularly well suited for simulations where particle are sparsely distributed in the
domain or when there are significant differences in the size of the particles.

In this work, we have implemented an algorithm similar to the cell linked-list
algorithm, which is popularly called “spatial hash”.

1.2.1 Preliminaries
Let i be the index of a particle in the simulation. The axis-aligned square inside

which this particle is inscribed is called its “bounding box”. We will call the four
points in the corners of the bounding box simply as “corners” or “the corner of the
particle i”. The bounding box of a particle, as well as the corners of the bounding
box, can be visualized in fig. 1.4.

Figure 1.4: A particle (in blue), its bounding box (in black) and its corners (in red).

Let
L := 2max

i∈I
ri, (1.17)

where I is the set of all indexes of particles. Given #»z = (z1, z2) ∈ R2 such that
z1, z2 > 0, the vector #»z⌊ ∈ Z2

+ defined as

#»z⌊ :=
(⌊z1

L

⌋
,
⌊z2
L

⌋)
. (1.18)

is called the grid-coordinates of #»z . If the positive quadrant of the R2 plane is
partitioned into cells shaped as L-sided axis-aligned squares, then #»z⌊ would be the
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integer coordinates of the cell inside which #»z is. In this way, each different grid-
coordinate #»z⌊ is corresponded in a one-to-one fashion to the cell whose bottom left
corner is at L #»z⌊. A cell is said to “contain” #»z if the grid-coordinates of #»z are the
same as that of the cell. The relative (to the cell in which is is contained) coordinates
of #»z are given by #»z − L #»z⌊. Note that, once #»z⌊ is known, calculating these relative
coordinates are computationally inexpensive, since the expression avoids divisions.
The grid, grid-coordinates and relative coordinates are illustrated in fig. 1.5.

Figure 1.5: A particle in the cell representation of the system. The grid-coordinates of a
corner is the ordered pair on the cell where said corner is located. In red, the remainder-
coordinates of the corners are displayed as coordinates with respect to the cell inside which
the corner is.

1.2.2 The algorithm

Initialization

The goal of the initialization procedure described below is to first populate a data
structure with the positions of each corner of each particle. This data structure must
be organized in such a way that each cell has its own bucket and that it is possible to
retrieve the contents of a bucket with the grid-coordinates of the cell is is associated
with in O(1) time. The initialization procedure is defined as follows:

I.1 For each cell, allocate a contiguous block of memory 1. Each such block of
memory corresponds to a cell in a one-to-one fashion and will be designated
as “the block of memory associated of the cell”.

I.2 Let i be the index of a particle in the simulation. Convert the coordinates of
its corners into grid-coordinates.

1This means a block of memory in which memory addresses are sequentially ordered. An
example of such contiguously allocated memory is the C++ std::vector<T> data structure, which
is what was actually used in our code. This sequential order is important because accessing memory
that is contiguously allocated is faster, due to cache pre-fetching. General single core optimization
techniques and memory architecture are not the main focus of this work though, so we will not go
further on justifying this. The interested reader may find more information on [26].



24 | Computer simulations of granular materials

I.3 The grid-coordinates of each cell must be stored in memory and, if the index
of the particle is know, its access complexity must be O(1) with the number
of particles.

I.4 Store i in the block of memory of each cell that contains at least one of the
corners of the particle.

I.5 Repeat for all particle indexes.

This algorithm simply maps each corner of the bounding box of each particle to
the cell inside which it is located.

Retrieval

When a request for the neighbors of a particle (let us assume the index of this
particle to be i) is made, the algorithm executes the retrieval procedure described
below. In this procedure, the possible candidates are identified by checking the cells
inside which the corners of particle i are. These candidates are then grouped in
a list, sorted and the redundant copies among them are eliminated from this list,
which is the final product of the procedure. The steps of the retrieval are:

R.1 Convert the coordinates of the corners of particle i into grid-coordinates.

R.2 Create a contiguous block of memory (this needs to be done only once for each
particle, usually during the start-up of the software).

R.3 Use the grid-coordinates of the corners to access the block of memory of each
cell and copy the indexes in that block of memory over to the block of memory
created in the last step. Care must be taken to avoid accessing the same cell
more than once, in cases where some of the corners of particle i have the same
grid-coordinates.

R.4 Sort this block of memory and then remove repeated indexes. The contents of
this block are the indexes of the desired neighbors.

This algorithm uses the previous mapping as a quick way to retrieve the neighbors
of particles. The sorting and removal of duplicates are the real bottleneck in this
implementation of the search for neighbors and this is due to the fact that multiple
cells could contain different corners of the same particle, which means that the
list obtained from step 3 could have repeated copies of some index. This, if left
alone, could cause the same collision to be computed twice, which would not only be
redundant and a waste of computational power, but it would also cause the dynamics
of the system to misbehave. This misbehavior would be caused by applying the same
force multiple times.

Maintenance

During a simulation, particles are constantly moving. Invariably, the corner of a
particle will cross the boundary between cells. If these crossings are not accounted
for, the data structure, populated in the initialization of the algorithm, quickly
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becomes obsolete. To avoid this, that data structure needs to be maintained, i.e.
the positions of the particles must be updated inside the data structure.

In the Verlet list and cell linked-list algorithms, a similar maintenance is required
and it is implement by fully repopulating the respective data structures after a fixed
number of steps. One of the main differences of our implementation from those
algorithms (together with the usage of corners) is that our implementation never
repopulates the entire data structure. Instead, it quickly detects when a particle
has crossed between cells and updates only the information regarding that particular
particle in the data structure.

The maintenance routine is designed as follows:

M.1 Let i be the index of the particle whose movement has just been calculated.
Calculate the coordinates of the corners of particle i relative to the cell each
corner is in. It is important that the grid-coordinates used for this computation
have not been recalculated since the calculating of the movement of particle i
has finished.

M.2 If each entry in this vector is between 0 and L, calculate the movement of
other particle and restart the procedure.

M.3 If some entry of that vector is negative or bigger than L, use the grid-coordinates
of the corners of the particle i to access the block of memory associated with
each cell that contains at least one corner of this particle and remove all of
copies of i from each of them.

M.4 Recalculate the grid-coordinates of the corners of particle i.

M.5 Insert i in the block of memory of each cell that contains at least one of its
corners.

M.6 Calculate the movement of other particle and restart the procedure. Repeat
until the movement of all particles has been processed for this step.

This is the most crucial part of the whole neighbor-finding algorithm. Notice that
calculating grid-coordinates is expensive, since it involves floating-point division.
To avoid this becoming a performance bottleneck, the grid-coordinates are only
calculated when a particle leaves its current cell. The computation performed in
step M.1 is, effectively, a cheap way to check whether the particle has left the cell
it was in previously, since it only involves subtraction and multiplication. Then, if
any of the corners of the particle has changed cell, the rest of the algorithm just
removes its index from all cells, recalculates its grid-coordinates and puts back the
index of the particle in the correct cells.

1.3 Force Schemes

The choice of contact force schemes influences the dynamic of two-particle col-
lision as well as the overall behavior of a collapse. In this section, all the major
force schemes that we considered for this work will be presented. All of these force
schemes are summarized in [71].

To keep consistency, we shall denote the component of
#»

F i,j (t) in the direction of
#»n i,j (t) as

#»

Ni,j (t) and the component of
#»

F i,j (t) in the direction of #»
t i,j (t) as

#»

T i,j (t).
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1.3.1 Normal force schemes

In a collision, a force is said to be normal if it is parallel to the normal vector
of the collision. Normal force schemes are usually associated with the inelastic
deformation of the material that composes the particles involved in the collision.

Because of the inelastic nature of the deformation, normal force commonly have
two components: an elastic component and a viscous (or damping) component. The
viscous component is characterized by a dependence on the velocities of the particles
involved in the collision. Consequently, it is responsible for dissipating the energy of
the particles, slowing their movement down. The elastic component does not have
an explicit dependence on the velocity and is energy conservative. It is responsible
for the bulk of the magnitude of the normal force and the eventual separation of the
particles.

The spring-dashpot model

The simplest normal force scheme is the spring-dashpot model, force expression
is

#»

Ni,j (t) =

{
0, if Pi and Pj are not in contact in the instant t(
−knξi,j (t)− γnξ′i,j (t)

)
#»n i,j (t) , otherwise,

(1.19)

where kn, γn ∈ (0,∞) are parameters of the model. The former is called the elastic
constant and, the latter, damping constant.

There are other force schemes that better match experimental data. Nonetheless,
a reason one might prefer this scheme is the fact that an analytical solution for a
normal collision between two particles interacting via this force scheme can be easily
obtained [71] and, in such collision, both the contact duration and coefficient of
restitution are independent of both particles velocities.

Figure 1.6: Force as a function of time for a normal collision in the spring-dashpot force
scheme. The insets zoom on the beginning and end of the collision. Here m = 1.48 ×
10−4 kg, kn = 7.32× 106N/m and γn = 2.06 kg/s.

On the other hand, one reason one might want to avoid this model is its behavior
at the beginning and end of the collision, as shown in the insets of fig. 1.6. There are
discontinuities at both moments, due to the fact that normal relative velocities are
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not zero at these moments. Also, at the end of the collision, note that the normal
force becomes attractive, which has no physical meaning.

Hertz’s model with linear damping

A less simplistic approach is given by Hertz’s contact mechanics [34]:

#»

Ni,j (t) =

0, if Pi and Pj are not in contact in the instant t(
−4

3
Ei,jri,j

1
2 (ξi,j (t))

3
2

)
#»n i,j (t) , otherwise,

(1.20)

where
ri,j =

1
1
ri
+ 1

rj

. (1.21)

The term Ei,j ∈ (0,∞) on the formula above depends on the Young moduli and
Poisson ratios of the materials of both particles. This dependence on the physical
properties of the materials of the colliding particles can be considered an advantage
of this force scheme, since it allows for a more direct translation of experimental
data to the simulations.

As simulations in this work are treated as though the granular media is homo-
geneous, the sub-indexes can be dropped, i.e. Ei,j = E. It is usual then to write

k̃n =
4

3
Eri,j

1
2 . In this work, we decided to make a further simplification and assume

k̃n be constant, i.e., independent from ri and rj. Such hypothesis would be ideal for
a particle assembly close to monodispersity.

The above force scheme, however, is not dissipative, which does not reflect the
actual physics of most granular collapses. To solve this issue, a linear viscous term is
usually added in an ad-hoc fashion. Then, the new expression for the force scheme
is

#»

Ni,j (t) =

{
0, if Pi and Pj are not in contact in the instant t(
−k̃n(ξi,j (t))

3
2 − γnξ′i,j (t)

)
#»n i,j (t) , otherwise.

(1.22)

Unfortunately, the inclusion of this linear damping results in the same issues
that were present on the spring-dashpot model, i.e. the discontinuities at both ends
of the contact and the attractive behavior of the normal force in the last moments
of the collision. This can be observed in the insets of fig. 1.7.

Kuwabara-Kono model

More recently, Goro Kuwabara and Kimitoshi Kono [49] proposed to add a non-
linear damping term to the elastic Hertzian force. The result is as follows:

#»

Ni,j (t) =

{
0, if Pi and Pj are not in contact in the instant t(
−k̃n(ξi,j (t))

3
2 − γ̃nξ′i,j (t) (ξi,j (t))

1
2

)
#»n i,j (t) , otherwise,

(1.23)

where k̃n is the same as in the Hertz model and γ̃n is a constant. Note that in the
original paper, γ̃n depends on the radii of the particles and the two coefficients of
bulk viscosity, but we opted to treat it as a constant for added simplicity.
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Figure 1.7: Force against time for a normal collision in the Hertz force scheme with
linear damping. The insets zoom on the beginning and end of the collision. Here m =
1.48× 10−4 kg, k̃n = 9× 107N/m1.5 and γn = 3.5× 10−1 kg/s.

Figure 1.8: Force as a function of time for a normal collision in the Kuwabara-Kono
force scheme. The insets zoom on the beginning and end of the collision. Here m =
1.48× 10−4 kg, k̃n = 9× 107N/m1.5 and γ̃n = 1.90× 102 kg/(m0.5 s).

Although the original intent of [49] was to extend the original Hertzian model
to account for dissipation due to the visco-elastic property of the materials, a useful
side effect for our purposes is that it fixes the discontinuities that were present in
previously discussed models. However, there still is a residual attractive force at the
end of the collision, although with a much lesser magnitude. These two properties
can be seen in the insets of fig. 1.8.

Another problem with this model that is not immediately obvious and that will
be relevant later in this work is that the derivative of the force with respect to time
is unbounded when ξi,j (t)→ 0, which happens at the start and end of each collision.
This is due to the term (ξi,j (t))

1
2 in the expression of the force, since its derivative

with respect to time will have the expression (ξi,j (t))
− 1

2 in it, which is not smooth
when ξi,j → 0.

Nonetheless, this model is widely used because it reproduces adequately the
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behavior of normal collision of real particles [49], [71], [75].

1.3.2 Tangential forces

In counterpart to the normal forces, a force in a collision is said to be tangential
if it is parallel to the tangential vector of the collision. Tangential force schemes are
usually associated with the friction caused by the shearing motion of the surfaces of
the contacting particles. Because of this, tangential force schemes are dissipative.

Cundall-Strack model

The Cundall-Strack model [17] is the de facto friction model for most DEM
simulations. This is due to the fact that it correctly simulates the stability of a pile
of grains under its own weight via internal friction, whereas other simpler models
fail to reproduce this simple experiment.

If the collision between Pi and Pj starts at some instant t0 ∈ (0,∞), we define

ζi,j (t) :=

∫ t

t0

vsi,j
(
t̃
)
dt̃. (1.24)

The quantity ζi,j (t) is called the total tangential displacement of this collision at
the instant t and its magnitude is the total distance across which the surface of one
particle has dragged along the surface of the other from the start of the collision
until the instant t. The importance of this value is in determining the compression
of an imaginary tangential spring of stiffness ks ∈ (0,∞) (the constant ks is also
referred to as the tangential stiffness of the force scheme). This tangential spring
is allowed to compress until the force it exerts is equal to the Coloumb limit of
µ∥ #»

Ni,j (t)∥, where µ ∈ [0, 1] is called the coefficient of friction. The force exerted by
this tangential spring is the tangential force experienced by Pi in the Cundall-Strack
force scheme, and it is mathematically described by:

#»

T i,j (t) = −min
{
|ksζi,j (t)| , µ

∥∥∥ #»

Ni,j (t)
∥∥∥} sign (ζi,j (t))

#»
t i,j (t) . (1.25)

One important observation is that this spring must be allowed to instantly de-
compress whenever the value of ∥ #»

Ni,j (t)∥ decreases.
The introduction of this tangential spring plays two major roles in the Cundall-

Strack force scheme: it provides a smooth transition of the tangential force from a
resting regime to a moving, and it allows particles to “remember” the history of the
collisions in which they are taking part of, even when the relative tangential motion
of these collisions has already ceased. This last characteristic is what allows the
Cundall-Strack force scheme to correctly simulate the stability of a pile of grains.

1.4 Numerical integration methods for the equa-
tions of motion

Before we begin, a quick note: in what follows, we will use the term “method”
or “numerical method” as synonyms to “numerical integration methods”.
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For each particle, the ODEs given by eqs. (1.15) and (1.16) must be solved. In
this section, numerical methods to find approximations to their solutions will be
presented. The description of the methods in the following will focus on eq. (1.15),
because eq. (1.16) is analogous.

Before we introduce the aforementioned numerical methods, some simplifications
in the notation of eq. (1.15) ought to be made. First, if it is agreed that all the
variables in the equation refer to the properties of the same particle, then the sub-
indexes (that specify such particle) in eq. (1.15) may be dropped, that is:∑

#»
F∈F

#»

F = m #»a . (1.26)

Then, one can assume that the vectorial nature of the equation is evident and omit
the arrows above the vectorial variables:∑

F∈F

F = ma. (1.27)

The summation symbol can be dropped and F now refers to the sum of all forces
on that particle:

F = ma. (1.28)

Finally, we write a as x′′:
F = mx′′. (1.29)

Now, eq. (1.29) is a second order ODE, whereas the usual numerical methods
are obtained for first order ODEs only. However, one can transform eq. (1.29) into
a system of two first order ODEs by noting that v = x′. Then, the first order form
of eq. (1.29) is x

′ = v

v′ =
F

m
.

(1.30)

Each of these ODEs must also have an initial condition, which is usually the initial
position and velocity of the particle at the start of the simulation. Formally:

x′ = v

v′ =
F

m
x (0) = x0

v (0) = v0,

(1.31)

where x0, v0 ∈ R2. Finally, to avoid carrying m around, we consider that it is
incorporated in the expression of F :

x′ = v

v′ = F

x (0) = x0

v (0) = v0,

(1.32)
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1.4.1 Explicit Euler method
We start our discussion with the explicit Euler method, because it is the simplest

method to integrate ODEs. In this method, the time domain is partitioned into
equidistant moments, defined as

tn = n∆t, (1.33)

where ∆t ∈ (0,∞) is the time step and n ∈ N. The functions x, v and F are
approximated at each time tn and these approximations are denoted by xn, vn and
Fn, respectively. Then, the recursive scheme for the explicit Euler method is given
by {

vn+1 = vn + Fn∆t

xn+1 = xn + vn∆t.
(1.34)

To find Fn, one uses the values of xn and vn (which are already known by the
time Fn needs to be calculated) and the expression of the chosen force scheme (see
section 1.3 for more information). The initialization of this method is done via the
initial conditions provided by the ODE.

This is a first order method [39] and, additionally, presents a numerical artifact
whose manifestation in DEM is as if energy is being injected into the system at every
step it is simulating, which leads to a very poor performance in energy conservation
[33]. However, this last fact is not a major problem for very dissipative systems, such
as collapsing columns of grains. Since these columns are the focus of this work, this
alone is not enough reason to discard the explicit Euler method. More important,
though, is the fact that this method probably is the most used among the ones we
will present, mostly because of its simplicity. Thus, it would be a mistake not to
include it in our analyses.

1.4.2 Symplectic Euler and leapfrog methods
The symplectic Euler method is very similar to the explicit Euler method. In

fact, the only difference in its recursive scheme is the use of vn+1 in the computation
of xn+1, instead of vn. Thus, this is how its recursive scheme looks like:{

vn+1 = vn + Fn∆t

xn+1 = xn + vn+1∆t.
(1.35)

Despite this seemingly small change, this method achieves a much better energy
conservation then the explicit Euler method, even if it is still only a first order
method [33].

Another method that is closely related to the symplectic Euler method is the
leapfrog method. In this method, the position and the velocity of the particles are
approximated at staggered moments in time. More precisely, define

tn+ 1
2
:=

(
n+

1

2

)
∆t (1.36)

and
tn− 1

2
:=

(
n− 1

2

)
∆t, (1.37)
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where n ∈ N. Then, the leapfrog method only approximates the velocity v at the
moments given by eq. (1.36), and those approximations are denoted by vn+ 1

2
or

vn− 1
2
, respectively. Meanwhile, the positions x are still approximated only at the

same points as the symplectic Euler method. Thus, the leapfrog method produces
a sequence of approximations such as v 1

2
, x1, v 3

2
, x2, v 5

2
, . . .

With the notation now out of the way, the recursive scheme for the leapfrog
method is: {

vn+ 1
2
= vn− 1

2
+ Fn∆t

xn+1 = xn + vn+ 1
2
∆t.

(1.38)

Note that if one naively sets v− 1
2
= v0, then this method becomes the symplectic

Euler method. As such, to fully harness the benefits of the leapfrog method, one

must find v at t− 1
2

and set v− 1
2
= v

(
t− 1

2

)
= v

(
−1

2
∆t

)
. This, however, may not

be trivial and makes the initial conditions depend on the time step.
In addition, caution must be taken in evaluating Fn. The leapfrog method sup-

poses that F does not depend on v. If it does (as is the case for the collapses in this
work), one cannot properly evaluate Fn, since the approximated value of v at tn is
not provided by the algorithm. This is a major problem that we will not address in
the present work.

Under the hypotheses established above, the leapfrog method is of second order
[33]. However, if F depends on v, then using vn− 1

2
as an approximation for vn yields

a first order method.

1.4.3 Verlet’s method for damped systems

The Verlet family of integration methods was first used to predict the motion of
planets over long periods of time [33]. The energy conservation properties of these
methods play very well with this kind of application. Although they are named after
professor Loup Verlet, similar methods were mentioned by Sir Isaac Newton himself
in his Principia. Verlet actually rediscovered the method that he had “developed”
in many pieces of classical literature, e.g. [76].

The recursive scheme of the most classical method of this family, which is com-
monly referred to as “the” Verlet method, is

xn+1 = 2xn − xn−1 + F (xn)∆t
2, (1.39)

where the notation abuse ∆t2 = (∆t)2 is used. Note that:

• The velocity of the particle is not explicitly integrated. Instead, when needed,
it can be approximated by a centered finite difference.

• This method utilizes the last two previously calculated positions to determine
the following position, while the other methods presented up to now in this
work only use the position calculated immediately before.

As the leapfrog method (which is also a member of the Verlet family of methods),
the classic Verlet method is of second order. However, both the leapfrog and the
classic Verlet methods lose accuracy when the value of F is dependent of the velocity
v of the particle. The Verlet method for damped systems solves this issue. It does
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so by first using the leapfrog method to find an approximation for xn+1, denoted by
x̂n+1. Then, it estimates v at tn via a centered finite difference of second order. It can
then calculate Fn with enough precision so that performing another leapfrog method
with this newly calculated value of F yields a second order overall approximation,
despite the dependence of F on v. In a recursive scheme, the method looks like this:

v̂n+ 1
2

= vn− 1
2
+ F

(
tn, xn, vn− 1

2

)
∆t

x̂n+1 = xn + v̂n+ 1
2
∆t

vn =
x̂n+1 − xn−1

2∆t
vn+ 1

2
= vn− 1

2
+ F (tn, xn, vn)∆t

xn+1 = xn + vn+ 1
2
∆t.

(1.40)

Even though this is a second order method, the problem associated with the

initial condition v

(
−1

2
∆t

)
, which was an issue of the original leapfrog method, is

still present.
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Chapter 2

Validation of the implementation

2.1 Validations for binary collisions

In order to certify that no mistake was made in our computational implementa-
tion of the DEM and related concepts, validations were performed. Some of these
validations were split in two groups to be displayed in this work: validations for one
or two particles and validations for entire collapses (with hundreds of particles). In
this section, the validations for scenarios where only one or two particles were used
are presented. The validations for column collapses are reported in section 2.2.

Section 2.1.1 introduces the coefficient of normal restitution, the dimensionless
initial tangential velocity and the dimensionless final tangential velocity. Then, vali-
dations of the behavior of these quantities during collisions in simulations performed
with our implementation are given. Some of these collisions were normal and others
were tangential. In section 2.1.2, a technique for validating integration methods is
presented. Afterwards, the validation of these methods are shown for simulations in-
volving a single particle. Finally, their behavior during binary normal and tangential
collision is shown and discussed.

2.1.1 Physical validations

The reference against which we validated the physical behavior of our simula-
tions was [71]. The data includes both theoretical results and numerical results.
The simulations performed for this purpose used the Kuwabara-Kono normal force
scheme, described in section 1.3.1, with the Cundall-Strack tangential force scheme,
described in section 1.3.2. The values for the parameters used in these force schemes,
as well as for other parameters for the simulation, can be found in table 2.1.

Table 2.1: Values of the parameters used to perform the simulations used for validation
of physical behavior of the binary collisions.

Particles Normal Forces Tangential Forces Simulation
ρ = 1.3× 103 kg/m3 k̃n ≈ 9× 107N/m1.5 ks ≈ 9.4× 1010N/m ∆t = 2−23 s

r = 3mm γ = 1.9× 102 kg/(m0.5 s) µ = 0.25
(
≈ 1.19× 10−7 s

)

35
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Normal collision

If Pi and Pj are a pair of particles colliding during (t0, tf ), one can then define
the coefficient of normal restitution of this collision as

en := −
∥∥ #»v n

i,j (tf )
∥∥∥∥ #»v n

i,j (t0)
∥∥ . (2.1)

The coefficient of normal restitution intrinsically entangles all the properties of
the particles and all parameters associated with normal forces. This makes it a good
choice to validate the physics of the simulation of a binary normal collision.

To perform this validation, a simulation of two particles is assembled such that
they are initially lined up vertically and on the brink of contact (more precisely, the
distance between the centers of both particles is exactly twice their radius). This
alignment of the particles is necessary to ensure a perfectly normal collision. One of
the particles (in our case, the bottommost) is fixed in place for the duration of the
simulation, i.e. its position does not change. Then, an initial velocity is prescribed
to the particle that was not fixed. The direction of this velocity is towards the fixed
particle, i.e. in the normal axis joining their centers. The magnitude of this initial
velocity will be denoted simply by vi. Then, the simulation is allowed to start and
is stopped at some moment after the collision has ended. The final velocity of the
non-fixed particle is measured and the coefficient of normal restitution is calculated.
This process is repeated for a range of values for vi. The results for the different
numerical methods presented previously in section 1.4 can be seen in fig. 2.1.

Figure 2.1: Physical validation of normal collisions through the coefficient of normal resti-
tution. The values of the parameters can be found in table 2.1. The reference curve was
obtained in [71].

Note that in the leftmost graph of fig. 2.1, the curve of the simulation performed
via de explicit Euler method is significantly above the reference curve. This behavior
is expected. As mentioned before in section 1.4.1, the explicit Euler method has a
tendency to inject energy into systems. Since our choice of parameters leads to a
system with relatively little dissipation, the injected energy cannot be dissipated
fast enough and accumulates in the system, which then manifests as an increase in
the elasticity of the collision.

Tangential collision

Let Pi and Pj be a pair of particles colliding during (t0, tf ). If there exists a
t ∈ (t0, tf ) such that vsi,j (t) ̸= 0, then this collision is dubbed a tangential collision.
For these collisions, it is useful to define the dimensionless initial and final velocities.
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These are

ψi :=
vsi,j (t0)

vni,j (t0)
(2.2)

and

ψf :=
vsi,j (tf )

vni,j (t0)
, (2.3)

respectively. Then, one technique used in [71] to validate tangential collisions is the
comparison of the curve ψf versus ψi of simulations to the same curve obtained from
experimental data in [25]. We will validate our simulations by comparing the curve
ψf versus ψi from our simulations against the ψf versus ψi curve presented in [71].

To perform this validation, a simulation of two particles is assembled in such a
way that they are initially lined up horizontally and on the brink of contact. Then,
an initial velocity of magnitude 1m/s and in the direction of the positive x-axis is
prescribed to the leftmost particle, while the rightmost particle is initially at rest.
After this, the rightmost particle is shifted vertically by up to the sum of the radii
of both particles. In doing so, the particles stop contacting. This if fixed by shifting
again the rightmost particle to the left just enough that it contacts the leftmost
particle once again. This setup can be seen in fig. 2.2.

Figure 2.2: Setup for validation of tangential collisions.

The simulation is allowed to start and is stopped at some moment after the colli-
sion has ended. During this collision, the positions, velocities and angular velocities
of both particles are recorded at each instant. With this information, t0 and tf are
determined for this collision. Finally, ψi and ψf can be calculated. This process is
repeated several times but the position of the leftmost particle is shifted downwards,
so that the data can be collected for collisions with different degrees of obliqueness.
The results for each numerical method can be seen in fig. 2.3.

2.1.2 Method validations

One common technique to validate the implementation of a numerical method
used to perform the integrations of a given set of equations is to check the order of
the implementation against the theoretical order of the method.

A way to use this technique requires one to run several simulations with different
time steps but otherwise identical parameters. It is imperative that these simulations
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Figure 2.3: Physical validation of a tangential collision. Each red point represents a single
collision and their obliqueness increases with ψi. The values of the parameters can be
found in table 2.1. The reference curve was obtained in [71].

each last for the exact same physical time. Then, for each simulation, the value of
∆t and of the last value assumed by some variable which was integrated via the
chosen method need to be recorded as a pair. Let us call these values as z∆t. One
must then choose a reference value z̄, that is, a value against which the other values
of z∆t will be compared. Afterwards, calculate |z̄− z∆t| (which will be simply called
“error” in the plots showing order validation) for each ∆t and fit this data to a power
law of the form

a∆tb, (2.4)

via a and b. The value of b is (up to the margin of error) the order of the imple-
mentation. If b is sufficiently close to the theoretical order of the method, one can
consider the implementation validated. Otherwise, either some necessary hypotheses
regarding the chosen method was not observed or the implementation is faulty.

However, some care must be taken to avoid common pitfalls:

(i) The choice of the data interval where the fit is to be performed. For values
of ∆t that are not sufficiently small, the apparent order of the method can
fluctuate. This happens because the grid in which the functions (in this case,
forces) are evaluated is still too coarse when ∆t is big, so the method may not
capture the adequate behavior of the functions that a finer grid will capture.

(ii) On the other hand, one must avoid using values of ∆t that are exceedingly
small. This is because the reduction in the time step causes the number of
steps necessary to fully simulate the same physical time to increase. If the
number of steps in a simulation is too big, the accumulation of errors due to
floating point arithmetic surpasses the truncation error of the method.

(iii) Ideally, the value for z̄ should be chosen from an analytic solution to the
problem. However, analytic solutions have not been found for most of the
problems we simulate. In this case, one can choose a value among the z∆t.
When doing so, one should choose the value associated with the smallest ∆t
that has not yet been severely contaminated by accumulated floating point
errors. This might not be trivial.

Position of a single particle

We start by validating the order of a single coordinate of the position #»x of a
lone particle on which a force acts. More precisely, the force acting on the particle
has constant direction and magnitude F (t) = 1+sin (t), measured in Newtons. The
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particle is initially at rest. Other parameters for the simulation can be found in
table 2.2.

Table 2.2: Values of the parameters used to perform simulations for order validation of
the linear and angular motion of single particles.

Particles Simulation
ρ = 2.500× 103 kg/m3 tf − t0 = 2−13 s

r = 5× 10−1m
(
≈ 1.22× 10−4 s

)
The reference value for x is the value of the analytic solution to eq. (1.15) at

t = 2−13 s. Any initial position for the particle may be used as initial condition to
eq. (1.15), and, since the particle is at rest, x′ (0) = 0. The plotted results are shown
in fig. 2.4.

Figure 2.4: Order validation of the position of a single particle. The values of the param-
eters can be found in table 2.2.

Note that both the explicit and symplectic Euler are O(∆t) methods, whereas
the Verlet method for damped systems is O(∆t2). Also, in the rightmost plot of
fig. 2.4, there are points which form a seemingly random pattern as ∆t decreases.
These points, which appear when the time step is below, approximately, 1× 10−4 s,
are caused by the accumulation of floating point errors surpassing the truncation
error of the method. It only happens in that specific plot because the Verlet method
for damped systems is a second order method, which means that its truncation error
decreases faster then the other two methods plotted (note the y-axis range of the
plots).

