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Abstract

Title: Extensional rheology and magnetization of dilute ferrofluid emulsions
Author: Arthur Leite Guilherme
Supervisor: Dr. Taygoara Felamingo de Oliveira (LEA/ENM/UnB)
Graduate Program in Mechanical Sciences
Brasília, 2023

This work presents an investigation of the effects of external uniform magnetic fields
on the rheology and magnetization of dilute ferrofluid emulsions subjected to planar
extensional flows. To this end, we performed three-dimensional numerical simulations of a
single superparamagnetic ferrofluid droplet suspended in a nonmagnetizable viscous fluid.
This system corresponds to the emulsion’s microstructural unit. The full incompressible
Navier-Stokes equations for a biphase system with the addition of the magnetic term are
solved using a projection method. The interface problem is addressed with the Level-Set
method. We find that the droplet’s configuration and magnetization depend on the external
field intensity and direction. Macroscopically, the droplet contribution to the bulk stress
state is anisotropic. The two extensional viscosities associated with the normal stresses of
the emulsion either remain constant or increase with the field intensity; the only exception
occurs when the field direction is perpendicular to the extension plane, in which the second
extensional viscosity decreases. When the external field is not aligned with the flow main
directions, the droplet tilts in the flow and the droplet magnetization points no longer
in the external field direction. At the emulsion level, this results in internal torques that
lead to a nonsymmetric stress tensor. In order to account for these unexpected shear
components and fully characterize the extensional rheology, we introduce new extensional
material functions such as shear and rotational viscosity coefficients. We also analyze the
conditions for droplet breakup. We find that the external field either induces or prevents
the breakup depending on the field direction. The subcritical deformations in the plane
formed by the extension and field directions vary linearly with the critical extension rate,
regardless of the field direction. Overall, this study provides new insights into applications
for field-controlled smart materials and precise manipulation of ferrofluid droplets.

Keywords: Ferrofluid droplet; Extensional rheology; Emulsion magnetization; Droplet
breakup
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Resumo

Título: Reologia extensional e magnetização de emulsões diluídas de ferrofluidos
Autor: Arthur Leite Guilherme
Orientador: Dr. Taygoara Felamingo de Oliveira (LEA/ENM/UnB)
Programa de Pós Graduação em Ciências Mecânicas
Brasília, 31 de agosto de 2023

Este trabalho apresenta uma investigação dos efeitos de campos magnéticos uniformes
na reologia e magnetização de emulsões diluídas de ferrofluido sujeitas a escoamentos
extensional planar. Para isso, realizamos simulações numéricas tridimensionais de uma única
gota de ferrofluido superparamagnético suspensa em um fluido viscoso não magnetizável.
Este sistema corresponde à unidade microestrutural da emulsão. As equações de Navier-
Stokes incompressíveis para um sistema bifásico, com a adição do termo magnético, são
resolvidas usando um método de projeção. O problema de interface é tratado com o
método Level-Set. Nós encontramos que a configuração e magnetização da gota dependem
da intensidade e direção do campo externo. Macroscopicamente, a contribuição da gota
para o estado de tensões da emulsão é anisotrópica. As duas viscosidades extensionais
associadas às tensões normais da emulsão permanecem constantes ou aumentam com a
intensidade do campo; a única exceção ocorre quando a direção do campo é perpendicular
ao plano de extensão, em que a segunda viscosidade extensional diminui. Quando o campo
externo não está alinhado com as direções principais do escoamento, a gota se inclina
com relação ao escoamento e a magnetização da gota não aponta mais na direção do
campo externo. Na escala da emulsão, isso resulta em torques internos que levam a um
tensor de tensões não simétrico. Para levar em conta esses componentes de cisalhamento
inesperados e caracterizar completamente a reologia extensional, nós introduzimos novas
funções materiais extensionais, como os coeficientes de viscosidade de cisalhamento e de
rotação. Nós também analisamos as condições para ruptura de gota. O campo externo
induz ou impede a quebra da gota, dependendo da direção do campo. As deformações
subcríticas no plano formado pelas direções de extensão e do campo varia linearmente
com a taxa de extensão crítica, independentemente da direção do campo. No geral, este
estudo fornece novas informações para aplicações de materiais inteligentes controlados por
campos externos e manipulação precisa de gotas de ferrofluido.

Palavras-chaves: Gota de ferrofluido; Reologia extensional; Magnetização da emulsão;
Ruptura de gota.
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1 Introduction

Fluids with tunable physical properties are a special class of smart materials.
Ferrofluid emulsions are tunable fluids that respond actively to the application of magnetic
fields, making them promising materials in a number of practical applications. In the fol-
lowing chapter, we give the reader the definitions and the literature background concerning
studies on the mechanical and magnetic behavior of ferrofluid emulsions. At the end of
the chapter, we enlighten the importance of the present work not only on the mechanical
and magnetic description of such material but on the peculiar behavior observed in its
stress state when it is subjected to external magnetic fields and planar extensional flows.

1.1 Ferrofluid emulsion: a smart material

Emulsions are microstructured liquids formed by stable mixtures of two immiscible
viscous fluids. They are ubiquitous in nature and present in many industrial applications,
such as the food industry, oil recovery, and pharmaceuticals (GRACE, 1982). Their mi-
crostructure is locally a biphase system where small droplets of one liquid (dispersed phase)
are dispersed in the other (continuous phase). In general, they are formed by dispersion of
oil-in-water (O/W), or water-in-oil (W/O). Macroscopically, the mixture can be regarded
as a homogeneous liquid, provided that the length scale of the observation is much larger
than the distance between the droplets. Fig. 1.1 shows a schematic representation of an
emulsion for distinct length scales.

Figure 1.1 – Representation of an emulsion in different length scales. From a homogeneous
material to the microstructure formed by the repetition of a single droplet-
continuous phase system.

In terms of material properties, an emulsion presents non-Newtonian behavior,
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such as strain-rate dependent viscosity, viscoelasticity, and thixotropy (SCHOWALTER;
CHAFFEY; BRENNER, 1968; BARTHÉS-BIESEL; ACRIVOS, 1973). These complex
features occur even when the emulsion is composed of Newtonian fluids and is dilute,
i.e., when the concentration of the dispersed phase is small, from which the inter-droplet
hydrodynamic interactions are negligible. In such a case, the rheological properties of the
emulsion can be inferred considering a single droplet biphase system of corresponding
constituents and volume fraction, and measuring the interfacial tension contribution
to the system stress state when submitted to standard rheometric flows, i.e., steady
simple shear, steady extensional, and small amplitude oscillatory shear or extensional flow
(BATCHELOR, 1970).

Figure 1.2 – Representative sketch of the deformation of a single droplet subjected to
external planar extensional flow. 𝐿 corresponds to the length of the major
semi-axis, and 𝐵 to the minor semi-axis length.

When a single suspended droplet undergoes a steady straining motion, the flow-
induced viscous stresses on the droplet surface tend to distort the droplet, and the interfacial
tension between the phases acts in a way to retain its spherical shape. In the case where
these forces are balanced, the droplet attains an equilibrium prolate ellipsoidal shape
(TAYLOR, 1934). Moreover, if the straining motion corresponds to an extensional flow,
which is irrotational, the droplet’s major axis remains aligned with the flow’s extension
direction, as depicted in Fig. 1.2.

In a planar extensional flow experiment, the response of a material is commonly
characterized by two coefficients: the planar extensional viscosity, 𝜂𝑒𝑥𝑡, and the second (or
cross) extensional viscosity, 𝜂𝑐𝑟𝑜𝑠𝑠 (PETRIE, 2006). They are associated with the material
normal stresses through

𝜂𝑒𝑥𝑡 = (𝜎𝑥𝑥 − 𝜎𝑦𝑦)
𝜀̇

, and 𝜂𝑐𝑟𝑜𝑠𝑠 = (𝜎𝑧𝑧 − 𝜎𝑦𝑦)
𝜀̇

,

where 𝜀̇ is the rate of extension, 𝜎 is the material stress tensor, and the subscripts
indicate its components. While the first refers to the material resistance to be continuously
stretched/compressed in the 𝑥𝑦 plane, the second refers to the material resistance to prevent
continuous deformation in the 𝑧 direction. For a Newtonian fluid, these two coefficients are
constants and related to the shear viscosity, 𝜂𝑁 , through 𝜂𝑒𝑥𝑡 = 4𝜂𝑁 and 𝜂𝑐𝑟𝑜𝑠𝑠 = 2𝜂𝑁 , so
that a simple shear experiment is sufficient to obtain both shear and extensional viscosities.
For dilute emulsions, however, this does not hold true, so an extensional experiment is
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needed. This is because for suspended droplets a net difference between the normal stresses
occurs due to the extra stress promoted by the anisotropic distribution of normal stress
jump at the interface as the droplet departs from its spherical to an ellipsoidal shape.

As the flow at the droplet scale is a low-Reynolds number flow, for a given set of
the biphase system parameters such as shear viscosity ratio between the phases, interfacial
tension, and droplet size, the droplet configuration, and the corresponding emulsion
viscosities, are functions only of 𝜀̇. This is not the case, however, when the droplet is
a polarizable media, such as ferrofluids. In this case, the droplet’s configuration can be
changed by the presence of external magnetic fields.

Figure 1.3 – Shape deformation of a ferrofluid droplet suspended in a quiescent liquid and
subjected to uniform magnetic fields. The magnetic field intensity increases
from left (a) to right (f). Adapted from (FLAMENT et al., 1996).

Ferrofluids are colloidal solutions consisting of magnetic particles homogeneously
dispersed in a carrier fluid, such as oil or water. The particles are single-domain ferri
or ferromagnetic solid materials, meaning they have permanent magnetic properties
(ROSENSWEIG, 2013). When the ferrofluid is subjected to a magnetic field, the particles
undergo rotation in the direction of the magnetic field due to the arising torques. As long
as the magnetic torques overcome the random Brownian motion, the ferrofluid achieves
a net magnetization, 𝑀 . Ferrofluids have strong magnetization properties. A ferrofluid
is said to be superparamagnetic when the magnetization always points in the direction
of the magnetic field, in the way that 𝑀 = 𝜒(𝐻)𝐻 , where 𝐻 is the magnetic field. The
magnetic susceptibility, 𝜒, generally follows Langevin dynamics, characterized by a linear
regime (constant 𝜒) in low fields followed by a saturation region as long as the field reaches
strong values. An emulsion with a ferrofluid as the dispersed phase is called a ferrofluid
emulsion. Ferrofluid emulsions have been synthesized since the end of the last century
with the addition of dispersing agents to ensure stability, as did, for example, in the work
of Bibette (1993).

Interfaces between phases with different magnetic susceptibilities have another
source of stress jump when submitted to external magnetic fields, the magnetic one
(CUNHA et al., 2020). These magnetic stresses acting on the interface stretch the droplet
in the field direction [see Fig. 1.3]. For these reasons, the extensional viscosities of a
ferrofluid emulsion are functions not only of the 𝜀̇, but also of the applied magnetic
field, so that 𝜂𝑒𝑥𝑡 = 𝜂𝑒𝑥𝑡(𝜀̇,𝐻0), and 𝜂𝑐𝑟𝑜𝑠𝑠 = 𝜂𝑐𝑟𝑜𝑠𝑠(𝜀̇,𝐻0). Directly due to the stress
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jump term, and indirectly due to the changing in the droplet configuration caused by the
magnetic-induced distortion.

The ferrofluid emulsion’s rheology can be controlled by means of external magnetic
fields, so it is a magnetorheological fluid. Magnetorheological fluids are attractive materials
for several areas (TORRES-DÍAZ; RINALDI, 2014). In the automotive industry, these fluids
can improve the operation of devices such as dampers, batteries, valves, and brakes (YANG
et al., 2020; ESHGARF; NADOOSHAN; RAISI, 2022). In microfluidic systems, they can
be used for mixing, pumping, and separating target particles from heterogeneous mixtures
(YANG et al., 2016). Ferrofluid emulsions are also present in biomedical applications,
where they can be used to deliver drugs to specific body locations by controlling the
magnetic field (LIU; LI; LAM, 2018); or be used as a contrast agent for In Vivo Magnetic
Resonance Imaging, taking advantage of its magneto-optical properties (AHMED et al.,
2013; YERIN; BELYKH, 2021). In all these cases, knowing about mechanical behavior
of the ferrofluid emulsion is of fundamental importance. In some of them, knowledge
about emulsion magnetic behavior is also very important. There are, however, unanswered
questions about their mechanical and magnetic behavior. One of these questions is how
ferrofluid emulsions are magnetized in extensional flows. Another is how the extensional
rheology of such emulsions is affected by the presence of external magnetic fields.

1.2 Previous works

The study on the dynamics of suspended droplets and on the mechanical behavior
of emulsions was founded with the G. I. Taylor works in the 1930s (TAYLOR, 1932;
TAYLOR, 1934). In 1932, Taylor studied theoretically the rheology of emulsions formed
by undeformed droplets and found that the shear viscosity of the emulsion is given by
𝜂𝑒 = 𝜂𝑐[1 + 2.5𝛽(𝜆+ 0.4)/(𝜆+ 0.1)], where 𝛽 is the volume fraction of the dispersed phase,
and 𝜆 is the ratio between the shear viscosities of the dispersed phase, 𝜂𝑑, and that of
the continuous phase, 𝜂𝑐. This result is valid for low volume fractions (𝛽 < 5%) and low
𝐶𝑎, which measures the flow strength compared to the interfacial tension. In 1934, Taylor
studied experimentally the deformation and breakup of suspended droplets subjected
to simple shear and planar extensional flows. For this, the author created the four-roll
mill apparatus, which is capable of generating a stagnation point planar extensional flow
with a steady strain rate. Taylor found that if the interfacial tension is large enough the
droplet reaches a steady prolate ellipsoidal shape. In the limits of small deformations, the
deformation 𝐷 (see Fig. 1.2) varies linearly with 𝐶𝑎. If 𝐶𝑎 is high enough, the droplet
subjected to planar extension continuously deforms until it breaks up into many daughter
droplets. The distortion is significantly more pronounced in the planar extension than in
simple shear. For this reason, the extensional flow is said to be strong.

Since the works of Taylor, many experimental and analytical studies were conducted
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to analyze the dynamics and breakup of viscous droplets in extensional flows (BARTHES-
BIESEL; ACRIVOS, 1973; ACRIVOS; LO, 1978; GRACE, 1982; BENTLEY; LEAL, 1986;
HSU; LEAL, 2009), and the extensional rheology (OLDROYD, 1953; SCHOWALTER;
CHAFFEY; BRENNER, 1968; BARTHÉS-BIESEL; ACRIVOS, 1973). Bentley and Leal
(1986) used an improved computer-controlled version of the four-roll mill apparatus to
systematically study the deformation and breakup of viscous droplets covering a wide
range of 𝜆. Their results are valuable until today. This work was later proceeded by Hsu
and Leal (2009) who analyzed the case of 𝜆 = 1. The theoretical analysis of the cited
works on droplet dynamics and extensional rheology contributed to the prediction of the
dynamics and emulsion mechanical behavior, but are restricted to nearly spherical, or
slender droplet shapes.

With the growing development of computers and numerical methods in the last
decades, numerical simulation becomes an important tool for the study of emulsions,
as it eliminates any restriction on droplet shapes and is able to detail the important
physical quantities distribution over the system and droplet surface. Since then, the
problem of emulsions has been studied through numerical methods. Kennedy, Pozrikidis
and Skalak (1994) analyzed the deformation of droplets and shear rheology of dilute
emulsions using a boundary integral formulation. Loewenberg and Hinch (1996) and
Oliveira and Cunha (2015) used similar methods to analyze the rheology of concentrated
emulsions respectively in simple shear and oscillatory shear. Li and Sarkar (2005) analyzed
the oscillatory extensional rheology of dilute emulsions using a front-tracking method. Park
et al. (2019) used a Taylor analogy numerical method to analyze the droplet dynamics in
planar extensional flow.

The field-induced distortion of ferrofluid droplets in an otherwise quiescent liquid
has also been studied in the last decades through experimental and numerical methods. Its
understanding is already well-established (FLAMENT et al., 1996; AFKHAMI et al., 2010).
The dynamics of ferrofluid droplets under the simultaneous action of external magnetic
fields and hydrodynamics flows, however, is yet to be fully understood. The first study
in this regard was presented by Jesus, Roma and Ceniceros (2018), who analyzed the
behavior of superparamagnetic ferrofluid droplets in simple shear flows when uniform
magnetic fields are externally applied in the velocity gradient direction. The work of Jesus,
Roma and Ceniceros (2018) was quickly followed by other similar studies in simple shear
(HASSAN; ZHANG; WANG, 2018; CAPOBIANCHI; LAPPA; OLIVEIRA, 2018; CUNHA
et al., 2018; CUNHA et al., 2020; ISHIDA; MATSUNAGA, 2020; CAPOBIANCHI et
al., 2021; ABICALIL et al., 2021). Despite the differences in formulation and numerical
methods, these studies confirmed that, when subjected to both flow and uniform magnetic
fields, the ferrofluid droplets assume ellipsoidal shapes (when the droplet is not lead to
breakup), but this time they can also assume oblate shapes, instead of prolate. The shape
and orientation angle with respect to the flow are determined by a balance between viscous,
magnetic, and capillary forces at the interface that in turn depends on the direction and

6



intensity of the external magnetic field, so they can be controlled. In like manner, Cunha
et al. (2018), and other authors, studied the conditions for ferrofluid droplet breakup
in simple shear and found that the magnetic field can either induce or prevent breakup
(CUNHA et al., 2018; MAJIDI et al., 2022; ISHIDA et al., 2022).

Numerical studies on dilute emulsion rheology, in which can be assumed there are
no interdroplet hydrodynamic or magnetic interactions, generally use the particle stress
formulation of Batchelor (1970), that extrapolates the extra stress caused by the presence
of one droplet to the bulk emulsion stress tensor (KENNEDY; POZRIKIDIS; SKALAK,
1994; LI; SARKAR, 2005). While the particle stress of regular viscous droplets is a function
of the viscosity difference and interfacial tension between the phases, an emulsion formed
by ferrofluid droplets experiences additional compression due to the magnetic permeability
difference between the phases. Following the procedure of Batchelor (1970), Cunha et
al. (2020) introduced a new formulation for the particle stress of ferrofluid droplets in
suspension, which takes advantage of the Level-Set formulation for the interface problem.
Shortly after, Ishida and Matsunaga (2020) and Capobianchi et al. (2021) presented similar
procedures. These three works, in addition to the ferrofluid droplet dynamics analysis,
studied the shear rheology through their new particle stress formulation. Essentially,
they showed that external magnetic fields can effectively tune the shear viscosity and
normal stress coefficients. Moreover, they showed that depending on the orientation of the
external magnetic field, the magnetization of the system has an angle with the external
field, meaning that internal magnetic torques are induced in the ferrofluid emulsion. As a
consequence, the particle stress becomes nonsymmetric. The lack of symmetry in the stress
tensor of ferrofluid emulsions requires the introduction of additional material functions,
such as the rotational viscosity of Cunha et al. (2020).