Accumulated angle of rotation of a single particle

Even though the law that describes the angular motion of particles is similar to
that of linear motion, they both are individually implemented in our software, which
means that the order of the method performing them must be validated separately.

In this case, the variable whose order will be validated is the accumulated angle
of rotation θ. A simulation with a single particle at rest and with no angular motion
is assembled. A prescribed torque (which, as an exception to what was said before,
does not come from a force) imposed on this particle. The magnitude of this torque
is τ (t) = 1+sin (t), measured in Newtons. Other parameters for the simulation can
be found in table 2.2. Keeping the analogy to the linear case, the reference value for
θ is the value of the analytic solution to eq. (1.16) at t = 2−13 s. The plotted results
are shown in fig. 2.5.
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Figure 2.5: Order validation of the angular displacement of a single particle. The values
of the parameters can be found in table 2.2.

Note that all the methods behave similarly as in the previous section. Also,
the random pattern found in fig. 2.4 was that caused by the accumulation of errors
related to the floating point format is not present in fig. 2.5. This is due to the fact
that the initial angle of the simulation is θ = 0, while in the validation for the linear
order, the initial position was x > 1. By design, the floating point format is more
precise for values near 0 than it is in other intervals, which justifies this difference.

Position in a binary normal collision

In order to better understand how the Kuwabara-Kono force scheme (see sec-
tion 1.3.1) interacts with each method presented in section 1.4, an order validation
was performed using data from a simulation of a binary collision. The parameters
used in the simulations necessary for this validation can be found in table 2.3.

To perform this validation, a simulation was assembled where two particles were
lined up vertically. Both particles had no angular motion and the bottommost
particle was fixed, i.e. its position did not change. The other particle had an initial
velocity with magnitude of 1m/s and in the direction of the particle in the bottom.
This setup guarantees a normal collision. The simulation is then allowed to run for
2−16 s (≈ 1.5×10−5 s). The variable whose order was checked is (a single coordinate
of) the position #»x of the moving particle. The results are presented in fig. 2.6.

Figure 2.6: Order validation of the position of a particle involved in a binary normal
collision. The values of the parameters can be found in table 2.3.

There are two unexpected behaviors in fig. 2.6. The first is the value of b in the
center plot of fig. 2.6, i.e. the symplectic Euler method. As mentioned before in
section 1.4.2, the symplectic Euler method is of first order. However, the value of
b found for our implementation is above this, at b ≈ 1.6. This can be explained by
the fact that the symplectic Euler and the leapfrog method differ only by the fact
the former is initialized with #»v (0) and the latter is initialized with #»v (−0.5∆t),
while their orders are one and two, respectively. Since there are no forces acting
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on each particle at the start of this simulation, #»v (0) = #»v (−0.5∆t). Then, in
the particular case of this validation, the symplectic Euler and leapfrog method
are one and the same. This behavior can be seen in fig. 2.7, where the validation
performed in section 2.1.2 was repeated for the symplectic Euler method, but the
initial velocity of the particle was set to #»v (−0.5∆t) (which could be easily done
because the analytic solution to that problem was known).

Figure 2.7: The velocity of the particle was set to v (−0.5∆t) instead of v (0) and then
simulated with the code responsible for the symplectic Euler method. The result indicates
second order accuracy with ∆t. This illustrates how the symplectic Euler and leapfrog
methods differ only by their initialization process.

This leads us to the second unexpected behavior: the value of b for the Verlet
method for damped systems and for the symplectic Euler method are both less
than two. For the former, b ≈ 1.52 and for the latter, b ≈ 1.6. For the symplectic
Euler method, the explanation is quite simple: in the collision that ensues, the forces
involved depend on the velocities of the particles, which breaks one of the hypothesis
(presented in section 1.4.2) that guarantees second other for the leapfrog method.

The same explanation cannot be used to justify the behavior of the Verlet method
for damped systems, since it explicitly addresses forces with velocity dependence. We
have strong evidence (see chapter 3) that this behavior is caused by the unbounded
derivative of the normal force at ξ = 0, which was discussed in section 1.3.1 and
can be visualized in fig. 1.8. We have nevertheless fixed this problem with a force
scheme which closely matches the Kuwabara-Kono force scheme but still mantains
order two when paired with the Verlet method for damped systems, which will be
introduced in chapter 5.

Note that the positions of these particles must be such that the distance between
their centers is exactly 2r. This causes the particles to be on the brink of contact, and
is necessary. Otherwise, the different time step sizes, which are not integer multiples
of each other, would cause the particle to traverse the distance to the other particle
in such a way that the first overlap between both particles does not consistently
diminishes with the time step. This causes an erratic behavior in the data which
makes determining the order of the implementation harder. One example of this is
shown in fig. 2.8.
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Figure 2.8: An example of an order validation where particles are not initially touching.

Position in a binary tangential collision

The last validation performed aims to understand the interaction between each
of the methods presented in section 1.4 and the combination of the Kuwabara-Kono
normal force scheme (see section 1.3.1) with the Cundall-Strack tangential force
scheme (see section 1.3.2). To do so, a simulation of a tangential collision was
assembled. The parameters of this simulation can be found in table 2.3

Table 2.3: Values of the parameters used to perform the simulations used for order vali-
dation of binary normal and tangential collisions.

Particles Normal Forces Tangential Forces Simulation
ρ = 1.9300× 104 kg/m3 k̃n ≈ 4.4× 1010N/m1.5 ks ≈ 2.4× 106N/m tf − t0 = 2−16 s

r = 1m γ = 5× 108 kg/(m0.5 s) µ = 0.6
(
≈ 1.5× 10−5 s

)
This simulation was constructed as follows:

• A particle at rest with no angular motion was created in the simulation. Let
index this particle by i.

• A second particle, indexed by j, was created at the position #»x j = #»x i +(√
3r, r

)
. This position puts the center of the particles at a 4.5◦ angle and

makes the particles be on the verge of contact (the reason why this is necessary
is explained in section 2.1.2). This particle also has no angular motion.

• An initial velocity of #»v j = − (1, 0)m/s was imposed on particle j.

• The simulation was then allowed to run for 2−16 s (≈ 1.5× 10−5 s).

Once again, the variable whose order was to be validated was the position. More
specifically, the first coordinate of the position of particle j. The results are presented
in fig. 2.9. The same behavior described in fig. 2.6 can be observed, and the same
explanations given in section 2.1.2 apply.
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Figure 2.9: Order validation of the position of a particle involved in a binary tangential
collision. The values of the parameters can be found in table 2.3.

2.2 Results for granular collapses

In this section, results that validate the granular collapses in our simulations will
be presented. Before that can be done, some definitions need to be introduced. We
will also take this opportunity to talk about the setup of a granular column.

All the column collapse simulations in this work use the explicit Euler method
(see section 1.4.1) and the Hertz normal force scheme with linear damping (see
section 1.3.1) together with the Cundall-Strack tangential force scheme (see sec-
tion 1.3.2). The values of all parameters can be found in table 2.4. Note that in any
single simulation, the radii of the particles differ slightly, to prevent the formation
of a crystallized lattice. Because of these, the value of r provided in table 2.4 is just
the average value of r among all particles of the simulation.

Table 2.4: Values for the parameters in simulations performed for this section.

Particles Normal Forces Tangential Forces Simulation

ρ = 1.300× 103 kg/m3 k̃n ≈ 7.3× 107Nm1.5 kt

k̃n
= 2/7 ∆t = 5× 10−7 s

r = 3mm γ = 3.5× 101 kg/s µ = 0.5

2.2.1 Definitions

The initial bi-dimensional column of particles is roughly an axis-aligned rectan-
gle. We say roughly because the column is composed of particles, whose geometry
is circular and, as such, cannot form a perfect rectangle. The column is defined by
its height h (i.e., its size in the y-axis) and its basal length L (i.e., its size in the
x-axis). With those quantities, one can define the aspect ratio of the initial column
as

a =
H

L
. (2.5)

The final deposit of a collapse is characterized by two commonly measured prop-
erties: the head height and the run out distance. The former can be written as h∞
and is the maximum vertical distance between all pair of particles that are in contact
with the vertical wall. The latter is the maximum horizontal distance between all
pair of particles that touch the base of fixed particles and remain part of the main
body of the collapse, i.e. are not alone or in isolated small clumps. The run out
distance will be denoted by L∞. These two properties are illustrated in fig. 2.10
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Figure 2.10: Visualization of h∞ and L∞. The particles crossed in red are not part of the
main body of the collapse and, therefore, are not counted in the determination of the run
out distance. This image is the result of the collapse of the column depicted in fig. 2.11.

One can then define the dimensionless counterpart to the head height as

h̄ =
h

h∞
(2.6)

and, similarly,

L̄ =
L∞ − L
L∞

(2.7)

to the dimensionless run out distance. These dimensionless quantities are often
called normalized head height and normalized run out distance.

2.2.2 Setup of initial conditions
A box, open at the top and with walls high enough to avoid spillage, is created.

The floor of this box is made of particles which are fixed in place, i.e., their position
does not change during the simulation. Their radius is equal to the infimum of
the interval from where the radii of the particles that will fill the box are taken.
This procedure serves the purpose of providing a more realistic friction between the
flowing particles and the surface. [41]

The box was filled by creating an organized grid of mobile particles with positions
slightly perturbed to avoid crystallization. The simulation is then allowed to run
until the total kinetic energy of each particle was less than 1× 10−6 J. Afterwards,
some particles at the top of the box were trimmed so that the desired aspect ratio
(see eq. (2.5)) is achieved. Since this removal of the top particles changes the forces
acting on the particles below them, the simulation was run again for 1000 steps so
that the decompression can take place before the actual collapse began.

Before initiating the collapse, by the removal of the right wall which held the
particles in place, we extended the “floor of fixed particles” far enough to prevent
particles from going out of bounds. An example of the final result of this setup is
displayed in fig. 2.11.

2.2.3 Results
Ten granular collapses were run, each with approximately 1000 particles and

with aspect ratios varying from 0.1 to 8. Additionally, one larger simulation was
run with approximately 2500 particles and aspect ratio 1.
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Figure 2.11: The initial condition of a column composed of roughly 1000 particles with
a = 1. The right wall has already been removed, so the column is ready to collapse. The
values of the parameters can be found in table 2.4. This image is the initial condition of
the deposit depicted in fig. 2.10.

Deposit profiles

The profile of a deposit consists of the shape formed by its outermost layer of
particles. In order to avoid drawing large number of particles when displaying mul-
tiple surface profiles together, a bezier-smoothed line generated from the positions
of the centers of the particles in the profile is used, as shown in fig. 2.12.

Figure 2.12: Illustration of a deposit surface and its bezier-smoothed surface line. All
surface profiles were treated this way.

Depending on the aspect ratio of the initial column, the profile of a deposit can
form one of two main shapes: trapezoidal and triangular. The trapezoidal archetype
is characterized by virtually no motion of the particles on the surface close to the
left wall. This results in a relatively flat top followed by a inclined slope. The aspect
ratio of the initial column seems to affect where the flat profile stops and the slope
begins. In our simulations, this has happened only to the columns with aspect ratio
0.5 or below, as seen in fig. 2.13.

On the other hand, in the triangular profile all particles in the surface of the
column undergo motion, which eliminates the flat top, leaving only a slope. In our
simulations, this has happened to all columns with aspect ratio above 0.5. Also,
as shown in fig. 2.14, the triangular archetype, when appropriately normalized by
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Figure 2.13: The 3 trapezoidal deposit profiles that formed from the 11 simulations that
we ran. The values of the parameters use in these simulations can be found in table 2.2.

their respective head height (h∞) and run out distance (L∞), seems to converge to
a “master” curve.

Figure 2.14: The normalized final profile of the collapses that follow the triangular
archetype. Note that they seem to converge into a “master” diagonal curve, plotted as a
heavy line. The values of the parameters use in these simulations can be found in table 2.2.

Comparison with physical results

We will use the experiments reported in [5] as a reference against which our
results will be compared. The results in [5] indicate that both the dimensionless
head height and dimensionless run out distance behavior change when the deposit
profile changes from trapezoidal to triangular profiles. It is also shown that this
transition happens when the aspect ratio is, roughly, 1.5, i.e., when a < 1.5 the
deposit profile is trapezoidal and when a > 1.5 it is triangular.

In our simulations, such finding was not able to be replicated. Instead, the
tipping point for the transition between profiles was a = 0.5. This discrepancy
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could be caused by the lack of friction in the vertical wall as well as the relatively
low amount of particles in the simulations and remains to be further investigated.

The results in [5] indicate that the head height follows a power law scaling with
the aspect ratio, given by

h

h∞
∼ λ1a

α1 , (2.8)

for a big enough to cause a triangular profile, where α1 ≈ 0.6 and λ1 is a positive
constant that depends on the material, mean radius etc. When fitting our data to
a power law, we found λ1 = 1.469± 0.074 and α1 = 0.606± 0.029, which indicates
that our simulations seem to be working correctly. This result can be seen in the
left plot of fig. 2.15.

On the other hand, [5] suggests that, for a > 2, the normalized run out distance
scales as

(L∞ − L)
L∞

∼ λ2a
α2 , (2.9)

where α2 = 0.9 ± 0.1 and λ2 is another constant that depends on the properties of
the particles. Our best fit was λ2 = 1.918±0.028 and α2 = 0.829±0.008, which falls
within the error margin. This result result can be seen in the right plot of fig. 2.15.

(a) (b)

Figure 2.15: Normalized head height (a) and normalized run out distance (b) as a function
of aspect ratio. The values of the parameters use in these simulations can be found in
table 2.2.

Note that there are two disjoint lines composing the plot in fig. 2.15 (b). This
is because the mechanism of collapse of the column changes as the aspect ratio
increases. The column fails through shearing when the aspect ratio is small (a < 2),
with the top corner continuously deforming until it becomes composed of only a few
particles. Meanwhile, for large (a > 2) aspect ratios, the top part of the column
falls mostly down and is then redirected horizontally through collision. As stated
before, the results obtained above are for this second case, when a > 2.
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Part II

Order of timestepping of DEM
with a nonlinear force model
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Introduction

As was seen in the previous part, the essence of the DEM algorithm lies in
the constitutive models of the interaction forces that happen during the contact
of particles. In standard dry flows of granular materials, two kinds of forces are
normally considered in the description of the contact [71]: elastic forces, that model
the restoring effects in the contact, and dissipative forces, that dissipate energy in
the contact. The most important dissipative force in granular materials is friction,
that is associated to the relative tangential motion of two particles. There are also
dissipative forces associated to the normal relative motion of the particles, along
the line joining their centers [71]. Friction forces, which are difficult to model [62],
are not the the focus of the remainder of this work and will not be discussed any
further.

The simplest normal forces that are used in DEM simulations are given by the
combination of a Hooke-like elastic force and a linear dissipation force [71]. The ap-
peal of this model, besides its simplicity, is the fact that many analytical solutions
related to the properties of the contacts between particles can be derived and they
can be used to guide the correct definition of the simulation parameters. Neverthe-
less, a nonlinear model based on the combination of a Hertzian elastic force [34] with
a nonlinear dissipation force [49] matches more closely the data obtained in experi-
mental results with a large range of particle properties [71], [75]. This model, which
is known as the Kuwabara-Kono force model, is at the heart of the first chapter of
this part.

The equations of motion of the particles, which derive from the application of
Newton’s laws of motion, in combination with the contact forces and other forces
such as gravity, for example, are often integrated in time with symplectic integrators
[33], [79], [87]. These methods, which were originally inherited from the Hamiltonian
systems found in molecular dynamics simulations, have also proven to be suitable
for dissipative systems such as granular materials. Other methods can also be suc-
cessfully used in DEM, such as Runge-Kutta [55], Euler and even implicit methods
[11]. Because of the smallness of the time-step that is needed for the DEM to be
physically sound [71], several stability studies were carried out to establish appro-
priate bounds for the selection of the time step [10], [47]. However, it seems that
the order analyses of the integration methods has not attracted the attention of the
community. This is precisely the aim of this work.

As noted on section 1.3, all normal force schemes considered in this work have
some sort of irregularity in the beginning and the end of a collision. In particular,
the Kuwabara-Kono force model (see section 1.3.1) introduces dissipation in the
collisions via a term that is proportional to the square root of the overlap between
the particles [49]. The local truncation error of the numerical integration algorithm
related to this term is, therefore, singular whenever the overlap between the particles
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is zero, that is, in the beginning and in the end of the collisions. This can be
seen in the insets of fig. 1.8. Therefore, it is not expected that the order of the
usual integration schemes used on DEM will be preserved when they are applied in
conjunction with the Kuwabara-Kono force model. For instance, in section 2.1.2, it
was noted that the Verlet method for damped systems (see section 1.4.3) failed to
deliver order two when subjected to a normal collision with the Kuwabara-Kono force
scheme. This fact seems to have gone unnoticed in the literature until very recently.
In fact, it was only when we were writing our findings up that we came across the
recent work [40], in which the authors identified that the order of integration was
reduced when the Kuwabara-Kono force model was used to simulate problems similar
to the Newton’s cradle. However, besides its identification, no formal justification
for the reduction of the order of the methods was presented in [40], and a numerical,
non-singular technique to account for dissipation in the system was proposed in
order to allow that the full order of the integration methods could be achieved in
their system.

In the first chapter of this part, we study the order reduction phenomenon that
is observed when the Verlet [33] algorithm is used in DEM simulations of granular
materials using the Kuwabara-Kono force model model. A simplified model, retain-
ing the essential features linked to this phenomenon, is proposed and analysed in
detail. We identify that the singular behavior of the first derivative of the non-linear
dissipation is the cause of the order reduction phenomenon. We then propose a reg-
ularization of the Kuwabara-Kono force model using the concept of mollifiers [23].
This regularized force model, which is non-singular in the beginning and in the end
of the collisions, allows the numerical integration to occur with the full theoretical
order of the Verlet method.

Inspired by this difference in order, we inquired what the effects of the order of
the method were on a macroscopic flow. As per usual, we used the collapse of a
granular column under the influence of gravity as our model flow. In the second
chapter of this part, we study the effects of different integration methods on the
trajectories of individual particles.



Chapter 3

The order of the leapfrog method
with the Hertz-Kuwabara-Kono
force scheme

3.1 Description of the problem

3.1.1 Normal collision between two particles
Consider two spherical particles, say P1 and P2, close to each other in a plane

perpendicular to the direction of gravity, in such a way that they evolve to a purely
normal collision, that is, a collision in which the relative motion of the particles
happens precisely along the axis defined by the centers of the particles. In this case,
the collision is free of any tangential forces.

The collision simulation is assembled in such a way that the two particles are
lined up along a reference axis. Both particles have no angular motion and one of
the particles is fixed, i.e. its position is not evolved in time. The center of the other
particle is placed at a distance r1 + r2 of the center of the fixed particle, with an
initial velocity of magnitude 1m/s and in the direction of the fixed particle. This
setup guarantees a purely normal collision. The simulation is then allowed to run for
105×2−13 s (≈ 1.2×10−2 s). The accumulated integration error of the position of the
moving particle is calculated and used to determine the order of the Verlet method
in eq. (1.40). Two such simulations were run, one using the Kuwabara-Kono force
model given in section 1.3.1, with parameters given in in table 3.1, and another one
where the purely elastic Hertz force model was used instead, i.e. γ = 0 in eq. (1.23).
The results are presented in fig. 3.1.

Table 3.1: Values of the material and model parameters used to simulate a binary normal
collision between two particles.

Particles Normal Forces Simulation
ρ = 19300 kg/m3 k̃n ≈ 4.4× 1010N/m1.5 tf − t0 = 105× 2−13 s

r = 1m γ ≈ 1.1× 109 kg/
(
m0.5s

) (
≈ 1.2× 10−2 s

)
The results of the order analysis depicted in fig. 3.1 reveal an unexpected be-

havior. When the purely elastic force model is used, the accumulated error in the
position decreases as O(h2), as it is expected when eq. (1.40) is used to integrate
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the motion of the particle. However, when the full Kuwabara-Kono force model was
used, the curve approximating the accumulated error in the position decreases as
O(h1.5), which does not agree with the expected order of the Verlet algorithm in
eq. (1.40).

The inclusion of the dissipation term in the model penalized the order of the
Verlet algorithm in eq. (1.40). The cause of this order reduction, therefore, has to
lie in the ξ1/2 term in eq. (1.23): at the beginning and in the end of the collision,
when ξ = 0, the term ξ1/2 no longer satisfies the Lipschitz condition, which is a
crucial hypothesis in the Picard-Lindelöf existence and uniqueness theorem [16] and
is used in the order analysis of several integration methods [4]. It seems that this
issue has not yet been observed nor discussed in the literature. Therefore, in order to
further study the origin of this order reduction, we propose to investigate a simplified
problem which retains the same problematic feature present in the force model given
by eq. (1.23).

Figure 3.1: Order analysis of the position of the moving particle involved in the binary
normal collision. The values of the parameters can be found in table 3.1. The usual Hertz
model has no damping term, which means that γ = 0 in eq. (1.23) in this case.

3.1.2 A simplified problem

In order to formally analyze the order reduction of eq. (1.40) caused by the
dissipation term in eq. (1.23), we devised a simplified problem which retais the
essential feature we believe is behind the issue identified in section 3.1.1. This
simplified model is given by {

y′′ (t) = y (t)q ;

y (0) = 0, y′ (0) = 1,
(3.1)

where q ∈ (0, 1). Note that the right hand side of the differential equation in eq. (3.1)
has unbounded derivative at t = 0. It is also important to point out that, since the
right-hand side of eq. (3.1) has no explicit dependency on y′, the Verlet method in
eq. (1.40) when applied to eq. (3.1) is equivalent to the standard leapfrog method
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[79]. Defining v = y′, it gives:{
vn+ 1

2
= vn− 1

2
+ yqn∆t;

yn+1 = yn + vn+ 1
2
∆t.

(3.2)

To verify that the penalization of the order is still present in eq. (3.1) for q ∈
(0, 1), the simplified problem was numerically integrated for different values of q
using the leapfrog method in eq. (3.2), initialized via the Heun method [79]. The
results are presented in fig. 3.2. One can observe that the order of 1.5 obtained in
fig. 3.1 also holds in the simplified model eq. (3.1) when q = 0.5. In fact, the results
presented in fig. 3.2 indicate that the numerical solution of eq. (3.1) via the leapfrog
method gives an error decreasing as h1+q.

(a) (b)

Figure 3.2: Order analyses of the numerical solution of eq. (3.1) via the leapfrog method
given in eq. (3.2), for different values of q. In (a), the error for the variable y is presented
and, in (b), the error for the v variable is presented.

Therefore, the simplified problem presented in eq. (3.1) retains the same prob-
lematic feature observed in the Kuwabara-Kono force model, eq. (1.23), and its
enhanced simplicity allows for a more in-depth analytical investigation of the error
bounds expected when it is integrated with eq. (3.2). This investigation is carried
out in the next section.

3.2 Analysis of the global truncation error

The aim of this section is to prove the following theorem, formulated from the
observations in the previous section that the order of the leapfrog method applied
the simplified problem given by eq. (3.1) is dependent on the value of q.

Theorem 1. The order of the leapfrog method given in eq. (3.2) applied to the
initial value problem (IVP) formulated in eq. (3.1) is 1 + q, i.e. the error of the
method decreases as O(h1+q), where h is the size of the time step of the method and
q ∈ (0, 1) is the exponent of the nonlinearity of the RHS of eq. (3.1). This result is
valid regardless of which numerical method is used to initialize the iterative process
of the leapfrog method.
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In the following, we construct the tools that are needed to perform a rigorous
order analysis of eq. (3.2) when applied to solve eq. (3.1). The proof we present for
of theorem 1 is inspired by the order analysis of a general multi-step method, such
as the one presented in [4].

3.2.1 Preliminary results on the solution to the simplified
problem

In the following, we consider the simplified problem given in eq. (3.1) as a model
problem to explain the penalization of the order of convergence of the numerical
solution observed in the convergence results. We start the analysis by showing that
eq. (3.1) has a unique solution. To do so, we will need the following result

External Result 1. Let D ⊂ Rn be an open set and f : D → Rn a continuous
vector field. If x0 ∈ D and one of the following two conditions holds:

(i) f is locally Lipschitz continuous,

(ii) there exists i0 ∈ {1, 2, · · · , n} such that fi0 (x0) ̸= 0 and f is locally Lipschit
continuous when fixing component i0,

then the problem
x′ = f (x) , x (0) = x0, (3.3)

has a unique local solution.

Proof. See Corollary 3.4 of [15].

To apply the previous result to our problem, we consider a slightly modified form
of eq. (3.1): {

y′′ (t) = |y (t)|q;
y (0) = 0, y′ (0) = 1,

(3.4)

defined on a neighborhood of t = 0. Since q ∈ (0, 1), the absolute value on the RHS
is necessary so that the problem is well defined for negative values of y(t).

Proposition 1. Let q ∈ (0, 1). Then, there exists α ∈ (0,∞) and a unique, twice
differentiable function Y : (−α, α)→ R which satisfies eq. (3.4) for all t ∈ (−α, α).

Proof. Let F : R2 → R2 be defined as

F (x, v) = (v, |x|q). (3.5)

It is easy to see that F is continuous. Moreover, for each x0, v1, v2 ∈ R, notice that

∥F (x0, v1)− F (x0, v2)∥∞ = ∥(v1, |x0|q)− (v2, |x0|q)∥∞
= ∥(v1 − v2, |x0|q − |x0|q)∥∞
= ∥(v1 − v2, 0)∥∞
= |v1 − v2|.

(3.6)

Finally,
F (0, 1) = (1, 0) ̸= 0. (3.7)

Thus, the proposition follows from external result 1.
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In order to go back to eq. (3.1) from eq. (3.4), it suffices to remove the absolute
value on the RHS of the latter. To do so, we will prove the following result.

Proposition 2. The function Y ′′ is continuous.

Proof. Note that, by proposition 1,

Y ′′ (t) = |Y (t)|q, (3.8)

for all t ∈ (−α, α). Since Y is continuous (because it is differentiable, which itself
is again a consequence of proposition 1), the right-hand side of the equation is also
continuous. Thus, the left-hand side must also be continuous, which concludes the
proof.

As a second intermediary step in going from eq. (3.4) back to eq. (3.1), we now
show that Y is non-negative over [0, α). The choice of the domain [0, α) is only
natural given the physical origin of the problem.

Proposition 3. For all t ∈ [0, α), it is true that

Y (t) ≥ 0. (3.9)

Moreover, Y (t) = 0 if, and only if, t = 0.

Proof. Since Y is twice differentiable on [0, α) and Y ′′ is continuous on the same
interval (by proposition 2), the Taylor theorem states that, for all t ∈ (0, α), there
exists c0 ∈ (0, t) such that

Y (t) = Y (0) + tY ′ (0) +
t2

2
Y ′′ (c0) . (3.10)

Then, by proposition 1, it is true that

Y (t) = Y (0) + tY ′ (0) +
t2

2
Y ′′ (c0)

= t+
t2

2
|Y (c0)|q.

(3.11)

Since, by hypothesis, t is non-negative, and so are
t2

2
and |Y (c0)|q, we conclude

that the left-hand side of the equation must also be non-negative. Furthermore, the
only way the right-hand side of the equation can be zero is if t = 0, which concludes
the proof.

As a corollary of the last two propositions, we show that Y is also the unique
solution to eq. (3.1) over [0, α)

Corollary 1. For q ∈ (0, 1), let α ∈ (0,∞) and Y : [0, α) → R be the (restriction
of the) unique solution to eq. (3.4) given by proposition 1. Then, Y is the unique
solution of eq. (3.1) with domain [0, α).
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Proof. First, we will show that Y satisfies eq. (3.1). In fact, by proposition 3, it
follows that Y (t)q is a real number and

Y (t)q = |Y (t)|q, (3.12)

for all t ∈ [0, α). Since Y satisfies eq. (3.4) and the only difference between it and
eq. (3.1) is the absolute value of the RHS, it follows the Y is a solution to eq. (3.1)
over [0, α).

Now, let us go over the uniqueness. Let Ỹ : [0, α) → R be a solution (in the
classical sense) of eq. (3.1). Since Ỹ is a real function, its second derivative Ỹ ′′ must
also be. But since Ỹ is a solution of eq. (3.1), it must hold that, given t ∈ [0, α),

Ỹ ′′ (t) = Ỹ (t)q (3.13)

is true. Thus, Ỹ (t)q must be a real number.
Suppose now by contradiction that there exists t0 ∈ [0, α) such that Ỹ (t0) < 0.

Then, since q ∈ (0, 1), Ỹ (t0)
q must be non-real, which contradicts the fact that Ỹ

is a real function. Thus, Ỹ must be a non-negative function.
But this implies that

Ỹ (t)q = |Ỹ (t)|q, (3.14)

which, furthermore, implies that Ỹ is a solution of eq. (3.4). Then, by the uniqueness
shown in proposition 1, it must be that Ỹ = Y , which concludes the proof.

From now on, the domain of the function Y is assumed to be [0, α).
Next, we tackle the regularity of Y via a bootstrap-like argument.

Proposition 4. The function Y is smooth on (0, α).

Proof. The proof will be done by induction on the order of the derivative.

Base Follows directly from proposition 2.

Induction Suppose that there exists n0 ∈ N such that, for all n ∈ N with n ≤ n0,
Y(n) exists and is continuous on (0, α).

Let f : [0,∞)→ R be defined as

f (x) = xq. (3.15)

It is easy to see that f is smooth on its domain.

Now, by proposition 1, it is true that

Y(n0) =
(
Y(2)

)(n0−2)
= (Yq)(n0−2) = (f ◦ Y)(n0−2) . (3.16)

Note that the right-hand side is the (n0 − 2)-th derivative of the composition
of two functions, one of which is smooth and the other which, by the induction
hypothesis, is n0 times differentiable. By the chain rule, this means that the
right-hand side is still twice differentiable. Thus, the left-hand side must also
be twice differentiable, which implies that it is continuously differentiable.
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We now shift our focus to the growth of Y and its first derivatives. We begin
with the following result.

Proposition 5. The functions Y ,Y ′,Y ′′ and Y ′′′ are all positive on (0, α).

Proof. This result has already been shown for Y in proposition 3.
That Y ′′ is positive follows from the previous statement and the equality

Y ′′ (t) = Y (t)q , (3.17)

which itself was proved in proposition 1.
The positivity of Y ′ can be shown by considering that

Y ′ (0) = 1, (3.18)

which was proved in proposition 1, and the fact that the positivity of Y ′′ implies
that Y ′ must be monotonically increasing on (0, α).

Finally, by differentiating both sides of eq. (3.17) with the chain rule, we get

Y ′′′ (t) = qY (t)q−1 Y ′ (t) , (3.19)

which is positive, because q ∈ (0, 1) and both Y and Y ′ are also positive.