We observe from the state-of-the-art that there is a growing interest in under-
standing the ferrofluid droplet dynamics and mechanical behavior of ferrofluid emulsions.
The great majority of them, however, focused on simple shear, whether with respect to
ferrofluid droplet dynamics and breakup or with respect to rheology. Recently, Abdo et
al. (2023) studied the ferrofluid droplet dynamics and ferrofluid emulsion rheology on
oscillatory shear. To the best of our knowledge, there are no studies regarding the effects of
magnetic fields in either ferrofluid droplet dynamics, breakup, or rheology, in extensional
flows. Mandal et al. (2018) is the only work that studied droplet deformation in extensional
flows and extensional rheology of emulsions formed by polarizable media under the action
of external fields. In their work, the droplets are electrically polar and the flow is a uniaxial
extension. The authors found that the presence of an electric field can either amplify the
extensional-thickening behavior of the emulsion or even invert it to an extensional-thinning
behavior.
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1.3 Contributions of the present work

As noted above, prior to this work, no studies have been conducted to analyze
either the deformation, magnetization, and breakup of ferrofluid droplets in extensional
flows or the dilute ferrofluid emulsion extensional rheology. In order to fill this gap, we
conducted here three-dimensional numerical experiments on a suspended ferrofluid droplet
subjected to both planar extensional flow and uniform magnetic fields. Specifically, we
investigate the effects of the magnetic fields on the droplet’s configuration (in other
words, emulsion microstructure), magnetization, and breakup, and on the corresponding
extensional rheology of dilute ferrofluid emulsions. Altogether, four directions for the
applied magnetic field are analyzed, among which three are in the flow’s main direction,
and the other is not. First, we analyze the cases in which the droplet shape remains steady
so that the steady rheology can be assessed. Then, we investigate the conditions of flow
and magnetic field for which the droplet breakup can be expected to occur.

We show that the droplet deformation strongly depends on the applied magnetic
field intensity and direction relative to the flow, so it can either prevent or induce breakup.
The droplet shape and magnetization are directly related to the extensional viscosities.
Hence, the extensional rheology of ferrofluid emulsions can be controlled by external
magnetic fields. In particular, when the magnetic field is in a direction different from
the three flow’s main directions, unexpected shear stresses are present in the system.
Moreover, they are nonsymmetric. For this reason, new material functions, said shear
and rotational viscosities, are necessary to fully characterize the extensional rheology of
ferrofluid emulsions. It is the first time that shear stresses are reported for emulsions in
extensional flows. The present authors believe that these results are valuable not only for
ferrofluid emulsions control characterization but also for the field of non-Newtonian fluid
mechanics. The main results of this work, with the exception of the breakup analysis, were
recently published in co-authorship with other researchers in the Physical Review Fluids,
Volume 8, Issue 6 (GUILHERME et al., 2023), © 2023 by American Physical Society.

The remainder of this work is organized as follows. In Chapter 2, we present the
description of the problem and the dimensionless parameters involved. We also describe
the governing equations and the methods to evaluate the variables of interest such as the
stress tensor and the magnetization of the ferrofluid emulsion. In Chapter 3, we describe
the numerical methodology, which includes the projection method to solve the equations
of motion, and the Level-Set method for the interface problem. A mesh convergence test
is presented at the end of this chapter. In Chapter 4, then, we present validation tests
and discuss the main results obtained in this study. Finally, in Chapter 5, we present our
concluding remarks.

8



2 Problem formulation

2.1 Problem statement

The system under consideration is that of a ferrofluid droplet of radius 𝑎 and
viscosity 𝜂𝑑 immersed in another nonmagnetizable liquid of viscosity 𝜂𝑐 and the same
density 𝜌 as the droplet. Figure 2.1 shows a schematic view of the problem. Both fluids
are Newtonian, and 𝜎 is the interfacial tension between them. The ferrofluid is consid-
ered superparamagnetic with constant magnetic susceptibility 𝜒, i.e., the magnetic field
intensities are not great enough to surpass the linear regime of magnetization. The droplet
is initially (𝑡 = 0) in its equilibrium spherical shape and centered at the origin of the
coordinate system. The system is ideally subjected to a planar extensional flow of constant
extension rate 𝜀̇ so that the velocity at ||𝑥|| → ∞, 𝑢∞, is given by

𝑢∞ = 𝜀̇

⎡⎢⎢⎢⎣
1 0 0
0 −1 0
0 0 0

⎤⎥⎥⎥⎦ · 𝑥. (2.1)

In addition to the external flow, a uniform magnetic field, 𝐻0, is externally applied
over the system, both being initialized at the same time. The presence of the ferrofluid
droplet disturbs both the flow and the magnetic field in its vicinity so that the solution
domain needs to be sufficiently large in order to impose 𝑢∞ and 𝐻0 at the domain
boundaries without accounting for significant confinement effects. Bearing this in mind,
we choose a lattice computational domain with edge sizes equal to 𝑆𝑥 = 12.5𝑎, 𝑆𝑦 = 10𝑎,
and 𝑆𝑧 = 7.5𝑎 in the 𝑥, 𝑦, and 𝑧 direction, respectively, which gives a volume fraction of
the dispersed phase 𝛽 ≈ 0.45%. This choice is consistent with numerical and experimental
studies of droplets in extensional flows (BENTLEY; LEAL, 1986; HSU; LEAL, 2009;
PARK et al., 2019) (in some cases, we use an even larger domain. Details are given in
Sec. 3.5). The volume fraction is also consistent with the assumption of dilute emulsion
necessary for the rheology assessment via the procedure explained in Sec. 2.3.

The Reynolds number is defined here as 𝑅𝑒 = 𝜌𝑎2𝜀̇/𝜂𝑐, where the characteristic
length is the droplet’s radius 𝑙𝑐 = 𝑎, the time scale is that of the flow, i.e., the inverse
of the rate of extension 𝑡𝑐 = 𝜀̇−1, and the characteristic velocity is, then, 𝑈𝑐 = 𝑎𝜀̇. Given
that the droplet is sufficiently small, as it is assumed in this work, its dynamics occur in a
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Figure 2.1 – Sketch of the problem (not to scale). The droplet is initially spherical, has
radius 𝑎, and the domain size (normalized by 𝑎) is 12.5, 10, and 7.5 in the 𝑥,
𝑦, and 𝑧 direction, respectively (𝛽 ≈ 0.45%). The system is subjected to a
planar extensional flow [Eq. (2.1)] that defines the directions of flow extension
(𝑥 direction), flow compression (𝑦 direction), and neutral (𝑧 direction). The
system is also subjected to a uniform magnetic field 𝐻0 applied externally
(in this sketch it is in the 𝑦 direction). The origin 𝑥 = 0 is fixed at the droplet
center. Reprinted from (GUILHERME et al., 2023, p. 4). © 2023 by American
Physical Society.

low-𝑅𝑒 regime, which is inertia-free. Moreover, there is no variation in density between
the phases so there are no buoyancy effects. In such a situation and in the absence of an
applied magnetic field, the ferrofluid droplet dynamics result from the competition between
viscous forces that tend to stretch it in the extension direction (𝑥 direction) and compress
it in the compression direction (𝑦 direction), and the restorative capillary forces that act
in the way to bring the droplet to its spherical shape. The capillary number measures the
ratio between these two effects. It can be defined as 𝐶𝑎 = 𝜂𝑐𝑎𝜀̇/𝜎, being the droplet less
likely to be stretched in lower values of 𝐶𝑎. Another important parameter is the viscosity
ratio between dispersed and continuous phases, 𝜆 = 𝜂𝑑/𝜂𝑐, which influences the way the
viscous forces act at the interface between the phases. The two parameters, 𝐶𝑎 and 𝜆,
define, therefore, the droplet’s configuration in the absence of external magnetic fields.
When in the presence of an external magnetic field, however, magnetic forces also play an
important role in the droplet’s configuration, with their effects depending on the applied
direction. To account for its effects, two other nondimensional groups are included. The
magnetic capillary number, defined as 𝐶𝑎𝑚𝑎𝑔 = 𝜇0𝑎||𝐻0||2/𝜎, which corresponds to the
ratio between magnetic and capillary forces, and dispersed-to-continuous phase magnetic
permeability ratio, 𝜁 = 𝜇𝑑/𝜇0, where 𝜇𝑑 = 𝜇0(1 + 𝜒) is the dispersed phase magnetic
permeability. Note that the magnetic permeability of the continuous phase is taken to be
that of the free space, 𝜇0, since it is nonmagnetizable.

For reference, the relevant nondimensional parameters are summarized as follows:
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𝑅𝑒 = 𝜌𝑎2𝜀̇

𝜂𝑐

, 𝐶𝑎 = 𝜂𝑐𝑎𝜀̇

𝜎
, 𝐶𝑎𝑚𝑎𝑔 = 𝜇0𝑎||𝐻0||2

𝜎
, 𝜆 = 𝜂𝑑

𝜂𝑐

, and 𝜁 = 𝜇𝑑

𝜇0
. (2.2)

Regarding the competition between the viscous, magnetic, and capillary forces, the
droplet can reach a steady equilibrium shape or not. Because the viscous forces promoted
by the external flow are responsible for droplet continuous stretching, there exists a critical
capillary number 𝐶𝑎𝑐 for a given set of 𝜆, 𝐶𝑎𝑚𝑎𝑔, 𝜁, and magnetic field direction, where
higher values of 𝐶𝑎 lead to an unsteady burst situation and lower values lead to a steady
configuration of the droplet. When the droplet configuration, i.e., the corresponding dilute
emulsion microstructure, achieves a steady state (𝐶𝑎 < 𝐶𝑎𝑐), we can assess the steady
extensional rheology of the corresponding ferrofluid emulsion. From the magnetic point
of view, the integration of the magnetization field over the domain tells us about how
hydrodynamics aspects affect the system bulk magnetization, i.e., the magnetization of
the corresponding dilute ferrofluid emulsion.

In this work, we investigate the steady droplet configuration and magnetization,
and the corresponding ferrofluid emulsion rheology for different 𝐶𝑎, 𝐶𝑎𝑚𝑎𝑔, and magnetic
field directions. In these cases, we chose 𝜆 = 1 because we are interested in assessing
only the effects of the magnetic field. This value is consistent with previous studies of
ferrofluid droplets in shear flows (𝜆 = 0.5− 5) (HASSAN; ZHANG; WANG, 2018; CUNHA
et al., 2020; ISHIDA; MATSUNAGA, 2020; CAPOBIANCHI et al., 2021; ABICALIL
et al., 2021). We also investigate the limits for stable ferrofluid emulsions (𝐶𝑎𝑐) for
different 𝐶𝑎𝑚𝑎𝑔 and magnetic field directions. In these cases, however, we explore two
decades of 𝜆. In all cases, the susceptibility is set to 𝜒 = 1. This value is consistent
with previous experiments of ferrofluid droplets in quiescent liquids (𝜒 = 0.9 − 2.2)
(FLAMENT et al., 1996; AFKHAMI et al., 2010) and simulations of ferrofluid droplets
in shear flows (𝜒 = 0.5− 1.0) (HASSAN; ZHANG; WANG, 2018; CUNHA et al., 2020;
ISHIDA; MATSUNAGA, 2020; CAPOBIANCHI et al., 2021; ABICALIL et al., 2021).
The following sections of this chapter describe the mathematical modeling of the problem
in its dimensional and nondimensional forms, as well as the procedures used to evaluate
the variables of interest, such as the droplet deformation, the droplet magnetization, the
particle stress, and 𝐶𝑎𝑐.

2.2 Governing Equations

The motion of a ferrofluid droplet immersed in a nonmagnetizable liquid subjected
to both an external flow field and a uniform magnetic field is governed by the incompressible
Navier-Stokes equations with the addition of the magnetic force term.
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2.2.1 Equations of the fluid motion

The Navier-Stokes equations for a two-phase incompressible and buoyancy-free flow
in an Eulerian frame of reference are given by the mass conservation law

∇ · 𝑢 = 0, (2.3)

and the momentum balance

𝜌

(︃
𝜕𝑢

𝜕𝑡
+ 𝑢 · ∇𝑢

)︃
= −∇𝑝+ ∇ · [𝜂(𝑥)(∇𝑢 +∇𝑢𝑇 )] + 𝐹𝑐 + 𝐹𝑚, (2.4)

where 𝑢 is the velocity field, 𝑝 is the pressure, 𝜂(𝑥) is the fluid viscosity, which depends
on the phase, 𝐹𝑐 and 𝐹𝑚 are the capillary and magnetic body forces per unit volume,
respectively. The Young-Laplace condition states that the normal stress jump across a
curved interface is equal to (−𝜎𝜅𝑛̂), where 𝜅 is the local mean curvature of the interface,
and 𝑛̂ is the normal unit vector pointing to the convex side (in our case, outward the droplet)
(LANDAU; LIFSHITZ, 2013). Following the Young-Laplace condition, the capillary force
per unit volume is given by 𝐹𝑐 = −𝜎𝜅𝛿(𝑥− 𝑥Γ)𝑛̂, where 𝑥Γ is the position vector of the
interface’s point which is closest to 𝑥 and 𝛿(𝑥) is the spatial Dirac function, responsible
for concentrating the force density in the interface. The magnetic force term corresponds
to the Kelvin force 𝐹𝑚 = 𝜇0𝑀 · ∇𝐻 , where 𝑀 is the magnetization field, given that the
ferrofluid is electrically non-conducting and superparamagnetic (ROSENSWEIG, 2013).

2.2.2 Magnetic problem

From the assumption of superparamagnetism, the magnetization field inside the
ferrofluid droplet is locally parallel to the magnetic field. Further, we assume that the
magnetic field will never be high enough to surpass the ferrofluid magnetization’s linear
regime so that 𝑀 = 𝜒𝐻, where 𝜒 is constant [for an explanation of Langevin and
nonequilibrium regimes of magnetization, see (SHLIOMIS, 2001)]. Out of the droplet, the
magnetization is null due to the fact the continuous phase is nonmagnetizable, 𝜒 = 0.
Therefore, we can define a piecewise constant scalar function for permeability ratio in
function of space, 𝜁(𝑥). Inside the droplet, we have that 𝜁(𝑥) = 1 + 𝜒. Outside, we have
that 𝜁(𝑥) = 1. Using this definition, the magnetic force 𝐹𝑚 can be written as a function
of 𝐻 as

𝐹𝑚 = 𝜇0(𝜁(𝑥)− 1)𝐻 · ∇𝐻 . (2.5)

At the magnetostatic limit, the Maxwell’s equations are ∇·𝐵 = 0 and ∇×𝐻 = 0,
where 𝐵 = 𝜇0(𝑀 + 𝐻) = 𝜇0𝜁(𝑥)𝐻 is the magnetic induction field. From the fact 𝐻 is
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irrotational, it can be described by the gradient of a potential. The magnetic potential
field 𝜓 is then given by

∇𝜓 = −𝐻 . (2.6)

From the solenoidal nature of the magnetic induction field, its definition, and the
relation given in Eq. (2.6), it follows that

∇ · (𝜁(𝑥)∇𝜓) = 0, (2.7)

which is the Poisson equation for the magnetic potential. If 𝜁(𝑥) is uniform throughout
the domain, the uniform magnetic field imposed at the boundaries would lead to a uniform
magnetic field all over the system. The presence of a ferrofluid droplet, however, perturbs
the magnetic field due to the appearance of gradients in 𝜁(𝑥). As a consequence, from
Eq. (2.7), there would be gradients in 𝐻 , which in turn would induce magnetic forces at
the interface.

2.2.3 Boundary conditions

In all cases covered here, a uniform applied magnetic field 𝐻0 is considered. From
the numerical point of view, fixed von Neumann boundary conditions for 𝜓 are set to all
boundaries, provided that the droplet will not attain them. From Eq. (2.6) we have that

𝜕𝜓

𝜕𝑛
= −𝐻0 · 𝑛 (2.8)

at the boundaries, where 𝑛 is the normal vector pointing outward the domain boundary,
and 𝜕/𝜕𝑛 is the normal derivative operator.

Differently from the magnetic potential, periodicity is set for the hydrodynamic
variables in the direction normal to the extension plane (𝑧 direction). In the other domain
boundaries, planar extensional flow, Eq. (2.1), is imposed to the velocity field

𝑢 = 𝑢∞. (2.9)

Finally, the pressure field has homogeneous von Neumann conditions for the non-
periodic boundaries, since the imposed flow is linear and the motion is inertia-free. This
can be readily verified by applying Eq. (2.9) to the inertia-free Navier-Stokes equations.
At these boundaries, therefore, we have that

𝜕𝑝

𝜕𝑛
= 0. (2.10)
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2.2.4 Nondimensional equations

The governing equations can be converted into a nondimensional form in order to
generalize the results. Appropriate scaling of the variables is of fundamental importance.
As already depicted in Section 2.1, the characteristics length scale, time scale, and velocity
scale are, respectively, 𝑎, 𝜀̇−1, and 𝑎𝛾̇, which give rise to the Reynolds number 𝑅𝑒 = 𝜌𝑎2𝜀̇/𝜂𝑐.

The droplet dynamics occurs on a scale where inertia effects are negligible, as
assumed earlier. In order to check this suppose a typical ferrofluid of viscosity 𝜂 = 0.003
kg/m.s and density 𝜌 = 1020 kg/m3 (KÚDELČÍK; HARDOŇ; VARAČKA, 2017). A
droplet of radius 𝑎 = 5 𝜇m immersed in a liquid of the same density and viscosity (𝜆 = 1)
and subjected to a high extension rate of 𝜀̇ = 500 s−1 would lead to only 𝑅𝑒 ≈ 0.004,
characterizing a low-Reynolds number flow. It confirms the assumption of low-𝑅𝑒 used in
this work.

The pressure is scaled with 𝜌𝑎2𝜀̇2. The representative scale for the magnetic field is
the magnitude of the applied magnetic field, 𝐻0 = ‖𝐻0‖. Then for the magnetic potential,
we have the scaling 𝑎𝐻0. Finally, since we can have different viscosities between the phases,
it is necessary to define a characteristic viscosity. We choose the continuous-phase viscosity,
𝜂𝑐, in order to match with the nondimensional parameters definition given earlier.

Using the characteristic scales described above we get the following nondimensional
variables:

𝑡 = 𝑡𝜖̇, 𝑥̃ = 𝑥

𝑎
, 𝑢̃ = 𝑢

𝑎𝜀̇
, 𝑝 = 𝑝

𝜌𝑎2𝜀̇2 , 𝐻̃ = 𝐻

𝐻0
, 𝜓 = 𝜓

𝑎𝐻0
, and 𝜂(𝑥) = 𝜂(𝑥)

𝜂𝑐

(2.11)

Substituting these variables in Eqs. (2.3), (2.4) and (2.7) we get the nondimensional
form of the governing equations as follows:

∇̃ · 𝑢̃ = 0 (2.12)

for the continuity equation,

𝜕𝑢̃

𝜕𝑡
+ 𝑢̃ · ∇̃𝑢̃ = −∇̃𝑝+ 1

𝑅𝑒
∇̃ · [𝜂(𝑥̃)(∇̃𝑢̃ + ∇̃𝑢̃

𝑇 )]

− 1
𝑅𝑒𝐶𝑎

𝜅̃𝛿(𝑥̃Γ − 𝑥̃)𝑛 + 𝐶𝑎𝑚𝑎𝑔

𝑅𝑒𝐶𝑎
(𝜁(𝑥̃)− 1)𝐻̃ · ∇̃𝐻̃

(2.13)

for the momentum balance,

∇̃ · (𝜁(𝑥̃)∇̃𝜓) = 0 (2.14)

for the magnetic potential Poisson’s equation, and
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𝐻̃ = −∇̃𝜓 (2.15)

for the magnetic field.

These coupled equations are solved in space and time by using the numerical
methods described in Chapter 3. It is worth noting that the interface problem is treated
using the Level-Set method, presented in Sec. 3.3. In this method, the physical variables
that are functions of space are substituted to smoothed versions as functions of 𝜑, the
Level-Set scalar variable. They are 𝜂(𝑥) and 𝜁(𝑥). 𝛿(𝑥) present in the capillary term in
Eq. (2.13) is also modified. Details are given in Sec. 3.3.2.

2.3 Rheology assessment

In this work, both continuous and dispersed phase fluids are considered to be
Newtonians, which means that their stress state responds linearly with the rate of strain
which they are submitted through the Newton’s Law of viscosity, 𝜎 = −𝑝𝐼 + 2𝜂𝐷, where
𝜎 is the Cauchy’s stress tensor, 𝐼 is the identity tensor, and 𝐷 is the rate of strain tensor,
i.e., the symmetric part of ∇𝑢. Although both phases are Newtonian, an emulsion formed
by a combination of them manifests non-Newtonian behavior due to the fact that the
droplets change in shape and orientation as a function of the extension/shear rate. The
change in stress for emulsions of deformable droplets is modeled through the addition of an
extra stress, called the particle stress (KIM; KARRILA, 2013). A ferrofluid emulsion, when
submitted to an external field, besides having its droplets’ configurations changed due to
the action of the magnetic forces, has yet another source of stress due to the magnetic
forces at the interface between the phases, as we will see later in this section. The stress
tensor of a ferrofluid emulsion is then described by

𝜎 = −𝑝𝐼 + 2𝜂𝐷 + 𝜎𝑑, (2.16)

where 𝜎𝑑 is the extra stress due to the droplet commonly known as the particle stress. It
will from now on, however, be referred to as droplet stress, as it is more appropriate for
our case.

2.3.1 Droplet contribution to the stress

In a dilute ferrofluid emulsion of volume fraction 𝛽, treated as a homogeneous
continuous fluid in the macroscopic scale, and in which it can be considered that there are
neither hydrodynamic nor magnetic interactions between the droplets, the droplet stress
can be obtained by the extrapolation of the extra stress caused by the presence of one
single droplet in a volume 𝑉 of corresponding volume fraction. Landau and Lifshitz (2013)
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and Batchelor (1970) developed the expression for proper computation of the droplet
stress in terms of the difference in viscosity between the phases and the normal stress
jump at the interface. For regular droplets, the stress jump is given by the capillary stress.
In this section, we describe how the magnetic stress can be included in the expression, in
order to properly compute the droplet stress for superparamagnetic ferrofluid droplets.
This approach was first used in the work of Cunha et al. (2020), and its accuracy was
confirmed in the three-dimensional study of ferrofluid emulsions in shear flows of Abicalil
et al. (2021).

First, consider the signed distance function from the interface 𝜑, where negative
values are obtained inside the droplet and positive outside. We can substitute 𝛿(𝑥) and
𝜁(𝑥) to 𝛿(𝜑)|∇𝜑| and 𝜁(𝜑), respectively, where 𝛿(𝜑) is a one-dimensional Dirac function,
and 𝜁(𝜑) = 𝜁 + (1 − 𝜁)ℋ(𝜑). ℋ(𝜑) is the classical one-dimensional Heaviside function
(0 when 𝜑 < 0, and 1, when 𝜑 > 0). Using them, and the fact that |∇𝜑| = 1, we can
write the capillary and magnetic forces at the droplet surface as 𝐹𝑐 = −𝜎𝜅𝛿(𝜑)𝑛̂ and
𝐹𝑚 = 𝜇0(𝜁(𝜑)− 1)𝐻 · ∇𝐻 , respectively. The latter can be written as follows:

𝐹𝑚 = ∇
[︃

1
2𝜇0(𝜁(𝜑)− 1)𝐻2

]︃
− 1

2𝜇0𝐻
2∇𝜁(𝜑) (2.17)

where 𝐻 is the magnetic field intensity, i.e., 𝐻 = ‖𝐻‖.

While the first term of Eq. (2.17) can be readily incorporated into a modified
pressure field, thus playing no role in the flow other than ensuring incompressibility,
the second is of special importance for the droplet dynamics and emulsion rheology. As
∇𝜁(𝜑) = −𝜒𝛿(𝜑)𝑛̂, where we have used that ∇𝜁(𝜑) = −𝜒∇ℋ(𝜑),∇ℋ(𝜑) = 𝛿(𝜑)∇𝜑,
and 𝑛̂ = ∇𝜑 (the relations involving the signed distance function 𝜑 are demonstrated in
Sec. 3.3), the second term of Eq. (2.17) corresponds to a normal stress jump of intensity
1
2𝜇0𝜒𝐻

2 across the fluid interface.

The momentum balance in a control volume of width 2𝑒 around a portion Γ of the
droplet surface leads to

(𝑛̂ · 𝜎𝑜)Γ𝑜 − (𝑛̂ · 𝜎𝑖)Γ𝑖 +
∫︁ 𝑒

−𝑒

[︃
1
2𝜇0𝜒𝐻

2 − 𝜎𝜅
]︃

Γ𝛿(𝜑)|∇𝜑|𝑛̂d𝜑 = 0 (2.18)

where 𝜎 is the stress tensor of each fluid phase and the superscripts 𝑖 and 𝑜 are
used to distinguish quantities of the inner and outer phases, respectively. Figure 2.2 shows
an illustrative scheme of the force balance in the control volume. Using the convolution
property of 𝛿(𝜑) and taking the limit 𝑒→ 0, Eq. (2.18) becomes

𝑛̂ · 𝜎𝑜 − 𝑛̂ · 𝜎𝑖 + 1
2𝜇0𝜒𝐻

2𝑛̂− 𝜎𝜅𝑛̂ = 0 (2.19)

Hence, the stress jump across the interface, Δ𝑓 = 𝑛̂ · [𝜎𝑜 − 𝜎𝑖], is given by

16



−e
Γ

n̂Fm

+e

Γo

ΓiFc

Figure 2.2 – Force balance in a control volume of width 2𝑒 around a portion Γ of the
droplet surface. The superscripts 𝑖 and 𝑜 are used to distinguish quantities of
the inner and outer phases, respectively. Reprinted from (GUILHERME et
al., 2023, p. 4). © 2023 by American Physical Society.

Δ𝑓 = 𝜎𝜅𝑛̂− 1
2𝜇0𝜒𝐻

2𝑛̂ (2.20)

Following the formulation of the extra stress given by Batchelor (1970) for a general
particulate system in terms of the stress jump and difference in phases viscosities, the
exact equation for the droplet stress for a dilute ferrofluid emulsion reads

𝜎𝑑 = 1
𝑉

∫︁
Γ

⎡⎣(︃𝜎𝜅− 1
2𝜇0𝜒𝐻

2
)︃

𝑥𝑛̂ + 𝜂𝑐(𝜆− 1)(𝑢𝑛̂− 𝑛̂𝑢)
⎤⎦ d𝑆. (2.21)

In nondimensional form, we have that

𝜎̃𝑑 = 1
𝑉

∫︁
Γ

1
𝐶𝑎

[︃
𝜅̃𝑥̃𝑛̂− 𝐶𝑎𝑚𝑎𝑔

2 (𝜁 − 1)𝐻̃2𝑥̃𝑛 + 𝐶𝑎(𝜆− 1)(𝑢̃𝑛̂ + 𝑛̂𝑢̃)
]︃

d𝑆, (2.22)

where 𝑉 = 𝑉/𝑎3, and with 𝜎̃𝑑 = 𝜎𝑑/𝜂𝑐𝜀̇.

Note that this derivation is exact and does not depend on the interfacial thickness
of the Level-Set method used to smooth discontinuous properties across the interface,
presented in Sec. 3.3.

2.3.2 Extensional rheology

Two material properties are commonly used to describe the resistivity, i.e., the
dissipation of energy, of a fluid undergoing steady planar extensional flow (PETRIE, 2006).
They are related to the diagonal components of Cauchy’s stress tensor when the material
is subjected to the planar extensional flow described by Eq. (2.1). They are the planar
extensional viscosity, defined as 𝜂𝑒𝑥𝑡 = (𝜎𝑥𝑥 − 𝜎𝑦𝑦)/𝜀̇, and the second extensional viscosity,
defined as 𝜂𝑐𝑟𝑜𝑠𝑠 = (𝜎𝑧𝑧−𝜎𝑦𝑦)/𝜀̇, in which the subscript denotes the tensor component. 𝜂𝑒𝑥𝑡

refers to the material resistance to be continuously stretched in the 𝑥 direction (extension
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direction) and compressed in 𝑦 direction (compression direction), while 𝜂𝑐𝑟𝑜𝑠𝑠 refers to the
material resistance to prevent continuous deformation in the 𝑧 direction (neutral direction).
Note that, for a Newtonian fluid, these viscosities do not depend on the extension rate,
and are related to the shear viscosity, 𝜂𝑁 , by 𝜂𝑒𝑥𝑡 = 4𝜂𝑁 , and 𝜂𝑐𝑟𝑜𝑠𝑠 = 2𝜂𝑁 . For a ferrofluid
emulsion, the droplet stress, described by Eq. (2.22), introduces dependence of these
viscosities on the extension rate, surface tension, and applied magnetic field intensity and
direction. As a result, a deviation from the Newtonian behavior is expected. In order to
measure these effects, we analyze here the excess extensional viscosities normalized by the
shear viscosity of the continuous phase, given by

𝜂𝑝 = 𝜎̃𝑑
𝑥𝑥 − 𝜎̃𝑑

𝑦𝑦, (2.23)

and

𝜂2 = 𝜎̃𝑑
𝑧𝑧 − 𝜎̃𝑑

𝑦𝑦, (2.24)

where 𝜂𝑝 is the nondimensional droplet contribution to the planar extensional viscosity,
and 𝜂2 is the nondimensional droplet contribution to the second extensional viscosity. Note
that 𝜂𝑝 = 𝜂𝑒𝑥𝑡/𝜂𝑐 − 4, and 𝜂2 = 𝜂𝑐𝑟𝑜𝑠𝑠/𝜂𝑐 − 2.

Henceforward in this work, the tilde superscripts will be suppressed from the
nondimensional variables in order to alleviate the notation unless otherwise stated.

2.4 Emulsion magnetization assessment

The bulk magnetization of the system can be obtained by applying a volume-
averaging technique to the magnetization field over the system domain. Note that the bulk
magnetization of the system is equivalent to the magnetization of a ferrofluid emulsion of
the corresponding volume fraction. As 𝑀 = (𝜁(𝑥)− 1)𝐻 , the bulk magnetization, ⟨𝑀⟩,
is given by

⟨𝑀⟩ = 1
𝑉

∫︁
𝑉

(︀
𝜁(𝑥)− 1

)︀
𝐻 d𝑉. (2.25)

2.5 Droplet’s configuration assessment

In steady situations (𝐶𝑎 < 𝐶𝑎𝑐) the droplet always assumes an ellipsoidal shape.
For the cases in which the semi-axes of the droplet remain aligned with the coordinate
axes, we define one deformation parameter for each orthogonal plane based on the Taylor
approach (TAYLOR, 1934). Figure 2.3 illustrates how they are measured. They are 𝐷𝑥𝑦
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for the deformation in the 𝑥𝑦 plane, 𝐷𝑥𝑧 for the deformation in the 𝑥𝑧 plane, and 𝐷𝑧𝑦 for
the deformation in the 𝑧𝑦 plane. They are given by

𝐷𝑥𝑦 = 𝐿𝑥 − 𝐿𝑦

𝐿𝑥 + 𝐿𝑦

, 𝐷𝑥𝑧 = 𝐿𝑥 − 𝐿𝑧

𝐿𝑥 + 𝐿𝑧

, and 𝐷𝑧𝑦 = 𝐿𝑧 − 𝐿𝑦

𝐿𝑧 + 𝐿𝑧

, (2.26)

where 𝐿𝑥 is the semi-axis length in the 𝑥 direction, 𝐿𝑦 is the semi-axis length in the 𝑦
direction, and 𝐿𝑧 is the semi-axis length in the 𝑧 direction.

Figure 2.3 – Illustrative scheme of a deformed droplet and the orthogonal planes passing
through the droplet centroid (left). Respective intersections between the
planes and the droplet surface (right). 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 are the droplet’s semi-
axes lengths in the 𝑥, 𝑦, and 𝑧 direction, respectively.

In the cases in which there are two semi-axes laying in the extension plane (𝑥𝑦
plane) without being in the 𝑥 and 𝑦 direction, and the other semi-axis in the 𝑧 direction,
we use the standard Taylor’s deformation, 𝐷, given by

𝐷 = 𝐿−𝐵
𝐿+𝐵

, (2.27)

where 𝐿 and 𝐵 are the lengths of the semi-major and semi-minor axes laying in the
extension plane, respectively. In that case, the semi-major axis makes an angle 𝜃 with the
extension direction (𝑥 direction).

Two distinct methods are used to obtain the ellipsoid semi-axes. In the cases in
which the droplet remains symmetric with respect to the reference axes, the semi-axes, 𝐿𝑥,
𝐿𝑦, and 𝐿𝑧 are evaluated using a search of the location of the droplet tips (the location of
the surface central portion in each direction). 𝐿 and 𝐵 are evaluated using the eigenvalues
and eigenvectors of the inertia tensor of the droplet (ellipsoid).

2.6 Critical capillary number assessment

The approach used here to estimate 𝐶𝑎𝑐 is a searching procedure, in the way
that for each case a series of simulations departing from rest is performed by taking step
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changes in 𝐶𝑎 until the breakup is observed. More precisely, we proceed as summarized in
Algorithm 1, where 𝐶𝑎𝑠 refers to the last steady result, the subcritical capillary number,
𝐶𝑎𝑝 is the 𝐶𝑎 of the first observed breakup, and Δ𝐶𝑎 is the step change in 𝐶𝑎.

Algorithm 1 𝐶𝑎𝑐 assessment
1: Start with 𝐶𝑎 = 0.01 (this is sufficient to ensure a steady configuration in the range

of parameters studied here)
2: while breakup is not observed do
3: 𝐶𝑎𝑠 ← 𝐶𝑎 (attribute 𝐶𝑎 to 𝐶𝑎𝑠)
4: 𝐶𝑎← 𝐶𝑎+ Δ𝐶𝑎 (do an increment in 𝐶𝑎)
5: Perform simulation with 𝐶𝑎
6: end while
7: 𝐶𝑎𝑝 ← 𝐶𝑎 (attribute the 𝐶𝑎 of observed breakup to 𝐶𝑎𝑝)
8: 𝐶𝑎𝑐 = (𝐶𝑎𝑠 + 𝐶𝑎𝑝)/2±Δ𝐶𝑎/2

Note that with this procedure, we have a band of width Δ𝐶𝑎 in which the
transition from a stable to an unstable droplet is expected to occur. However, we do say
that (𝐶𝑎𝑠 + 𝐶𝑎𝑝)/2 is the critical capillary number, keeping in mind that it is in fact the
mean value of a band of width Δ𝐶𝑎.

In our study, we set Δ𝐶𝑎 = 0.01. So if we say, for instance, that 𝐶𝑎𝑐 = 0.105, the
last stable condition was 𝐶𝑎𝑠 = 0.1, and the first unstable condition was 𝐶𝑎𝑝 = 0.11. We
believe that the chosen Δ𝐶𝑎 is small enough to ensure accuracy, and great enough to
incorporate any numerical error and to keep the computational cost more affordable. The
criterion for determining if the droplet achieves steady is explained in Sec. 3.5.
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3 Numerical formulation

3.1 Spatial discretization

In this work, the governing equations are discretized using finite-difference schemes.
Due to the simplicity of the geometry (a lattice), a staggered grid, also called Marker-and-
Cell (MAC) grid, is used for domain discretization. In this arrangement, the scalar variables
are evaluated at the center of the grid cells, while the components of the vector variables are
evaluated at the respective cell faces. The usual index connectivity for a uniform rectilinear
grid is used, where 𝑖 = 0, 1, 2, ..., 𝑁𝑥; 𝑗 = 0, 1, 2, ..., 𝑁𝑦; and 𝑘 = 0, 1, 2, ..., 𝑁𝑧 corresponds
to the 𝐶𝑖,𝑗,𝑘 cell grid of the lattice discretized in (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) elements for each, respective,
𝑥, 𝑦 and 𝑧 direction. The grid spacing in each direction is then given by Δ𝑥 = 𝑆𝑥/𝑁𝑥,
Δ𝑦 = 𝑆𝑦/𝑁𝑦, and Δ𝑧 = 𝑆𝑧/𝑁𝑧. In our simulations, we choose 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 so the cells
are cubic with a grid spacing ℎ, where ℎ = Δ𝑥 = Δ𝑦 = Δ𝑧. Fig. (3.1) illustrates, for
instance, the 𝐶𝑖,𝑗 cell grid and the positioning of variables for a two-dimensional domain,
where Φ𝑖,𝑗 is a scalar field, and 𝑢𝑖,𝑗 and 𝑣𝑖,𝑗 are the 𝑥 and 𝑦 components of a vector field,
respectively. In practice, in our three-dimensional domain, we have four grids. One for the
scalar fields (the main grid), and one for each vector fields components, each one staggered
in each respective direction by ℎ/2 in relation to the main grid.

h

�i,j ui,j

vi,j

Figure 3.1 – 𝐶𝑖,𝑗 and its neighboring cells for a two-dimensional staggered grid. Φ, a generic
scalar field, is evaluated at the cell center. The vector components of a generic
vector field, 𝑢 and 𝑣, are evaluated at the cell face which points normal to
their respective positive directions. ℎ is the grid spacing in both 𝑥, and 𝑦
direction.

The great advantage of this arrangement is that central difference schemes can
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be obtained with a reduced stencil when compared to a regular co-located arrangement
(cell-centered) when we evaluate the spatial derivative of a scalar variable that belongs
to a vectorial equation, and vice versa. Whilst a central difference in a co-located grid
would require a (2Δ𝑥) stencil, it requires only a (Δ𝑥) stencil for a MAC grid. Consider,
for example, the discrete spatial derivative with central differences of 𝑢 when discretizing
the equation for Φ. In a regular grid, the discrete operator would be

(︃
𝜕𝑢

𝜕𝑥

)︃
𝑖,𝑗

= 𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2Δ𝑥 +𝑂(4Δ𝑥2), (3.1)

while in a MAC grid, it reads

(︃
𝜕𝑢

𝜕𝑥

)︃
𝑖,𝑗

= 𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

Δ𝑥 +𝑂(Δ𝑥2). (3.2)

It is worth noting that both approximations are second-order. The second, however,
is more accurate due to the reduced stencil (half of that of the first case).

The derivative 𝜕2𝑢/𝜕𝑥2 in the 𝑢 equation as well as 𝜕2Φ/𝜕𝑥2 in the Φ equation
can be approximated by

(︃
𝜕2Ψ
𝜕𝑥2

)︃
𝑖,𝑗

=
(︀
𝜕Ψ/𝜕𝑥

)︀
𝑖+1/2,𝑗 −

(︀
𝜕Ψ/𝜕𝑥

)︀
𝑖−1/2,𝑗

Δ𝑥 = Ψ𝑖+1,𝑗 − 2Ψ𝑖,𝑗 + Ψ𝑖−1,𝑗

(Δ𝑥)2 (3.3)

where Ψ is either a scalar or the component of a vector.