As a corollary of the last proposition, we gain further insight into the growth of
Y and its first derivatives.

Corollary 2. The functions Y ,Y ′,Y ′′ are all monotonically increasing on (0, α).

Proof. Since a strictly positive derivative implies that the corresponding function is
monotonic increasing, this proposition follows immediately from proposition 5.

Finally, for future reference, we state expressions for Y ′′′ and Y ′′′.

Y ′′′ (t) = qY (t)q−1 Y ′ (t) , (3.20)

Y ′′′′ (t) = q
(
(q − 1)Y (t)q−2 Y ′ (t)2 + Y (t)q−1 Y (t)q

)
. (3.21)

3.2.2 The leapfrog method and its local and global trunca-
tion errors

We shall now consider the leapfrog method to integrate eq. (3.1) in the interval
[0, τ ] ⊂ [0, α). We define a partition of N subintervals of [0, τ ], which defines a step
size

h =
τ

N
. (3.22)

Therefore, the n-th iteration of the leapfrog method defined in eq. (3.2) applied to
the IVP in eq. (3.1), for n ≤ N , is given by:

vn+1 = vn + hyqn, v1 = Y ′
(
h

2

)
;

yn+1 = yn + hvn + h2yqn, y1 = Y (h) .

(3.23)

Since the order reduction phenomenon is not related to initialization errors, we opt
to initialize the leapfrog method, in this theoretical error analysis, using the exact
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values of Y and Y ′ at the appropriate times required by the leapfrog method. This
will not be the case in practical applications, as Y is unknown. However, the error
analysis is not affected by this choice. In section 3.2.6, we discuss the implications
to the results when the leapfrog method is initialized with other numerical methods.

The truncation error of the y variable at the n-th step of the leapfrog method
applied to eq. (3.1) is defined as follows:

Ty (n,N, τ) := Y
(
(n+ 1)

τ

N

)
−

[
Y
(
n
τ

N

)
+
τ

N
Y ′
((

n− 1

2

)
τ

N

)
+
τ 2

N2
Y
(
n
τ

N

)q ]
.

(3.24)
Similarly, for the v variable, we have that the truncation error is given by:

Tv (n,N, τ) := Y ′
((

n+
1

2

)
τ

N

)
−

[
Y ′
((

n− 1

2

)
τ

N

)
+
τ

N
Y
(
n
τ

N

)q ]
. (3.25)

In order to determine the behavior of the truncation errors at the n-th step, the
following result is necessary.

Proposition 6. Let t ∈ [0, α). Then, it is true that Y (t) ≥ t. Also, for all τ ∈ (0, α)
and n,N ∈ N such that n ≤ N , it is true that yn ≥ nh.

Proof. By proposition 2, Taylor theorem applies to Y on [0, α) up to order 2. Then.
there exists c0 ∈ (0, t) such that

Y (t) = Y (0) + tY ′ (0) +
t2

2
Y ′′ (c0) . (3.26)

Substituting the initial conditions given in the IVP (see proposition 1) yields

Y (t) = Y (0) + tY ′ (0) +
t2

2
Y ′′ (c0) = 0 + t+

t2

2
Y ′′ (c0) = t+

t2

2
Y ′′ (c0) . (3.27)

Since, by proposition 5, Y ′′ is a positive function, the first inequality follows.
For the second inequality, note that both (yn) and (vn) are monotonically in-

creasing sequences. Then, vn ≥ v1 = 1. In turn, this implies that

yn = yn−1+hvn−1+h
2yqn−1 = yn−1+h(vn−1+hy

q
n−1) = yn−1+hvn ≥ yn−1+h. (3.28)

Applying the last equation recursively yields

yn ≥ y1 + (n− 1)h = h+ (n− 1)h = nh. (3.29)

The following result states that the truncation error at the n-th step can be
bounded by functions of n and h.

Lemma 1. Let τ ∈ (0, α) ∩ (0, 1). Then, there exists K1, K2 ∈ (0,∞) such that

|Ty (n,N, τ)| ≤ K1h
2+q and |Tv (n,N, τ)| ≤ K2

(
n− 1

2

)2−q

h1+q, (3.30)

for all n,N ∈ N such that n < N .
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Proof. By proposition 4, the Taylor theorem applies to both Y and Y ′ on (0, α). For
the former we obtain

Y ((n+ 1)h) = Y (nh) + hY ′ (nh) +
h2

2
Y ′′ (nh) +

h3

6
Y ′′′ (c0) ; (3.31)

and, for the latter,

Y ′
((

n− 1

2

)
h

)
= Y ′ (nh)− h

2
Y ′′ (nh) +

h2

8
Y ′′′ (c1) , (3.32)

where c0 ∈ (nh, (n+ 1)h) and c1 ∈
((

n− 1

2

)
h, nh

)
.

Substituting the previous equations on the definition of Ty (n,N, t) yields

Ty (n,N, τ) = Y ((n+ 1)h)− Y (nh)− hY ′
((

n− 1

2

)
h

)
− h2Y (nh)q

= Y (nh) + hY ′ (nh) +
h2

2
Y ′′ (nh) +

h3

6
Y ′′′ (c0)

−
(
Y (nh) + h

(
Y ′ (nh)− h

2
Y ′′ (nh) +

h2

8
Y ′′′ (c1)

)
+ h2Y (nh)q

)
= Y (nh) + hY ′ (nh) +

h2

2
Y ′′ (nh) +

h3

6
Y ′′′ (c0)

− Y (nh)− hY ′ (nh) +
h2

2
Y ′′ (nh)− h3

8
Y ′′′ (c1) + h2Y (nh)q

= h2Y ′′ (nh) +
h3

6
Y ′′′ (c0)−

h3

8
Y ′′′ (c1) + h2Y (nh)q .

(3.33)

By replacing Y ′′ (t) = Y (t)q in the previous equation (which can be done because
of proposition 1 and because nh ∈ [0, τ ] ⊂ (−α, α)), we get

Ty (n,N, τ) = h2Y ′′ (nh) +
h3

6
Y ′′′ (c0)−

h3

8
Y ′′′ (c1) + h2Y (nh)q

= h2Y (nh)q +
h3

6
Y ′′′ (c0)−

h3

8
Y ′′′ (c1)− h2Y (nh)q

=
h3

6
Y ′′′ (c0)−

h3

8
Y ′′′ (c1) .

(3.34)

Taking the absolute value of both sides of the equation, using the triangular inequal-
ity and the fact that Y ′′′ is positive (see proposition 5), we arrive at

|Ty (n,N, τ)| =
∣∣∣∣h36 Y ′′′ (c0)−

h3

8
Y ′′′ (c1)

∣∣∣∣ ≤ h3 (Y ′′′ (c0) + Y ′′′ (c1)) . (3.35)

Then, substituting eq. (3.20) in eq. (3.35) yields

|Ty (n,N, τ)| ≤ h3 (Y ′′′ (c0) + Y ′′′ (c1)) = h3
(
qY (c0)

q−1 Y ′ (c0) + qY (c1)
q−1 Y ′ (c1)

)
≤ h3

(
Y (c0)

q−1 Y ′ (c0) + Y (c1)
q−1 Y ′ (c1)

)
,

(3.36)
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where the last step is due to q < 1. Since Y ′ is continuous on the compact interval
[0, τ ], there exists K ′ ∈ (0,∞) such that Y ′ (t) ≤ K ′, for all t ∈ [0, τ ]. Using this
bound, we find that

|Ty (n,N, τ)| ≤ h3
(
Y (c0)

q−1 Y ′ (c0) + Y (c1)
q−1 Y ′ (c1)

)
≤ K ′h3

(
Y (c0)

q−1 + Y (c1)
q−1) . (3.37)

Since q ∈ (0, 1), q − 1 < 0. Then, x → xq−1 increases as x → 0+. Since, by
proposition 5, Y is positive and, by corollary 2, monotonically increasing, this
means that Y (t)q−1 increases as t → 0+. Also, because c0 ∈ (nh, (n+ 1)h),

c1 ∈
((

n− 1

2

)
h, nh

)
and n ≥ 1, it follows that

h

2
≤ c0, c1. These two facts,

when combined, imply that

Y (c0)
q−1 ≤ Y

(
h

2

)q−1

and Y (c1)
q−1 ≤ Y

(
h

2

)q−1

, (3.38)

which, when combined with eq. (3.37), yields

|Ty (n,N, τ)| ≤ K ′h3
(
Y (c0)

q−1 + Y (c1)
q−1) ≤ K ′h3

(
Y
(
h

2

)q−1

+ Y
(
h

2

)q−1
)
.

(3.39)
Then, by applying proposition 6 and the previously stated fact that Y (t)q−1 increases
as t→ 0+, we get

|Ty (n,N, τ)| ≤ K ′h3

(
Y
(
h

2

)q−1

+ Y
(
h

2

)q−1
)
≤ K ′h3

((
h

2

)q−1

+

(
h

2

)q−1
)

= K ′h3
(
hq−1

2q−1
+
hq−1

2q−1

)
= 2K ′h3

hq−1

2q−1
= K ′h

2+q

2q−2
= 22−qK ′h2+q = K1h

2+q,

(3.40)

where K1 = 22−qK ′.
In order to obtain an appropriate bound for Tv (n,N, τ), we must apply Taylor’s

theorem to Y ′
((

n± 1

2

)
h

)
and expand this function up to O(h3). This yields

Y ′
((

n± 1

2

)
h

)
= Y ′ (nh)± h

2
Y ′′ (nh) +

h2

8
Y ′′′ (nh)± h3

24
Y ′′′′ (c±) , (3.41)

where c+ ∈
(
nh,

(
n+

1

2

)
h

)
and c− ∈

((
n− 1

2

)
h, nh

)
. Substituting this equa-
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tion and eq. (3.32) in the definition of Tv (n,N, t) results in

Tv (n,N, τ) = Y ′
((

n+
1

2

)
h

)
− Y ′

((
n− 1

2

)
h

)
− hY (nh)q

= Y ′ (nh) +
h

2
Y ′′ (nh) +

h2

8
Y ′′′ (nh) +

h3

24
Y ′′′′ (c+)

−
(
Y ′ (nh)− h

2
Y ′′ (nh) +

h2

8
Y ′′′ (nh)− h3

24
Y ′′′′ (c−)

)
− hY (nh)q

= Y ′ (nh) +
h

2
Y ′′ (nh) +

h2

8
Y ′′′ (nh) +

h3

24
Y ′′′′ (c+)

− Y ′ (nh) +
h

2
Y ′′ (nh)− h2

8
Y ′′′ (nh) +

h3

24
Y ′′′′ (c−)− hY (nh)q

= hY ′′ (nh) +
h3

24
Y ′′′′ (c+) +

h3

24
Y ′′′′ (c−)− hY (nh)q

= hY ′′ (nh) +
h3

24
(Y ′′′′ (c+) + Y ′′′′ (c−))− hY (nh)q .

(3.42)

By replacing Y ′′ (t) = Y (t)q in the previous equation, just as we did in eq. (3.34),
we get

Tv (n,N, τ) = hY ′′ (nh) +
h3

24
(Y ′′′′ (c+) + Y ′′′′ (c−))− hY (nh)q

= hYq (nh) +
h3

24
(Y ′′′′ (c+) + Y ′′′′ (c−))− hY (nh)q

=
h3

24
(Y ′′′′ (c+) + Y ′′′′ (c−)) .

(3.43)

Taking the absolute value of both sides of this last equation and using the triangle
inequality, we get

|Tv (n,N, τ)| = |
h3

24
(Y ′′′′ (c+) + Y ′′′′ (c−))| ≤

h3

24
(|Y ′′′′ (c+)|+ |Y ′′′′ (c−)|) . (3.44)

Now, we need to determine a bound for the fourth derivative of Y . We can
start doing so by taking the absolute value of both sides of eq. (3.21) and using the
triangle inequality, which results in

|Y ′′′′ (t)| = |q
(
(q − 1)Y (t)q−2 Y ′ (t)2 + Y (t)q−1 Y (t)q

)
|

≤ q
(
(1− q)Y (t)q−2 Y ′ (t)2 + Y (t)q−1 Y (t)q

)
,

(3.45)

where we used the fact that that q − 1 < 0 and the positivity of Y and Y ′. Now,
since Y is continuous on the compact interval [0, τ ], there exists K ∈ (0,∞) such
that Y (t) ≤ K, for all t ∈ [0, τ ]. These arguments lead to the following bound for
Y ′′′′:

|Y ′′′′ (t)| ≤ q
(
(1− q)Y (t)q−2 Y ′ (t)2 + Y (t)q−1 Y (t)q

)
≤ q

(
(1− q)K ′2Y (t)q−2 +KqY (t)q−1

)
,

(3.46)
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where K ′ is as in eq. (3.37). Then, substituting our newly found bound for Y ′′′′ in
inequality (3.44) gives

|Tv (n,N, τ)| ≤
h3

24
(|Y ′′′′ (c+)|+ |Y ′′′′ (c−)|)

≤ h3

24

(
q
(
(1− q)K ′2Y (c+)

q−2 +KqY (c+)
q−1
)
+ q

(
(1− q)K ′2Y (c−)

q−2 +KqY (c−)
q−1
))

≤ h3

24

(
q
(
(1− q)K ′2Y (c+)

q−2 +KqY (c+)
q−1 + (1− q)K ′2Y (c−)

q−2 +KqY (c−)
q−1
))

≤ qh3

24

(
(1− q)K ′2Y (c+)

q−2 +KqY (c+)
q−1 + (1− q)K ′2Y (c−)

q−2 +KqY (c−)
q−1
)

≤ qh3

24

(
(1− q)K ′2Y (c+)

q−2 + (1− q)K ′2Y (c−)
q−2 +KqY (c+)

q−1 +KqY (c−)
q−1
)

≤ qh3

24

(
(1− q)K ′2 (Y (c+)

q−2 + Y (c−)
q−2)+Kq

(
Y (c+)

q−1 + Y (c−)
q−1)) .

(3.47)

Since Y is a non-decreasing function and both q − 1 < 0 and q − 2 < 0, it
follows that both Yq−1 and Yq−2 are non-increasing functions. Now, recall that

c+ ∈
(
nh,

(
n+

1

2

)
h

)
and c− ∈

((
n− 1

2

)
h, nh

)
. This means that c+, c− ≤(

n− 1

2

)
h. These two facts, when combined, imply that

Y (c+)
q−2 ≤ Y

((
n− 1

2

)
h

)q−2

, Y (c−)
q−2 ≤ Y

((
n− 1

2

)
h

)q−2

Y (c+)
q−1 ≤ Y

((
n− 1

2

)
h

)q−1

and Y (c−)
q−1 ≤ Y

((
n− 1

2

)
h

)q−1

.

(3.48)

Replacing these bounds in eq. (3.47) gives

|Tv (n,N, τ)| ≤
qh3

24

(
(1− q)K ′2 (Y (c+)

q−2 + Y (c−)
q−2)+Kq

(
Y (c+)

q−1 + Y (c−)
q−1))

≤ qh3

24

(
(1− q)K ′2

(
Y
((

n− 1

2

)
h

)q−2

+ Y
((

n− 1

2

)
h

)q−2
)

+Kq

(
Y
((

n− 1

2

)
h

)q−1

+ Y
((

n− 1

2

)
h

)q−1
))

=
qh3

24

(
2 (1− q)K ′2Y

((
n− 1

2

)
h

)q−2

+ 2KqY
((

n− 1

2

)
h

)q−1
)

≤ qh3

12

(
(1− q)K ′2Y

((
n− 1

2

)
h

)q−2

+KqY
((

n− 1

2

)
h

)q−1
)
.

(3.49)



3.2 Analysis of the global truncation error | 65

Then, from proposition 6, we obtain

|Tv (n,N, τ)| ≤
qh3

12

(
(1− q)K ′2Y

((
n− 1

2

)
h

)q−2

+KqY
((

n− 1

2

)
h

)q−1
)

≤ qh3

12

(
(1− q)K ′2

((
n− 1

2

)
h

)q−2

+Kq

((
n− 1

2

)
h

)q−1
)
.

(3.50)

Note that since τ < 1, then this is also the case for
(
n− 1

2

)
h. This means that

((
n− 1

2

)
h

)q−1

≤
((

n− 1

2

)
h

)q−2

, (3.51)

which, in turn, means that the truncation error can be written as

|Tv (n,N, τ)| ≤
qh3

12

(
(1− q)K ′2

((
n− 1

2

)
h

)q−2

+Kq

((
n− 1

2

)
h

)q−1
)

≤ qh3

12

(
(1− q)K ′2

((
n− 1

2

)
h

)q−2

+Kq

((
n− 1

2

)
h

)q−2
)

≤ qh3

12

((
(1− q)K ′2 +Kq

)((
n− 1

2

)
h

)q−2
)

≤ qh3

12

(
(1− q)K ′2 +Kq

)((
n− 1

2

)q−2

hq−2

)

≤ qh3

12

(
n− 1

2

)q−2

hq−2
(
(1− q)K ′2 +Kq

)
≤ qh3+q−2

12

(
n− 1

2

)q−2 (
(1− q)K ′2 +Kq

)
≤ qh1+q

12

(
n− 1

2

)q−2 (
(1− q)K ′2 +Kq

)
≤
q
(
(1− q)K ′2 +Kq

)
12

(
n− 1

2

)q−2

h1+q

= K2

(
n− 1

2

)q−2

h1+q,

(3.52)

where

K2 =
q
(
(1− q)K ′2 +Kq

)
12

. (3.53)

The first specificity of the simplified problem studied in this work is revealed in
lemma 1. When q ≥ 1, a universal bound for the truncation errors, independent
of the variable t, i.e. independent of which precise step n the truncation error is
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being analyzed, can be used to obtain the second order accuracy of the method [33],
[79]. However, the singularity of the first derivative of the RHS of eq. (3.1) at t = 0
implies that a universal bound for the truncation error of the v variable does not
yield the same expected result when a similar technique is used in this case. This
difficulty, which is at the heart of the order penalization behavior that was identified
in the previous section, can be overcome by choosing a step dependent bound for
the truncation error of the v variable, which now becomes explicitly dependent on
the value of n for the n-th step, as observed in eq. (3.52).

Next, we define the total error of the y variable at the n-th step as

eyn := Y (nh)− yn, (3.54)

and the total error of the v variable at the n-th step as

evn := Y ′
((

n− 1

2

)
h

)
− vn. (3.55)

The following auxiliary result is a quasi-Lipschitz inequality that will be useful
when proving bounds for both total errors defined above.

Proposition 7. For all τ ∈ (0, α) and n,N ∈ N such that n ≤ N , it is true that

|Y (nh)q − yqn| ≤ q (nh)q−1 |eyn|. (3.56)

Proof. Let f : (0, α)→ R be defined as f (x) = xq. Since f is smooth in its domain
then, by the mean value theorem, given x1, x2 ∈ (0,∞) such that x1 < x2, there
exists c0 ∈ (x1, x2) such that

|xq1 − x
q
2| = |f(x1)− f(x2)| ≤ f ′(c0)|x1 − x2| = qcq−1

0 |x1 − x2|. (3.57)

Let
x1 = min {Y (nh) , yn} and x2 = max {Y (nh) , yn} . (3.58)

Then, since |x1 − x2| = |x2 − x1|, we have

|Y (nh)q − yqn| = |x
q
1 − x

q
2| =≤ qcq−1

0 |x1 − x2| = qcq−1
0 |Y (nh)− yn|. (3.59)

By the definition of eyn in eq. (3.54), we can rewrite the previous equation as

|Y (nh)q − yqn| ≤ qcq−1
0 |Y (nh)− yn| = qcq−1

0 |eyn|. (3.60)

Since c0 ∈ (x1, x2) and, by proposition 6, we know that Y (nh) , yn ≥ nh, we can
infer that nh ≤ c0. On the other hand, due to the fact that q − 1 < 0, we conclude
that cq−1

0 ≤ (nh)q−1. Replacing this information in eq. (3.60) yields

|Y (nh)q − yqn| ≤ qcq−1
0 |eyn| ≤ q (nh)q−1 |eyn|. (3.61)

For the sake of simplicity, we shall now use a vector notation for both truncation
and total errors as follows:

#»

T n :=

[
|Ty (n,N, τ)|
|Tv (n,N, τ)|

]
and

#»

En :=

[
|eyn|
|evn|

]
. (3.62)
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In addition, we further simplify the notation by defining

w := qh1+q. (3.63)

The following result relates the total error at the (n+1)-th step to the truncation
and total errors at the n-th step by using the following matrix:

An :=

[(
1 + wnq−1

)
h

w

h
nq−1 1

]
. (3.64)

This next result is an estimate for the one-step truncation errors of the numerical
approximation, based on the truncation and total errors of the previous step.

Lemma 2. For all τ ∈ (0, α) and n,N ∈ N such that n ≤ N , it is true that

#»

En+1 ≤ An
#»

En +
#»

T n, (3.65)

where the inequality holds component-wise.

Proof. Rearranging eq. (3.24) we get that

Y ((n+ 1)h) = Y (nh) + hY ′
((

n− 1

2

)
h

)
+ h2Y (nh)q + Ty (n,N, τ) . (3.66)

Next, we subtract the equation for yn (given in eq. (3.23)) from both sides and
manipulate:

Y ((n+ 1)h)− yn+1 = Y (nh) + hY ′
((

n− 1

2

)
h

)
+ h2Y (nh)q + Ty (n,N, τ)

−
(
yn + hvn + h2yqn

)
⇐⇒

Y ((n+ 1)h)− yn+1 = Y (nh) + hY ′
((

n− 1

2

)
h

)
+ h2Y (nh)q + Ty (n,N, τ)

− yn − hvn − h2yqn
⇐⇒[

Y ((n+ 1)h)− yn+1

]
=

[
Y (nh)− yn

]
+

[
hY ′

((
n− 1

2

)
h

)
− hvn

]

+

[
h2Y (nh)q − h2yqn

]
+ Ty (n,N, τ)

⇐⇒[
Y ((n+ 1)h)− yn+1

]
=

[
Y (nh)− yn

]
+ h

[
Y ′
((

n− 1

2

)
h

)
− vn

]

+ h2

[
Y (nh)q − yqn

]
+ Ty (n,N, τ)

(3.67)
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Then, substituting eqs. (3.54) and (3.55) we get

eyn+1 = eyn + hevn + h2 (Y (nh)q − yqn) + Ty (n,N, τ) . (3.68)

If we now take the absolute value of both sides and use the properties of a norm,
we get

|eyn+1| = |eyn + hevn + h2 (Y (nh)q − yqn) + Ty (n,N, τ)|
≤ |eyn|+ |hevn|+ |h2 (Y (nh)q − yqn)|+ |Ty (n,N, τ)|
= |eyn|+ |h||evn|+ |h2||Y (nh)q − yqn|+ |Ty (n,N, τ)|
= |eyn|+ h|evn|+ h2|Y (nh)q − yqn|+ |Ty (n,N, τ)|,

(3.69)

where we used that h > 0 in the last step. By proposition 7,

|eyn+1| ≤ |eyn|+ h|evn|+ h2|Y (nh)q − yqn|+ |Ty (n,N, τ)|
≤ |eyn|+ h|evn|+ h2q (nh)q−1 |eyn|+ |Ty (n,N, τ)|
= |eyn|+ h|evn|+ qh2nq−1hq−1|eyn|+ |Ty (n,N, τ)|
= |eyn|+ h|evn|+ qh2+q−1nq−1|eyn|+ |Ty (n,N, τ)|
= |eyn|+ h|evn|+ qh1+qnq−1|eyn|+ |Ty (n,N, τ)|
= |eyn|+ qh1+qnq−1|eyn|+ h|evn|+ |Ty (n,N, τ)|
=
(
1 + qh1+qnq−1

)
|eyn|+ h|evn|+ |Ty (n,N, τ)|.

(3.70)

Finally, by the definition of w (eq. (3.63)),

|eyn+1| ≤
(
1 + qh1+qnq−1

)
|eyn|+ h|evn|+ |Ty (n,N, τ)|

=
(
1 + wnq−1

)
|eyn|+ h|evn|+ |Ty (n,N, τ)|.

(3.71)

We now proceed in an analogous manner starting from eq. (3.25).
Rearranging eq. (3.25) we get that

Y ′
((

n+
1

2

)
h

)
= Y ′

((
n− 1

2

)
h

)
+ hY (nh)q + Tv (n,N, τ) . (3.72)

Next, we subtract the equation for vn (given in eq. (3.23)) from both sides and
manipulate:

Y ′
((

n+
1

2

)
h

)
− vn+1 = Y ′

((
n− 1

2

)
h

)
+ hY (nh)q + Tv (n,N, τ)− (vn + hyqn)

⇐⇒

Y ′
((

n+
1

2

)
h

)
− vn+1 = Y ′

((
n− 1

2

)
h

)
+ hY (nh)q + Tv (n,N, τ)− vn − hyqn

⇐⇒[
Y ′
((

n+
1

2

)
h

)
− vn+1

]
=

[
Y ′
((

n− 1

2

)
h

)
− vn

]
+

[
hY (nh)q − hyqn

]
+ Tv (n,N, τ)

⇐⇒[
Y ′
((

n+
1

2

)
h

)
− vn+1

]
=

[
Y ′
((

n− 1

2

)
h

)
− vn

]
+ h

[
Y (nh)q − yqn

]
+ Tv (n,N, τ)

(3.73)
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Then, substituting eq. (3.55) we get

evn+1 = evn + h (Y (nh)q − yqn) + Tv (n,N, τ) . (3.74)

If we now take the absolute value of both sides and use the properties of a norm,
we get

|evn+1| = |evn + h (Y (nh)q − yqn) + Tv (n,N, τ)| ≤ |evn|+ |h (Y (nh)q − yqn)|+ |Tv (n,N, τ)|
= |evn|+ |h||Y (nh)q − yqn|+ |Tv (n,N, τ)| = |evn|+ h|Y (nh)q − yqn|+ |Tv (n,N, τ)|,

(3.75)

where we used that h > 0 in the last step. By proposition 7,

|evn+1| ≤ |evn|+ h|Y (nh)q − yqn|+ |Tv (n,N, τ)| ≤ |evn|+ hq (nh)q−1 |eyn|+ |Tv (n,N, τ)|
= |evn|+ qhnq−1hq−1|eyn|+ |Tv (n,N, τ)| = |evn|+ qh1+q−1nq−1|eyn|+ |Tv (n,N, τ)|

= |evn|+
qh1+q

h
nq−1|eyn|+ |Tv (n,N, τ)|

(3.76)

Finally, by the definition of w (eq. (3.63)),

|evn+1| ≤ |evn|+
qh1+q

h
nq−1|eyn|+ |Tv (n,N, τ)| = |evn|+

w

h
nq−1|eyn|+ |Tv (n,N, τ)|.

(3.77)
Assembling both eqs. (3.71) and (3.77) in matrix form yields the stated result.

The result in lemma 2 is used to obtain a general inequality for the total error at
the n-th step based only on the truncation errors of all the previous steps. Before
we proceed, we state a convention on matrix multiplication.

Convention 1. Let k ∈ N and, for each n ∈ N, let An be a square matrix of
dimension k. Then, it is conventioned that

b∏
i=a

Ai =


AaAa+1 · · ·Ab−1Ab, a < b;

Aa, a = b;

I, a > b,

(3.78)

where a, b ∈ N and I is the identity matrix of dimension k. Note that the order in
which the matrices are multiplied in the case a < b must be respected.

Please be mindful that this convention establishes the order in which the different
matrix ought to be multiplied. Since matrix multiplication is not commutative, this
is strictly necessary.

This convention fixed, we can proceed to the next result, which is a corollary of
lemma 2 and establishes a more general bound for the truncation error, in contrast
to the one-step step bound of the previous result.

Corollary 3. Under the same hypotheses and notation of lemma 2, it holds that

#»

En ≤

(
n−1∏
i=1

An−i

)
#»

E1 +
n−1∑
i=1

((
i−1∏
j=1

An−j

)
#»

T n−i

)
. (3.79)
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Proof. The proof will be done by induction on n.

Base For n = 2, inequality (3.79) becomes

#»

E2 =
#»

En ≤

(
n−1∏
i=1

An−i

)
#»

E1 +
n−1∑
i=1

((
i−1∏
j=1

An−j

)
#»

T n−i

)

=

(
2−1∏
i=1

A2−i

)
#»

E1 +
2−1∑
i=1

((
i−1∏
j=1

A2−j

)
#»

T 2−i

)

=

(
1∏

i=1

A2−i

)
#»

E1 +
1∑

i=1

((
i−1∏
j=1

A2−j

)
#»

T 2−i

)

= A2−1
#»

E1 +

(
1−1∏
j=1

A2−j

)
#»

T 2−1 = A1
#»

E1 +

(
0∏

j=1

A2−j

)
#»

T 1

= A1
#»

E1 + I
#»

T 1 = A1
#»

E1 +
#»

T 1.

(3.80)

which is what we must prove. If one applies lemma 2 for n = 1, it yields

#»

E2 =
#»

E1+1 =
#»

En+1 ≤ An
#»

En +
#»

T n = A1
#»

E1 +
#»

T 1, (3.81)

which is the desired expression.

Induction Suppose that there exists n0 ∈ N with n0 ≤ N such that inequal-
ity (3.79) holds for all n ≤ n0.

By using lemma 2 with n = n0, we have

#»

En0+1 ≤ An0

#»

En0 +
#»

T n0 . (3.82)

Then, by the induction hypothesis,

#»

En0+1 ≤ An0

#»

En0 +
#»

T n0

≤ An0

((
n0−1∏
i=1

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=1

An0−j

)
#»

T n0−i

))
+

#»

T n0

= An0

(
n0−1∏
i=1

An0−i

)
#»

E1 + An0

n0−1∑
i=1

((
i−1∏
j=1

An0−j

)
#»

T n0−i

)
+

#»

T n0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

(
n0−1∑
i=1

An0

(
i−1∏
j=1

An0−j

)
#»

T n0−i

)
+

#»

T n0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
+

#»

T n0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
+

#»

T n0−0.

(3.83)
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Now, by the information presented in convention 1, we get that

#»

En0+1 ≤

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
+

#»

T n0−0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
+ I

#»

T n0−0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
+

(
−1∏
j=0

An0−j

)
#»

T n0−0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=1

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
+

(
0−1∏
j=0

An0−j

)
#»

T n0−0

=

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=0

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)
.

(3.84)

By making the variable substitution i′ = i+ 1 and j′ = j + 1, we arrive at

#»

En0+1 ≤

(
n0−1∏
i=0

An0−i

)
#»

E1 +

n0−1∑
i=0

((
i−1∏
j=0

An0−j

)
#»

T n0−i

)

=

(
n0∏
i′=1

An0−i′+1

)
#»

E1 +

n0∑
i′=1

((
i′−2∏
j=0

An0−j

)
#»

T n0−i′+1

)

=

(
n0∏
i′=1

An0−i′+1

)
#»

E1 +

n0∑
i′=1

((
i′−1∏
j′=1

An0−j′+1

)
#»

T n0−i′+1

)

=

(n0+1)−1∏
i′=1

A(n0+1)−i′

 #»

E1 +

(n0+1)−1∑
i′=1

((
i′−1∏
j′=1

A(n0+1)−j′

)
#»

T (n0+1)−i′

)
,

(3.85)

which is the desired result.