These central difference schemes, Eqs. (3.2) and (3.3), were used for the ordinary
spatial derivatives in the Navier-Stokes equations (solved using the projection method
explained in Sec. 3.2), such as ∇2𝑢⋆ and ∇2𝑢𝑛 in Eq. (3.7), ∇𝑞𝑛+1 in Eq. (3.8), and ∇2𝑞𝑛+1

and ∇ · 𝑢⋆ in Eq. (3.9). When the use of Eq. (3.2) is not possible, as in ∇𝐻 present in
the magnetic force term, the approximation given by Eq. (3.1) is used. The derivatives
∇ · (𝜁(𝑥)∇𝜓) and ∇ · (𝜂(𝑥)∇𝑢) are evaluated using a similar approximation as Eq. (3.3).
For example, in ∇ · (𝜁(𝑥)∇𝜓) we have that

⎡⎣ 𝜕
𝜕𝑥

(︃
𝜁(𝑥)𝜕𝜓

𝜕𝑥

)︃⎤⎦
𝑖,𝑗

= 1
Δ𝑥

⎡⎣𝜁(𝑥)𝑖+1/2,𝑗

(︃
𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗

Δ𝑥

)︃
− 𝜁(𝑥)𝑖+1/2,𝑗

(︃
𝜓𝑖,𝑗 − 𝜓𝑖−1,𝑗

Δ𝑥

)︃⎤⎦
(3.4)

It is important to point out that some cases require the interpolation of a variable
to match with the grid it is being evaluated. The 𝐻𝑦, for example, needs to be evaluated
in the 𝑥 component grid when solving the 𝑢𝑥 equation. To do this, we use a four-point
linear interpolation as 𝐻𝑦;𝑖,𝑗 ≈ 0.25(𝐻𝑦;𝑖,𝑗 + 𝐻𝑦;𝑖+1,𝑗 + 𝐻𝑦;𝑖,𝑗+1 + 𝐻𝑦;𝑖+1,𝑗). Interpolation
is also necessary for evaluating scalar variables at midpoints between cell grids such as
𝜁(𝑥)𝑖+1/2,𝑗 in Eq. (3.4). In this case, an harmonic mean is used, giving
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2
𝜁(𝑥)𝑖+1/2,𝑗

= 1
𝜁(𝑥)𝑖,𝑗

+ 1
𝜁(𝑥)𝑖−1,𝑗

(3.5)

The harmonic mean ensures appropriate computation of fluxes near the interface,
where the variable changes considerably (PATANKAR, 2018). It is also used to interpolate
𝜂(𝑥).

Unlike the other derivatives, the advection term (𝑢 · ∇𝑢) is discretized using
a second-order essentially non-oscillatory (ENO) scheme with upwind, as presented in
(OSHER; FEDKIW, 2006). This scheme consists of high-degree polynomial interpolation
involving the upwind nodes, which guarantees proper computation near discontinuities.

The von Neumann boundary conditions are applied with the use of ghost grid
points outside the solution domain. Due to the staggered grid, some vector components
coincide with the domain boundary in a specific direction, while others do not. For Dirichlet
boundary conditions of components that do not match the domain boundary, ghost grid
points are also used.

3.2 Projection method

The Navier-Stokes equations can be numerically integrated in time by using second-
order explicit Adams-Bashforth schemes for the convective, pressure, and source terms
while using second-order implicit Crank-Nicolson scheme for the viscous term. Considering
first the case of uniform viscosity, the application of this approximation in Eq. (2.13)
results in

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡 = −∇𝑝𝑛+1/2 − (𝑢 · ∇𝑢)𝑛+1/2 + 1
2𝑅𝑒(∇2𝑢𝑛+1 +∇2𝑢𝑛) + 𝐹 𝑛+1/2, (3.6)

where 𝐹 stands for the nondimensional magnetic and capillary force terms and Δ𝑡 is the
time-advancing step and the superscript denotes the time level. The pressure field, however,
is unknown. The continuity equation, i.e., the free divergence constraint, Eq. (2.12), can
be used to give an additional equation for the pressure field in order to solve the problem.
In this work, we perform the pressure-velocity coupling of the unsteady incompressible
Navier-Stokes equations by using the projection method of Kim and Moin (1985).

This method consists of splitting the time-advancement scheme into two steps as
follows:

𝑢⋆ − 𝑢𝑛

Δ𝑡 = −(𝑢 · ∇𝑢)𝑛+1/2 + 1
2𝑅𝑒(∇2𝑢⋆ +∇2𝑢𝑛) + 𝐹 𝑛+1/2, (3.7)

and
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𝑢𝑛+1 − 𝑢⋆

Δ𝑡 = −∇𝑞𝑛+1, (3.8)

where 𝑢⋆ is a provisional velocity field that corresponds to the advanced velocity field
that would be obtained with Eq. (3.6) in the absence of the pressure term, and 𝑞𝑛+1 is
an auxiliary pressure field. 𝐹 𝑛+1/2 is obtained by the extrapolation from previous values
as 𝐹 𝑛+1/2 = 1.5𝐹 𝑛 − 0.5𝐹 𝑛−1, and so is the convective term (𝑢 · ∇𝑢)𝑛+1/2. Taking the
divergence of Eq. (3.8) and applying the divergence constraint to 𝑢𝑛+1 we get the following
Poisson’s equation for 𝑞𝑛+1:

∇2𝑞𝑛+1 = 1
Δ𝑡∇ · 𝑢⋆ (3.9)

The advancing algorithm is then summarized as follows: (1) find the provisional
velocity 𝑢⋆ using Eq. (3.7), (2) solve the Poisson’s equation for the auxiliary pressure field
𝑞𝑛+1 using Eq. (3.9), and (3) compute the advanced velocity 𝑢𝑛+1 using Eq. (3.8). Note
that the actual pressure field 𝑝 is different from 𝑞. It can be determined, if required, by

𝑝𝑛+1/2 = 𝑞𝑛+1 + Δ𝑡
2𝑅𝑒∇

2𝑞𝑛+1. (3.10)

This relation is obtained by summing Eqs (3.7) and (3.8), and comparing the result
with Eq. (3.6).

In order to solve these four partial differential equations (three Helmholtz equations
for the provisional velocity components, and a Poisson’s equation for the auxiliary pressure),
appropriate boundary conditions must be used. The boundary condition for 𝑢⋆ can be
obtained by using Eq. (3.8), the boundary condition for 𝑢 [Eq. (2.9)], and the extrapolation
𝑞𝑛+1 = 2𝑞𝑛 − 𝑞𝑛−1. Since the boundary condition for auxiliary pressure is arbitrary, the
homogeneous von Neumann condition is set (𝜕𝑞𝑛+1/𝜕𝑛 = 0) as it facilitates the computation
of the boundary conditions of 𝑢⋆.

In the case of variable viscosity, i.e., 𝜆 ̸= 1, the semi-implicit treatment used above
applied to viscous term 1

𝑅𝑒
∇·[𝜂(𝑥)(∇𝑢+∇𝑢𝑇 )] would lead to variable coefficients when the

corresponding Helmholtz equations are discretized, which, in turn, would require additional
computational effort to recalculate the coefficients in each time step. To overcome this
problem we use the semi-implicit treatment of the viscous term proposed in the work of
Badalassi, Ceniceros and Banerjee (2003). The treatment consists in extrapolating the
true viscous term, as did with the convective and body force terms, while adding to the
first step of the projection method the term 1

2𝑅𝑒
(∇2𝑢⋆ +∇2𝑢̂𝑛+1), with 𝑢̂𝑛+1 extrapolated

from previous values as 𝑢̂𝑛+1 = 2𝑢𝑛 − 𝑢𝑛−1. In this case (𝜆 ̸= 1), the first step of the
method, Eq. (3.7), is replaced for
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𝑢⋆ − 𝑢𝑛

Δ𝑡 = −(𝑢·∇𝑢)𝑛+1/2+ 1
𝑅𝑒
∇·[𝜂(𝑥)(∇𝑢+∇𝑢𝑇 )]𝑛+1/2+ 1

2𝑅𝑒(∇2𝑢⋆+∇2𝑢̂𝑛+1)+𝐹 𝑛+1/2,

(3.11)

while the subsequent steps remain the same.

3.3 Level-Set method

Numerical computation of multiphase flows requires an accurate prediction of the
location of the interface, as well as appropriate boundary conditions therein. Several
methods have been developed since the middle of the last century. They can be categorized
with respect to the way the interfaces are represented and advected. The applicability,
accuracy, conservation properties, and easiness in computing geometrical quantities such
as curvature are key features in choosing the appropriate method for a given problem.
There are two main categories of numerical methods used to treat interfaces: tracking
methods and capturing methods.

In the tracking methods, either the phase’s volume regions (volume-tracking) or
the sharp interface between them (front-tracking) are represented by placing markers in
their location and advecting them in a Lagrangean manner. In the capturing methods,
the interface location is defined implicitly in an Eulerian grid by the contour of a scalar
function and it is advected naturally through an advection equation. Both classes of
interface methods are used in numerical studies on droplet dynamics. Examples of works
using the boundary integral (tracking) method are Loewenberg and Hinch (1996) and
Oliveira and Cunha (2011). Examples of works using the phase-field (capturing) method
are Ishida and Matsunaga (2020) and Ishida et al. (2022). Examples of works using the
Level-Set (LS) (capturing) method are Cunha et al. (2020), Abicalil et al. (2021), and Abdo
et al. (2023). There are also hybrid approaches, such as the hybrid LS-Volume-of-Fluid
method (this latter is a tracking method). An example of this method in droplet dynamics
research is Capobianchi et al. (2021). The method used to treat the interface in this work
is a variation of the Level-Set method of Sussman, Smereka and Osher (1994).

In this method, the interface is represented by a level set of a higher-dimension
scalar function 𝜑(𝑥, 𝑡). The signed distance function with the interface implicitly described
by its zero level is a common choice due to the easiness of computing geometrical quantities
of the level set contour, i.e., of the interface. In the case of a droplet of one liquid immersed
in another liquid, let Γ be the closed surface in 𝑅3 that represents the interface between
the inner region Ω− (dispersed phase) and the outer region Ω+ (continuous phase), and
𝑑 = |𝑑| = |𝑥− 𝑥Γ| be the magnitude shortest euclidean distance between 𝑥 and Γ (see
Fig. 3.2). The Level-Set function is thus defined over the whole computational domain by
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Figure 3.2 – Illustrative scheme of the important regions in the Level-Set framework (not
to scale). In our case, the region Ω− refers to the region inside the droplet,
Ω+ to the continuous phase, and Γ to the interface between both phases. 2𝜀
refers to the interface thickness.

𝜑(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝑑, if 𝑥 ∈ Ω−,

+𝑑, if 𝑥 ∈ Ω+,

0, if 𝑥 ∈ Γ.

(3.12)

As 𝜑 clearly does not vary in the tangential direction from Γ, its gradient points
out in the normal direction to the interface. Then, the interface unit normal pointing
outward Ω−, 𝑛̂, is easily computed by

𝑛̂ = ∇𝜑
|∇𝜑|

(3.13)

From differential geometry, the signed mean curvature is naturally given by

𝜅 = ∇ · 𝑛̂ (3.14)

Note that these quantities are defined not only at 𝜑 = 0 but at level sets.

3.3.1 Level-Set function

The movement of the interface is naturally given by the advection of 𝜑 due to the
flow velocity, 𝑢, by

𝜕𝜑

𝜕𝑡
+ 𝑢 · ∇𝜑 = 0. (3.15)

Note that for a material point 𝐷𝜑/𝐷𝑡 = 0, thus the interface 𝜑 = 0 is preserved.
Although the interface is well advected, nothing guarantees that 𝜑 remains as a signed
distance function (i.e., |∇𝜑| ≠ 1) as it evolves in time, and it is indeed the general case
[see, for instance, the work of Sussman, Smereka and Osher (1994)]. For that reason, a
reinitialization procedure must be used when 𝜑 ceases to be a signed-distance function
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in order to redistance the Level-Set field, and so, guarantee the proper computation of
the geometrical quantities. We present the reinitialization procedure used in this work in
Sec. 3.3.4.

3.3.2 Interface thickness and smoothed functions

The Level-Set method treats the interface no longer as sharp. Instead, it defines an
interface thickness equal to 2𝜀 where there is a smooth transition of the physical properties
between the phases (see Fig. 3.2). This treatment is necessary in order to mitigate the
numerical instabilities that would occur due to abrupt changes in the physical properties
in the discrete domain. Furthermore, the spatial delta function would fail to impose the
correct capillary force in the interface regions where the interface location does not exactly
match the grid points. In this work, we take the typical value of 𝜀 = 1.5ℎ (OSHER;
FEDKIW, 2006). Note that this finite representation can be made naturally from the
signed distance function since this region is easily defined by |𝜑| ≤ 𝜀.

The smooth transition of properties between the phases is made by using the
smoothed version of the Heaviside function as an interpolator. The smoothed Heaviside
function, ℋ𝜀, is given by

ℋ𝜀(𝜑) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝜑 < −𝜀,

1
2

⎡⎣1 + 𝜑

𝜀
− 1
𝜋

sin
(︃
𝜋𝜑

𝜀

)︃⎤⎦ , if |𝜑| ≤ 𝜀,

1, if 𝜑 > 𝜀.

(3.16)

So a physical property Ψ(𝑥) that changes sharply from its value at the continuous
phase, Ψ𝑐, to the value at the dispersed phase, Ψ𝑑, can be substituted to a smoothed version
Ψ𝜀(𝜑) through Ψ𝜀(𝜑) = Ψ𝑐ℋ𝜀(𝜑) + [1−ℋ𝜀(𝜑)]Ψ𝑑. In this work, the physical properties
𝜁(𝑥) and 𝜂(𝑥) are replaced for their smoothed versions 𝜁𝜀(𝜑) and 𝜂𝜀(𝜑), recalling that
𝜑 = 𝜑(𝑥, 𝑡).

Following the definition of ℋ𝜀, we can define a smoothed one-dimensional Dirac
function, 𝛿𝜀(𝜑), by taking 𝛿𝜀(𝜑) = 𝑑

𝑑𝜑
ℋ𝜀(𝜑). It gives

𝛿𝜀(𝜑) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2𝜀

⎡⎣1 + cos
(︃
𝜋𝜑

𝜀

)︃⎤⎦ , if |𝜑| ≤ 𝜀,

0, otherwise.
(3.17)

The spatial (sharp) Dirac function, 𝛿(𝑑), is related to 𝛿𝜀(𝜑) by

𝛿(𝑑) = 𝛿𝜀(𝜑)|∇𝜑|. (3.18)
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In Eq. (3.18), we made use of Eq. (3.13), and the fact that 𝛿(𝑥) = ∇ℋ(𝑥) · 𝑛̂,
∇ℋ(𝑥) = ℋ′(𝜑)∇𝜑, and 𝛿(𝜑) = ℋ′(𝜑). Substituting Eq. (3.18) in the nondimensional
capillary term of Eq. (2.13), we get the capillary force term in the Level-Set framework:

𝐹𝑐 = − 1
𝑅𝑒𝐶𝑎

𝜅𝛿𝜀(𝜑)|∇𝜑|𝑛̂. (3.19)

3.3.3 Volume and surface integrals

In order to evaluate volume integrals over the region bounded by the interface,
or surface integrals over the interface in the Level-Set framework, it is necessary to use
appropriate methods. To evaluate an arbitrary function of space 𝐹 (𝑥) over the region Ω−,
i.e., in our case, over the volume of the droplet, we use

∫︁
Ω−
𝐹 (𝑥)𝑑𝑉 =

∫︁
𝑉
𝐹 (𝑥)ℋ𝜀(−𝜑)𝑑𝑉, (3.20)

where 𝑉 is the entire domain. When 𝐹 (𝑥) = 𝑥, for example, we have the moment of
inertia of the droplet. For surface integrals over the interface, we use

∫︁
Γ
𝐹 (𝑥)𝑑𝑆 =

∫︁
𝑉
𝐹 (𝑥)𝛿𝜀(𝜑)|∇𝜑|𝑑𝑉. (3.21)

Equation (3.21) is used when computing the particle stress, Eq. (2.22). In Eq. (3.21)
we made use of the fact

∫︀
Γ 𝐹 (𝑥)𝑑𝑆 =

∫︀
𝑉 𝐹 (𝑥)𝛿(𝑥 − 𝑥Γ)𝑑𝑉 , and the relation given by

Eq. (3.18) (OSHER; FEDKIW, 2006). We use Eq. (3.21), for instance, to solve the droplet
stress surface integral [Eq. (2.22)]. Numerically, these volume integrals are computed using
a second-order quadrature in a 27-point cubic stencil. In other words, they are computed
as the sum of the following integral over each grid cell 𝐶𝑖,𝑗,𝑘:

∫︁
𝐶𝑖,𝑗,𝑘

𝐹𝑑𝑉 = ℎ3

78

⎛⎝52𝐹𝑖,𝑗,𝑘 +
1∑︁

𝑙=−1

1∑︁
𝑚=−1

1∑︁
𝑛=−1

𝛼𝑙,𝑚,𝑛𝐹𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

⎞⎠ (3.22)

where 𝛼𝑙,𝑚,𝑛 = 0 if 𝑙 = 𝑚 = 𝑛 = 0, and 𝛼𝑙,𝑚,𝑛 = 1 otherwise.

3.3.4 Reinitialization procedure

As discussed earlier, we need to reinitialize the Level-Set function when it starts
to deviate from a signed distance function. A naive procedure would be remeasuring the
smaller distance from 𝑥(𝜑 = 0) at all points throughout the domain at each time step,
however, it would need complex algorithms to explicitly find the interface location and
large computational cost. Sussman, Smereka and Osher (1994) suggested a more efficient
approach that consists in reaching a steady state on the following initial value problem:
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𝜕𝜑

𝜕𝜏
+ 𝑠𝑔𝑛(𝜑0)(|∇𝜑| − 1) = 0 (3.23)

𝜑(𝑥, 0) = 𝜑0(𝑥) (3.24)

where 𝜏 is a fictitious time, 𝜑0 is the initial Level-Set function resulting from
advancing Eq. (3.15) in time (supposed to be close to a distance function), and 𝑠𝑔𝑛(𝜑0) =
𝜑0/

√︁
𝜑2

0 + |∇𝜑|2𝜀2 is a smoothed sign function. Note that Eq. (3.23) conserves 𝜑 at the
interface so that the zero level set is unchanged through the reinitialization procedure.
The numerical solution of Eq. (3.23), however, can lead, and generally does, to undesired
displacements of the zero level set due to numerical errors related to the discretization.
For the problem of a droplet dispersed in a continuous media, it would mean undesired
displacements of the droplet’s interface and, hence, nonphysical variations of the droplet’s
volume.

In order to overcome this problem, Sussman and Fatemi (1999) proposed the appli-
cation of a volume constraint to Eq. (3.23) for incompressible viscous-driven multiphase
flows. It consists of the addition of a source term that could balance the possible undesired
convection of the interface. This correction term is given by ensuring that the volume of
the region Ω− is unchanged. It means that

𝜕

𝜕𝜏

∫︁
Ω
ℋ𝜀(𝜑)𝑑𝑉 = 0. (3.25)

Giving to the source term the form 𝛾𝑓(𝜑), where 𝑓(𝜑) is an arbitrary function and
the parameter 𝛾 is a function of time, we fall on the following correction equation

𝜕𝜑

𝜕𝜏
+ ℒ(𝜑, 𝜑0) = 𝛾𝑓(𝜑), (3.26)

where

ℒ(𝜑, 𝜑0) = 𝑠𝑔𝑛(𝜑0)(|∇𝜑| − 1). (3.27)

Noting that the integration region in Eq. (3.25) does not depend on 𝜏 , and using
Eq. (3.26), we have that

𝜕

𝜕𝜏

∫︁
Ω
ℋ𝜀(𝜑)𝑑𝑉 =

∫︁
Ω
ℋ′

𝜀(𝜑)𝜕𝜑
𝜕𝜏
𝑑𝑉 =

∫︁
Ω
ℋ′

𝜀(𝜑)[𝛾𝑓(𝜑)− ℒ(𝜑, 𝜑0)]𝑑𝑉 = 0 (3.28)

From Eq. (3.17) we know that ℋ′
𝜀(𝜑) = 𝛿𝜀(𝜑). We can now separate 𝛾 by assuming

its constancy in space. The arbitrary function 𝑓(𝜑) can be the spatial delta function
𝑓(𝜑) = 𝛿𝜀(𝜑)|∇𝜑|, since we need to apply the correction only at the interface (OSHER;
FEDKIW, 2006). 𝛾 is then given by
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𝛾 =
∫︀

Ω 𝛿𝜀(𝜑)ℒ(𝜑, 𝜑0)𝑑𝑉∫︀
Ω 𝛿

2
𝜀(𝜑)|∇𝜑|𝑑𝑉 . (3.29)

When solving this correction scheme, the domain Ω is set as an individual grid
cell, 𝐶𝑖,𝑗,𝑘, so that any undesired interface displacement is corrected locally. Note that this
procedure does not affect the derivation above.

3.4 Solution of the numerical formulation

3.4.1 Level-Set function solving

The Level-Set equation [Eq. (3.15)] and the reinitialization equation [Eq. (3.26)]
are hyperbolic. They are solved with a conservative Gudonov’s method in which the
spatial derivatives are discretized using a fifth-order weighted essentially nonoscillatory
(WENO) scheme (JIANG; PENG, 2000). This scheme involves the use of a weighted
combination of the possible approximations of the ENO scheme and can increase the order
of approximation up to fifth-order [the reader is referred to (OSHER; FEDKIW, 2006)
for further explanation of the scheme and its numerical implementation]. In time, the
equations are integrated using a third-order strong stability preserving (SSP) Runge-Kutta
scheme (GOTTLIEB; KETCHESON; SHU, 2011).

3.4.2 Construction of the linear systems

All the elliptic equations are solved either implicitly, such as the magnetic potential
equation [Eq. (2.7)] and the auxiliary pressure equation [Eq. (3.9)], or semi-implicitly,
such as the provisional velocity components equations [Eq. (3.11)]. When discretized,
these equations assume the form of sevendiagonal linear systems. Note that, for the
provisional velocity components equations, this is possible due to the explicit treatment of
the convective terms. The linear system for the equation of a generic variable Φ reads

𝐴Φ = ℎ, (3.30)

where 𝐴 is the coefficient matrix, Φ is the Φ array, and ℎ corresponds to the
right-hand side of the equation, i.e., the source terms.

As commented in Sec. 3.1, the connectivity between the grid points is directly
associated with the cell indices (𝑖,𝑗,𝑘) due to the rectilinear structure. Then, the coefficient
matrix can be described as a set of three-dimensional arrays, one for the diagonal, and
each other related to each neighbor cell:
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𝑎𝑖,𝑗,𝑘Φ𝑖−1,𝑗,𝑘+𝑏𝑖,𝑗,𝑘Φ𝑖,𝑗−1,𝑘 + 𝑐𝑖,𝑗,𝑘Φ𝑖,𝑗,𝑘−1 + 𝑑𝑖,𝑗,𝑘Φ𝑖,𝑗,𝑘

+𝑒𝑖,𝑗,𝑘Φ𝑖+1,𝑗,𝑘 + 𝑓𝑖,𝑗,𝑘Φ𝑖,𝑗+1,𝑘 + 𝑔𝑖,𝑗,𝑘Φ𝑖,𝑗,𝑘+1 = ℎ𝑖,𝑗,𝑘.
(3.31)

To illustrate the process of obtaining the coefficient arrays, consider the auxiliary
pressure equation [Eq. (3.9)]. Applying the discrete spatial derivative operator [Eq. (3.2)]
to this Poisson’s equation and rearranging yields

(︃
1

Δ𝑥

)︃
𝑞𝑖+1,𝑗,𝑘+

(︃
1

Δ𝑦

)︃
𝑞𝑖,𝑗+1,𝑘 +

(︃
1

Δ𝑧

)︃
𝑞𝑖,𝑗,𝑘+1 −

(︃
2

Δ𝑥 + 2
Δ𝑦 + 2

Δ𝑧

)︃
𝑞𝑖,𝑗,𝑘

+
(︃

1
Δ𝑥

)︃
𝑞𝑖−1,𝑗,𝑘 +

(︃
1

Δ𝑦

)︃
𝑞𝑖,𝑗−1,𝑘 +

(︃
1

Δ𝑧

)︃
𝑞𝑖,𝑗,𝑘−1

=
[︃
𝑢⋆

𝑖,𝑗,𝑘 − 𝑢⋆
𝑖−1,𝑗,𝑘

Δ𝑥 +
𝑣⋆

𝑖,𝑗,𝑘 − 𝑣⋆
𝑖,𝑗−1,𝑘

Δ𝑦 +
𝑤⋆

𝑖,𝑗,𝑘 − 𝑤⋆
𝑖,𝑗,𝑘−1

Δ𝑧

]︃ (3.32)

The coefficients arrays are thus obtained by direct comparison between the Eq. (3.32)
and Eq. (3.31). These coefficient values are valid for cell points away from boundaries. For
the cell points near or coincident with domain boundary points, boundary conditions are
applied.

The numerical methods used for approximating the inverse of the coefficient matrix
and computing Φ = 𝐴−1ℎ are briefly described in the following section.

3.4.3 Linear system solvers

In this work, all the linear systems are solved using the well-known iterative
Conjugate Gradient method, but with different preconditioning. The linear systems for
𝑢⋆ are solved with Symmetric Successive Over-Relaxation (SSOR) as preconditioning,
while the linear systems for 𝑞 and 𝜓 are solved with multigrid preconditioning [see (SAAD,
2003) for a detailed description of the conjugate gradient method and the preconditioning
algorithms].

3.4.4 Solution algorithm

The nondimensional multiphase model described by the Eqs. (2.12)-(2.15) solves
the problem described in Sec. 2.1 through the numerical methods presented in this chapter.
The solution algorithm of the numerical model is summarized in Algorithm 2.

3.5 Numerical settings

The multiphase model described in this text was implemented in an in-house code
written in FORTRAN 95©. Two different domain sizes, grid spacings, and time steps were
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Algorithm 2 Solution algorithm
1: Read the simulation parameters from a configuration file (𝑅𝑒, 𝐶𝑎, 𝐶𝑎𝑚𝑎𝑔, 𝜆, 𝜁, magnetic

field direction, domain length, grid parameters, etc.)
2: Initialize variables, including 𝜑 in accordance with the initial spherical shape of the

droplet
3: if ferrofluid droplet then
4: Solve the magnetic potential 𝜓1 [Eq. (2.14)]
5: Compute the magnetic field from the magnetic potential 𝐻1 [Eq. (2.15)]
6: end if
7: for 𝑖𝑡 = 1 to nit do
8: Find the provisional velocity vector 𝑢⋆ [Eq. (3.7) or Eq. (3.11)]
9: Find the auxiliary pressure field 𝑞 [Eq. (3.9)]

10: Compute the true velocity field 𝑢𝑖𝑡 [Eq. (3.8)]
11: Update the true pressure field 𝑝𝑖𝑡 [Eq. (3.10)]
12: Advect the Level-Set function [Eq. (3.15)]
13: Reinitialize the Level-Set function [Eq. (3.26)]
14: if ferrofluid droplet then
15: Solve the magnetic potential 𝜓𝑖𝑡+1 [Eq. (2.14)]
16: Compute the magnetic field from the magnetic potential 𝐻 𝑖𝑡+1[Eq. (2.15)]
17: end if
18: end for

used all over the simulations.

• For the simulations regarding the steady-state results of the droplet’s configuration,
and corresponding ferrofluid emulsion magnetization and rheology, the following
settings were used: a domain size of 12.5 × 10 × 7.5 (𝛽 ≈ 0.45%), a grid spacing
length of ℎ = 0.062500, and a time step of Δ𝑡 = 2× 10−3.

• For the simulations in which we are looking for the droplet breakup, the following
settings were used: a domain size of 20.0 × 10 × 7.5 (𝛽 ≈ 0.28%), a grid spacing
length of ℎ = 0.078125, and a time step of Δ𝑡 = 3× 10−3.

In the latter case, a larger domain was used because the droplet was expected
to reach more elongated shapes. In order to balance the number of elements, given that
searching for 𝐶𝑎𝑐 requires a large number of simulations, a slightly coarser grid was
used, and so was the time step. No grid tests were performed for this case, because the
methodology used here for evaluating the parameter of interest, 𝐶𝑎𝑐, incorporates the
numerical errors (see Sec. 2.6).

A grid independence test was performed to analyze the convergence of the variables
and to guide the choice of the used grid spacing lengths. It is presented in Sec. 3.6.

The steady state is determined when the droplet distortion in the 𝑥𝑦 plane, 𝐷,
changes in less than 0.5% between two consecutive units of dimensionless time. When
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𝐷 does not reach the above criterion and continuously increases, a breakup situation is
attributed to the case.

3.6 Grid independence test

In order to verify the accuracy of the numerical solutions for the steady-state cases,
we performed a grid independence test for a representative case where 𝜆 = 1, 𝐶𝑎 = 0.02,
𝐶𝑎𝑚𝑎𝑔 = 20, and the external magnetic field is applied in the 𝑥 direction. The domain
size is that of the steady cases, 12.5 × 10 × 7.5 (see Sec. 3.5). We tested four different
grids (termed G1 to G4) for which the number of cells along the longest side of the flow
domain is set to 120, 160, 200, and 240, respectively; therefore, the total number of grid
cells and the meshing size vary from ∼800,000 to ∼6,600,000 and from ∼0.1 to ∼0.05,
respectively. In all cases, the time step is set to Δ𝑡 ≈ 0.25ℎ/‖𝑢𝑚𝑎𝑥‖, where ‖𝑢𝑚𝑎𝑥‖ ≈ 8 is
the maximum flow velocity, as determined by the boundary condition and the domain size.

Table 1 summarizes the steady-state results for the droplet deformation in the 𝑥𝑦
plane, 𝐷𝑥𝑦, the system bulk magnetization, ⟨𝑀⟩, and the 𝑥𝑥 component of the first and
second terms of the droplet stress, 𝜎𝑑

1,𝑥𝑥 and 𝜎𝑑
2,𝑥𝑥, respectively. As the refinement increases

from grid G1 to grid G4, the results change in less than ∼1.2%, ∼0.7%, and ∼0.5%,
respectively, demonstrating that the hydrodynamic, magnetic, and Level-Set variables
indeed converge with the spatial discretization. We chose the G3 grid for the steady cases
because the results change in less than ∼0.5% when compared to G4 at the cost of almost
double the number of grid cells. Note that if the variables converge with this domain size,
they should converge with a larger one, including that used in the breakup cases. Further,
we see that the G2 can be used for that cases without losing significant accuracy.

In all simulations performed in this work, the divergence of the velocity field (the
divergence constraint, ∇ · 𝑢 = 0) is maintained below 10−10.

Table 1 – Mesh convergence study in terms of the droplet distortion in the 𝑥𝑦 plane (𝐷𝑥𝑦),
the system bulk magnetization (⟨𝑀⟩), and the 𝑥𝑥 component of the first and
second terms of the particle stress (𝜎𝑑

1,𝑥𝑥 and 𝜎𝑑
2,𝑥𝑥, both normalized by 𝛽). The

results are for 𝐶𝑎 = 0.02 and 𝐶𝑎𝑚𝑎𝑔 = 20 when the external magnetic field is
applied in the 𝑥-direction.

Grid Grid cells Meshing size 𝐷𝑥𝑦 𝜎𝑑
1,𝑥𝑥/𝛽 𝜎𝑑

2,𝑥𝑥/𝛽 ⟨𝑀⟩
G1 829,440 0.104167 0.5703 0.7723 -2.2728 0.004171
G2 1,966,080 0.078125 0.5765 0.7817 -2.2673 0.004151
G3 3,840,000 0.062500 0.5804 0.7869 -2.2649 0.004142
G4 6,635,520 0.052083 0.5835 0.7906 -2.2629 0.004138
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4 Results and discussion

In this chapter, we present and discuss the main results of our numerical experiments.
The discussion begins by examining the behavior of a ferrofluid droplet subjected to the
isolated actions of either planar extensional flow or an external magnetic field. These
initial results serve as a validation of our computational model. Once the model’s validity
is established, we proceed to investigate the impact of applying magnetic fields along each
of the three flow main directions, assessing their effects on the emulsion microstructure,
magnetization, and resulting rheology. Subsequently, we explore the scenario wherein
the applied magnetic field deviates from the aforementioned directions. Finally, with a
thorough analysis of a stable ferrofluid emulsion, we investigate the conditions of flow
and magnetic field in which the breakup can be expected to occur. All results are for
𝑅𝑒 = 0.01, to be consistent with the inertia-free assumption (see Sec. 2.2.4), and 𝜁 = 2
(𝜒 = 1, see Sec. 2.1).

4.1 Isolated action of planar extension and magnetic field: code
validation

In this section, we present the simulation results of two cases: a viscous droplet
subjected to planar expansion flows and a ferrofluid droplet subjected to uniform external
magnetic fields. The purpose here is to demonstrate the applicability of the proposed
numerical model before proceeding to the general case in which ferrofluid droplets or
corresponding ferrofluid emulsions are subject to both planar expansion flows and uniform
magnetic fields. For this, measurements of the droplet distortion in the 𝑥𝑦 plane, 𝐷𝑥𝑦,
were compared with the experimental, numerical, and theoretical results present in the
literature.

4.1.1 Droplet distortion in planar extensional flow

Figure 4.1 shows steady-state results of 𝐷𝑥𝑦 as a function of 𝐶𝑎 for a viscous
regular droplet of 𝜆 = 1 subjected to a planar extensional flow (defined in Section 2.1). We
also present the experimental results of Hsu and Leal (2009) (measured in a four-roll mill
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Figure 4.1 – Droplet distortion in the 𝑥𝑦 plane (𝐷𝑥𝑦) as a function of 𝐶𝑎 with no external
magnetic field (𝐶𝑎𝑚𝑎𝑔 = 0) and 𝜆 = 1: present work (black circles), experi-
mental results of Hsu and Leal (2009) (red triangles), and simulation results
of Park et al. (2019) (blue squares). The insets show the droplet cross-section
in the 𝑥𝑦 plane at 𝐶𝑎 = 0.02 and 𝐶𝑎 = 0.115. Adapted from (GUILHERME
et al., 2023, p. 6). © 2023 by American Physical Society.

apparatus) and the simulation results of Park et al. (2019) (measured with commercial
software). The droplet is stretched in the 𝑥 direction and, due to incompressibility,
compressed in the other two directions with slightly different intensities: more in the 𝑦
direction than in the 𝑧 direction. As a result, the droplet assumes the shape of a prolate-like
ellipsoid and distorts progressively as 𝐶𝑎 increases. This progression is almost linear in
the limit of low 𝐶𝑎, as predicted by the small deformation theory of Taylor (1934). As 𝐶𝑎
increases, the droplet distortion becomes more pronounced. From above a certain value,
in this case, around 𝐶𝑎 ≈ 0.12, the droplet surface at the central portion becomes "flat"
(infinite curvature in the 𝑥𝑦 cross-section), and the droplet continuously distorts without
achieving a steady state, in a process marked by the appearance of necking regions near
the tips in the 𝑥 axis. This process is called breakup here, as this behavior suggests that
the droplet will eventually burst, although this was not observed for this case due to the
limited computation domain length. Figure 4.2 shows the evolution of the droplet surface
during the breakup process with 𝐶𝑎 = 0.12, where we can see the droplet becoming flat
at around 𝑡 ≈ 7.50. We provide a detailed analysis of the breakup process in the absence
and in the presence of external magnetic fields in Sec. 4.4.

4.1.2 Magnetic field induced deformation with no external flow

Figure 4.3 shows steady-state results of 𝐷𝑥𝑦 as a function of 𝐶𝑎𝑚𝑎𝑔 for a ferrofluid
droplet immersed in a quiescent liquid (𝑢∞ = 0) subjected to an applied uniform magnetic
field in the 𝑥 direction. We also present the theoretical predictions of Afkhami et al. (2010)
for the droplet shape at equilibrium with 𝜁 = 2. The external field induces a magnetic force
normal to the droplet surface because the difference in magnetic permeability between
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Figure 4.2 – Droplet shape evolution during breakup process with 𝐶𝑎 = 0.12 and 𝜆 = 1.
The domain size in the 𝑥 direction for this case is 𝑆𝑥 = 20. Its limits are
denoted by the black vertical lines. At around 𝑡 ≈ 7.5, the droplet surface
becomes flat in the 𝑥𝑦 plane at the central portion.

the phases leads to a magnetic field jump across the interface. This force is stronger in
regions where the interface is perpendicular to the external field direction because the
magnetic field points in the gradient direction. As a result, the droplet is stretched in the
𝑥 direction, and, due to incompressibility, compressed in the other two directions with
equal intensities, assuming a prolate ellipsoidal shape. The droplet reaches an equilibrium
shape when the magnetic forces balance with the capillary forces so that its distortion
progressively increases with 𝐶𝑎𝑚𝑎𝑔. However, unlike the flow-induced distortion relation
with 𝐶𝑎 presented in Fig. (4.1), the rate of variation of 𝐷𝑥𝑦 with respect to 𝐶𝑎𝑚𝑎𝑔

decreases, characterizing a hardening-like response with 𝐶𝑎𝑚𝑎𝑔. No breakup was observed
in field-induced distortion for static fields, even in high field intensities, at least for 𝜒 = 1.

Figure 4.3 – Droplet distortion in the 𝑥𝑦 plane (𝐷𝑥𝑦) as a function of 𝐶𝑎𝑚𝑎𝑔 when the
external magnetic field is applied in the x direction with no external flow
(𝑢∞ = 0) and 𝜒 = 1: present work (black circles) and theoretical predictions
of Afkhami et al. (2010) (blue line). The insets show the droplet cross-section
in the 𝑥𝑦 plane at 𝐶𝑎𝑚𝑎𝑔 = 2 and 𝐶𝑎𝑚𝑎𝑔 = 20. Adapted from (GUILHERME
et al., 2023, p. 6). © 2023 by American Physical Society.
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The agreement between current simulations and previous studies in the literature
shown in this validation section confirms the reliability of our numerical model with respect
to hydrodynamic, magnetic, and interfacial problems.

4.2 External field applied in one of the flow main directions

We now proceed with the analysis of the droplet deformation, magnetization, and
emulsion rheology for the magnetic field applied in each of the flow main directions,
i.e., 𝐻0 = 𝑒𝑥, 𝐻0 = 𝑒𝑦, and 𝐻0 = 𝑒𝑧. We explore 𝐶𝑎 and 𝐶𝑎𝑚𝑎𝑔 in the ranges
0.02 ≤ 𝐶𝑎 ≤ 0.12, and 2 ≤ 𝐶𝑎𝑚𝑎𝑔 ≤ 20.

4.2.1 Droplet deformation: emulsion microstructure

Figure 4.4 shows the droplet distortion in the 𝑥𝑦 plane, 𝐷𝑥𝑦, as a function of 𝐶𝑎𝑚𝑎𝑔.
The results are for different values of 𝐶𝑎 when the external magnetic field is applied
in the 𝑥 and 𝑦 direction. We see that 𝐷𝑥𝑦 grows with 𝐶𝑎𝑚𝑎𝑔 when the external field is
in the 𝑥 direction [Fig. 4.4(a)]. Because viscous and magnetic forces stretch the droplet
together in the same direction, the droplet assumes a prolate-like shape with the major
axis in the 𝑥 axis (𝐷𝑥𝑦 > 0). This field-induced extension is slightly more pronounced in
strong flows (high 𝐶𝑎). In turn, 𝐷𝑥𝑦 falls with 𝐶𝑎𝑚𝑎𝑔 when the external field is in the 𝑦
direction [Fig. 4.4(b)]. Viscous and magnetic forces now compete to stretch the droplet
in directions that are perpendicular to one another. Briefly, the field-induced extension

Figure 4.4 – Droplet distortion in the 𝑥𝑦 plane (𝐷𝑥𝑦) as a function of 𝐶𝑎𝑚𝑎𝑔 when the
external magnetic field is applied in the (a) 𝑥 direction and (b) 𝑦 direction.
The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04 (blue squares),
𝐶𝑎 = 0.08 (red triangles), and 𝐶𝑎 = 0.12 (green diamonds). The insets show
the droplet cross-section in the 𝑥𝑦 plane at different conditions. The data set
is not complete in (a) because the droplet does not achieve a steady shape
when 𝐶𝑎 = 0.08 and 𝐶𝑎𝑚𝑎𝑔 ≥ 6 and when 𝐶𝑎 = 0.12 and 𝐶𝑎𝑚𝑎𝑔 ≥ 0 [see the
discussion for Fig. 4.1(a)]. Adapted from (GUILHERME et al., 2023, p. 8).
© 2023 by American Physical Society.
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in the 𝑦 direction is counteracted by flow-induced compression, whereas the flow-induced
extension in the 𝑥 direction is counteracted by field-induced compression. At low enough
𝐶𝑎𝑚𝑎𝑔, viscous forces dominate over magnetic forces and the droplet major axis is in
the 𝑥 axis (𝐷𝑥𝑦 > 0). As 𝐶𝑎𝑚𝑎𝑔 increases and the external field intensity grows stronger,
magnetic forces eventually overtake viscous forces and the droplet major axis becomes
aligned with the 𝑦 axis (𝐷𝑥𝑦 < 0). This field-induced shape transition is easier in weak
flows (low 𝐶𝑎).