Note that the initialization error in eq. (3.23) is zero, i.e.
#»

E1 = 0. This is because
we chose to start the method in eq. (3.23) with exact values at the first step. This
was done so that we could omit the term including

#»

E1 of inequality (3.79) in our
future calculations, as to not further complicate this text. Still, in general, this will
not be the case and the initial error

#»

E1 should remain in the RHS of inequality (3.79);
e.g. when another numerical method is used to initialize eq. (3.23). In either case,
the final result remains unaltered, which gave us confidence in omitting

#»

E1 from our
calculations. This is discussed in more detail in section 3.2.6.

Inequality (3.79) can be further simplified if we realize that for any 2× 2 matrix
Z with non-negative entries, Z ≤ ZAn for any n. Therefore, the following result
holds.
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Corollary 4. Let τ ∈ (0, α) and n,N ∈ N such that n < N . Then, it is true that

#»

EN ≤
N−1∑
i=1

(
N−1∏
j=1

AN−j

)
#»

T N−i, (3.86)

where the inequality holds entry-wise.

Proof. Note that

N∏
i=1

AN−i =

(
n∏

i=1

AN−i

)
N∏

i=n+1

AN−i ≥
n∏

i=1

AN−i. (3.87)

The fact that, for any i ∈ N, the entries of Ai are positive implies that any product of
Ai also has only positive entries. Thus, in eq. (3.87), we successively use the property

stated in the text above for Z =
n∏

i=1

AN−i. Using this inequality in corollary 3

concludes the proof.

3.2.3 Computing an explicit expression for
n−1∏
i=1

An−i

Corollary 3 indicates that products of the form
n−1∏
j=1

An−j play a central role in

understanding the error propagation of the numerical solution of eq. (3.1) via the
Leapfrog method in eq. (3.23). On the lemma below, we find an expression for each

entry of
n−1∏
i=1

An−i in terms of functions a, b, c, d which are defined on the set

D :=
∞⋃

N=1

{(n, θ) ∈ {2, . . . , N} × P({1, . . . , N − 1}) | θ ∈ P({1, . . . , n− 1})} ,

(3.88)
where P(·) is the power set operator. Intuitively, D is the set of all ordered pairs
such that the first element, n, is an integer bigger then 1 and the second element is
any set containing only numbers from 1 to n− 1.

We also obtain coupled, recursive expressions for a, b, c, d and their initial values.
In the statement of the following lemma (and, indeed, throughout the remaining of
this work), we will use the standard notation #θ for the cardinality of the set θ ⊂ N.

Lemma 3. Let τ ∈ (0, α) and n,N ∈ N such that 2 ≤ n ≤ N . Then, it is true that

n−1∏
i=1

An−i =

[
p1,1 (n) p1,2 (n)
p2,1 (n) p2,2 (n)

]
, (3.89)

where

p1,1 (n) =
∑

θ∈P({1,...,n−1})

a (n, θ)w#θ
∏
i∈θ

iq−1, (3.90a)
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p1,2 (n) = h
∑

θ∈P({1,...,n−1})

b (n, θ)w#θ
∏
i∈θ

iq−1, (3.90b)

p2,1 (n) =
1

h

∑
θ∈P({1,...,n−1})

c (n, θ)w#θ
∏
i∈θ

iq−1, (3.90c)

p2,2 (n) =
∑

θ∈P({1,...,n−1})

d (n, θ)w#θ
∏
i∈θ

iq−1, (3.90d)

for a, b, c, d : D → R. Furthermore, these functions satisfy the recursive relations

a (n, θ) =

{
a (n− 1, θ − {n− 1}) if (n− 1) ∈ θ;(
a (n− 1, θ) + c (n− 1, θ)

)
if (n− 1) /∈ θ,

(3.91a)

b (n, θ) =

{
b (n− 1, θ − {n− 1}) if (n− 1) ∈ θ;(
b (n− 1, θ) + d (n− 1, θ)

)
if (n− 1) /∈ θ,

(3.91b)

c (n, θ) =

{
a (n− 1, θ − {n− 1}) if (n− 1) ∈ θ;
c (n− 1, θ) if (n− 1) /∈ θ,

(3.91c)

d (n, θ) =

{
b (n− 1, θ − {n− 1}) if (n− 1) ∈ θ;
d (n− 1, θ) if (n− 1) /∈ θ

(3.91d)

and the initial conditions

a (2, ∅) = 1, b (2, ∅) = 1, c (2, ∅) = 0, d (2, ∅) = 1,

a (2, {1}) = 1, b (2, {1}) = 0, c (2, {1}) = 1, d (2, {1}) = 0.
(3.92)

Proof. The proof will be done by induction on n.

Base case For n = 2, the left-hand side of eq. (3.89) becomes

n−1∏
i=1

An−i =
2−1∏
i=1

A2−i =
1∏

i=1

A2−i = A2−1 = A1 =

[
1 + w1q−1 h
w

h
1q−1 1

]
=

[
1 + w h
w

h
1

]
.

Thus, the equality with the right-hand side of eq. (3.89) holds for

a (2, ∅) = 1, b (2, ∅) = 1, c (2, ∅) = 0, d (2, ∅) = 1,

a (2, {1}) = 1, b (2, {1}) = 0, c (2, {1}) = 1, d (2, {1}) = 0.
(3.93)

Inductive step Suppose that there exists an n0 ∈ N with 2 < n0 ≤ N such that
eqs. (3.90a) to (3.90d) hold for all n ∈ N with n ≤ n0. If n0 = N , the result
follows trivially. Otherwise, n0 + 1 ≤ N . Therefore, the left-hand side of
eq. (3.89) for n = n0 + 1 becomes

n−1∏
i=1

An−i =

(n0+1)−1∏
i=1

A(n0+1)−i =

n0∏
i=1

An0+1−i. (3.94)
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By making an index substitution i′ = i− 1, we get

n−1∏
i=1

An−i =

n0∏
i=1

An0+1−i =

n0−1∏
i′=0

An0+1−(i′+1)

=

n0−1∏
i′=0

An0+1−i′−1 =

n0−1∏
i′=0

An0−i′

= An0−0

n0−1∏
i′=1

An0−i′ = An0

n0−1∏
i′=1

An0−i′ .

(3.95)

Then, from the definition of An in eq. (3.64) and from the induction hypothesis,
we have

n−1∏
i=1

An−i = An0

n0−1∏
i′=1

An0−i′

=

[(
1 + wnq−1

0

)
h

w

h
nq−1
0 1

][
p1,1 (n0) p1,2 (n0)
p2,1 (n0) p2,2 (n0)

]

=

[(
1 + wnq−1

0

)
p1,1 (n0) + hp2,1 (n0)

(
1 + wnq−1

0

)
p1,2 (n0) + hp2,2 (n0)

w

h
nq−1
0 p1,1 (n0) + p2,1 (n0)

w

h
nq−1
0 p1,2 (n0) + p2,2 (n0)

]
.

(3.96)

We now evaluate each entry of the resulting matrix in eq. (3.96), one at a time.

First row, first column The entry in the first row and first column of the
resulting matrix in eq. (3.96) is(

1 + wnq−1
0

)
p1,1 (n0) + hp2,1 (n0) . (3.97)

Expanding
(
1 + wnq−1

0

)
p1,1 (n0) yields(

1 + wnq−1
0

)
p1,1 (n0) = p1,1 (n0) + wnq−1

0 p1,1 (n0) . (3.98)

If we substitute p1,1 (n0) by the right-hand side of eq. (3.90a) in the right-
hand size of eq. (3.98), we obtain:

wnq−1
0 p1,1 (n0) = wnq−1

0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#θ
∏
i∈θ

iq−1

= nq−1
0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#θ+1

∏
i∈θ

iq−1

= nq−1
0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})

∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})nq−1

0

∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})

∏
i∈(θ∪{n0})

iq−1.

(3.99)
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Now, let

P := {({n0} ∪ θ) ∈ P({1, . . . , n0}) | θ ∈ P({1, . . . , n0 − 1})} . (3.100)

We can then rewrite eq. (3.99) as

wnq−1
0 p1,1 (n0) =

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})

∏
i∈(θ∪{n0})

iq−1

=
∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1.
(3.101)

On the other hand, if we substitute p1,2 (n0) by the right-hand side of
eq. (3.90c) in the expression hp1,2 (n0), we get

hp1,2 (n0) = h
1

h

∑
θ∈P({1,...,n0−1})

c (n0, θ)w
#θ
∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

c (n0, θ)w
#θ
∏
i∈θ

iq−1.
(3.102)

Combining all the previous expressions, we obtain(
1 + wnq−1

0

)
p1,1 (n0) + hp2,1 (n0) =

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#θ
∏
i∈θ

iq−1

+
∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

+
∑

θ∈P({1,...,n0−1})

c (n0, θ)w
#θ
∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

a (n0, θ)w
#θ
∏
i∈θ

iq−1

+
∑

θ∈P({1,...,n0−1})

c (n0, θ)w
#θ
∏
i∈θ

iq−1

+
∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

(
a (n0, θ) + c (n0, θ)

)
w#θ

∏
i∈θ

iq−1

+
∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1.

(3.103)

Recalling that

P({1, . . . , n0}) = {A ∈ P({1, . . . , n0}) | n0 ∈ A} ∪ {A ∈ P({1, . . . , n0}) | n0 ̸∈ A}
= P ∪ P({1, . . . , n0 − 1}),

(3.104)
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we may rewrite eq. (3.103) as(
1 + wnq−1

0

)
p1,1 (n0) + hp2,1 (n0) =

∑
θ∈P({1,...,n0−1})

(
a (n0, θ) + c (n0, θ)

)
w#θ

∏
i∈θ

iq−1

+
∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0})

a (n0 + 1, θ)w#θ
∏
i∈θ

iq−1,

(3.105)

where

a (n0 + 1, θ) =

{
a (n0, θ − {n0}) if n0 ∈ θ;(
a (n0, θ) + c (n0, θ)

)
otherwise.

(3.106)

First row, second column This case is analogous to the previous one.
The entry in the first row and second column of the resulting matrix in
eq. (3.96) is (

1 + wnq−1
0

)
p1,2 (n0) + hp2,2 (n0) . (3.107)

Expanding
(
1 + wnq−1

0

)
p1,2 (n0) yields(

1 + wnq−1
0

)
p1,2 (n0) = p1,2 (n0) + wnq−1

0 p1,2 (n0) . (3.108)

If we substitute p1,2 (n0) by the right-hand side of eq. (3.90b) in the right-
hand size of eq. (3.108), we obtain:

wnq−1
0 p1,2 (n0) = wnq−1

0 h
∑

θ∈P({1,...,n0−1})

b (n0, θ)w
#θ
∏
i∈θ

iq−1

= nq−1
0 h

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#θ+1

∏
i∈θ

iq−1

= nq−1
0 h

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#(θ∪{n0})

∏
i∈θ

iq−1

= h
∑

θ∈P({1,...,n0−1})

b (n0, θ)w
#(θ∪{n0})nq−1

0

∏
i∈θ

iq−1

= h
∑

θ∈P({1,...,n0−1})

b (n0, θ)w
#(θ∪{n0})

∏
i∈(θ∪{n0})

iq−1.

(3.109)

Now, let

P := {({n0} ∪ θ) ∈ P({1, . . . , n0}) | θ ∈ P({1, . . . , n0 − 1})} . (3.110)

We can then rewrite eq. (3.109) as

wnq−1
0 p1,2 (n0) = h

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#(θ∪{n0})

∏
i∈(θ∪{n0})

iq−1

= h
∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1.
(3.111)
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On the other hand, if we substitute p2,2 (n0) by the right-hand side of
eq. (3.90d) in the expression hp2,2 (n0), we get

hp2,2 (n0) = h
∑

θ∈P({1,...,n0−1})

d (n0, θ)w
#θ
∏
i∈θ

iq−1. (3.112)

Combining all the previous expressions, we obtain(
1 + wnq−1

0

)
p1,2 (n0) + hp2,2 (n0) = h

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#θ
∏
i∈θ

iq−1

+ h
∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

+ h
∑

θ∈P({1,...,n0−1})

d (n0, θ)w
#θ
∏
i∈θ

iq−1

= h
∑

θ∈P({1,...,n0−1})

b (n0, θ)w
#θ
∏
i∈θ

iq−1

+ h
∑

θ∈P({1,...,n0−1})

d (n0, θ)w
#θ
∏
i∈θ

iq−1

+ h
∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

= h
∑

θ∈P({1,...,n0−1})

(
b (n0, θ) + d (n0, θ)

)
w#θ

∏
i∈θ

iq−1

+ h
∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1.

(3.113)

Recalling that

P({1, . . . , n0}) = {A ∈ P({1, . . . , n0}) | n0 ∈ A} ∪ {A ∈ P({1, . . . , n0}) | n0 ̸∈ A}
= P ∪ P({1, . . . , n0 − 1}),

(3.114)

we may rewrite expression (3.117) as(
1 + wnq−1

0

)
p1,2 (n0) + hp2,2 (n0) = h

∑
θ∈P({1,...,n0−1})

(
b (n0, θ) + d (n0, θ)

)
w#θ

∏
i∈θ

iq−1

+ h
∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

= h

( ∑
θ∈P({1,...,n0−1})

(
b (n0, θ) + d (n0, θ)

)
w#θ

∏
i∈θ

iq−1

+
∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

)
= h

∑
θ∈P({1,...,n0})

b (n0 + 1, θ)w#θ
∏
i∈θ

iq−1,

(3.115)
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where

b (n0 + 1, θ) =

{
b (n0, θ − {n0}) if n0 ∈ θ;(
b (n0, θ) + d (n0, θ)

)
otherwise.

(3.116)

Second row, first column The entry in the second row and first column of
the resulting matrix is

w

h
nq−1
0 p1,1 (n0) + hp2,1 (n0) (3.117)

If we substitute p1,1 (n0) by the right-hand side of eq. (3.90a) in the ex-
pression

w

h
nq−1
0 p1,1 (n0), we obtain

w

h
nq−1
0 p1,1 (n0) =

w

h
nq−1
0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#θ
∏
i∈θ

iq−1

=
1

h
wnq−1

0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#θ
∏
i∈θ

iq−1

=
1

h
nq−1
0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#θ+1

∏
i∈θ

iq−1

=
1

h
nq−1
0

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})

∏
i∈θ

iq−1

=
1

h

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})nq−1

0

∏
i∈θ

iq−1

=
1

h

∑
θ∈P({1,...,n0−1})

a (n0, θ)w
#(θ∪{n0})

∏
i∈(θ∪{n0})

iq−1.

(3.118)

Using the previous equation and substituting p2,1 (n0) by the right-hand
side of eq. (3.90c) in expression (3.117), we obtain

w

h
nq−1
0 p1,1 (n0) + hp2,1 (n0) =

1

h

∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

+
1

h

∑
θ∈P({1,...,n0−1})

c (n0, θ)w
#θ
∏
i∈θ

iq−1

=
1

h

(∑
θ∈P

a (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

+
∑

θ∈P({1,...,n0−1})

c (n0, θ)w
#θ
∏
i∈θ

iq−1

)
=

1

h

∑
θ∈P({1,...,n0})

c (n0 + 1, θ)w#θ
∏
i∈θ

iq−1,

(3.119)

where

c (n0 + 1, θ) =

{
a (n0, θ − {n0}) if n0 ∈ θ;
c (n0, θ) otherwise.

(3.120)
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Second row, second column This case is analogous to the previous one.
The entry in the second row and second column of the resulting matrix
is

w

h
nq−1
0 p1,2 (n0) + hp2,2 (n0) (3.121)

If we substitute p1,2 (n0) by the right-hand side of eq. (3.90b) in the
expression

w

h
nq−1
0 p1,2 (n0), we obtain

w

h
nq−1
0 p1,2 (n0) =

w

h
nq−1
0 h

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#θ
∏
i∈θ

iq−1

= wnq−1
0

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#θ
∏
i∈θ

iq−1

= nq−1
0

∑
θ∈P({1,...,n0−1})

b (n0, θ)w
#θ+1

∏
i∈θ

iq−1

= nq−1
0

∑
θ∈P({1,...,n0−1})

v (n0, θ)w
#(θ∪{n0})

∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

b (n0, θ)w
#(θ∪{n0})nq−1

0

∏
i∈θ

iq−1

=
∑

θ∈P({1,...,n0−1})

b (n0, θ)w
#(θ∪{n0})

∏
i∈(θ∪{n0})

iq−1.

(3.122)

Using the previous equation and substituting p2,2 (n0) by the right-hand
side of eq. (3.90d) in expression (3.121), we obtain

w

h
nq−1
0 p1,2 (n0) + hp2,2 (n0) =

∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

+ h
∑

θ∈P({1,...,n0−1})

d (n0, θ)w
#θ
∏
i∈θ

iq−1

=

(∑
θ∈P

b (n0, θ − {n0})w#θ
∏
i∈θ

iq−1

+
∑

θ∈P({1,...,n0−1})

d (n0, θ)w
#θ
∏
i∈θ

iq−1

)
=

1

h

∑
θ∈P({1,...,n0})

d (n0 + 1, θ)w#θ
∏
i∈θ

iq−1,

(3.123)

where

d (n0 + 1, θ) =

{
b (n0, θ − {n0}) if n0 ∈ θ;
d (n0, θ) otherwise.

(3.124)

The result in lemma 3 provides expressions that couple functions a and c, and
functions b and d. We can therefore write c in terms of a and d in terms of b as
follows.
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Proposition 8. Let (n, θ) ∈ D and, if θ is non-empty, let n1, . . . , n#θ ∈ θ be all
its #θ different elements, indexed in such a way that n1 < . . . < n#θ. Then, the
following equalities hold:

c (n, θ) =


0 if θ = ∅;
1 if θ = {1} ;
a (n#θ, θ − {n#θ}) otherwise

(3.125)

and

d (n, θ) =


1 if θ = ∅;
0 if θ = {1} ;
b (n#θ, θ − {n#θ}) otherwise.

(3.126)

Proof. The proof will be done by induction on n.

Base If n = 2, then, by the definition of D, θ ∈ P({1}). This implies that either
θ = ∅ or θ = {1}. By equalities (3.92), we have, in the former case,

c (2, θ) = c (2, ∅) = 0 (3.127)

and
d (2, θ) = d (2, ∅) = 1. (3.128)

On the other hand, in the latter case, we have

c (2, θ) = c (2, {1}) = 1 (3.129)

and
d (2, θ) = d (2, {1}) = 0, (3.130)

also by equalities (3.92).

Induction Suppose that there exists n0 ∈ N with n0 > 2 such that the proposition
holds for all (n, θ) ∈ D with n ≤ n0. We shall then prove that the proposition
still holds for n0 + 1.

Let θ ∈ P({1, . . . , n0}) = P({1, . . . , (n0 + 1)− 1}) such that (n0, θ) ∈ D. If
n0 ∈ θ, then θ ̸= ∅ and θ ̸= {1}, since n0 > 2. Thus, we want to show that

c (n0 + 1, θ) = a (n#θ, θ − {n#θ}) (3.131)

and
d (n0 + 1, θ) = b (n#θ, θ − {n#θ}) . (3.132)

Since n0 ∈ θ, we can use eq. (3.91c) to get that

c (n0 + 1, θ) = a ((n0 + 1)− 1, θ − {(n0 + 1)− 1}) = a (n0, θ − {n0}) (3.133)

and using eq. (3.91d) gives us that

d (n0 + 1, θ) = b ((n0 + 1)− 1, θ − {(n0 + 1)− 1}) = b (n0, θ − {n0}) .
(3.134)
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By its definition, n#θ is larger then all other elements of θ. However, since
θ ∈ P({1, . . . , n0}) and n0 ∈ θ, it follows that n0 is also larger then all other
elements of θ. Thus

n#θ = max θ = n0, (3.135)

which means that

c (n0 + 1, θ) = a (n0, θ − {n0}) = a (n#θ, θ − {n#θ}) (3.136)

and
d (n0 + 1, θ) = b (n0, θ − {n0}) = b (n#θ, θ − {n#θ}) , (3.137)

as desired.

On the other hand, if n0 /∈ θ, again from eqs. (3.91c) and (3.91d), we still have
that

c (n0 + 1, θ) = c (n0, θ) (3.138)

and
d (n0 + 1, θ) = d (n0, θ) . (3.139)

Then, by the induction hypothesis, we know that

c (n0 + 1, θ) = c (n0, θ) =


0 if θ = ∅;
1 if θ = {1} ;
a (n#θ, θ − {n#θ}) otherwise

(3.140)

and

d (n0 + 1, θ) = d (n0, θ) =


1 if θ = ∅;
0 if θ = {1} ;
b (n#θ, θ − {n#θ}) , otherwise,

(3.141)

which concludes the proof.

Proposition 8 implies that c and d depend on θ only. Thus, it is justified to
replace the previous notation by c (θ) and d (θ), whenever suitable. Now, from
proposition 8 and eqs. (3.91a) and (3.91b) of lemma 3, we find explicit expressions
for a and b in terms of n and θ only, which also result in explicit expressions for c
and d. These results are presented in the following.

Lemma 4. Let τ ∈ (0, α) and (n, θ) ∈ D. If θ is non-empty, let n1, . . . , n#θ ∈ θ be
all its #θ different elements, indexed in such a way that n1 < . . . < n#θ. Then

a (n, θ) =


1 if θ = ∅;

(n− n#θ)

#θ∏
i=2

(ni − ni−1) otherwise
(3.142)

and

b (n, θ) =


n− 1 if θ = ∅;

(n− n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) otherwise.
(3.143)
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Proof. The proof will be done by induction on n.

Base If n = 2, then θ is either ∅ or {1}, because (n, θ) ∈ D. If θ = ∅, then
eqs. (3.142) and (3.143) agree with equalities (3.92) which says that

a (n, θ) = a (2, ∅) = 1 (3.144)

and
b (n, θ) = b (2, ∅) = 2− 1 = 1. (3.145)

On the other hand, if θ = {1}, then #θ = 1 and n1 = n#θ = 1. This means
that

(n− n#θ)

#θ∏
i=2

(ni − ni−1) = (n− n1)
1∏

i=2

(ni − ni−1) = (2− 1) = 1 (3.146)

and

(n− n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) = (n− n1) (n1− 1)
1∏

i=2

(ni − ni−1)

= (n− n1) (n1 − 1) = (2− 1) (1− 1) = 0,

(3.147)

which, again, agrees with equalities (3.92).

Induction Suppose that there exists n0 ∈ N with n0 > 2 such that the proposition
holds for all (n, θ) ∈ D with n ≤ n0 and let (n0 + 1, θ) ∈ D. We will split
this step into six mutually disjoint and all encompassing cases regarding the
constituents of θ. These are: (1) θ = ∅; (2) θ = {1}; (3) n0 /∈ θ, #θ = 1 and
θ ̸= {1}; (4) n0 /∈ θ and #θ > 1; (5) n0 ∈ θ and #θ = 1; (6) n0 ∈ θ and
#θ > 1.

We shall now analyze each case individually:

(1) If θ = ∅, then n0 /∈ θ, which, together with eqs. (3.91a) and (3.91b),
implies that

a (n0 + 1, θ) = a ((n0 + 1)− 1, θ) + c ((n0 + 1)− 1, θ)

= a (n0, θ) + c (n0, θ)
(3.148)

and

b (n0 + 1, θ) = b ((n0 + 1)− 1, θ) + d ((n0 + 1)− 1, θ)

= b (n0, θ) + d (n0, θ) ,
(3.149)

respectively.
Then, by equalities (3.92), we have that

a (n0 + 1, θ) = a (n0, θ) + c (n0, θ) = a (n0, ∅) + c (n0, ∅)
= a (n0, ∅) + c (∅) = a (n0, ∅) + 0 = a (n0, ∅) .

(3.150)
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and
b (n0 + 1, θ) = b (n0, θ) + d (n0, θ) = b (n0, ∅) + d (n0, ∅)

= b (n0, ∅) + d (∅) = b (n0, ∅) + 1.
(3.151)

Thus, from the induction hypothesis, we conclude that

a (n0 + 1, θ) = a (n0, ∅) = 1 (3.152)

and

b (n0 + 1, θ) = b (n0, ∅) + 1 = (n0 − 1) + 1 = (n0 + 1)− 1, (3.153)

as desired.
(2) If θ = {1}, then n0 /∈ θ, which implies that eqs. (3.148) and (3.149) are

still valid. Then using equalities (3.92) in eqs. (3.148) and (3.149), we get

a (n0 + 1, θ) = a (n0, θ) + c (n0, θ) = a (n0, {1}) + c (n0, {1})
= a (n0, {1}) + c ({1}) = a (n0, {1}) + 1

(3.154)

and
b (n0 + 1, θ) = b (n0, θ) + d (n0, θ) = b (n0, {1}) + d (n0, {1})

= b (n0, {1}) + d ({1}) = b (n0, {1}) + 0 = b (n0, {1}) .
(3.155)

Then, using the induction hypothesis,

a (n0 + 1, θ) = a (n0, {1}) + 1

= (n0 − n#θ)

#θ∏
i=2

(ni − ni−1) + 1

= (n0 − n1)
1∏

i=2

(ni − ni−1) + 1

= (n0 − n1) + 1 = (n0 − 1) + 1 = n0 − 1 + 1 = n0

(3.156)

and
b (n0 + 1, θ) = b (n0, {1})

= (n0 − n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1)

= (n0 − n1) (n1 − 1)
1∏

i=2

(ni − ni−1)

= (n0 − n1) (n1 − 1) = (n0 − 1) (1− 1) = 0.

(3.157)

On the other hand, substituting n = n0 + 1 and θ = {1} in eqs. (3.142)
and (3.143) yields

(n− n#θ)

#θ∏
i=2

(ni − ni−1) = ((n0 + 1)− n1)
1∏

i=2

(ni − ni−1) = ((n0 + 1)− n1)

= ((n0 + 1)− 1) = n0 + 1− 1 = n0

(3.158)
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and

(n− n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) = ((n0 + 1)− n1) (n1 − 1)
1∏

i=2

(ni − ni−1)

= ((n0 + 1)− n1) (n1 − 1)

= ((n0 + 1)− 1) (1− 1) = 0,

(3.159)

respectively, which agree with eqs. (3.156) and (3.157), also respectively.

(3) Suppose that n0 /∈ θ, #θ = 1 and θ ̸= {1}. Since n0 /∈ θ, then eqs. (3.148)
and (3.149) still hold. Now, θ cannot be the empty set, since #θ = 1.
Also, by hypothesis, θ ̸= {1}. These two conditions and eqs. (3.148)
and (3.149) allow us to deduce, using proposition 8, that

a (n0 + 1, θ) = a (n0, θ)+c (n0, θ) = a (n0, θ)+a (n#θ, θ − {n#θ}) (3.160)

and

b (n0 + 1, θ) = b (n0, θ) + d (n0, θ) = b (n0, θ) + d (n#θ, θ − {n#θ}) ,
(3.161)

respectively. Since #θ = 1, there exists m ∈ N with 2 ≤ m ≤ N and
m ̸= n0 such that θ = {m}, which also means that n1 = m = n#θ. This
implies that θ − {n#θ} = ∅. Thus, eq. (3.160) becomes

a (n0 + 1, θ) = a (n0, θ) + a (n#θ, θ − {n#θ}) = a (n0, {m}) + a (m, ∅)
(3.162)

and eq. (3.161) becomes

b (n0 + 1, θ) = b (n0, θ) + b (n#θ, θ − {n#θ}) = b (n0, {m}) + b (m, ∅) .
(3.163)

Then, the induction hypothesis then gets us to

a (n0 + 1, θ) = a (n0, {m}) + a (m, ∅)

= (n0 − n#θ)

#θ∏
i=2

(ni − ni−1) + a (m, ∅)

= (n0 − n#θ)

#θ∏
i=2

(ni − ni−1) + 1

= (n0 − n1)
1∏

i=2

(ni − ni−1) + 1

= (n0 − n1) + 1 = (n0 −m) + 1 = (n0 + 1)−m

(3.164)
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and

b (n0 + 1, θ) = b (n0, {m}) + b (m, ∅)

= (n0 − n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) + b (m, ∅)

= (n0 − n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) + (m− 1)

= (n0 − n1) (n1 − 1)
1∏

i=2

(ni − ni−1) + (m− 1)

= (n0 − n1) (n1 − 1) + (m− 1)

= (n0 −m) (m− 1) + (m− 1)

= ((n0 −m) + 1) (m− 1)

= ((n0 + 1)−m) (m− 1) .

(3.165)

On the other hand, if we substitute n = n0 + 1 and θ = {m} in the
right-hand side of eqs. (3.142) and (3.143), we have

(n− n#θ)

#θ∏
i=2

(ni − ni−1) = ((n0 + 1)− n1)
1∏

i=2

(ni − ni−1)

= ((n0 + 1)− n1) = ((n0 + 1)−m)

(3.166)

and

(n− n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) = ((n0 + 1)− n1) (n1 − 1)
1∏

i=2

(ni − ni−1)

= ((n0 + 1)− n1) (n1 − 1)

= ((n0 + 1)−m) (m− 1) ,

(3.167)

which both agree with the equations obtained using the induction hy-
pothesis.