Figure 4.5 shows the droplet distortion as a function 𝐶𝑎𝑚𝑎𝑔 for different values of
𝐶𝑎 when the external magnetic field is applied in the 𝑧 direction. Note that we now plot
𝐷𝑥𝑦 and the deformation in the 𝑥𝑧 plane, 𝐷𝑥𝑧. We observe that 𝐷𝑥𝑦 is a weak function of
𝐶𝑎𝑚𝑎𝑔 [Fig. 4.5(a)]. The field-induced compression in the 𝑥 and 𝑦 direction is approximately
the same, particularly at low 𝐶𝑎 [see the discussion for Fig. 4.1(b)]. Thus, the droplet
distortion in the 𝑥𝑦 plane is mainly governed by the balance between viscous and capillary
forces, as determined by 𝐶𝑎. Conversely, 𝐷𝑥𝑧 falls strongly with 𝐶𝑎𝑚𝑎𝑔 [Fig. 4.5(b)]. The
competition between viscous and magnetic forces behind this field-induced shape transition

— from 𝐷𝑥𝑧 > 0 with the droplet major axis in the 𝑥 axis to 𝐷𝑥𝑧 < 0 with the droplet
major axis in the 𝑧 axis — is similar to that discussed for Fig. 4.4(b). The major difference
here is that 𝐷𝑥𝑧 is a weaker function of 𝐶𝑎, especially at high 𝐶𝑎𝑚𝑎𝑔, where all curves
approach one another. This indicates that viscous forces play a minor role in the droplet
distortion in the direction of the external magnetic field when the latter is sufficiently
strong and aligned with the flow neutral direction.

Figures 4.4 and 4.5 suggest that the intensity and direction of external magnetic
fields can be adjusted to either induce or prevent droplet breakup in planar extensional
flows. We have seen that the droplet bursts at 𝐶𝑎 ≈ 0.12 in the absence of external field

Figure 4.5 – Droplet distortion in the (a) 𝑥𝑦 plane (𝐷𝑥𝑦) and (b) 𝑥𝑧 plane (𝐷𝑥𝑧) as
a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic field is applied in the 𝑧
direction. The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04 (blue
squares), 𝐶𝑎 = 0.08 (red triangles), and 𝐶𝑎 = 0.12 (green diamonds). The
insets show the droplet cross-section in the (a) 𝑥𝑦 plane and (b) 𝑥𝑧 plane at
different conditions. Adapted from (GUILHERME et al., 2023, p. 8). © 2023
by American Physical Society.
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(𝐶𝑎𝑚𝑎𝑔 = 0) [see the discussion for Fig. 4.1(a)]. Now, we find that when an external field
is applied in the 𝑥 direction with 𝐶𝑎𝑚𝑎𝑔 = 6, the droplet does not achieve a steady shape
at 𝐶𝑎 ≥ 0.08, indicating that the droplet will eventually break up. On the other hand, we
do observe steady shapes with no signs of droplet breakup at 𝐶𝑎 = 0.12 when the external
field is either in the 𝑦 or 𝑧 direction at 𝐶𝑎𝑚𝑎𝑔 ≥ 2. In Section 4.4, we provide a detailed
analysis of how the external magnetic field affects the breakup of ferrofluid droplets in
planar extensional flows. For now, we are interested in the cases where the droplets achieve
steady shapes.

4.2.1.1 Droplet spheroidizing

The field-induced shape transition presented in Figs. 4.4(b) and 4.5(b) also deserves
special remarks. We build the discussion based on the results of Fig. 4.4(b), for which
the external field is in the 𝑦 direction. At fixed 𝐶𝑎, there is a specific value of 𝐶𝑎𝑚𝑎𝑔,
say 𝐶𝑎*

𝑚𝑎𝑔, at which the droplet cross-section in the 𝑥𝑦 plane is circular because the
semi-axes in the 𝑥 and 𝑦 axis are equal (𝐷𝑥𝑦 = 0 when 𝐿𝑥 = 𝐿𝑦). At this condition, the
net effects of field-induced extension in the 𝑦 direction and flow-induced extension in the
𝑥 direction match one another. Because both viscous and magnetic forces compress the
droplet together in the 𝑧 direction, the droplet becomes an oblate ellipsoid with a polar
radius 𝑝𝑟 = 𝐿𝑧 in the 𝑧 axis. A similar rationale applies when the external field is in the
𝑧 direction, as in Fig. 4.5(b). The only difference is that the circular cross-section is in
the 𝑥𝑧 plane (𝐷𝑥𝑧 = 0 when 𝐿𝑥 = 𝐿𝑧) and the polar radius is 𝑝𝑟 = 𝐿𝑦 in the 𝑦 axis. To

Figure 4.6 – Three-dimensional view of oblate droplets at 𝐶𝑎 = 0.12 when the external
magnetic field is applied in the (a) 𝑦 direction (at 𝐶𝑎𝑚𝑎𝑔 = 𝐶𝑎*

𝑚𝑎𝑔 ≈ 10.03)
and (b) 𝑧 direction (at 𝐶𝑎𝑚𝑎𝑔 = 𝐶𝑎*

𝑚𝑎𝑔 ≈ 5.74). In (a), 𝐿𝑥 = 𝐿𝑦 is the
equatorial radius in the 𝑥𝑦 plane and 𝑝𝑟 is the polar radius in the 𝑧 axis; in
(b), 𝐿𝑥 = 𝐿𝑧 is the equatorial radius in the 𝑥𝑧 plane and 𝑝𝑟 is the polar radius
in the 𝑦 axis. For the sake of visualization, the droplet shape is projected on
each plane (black), flow streamlines outside the droplet are projected on the
𝑥𝑦 plane (red), and magnetic field lines outside the droplet are projected on
the 𝑦𝑧 and 𝑥𝑧 plane (blue). Reprinted from (GUILHERME et al., 2023, p. 9).
© 2023 by American Physical Society.

39



ease the visualization, Fig. 4.6 displays a three-dimensional view of oblate droplets at
𝐶𝑎 = 0.12 (and 𝐶𝑎𝑚𝑎𝑔 = 𝐶𝑎*

𝑚𝑎𝑔) for the two external field configurations. Additionally,
Fig. 4.7 shows how 𝐶𝑎*

𝑚𝑎𝑔 and 𝑝𝑟 depend on 𝐶𝑎. Interestingly, both 𝐶𝑎*
𝑚𝑎𝑔 and 𝑝𝑟 vary

linearly with 𝐶𝑎, at least within the range of parameters explored here [see the caption
of Fig. 4.7 for details]. We note that 𝐶𝑎*

𝑚𝑎𝑔 increases and 𝑝𝑟 decreases with 𝐶𝑎. Because
viscous and magnetic forces stretch the droplet in directions that are perpendicular to one
another, the magnetic force required to promote a circular droplet cross-section in a plane

— either 𝑥𝑦 or 𝑥𝑧 — increases as the relative intensity of viscous forces grows stronger. The
equatorial radius — either 𝐿𝑥 = 𝐿𝑦 in the 𝑥𝑦 plane or 𝐿𝑥 = 𝐿𝑧 in the 𝑥𝑧 plane — also
increases with the intensity of viscous forces, so that the polar radius — either 𝑝𝑟 = 𝐿𝑧

in the 𝑧 axis or 𝑝𝑟 = 𝐿𝑦 in the 𝑦 axis — decreases to preserve the droplet volume. At
fixed 𝐶𝑎, we see that 𝐶𝑎*

𝑚𝑎𝑔 and 𝑝𝑟 are higher for external fields in the 𝑦 direction. This
is not unexpected, as the field-induced extension is more attenuated by the flow-induced
compression in this case. The reader interested in the shape control of liquid droplets
through external force fields in hydrodynamic flows is referred to Liu et al. (2021), who
recently presented a study of the electric field-mediated spheroidizing of leaky dielectric
droplets in uniaxial extensional flows.

Overall, the droplet shape is determined by a balance between viscous, magnetic,
and capillary forces that depends on the external field intensity and direction relative
to the flow. The present discussions can bring new insights to improve the field-assisted
manufacturing of microparticles for which shape–property relationships can be broadly

Figure 4.7 – Magnetic capillary number 𝐶𝑎*
𝑚𝑎𝑔 at which the droplet becomes an oblate

ellipsoid (circles, left axis) and the corresponding droplet polar radius 𝑝𝑟

(squares, right axis) as a function of 𝐶𝑎. The results are for external magnetic
fields applied in the 𝑦 direction (red symbols) and 𝑧 direction (blue symbols).
The solid lines are linear fits with fixed intercepts (𝐶𝑎*

𝑚𝑎𝑔 = 0 and 𝑝𝑟 = 1 at
𝐶𝑎 = 0): 𝐶𝑎*

𝑚𝑎𝑔 ≈ 80𝐶𝑎 and 𝑝𝑟 ≈ 1− 1.7𝐶𝑎 when the external field is in the
𝑦 direction (red); 𝐶𝑎*

𝑚𝑎𝑔 ≈ 44𝐶𝑎 and 𝑝𝑟 ≈ 1− 2.6𝐶𝑎 when the external field
is in the 𝑧 direction (blue). The coefficient of determination of all adjustments
is 𝑅2 > 0.99. Adapted from (GUILHERME et al., 2023, p. 10). © 2023 by
American Physical Society.
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explored based on the magnetic–hydrodynamic coupling of ferrofluids and nonmagnetizable
liquids (ZHU et al., 2015; ZHAO et al., 2022).

Before proceeding to the next section, it is worth noting that when the magnetic
field is applied in one of the flow main directions, as well as when there is no magnetic
field, the droplet remains symmetric with respect to the three main directions of the planar
extensional flow. Figure 4.8 shows the 𝑧 component of the flow vorticity 𝜉 = ∇× 𝑢 and
flow streamlines near the droplet in the 𝑥𝑦 plane. The results are for 𝐶𝑎 = 0.04 when the
external field is absent (𝐶𝑎𝑚𝑎𝑔 = 0) [Fig. 4.8(a)] and when the external field is applied in
one of the flow main directions at 𝐶𝑎𝑚𝑎𝑔 = 16 [Figs. 4.8(b)–(d)]. The magnetic field does
not change the general flow pattern. Even though the way the distorted droplet affects
the streamlines near the interface depends on the external field direction, the flow inside
the droplet remains characterized by four recirculation regions in the 𝑥𝑦 cross-section that
are symmetric with respect to the reference axes, as in the absence of the external field.
The 𝑧 component of the vorticity field, however, is skew-symmetric with respect to the
reference axes, as the flow inside the droplet follows that of the surrounding fluid near
the interface. It is worth noting that the flow near the center of the droplet approaches a
planar extensional flow with the extension and compression directions inverted.

Figure 4.8 – 𝑧 component of the flow vorticity (𝜉 = ∇×𝑢) and flow streamlines in the 𝑥𝑦
plane. The results are for 𝐶𝑎 = 0.04 when (a) there is no external magnetic
field (𝐶𝑎𝑚𝑎𝑔 = 0) and when the external magnetic field is applied in the (b) 𝑥
direction, (c) 𝑦 direction, and (d) 𝑧 direction at 𝐶𝑎𝑚𝑎𝑔 = 16. Reprinted from
(GUILHERME et al., 2023, p. 11). © 2023 by American Physical Society.
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4.2.2 Emulsion magnetization

The magnetization of the system is given by the volumetric average of the local
magnetization throughout the system, ⟨𝑀⟩ [see Eq. (2.25) in Sec. 2.4]. It is equivalent
to the ferrofluid emulsion magnetization of the corresponding volume fraction. On the
other hand, as the continuous phase is nonmagnetizable, it does not contribute to the
system magnetization, hence the droplet magnetization, 𝑀𝑑, is related to ⟨𝑀⟩ through
𝑀𝑑 = ⟨𝑀⟩/𝛽. From a particle perspective, we have the droplet magnetic moment, 𝑚𝑑,
given by 𝑚𝑑 = 𝑀𝑑𝑉𝑑, where 𝑉𝑑 is the dimensionless droplet volume. The magnetization
results will be presented in terms of 𝑀𝑑 because of its direct relation with both emulsion
magnetization and droplet magnetic moment by dividing it by 𝛽 and multiplying it by 𝑉𝑑,
respectively.

Before proceeding to the analysis, we briefly discuss the demagnetizing effect inside
magnetic ellipsoids in the presence of external uniform magnetic fields as it will help us
to understand the results for deformed ferrofluid droplets. When subjected to a uniform
magnetic field, the magnetic field inside an ellipsoid is also uniform and its intensity, 𝐻𝑖𝑛, is
reduced, so that 𝐻𝑖𝑛 is a decreasing function of a demagnetizing factor, say 𝑘 (AFKHAMI

Figure 4.9 – Magnitude of the magnetic field and magnetic field lines in the 𝑥𝑦 plane. The
results are for 𝐶𝑎𝑚𝑎𝑔 = 12 when (a) the external magnetic field is applied
in the 𝑥 direction with no external flow (𝑢∞ = 0) and when the external
magnetic field is applied in the (b) 𝑥 direction, (c) 𝑦 direction, and (d) 𝑧
direction with the external flow at 𝐶𝑎 = 0.04. Reprinted from (GUILHERME
et al., 2023, p. 12). © 2023 by American Physical Society.
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et al., 2010). 𝑘 is maximized when the ellipsoid is a sphere and becomes smaller as the
ellipsoid eccentricity in the external field direction increases. Since the steady shape of the
analyzed droplets here are always ellipsoids, their demagnetizing factor should behave in
the same way. Furthermore, if one of the ellipsoid main axes is aligned with the external
field, the magnetic field inside the body remains aligned with the external field. This is
the case for ferrofluid droplets subjected to both planar extensional flows and external
fields in one of the flow main directions.

Figure 4.9 shows the magnetic field intensity and lines over the system in the
𝑥𝑦 plane when the droplet is immersed in a quiescent fluid and subjected to a uniform
external field [Fig. 4.9(a)], and when the droplet is subjected to both planar extensional
flow and external fields in one of the flow main directions [Figs. 4.9(b)-(d)]. These results
illustrate the demagnetizing effect as a function of eccentricity, and the uniformity of the
internal field in such cases. Further, we do observe the deflection of the external field near
the droplet and the distribution of the field gradients on the droplet surface; they are
higher in large curvatures; recalling that the magnetic forces are proportional to 𝐻 · ∇𝐻

[Eq. (2.5)], we understand the reason why the field-induced distortion acts in the external
field direction [see the discussion of Fig. 4.3].

Figure 4.10 shows the magnitude of the droplet magnetization, 𝑀𝑑 = ‖𝑀𝑑‖, as a
function of 𝐶𝑎𝑚𝑎𝑔 for different values of 𝐶𝑎. We note that 𝑀𝑑 grows monotonically with
𝐶𝑎𝑚𝑎𝑔 independently of the external field direction. Increasing the external field intensity
increases the droplet elongation in the external field direction [see Figs. 4.4 and 4.5(b)];
this decreases the demagnetizing factor and increases the droplet magnetization. Viscous
forces play a role in the droplet shape and affect the demagnetizing factor as well. Yet, the
way 𝑀𝑑 trends with 𝐶𝑎 essentially depends on the external field direction. We see that
𝑀𝑑 increases with 𝐶𝑎 when the external field is in the 𝑥 direction [Fig. 4.10(a)]. The flow
improves the droplet magnetization because viscous and magnetic forces stretch the droplet
together in the same direction, increasing the overall droplet elongation in the external

Figure 4.10 – Magnitude of the droplet magnetization (𝑀𝑑) as a function of 𝐶𝑎𝑚𝑎𝑔 when
the external magnetic field is applied in the (a) 𝑥 direction, (b) 𝑦 direction,
and (c) 𝑧 direction. The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04
(blue squares), 𝐶𝑎 = 0.08 (red triangles), and 𝐶𝑎 = 0.12 (green diamonds).
Adapted from (GUILHERME et al., 2023, p. 12). © 2023 by American
Physical Society.

43



field direction [see Fig. 4.4(a)]. Conversely, 𝑀𝑑 decreases with 𝐶𝑎 when the external field
is in the 𝑦 direction [Fig. 4.10(b)]. The flow hinders the droplet magnetization because
viscous and magnetic forces compete to stretch the droplet in different directions that are
perpendicular to one another, decreasing the overall droplet elongation in the external
field direction [see Fig. 4.4(b)]. All 𝑀𝑑 vs. 𝐶𝑎𝑚𝑎𝑔 curves collapse when the external field is
in the 𝑧 direction [Fig. 4.10(c)]. The flow is not consequential to the droplet magnetization
because viscous forces have a minor effect on the droplet elongation in the external field
direction when the latter is in the neutral direction [see Fig. 4.5(b)]. In all cases, the rate
at which 𝑀𝑑 grows with 𝐶𝑎𝑚𝑎𝑔 decreases as 𝐶𝑎𝑚𝑎𝑔 increases.

4.2.3 Emulsion rheology

Once we have established the effects of the planar extensional flow and external
magnetic fields on dilute ferrofluid emulsions microstructure, we proceed with the analysis
of the impacts of the magnetic fields on the planar extensional rheology of such emulsions.
In Section 2.3, we derived the expression for the dimensionless droplet stress associated
with ferrofluid droplets in suspension, Eq. (2.22), here referred to as droplet stress. For
𝜆 = 1, the third term in the integral vanishes so the droplet stress is

𝜎𝑑 = 1
𝑉

∫︁
𝑆

⎡⎣(︃ 𝜅

𝐶𝑎
− 𝐶𝑎𝑚𝑎𝑔

2𝐶𝑎 (𝜁 − 1) ‖𝐻‖2
)︃

𝑥𝑛̂

⎤⎦ d𝑆. (4.1)

From Eq. (4.1) and our previous knowledge about droplet configuration, we can
draw some initial conclusions to guide our analysis. First, anisotropic contributions to the
stress associated with the droplet shape are captured by the dyadic 𝑥𝑛̂. Since the droplet
configuration is symmetric with respect to the reference axes, the normal components of
𝑥𝑛̂ are all positive, and the shear components change in sign along the interface in an
antisymmetric manner. Furthermore, as the droplet assumes an ellipsoidal shape and the
magnetic field is symmetrically distributed over the droplet interface, both 𝜅 and ‖𝐻‖2

are symmetric and positive. Hence, the shear components of the integrals of 𝜅𝑥𝑛̂ and
‖𝐻‖2𝑥𝑛̂ over 𝑆 are zero. As a result, the shear stresses of 𝜎𝑑 vanish identically, making
𝜎𝑑 a symmetric tensor for which the only nonzero entries are the normal stresses 𝜎𝑑

𝑥𝑥, 𝜎𝑑
𝑦𝑦,

and 𝜎𝑑
𝑧𝑧.