(4) Suppose that n0 /∈ θ, #θ > 1. By hypothesis, n0 /∈ θ. Also, since #θ > 1,
it follows that θ ̸= ∅, {1}. This means that eqs. (3.160) and (3.161) still
hold. Since #θ > 1, then θ−{n#θ} ≠ ∅, the largest element of θ−{n#θ} is
n#θ−1 and #(θ − {n#θ}) = #θ−1. Thus, using the induction hypothesis
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on eqs. (3.160) and (3.161) yields

a (n0 + 1, θ) = a (n0, θ) + a (n#θ, θ − {n#θ})

= (n0 − n#θ)

#θ∏
i=2

(ni − ni−1)

+
(
n#θ − n#(θ−{n#θ})

)#(θ−{n#θ})∏
i=2

(ni − ni−1)

= (n0 − n#θ)

#θ∏
i=2

(ni − ni−1) + (n#θ − n#θ−1)

#θ−1∏
i=2

(ni − ni−1)

= (n0 − n#θ)

#θ∏
i=2

(ni − ni−1) +

#θ∏
i=2

(ni − ni−1)

= ((n0 − n#θ) + 1)

#θ∏
i=2

(ni − ni−1)

= ((n0 + 1)− n#θ)

#θ∏
i=2

(ni − ni−1)

(3.168)
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and
b (n0 + 1, θ) = b (n0, θ) + b (n#θ, θ − {n#θ})

= (n0 − n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1)

+
(
n#θ − n#(θ−{n#θ})

)
(n1 − 1)

#(θ−{n#θ})∏
i=2

(ni − ni−1)

= (n1 − 1)

(
(n0 − n#θ)

#θ∏
i=2

(ni − ni−1)

+
(
n#θ − n#(θ−{n#θ})

)
(n1 − 1)

#(θ−{n#θ})∏
i=2

(ni − ni−1)

)

= (n1 − 1)

(
(n0 − n#θ)

#θ∏
i=2

(ni − ni−1)

+ (n#θ − n#θ−1)

#θ−1∏
i=2

(ni − ni−1)

)

= (n1 − 1)

(
(n0 − n#θ)

#θ∏
i=2

(ni − ni−1) +

#θ∏
i=2

(ni − ni−1)

)

= (n1 − 1) ((n0 − n#θ) + 1)

#θ∏
i=2

(ni − ni−1)

= (n1 − 1) ((n0 + 1)− n#θ)

#θ∏
i=2

(ni − ni−1)

= ((n0 + 1)− n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) ,

(3.169)

respectively, as wished.
(5) Suppose that n0 ∈ θ and #θ = 1, i.e. θ = {n0}. The fact that n0 ∈ θ

suffices allows us to use eqs. (3.91a) and (3.91b) to write

a (n0 + 1, θ) = a ((n0 + 1)− 1, θ − {(n0 + 1)− 1}) = a (n0, θ − {n0})
(3.170)

and

b (n0 + 1, θ) = b ((n0 + 1)− 1, θ − {(n0 + 1)− 1}) = b (n0, θ − {n0}) .
(3.171)

Since θ = {n0}, we have

a (n0 + 1, θ) = a (n0, θ − {n0}) = a (n0, {n0} − {n0}) = a (n0, ∅) (3.172)

and

b (n0 + 1, θ) = b (n0, θ − {n0}) = b (n0, {n0} − {n0}) = b (n0, ∅) .
(3.173)
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Then, by the induction hypothesis, we conclude that

a (n0 + 1, θ) = a (n0, ∅) = 1 (3.174)

and
b (n0 + 1, θ) = b (n0, ∅) = n0 − 1. (3.175)

Note now that n0 = n1 = n#θ. Thus, making n = n0 + 1 and θ = {n0}
in the right-hand side of eqs. (3.142) and (3.143) gives

(n− n#θ)

#θ∏
i=2

(ni − ni−1) = ((n0 + 1)− n1)
1∏

i=2

(ni − ni−1)

= (n0 + 1)− n1 = (n0 + 1)− n0 = 1

(3.176)

and

(n− n#θ) (n1 − 1)

#θ∏
i=2

(ni − ni−1) = ((n0 + 1)− n1) (n1 − 1)
1∏

i=2

(ni − ni−1)

= ((n0 + 1)− n1) (n1 − 1)

= ((n0 + 1)− n0) (n0 − 1)

= n0 − 1,

(3.177)

which agrees with eqs. (3.174) and (3.175).

(6) Suppose that n0 ∈ θ and #θ > 1. Since n0 ∈ θ, eqs. (3.170) and (3.171)
are still valid. Then, the induction hypothesis gives us

a (n0 + 1, θ) = a (n0, θ − {n0}) =
(
n0 − n#(θ−{n#θ})

)#(θ−{n#θ})∏
i=1

(ni − ni−1)

= (n0 − n#θ−1)

#θ−1∏
i=1

(ni − ni−1)

(3.178)

and

b (n0 + 1, θ) = b (n0, θ − {n0})

=
(
n0 − n#(θ−{n#θ})

)
(n1 − 1)

#(θ−{n#θ})∏
i=1

(ni − ni−1)

= (n0 − n#θ−1) (n1 − 1)

#θ−1∏
i=1

(ni − ni−1)

(3.179)

Now, the definition of D together with the facts that (n0 + 1, θ) ∈ D
and that n0 ∈ θ imply that n#θ = n0. Thus making n = n0 + 1 in the
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right-hand side of eqs. (3.142) and (3.143) gives us

(n− n#θ)

#θ∏
i=1

(ni − ni−1) = ((n0 + 1)− n#θ)

#θ∏
i=1

(ni − ni−1)

= ((n0 + 1)− n#θ) (n#θ − n#θ−1)

#θ−1∏
i=1

(ni − ni−1)

= ((n0 + 1)− n0) (n0 − n#θ−1)

#θ−1∏
i=1

(ni − ni−1)

= (n0 − n#θ−1)

#θ−1∏
i=1

(ni − ni−1)

(3.180)

and

(n− n#θ) (n1 − 1)

#θ∏
i=1

(ni − ni−1) = ((n0 + 1)− n#θ) (n1 − 1)

#θ∏
i=1

(ni − ni−1)

= ((n0 + 1)− n#θ) (n1 − 1) (n#θ − n#θ−1)

#θ−1∏
i=1

(ni − ni−1)

= ((n0 + 1)− n0) (n0 − n#θ−1) (n1 − 1)

#θ−1∏
i=1

(ni − ni−1)

= (n0 − n#θ−1) (n1 − 1)

#θ−1∏
i=1

(ni − ni−1) ,

(3.181)

and these two equations agree with what was obtained via the induction
hypothesis.

The next corollary combines the expressions of c and d in terms of a and b found
in proposition 8 with the explicit expressions of a and b of the previous proposition
to derive an explicit expression for c and d.

Corollary 5. Let (n, θ) ∈ D. If θ is non-empty, let n1, . . . , n#θ ∈ θ be all its #θ
different elements, indexed in such a way that n1 < . . . < n#θ. Then

c (n, θ) =


0 if θ = ∅;
#θ∏
i=2

(ni − ni−1) otherwise
(3.182)

and

d (n, θ) =


1 if θ = ∅;

(n1 − 1)

#θ∏
i=2

(ni − ni−1) otherwise.
(3.183)
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Proof. First, consider θ = ∅. Then, by proposition 8, we have

c (n, θ) = c (n, ∅) = 0 (3.184)

and
d (n, θ) = d (n, ∅) = 1, (3.185)

which agree, respectively, with eqs. (3.182) and (3.183).
If θ = {1} then, by applying convention 1 to eqs. (3.182) and (3.183), we have

that

c (n, θ) =

#θ∏
i=2

(ni − ni−1) =
1∏

i=2

(ni − ni−1) = 1. (3.186)

and

d (n, θ) = (n1 − 1)

#θ∏
i=2

(ni − ni−1) = (n1 − 1)
1∏

i=2

(ni − ni−1) = n1 − 1 = 1− 1 = 0,

(3.187)
where we used that n1 = 0, because 1 is the only element of θ. These still agree
with proposition 8.

If #θ = 1 but θ ̸= {1}, then the only element of θ is n1 = n#θ and, by proposi-
tion 8 and convention 1, we have that

c (n, θ) = a (n#θ, θ − {n#θ}) = a (n#θ, ∅) = 1 =
1∏

n=2

(ni − ni−1) =

#θ∏
n=2

(ni − ni−1)

(3.188)
and

d (n, θ) = b (n#θ, θ − {n#θ}) = b (n#θ, ∅) = n− 1 = n1 − 1

= (n1 − 1)
1∏

n=2

(ni − ni−1) = (n1 − 1)

#θ∏
n=2

(ni − ni−1) ,
(3.189)

which are the RHS of eqs. (3.182) and (3.183), respectively.
Finally, if θ does not match any of the preceding cases, then θ contains at least

two elements. Note then that the largest element of θ−{n#θ} is n#θ−1. This, along
with proposition 8, implies that

c (n, θ) = a (n#θ, θ − {n#θ}) = (n#θ − n#θ−1)

#θ−1∏
n=2

(ni − ni−1) =

#θ∏
n=2

(ni − ni−1)

(3.190)

and

d (n, θ) = b (n#θ, θ − {n#θ}) = (n#θ − n#θ−1) (n1 − 1)

#θ−1∏
n=2

(ni − ni−1)

= (n1 − 1) (n#θ − n#θ−1)

#θ−1∏
n=2

(ni − ni−1) = (n1 − 1)

#θ∏
n=2

(ni − ni−1) ,

(3.191)

which concludes the proof.
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In possession of an explicit expression for
n−1∏
i=1

An−i, we can now establish bounds

for the total error given in corollary 4. This will be discussed in the following
subsection.

3.2.4 Bounds for the entries of
n−1∏
i=1

An−i

In this section, we derive auxiliary bounds that will be used in proving theorem 1.
The derivation of such bounds require the establishment of some properties of the
sets

An,N = {θ ∈ P({1, . . . , N}) | #θ = n} (3.192)

and
Bn,N = {(θ ∪ {N}) ∈ P({1, . . . , N}) | θ ∈ An−1,N−1} , (3.193)

where, in the definition of An,N , n and N can be zero.
Since the construction of the sets Bn,N involve the use of the sets An−1,N−1 and

the sets An,N only exist for non-negative values of n and N , it is not immediate that
the sets Bn,N are well defined. This is our next proposition.

Proposition 9. The sets Bn,N are well defined for all n,N ∈ N with n ≤ N .

Proof. Since n,N ∈ N, it follows that n − 1, N − 1 ∈ N ∪ {0}. And since n ≤ N ,
it follows that n − 1 ≤ N − 1. Thus, An−1,N−1 exists, which is the only point of
contention on the definition of Bn,M .

An important property of the sets An,N is that, fixed some n ∈ N, the set se-
quence (An,N)N≥n is monotonically increasing in the sense of subsets, i.e. An0,N ⊂
An0,M if N ≤M . This property shall be referred to hereon as “A sets are monoton-
ically increasing” and is the subject of the next proposition.

Proposition 10. Let n,N,M ∈ N ∪ {0} with n ≤ N ≤ M . Then, it is true that
An,N ⊂ An,M .

Proof. Let θ ∈ An,N . Then, by the definition of An,N , θ ∈ P({1, . . . , N}) and
#θ = n. Since N ≤ M , this means that θ ∈ P({1, . . . ,M}) which, together with
the fact that #θ = n, means that θ ∈ An,M .

The following result states that An,N can be decomposed in a disjoint union of
sets of the type Bn,N .

Proposition 11. Let n,N ∈ N such that n ≤ N . Then An,N =
N⊔
i=n

Bn,i, where
⊔

denotes a disjoint union of sets.

Proof. First, let M,M ′ ∈ N be such that M ′ ̸=M . Then, without loss of generality,
M ′ > M . Thus Bn,M ∩ Bn,M ′ = ∅, since all the elements of Bn,M ′ are sets which
contain M ′ while the elements of Bn,M are sets in P({1, · · · ,M}), which cannot
contain M ′. This justifies the use of

⊔
.
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Suppose now that θ ∈ An,N . Let k = max θ and θ′ = θ − {k}. It is clear that
θ′ ∈ P({1, . . . , k − 1}) and that

#θ′ = #θ − 1 = n− 1. (3.194)

Thus, by definition, θ′ ∈ An−1,k−1, which, again by definition, means that θ =
θ′ ∪ {k} ∈ Bn,k. Since k = max θ and #θ = n, then k ≥ n. However, since

θ ∈ P({1, . . . , N}), then k ≤ N . Thus, Bn,k ⊂
N⊔
i=n

Bn,i.

On the other hand, suppose that θ ∈
N⊔
i=n

Bn,i. Thus, there exists k ∈ {n, n +

1, . . . , N − 1, N} such that θ ∈ Bn,k. By definition, this means that there exists
θ′ ∈ An−1,k−1 such that

θ = θ′ ∪ {k} . (3.195)

Since θ′ ∈ An−1,k−1, then θ′ ∈ P({1, . . . , k − 1}). Thus, θ ∈ P({1, . . . , k}). Further-
more, since k ̸∈ θ′ (again, because θ′ ∈ P({1, . . . , k − 1})), we have that

#θ = #(θ′ ∪ {k}) = #θ′ +# {k} = #θ′ + 1. (3.196)

However, since θ′ ∈ An−1,k−1, then, by definition, #θ′ = n− 1. Therefore,

#θ = #θ′ + 1 = (n− 1) + 1 = n. (3.197)

This means, by definition, that θ ∈ An,k. Thus, since k ≤ N and A sets are
monotonically increasing, we have that An,k ⊂ An,N , which allows us to conclude
that θ ∈ An,N .

For n,N ∈ N with n ≤ N , consider the function ϕn,N : An−1,N−1 → Bn,N defined
as

ϕn,N (θ) = θ ∪ {N} . (3.198)

We will now concern ourselves with the question of well definedness of the function
ϕn,N .

Proposition 12. Let n,N ∈ N with n ≤ N . Then ϕn,N is well defined.

Proof. First, since n,N ∈ N, it follows that n − 1, N − 1 ∈ N ∪ {0}. And since
n ≤ N , it follows that n− 1 ≤ N − 1. Thus, An−1,N−1 exists.

Next, let θ ∈ An−1,N−1. Then, by definition, θ ⊂ {1, . . . , N − 1} and #θ = n−1.
Thus, ϕn,N (θ) = θ ∪ {N}. Then, by the definition of Bn,N and since θ ∈ An−1,N−1,
it follows that ϕn,N (θ) = θ ∪ {N} ∈ Bn,N

It will be necessary to use the fact that the function ϕn,N is bijective. Thus, this
is our next proposition.

Proposition 13. Let n,N ∈ N with n ≤ N . Then, ϕn,N is a bijective function.

Proof. To see that ϕn,M is injective, let θ, θ′ ∈ An−1,N−1 such that

ϕn,N (θ) = ϕn,N (θ′) . (3.199)
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This means that
θ ∪ {N} = θ′ ∪ {N} . (3.200)

Since, by the definition of An−1,N−1, M is neither in θ nor in θ′, this means that

θ = θ ∪ {N} − {N} = θ′ ∪ {N} − {N} = θ′. (3.201)

On the other hand, let θ′ ∈ Bn,N . Then, by the definition of Bn,N , there exists
θ ∈ An−1,N−1 such that θ′ = θ ∪ {N}. Then, by the definition of ϕn,N ,

ϕn,N (θ) = θ ∪ {N} = θ′, (3.202)

i.e. ϕn,N is surjective.

With the help of the functions ϕn,N , a general inequality regarding certain sums
over An+1,N−1 is obtained in proposition 14.

Proposition 14. Let n,N ∈ N∪{0} with n+1 ≤ N−1 and γ : P({1, . . . , N − 1})→
[0,∞) be a function. Then, it is true that

∑
θ∈An+1,N−1

γ (θ)
∏
i∈θ

iq−1 ≤
N−1∑

m=n+1

mq−1
∑

θ∈An,m−1

γ (θ ∪ {m})
∏
i∈θ

iq−1. (3.203)

Proof. Since n ∈ N ∪ {0}, n + 1 ∈ N and since N ∈ N ∪ {0} and n + 1 ≤ N − 1,
it follows that N − 1 ∈ N. Thus, we can use proposition 11 for n + 1 and N − 1.
Doing so yields

An+1,N−1 =
N−1⊔

m=n+1

Bn+1,m, (3.204)

which implies that

∑
θ∈An+1,N−1

γ (θ)
∏
i∈θ

iq−1 =
N−1∑

m=n+1

∑
θ∈Bn+1,m

γ (θ)
∏
i∈θ

iq−1. (3.205)

Then, by proposition 13, we know that the map ϕn+1,m is a bijection from An,m−1

to Bn+1,m, for each m ∈ {n+ 1, . . . , N − 1}. Thus,

N−1∑
m=n+1

∑
θ∈Bn+1,m

γ (θ)
∏
i∈θ

iq−1 =
N−1∑

m=n+1

∑
θ∈An,m−1

γ (θ ∪ {m})
∏

i∈(θ∪{m})

iq−1

=
N−1∑

m=n+1

∑
θ∈An,m−1

γ (θ ∪ {m})mq−1
∏
i∈θ

iq−1

=
N−1∑

m=n+1

mq−1
∑

θ∈An,m−1

γ (θ ∪ {m})
∏
i∈θ

iq−1.

(3.206)

Before we proceed, we shall need another external result.
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External Result 2. Let n ∈ N and p ∈ R such that p > 0 but p ̸= 1. Then

n∑
k=1

1

np
< 1 +

n1−p − 1

1− p
. (3.207)

Proof. See eq. (25) of [14].

With the general bound obtained in proposition 14 and the external result 2
stated, inequalities for certain sums involving the functions a, b, c, d in terms of
N and the total integration time τ are obtained in the following lemma. These

inequalities are crucial for obtaining estimates for the entries of the matrix
n−1∏
i=1

An−i.

Lemma 5. Let τ ∈ (0, α). Then, for all n,N ∈ N with n ≤ N − 1, it is true that∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2τn(1+q), (3.208a)

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2Nτn(1+q), (3.208b)

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2τn(1+q)

N
, (3.208c)

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2τn(1+q). (3.208d)

Proof. Since n must be less than or equal to N − 1 and n must be in N, it follows
that N ≥ 2. Thus, let N ∈ N be such that N ≥ 2. We will use induction on n to,
initially, prove inequality (3.208c).

Base We must prove the proposition for n = 1. By making n = 0 and γ (θ) =
c (N, θ)w#θ in proposition 14, we get∑
θ∈A1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 =
∑

θ∈An+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1

≤
N−1∑
m=1

mq−1
∑

θ∈A0,m−1

c (N, θ ∪ {m})w#(θ∪{m})
∏
i∈θ

iq−1

=
N−1∑
m=1

mq−1
∑

θ∈A0,m−1

c (N, θ ∪ {m})w1+#θ
∏
i∈θ

iq−1

= w
N−1∑
m=1

mq−1
∑

θ∈A0,m−1

c (N, θ ∪ {m})w#θ
∏
i∈θ

iq−1.

(3.209)

Note that the left-hand side of the equation above is the left-hand side of
inequality (3.208c) for n = 1. Now, since A0,m = {∅}, for all m ∈ N, we can
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simplify the above equation to

∑
θ∈A1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 = w

N−1∑
m=1

mq−1
∑

θ∈A0,m−1

c (N, θ ∪ {m})w#θ
∏
i∈θ

iq−1

= w

N−1∑
m=1

mq−1c (N, ∅ ∪ {m})w#∅
∏
i∈∅

iq−1

= w

N−1∑
m=1

mq−1c (N, {m}) .

(3.210)

Then, we can expand c using corollary 5, which gives

∑
θ∈A1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 = w

N−1∑
m=1

mq−1c (N, {m}) = w

N−1∑
m=1

mq−1

#{m}∏
i=2

(ni − ni−1)

= w
N−1∑
m=1

mq−1

1∏
i=2

(ni − ni−1) = w
N−1∑
m=1

mq−1

≤ w
N∑

m=1

mq−1 = w
N∑

m=1

1

m1−q
.

(3.211)

We now have to evaluate the sum of the p-series that appears on the last term
of eq. (3.211). Then, by external result 2, we get that

N∑
m=1

1

m1−q
< 1 +

N1−(1−q) − 1

1− (1− q)
, (3.212)

valid for 1− q ̸= 1, which is the case in this work. Then, using eq. (3.212), we
obtain

∑
θ∈A1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ w

N∑
m=1

1

m1−q
< w

(
1 +

N1−(1−q) − 1

1− (1− q)

)

= w

(
1 +

N q − 1

q

)
≤ w

(
1 +

N q

q

)
≤ w

(
N q

q
+
N q

q

)
= w

2N q

q
=

2wN q

q
.

(3.213)

Then, by using these definitions of w, in eq. (3.63), and of h, in eq. (3.22), we
finally get that∑

θ∈A1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2wN q

q
=

2qh1+qN q

q
= 2h1+qN q = 2h (Nh)q

= 2
τ

N

(
N
τ

N

)q
= 2

τ

N
(τ)q =

2τ 1+q

N
.

(3.214)
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Induction Suppose that there exists n0 ∈ N with 1 < n0 ≤ N − 1 such that the
proposition holds for all n ∈ N with 1 < n ≤ n0. If n0 = N − 1, the result
follows trivially. Otherwise, n0 + 1 ≤ N − 1.

By taking γ (θ) = c (N, θ)w#θ in proposition 14, we have that

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

c (N, θ ∪ {m})w#(θ∪{m})
∏
i∈θ

iq−1

=
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

c (N, θ ∪ {m})w1+#θ
∏
i∈θ

iq−1

= w

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

c (N, θ ∪ {m})w#θ
∏
i∈θ

iq−1.

(3.215)

Now, observe that if θ′ = θ ∪ {m}, where θ ∈ An0,m−1, then we have that,
using the indexation of lemma 4, n#θ′ = n#θ+1 = m. This fact, together with
corollary 5, leads to

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 = w

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

c (N, θ ∪ {m})w#θ
∏
i∈θ

iq−1

= w

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

#(θ∪{m})∏
i=2

(ni − ni−1)

w#θ
∏
i∈θ

iq−1

= w

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

(m− n#θ)

(
#θ∏
i=2

(ni − ni−1)

)
w#θ

∏
i∈θ

iq−1.

(3.216)

Using that m ≤ N and n#θ > 0, we have that

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 = w

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

(m− n#θ)

(
#θ∏
i=2

(ni − ni−1)w
#θ

)∏
i∈θ

iq−1

≤ w
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

(N − n#θ)

(
#θ∏
i=2

(ni − ni−1)

)
w#θ

∏
i∈θ

iq−1

≤ w
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

(N − 0)

(
#θ∏
i=2

(ni − ni−1)

)
w#θ

∏
i∈θ

iq−1

= w

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

N

(
#θ∏
i=2

(ni − ni−1)

)
w#θ

∏
i∈θ

iq−1

= wN

N−1∑
m=n0+1

mq−1
∑

θ∈An0,m−1

(
#θ∏
i=2

(ni − ni−1)

)
w#θ

∏
i∈θ

iq−1.

(3.217)

Then, we can substitute corollary 5 in the last line of eq. (3.217) to obtain
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that

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ wN
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

(
#θ∏
i=2

(ni − ni−1)

)
w#θ

∏
i∈θ

iq−1

≤ wN
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

c (N, θ)w#θ
∏
i∈θ

iq−1.

(3.218)

Now, c (N, θ)w#θ
∏
i∈θ

iq−1 is always positive. Furthermore, since m−1 ≤ N−1

and by proposition 10, it is true that An0,m−1 ⊂ An0,N−1. Then, we can
conclude that

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ wN
N−1∑

m=n0+1

mq−1
∑

θ∈An0,m−1

c (N, θ)w#θ
∏
i∈θ

iq−1

≤ wN
N−1∑

m=n0+1

mq−1
∑

θ∈An0,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1.

(3.219)

Then, by the induction hypothesis, we have that

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ wN
N−1∑

m=n0+1

mq−1
∑

θ∈An0,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1

≤ wN

N−1∑
m=n0+1

mq−12τ
n0(1+q)

N

= 2wτn0(1+q)

N−1∑
m=n0+1

mq−1

≤ 2wτn0(1+q)

N∑
m=n0+1

mq−1

≤ 2wτn0(1+q)

N∑
m=2

mq−1

= 2wτn0(1+q)

N∑
m=2

1

m1−q

= 2wτn0(1+q)

((
N∑

m=1

1

m1−q

)
− 1

)
.

(3.220)
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Using eq. (3.212), eq. (3.220) now reads:

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2wτn0(1+q)

((
N∑

m=1

1

m1−q

)
− 1

)

≤ 2wτn0(1+q)

((
1 +

N1−(1−q)

1− (1− q)

)
− 1

)
= 2wτn0(1+q)N

q

q

=
2wN qτn0(1+q)

q
.

(3.221)

Finally, by the definitions of w, in eq. (3.63), and of h, in eq. (3.22),

∑
θ∈An0+1,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 ≤ 2wN qτn0(1+q)

q
=

2qh1+qN qτn0(1+q)

q

= 2h (Nh)q τn0(1+q) = 2
τ

N

(
N
τ

N

)q
τn0(1+q)

= 2
τ

N
τ qτn0(1+q) = 2

τ 1+q

N
τn0(1+q)

=
2τ (n0+1)(1+q)

N
.

(3.222)

This finishes the proof by induction of inequality (3.208c).

Now, we can use inequality (3.208c) to prove inequality (3.208a),

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1 =
∑

θ∈An,N−1

(
(N − n#θ)

#θ∏
i=2

(n1 − ni−1)

)
w#θ

∏
i∈θ

iq−1

≤
∑

θ∈An,N−1

N

#θ∏
i=2

(n1 − ni−1)w
#θ
∏
i∈θ

iq−1

= N
∑

θ∈An,N−1

#θ∏
i=2

(n1 − ni−1)w
#θ
∏
i∈θ

iq−1

≤ N
2τn(1+q)

N
= 2τn(1+q).

(3.223)
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Similarly, for inequality (3.208b) we have:

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1 =
∑

θ∈An,N−1

(
(N − n#θ) (n1 − 1)

#θ∏
i=2

(n1 − ni−1)

)
w#θ

∏
i∈θ

iq−1

≤
∑

θ∈An,N−1

N2

#θ∏
i=2

(n1 − ni−1)w
#θ
∏
i∈θ

iq−1

= N2
∑

θ∈An,N−1

#θ∏
i=2

(n1 − ni−1)w
#θ
∏
i∈θ

iq−1

≤ N22τ
n(1+q)

N
= 2Nτn(1+q).

(3.224)

Finally, inequality (3.208d) can be proven as:

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1 =
∑

θ∈An,N−1

(
(n1 − 1)

#θ∏
i=2

(n1 − ni−1)

)
w#θ

∏
i∈θ

iq−1

≤
∑

θ∈An,N−1

N

#θ∏
i=2

(n1 − ni−1)w
#θ
∏
i∈θ

iq−1

= N
∑

θ∈An,N−1

#θ∏
i=2

(n1 − ni−1)w
#θ
∏
i∈θ

iq−1

≤ N
2τn(1+q)

N
= 2τn(1+q).

(3.225)

Corollary 6. Let τ ∈ (0, α) ∩ (0, 1) and N ∈ N. Then, it is true that

p1,1 (N) ≤ 2

1− τ 1+q
, (3.226a)

p1,2 (N) ≤ 2τ

1− τ 1+q
, (3.226b)

p2,1 (N) ≤ 2τ−1

1− τ 1+q
, (3.226c)

p2,2 (N) ≤ 2

1− τ 1+q
. (3.226d)

Proof. Since

P({1, . . . , N − 1}) =
N−1⊔
n=0

An,N−1, (3.227)

one can rewrite eqs. (3.90a) to (3.90d) as the following equations:

p1,1 (N) =
∑

θ∈P({1,...,N−1})

a (N, θ)w#θ
∏
i∈θ

iq−1 =
N−1∑
n=0

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1; (3.228a)
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p1,2 (N) = h
∑

θ∈P({1,...,N−1})

b (N, θ)w#θ
∏
i∈θ

iq−1 = h

N−1∑
n=0

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1; (3.228b)

p2,1 (N) =
1

h

∑
θ∈P({1,...,N−1})

c (N, θ)w#θ
∏
i∈θ

iq−1 =
1

h

N−1∑
n=0

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1;

(3.228c)

p2,2 (N) =
∑

θ∈P({1,...,N−1})

d (N, θ)w#θ
∏
i∈θ

iq−1 =
N−1∑
n=0

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1. (3.228d)

If we now separate the first term of the external sum and write it explicitly, we can
transform the equations above as follows:

p1,1 (N) =

N−1∑
n=0

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1 = a (N, ∅)w#∅
∏
i∈∅

iq−1 +

N−1∑
n=1

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1;

(3.229a)

p1,2 (N) = h

N−1∑
n=0

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1 = h

b (N, ∅)w#∅
∏
i∈∅

iq−1 +

N−1∑
n=1

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1

 ;

(3.229b)

p2,1 (N) =
1

h

N−1∑
n=0

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 =
1

h

c (N, ∅)w#∅
∏
i∈∅

iq−1 +

N−1∑
n=1

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1

 ;

(3.229c)

p2,2 (N) =

N−1∑
n=0

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1 = d (N, ∅)w#∅
∏
i∈∅

iq−1 +

N−1∑
n=1

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1.

(3.229d)

Applying lemma 4 and corollary 5, gives us the equations:

p1,1 (N) = a (N, ∅)w#∅
∏
i∈∅

iq−1 +
N−1∑
n=1

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1 (3.230a)

= 1 +
N−1∑
n=1

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1;

p1,2 (N) = h

b (N, ∅)w#∅
∏
i∈∅

iq−1 +
N−1∑
n=1

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1

 (3.230b)

= h

(N − 1) +
N−1∑
n=1

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1

 ;

p2,1 (N) =
1

h

c (N, ∅)w#∅
∏
i∈∅

iq−1 +
N−1∑
n=1

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1

 (3.230c)

=
1

h

N−1∑
n=1

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1;
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p2,2 (N) = d (N, ∅)w#∅
∏
i∈∅

iq−1 +
N−1∑
n=1

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1 (3.230d)

= 1 +
N−1∑
n=1

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1.

Then, by applying lemma 5, the equations become:

p1,1 (N) = 1 +
N−1∑
n=1

∑
θ∈An,N−1

a (N, θ)w#θ
∏
i∈θ

iq−1 (3.231a)

≤ 1 +
N−1∑
n=1

2τn(1+q) = 1 + 2
N−1∑
n=1

τn(1+q)

≤ 2 + 2
N−1∑
n=1

τn(1+q) = 2
N−1∑
n=0

τn(1+q);

p1,2 (N) = h

(N − 1) +
N−1∑
n=1

∑
θ∈An,N−1

b (N, θ)w#θ
∏
i∈θ

iq−1

 (3.231b)

≤ h

(
(N − 1) +

N−1∑
n=1

2Nτn(1+q)

)
≤ h

(
(N − 1) + 2N

N−1∑
n=1

τn(1+q)

)
;

≤ h

(
2N + 2N

N−1∑
n=1

τn(1+q)

)
= 2hN

N−1∑
n=0

τn(1+q);

p2,1 (N) =
1

h

N−1∑
n=1

∑
θ∈An,N−1

c (N, θ)w#θ
∏
i∈θ

iq−1 (3.231c)

≤ 1

h

N−1∑
n=1

2τn(1+q)

N
=

2

Nh

N−1∑
n=1

τn(1+q)

=
1

Nh

(
2
N−1∑
n=1

τn(1+q)

)
≤ 1

Nh

(
2 + 2

N−1∑
n=1

τn(1+q)

)

=
1

Nh

(
2
N−1∑
n=0

τn(1+q)

)
=

2

Nh

N−1∑
n=0

τn(1+q);

p2,2 (N) = 1 +
N−1∑
n=1

∑
θ∈An,N−1

d (N, θ)w#θ
∏
i∈θ

iq−1 (3.231d)

≤ 1 +
N−1∑
n=1

2τn(1+q) = 1 + 2
N−1∑
n=1

τn(1+q)

≤ 2 + 2
N−1∑
n=1

τn(1+q) = 2
N−1∑
n=0

τn(1+q).