Second, the stress tensor of the bulk emulsion is affected by the droplets solely
through capillary and magnetic forces at the fluid interface. These forces, however, con-
tribute to 𝜎𝑑 in opposite manners. Owing to the fact that the normal components of 𝜅𝑥𝑛̂

and ‖𝐻‖2𝑥𝑛̂ at the fluid interface are always positive, the capillary forces contribute
to 𝜎𝑑 as a traction, while the magnetic forces contribute to 𝜎𝑑 as a compression. Note
that droplet-induced tractioning compresses the stress state, and vice versa. Separating
Eq. (4.1) with respect to these terms, we get the traction term,
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𝜎𝑑
𝑡 = 1

𝑉

∫︁
𝑆

𝜅

𝐶𝑎
𝑥𝑛̂ d𝑆, (4.2)

and the compression term,

𝜎𝑑
𝑐 = − 1

𝑉

∫︁
𝑆

𝐶𝑎𝑚𝑎𝑔

2𝐶𝑎 (𝜁 − 1) ‖𝐻‖2𝑥𝑛̂ d𝑆. (4.3)

While the traction term depends on 1/𝐶𝑎, the compression term depends on
𝐶𝑎𝑚𝑎𝑔/𝐶𝑎. It means that at a fixed 𝐶𝑎, increasing 𝐶𝑎𝑚𝑎𝑔 enhances the overall compression
of the stress state. In contrast, at fixed 𝐶𝑎𝑚𝑎𝑔, increasing 𝐶𝑎 mitigates both the traction
and compression contributions to the stress state. If 𝐶𝑎𝑚𝑎𝑔 is sufficiently small, the normal
stresses are positive (traction-dominated), and increasing 𝐶𝑎 leads to lower normal stresses
(less traction). If 𝐶𝑎𝑚𝑎𝑔 is sufficiently high, the normal stresses are negative (compression-
dominated), and increasing 𝐶𝑎 leads to higher normal stresses (less compression). We find
that this transition occurs around 𝐶𝑎𝑚𝑎𝑔 ≈ 6 for the cases analyzed here. As commented
earlier, the droplet shape, represented by the dyadic 𝑥𝑛̂, plays an important role in both
traction and compression terms as a source of anisotropy. As the droplet is stretched
in one direction, the normal component of the dyadic associated with that direction is
increased, while it is decreased in the other directions. Furthermore, the stretched droplet
has a nonuniform distribution of curvature, which contributes to the anisotropy of the
traction term.

The droplet contribution to the planar extensional viscosity, (𝜂𝑝), and to the second
extensional viscosity, (𝜂2) [introduced in Sec. 2.3. See Eqs. (2.23) and (2.24)], are the
normal stress differences, and so are directly affected by the anisotropy of the stress state.
Thus, 𝐶𝑎 and 𝐶𝑎𝑚𝑎𝑔 affect them both directly and indirectly through the droplet shape.

Figure 4.11 shows 𝜂𝑝 (normalized by 𝛽) as a function of 𝐶𝑎𝑚𝑎𝑔 for different values
of 𝐶𝑎. Consider first the external field applied in the 𝑥 direction [Fig. 4.11(a)]. Increasing
𝐶𝑎𝑚𝑎𝑔 results in greater elongation of the prolate-like droplet in the 𝑥 direction [see
Fig. 4.4(a)]. The higher curvature at the droplet tips along the 𝑥 axis increases the
traction contribution to 𝜎𝑑

𝑥𝑥, while the lower curvature along the droplet tips in the 𝑦
direction decreases the traction contribution to 𝜎𝑑

𝑦𝑦. Moreover, the rise of the compression
contribution to 𝜎𝑑

𝑥𝑥 with 𝐶𝑎𝑚𝑎𝑔 does not follow the increase of the traction counterpart
in the same intensity as happens with 𝜎𝑑

𝑦𝑦. As a result, 𝜂𝑝 grows with 𝐶𝑎𝑚𝑎𝑔, which
corresponds to a field-induced viscous-hardening behavior, or equivalently, a magnetic-
thickening effect [Fig. 4.11(a)]. Because viscous forces also stretch the droplet in the 𝑥
direction [see Fig. 4.4(a)], the net effect of increasing 𝐶𝑎 is an increase in the anisotropic
contribution of 𝑥𝑛̂ to the traction term. Hence, 𝜂𝑝 also grows with 𝐶𝑎 [Fig. 4.11(a)]. The
growth becomes more significant as long as 𝐶𝑎𝑚𝑎𝑔 increases, so the magnetic field in the 𝑥
direction enhances the planar-extensional-thickening effect.

The results with the external field in the 𝑦 direction are more delicate [Fig. 4.11(b)].
Increasing 𝐶𝑎𝑚𝑎𝑔 now drives the droplet through a large geometric change in the 𝑥𝑦
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Figure 4.11 – Droplet contribution to the planar extensional viscosity (𝜂𝑝, normalized by 𝛽)
of the ferrofluid emulsion as a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic
field is applied in the (a) 𝑥 direction, (b) 𝑦 direction, and (c) 𝑧 direction.
The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04 (blue squares),
𝐶𝑎 = 0.08 (red triangles), and 𝐶𝑎 = 0.12 (green diamonds). Adapted from
(GUILHERME et al., 2023, p. 15). © 2023 by American Physical Society.

plane [see Fig. 4.4(b)]; the droplet starts as a prolate-like ellipsoid with the major axis
in the 𝑥 axis at low 𝐶𝑎𝑚𝑎𝑔, becomes an oblate ellipsoid with the polar radius in the 𝑧
axis at 𝐶𝑎𝑚𝑎𝑔 = 𝐶𝑎*

𝑚𝑎𝑔, and eventually becomes a prolate-like ellipsoid with the major
axis in the 𝑦 axis at high 𝐶𝑎𝑚𝑎𝑔. The anisotropic contribution of 𝑥𝑛̂ to the compression
and traction terms associated with 𝜎𝑑

𝑦𝑦 progressively increases throughout this process.
Nevertheless, the anisotropic changes in the droplet shape with 𝐶𝑎𝑚𝑎𝑔 are not accompanied
by significant changes in curvature because the viscous and magnetic forces tend to stretch
the droplet in different directions, which results in less pronounced curvatures at the
droplet tips. As a result, the compression contribution overcomes the traction contribution
in 𝜎𝑑

𝑦𝑦, so that 𝜂𝑝 generally grows with 𝐶𝑎𝑚𝑎𝑔 [Fig. 4.11(b)]. The only exception of the
growth with 𝐶𝑎𝑚𝑎𝑔 occurs at 𝐶𝑎 = 0.12 for 𝐶𝑎𝑚𝑎𝑔 ≲ 6. This viscous-hardening behavior
is less apparent in strong flows because increasing 𝐶𝑎 decrease 1/𝐶𝑎, which reduces both
traction and compression terms resulting in an attenuation of the imbalance of the stress
state. For a fixed 𝐶𝑎𝑚𝑎𝑔, increasing 𝐶𝑎 leads to higher curvatures associated with 𝜎𝑑

𝑥𝑥.
The changes in curvature, however, are not significant enough due to the competition
of forces in different directions. Because of the attenuation due to 1/𝐶𝑎, 𝜂𝑝 generally
falls with 𝐶𝑎 [Fig. 4.11(b)]. In general, the external field in the 𝑦 direction induces a
planar-extensional-thinning effect that enhances with 𝐶𝑎𝑚𝑎𝑔. The results for the external
field in the 𝑧 direction are straightforward [Fig. 4.11(c)]. Because both 𝐶𝑎𝑚𝑎𝑔 and 𝐶𝑎 are
not very consequential to the droplet shape in the 𝑥𝑦 plane [see Fig. 4.5(a)], 𝜂𝑝 remains
nearly constant [Fig. 4.11(c)].

Figure 4.12 shows the results for 𝜂2 (also normalized by 𝛽) as a function of
𝐶𝑎𝑚𝑎𝑔 for different values of 𝐶𝑎. To assist the discussion, Fig. 4.13 presents the droplet
deformation in the 𝑦𝑧 plane, 𝐷𝑧𝑦. When the external field is in the 𝑥 direction [Fig. 4.12(a)],
viscous and magnetic forces compress the droplet together with similar intensities in the 𝑦
and 𝑧 direction, so that 𝐶𝑎𝑚𝑎𝑔 and 𝐶𝑎 do not induce substantial changes in the droplet
deformation in the 𝑦𝑧 plane [Fig. 4.13(a)]. For this reason, 𝜂2 is nearly constant [Fig. 4.12(a)].
This is equivalent to the results for 𝜂𝑝 when the external field is in the 𝑧 direction [see
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Fig. 4.11(c)].

Figure 4.12 – Droplet contribution to the second extensional viscosity (𝜂2, normalized by 𝛽)
of the ferrofluid emulsion as a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic
field is applied in the (a) 𝑥 direction, (b) 𝑦 direction, and (c) 𝑧 direction.
The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04 (blue squares),
𝐶𝑎 = 0.08 (red triangles), and 𝐶𝑎 = 0.12 (green diamonds). Adapted from
(GUILHERME et al., 2023, p. 15). © 2023 by American Physical Society.

When applied in the 𝑦 direction, the external field induces a viscous-hardening
behavior of 𝜂2 [Fig. 4.12(b)]. The increasing of 𝐶𝑎𝑚𝑎𝑔 increases the stretching in the 𝑦
direction resulting in an increase of the anisotropic contribution of 𝑥𝑛̂ to both traction
and compression term associated with 𝜎𝑑

𝑦𝑦. The rise in the traction term, however, is less
significant than that of the compression term, because the changes in curvature are less
pronounced than the changes in 𝐶𝑎𝑚𝑎𝑔 [see Fig. 4.13(b)]. This rationale is the same as
that applied to 𝜂𝑝, but with less intense hardening behavior. That difference becomes
evident if we regard the 𝑧 direction as a direction of extension but with lower intensity
compared to the 𝑥 direction. The traction term associated with 𝜎𝑑

𝑧𝑧 in strong flows is not
too significant in lower field intensities (𝐶𝑎𝑚𝑎𝑔 = 2) as 𝜎𝑑

𝑥𝑥 is, so the viscous-hardening
effect happens even at 𝐶𝑎 = 0.12 for 𝐶𝑎𝑚𝑎𝑔 ≲ 6. Note that, at low 𝐶𝑎𝑚𝑎𝑔, 𝐷𝑥𝑦 grows with
𝐶𝑎 much more significantly than 𝐷𝑧𝑦 do [see Figs. 4.4(b) and 4.13(b)]. In summary, 𝜂2

grows with 𝐶𝑎𝑚𝑎𝑔 and falls with 𝐶𝑎 [Fig. 4.12(b)].

Figure 4.13 – Droplet distortion in the 𝑦𝑧 plane (𝐷𝑧𝑦) as a function of 𝐶𝑎𝑚𝑎𝑔 when the
external magnetic field is applied in the (a) 𝑥 direction, (b) 𝑦 direction, and
(c) 𝑧 direction. The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04 (blue
squares), 𝐶𝑎 = 0.08 (red triangles), and 𝐶𝑎 = 0.12 (green diamonds). The
insets show the droplet cross-section in the 𝑦𝑧 plane at different conditions.
Adapted from (GUILHERME et al., 2023, p. 16). © 2023 by American
Physical Society.
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The same rationale applies to the field-induced viscous-softening behavior, or
equivalently, the magnetic-thinning effect of 𝜂2 when the external field is in the 𝑧 direction
[Fig. 4.12(c)]. Increasing 𝐶𝑎𝑚𝑎𝑔 and stretching the droplet in the 𝑧 direction leads to
compression terms stronger than the corresponding traction terms because of insufficiently
strong changes in the droplet curvature [see Fig. 4.13(c)]. This time, increasing 𝐶𝑎

decreases the curvature at the droplet tips in the 𝑦 direction more than the anisotropic
terms associated with 𝜎𝑑

𝑦𝑦, while the curvature at the droplet tips in the 𝑧 direction and
the anisotropic terms associated with 𝜎𝑑

𝑧𝑧 does not change substantially. As a result, the
difference of the traction terms becomes more important so 𝜂2 increases, characterizing a
second-extensional-thickening behavior. In summary, 𝜂2 falls with 𝐶𝑎𝑚𝑎𝑔 and grows with
𝐶𝑎 [Fig. 4.12(c)].

The latter result deserves a special remark. Unlike the field-induced viscous-
hardening behavior observed in the cases where the external field is applied in the 𝑥
and 𝑦 directions, the external field in the 𝑧 direction induces a viscous-softening behavior
of the droplet contribution to the second extensional viscosity, 𝜂2. This contribution
eventually achieves negative values at low 𝐶𝑎 and high 𝐶𝑎𝑚𝑎𝑔. Therefore, in this case,
increasing the external field intensity mitigates the difficulty added by the droplet in
imposing the bulk extensional kinematics in the 𝑦𝑧 plane; when 𝜂2 is negative, the droplet
facilitates the bulk motion in this plane. It is worth mentioning, however, that although
the presence of the droplet can facilitate the bulk emulsion motion in the 𝑦𝑧 plane (when
in the presence of external magnetic fields), the emulsion second extensional viscosity
itself, 𝜂𝑐𝑟𝑜𝑠𝑠, is not necessarily negative due to the remaining Newtonian part [see Sec. 2.3].

4.3 External magnetic fields applied in a direction different from
one of the flow main directions

We now take 𝐻0 =
(︁
𝑒𝑥 + 𝑒𝑦

)︁
/
√

2, so that the external magnetic field is perpen-
dicular to the 𝑧 axis and parallel to the 𝑥 = 𝑦 plane. With this configuration, the droplet
does not achieve a steady shape at 𝐶𝑎 = 0.12 and 𝐶𝑎𝑚𝑎𝑔 ≥ 2, at 𝐶𝑎 = 0.1 and 𝐶𝑎𝑚𝑎𝑔 ≥ 6,
and at 𝐶𝑎 = 0.08 and 𝐶𝑎𝑚𝑎𝑔 ≥ 16. We explore the parameter space accordingly.

4.3.1 Droplet configuration

Figure 4.14 shows a three-dimensional view of the droplet at 𝐶𝑎 = 0.02 and
𝐶𝑎𝑚𝑎𝑔 = 20. Even though symmetric with respect to the 𝑥𝑦 plane, the prolate-like droplet
is not symmetric with respect to the 𝑥 and 𝑦 axis separately. The droplet configuration
is now assessed with the Taylor’s deformation parameter 𝐷 and the angle 𝜃 between
the droplet major axis and the 𝑥 axis (see Sec. 2.5). Figure 4.15 shows how 𝐷 and 𝜃

(normalized by 𝜋/4) vary with 𝐶𝑎𝑚𝑎𝑔 and 𝐶𝑎. Viscous and magnetic forces stretch the
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Figure 4.14 – Three-dimensional view of the prolate-like droplet at 𝐶𝑎 = 0.02 when the
external magnetic field is applied in the 𝑥 = 𝑦 direction at 𝐶𝑎𝑚𝑎𝑔 = 20. The
droplet shape is projected on each plane (black), flow streamlines outside
the droplet are projected on the 𝑥𝑦 plane (blue), and magnetic field lines
outside the droplet are projected on the 𝑥𝑧 and 𝑦𝑧 plane (red). The angle
𝜃 is determined by the droplet major axis and the 𝑥 axis. Reprinted from
(GUILHERME et al., 2023, p. 17). © 2023 by American Physical Society.

droplet in directions that are neither parallel nor perpendicular to one another. The viscous
forces are responsible for flow-induced extension in the 𝑥 direction, whereas the magnetic
forces are responsible for field-induced extension in the 𝑥 = 𝑦 direction. The magnetic
force can be generally split into three components: one that collaborates with viscous
extension in the 𝑥 direction; one that counteracts viscous compression in the 𝑦 direction;
and one that collaborates with viscous compression in the 𝑧 direction. It follows that 𝐷
grows with both 𝐶𝑎𝑚𝑎𝑔 and 𝐶𝑎 [Fig. 4.15(a)].

Figure 4.15 – (a) Droplet distortion (𝐷) and (b) orientation (𝜃, normalized by 𝜋/4) as
a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic field is applied in the
𝑥 = 𝑦 direction. The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04
(blue squares), 𝐶𝑎 = 0.06 (red triangles), 𝐶𝑎 = 0.08 (green diamonds), and
𝐶𝑎 = 0.1 (magenta stars). The insets show the droplet cross-section in the
𝑥𝑦 plane at different conditions. Adapted from (GUILHERME et al., 2023,
p. 17). © 2023 by American Physical Society.
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The balance between viscous and magnetic forces also determines the droplet
orientation in the flow. While the former tends to align the droplet major axis with the
direction of flow extension, the latter tends to align the droplet major axis with the external
field direction. At fixed 𝐶𝑎𝑚𝑎𝑔, 𝜃 decreases as 𝐶𝑎 increases; conversely, at fixed 𝐶𝑎, 𝜃
increases as 𝐶𝑎𝑚𝑎𝑔 increases. Hence, 𝜃 grows with 𝐶𝑎𝑚𝑎𝑔 and the curves of 𝜃 vs. 𝐶𝑎𝑚𝑎𝑔 shift
upwards as 𝐶𝑎 falls [Fig. 4.15(b)]. The droplet orientation is 0 < 𝜃 < 𝜋/4; we expect 𝜃 = 0
as 𝐶𝑎𝑚𝑎𝑔/𝐶𝑎→ 0 (or in the absence of external field) and 𝜃 = 𝜋/4 as 𝐶𝑎𝑚𝑎𝑔/𝐶𝑎→∞
(or in the absence of external flow). The predictions also suggest that the dependence of
𝐷 on 𝐶𝑎 and of 𝜃 on 𝐶𝑎𝑚𝑎𝑔 becomes weaker as 𝐶𝑎𝑚𝑎𝑔 grows stronger. That is, there is
a threshold value of 𝐶𝑎𝑚𝑎𝑔 above which a further increase in 𝐶𝑎𝑚𝑎𝑔 changes 𝐷 without
changing 𝜃, which becomes a function of 𝐶𝑎 only.

Figure 4.16 shows the 𝑧 component of the flow vorticity and flow streamlines near
the droplet in the 𝑥𝑦 plane at 𝐶𝑎 = 0.04 and 𝐶𝑎𝑚𝑎𝑔 = 16 [see Fig. 4.8 for comparison]. The
tilted configuration, promoted by the magnetic forces when the magnetic field is applied in
the 𝑥 = 𝑦 direction, changes the way the flow inside the droplet interacts with the external
flow. The viscous forces induced by the new surrounding flow push the two vortices of
negative vorticity toward the droplet tips and eventually merge the two vortices of positive
vorticity into a large vortex around the droplet center. We also tested the field in the
𝑥 = −𝑦 direction to investigate if the negative vortices that merge one another, and that is
indeed the case. In both cases, the flow inside the droplet becomes characterized by three
recirculation regions, highlighting an intriguing field-induced topological transformation of
the flow pattern at the droplet scale. By way of information, the merge of the vortices
happens gradually as long as 𝐶𝑎𝑚𝑎𝑔 increases and the droplet elongates.

Figure 4.16 – 𝑧 component of the flow vorticity (𝜉 = ∇×𝑢) and flow streamlines in the 𝑥𝑦
plane. The result is for 𝐶𝑎 = 0.04 when the external magnetic field is applied
in the 𝑥 = 𝑦 direction at 𝐶𝑎𝑚𝑎𝑔 = 16. Reprinted from (GUILHERME et al.,
2023, p. 19). © 2023 by American Physical Society.
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Figure 4.17 – Magnitude of the magnetic field and magnetic field lines in the 𝑥𝑦 plane. The
result is for 𝐶𝑎 = 0.1 when the external magnetic field is applied in the 𝑥 = 𝑦
direction at 𝐶𝑎𝑚𝑎𝑔 = 4. The arrows (not to scale) indicate the direction of
the external field 𝐻0 and the direction of the system magnetization ⟨𝑀⟩;
𝜃𝑚𝑎𝑔 is the angle between them. Reprinted from (GUILHERME et al., 2023,
p. 18). © 2023 by American Physical Society.