Since τ ∈ (0, 1), the partial sum
N−1∑
n=0

τn(1+q) is bounded above by the sum of the
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corresponding geometric series, i.e.

N−1∑
n=0

τn(1+q) =
N−1∑
n=0

(
τ 1+q

)n ≤ ∞∑
n=0

(
τ 1+q

)n
=

2

1− τ 1+q
. (3.232)

Applying this bound, eqs. (3.231a) to (3.231d) become:

p1,1 (N) ≤ 2
N−1∑
n=0

τn(1+q) ≤ 2
1

1− τ 1+q
; (3.233a)

p1,2 (N) ≤ 2Nh
N−1∑
n=0

τn(1+q) ≤ 2Nh
1

1− τ 1+q
; (3.233b)

p2,1 (N) ≤ 2

Nh

N−1∑
n=0

τn(1+q) ≤ 2

Nh

1

1− τ 1+q
; (3.233c)

p2,2 (N) ≤ 2
N−1∑
n=0

τn(1+q) ≤ 2
1

1− τ 1+q
. (3.233d)

Noting that, from eq. (3.22), Nh = τ concludes the proof.

3.2.5 Error bounds and order of the method

At this point, we have all the results that are needed to prove theorem 1, which
now can be reformulated in a more accurate version, in terms of the total errors
defined in eq. (3.54) and eq. (3.55):

Theorem 2. Let τ ∈ (0, α) ∩ (0, 1). Then, there exists K ∈ (0,∞) such that

eyN ≤ Kh
1+q and evN ≤ Kh1+q, (3.234)

for every N ∈ N with N ≥ 2.

Proof. Since the inequality in corollary 4 holds component-wise, it can be rewritten
as the following two inequalities:

|eyN | ≤
N−1∑
i=1

(
p1,1 (N) |Ty (N − i, N, τ)|+ p1,2 (N) |Tv (N − i, N, τ)|

)
; (3.235)

|evN | ≤
N−1∑
i=1

(
p2,1 (N) |Ty (N − i, N, τ)|+ p2,2 (N) |Tv (N − i, N, τ)|

)
(3.236)
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Using lemma 1 and inequalities (3.226a) and (3.226b) in eq. (3.235) gives us that

|eyN | ≤
N−1∑
i=1

(
p1,1 (N) |Ty (N − i, N, τ)|+ p1,2 (N) |Tv (N − i, N, τ)|

)

≤
N−1∑
i=1

(
p1,1 (N)K1h

2+q + p1,2 (N)K2

(
N − i− 1

2

)q−2

h1+q

)

≤
N−1∑
i=1

(
2

1− τ 1+q
K1h

2+q +
2τ

1− τ 1+q

(
N − i− 1

2

)q−2

K2h
1+q

)

=
N−1∑
i=1

(
2K1

1− τ 1+q
h2+q +

2τK2

1− τ 1+q

(
N − i− 1

2

)q−2

h1+q

)

=

(
N−1∑
i=1

2K1

1− τ 1+q
h2+q

)
+

(
N−1∑
i=1

2τK2

1− τ 1+q

(
N − i− 1

2

)q−2

h1+q

)

≤ 2NK1

1− τ 1+q
h2+q +

2τK2

1− τ 1+q
h1+q

N−1∑
i=1

(
N − i− 1

2

)q−2

.

(3.237)

Recalling that Nh = τ and that τ < 1, we deduce that

|eyN | ≤
2NK1

1− τ 1+q
h2+q +

2τK2

1− τ 1+q
h1+q

N−1∑
i=1

(
N − i− 1

2

)q−2

=
2NhK1

1− τ 1+q
h1+q +

2τK2

1− τ 1+q
h1+q

N−1∑
i=1

(
N − i− 1

2

)q−2

=
2τK1

1− τ 1+q
h1+q +

2τK2

1− τ 1+q
h1+q

N−1∑
i=1

(
N − i− 1

2

)q−2

=

(
2K1

1− τ 1+q
+

2K2

1− τ 1+q

N−1∑
i=1

(
N − i− 1

2

)q−2
)
τh1+q

≤

(
2K1

1− τ 1+q
+

2K2

1− τ 1+q

N−1∑
i=1

(
N − i− 1

2

)q−2
)
h1+q.

(3.238)

By symmetry, the summation in the last line of the previous inequality can be

rewritten as
N−1∑
i=1

(
i− 1

2

)q−2

, which allows us to write

N−1∑
i=1

(
N − i− 1

2

)q−2

=
N−1∑
i=1

(
i− 1

2

)q−2

=
N−1∑
i=1

(
2i

2
− 1

2

)q−2

=
N−1∑
i=1

(
1

2
(2i− 1)

)q−2

=
N−1∑
i=1

(
1

2

)q−2

(2i− 1)q−2 =
N−1∑
i=1

22−q (2i− 1)q−2

= 22−q

N−1∑
i=1

(2i− 1)q−2 .

(3.239)
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Now, note that
N−1∑
i=1

(2i− 1)q−2 is a sum of all odd numbers from 1 to 2N − 3, each

to the power of q − 2. Thus, it is less than (or equal to)
2N∑
i=1

iq−2, because all the

terms are positive and all the odd terms of the previous sum are included in this
one. That is to say that

N−1∑
i=1

(
N − i− 1

2

)q−2

= 22−q

N−1∑
i=1

(2i− 1)q−2 ≤ 22−q

2N∑
i=1

iq−2. (3.240)

Then, using eq. (3.212), we get the bound

N−1∑
i=1

(
N − i− 1

2

)q−2

≤ 22−q

2N∑
i=1

iq−2 ≤ 22−q

(
1 +

(2N)1−(2−q) − 1

1− (2− q)

)

= 22−q

(
1 +

(2N)q−1 − 1

q − 1

)
= 22−q

(
1 +

1− (2N)q−1

1− q

)

≤ 22−q

(
1 +

1

1− q

)
= 22−q

(
1− q
1− q

+
1

1− q

)
= 22−q

(
1− q + 1

1− q

)
=

22−q (2− q)
1− q

.

(3.241)

Let

K := 2max

{
2K1

1− τ 1+q
,

23−q (2− q)K2

(1− q) (1− τ 1+q)

}
. (3.242)

Then, by inequality (3.241),

|eyN | ≤

(
2K1

1− τ 1+q
+

2K2

1− τ 1+q

N−1∑
i=1

(
N − i− 1

2

)q−2
)
h1+q

≤
(

2K1

1− τ 1+q
+

2K2

(1− τ 1+q)

22−q (2− q)
1− q

)
h1+q

=

(
2K1

1− τ 1+q
+

23−q (2− q)K2

(1− τ 1+q) (1− q)

)
h1+q ≤ Kh1+q.

(3.243)

Similarly, if we start from eq. (3.236) and use lemma 1 and inequalities (3.226c)
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and (3.226d), we get

|evN | ≤
N−1∑
i=1

(
p2,1 (N) |Ty (N − i, N, τ)|+ p2,2 (N) |Tv (N − i, N, τ)|

)

≤
N−1∑
i=1

(
p2,1 (N)K1h

2+q + p2,2 (N)K2

(
N − i− 1

2

)q−2

h1+q

)

≤
N−1∑
i=1

(
2τ−1

1− τ 1+q
K1h

2+q +
2

1− τ 1+q

(
N − i− 1

2

)q−2

K2h
1+q

)

=
N−1∑
i=1

(
2τ−1K1

1− τ 1+q
h2+q +

2K2

1− τ 1+q

(
N − i− 1

2

)q−2

h1+q

)
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Because Nh = τ , we have that τ−1h =
1

N
and τ−1N = h−1. Thus, we can simplify

the previous equation as

|evN | ≤
2τ−1NK1
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Then, by inequality (3.241),

|evN | ≤

(
2K1

1− τ 1+q
+

2K2
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(
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+
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)
h1+q ≤ Kh1+q.

(3.246)

3.2.6 Discussion
We have shown that the order of the leapfrog method, given by eq. (3.2), applied

to the simplified problem, given in eq. (3.1), can be, at most, 1 + q, in agreement
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to the order that we observe in the numerical experiments presented in fig. 3.2.
This is, therefore, an indirect confirmation that the presence of the term ξ1/2 in the
Kuwabara-Kono force model is to be blamed for the order penalization of the Verlet
method in DEM simulations.

The argument used to prove this result required the total integration time τ to
satisfy τ < 1. Numerical experiments performed for τ ≥ 1 indicated that the same
order penalization observed in fig. 3.2 and proved in eq. (3.234) is still present in
this case. Therefore, it seems that the constraint in τ should not be a requirement
for this behavior to be present, but rather a limitation of the approach used in this
work to obtain the bounds that were necessary to derive 3.243. There should be
another approach to this problem that could provide the adequate bounds without
the need to impose τ < 1. In any case, we must note that, in DEM simulations of
granular materials, collisions between particles tend to be very short-lived and, in
physical units, do not last longer than a few 10−6s, or 10−5s in very rare situations
[3], [71] and, therefore, the limitation τ < 1 is definitely not an issue as far as
physical systems are concerned.

We have chosen to initialize the leapfrog method in eq. (3.23) with the exact
values of the solution at the appropriate time-steps. This choice was made in order
to simplify the presentation of the argument. In fact, the initialization of the method
has no relevance on the unexpected order penalization of the leapfrog method and
the proof of eq. (3.234) can be readily adapted to take into account the initial error
introduced by the method used in the initialization of eq. (3.23). In this case, the
result presented in inequality (3.79) of corollary 3 would become

#»

En ≤
n−1∑
i=1

((
i−1∏
j=1

An−j

)
#»

T n−i

)
+

(
i−1∏
j=1

An−j

)
#»

E1, (3.247)

where
#»

E1 is the error of the initialization method. Note that the term in which
#»

E1 appears has a very similar structure to the first term in the RHS, involving the
products of the matrix An. Obtaining a version of corollary 4 accounting for

#»

E1

follows in a similar way as the proof presented in this work. Then, both eq. (3.235)
and eq. (3.236) can be rewritten taking into account

#»

E1 and the final result would
be that a similar bound to the one obtained in eq. (3.243) can be constructed, but
with potentially different values of K.



Chapter 4

A regularized force model

4.1 Introduction

In section 3.2, we showed that, since the first derivative of yq, for q ∈ (0, 1), is
unbounded near zero, the order of the leapfrog method, given in eq. (3.2) is penalized
and cannot be larger than 1 + q. This indicates that the same reason is behind the
fact that the Verlet method, given in eq. (1.40), cannot be of order 2 when used to
integrate the motion of particles that interact via the Kuwabara-Kono force model,
described in eq. (1.23).

In this section, we propose a regularization of the Kuwabara-Kono model based
on the concept of mollifiers. The proposed regularization removes the unbounded-
ness of the first derivative of ξ1/2 near t = 0 and allows for an order 2 convergence
of the Verlet method. In section 4.2.1, we give a brief introduction to a smoothing
technique called “mollification”, which has its origins in the field of mathematical
analysis [23], and describe the main technical issues in the application of the mol-
lification process. Then, in section 4.3, a new force scheme closely related to the
Kuwabara-Kono force scheme is introduced and results indicating the that, with this
newly proposed model, the integration with the Verlet method for damped systems
is indeed second order accurate are shown. Finally, still in section 4.3, the physical
consequences of the new modifications in force scheme are commented.

4.2 Prerequisites

4.2.1 Mollifiers
Let ϕ : R→ R be defined as

ϕ (x) :=


1

C
exp

(
1

x2 − 1

)
if− 1 < x < 1;

0 otherwise,
(4.1)

where

C :=

∫ 1

−1

exp

(
1

x2 − 1

)
dx ≈ 0.444 (4.2)

is chosen such that the integral of ϕ(x) equals 1. The function defined by eq. (4.1)
is called the “standard mollifier” and is depicted in fig. 4.1. The interested reader
can find more details as well as several properties of mollifiers in [23].
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Figure 4.1: The standard mollifier.

For any ϵ ∈ (0,∞), one can then define the real function

ϕϵ (x) :=
1

ϵ
ϕ
(x
ϵ

)
. (4.3)

Given f : R → R a locally integrable function, one can define its ϵ-mollification as
the convolution of ϕϵ and f . This convolution produces a new real function denoted
by ϕϵ ∗ f and which is given by:

(ϕϵ ∗ f) (x) =
∫ ϵ

−ϵ

ϕϵ (z) f (x− z) dz. (4.4)

The new function originated by eq. (4.4) has the desired property of being infinitely
differentiable in R, while being almost the same function as the original function f ,
as stated by the result below.

Theorem 3. Let f : R → R a locally integrable function. Then, the following
statements are true:

(1) ϕϵ ∗ f is infinitely differentiable;

(2) ϕϵ ∗ f → f almost everywhere as ϵ→ 0;

(3) If f is continuous, then ϕϵ ∗ f → f uniformly on compact subsets of R.

Proof. See [23].

In other words, ϕϵ ∗f is an infinitely differentiable approximation to f . How well
it approximates f depends on how small ϵ is taken. An example will be discussed
in section 4.3. In this chapter, all mollifications were computed by using midpoint
rule with a partition size of 1000.

4.2.2 Extended square root and ϵ-shift
In order to properly calculate the integral in eq. (4.4), the function f must

be defined on [−ϵ,∞). In the case of the square root function, which is the one
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appearing in the dissipation term of eq. (1.23), this is not true. For this reason,
we continuously extend the ordinary square root function to negative numbers by
making

√
x = 0 if x < 0. This extension is denoted by

√
· : R → R and will

substitute the traditional square root function from now on.
If we use the extented square root function to calculate eq. (4.3) we observe that

the ϵ-mollification of
√
· is not zero when x = 0, as illustrated in fig. 4.2(a). In

fact, notice that the integrand of eq. (4.4) becomes ϕϵ (z)
√
−z for x = 0. Then,

if z ∈ (−ϵ, 0), the ϵ-mollifier ϕϵ (z) and
√
−z are non-zero. Since both functions

are strictly positive when they are not zero, this results in a positive value for the
overall convolution. This could pose a problem for the force model, since it would
mean that a non-zero normal force would exist between two particles which are not
in contact. A way to prevent this is to right-shift the function

√
· by ϵ. That is, for

each ϵ ∈ (0,∞), define the right-shift function τϵ : R→ R as

τϵ (x) = x− ϵ. (4.5)

Then, the ϵ-mollification of
√
· ◦ τϵ, which is depicted in fig. 4.2(b), is always zero

when x = 0, i.e. when there is no contact between the particles. For convenience of
notation, from now on we define

ϵ

√
· := ϕϵ ∗

(√
· ◦ τϵ

)
. (4.6)

(a) (b)

Figure 4.2: (a) Comparison between
√
· and the ϵ-mollification of

√
· for different values of

ϵ. (b) Comparison between
√
· and the ϵ-mollification of

(√
· ◦ τϵ

)
, ϵ

√
·, for different values

of ϵ. In both plots, the red curve is
√
x, for comparison. Notice how all curves in (b) go

through (0, 0). In both figures, mollifications were computed using a composite midpoint
rule with 1000 sub-intervals.

4.2.3 Efficiently computing ϵ

√
·

Since the expression for the value of an ϵ-mollification is given by an integral on a
limited domain (see eq. (4.4)), one can approximate its value by any of many different
integration methods available in the literature [4]. However, naively applying any
of these methods to eq. (4.4) yields approximations which become very inaccurate
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near 0, as shown in fig. 4.3(a). These inaccuracies present themselves in two forms:
a “delay” before the approximation becomes non-zero and a non-smooth behaviour
in some points. These inaccuracies are caused by the finite number of samples each
integration method uses to approximate eq. (4.4). This can be better understood
by the schematic plots presented in fig. 4.4(a).

(a) (b)

Figure 4.3: (a) Comparison of the approximations of ϵ

√
·, for ϵ = 5 × 10−6, yielded by

different integration methods. (b) Same comparisons, but the integration domain was
changed at each x so to match the support of the integrand. In either plot, the same
reference curve was used and it was computed using a composite midpoint rule with 1000
sub-intervals.

(a) (b)

Figure 4.4: Visualization of the factors in the integrand of (ϵ
√
·)(x) and the sampling points

of the numerical integration method. The straight black lines represent the standard axes.
Notice how the support of the product of both functions changes as the point where
the convolution is calculated changes. (a) The black dots are the sampled points of the
numerical integration method applied to the interval [−ϵ, ϵ]. (b), the blue dots are the
sampled points of the numerical integration method applied only to the support of the
product of the integrands, which in this case is [−ϵ,−0.3ϵ].

Given x0 ∈ [0,∞), the factors of the integrands of the convolution in ϵ

√
x0 take

the form of ϕϵ (z) and
√
(x0 − z − ϵ). This latter factor is just the square root
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function right-shifted by (ϵ− x0) and then mirrored about the vertical axis. This
is illustrated in the colored curves of fig. 4.4(a). When computing ϵ

√
x0 with a

numerical integration method, the aforementioned inaccuracies arise as the value x0
crosses a sampling point of the integration method. This causes the approximation
to be calculated with more samples, which changes its behavior. For instance, in
fig. 4.4(a), the yellow curve indicates that the integral is calculated with only one
sampling of the function while for the blue curve the integral is calculated with two
points.

One can also observe from fig. 4.4(a) that the support of the product of the
integrands of ϵ

√
x starts as the empty set when x = 0 and increase with x until it

becomes the whole interval [−ϵ, ϵ] when x = 2ϵ. This suggests that one can improve
the approximations of ϵ

√
x near x = 0 by applying the integration method on the

support of the integrand, instead of the entire interval [−ϵ, ϵ], as shown in fig. 4.4(b).
It can be readily seen that this support is [−ϵ,min {x− ϵ, ϵ}]. The results of using
this approach to calculate ϵ

√
· are displayed in fig. 4.3(b).

4.3 Regularized normal force model

4.3.1 Description and computational validation

Based on the discussion in the subsections above, we propose a regularized model
for the normal contact force in which the

√
· term in eq. (1.23) is substituted by ϵ

√
·,

as defined in eq. (4.6). Therefore, we obtain

|Fi
N (t) | = kξ(t)3/2 + γξ′(t) ϵ

√
ξ(t) (4.7)

With the removal of the singularity of the first derivative of ϵ

√
ξ(t) at t = 0, the

error of the Verlet method given in eq. (1.40) should decrease as O(h2).
We performed simulations for different values of ϵ, in order to evaluate the effect

that the mollification parameter has on the overall error behavior. The results are
displayed in fig. 4.5 and indicate that, for all values of expected order of the Verlet
method in eq. (1.40) was obtained, i.e. the error decreases as O(h2). In each of the
plots in fig. 4.5, one observes the existence of three distinct regions. The boundary
between these regions is highlighted in fig. 4.5(a). For larger h, we observe a region
where the error, although monotonically decreasing, does not have with a clear
order. Then, as h decreases, there is an intermediate region where the relative error
oscillates, the length of which depends on ϵ, and finally, for smaller h, a region where
the error becomes monotonically decreasing again, but now decreasing as O(h2).

The existence of these regions where the error fluctuates can be explained based
on the discussion of section 4.2.3 and, more specifically, by the observations made in
the inset of fig. 4.2(b), where it is shown that ϵ

√
x and

√
x are most different when

x is close to zero. For values of h larger than about 2ϵ, the behavior of ϵ

√
x near 0

is never relevant since, in the first step of the integration, the particle will already
have crossed the region where ϵ

√
x deviates the most from

√
x and the duration of

the simulation for the order analysis is too short for the particle to have time to
bounce back. Thus, ϵ

√
x is effectively very close to

√
x and the model in eq. (4.7)

behaves almost as the original Kuwabara-Kono model in eq. (1.23). This is behind
the rightmost regions of the plots in fig. 4.5. However, as h becomes significantly
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(a) (b)

(c) (d)

Figure 4.5: Order analyses of the damped Verlet method associated with the Kuwabara-
Kono force model where

√
· is substituted by ϵ

√
·. The physical system being simulated is

a binary normal collision and the position of one of these particles is the variable whose
order is being analyzed. The values of the parameters used in the simulations are presented
in table 3.1.

smaller than 2ϵ, i.e. the leftmost regions in fig. 4.5, the collision of the particles is
very well resolved, that is, there will be many time steps in the region of ϵ

√
x near

0, which means that the integration of the forces near 0 will be well resolved. In
these left-most regions, the O(h2) convergence as h → 0 is observed. Finally, for
intermediary values of h, the integration of the forces will not sample ϵ

√
x near 0

enough times, which causes the erratic behavior observed in the middle region of
fig. 4.5(a).

Therefore, in order to effectively use the regularized model proposed in eq. (4.7),
it is necessary that the value of h belongs to the leftmost region of the plots in fig. 4.5,
for the chosen value of ϵ. Thus, an adequate combination of ϵ and hmust be selected.
To quantitatively understand how this selection must be made, we performed order
analyses for values of ϵ ranging from 5× 10−7 to 9× 10−5. The values of h used in
these order analyses were of the form m× 2−k, where m ∈ {1, 3, 5, 7, 15, 21, 35, 105}
and k ∈ N ∩ [13, 27]. We choose these values of m so that h is exactly represented
as a double precision floating point number, while the total integration time, which
must divide all of the possible values of h, is kept relatively low. For each of these
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analyses, we selected the biggest value of h, called hϵ, such that the error decreases
as O(h2) for all h < hϵ. The results are presented in fig. 4.6. Any pair (ϵ, hϵ) below
the solid line is a valid choice for which the regularized model in 4.7 integrated with
eq. (1.40) will produce an (expected) O(h2) decay of the error.

Figure 4.6: Computed value of hϵ as a function of ϵ. The dashed line is the best fit of
the data to a power law, while the solid line is “safe” choice for h based on all values of ϵ
tested. The values of the parameters used in the simulations are presented in table 3.1.

4.3.2 Physical behavior of the regularized model
One can expect that regularizing the force scheme will affect the physical behav-

ior of the contact. In order to evaluate the effect of the regularized model proposed
in eq. (4.7) on the physics of the problem, we performed some simulations to deter-
mine the influence of the regularization of the normal force, in particular the effects
of the choice of the ϵ parameter of eq. (4.7). We also performed qualitative com-
parisons of the coefficient of restitution of binary collision using eq. (4.7) with the
numerical results obtained with eq. (1.23) presented in [71]. The parameters for the
simulations performed in this sections are presented in table 4.1, which are identical
to the ones used in [71].

Table 4.1: Values of the parameters used to perform the simulations used for validation
of physical behavior of the binary collisions.

Particles Normal Forces Simulation
ρ = 1300 kg/m3 k̃n ≈ 9× 107N/m1.5 ∆t = 2−23 s

r = 3mm γ = 190 kg/m0.5s
(
≈ 1.19× 10−7 s

)
The trajectory of the moving particle in a collision, in an identical setup to the

one described in section 3.1.1, was calculated for different values of ϵ using eq. (4.7).
The results are shown in fig. 4.7. We observe that the trajectories of the particle
obtained from eq. (4.7) are very similar to those obtained with the Kuwabara-Kono
force model, eq. (1.23). There are very minor changes in the duration of the collision
and the most noticeable difference is that the the maximum overlap of the particles
which, in this setup, corresponds to the x coordinate, increases with increasing ϵ.
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Therefore, the first conclusion is that the regularized force model slightly softens the
materials, allowing for slightly larger maximum overlaps during the collisions.

The Kuwabara-Kono force model, given in eq. (1.23), produces coefficients of
normal restitution, defined as the ratio between the velocities before and after the
collision,

en =
|vafter|
|vbefore|

, (4.8)

that depend on the normal impact velocity [71]. This dependence cannot be easily
inferred from fig. 4.7. Thus, simulations were performed in which the coefficient
of normal restitution was measured for different impact velocities and for different
values of ϵ. The results can be seen in fig. 4.8.

Figure 4.7: Time evolution of the position of the mobile particle in a normal binary
collision, using the regularized model in eq. (4.7), for different values of ϵ. The reference
curve uses the Kuwabara-Kono force model, given in eq. (1.23), instead. The impact
velocity used is 1m/s and the values of the remaining parameters are presented in table 4.1.

As shown in fig. 4.8, collisions become more elastic (en closer to 1) as the value of
ϵ increases, especially for very low normal impact velocities. The maximum overes-
timation of the restitution coefficient with respect to the reference value is of about
17% for normal impact velocities just under 1 meter per second, when ϵ = 10−5.
This effect, however, becomes significantly less pronounced as the normal impact
velocities increase, especially as smaller values of ϵ can be chosen. In conclusion,
from fig. 4.8 we observe that the regularized model in eq. (4.7) produces slightly
more elastic responses and hinders the efficiency of the normal dissipative terms
during binary collisions.

Nevertheless, the results above indicate that the regularized model in eq. (4.7)
can be used as a viable alternative to model normal forces in DEM simulations. The
differences observed with respect to the Kuwabara-Kono model, in eq. (1.23), are not
too relevant if one considers the large variety and spread in the experimental data
obtained for normal impacts of particles [75]: although the Kuwabara-Kono model
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Figure 4.8: Visualization of the dependence of the coefficient of normal constitution on
the impact velocity, for different values of ϵ. The values of the parameters can be found
in table 4.1. Reference curves obtained from [71].

is the most widely used model for normal forces in DEM, it does not reproduce
precisely the trends for all kinds of particles and materials.

In addition, the fact that the coefficient of restitution is slightly closer to 1 in the
regularized model should not be of major concern for the majority of applications:
since most of the energy dissipated at low speed contacts in granular flows is due
to frictional (tangential) processes, and not due to normal collisions [3], the overall
nature of the granular flow will not be changed. Normal collisions only dominate
energy dissipation in very fast flows. In any case, these conclusions still need further
investigation and are the subject of our current studies. Finally, on a surprising note,
preliminary results indicate that when eq. (4.6) was also applied to the square root
factor in the elastic term ξ3/2 in eq. (4.7), the results for the coefficient of restitution
were surprisingly closer to the ones obtained by the non-regularized Kuwaba-Kono
model. This results, which most likely comes from a non-linear interaction between
the regularized dissipation term and the mollified (regular) elastic term, also needs
further investigation.

4.3.3 Discussion

In this work, we have identified that, contrary to the expected, the order of the
Verlet method, widely used in DEM simulations of granular materials, is not 2 when
the model for the normal force used is the Kuwabara-Kono force model, but it is
lower lower instead. This is due to the fact that, in this model, there is a square-root
factor linked to the dissipative term that has a singular derivative in the beginning
and in the end of particle collisions. A detailed theoretical analysis was carried out
in order to identify this problem and to show that, in fact, the penalization of the
order of the method is linked to this singularity. In a simplified problem, which
contains a nonlinear term yq, for q ∈ (0, 1), we have identified the same issue and
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we have proved that the order of the Verlet method or, in this simplified scenario,
the lepfrog method, is 1 + q.

We have proposed a regularized force model, based on an extension of the
Kuwabara-Kono model, in which the square-root function appearing in the dissi-
pation term is replaced by a mollified square-root function. This mollified func-
tion, which is infinitelly differentiable, allows for an actual order 2 integration of
the equations of motion in DEM with the Verlet method. The regularized force
model, however, mimics slightly softer materials and slightly less dissipative colli-
sions with respect to a similar simulation carried out for the same parameters using
the Kuwabara-Kono model.

Fully characterising the regularized model, and its implications on the motion of
large granular assemblies, is one of our current interest of research and preliminary
results in this direction are reported on chapter 5. We also want to understand the
influence of using the mollified square-root function on the elastic term of the regu-
larized force model that was proposed in this work. Finally, we are also interested
in expanding the analyses carried out in this work for higher order methods, such
as the higher order symplectic methods presented in [87] or Runge-Kutta methods
[55], and also some implicit methods [11].



Chapter 5

On the relation between
trajectories of individual particles
and the order of numerical
integration

5.1 Description of the problem

In granular collapses, one is often interested in the dynamics of the system as a
whole. This entails answering questions such as: what are the run out distance and
head height? How long does the collapse last? How much of the material remains
unmoved?

Little attention is paid to the behavior of individual particles. However, there
are some situations where finding out the trajectory of individual particles is the
goal or where one can better classify granular flows by studying classes of particle
trajectories [18], [19].

Other reason such studies might have been avoided is just the sheer complexity of
tracking single grains among millions in 3d granular flows experiments. Even if the-
oretically possible, the requirement of measurement and data acquisition equipment,
and post processing makes it a challenging endeavor.

This issue can be worked around by tracking particles in computer simulations
of granular flows. In particular, DEM simulations offer the perfect environment,
since, once the simulation is properly set up, tracking individual particles in DEM
simulations is trivial. However, a completely different issue presents itself once one
starts to study the movement of grains through computer simulations: the stability
of the numerical method in face of the inherently chaotic behavior of granular flows.
This will be the focus of this article.

In order to exemplify such problem, a DEM simulation of a granular collapse
following a somewhat naive approach was set up. The approach is considered naive
because it uses a first order method, i.e. the symplectic Euler method. In this
simulation, particles were arranged in a roughly rectangular column. Initially, this
column of particles is contained in both sides by vertical walls, which are composed
of similar such particles that have their positions fixed in time, i.e. they do not
move. At t = 0 s, the right-most wall is removed and the material is allowed to flow.
The particles collide following the Hertz normal contact model [34] with Kuwabara-
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Kono damping [49] and the tangential contact is handled through the Cundall-
Strack friction model [17]. The numerical parameters of the simulation are given in
table 5.1.

Table 5.1: Simulation parameters

Name Symbol Value
Number of particles N 1.416× 103

Aspect Ratio a ≈ 5× 10−1

Physical time of simulation T 3.0× 101 s

Average radius r̄ 1m

Density ρ 1.9300× 104 kg/m3

Normal elastic constant (Hertz) k̃n ≈ 4.5× 1011N/m1.5

Normal damping constant (Kuwabara-Kono) γ 5× 108 kg/(m0.5 s)

Tangential elastic constant (Cundall-Strack) ks 2/7k̃n

Friction coefficient µ 6× 10−1

In order to test the numerical stability of the trajectories of the particles, the
same simulation (i.e. same parameters and same initial conditions) was ran with
time steps varying from ∆t = 2−13 ≈ 1× 10−4 to ∆t = 2−19 ≈ 2× 10−6 seconds.

Note that the choice of parameter was made such that the contact duration
during a typical collision would be (relatively) long lasting, in order to allow several
different time steps value without compromising the the integrity of collisions [71]

For some hand-picked particles, the comparison of their trajectories for each
choice of time step is presented in fig. 5.1.

Figure 5.1: Trajectories of two particles from simulations of equal parameters (see ta-
ble 5.1) and same initial conditions, but varying time steps.

Note that in the early stages of the motion of the particles the trajectories
coincide. However, after some time they diverge and then become wildly different.

By using a low-order method, accuracy in the trajectory of individual particles
is severely limited, which may cause trajectories to diverge sooner. Of course, as
of now this is just speculation. We will dive further into the effects of numerical
integration on trajectory convergence in section 5.3.
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5.2 Prerequisites

5.2.1 Mollifiers

For the remainder of this chapter, unless specifically stated otherwise, all simu-
lations employ the force scheme derived in chapter 4.

5.2.2 Higher precision storage formats

All computations performed in a computer are subject to one crucial constraint:
storage capacity. A certain amount of memory must be attributed to each relevant
quantity in a calculation. In modern computer architectures, this memory amount
is fixed by the manufacturer (instead of the user) and is usually 32 or 64 bits. The
number is then stored in a floating point format and computations are performed
via floating point arithmetic. This storage capacity is then reflected in both the
precision of the stored number and in rounding errors originating from arithmetic
operations.

This is relevant for this work for two reasons. First, because the rounding errors
from floating point operations might accelerate the divergence of the trajectories of
particles, specially since the smaller the time step size, the more operations one need
to perform to reach the same moment in time, which implies in a higher amount
of cumulative rounding errors. The second reason is that, once we start studying
higher order methods, we shall need higher precision to track our results, since the
largest value of time step possible for a well performed simulation is dictated by the
material and is usually in the order of 1× 10−5 s to 1× 10−7 s.

If one wishes to mitigate the aforementioned issues of precision and rounding
errors, one might be tempted to just increase the amount of bits of memory used to
store the terms of the calculation. Unfortunately, not only are those amounts fixed
by the manufacturer, but the entire architecture of the computer is built around
them. Along with that, the architecture of the processor is usually built to natively
support floating point arithmetic on data of that specifically size. This means that,
on most computers, the only way to perform floating point arithmetic with precision
higher then 64 bits is to emulate it on software, which is slow. In performance
intensive programs, such as DEM simulations, this alternative becomes unfeasible.

Another alternative is to use double (or quad) words [35], [43]. In this storage
format, numbers are represented as an unevaluated sum of two (resp. four) words.
In order to take advantage of the architecture of modern computers, the chosen
word type is usually a double precision (64 bit) floating point number. In this way,
double words (which are called “double doubles”, because they consist of two double
precision floating point numbers) store the “bulk” value of a number in the first word
and use the second word to store a number several orders of magnitude smaller then
in the first word, which takes advantage of the higher precision of floating point
formats near zero to make this storage format much more accurate then just a
standard double precision floating point number alone.

For this work, a double double basic arithmetic library was implemented in C++
using the algorithms provided in [43]. For more elaborated functions, the techniques
in [35] were employed.
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5.2.3 A metric for simulations
So far, we have only studied the convergence of the trajectory of a single indi-

vidual particle. In order to obtain a more complete description of the convergence
of particle trajectories in the entire simulation, we need to introduce a new metric
which, given two simulations, measures how far apart, on average, are the trajecto-
ries of corresponding particles.

More formally, suppose we run two simulations (i.e. numeric approximations of
systems of coupled ODEs) and denote each by Hi with i ∈ {1, 2}. Each of these
simulations has the same parameters and initial condition, with the only differ-
ence between them being the size of the time step. Let ∆ti be the time steps size
associated with the simulation k and assume that there exists C ∈ N such that
∆t1 = C∆t2. If this condition is not met, then the only step in which the simula-
tions would be representing approximations to the same moment in time would be
at t = 0. From here on out, C represents the smallest such positive integer.

Let T ∈ R be the desired physical time of duration of the simulation and define

T := {n∆t1 ∈ R | n ∈ N and n∆t1 ≤ T} . (5.1)

Note that T is precisely the set of all moments in time that are “reachable” by both
simulations, i.e. there exists n,m ∈ N such that n∆t1 = m∆t2 ∈ T.

Now, let N ∈ N be the number of particles in these simulations and xi,j :
T → R2 be the function that ascribes a 2-dimensional position to the particle j ∈
{1, 2, . . . ,M} in the simulation i at each moment in time t ∈ T. Then, we define,
for t ∈ T,

d(H1, H2)(t) :=
1

N

N∑
j=1

|x1,j (t)− x2,j (t)|. (5.2)

This metric can also be nondimensionalized via the formula

d̄(H1, H2)(t̄) :=
1

r
d(H1, H2)(t̄T ), (5.3)

where r ∈ R is the average grain radius, t̄ ∈ [0, 1] is the dimensionless time and T is
as above. Figure 5.2 illustrates the definition of d.

5.3 Influence of order of numerical integration method

5.3.1 Comparison
We will start with Euler’s method, since it is the simplest and, perhaps, the

most common integration method. The Hertz-Kuwabra-Kono force scheme was
used, since, as shown in fig. 3.1, Euler’s method does not suffer order penalization
under this force scheme. The parameters used can be viewed in table 5.1. The time
step sizes varied between ∆t = 2−13s ≈ 1 × 10−4 s and ∆t = 2−19s ≈ 2 × 10−6 s. If
we denote by Hk the simulation whose time step size is ∆t = 2−ks, then fig. 5.3(a)
shows d̄(Hk, H19)(t̄) for the remaining values of k.

The resulting plot (fig. 5.3(a)) has a roughly sigmoid shape, which we can split
into three regions for the purposes of analysis. The boundary between these regions
is not sharp.



5.3 Influence of order of numerical integration method | 121

Figure 5.2: Given a moment t ∈ T, let the red and blue particles represent two distinct
simulations with the same parameters and initial condition. Then the d metric for this
pair of simulations would be the average length of the dotted black lines.

In the first region, which roughly corresponds with the interval t̄ [0, 0.05], d grows
sub-linearly and its value is negligible (with respect to the average particle radius,
by which it is normalized). In this region, the numerical error is still small enough
that chaotic behavior has not started to significantly take place yet.

The second region can be characterized by a (perturbed) linear growth of d.
It is also in this region that d becomes considerable in relation to r. This region
starts approximately at the end of the last region t̄ = 0.05 and extends almost to
t̄ = 0.5. The errors accumulated in the previous region are sufficient enough to cause
particles in this region to start to behave chaotically. It is because of this that the
distance to the reference steadily increases in this region.

Finally, the third region encompasses the remaining of the cart, i.e. from t̄ = 0.5
to t̄ = 1. In it, the rate of change of d slows down until it completely stops. Note
that after t̄ = 0.7, there is very little, if any, change. This simply means that both
the reference simulation and the compared simulation have reached equilibrium.

The second method to be analyzed, also because of its common usage in the
literature, is the Predictor-Corrector Verlet method, an adaptation of the Verlet
method for non-conservative systems. Since the Predictor-Corrector Verlet method
converges as O(∆t2), it becomes necessary to use the mollified Hertz-Kuwabara-
Kono force scheme described in section 5.2.1, with ϵ = 5 × 10−6. To avoid biases
in the comparison, we kept the same parameters from the simulations performed
with Euler’s method, i.e. those of table 5.1. The time step sizes varied between
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∆t = 2−15s ≈ 3 × 10−5 s and ∆t = 2−22s ≈ 2 × 10−7 s and the reference simulation
had time step size ∆t = 2−23s ≈ 1× 10−7 s.

(a) (b)

Figure 5.3: All simulations related to these plots used the parameters of table 5.1 and the
same initial condition. All graphs here show the value of d̄(H,R)(t̄) over dimensionless
time t̄, where H is a simulation whose time step size is denoted in the key and R is a
reference simulation, which is different between figs. 5.3(a) and 5.3(b). Simulations used
in the charts of fig. 5.3(a) where solved via Euler’s method, using the Hertz-Kuwabara-
Kono force scheme and the time step size used for R is ∆t = 2−19s ≈ 2×10−6 s. Simulations
used in the charts of fig. 5.3(b) where solved via the Predictor-Corrector Verlet method,
using the mollified Hertz-Kuwabara-Kono force scheme in chapter 4 and the time step size
used for R is ∆t = 2−23s ≈ 1× 10−7 s. Both insets show the respective data on a log-log
scale.

One can see the same three regions that were previously identified for the simu-
lations performed with Euler’s method in fig. 5.3(b). Notably, though, the length of
the first region in fig. 5.3(b) is significantly bigger. This fact can be better appreci-
ated by looking at the different scales of the log-log insets in both figures.

5.3.2 Future work

Currently, we are trying to implement a method of order O(h3) to see if the
trend continues and, if it does, to quantitatively relate the duration of trajectory
coincidence with the order of the method.

Unfortunately, many numerical integration methods are not suitable for our ap-
plications. Implicit methods are too slow for DEM simulations, the 4th order Runge-
Kutta would require the code base to be restructured as would all predictor-corrector
methods that the author is aware of. Multistep methods seem to be good candidates,
but initializing them with the desired order has proven to be challenging.



Part III

Machine learning and continuum
models of granular materials
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Foreword

As of the submission of this work, the field of machine learning has very recently
took the media’s attention by storm worldwide with the release of the chatbot Chat-
GPT [60] and some text-to-image converters such as Stable Diffusion [68]. Although
the world became shocked to see how far machine learning has come, the field itself
is not new and has been changing the world around us for at least a decade —image
recognition being a prime example of this.

Because of its prominence, I decided to look at opportunities to involve myself
and my field of research with the area. This culminated in a 2-month long visit
to the AI Institute in Dynamical Systems, in the University of Washington (UW)
—Seattle. However, before this visit began, it was necessary to find a research
problem in granular materials in which using machine learning would be suitable.

After learning that I would be able to carry out this visit, my contact with
the folks at the UW intensified. During this contact, I learned about the Sparse
Identification of Non-linear Dynamics [9] algorithm (SINDy for short), which is
a machine learning algorithm that infers differential equations from data. This
algorithm is due to Nathan Kutz and Steven Brunton, two professors at UW and
director/associate director of the AI institute in Dynamical Systems, respectively.
Thus, we decided on finding a problem in granular media in which the SINDy
algorithm could be used.

Let us set aside granular materials for a moment to talk about the adjacent field
of fluid dynamics. The main object of study of fluid dynamics is the flow; i.e., the
movement of fluid. It does so mainly through an Eulerian specification of the flow
field; i.e., by modeling it as a continuous vector field of instantaneous velocities at
each point of the domain and at each moment in time. This stands in contrast to
the Lagrangian specification of granular flows we have used in the first part of this
thesis; i.e., modeling the positions, velocities and interactions of individual grains in
order to retrieve the macro behavior of the flow.

There are many different reasons to choose one specification over the other. Some
examples are: difficulty in modeling, limitation in predictions or computational cost.
This last one, computational cost, is an unfortunate struggle of the Lagrangian
specification, and the reason for this is quite evident: a pinch of sand contains in
the order of 104 individual grains, which is the same order of magnitude of the
largest simulations done for this work. These simulations took a couple of days.
The largest simulations known to this author are in the order of 106. This is still
way less than the number of grains involved in some large scale natural phenomena,
e.g. an avalanche, the propagation of a dune or a landslide.

On the other hand, because of its Eulerian approach, fluid dynamics models can
simulate flows of colossal scales, such as ocean currents or, indeed, the entirety of
Earth’s atmosphere!
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Given the information above, the natural question that arises is: is it possible to
model granular flows through an Eulerian framework? It appears that the answer
to this questions cannot be a simple “yes” or “no”, for there are flows in which the
arrangement of the particles is relevant for the macro behavior of the flow (e.g., the
flow of sufficiently large particles through a funnel can become jammed depending
on the micro structure near the exit) and flows which have already been succesfully
modeled through an Eulerian framework; e.g., the flow down an inclined plane.
However, a better answer is still a subject of much research.

One of the most promising attempts so far is the µ (I) rheology [57]. This ap-
proach treats granular flows as a continuum medium and uses the classical equations
of continuum mechanics —i.e., the continuity and Cauchy momentum equations
—fitted with a frictional stress tensor based on the non-dimensional local parameter
I. This parameter —called the inertial number —can be understood as a ratio of
two time scales: a macroscopic timescale defined by the mean time it takes for a
granular layer to slide a distance of one average granular diameter in relation to
an adjacent granular layer and a microscopic timescale given by the time it takes a
particle under some amount of pressure to fill a grain-size hole. The effect of this
definition of I is that if its value at a point in the domain and a moment in time is
large (i.e., I ≫ 1), then the behavior of the flow locally is fluid-like. On the other
hand, when the value of I approaches zero, the granular flow locally comes to a halt
and becomes more solid-like.

The key aspect of the µ (I) rheology then is that it takes the inertial number as
a parameter to produce a friction coefficient —the eponymous µ (I) —which acts
as a constant of proportionality between the magnitude of the stress tensor and the
local pressure. This is the reason why this rheology is deemed frictional: it is highly
dependent on the pressure.

As stated before, the µ (I) rheology has been the most successful approach to
modeling granular media as fluids, having achieved successes in some types of flows
and showing good progress in others [27], [51], [74], [86]. Thus, we decided that a
good research problem for my stay in the UW would be to run Lagrangian simula-
tions of a simple flow and use the SINDy algorithm to confirm or correct the µ (I)
rheology for this flow. This, of course, poses another question: which flow would we
choose?

Our first instinct was to study a Couette flow, because of its simplicity. However,
in order to perform a computer simulation of this flow, it is paramount to have
periodic boundary conditions. Unfortunately, the code base we have developed for
the other projects listed in this thesis did not support periodic boundaries and it
was deemed that it would take too long to implement it, specially in the context of
the time frame of my visit.

Thus, we settled on a similar flow which does not necessitate periodic boundaries:
a 2d Taylor-Couette flow. This flow consists of grains confined between concentric
circles, which spin in place. This spin forces the grains to shear, resulting in a flow.
In other words, instead of periodic boundary condition, we “twisted” the entire
domain into a circle so that the two extremes would be connected.

There is still a piece of the puzzle missing, namely how to process Lagrangian
data in order to obtain Eulerian equations. The trick is to first transform the discrete
data into a continuous field. This can be done via technique called “coarse-graining”
[30].
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In the literature, one can find examples of coarse-graining being used to do
exactly what we need. This technique consists of “spreading out” the value of point-
like objects over an area in order to derive a continuum field from it.

In the following, we will explore all of these subjects. In the first section, we will
describe Taylor-Couette flows and discuss the difficulties in how to simulate it. In
the second section, we will briefly introduce the coarse-graining technique and show
its application to a Taylor-Couette flow. In the third section, we will give a brief
overview of the SINDy algorithm. Finally, on the fourth section we will show our
preliminary results and discuss future work.
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Introduction

Machine learning has achieved tremendous success lately, with many of its break-
through innovations already starting to bleed into the mainstream. For instance,
human-like chatbots that can, in many standardized tests, achieve scores within 10%
of the best humans are already a reality [60].

However, within academia, many fields are still figuring out how to best employ
machine learning within themselves. In the field of fluid dynamics, some early
applications of machine learning include using neural networks learn to the solutions
of ordinary and partial differential equations [20], [31], [50], and the progress in this
front is still ongoing [12], [64]. A more recent approach is to use the technique of
dynamic mode decomposition to extract spatial and temporal coherent structures
from time series data of fluid flows, resulting in a low-dimensional linear model for
the evolution of these dominant coherent structures [22], [48]. More advances of
machine learning in fluid dynamics can be found in the review [8].

The field of granular materials is taking a longer time to incorporate machine
learning techniques. Recently, there have been efforts to use neural networks for
creating predictive models for stress-strain relations of granular materials under
compression [13], [77], [84]. Furthermore, some research has gone into speeding up
DEM simulations by training a convolutional neural network to replace the direct
calculation of particle-particle and particle-boundary collisions [54] as well as using
support vector machine and random forest algorithms to predict the outcome of
DEM simulations regarding fragment formation [67]. Still, there does seem to be
a lot of open opportunities to employ machine learning in the context of granular
materials.

The SINDy (acronym for Sparse Identification of Non-linear Dynamics) [9] is a
relatively recent development in the field of machine learning. It uses a regression
type algorithm to infer differential equations from data and has been already applied
to a plethora of varied and complex problems, such as reduced-order models of fluid
dynamics [53] and plasma dynamics [46], turbulence closures [6], mesoscale ocean
closures [89], nonlinear optics [40], computational chemistry [72], and numerical
integration schemes [78].

In this part, we disclose the extent of our research in applying the SINDy method
to extract a constitutive law for dense granular flows.
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Chapter 6

Prerequisites

6.1 Granular Taylor-Couette flows

In the world of fluid dynamics, the flow consisting of a viscous fluid confined
in the gap between two rotating concentric cylinders is named the Taylor–Couette
flow. For Newtonian fluids and low angular velocities of the cylinders, an analytic
solution to this problem is known and holds up quite well to real data.

A device equipped to perform and measure exclusively slow Taylor-Couette flows
is known as a viscometer or rheometer. This is because the known analytic solutions
ties the velocity of and torque exerted by the cylinders with the viscosity of the
fluid. The first two properties are easy to measure, which allows one to determine
the viscosity of Newtonian fluids.

6.1.1 Viscous Taylor-Couette flows

In order to better understand this viscosity measuring characteristic of the
Taylor-Couette flow, let us build a 2-dimensional mathematical model for it. Con-
sider two concentric circles of radii R1, R2 ∈ (0,∞) with R1 < R2. Furthermore,
consider that the inner circle rotates with angular velocity Ω ∈ (0,∞) and the outer
circle is static. Finally, suppose that the gap between the circles is filled with a
Newtonian fluid of density ρ ∈ (0,∞) and dynamic viscosity µ ∈ (0,∞). We are
also going to make the following hypotheses: the flow has reached a steady state
which is axisymmetric, azimuthal and satisfies the no-slip boundary condition.

The equation that governs this type of flow is the Navier-Stokes incompressible
equation, which is

ρ

(
∂−→u
∂t

+−→u · ∇−→u
)

= −∇P + µ∆−→u , (6.1)

where −→u : R2 × R → R2,−→u (r, θ, t) = (ur (r, θ, t) , uθ (r, θ, t)) is the 2-dimensional
velocity field of the flow in polar coordinates about the center of the circles and
P : R2 × R→ R is the scalar pressure field in the same coordinate system.

Since we are considering the resulting flow to be steady, the time derivative of
−→u must be zero. Thus, we are left with

ρ−→u · ∇−→u = −∇P + µ∆−→u . (6.2)
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Writing out the explicit expression for the equation above in polar coordinates gives
r : ρ

(
ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2θ

r

)
= −∂P

∂r
+ µ

(
1

r

∂

∂r

(
r
∂ur
∂r

)
+

1

r2
∂2ur
∂θ2

− ur
r2
− 2

r2
∂uθ
∂θ

)
;

θ : ρ

(
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

)
= −1

r

∂P

∂θ
+ µ

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
+

1

r2
∂2uθ
∂θ2

+
2

r2
∂ur
∂θ
− uθ
r2

)
.

(6.3)
Since the flow is axisymmetric, there is no change of velocity with respect to θ,

which means that
∂

∂θ
≡ 0. Thus

r : ρ

(
ur
∂ur
∂r
− u2θ

r

)
= −∂P

∂r
+ µ

(
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

)
;

θ : ρ

(
ur
∂uθ
∂r

+
uruθ
r

)
= µ

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

)
.

(6.4)

From the hypothesis of no movement in the radial direction, we get that ur = 0,
therefore simplifying the equations to

r : −ρu
2
θ

r
= −∂P

∂r
;

θ : 0 = µ

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

)
.

(6.5)

By doing a few more simplifying steps and switching the sides of the equations, we
are left with 

r :
∂P

∂r
= ρ

u2θ
r
;

θ :
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

= 0.
(6.6)

The solution for the equation in the θ coordinate is

uθ (r, θ, t) = ar +
b

r
, (6.7)

where a and b are constants that depend upon the initial conditions. The equation
in r gives the scalar pressure field, once uθ is known.

By imposing the no-slip condition, namely that{
uθ (R1, θ, t) = ΩR1;

uθ (R2, θ, t) = 0
(6.8)

hold, we get the final solution

uθ (r, θ, t) =
ΩR2

1

R2
2 −R2

1

(
−r + R2

2

r

)
. (6.9)

Now, in order to find an expression for the magnitude of the torque in the
cylinder, one must first find the magnitude of the force that drives it. However,
the magnitude of this force must be equal to the frictional forces of the fluid that
act on the walls of the cylinder, since they are its reaction. Since these forces act
on the plane whose normal points radially outward (in the −→r direction) and the
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force itself points in the direction tangent to the cylinders (the
−→
θ direction), their

strength must be given by the σrθ component of the stress tensor at r = R1. This
component, in cylindrical coordinates, is given by

σrθ (r, θ, t) = µ

(
∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
. (6.10)

Applying the flow hypotheses and the solution given in eq. (6.9), one gets

σrθ (r, θ, t) = −2µ
ΩR2

1R
2
2

R2
2 −R2

1

1

r2
. (6.11)

Therefore,

σrθ (R1, θ, t) =
−2µΩR2

2

R2
2 −R2

1

. (6.12)

The pointwise torque along the surface of the cylinder can be found by multi-
plying the negative of eq. (6.12) by R1 (the negative is because the force due to
the fluid is the reaction to the force we want to find) and the total torque per unit
height of the cylinder is found by multiplying the previous result by 2πR1. Thus, if
τ is the total torque, it is given by

τ =
4πµΩR2

2R
2
1

R2
2 −R2

1

. (6.13)

If the length of the gap between the cylinders, R2 − R1, is much smaller then
their radii, as is usually the case in rheometers, one concludes that

τ =
4πµΩR2

2R
2
1

R2
2 −R1

=
4πµΩR2

2R
2
1

(R2 +R1) (R2 −R1)
≈ 4πµΩR4

2R (R2 −R1)
=

2πµΩR3

(R2 −R1)
, (6.14)

which can be rewritten as
µ ≈ δτ

V S
, (6.15)

where δ := R2 − R1 is the length of the gap between the cylinders, S := 2πR
and V = ΩR is the velocity of the rotating cylinder. Note that, since R2 − R1

is considered much smaller than the radii of the cylinders, we also assumed that
R1 ≈ R2 and substituted the individual radii by R.

Because of this relevance as a viscosity measuring flow, as well as it being one
of the simplest shear-driven flows that would not require the implementation of
periodic boundaries in the existing code base of our work, we decided on using the
Taylor-Couette flow as a source of data to learn equations on.

6.1.2 The µ (I) rheology

Exchanging the fluid in the gap of the cylinders for some granular medium gives
us the granular Taylor-Couette flow. This flow has been experimentally studied
previously by other authors [58], [82]. Some key findings include a phase-transition
behavior depending on the packing fraction of the assembly [37] and the existence
of non-local behavior in the flow [45]. These results show that even simple granular
flows can have complex behavior.
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The aim of our research is to find, via machine learning, a continuum constitutive
equation to describe this flow. As will be seen later, knowing what type of terms
could appear in this equation is necessary in order to use the SINDy algorithm. Thus,
it is useful to have a starting point; i.e., an equation from which to extrapolate. This
is where the µ (I) rheology comes in [57].

The µ (I) rheology is currently accepted in the literature as the closest to correct
rheology for granular flows. It was introduced in [57] and is based on the dimen-
sionless parameter I, which is called the inertial number and is defined as

I =
d∥
←→
D ∥√
P/ρp

, (6.16)

where d is the average diameter of a particle, ∥
←→
D ∥ is the shear rate defined in terms

of the second invariant of the rate of strain stress tensor, P is the pressure and ρp
is the grain density (not the density of the grains!), which takes into account the
packing fraction of the grains.

One interpretation of the parameter I is as a “phase” meter; i.e., its value dictates
if the granular medium behaves as a solid, liquid or gas. For values of I near zero,
the medium behaves as a solid, with very little motion, mostly limited to individual
particles; i.e., no “bulk” motion. For values of I away from zero but less than one,
the medium flows densely, as a liquid. Finally, when I ≥ 1, there is a dilute flow of
the particles and a high average distance between them —a granular gas.

Another way to interpret I is as a ratio of time scales [3]: the micro time scale,
defined as

tmicro =
d√
P/ρp

, (6.17)

which is the typical time it takes for a particle-sized hole in a lattice to be filled;
and the macro scale, which is

tmacro =
1

∥
←→
D ∥

, (6.18)

which represents the mean time it takes for grain in a “shearing layer” to cross
another grain in an adjacent “shearing layer” [3]. Thus, I can be understood as

I =
tmicro

tmacro
. (6.19)

This is, of course, aligned with the above mentioned interpretation: when tmicro ≪
tmacro, lattice-filling happens much faster than shearing and thus the medium behaves
as a solid, whereas when tmacro ≪ tmicro, then shearing is faster and fluid-like behavior
dominates the flow.

The µ (I) rheology then establishes that the stress tensor ←→σ is given by

←→σ = −P
←→
I + µ (I)P

←→
D

∥
←→
D ∥

, (6.20)

where µ (I) is a parameter that depends only on I,
←→
D is defined as

←→
D =

1

2

(
∇−→u +∇−→u ⊺

)
(6.21)
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and ∥
←→
D ∥ is its second invariant. It also states that the packing fraction ϕ is a

function only of I; i.e.
ϕ = ϕ (I) . (6.22)

Finally, it states that granular flows are similar (albeit not equal) to Bingham fluids:
there exists a threshold below which no flow happens. The key differences from a
Bingham fluid is that the effective viscosity depends on the local pressure and the
yield stress is not a material constant, but also has a dependence on the local
pressure.

We will now proceed to finding equations, via the µ (I) rheology, for the granular
Taylor-Couette flow. The purpose of this derivation is twofold: first, to inspect which
kind of terms appear in the equation (the importance of this will become clearer in
section 6.3) and second, to illustrate the difference from the Newtonian fluid case
and show that the granular case is much more intractable.

Let us start by recalling some tensorial calculus in 2-dimensional polar coordi-
nates. Thus, for the remainder of this subsection, −→u is a 2-dimensional vector field
in polar coordinates with radial component ur and angular component uθ, ←→σ is a
second order 2-dimensional tensor in polar coordinates, with components given by

←→σ =

[
σrr σrθ
σθr σθθ,

]
(6.23)

and all differential operators are represented in 2-dimensional polar coordinates.
The gradient of a vector field is given by

∇−→u =


∂ur
∂r

1

r

(
∂ur
∂θ
− uθ

)
∂uθ
∂r

1

r

(
∂uθ
∂θ

+ ur

)
 , (6.24)

the divergence of a tensor by

∇ ·←→σ =
1

r

(
r
∂σrr
∂r

+
∂σrθ
∂θ

+ σrr − σθθ
)
r̂ +

1

r

(
r
∂σθr
∂r

+
∂σθθ
∂θ

+ σrθ + σθr

)
θ̂.

(6.25)
and its second invariant is

∥←→σ ∥ =
√
σrθσθr − σrrσθθ. (6.26)

By making the (experimentally backed) hypotheses of axisymmetry (
∂

∂θ
≡ 0)

and no net movement in the radial direction (ur ≡ 0), we get

∇−→u =

 0
−uθ
r

∂uθ
∂r

0

 (6.27)

and

∇ ·←→σ =

(
∂σrr
∂r

+
σrr − σθθ

r

)
r̂ +

(
∂σθr
∂r

+
σrθ + σθr

r

)
θ̂. (6.28)



136 | Prerequisites

Now, by eqs. (6.20) and (6.21), we have

←→
D =

 0
1

2

(
∂uθ
∂r
− uθ

r

)
1

2

(
∂uθ
∂r
− uθ

r

)
0

 , (6.29)

∥
←→
D ∥ = 1

2

∣∣∣∣∂uθ∂r
− uθ

r

∣∣∣∣ (6.30)

and
←→σ =

[
−P sµ (I)P

sµ (I)P −P

]
, (6.31)

where

s=

(
∂uθ

∂r
− uθ

r

)
|∂uθ

∂r
− uθ

r
|
= sign

(
∂uθ
∂r
− uθ

r

)
. (6.32)

Using again that
∂

∂θ
≡ 0 and ur ≡ 0, it is true that

∂σθr
∂r

= s(µ′ (I) I ′P + µ (I)P ′) , (6.33)

where ·′ denotes differentiation with respect to r and assuming that s remains con-
stant throughout the radial direction. Thus,

∇ ·←→σ =

(
−∂P
∂r

)
r̂ + s

(
µ′ (I) I ′P + µ (I)P ′ +

2µ (I)P

r

)
θ̂. (6.34)

Recall that the Cauchy Momentum Equation states that

D−→u
Dt

=
1

ρ
∇ ·←→σ , (6.35)

where ρ is the density of the fluid. The LHS is just the material derivative of −→u . In
polar coordinates, it reads

D−→u
Dt

=

(
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2θ

r

)
r̂ +

(
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

)
θ̂.

(6.36)
Under the previously stated hypotheses, this simplifies to

D−→u
Dt

= −u
2

r
r̂ +

(
∂u

∂t

)
θ̂. (6.37)

If we also assume steady state (again, it is a reasonable hypothesis given the exper-
imental results), we obtain that

D−→u
Dt

= −u
2

r
r̂. (6.38)

This finally allows us to write the continuum equations for the Taylor-Couette gran-
ular flow, as implied by the µ (I) rheology. Those would be

r : P ′ = ρ
u2

r

θ :

(
µ′ (I) I ′P + µ (I)P ′ +

2µ (I)P

r

)
= 0.

(6.39)
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One can readily observe the complexity of the equation. In particular, there ex-
ists a dependence of µ (I) and its derivative with respect to r, even though the exact
expression µ is never given —it is flow dependent and usually found via experiments
or simulations.

6.2 Coarse-graining

Coarse-graining is a popular technique to convert data generated from a La-
grangian framework to an Eulerian framework. In other words, from a DEM simu-
lation, one can use coarse-graining to obtain continuous fields (e.g., flow velocity or
density of the medium), over the entirety of the domain.

This technique was first created in the field of chemistry, where there was an
effort to connect molecular scale dynamics with macroscopic continuum dynamics.
One could argue that these efforts started with the classical studies by Boltzmann
and were later taken on by [38], [7] and others [65]. Later (much later), the field
of granular matter adopted the coarse-graining technique, starting with [83], as it
suited the goal of obtaining a continuum description of granular media.

Although the present paper does not focus on granular gases, the presented
results are valid for them as well, but, in models where the collisions are taken to
be instantaneous temporal as well as spatial coarse-graining need to be invoked [29]
(a minor modification of the presented formulation).

There are two types of coarse-graining (which may be combined), insofar as
the dimensions being coarse-grained are concerned: spatial and temporal coarse-
graining. In the former, the properties being coarse-grained are averaged throughout
space while in the latter, throughout time. For our purpose, only spatial coarse-
graining appears to be necessary. This is not the case for all granular phenomena;
e.g., when the grains are highly agitated, but only a small part of their movement
correlates with the bulk movement of the flow (i.e., their behavior is gas-like), it is
necessary to use temporal coarse-graining as well as spatial coarse-graining [29].

6.2.1 Coarse-grained fields

The first step when one wishes to coarse-grain a granular flow is to choose an
appropriate coarse-graining function. A coarse-grainig function, for a n-dimensional
system, is a function ϕ : Rn → R which is positive, symmetric around zero and in-

tegrates to unity; i.e.,
∫
Rn

ϕ
(−→x ) d−→x = 1. It is also desirable, although not strictly

necessary, that it is compactly supported. Some examples of coarse-graining func-
tions found in the literature include the normalized Gaussian (which is not compactly
supported) and ϕ

(−→x ) = H
(
w − ∥−→x ∥

)
/Ωn,w, where H is the Heaviside function,

w ∈ (0,∞) is some width and Ωn,w ∈ (0,∞) is the n-dimensional volume of a hy-
persphere of radius w. In this work, we shall only work with compactly supported
coarse-graining functions.

For spatial only coarse-graining with compactly supported coarse-graining func-
tions —which, again, is what was needed for this work —the radius of the support
of the coarse-graining function defines a coarse-graining scale (which is also called
a spatial “resolution” or simply “coarse-graining width”) [30]. If this resolution is
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chosen too small, the continuum hypothesis is not adequately satisfied and the mea-
sured fields become too erratic (see fig. 7.3). A sanity check to avoid too small scales
is to plot the coarse-grained density as a function of the coarse-graining width: for
small values this graphic is erratic, yet it plateaus when the coarse-graining width
becomes large enough. On the other hand, choose a scale that is too large for the
problem and one fails to capture local behavior of the flow. Indeed, sub-resolution
scale information is not included in the coarse-grained fields. In this sense, coarse-
graining is a lossy compression scheme.

Assuming that a coarse-graining scale w ∈ (0,∞) has been chosen and the
coarse-graining function ϕw has been decided on, we shall now define the relevant
coarse-grained fields for this work. All the definitions presented below are originally
from [30] or in references therein. We shall start by one which has already been
mentioned: the coarse-grained volume density. It is defined as

ρ
(−→x , t) := N∑

i=1

Viϕw

(−→x −−→x i (t)
)
. (6.40)

Note that this definition is akin to a discrete convolution between the desired prop-
erty (a.k.a. the particle volume Vi) and the coarse-graining function. In this sense,
the coarse graining function acts as the kernel of this convolution, which, essentially,
“spreads” throughout the domain the value of the property one is coarse-graining,
according to the distribution prescribed by the coarse-graining function. Thus, most
other elementary fields are defined in much the same vein, that is, the coarse-grained
density field is

ρ
(−→x , t) := N∑

i=1

miϕw

(−→x −−→x i (t)
)
, (6.41)

and the coarse-grained momentum density field is

−→p
(−→x , t) := N∑

i=1

mi
−→v i (t)ϕw

(−→x −−→x i (t)
)
. (6.42)

The coarse-grained velocity field is defined differently, for reasons that will be-
come clear once we discuss the issue of boundaries. Its definition is the momentum
density field divided by the density field; i.e.,

−→
V
(−→x , t) := −→p (−→x , t)

ρ
(−→x , t) . (6.43)

For convenience, we shall use the following two shorthands:
−→x i,j (t) := −→x i (t)−−→x j (t) ,

−→v ′
i

(−→x , t) := −→v i (t)−
−→
V
(−→x , t) . (6.44)

In order to define the coarse-grained stress tensor, it is useful to first define the
collisional stress and the kinematic stress. The first is the stress coming from the
contacts between particles; it is defined as

σc
αβ (t) := −

1

2

N∑
i=1

N∑
j=1

−→
f i,j,α (t)

−→x i,j,β (t)

1∫
0

ϕw

(−→x (t)−−→x i (t) + s−→x i,j (t)
)
ds.

(6.45)
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In the definition above, the purpose of the integral term is to average the position of
the center of the two particles. This can be more readily understood if one rewrites

−→x (t)−−→x i (t) + s−→x i,j (t) =
−→x (t)−

(
s−→x j + (1− s)−→x i

)
(6.46)

and notes that s−→x j + (1− s)−→x i is just a parametrization of the line joining −→x i

to −→x j. The later —that is, the kinematic stress —is the stress derived from the
movement of the grains as a flow; it is defined as

σk
αβ (t) := −

N∑
i=1

mi
−→v ′

i,α (t)
−→v ′

i,β (t)ϕw

(−→x −−→x i (t)
)
. (6.47)

The coarse-grained stress tensor is just the addition of the collisional and kinematic
stresses; i.e.,

←→σ :=←→σ c +←→σ k. (6.48)

As long as one stays sufficiently away from the boundaries of the domain —a
distance of w, to be precise —the main equations of continuum mechanics will hold
for the coarse-grained fields, namely the continuity equation,

∂ρ

∂t
+∇ · ρ−→u = 0 (6.49)

and the Cauchy momentum equation

ρ
D−→u
Dt

= ∇ ·←→σ (6.50)

This is shown in [30].

6.2.2 Coarse-graining near boundaries
Now we address the challenges in the coarse-graining procedure near boundaries.

One of such challenges is that when the distance between the point where the field
is calculated and the boundary of the domain is less then the support of the coarse
graining function, the value of the field becomes artificially smaller, and the less this
distance becomes, the smaller the field will seem to be. This is caused by the lack
of particles outside the domain, which causes the effective support of the function
to become smaller (i.e., it becomes the intersection of the original support and the
domain) and the coarse-graining function to have an integral of less than unity. As
explained in [66], one of the ways to solve this issue is to dynamically normalize the
coarse-graining function by the n-dimensional volume of its effective support. This
can be troublesome for irregular boundaries and non-trivial functions. This process
can be better understood by looking at section 6.2.2.

Here we also go back to the definition of the coarse-grained velocity field: since it
is defined as a ratio between two other coarse-grained fields, it is already normalized.
This, together with the computational speed are the reasons to define coarse-graining
in this way, instead as a discrete convolution.

Unfortunately, this technique has a drawback that we have sidestepped, which
will be presented in section 7.1. Another unfortunate fact —one that we have yet to
bypass —is that the coarse-grained continuity (eq. (6.49) and Cauchy momentum
(eq. (6.50)) equations do not hold near walls. This will prove to be a challenge in
the future.
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Figure 6.1: If the green circle represents the support of a point in the domain whose
coarse-grained fields are desired, the normalization factor would be the integral of the
coarse-graining function over the blue region.

6.3 The SINDy algorithm

The recent advances in machine learning have allowed a variety of new tools to
be developed. From miraculous chatbots to art emulating software, the progress has
been nothing but astounding. Nevertheless, even though these new tools can solve
a variety of problems, they often do not offer additional understanding about these
problems —they act as black boxes. Indeed, most machine learning models are able
to interpolate results from collected data, but they fail to extrapolate the data to
regions where no data was collected to begin with. For example, a neural network
trained to recognize weather patterns in a region may fail to predict the weather in
a completely unrelated region, while a model based on differential equations does
not have to concern itself with this issue. Thus, the question that arises is how
to extract these differential equations from data in the first place. This is where
the SINDy (acronym for Sparse Identification of Non-linear Dynamics) [9] method
comes into play.

Consider a n-dimensional dynamical system of the form

d

dt
−→x (t) =

−→
f
(−→x (t)

)
, (6.51)

where −→x : R → Rn;−→x (t) = (x1 (t) , · · · , xn (t)) is the system state as a function
of time and the function

−→
f : Rn → Rn represents the dynamic constraints that

define the equations of the system. One key observation is that for many systems of
interest, the function

−→
f is composed of few terms. We call this property “sparsity”

and say that “
−→
f is sparse”. In order to appreciate this sparsity, just think of how

many PDEs you have heard about with more than 10 terms.
Now, let t1, · · · , tM ∈ R be the times which constitute the M samples of −→x and
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consider the M × n matrices

X =


−→x ⊺ (t1)

...
−→x ⊺ (tM)

 =

 x1 (t1) · · · xn (t1)
... . . . ...

x1 (tM) · · · xn (tM)

 ,
X ′ =


−→x ′⊺ (t1)

...
−→x ′⊺ (tM)

 =

 x
′
1 (t1) · · · x′n (t1)
... . . . ...

x′1 (tM) · · · x′n (tM)

 ,
(6.52)

where the values in X ′ can be either measured or numerically approximated from
the samples of −→x .

The next step is to define a library of candidate terms for the expression of
−→
f .

Let g1, · · · , gN : Rn → R be the N candidate functions. Then, the library Θ(X)
is the matrix whose j-th column is the vector

(
gj
(−→x (t1)

)
, · · · , gj

(−→x (tM)
))

. For
example, if n = 2 and the candidate functions are as in table 6.1, then the library
Θ(X) will be given by

Θ(X) =

1 x1 (t1) x2 (t1) x1 (t1)x2 (t1) x1 (t1)
2 x2 (t1)

2 sin (x1 (t1)) sin (x2 (t1))
...

...
...

...
...

...
...

...
1 x1 (tM) x2 (tM) x1 (tM)x2 (tM) x1 (tM)2 x2 (tM)2 sin (x1 (tM)) sin (x2 (tM))

 .
(6.53)

The choice of these candidate terms is crucial and should ideally be made based on
the terms that appear in equations of related problems. If the correct terms are not
present in the library, the correct equation will not be found.

Table 6.1: Example of candidate functions for the Θ library in dimension 2.

1 g1 (x1, x2) = 1
−→x g2 (x1, x2) = x1 g3 (x1, x2) = x2
−→x 2 g4 (x1, x2) = x1x2

g5 (x1, x2) = x21 g6 (x1, x2) = x22

sin
(−→x ) g7 (x1, x2) = sin (x1) g8 (x1, x2) = sin (x2)

Finally, for j ∈ {1, · · · ,M}, let
−→
ξ j = (ξ1,j, · · · , ξN,j) ∈ RN be some randomly

initialized vectors and define the N ×M matrix

Ξ =
[−→
ξ 1 · · ·

−→
ξ N

]
=

ξ1,1 · · · ξ1,M
... . . . ...

ξN,1 · · · ξN,M

 . (6.54)

This matrix (Ξ) is called the matrix of the coefficients and the goal of the SINDy
algorithm is to tune the values ξi,j such that

X ′ ≈ Θ (X)Ξ (6.55)

is as close as possible to eq. (6.51). Note that, under eq. (6.55), the vector
−→
ξ j is a

bundle of all the coefficients of the j-th coordinate of the system in eq. (6.51). Going



142 | Prerequisites

back to our example, eq. (6.55) would represent the following set of equations:

x′j (ti) = ξ1,j + ξ2,jx1 (ti) + ξ3,jx2 (ti) + ξ4,jx1 (ti)x2 (ti)

+ ξ5,jx1 (ti)
2 + ξ6,jx2 (ti)

2 + ξ7,j sin (x1 (ti)) + ξ8,j sin (x2 (ti)) .
(6.56)

More precisely, the goal of the SINDy algorithm is to minimize some loss function
L; e.g., the LASSO (least absolute shrinkage and selection operator) function,

L
(−→
ξ 1, · · · ,

−→
ξ N

)
=

N∑
k=1

∥X ′
k −Θ (X)

−→
ξ k∥2 + λ∥

−→
ξ k∥1, (6.57)

where X ′
k is the k-th column of the matrix X ′, λ ∈ [0,∞) is a hyperparameter, ∥·∥2

is the L2 norm and ∥·∥1 is the L1 norm. The L2 norm term represents the error
while the L1 norm term promotes sparsity on the

−→
ξ k, with the hyperparameter λ

controlling how important this “sparsification” is in relation to the minimization of
the error.

Formally, then, the vectors
−→
ξ k can be defined as

−→
ξ k = argmin

−→
ξ ′

∥X ′
k −Θ (X)

−→
ξ ′∥2 + λ∥

−→
ξ ′∥1 (6.58)

and the equations found by the SINDy method are

d

dt
−→x k (t) =

−→
f k

(−→x (t)
)
:=
−→
Θ
(−→x ⊺ (t)

)−→
ξ k, (6.59)

where
−→
Θ
(−→x ⊺ (t)

)
is the symbolic vector of functions (as opposed to the matrix

Θ (X), which is a data matrix). Thus,

d

dt
−→x (t) =

−→
f
(−→x (t)

)
:= Ξ⊺

[−→
Θ
(−→x ⊺ (t)

)]⊺
. (6.60)

There have been many improvements in the SINDy method since its incep-
tion. For instance, the PDE functional identification of non-linear dyanamics [69]
(PDEFIND method or algorithm, for short) expands the original functionality of
the SINDy method to partial differential equations. The weak SINDy [56] solves the
weak formulation of PDEs via the Galerkin method, which provides high robustness
to noisy data. There is also SINDyPI [44] (PI stands for parallel, implicit), which
tackles implicitly defined differential equations. Since eq. (6.39) is defined implic-
itly and cannot be explicitized, SINDyPI seems like the best choice for our current
problem.



Chapter 7

Preliminary developments

7.1 Preliminary developments

In order to construct the initial setup of the simulation of a granular Taylor-
Couette flow, an arbitrary center c ∈ R2 was chosen as were two radii Ri, RL ∈
(0,∞), with Ri < RL. The center combined with the radii define two circles, whose
perimeters were filled with particles. More precisely, the particles were placed with
their centers in the perimeter in such a way that they were tangent to their neighbors.
The radii of the particles along the perimeter of the circle defined by RL is not
important and can be chosen arbitrarily. For the particles along the one defined by
Ri, the choice of their radii will be described later. These particles do not interact
in anyway among themselves and are not affected by any other particles. However,
they do affect other particles, imparting on then a force as if they were any normal
particle. This is done in order to have well defined bounds for the system.

The next step is to fill the gap between the two circles with particles. In order
to avoid crystallization, particles with two different radii were used: a large group
of particles with a smaller radius and a smaller number of particles of bigger radius.
After the total number of particles was decided, the filling process began: to fill
the gap, particles were randomly placed in a square that circumscribes the circle
defined by RL and, wherever a particle would be placed outside the larger circle,
within the smaller circle or intercepting any previously placed particle (including the
ones alongside the perimeter of both circles), that placement would be skipped and
a new random placement tried. In order for this process to finish reasonably quickly
(say, a few seconds at most), it is necessary that the value of RL be large. Otherwise,
the process may saturate the gap before the number of desired particles is reached
or it may have trouble finding available spaces to place remaining particles.

Now, the aim is to make the granular medium in the gap reach an acceptable
packing fraction. By acceptable, it is meant a value large enough that a phase
transition of the force chains [37] will not happen when the inner circle starts to
rotate, but not so large that the individual grains have trouble slipping by each
other. After this value is decided, a simulation on the aforementioned system is ran,
imparting in the particles on the outer perimeter a velocity towards the center of
the system, such that they will arrive at the center in 5 seconds. The magnitude
of their velocity is not important, although it should be slow enough so that the
particles in the gap do not develop overlaps bigger than what is reasonably accepted
by the DEM model (5% to 10% of their radii). Every few frames, a snapshot of the
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whole system is saved.
After this simulation has finished, the approximate packing fraction of each snap-

shot is calculated by dividing the sum of the areas of each particles (note that the
interpenetration is not accounted for) by the approximated area of the gap; the
latter being estimated as the area between the circles centered on c and of radii
Ri + r̄i, RL − r̄L. Here, RL is the radius of the outer circle at the specific snap-
shot where the area is being measured, r̄i (respectively, rL) is the average radius of
the particles that constitute the inner (respectively, outer) wall. The addition (re-
spectively, subtraction) is done in order to account that in the final assembly, most
particles will not fit between the particles of the walls. After the packing fractions
have been calculated, one slightly above the target packing fraction is selected. This
is done because in the next steps of the construction of the initial conditions more
space will be introduced to allow the particles to adjust a bit. How much above
the target was decided on a trial and error basis. The RL of this simulation shall
henceforth be called Ro.

Following the compaction of the granular medium in the gap, the next step is to
replace the particles in the outer wall. Before the compaction, the particles of the
outer wall need to be tangent to each other, otherwise the particles in the gap may
escape to the outside of the outer wall. However, during the compaction process,
the radius of the outer wall is reduced, which necessarily causes the particles of the
outer wall to bunch together. This result is undesirable, because it would cause
multiple particle of the outer wall to contact particles in the gap simultaneously,
which itself would result in a force multiple times larger than what is desired. Thus,
it is necessary to replace these particles with adequately spaced ones. If these
particles have a smaller radii than the ones being replaced, then some area will be
gained, which will eventually lower the overall packing fraction.

The new outer wall shall be composed, as before, of particles tangentially adja-
cent whose centers are fixed on the perimeter of the circle of center c and radius Ro

and that do not interact in anyway among themselves and are not affected by any
other particles, but that do affect other particles, imparting on then a force as if they
were any normal particle. The difference now is that these particles will not have a
homogeneous radius. Instead, there will be a row of smaller particles, followed by
a bigger one, then another row of smaller particles, and so forth. (Note that the
radii of these particles is not the same as of the big nor of the small particles in
the media) This inhomogeneous wall is necessary in order to create a “rugosity” of
the walls and is crucial in order to promote the correct movement of the granular
medium. If this is not done, the particles nearest to the wall will not move much.
Apparently, this was necessary even in physical experiments [37]. Also, in the first
step of the construction of the initial condition, the inner ring was also constructed
in this manner.

If one ponders for a moment, one will observe that it is not trivial to construct
such a wall. This is because the number of particles must be an integer and the
perimeter of a circle of radius R is given by 2πR, most combinations of parameters
will leave a gap in the wall whose size does not fit any other particle. Since we needed
to tinker repeatedly with the rugosity of the walls, we came up with an algorithm
to devise perfect parameters. We will now explain this algorithm. Throughout the
explanation of this algorithm, whenever two large particles are said to be adjacent,
this means that they are both in the same wall and that there is a path within this
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wall such that there is no other large particle lying on it. This path shall be called
“adjacency path”. First, three parameters are specified:

• A “rugosity size” (rt). This is the radius of the larger particles in the wall,
a.k.a. the “teeth”.

• A “suggested rugosity spacing” (ℓ). This is the length of the adjacency path
of two adjacent large particles.

• A “suggested small wall disk radius” (r̃w). This is the radius of the smaller
particles.

A few notes on these parameters. First, these parameters are the same for both
the inner and outer wall. Second, while the last two parameters have the title of
“suggested”, the first one lacks it. This choice is arbitrary. As explained before,
some parameters need to be adjusted in order to fill the perimeter, and we decided
on those.

The algorithm first decides how many large particles there will be in the whole
perimeter through the expression

Nt :=

⌊
2πR

ℓ

⌋
, (7.1)

where R is the radius of the inner or outer circle. Then, this number is used to
calculate the angular space of adjacent large particles; i.e. the (smallest) angular
distance between them. This is simply

θt :=
2π

Nt

. (7.2)

In order to calculate how many small particles fit between two adjacent large
particles, the remaining angular space θ∆ between them is calculated. This is the
angular space between their centers minus the angular space taken by their length.
This is given by

θ∆ := θt − 2 arcsin
( rt
2R

)
. (7.3)

Then, the estimated angular space taken by a small particle θt is calculated from
r̃w via

θt := 2 arcsin

(
r̃w
2R

)
, (7.4)

and the number of small particles between two adjacent large particles Nw is set to

Nw :=

⌊
θ∆
2θt

⌋
. (7.5)

Finally, the actual radius of the small particles rw is set to

rw = R tan

(
θ∆
2Nw

)
, (7.6)

in order to actually fit Nw small particles between adjacent large particles.
Once the outer wall has been properly replaced, the assembly is simulated for

one second. This is done in order to allow the grains inside to dissipate residual
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kinetic energy from the compaction process and to accommodate within the new
boundary. All the parameters used in the construction of the initial conditions are
provided in table 7.1. Their values were chosen from parameters already present in
the literature [37], [52], [70], [82], in order to have validated examples as reference.
The finalized, empty Taylor-Couette cell and a detail of the wall composition can
be visualized in fig. 7.1.

Table 7.1: Initial condition parameters

Name Symbol Value
Total Disks N 2911
Big Disks Nb 400

Small Disks Ns 2511
Big Disk Radius rb 4.5× 10−3m

Small Disk Radius rs 3.7× 10−3m
Inner Ring Radius Ri 1.042× 10−1m
Outer Ring Radius Ro 2.492× 10−1m

Target Packing Fraction φ 0.83203
Rugosity Size rt 1.0× 10−3m

Suggested Rugosity Spacing ℓ 5.0× 10−3m
Suggested Small Wall Disk Radius r̃w 1.3× 10−4m

Figure 7.1: Illustration of the empty Taylor-Couette cell with a zoom on a region of the
outer wall. Note that the wall is made out of two types of particle and their arrangement
is alternated, in order to provide a certain amount of rugosity. The inner wall is also
composed in this manner.

The outer wall is now programmed to rotate with some angular speed ω and
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the simulation is executed. The integration is performed via the symplectic Eu-
ler method with some time step size ∆t. The normal collision forces follow the
Hooke law with linear damping scheme (see section 1.3.1) and the tangential colli-
sion follows the Cundall-Strack (see section 1.3.2) friction scheme. A snapshot of
the assembly was taken every 1/24th of a second. After some physical time T , the
simulation concludes. All the parameters can be seen in better detail in table 7.2
and the simulation process is depicted in fig. 7.2

Table 7.2: Simulation parameters

Name Symbol Value
Time Step Size ∆t ≈ 2.548 63× 10−5 s

Simulation Duration T 1.80× 102 s
Disk Height h 6× 10−4m

Inner Wall Angular Speed ω 5× 10−2 rad/s
Density ρ 1.060× 103 kg/m3

Elastic Constant kn 3.52× 102N/m
Tangential Stiffness Ratio ks/kn 0.15/0.19

Damping Constant γ 1.9× 10−1 kg/s
Friction Constant µ 0.44

From the same initial conditions and parameters, another simulation is ran. The
only differences are that the duration is shortened to T = 1× 10−2 s and snapshots
are taken every 1× 10−4 s. This second simulation is useful for validating properties
which involve temporal derivatives.

In order to perform the coarse-graining procedure described in section 6.2, it
is necessary first to choose a coarse-graining function. Through trial and error, we
settled on the ϵ-mollifier defined previously in eq. (4.3). Note that the normalization
constant needs to be changed because of the 2-dimensional nature of this problem,
in contrast to the 1-dimensional nature of the previous problem.

To calculate the normalization factor, we use angular coordinates centered at c
and the Fubini theorem to exchange an area integral by two linear integrals. Finally,
we deploy Boole’s rule [1] twice.

Choosing the value of ϵ is equivalent to choosing the coarse-graining scale w,
because ϵ dictates the size of the support of the ϵ-mollifier. This decision is made
in accordance to [52]. First, a snapshot of the system is chosen; this snapshot can
be chosen arbitrarily. Then, for different values of w, the value of the resulting
coarse-grained volume density is averaged among equally spaced points along a ring
in the middle of the gap between the two walls and plotted against the respective
w. The plot should plateau at some point and the smallest value from this plateau
is chosen as the de facto w. This plot is presented in fig. 7.3.

The details of the coarse-graining procedure given until here are the same for both
the long-running (T = 1.80× 102 s) and short-running (T = 1× 10−2 s) simulations.
However, from now on, their treatment shall be different. This is because we wish to
validate different features from them, and these features have different dependences
on the time-scale.

We start with the long-running simulation. From its results, we wish to validate
the velocity and volume density profiles of our granular assembly. For this, Nθ
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(a) (b)

(c) (d)

Figure 7.2: Different snapshots of a simulation of a granular Taylor-Couette cell. At t = 0 s,
a rectangular region passing through the cente of the system is chosen and the particles
lying therein are marked in red so that one can observe the shearing near the inner wall
as the simulation evolvs. The shades of gray that fill the inside of a particle shows how
much stress that particle is under (the darker, the higher the stress). The physical time
of the snapshots are t = 0 s (a), t = 5 s (b), t = 1.0× 101 s (c) and t = 1.5× 101 s (d). The
parameters used are displayed in tables 7.1 and 7.2.

equally spaced points over the angular interval [0, 2π) were selected as well as Nr

points in the radial range [Ri − w,Ro + w]. The radial range is extended by w in
both directions because otherwise the coarse-graining function would not be able to
capture the velocity/density of the region immediately adjacent to both of the walls.
Afterwards, this domain shall be linearly compressed into [Ri, Ro].

The coarse-graining procedure described in section 6.2 was then performed in
each of the last 600 hundred snapshots of the long-running simulation; i.e., the last
2.5 × 101 s of simulation. Afterwards, the values obtained for each of the Nr × Nθ
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Figure 7.3: Plot of the coarse-grained volume density field ρ̄ as a function of the radius
w of the support of the coarse-graining function. Note that as w increases, ρ̄ plateaus.
The coarse-grained volume density field was averaged among equally spaced points along
a ring in the middle of the gap between the two walls.

points was averaged over the the snapshots. Finally, for each of the radial points, the
Nθ points associated with that radial point where averaged, leaving us withNr points
averaged both in time and angle. The radial spaced was then linearly compressed
back into the [Ri, Ro] range and plotted. This plot and the reference data taken
from [70] can be seen in fig. 7.4. The parameters used for this coarse-graining are
displayed in table 7.3

Table 7.3: Parameters for the coarse-graining procedure of the long-running simulation.

Name Symbol Value
Coarse-graining Scale w 3.5× 10−2m

Number of Radial Points Nr 48
Number of Angular Points Nθ 16

(a) (b)

Figure 7.4: Volume density (a) and velocity (b) profiles of the long-running simulation.
Here, ρ̄ is the volume density and ūθ is the tangential component of the velocity, averaged
over time and angular space. The variable r̄ the radial distance from the inner wall,
normalized by the average grain radius. (Recall that this final range is a mapping from a
larger range)
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We proceed to the short-running simulation. The goal now is to validate the
continuity equation, namely

∂ρ

∂t
+∇ · ρ−→u = 0, (7.7)

and the Cauchy momentum equation; i.e., eq. (6.35). For reference, we rewrite the
Cauchy momentum equation here in the form LHS = 0:

D

Dt

(
ρ−→u
)
−∇ ·←→σ = 0. (7.8)

In order to compute the derivatives involved, we have used a sixth order finite
difference scheme. This order was chosen by trial and error. In order to correctly
estimate the time derivatives present in both the equations, the time difference
between two consecutive snapshots must be sufficiently small. Through trial and
error, we have found the temporal spacing of 1× 10−4 s to be small enough. For the
same reason, the spatial derivatives require the spacing between nearby points to be
smaller than of those of the long-running simulation. Again through trial and error,
we found that a spatial scale of 5× 10−4m was adequate.

Because of these small spatial and temporal scales, it became unfeasible to per-
form this analysis through the entire domain or in the long-running simulation.
Therefore, we limited ourselves to a thin, radially aligned, strip that ran from the
inner wall to the outer wall. This strip was 0.0005×Nx (or about 1.4 small particles)
wide and 0.0005 × Ny (or the size of the entire assembly) long (i.e., in the radial
direction). Because of how thin it is, we treated it using Cartesian coordinates. The
values for Nx and Ny can be found in table 7.4.

Table 7.4: Parameters for the coarse-graining procedure of the short-running simulation.

Name Symbol Value
Coarse-graining Scale w 3.5× 10−2m

Number of Points in the x-axis Nx 21
Number of Points in the y-axis Ny 500

Finally, we ran the coarse-graining procedure, calculated the necessary deriva-
tives via finite differences, calculated the value of the LHS of eq. (7.7) (and similarly
for eq. (6.35)) and plotted their average over time and over the x coordinate. The
results are shown in figs. 7.5 and 7.6.

7.2 Discussion

It is visible in fig. 7.4 that the data from our simulations closely matches the
data in [70]. In fig. 7.4(a), there are a few mismatches, specially towards the outer
rim of the Taylor-Couette cell. However, in the data from [70] there are also some
large fluctuations, which could help explain this discrepancy. On the other hand,
the data in fig. 7.4(b) appears to match our results much closer, with the only caveat
being that our data does not match exactly with neither the experimental nor the
simulation data from [70], but it is solidly between both, becoming closer to the
experimental data for regions away from the inner rim.

For figs. 7.5 and 7.6, our goal is to get the plots as close to zero in as much
as the plot as possible, as that means that the respective equations are holding
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(a) (b)

(c) (d)

Figure 7.5: Plots of the value of the LHS of the continuity equation (eq. (7.7)). In (a)
and (c), the normalization near the boundary was perfomed, while in (b) and (d) it was
not. Figures (c) and (d) exclude the regions within w of either boundary. Take note of
the scales in the top left corner of each plot.

well throughout the domain. In fig. 7.5, we observe that this is mostly the case,
even though one can note that in the case where boundary normalization is being
performed, the validity of the equation near the boundary (see fig. 7.5(a)) is slightly
jeopardized. This is expected though, because the boundary normalization affects
the terms of eq. (7.7) in an uneven manner. In all other cases, the continuity equation
is valid up to 1× 10−4.

As for the Cauchy momentum equation (eq. (7.8)), fig. 7.6 shows that its validity
is much more tenuous. It absolutely does not hold near the boundary region (see
figs. 7.6(a) and 7.6(b)). Again, this is expected; Since all the particle composing the
walls do not feel the forces of the particles in the gap and the movement (or lack
thereof) of the particles in the walls is not caused by a force, but by a prescribed
evolution, the stresses near them cannot be correctly calculated. On the other
hand, in the region outside of the influence of the boundary, the Cauchy momentum
equation holds up to 1× 10−1.

7.3 Future work

There is still much to be done in this project. First and foremost, a more in-
depth analysis needs to be performed on the validity of the Cauchy momentum
equation in the regions away from the boundary: even though 1×10−1 is significant
enough to observe a trend, it is not good enough to affirm with certainty that the
coarse-grained process is without fault, as the coarse-graining procedure must result
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(a) (b)

(c) (d)

Figure 7.6: Plots of the value of the x (in blue) and y (in red) coordinates of the LHS of
the Cauchy momentum equation (eq. (7.8)). In (a) and (c), the normalization near the
boundary was perfomed, while in (b) and (d) it was not. Figures (c) and (d) exclude the
regions within w of either boundary and have a scale factor in the top left corner of each
plot.

in fields which satisfy the Cauchy momentum equation [30]. However, it may be the
case that what we observe in fig. 7.6(c) and fig. 7.6(d) are just noise caused by the
discretization process.

Following this, it is still necessary to use the SINDy procedure to discover the
governing differential equations of this process. As discussed before, suitable guesses
of the type of terms that are expected in the equation have to be made. It has
been already stated that we plan to use the µ (I) rheology for this purpose, so an
intermediate step is to verify its validity in our data set. One possible test is to
calculate the value of I across the domain and then isolate µ (I) in eq. (6.39) and
calculate it from the data. Finally, checking if I → µ (I) is in fact a function may
provide a sanity check on the validity of that rheology in our data.

It may also be the case that our data has some sort of non-local behavior. If this
situation arises, there is an extensive review [45] of non-local models for granular
materials.
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