4.3.2 Emulsion magnetization

Figure 4.17 shows the magnetic field intensity and lines near the droplet in the 𝑥𝑦
plane at 𝐶𝑎 = 0.1 and 𝐶𝑎𝑚𝑎𝑔 = 4 [refer to Fig. 4.9 for comparison]. The magnetic field
inside the droplet remains uniform due to its ellipsoidal shape, but the field lines are no
longer parallel to the external field direction. Notably, the regions of higher or lower field
intensity outside the droplet, close to the interface, are not symmetric and differ from
the regions of maximum or minimum curvature at the droplet tips. Consequently, the
magnetic force, which is a function of ∇𝐻 and acts normal to the interface, induces a
torque, due to the conservation of volume of the droplet, that causes the droplet major
axis to lean counterclockwise around the 𝑧 axis (towards the external field direction). As
the ferrofluid is superparamagnetic, the droplet magnetization is parallel to the magnetic
field inside the droplet. Thus, the primary effect of the magnetic torque is to align the
droplet magnetization with the external field. In the absence of the external flow, the
droplet magnetization would be in the direction of the external field. The viscous forces
induced by the external flow, however, tend to tilt the droplet major axis clockwise around
the 𝑧 axis (towards the direction of flow extension), which forms an angle 𝜃𝑚𝑎𝑔 between
the droplet magnetization 𝑀𝑑 and the external field 𝐻0 [see Fig. 4.17], and hence induces
a magnetic torque at the droplet level. 𝜃𝑚𝑎𝑔 varies as long as the droplet configuration
changes, which in turn varies 𝜃𝑚𝑎𝑔 and the magnetic and viscous torques relation. When
the droplet achieves a stationary configuration, the torques balance one another, and 𝜃𝑚𝑎𝑔

reaches a steady state. Note that the droplet only tilts in the extensional flow because the
external field is not aligned with one of the flow main directions.
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Figure 4.18 – (a) Magnitude of the droplet magnetization (𝑀𝑑) as a function of 𝐶𝑎𝑚𝑎𝑔. The
results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04 (blue squares), 𝐶𝑎 = 0.06
(red triangles), 𝐶𝑎 = 0.08 (green diamonds), and 𝐶𝑎 = 0.1 (magenta
stars). (b) Angle between the ferrofluid emulsion bulk magnetization and the
external field direction (𝜃𝑚𝑎𝑔, in degrees) as a function of 𝐶𝑎. The results
are for 𝐶𝑎𝑚𝑎𝑔 = 2 (black circles), 𝐶𝑎𝑚𝑎𝑔 = 4 (blue squares), 𝐶𝑎𝑚𝑎𝑔 = 8 (red
triangles), 𝐶𝑎𝑚𝑎𝑔 = 12 (green diamonds), 𝐶𝑎𝑚𝑎𝑔 = 16 (magenta stars), and
𝐶𝑎𝑚𝑎𝑔 = 20 (yellow pentagons). In both cases, the external magnetic field is
applied in the 𝑥 = 𝑦 direction. Adapted from (GUILHERME et al., 2023,
p. 20). © 2023 by American Physical Society.

Macroscopically, the ferrofluid emulsion no longer responds as a superparam-
agnetic material, as there is a small angle 𝜃𝑚𝑎𝑔 between the system magnetization
⟨𝑀⟩ and the external field 𝐻0 [see Fig. 4.17]. Conversely, the bulk emulsion experi-
ences a field-induced internal torque 𝜏𝑚𝑎𝑔 = (𝐶𝑎𝑚𝑎𝑔/𝐶𝑎)⟨𝑀⟩ ×𝐻0 whose intensity is
𝜏𝑚𝑎𝑔 = (𝐶𝑎𝑚𝑎𝑔/𝐶𝑎)𝛽𝑀𝑑 sin 𝜃𝑚𝑎𝑔. Figure 4.18 shows 𝑀𝑑 as a function of 𝐶𝑎𝑚𝑎𝑔 and 𝜃𝑚𝑎𝑔

as a function of 𝐶𝑎. Increasing the external field intensity stretches and tilts the droplet
towards the external field direction [see Fig. 4.15]. Both effects decrease the droplet de-
magnetizing factor, so that 𝑀𝑑 grows with 𝐶𝑎𝑚𝑎𝑔 [Fig. 4.18(a)]. Increasing the strength
of viscous forces also stretches the droplet, but hinders the droplet alignment with the
external field direction [see Fig. 4.15]. It turns out that the combined action of these
two effects is not consequential to the droplet demagnetizing factor so that 𝑀𝑑 is nearly
constant with 𝐶𝑎 [Fig. 4.18(a)]. Additionally, 𝜃𝑚𝑎𝑔 increases close to linearly with 𝐶𝑎

and is a weak function of 𝐶𝑎𝑚𝑎𝑔 [Fig. 4.18(b)]. This suggests that the flow is the main
responsible for promoting field-induced internal torques in the bulk emulsion, provided that
an external magnetic field exists to trigger the droplet magnetization. Figure 4.19 shows
𝜏𝑚𝑎𝑔 (normalized by 𝛽) increases with 𝐶𝑎𝑚𝑎𝑔 and is approximately independent of 𝐶𝑎. The
rationale is the following: first, 𝜏𝑚𝑎𝑔 scales with 𝐶𝑎𝑚𝑎𝑔, and increasing 𝐶𝑎𝑚𝑎𝑔 increases 𝑀𝑑

without changing 𝜃𝑚𝑎𝑔; second, even though 𝜏𝑚𝑎𝑔 scales with 1/𝐶𝑎, increasing 𝐶𝑎 increases
𝜃𝑚𝑎𝑔 without changing 𝑀𝑑. Because 𝜃𝑚𝑎𝑔 is generally small, so that sin 𝜃𝑚𝑎𝑔 ≈ 𝜃𝑚𝑎𝑔, the
net effects of changing 𝐶𝑎 on 𝜏𝑚𝑎𝑔 are negligible. In summary, the ferrofluid emulsion
behaves like a bulk material that, when subjected to external magnetic fields, responds to
external extensional loads with field-induced internal torques.

52



Figure 4.19 – Magnitude of the field-induced internal torque in the ferrofluid emulsion
(𝜏𝑚𝑎𝑔, normalized by 𝛽) as a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic
field is applied in the 𝑥 = 𝑦 direction. The results are for 𝐶𝑎 = 0.02 (black
circles), 𝐶𝑎 = 0.04 (blue squares), 𝐶𝑎 = 0.06 (red triangles), 𝐶𝑎 = 0.08
(green diamonds), and 𝐶𝑎 = 0.1 (magenta stars). Adapted from (GUIL-
HERME et al., 2023, p. 20). © 2023 by American Physical Society.

Figure 4.20 – Droplet contribution to the (a) planar extensional viscosity (𝜂𝑝, normalized
by 𝛽) and (b) second extensional viscosity (𝜂2, normalized by 𝛽) of the
ferrofluid emulsion as a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic field is
applied in the 𝑥 = 𝑦 direction. The results are for 𝐶𝑎 = 0.02 (black circles),
𝐶𝑎 = 0.04 (blue squares), 𝐶𝑎 = 0.06 (red triangles), 𝐶𝑎 = 0.08 (green
diamonds), and 𝐶𝑎 = 0.1 (magenta stars). Adapted from (GUILHERME et
al., 2023, p. 21). © 2023 by American Physical Society.

4.3.3 Emulsion rheology

Fig. 4.20 shows 𝜂𝑝 and 𝜂2 as a function of 𝐶𝑎𝑚𝑎𝑔 for different values of 𝐶𝑎. The
trends are qualitatively similar to those discussed for Figs. 4.11 and 4.12 with the external
field applied in the 𝑥 and 𝑦 directions. Because the droplet orientation is 0 < 𝜃 < 𝜋/4
[see Fig. 4.15(b)], the projection of the droplet major axis on the 𝑥 axis is larger than the
projection on the 𝑦 axis. In a simplified manner, the general behavior 𝜂𝑝 and 𝜂2 when the
external field is applied in the 𝑥 = 𝑦 direction can be regarded as a weighted mean of the
behavior when the external field is in the 𝑥 and 𝑦 directions separately, with more weight
for that of the external field in the 𝑥 direction. So, the field-induced viscous-hardening
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behavior (and planar-extensional-thickening) of 𝜂𝑝 in Fig. 4.20(a) is a less pronounced
version of that when the external field is in the 𝑥 direction [see Fig. 4.11(a)]. The same
rationale applies to 𝜂2. The viscous-hardening (and second-extensional-thinning) shown in
Fig. 4.20(b) reflects the results with the external field in the 𝑦 direction [see Fig. 4.12(b)],
but with less pronounced effect due to the almost constant 𝜂2 when the external field is in
the 𝑥 direction.

The steady-state rheology of complex fluids relies on a set of material functions that
can capture the deviatoric part of the stress tensor in a motion with constant stretch history.
The appearance of field-induced internal torques in the system implies that the droplet
stress is no longer symmetric and contributes with shear stresses to the bulk stress tensor
of the ferrofluid emulsion. As the two usual extensional viscosity coefficients are associated
with normal stresses only, we must introduce new material functions to account for these
unexpected shear stresses and fully characterize the stress state in planar extension. The
parallel with shear rheology is straightforward: even though the rate-of-strain tensor
only has shear components in viscometric flows, one still defines viscometric material
functions associated with normal stresses. It is important to make a distinction between
extensional motion and extensional loading at this point. The existence of shear stresses
in extensional flows is related to the anisotropic nature of the fluid microstructure. Shear
stresses appear as a macroscopic response to sustain the imposed extensional motion when
the microstructure orientation is not aligned with one of the flow main directions. Here,
the microstructure of the ferrofluid emulsion consists of ferrofluid droplets whose intrinsic
orientation is affected by the external field configuration. Additionally, it is instructive
to revisit the definition of the droplet stress in Eq. (4.1). Because the droplet is now
tilted with respect to the references axes, changes in the sign of the shear components
of 𝑥𝑛̂ at the interface are not exactly antisymmetric; likewise, the distributions of 𝜅 and
‖𝐻‖2 at the interface are not exactly symmetric [see Fig. 4.17]. As a result, the shear
components of the integrals of 𝜅𝑥𝑛̂ and ‖𝐻‖2𝑥𝑛̂ over 𝑆 do not vanish; instead, they lead
to nonsymmetric shear stresses in 𝜎𝑑.

Let 𝑆𝑑 and 𝑊 𝑑 be the symmetric and skew-symmetric parts of 𝜎𝑑, respectively.
We now define 𝜂𝑠 = 𝑆𝑑

𝑥𝑦 and 𝜂𝑟 = 𝑊 𝑑
𝑥𝑦 as the dimensionless droplet contribution to

the shear and rotational viscosity coefficients of ferrofluid emulsions in planar extension,
respectively. Note that 𝜂𝑠 and 𝜂𝑟 are new material functions associated with shear stresses
in the 𝑥𝑦 plane of the planar extensional flow. Figure 4.21 shows 𝜂𝑠 and 𝜂𝑟 as a function
of 𝐶𝑎𝑚𝑎𝑔 for different values of 𝐶𝑎. Because the shear stresses in the bulk emulsion are in
the clockwise direction [see Figs. 4.17 and 4.16], 𝜎𝑑

𝑦𝑥 is positive and 𝜎𝑑
𝑥𝑦 is negative. To

explain this further, we analyze the traction and compression terms of the droplet stress
separately [see Eqs. (4.2) and (4.3)]. The traction contributions to 𝜎𝑑

𝑥𝑦 and 𝜎𝑑
𝑦𝑥 are both

positive because the regions of high/low curvature at the interface coincide with those
where the shear components of 𝑥𝑛̂ are positive/negative. However, these contributions
are equal to one another because the curvature distribution is symmetric with respect
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Figure 4.21 – Droplet contribution to the (a) shear viscosity (𝜂𝑠, normalized by 𝛽) and
(b) rotational viscosity (𝜂𝑟, normalized by 𝛽) of the ferrofluid emulsion
as a function of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic field is applied in the
𝑥 = 𝑦 direction. The results are for 𝐶𝑎 = 0.02 (black circles), 𝐶𝑎 = 0.04
(blue squares), 𝐶𝑎 = 0.06 (red triangles), 𝐶𝑎 = 0.08 (green diamonds), and
𝐶𝑎 = 0.1 (magenta stars). Adapted from (GUILHERME et al., 2023, p. 22).
© 2023 by American Physical Society.

to the droplet major axis. Following the same rationale, the compression contributions
to 𝜎𝑑

𝑥𝑦 and 𝜎𝑑
𝑦𝑥 are both negative because the magnetic field intensity near the droplet is

higher/lower near the regions where the shear components of 𝑥𝑛̂ are positive/negative.
Nevertheless, the distribution of magnetic field intensity near the interface is not symmetric
with respect to the droplet major axis. The regions of high field intensity are dislocated
in the counterclockwise direction from the droplet tips towards the regions where the 𝑥𝑦
component of 𝑥𝑛̂ is positive. Moreover, as the droplet orientation is 0 < 𝜃 < 𝜋/4 [see
Fig. 4.15(b)], the 𝑥𝑦 component of 𝑥𝑛̂ is positive over a larger portion of the interface.
The compression contribution to 𝜎𝑑

𝑥𝑦 is thus more intense than that associated with 𝜎𝑑
𝑦𝑥.

As a result, 𝜂𝑠 is negative; based on the role 𝐶𝑎𝑚𝑎𝑔 and 𝐶𝑎 play in the droplet distortion
and orientation in the flow [see Fig. 4.15], it follows that 𝜂𝑠 falls with 𝐶𝑎𝑚𝑎𝑔 and grows
with 𝐶𝑎 [Fig. 4.21(a)]. The rotational viscosity is strictly associated with the field-induced
internal torque [see Fig. 4.19], so that 𝜂𝑟 simply scales with 𝜏𝑚𝑎𝑔 [Fig. 4.21(b)]. The fact
that 𝜂𝑟 is negative just reflects that the droplet contribution to the macroscopic flow
opposes the magnetic torque induced at the droplet surface.

These results clarify the fact that if the external field direction is not in any of the
main planes (𝑥𝑦, 𝑦𝑧, and 𝑧𝑥), the lack of symmetry with respect to these planes would
lead to nonsymmetric shear stresses in all of them. In this case, it would be necessary
to assess eight material functions in order to fully characterize the stress state in planar
extension: the planar extensional viscosity, the second extensional viscosity, three pairs of
shear and rotational viscosity coefficients associated with the shear stresses in each plane.
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4.4 Conditions for stable ferrofluid emulsions: analysis of droplet
breakup

In the previous sections, we have established the microstructure, magnetization,
and planar extensional rheology of dilute ferrofluid emulsions. Now, we seek to determine
and give some reasoning on the planar extensional flow conditions in which a ferrofluid
emulsion submitted to an external magnetic field remains stable, i.e., the conditions in
which the ferrofluid droplet does not break up and achieves a steady shape state. For this
analysis, we will consider two decades of 𝜆: from 𝜆 = 0.1 to 𝜆 = 10; and the external
magnetic field applied in each of the three flow’s main directions. The critical capillary
number, 𝐶𝑎𝑐 = 𝐶𝑎𝑐(𝐶𝑎𝑚𝑎𝑔,𝐻0/‖𝐻0‖;𝜆), is the parameter under investigation, obtained
via the procedure described in Sec. 2.6.

Before proceeding to the investigation of the role of the magnetic fields in the
droplet breakup, we analyze the case in which the magnetic field is absent. Recalling the
description of the breakup process for 𝜆 = 1 highlighted in Sec. 4.1.1, we have that for
above a certain value of 𝐶𝑎, the flow induces a shift in the surface curvature at the central
portion (see Fig. 4.23). Once this point is reached, the droplet distortion continuously
increases, and no steady shapes seem to be possible. This process is referred to as droplet
breakup, which is consistent with the descriptions of (TAYLOR, 1934; GRACE, 1982;
RUMSCHEIDT; MASON, 1961; BENTLEY; LEAL, 1986; BIBEN et al., 2003). Indeed, if
the flow is abruptly stopped after a large droplet elongation, the droplet disintegrates into
many smaller droplets (RUMSCHEIDT; MASON, 1961; BIBEN et al., 2003).
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Figure 4.22 – Critical capillary number (𝐶𝑎𝑐) as a function of 𝜆 with no magnetic field
(𝐶𝑎𝑚𝑎𝑔 = 0): present work (black circles), experimental results of Bentley and
Leal (1986) and Grace (1982) (green circles and red triangles, respectively),
second order small deformation theory by Bentley and Leal (1986) (red line),
and simulation results of Biben et al. (2003) (yellow line). The black lines
inside the black circles represent the error bars of our estimations.
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Figure 4.23 – Clip of the breakup process in the absence of magnetic field (𝐶𝑎𝑚𝑎𝑔 = 0) for
𝜆 = 1 with 𝐶𝑎 = 0.12. The curvatures in the 𝑥𝑦 plane and in the 𝑥𝑧 plane
are "flattened" at around the same time (𝑡 = 7.5) in the central portion,
although the deformations in the respective planes are not the same. From
that time, the surface in the central portion becomes concave.

Figure 4.22 shows 𝐶𝑎𝑐 as a function of 𝜆 for a viscous regular droplet subjected to
a planar extensional flow. We also present the experimental results of Grace (1982) and
Bentley and Leal (1986) (both measured in four-roll mill apparatus), the second-order
small deformation theory of Bentley and Leal (1986), and the numerical results of Biben
et al. (2003), who performed simulations using an uniaxial extensional flow. The error
bars inside the black circles are sized by the Δ𝐶𝑎 used and centered at the measured 𝐶𝑎𝑐.
For planar extensional flows, 𝐶𝑎𝑐 slightly varies with 𝜆, only around 0.05 in two decades
of change in 𝜆, with low droplet viscosities requiring more flow strength to be broken
out. This is attributed to the fact that as the viscosity ratio increases, for the same flow
strength, the viscous stress at the droplet surface increases, hence the droplet becomes
more likely to be distorted by the flow, as can be seen in Fig. 4.24 for 𝐶𝑎 = 0.09. We
found that the breakup process described above is qualitatively the same for all studied
𝜆. The results of Fig. 4.22 confirm the reliability of the used grid spacing and estimation
procedure.

Figure 4.24 – Droplet steady shape for 𝐶𝑎 = 0.09 and different 𝜆 with no magnetic field
(𝐶𝑎𝑚𝑎𝑔 = 0). The ratio 𝐶𝑎/𝐶𝑎𝑐 for each case is from left to right: 0.58, 0.78,
and 0.95.

4.4.1 Magnetic field applied in one of the flow main directions

Figure 4.25 shows the critical capillary number as a function of 𝜆. The results
are for different values of 𝐶𝑎𝑚𝑎𝑔 when the external magnetic field is applied in the 𝑥, 𝑦,
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Figure 4.25 – Critical capillary number (𝐶𝑎𝑐) as a function of 𝜆 when the external magnetic
field is applied in (a) 𝑥 direction, (b) 𝑦 direction, and (c) 𝑧 direction. The
results are for 𝐶𝑎𝑚𝑎𝑔 = 0 (black circles), 𝐶𝑎𝑚𝑎𝑔 = 10 (blue circles), and
𝐶𝑎𝑚𝑎𝑔 = 20 (red circles). The strip thickness corresponds to the measurement
error margin.

and 𝑧 direction. We see that the external magnetic field can either facilitate or hinder
the breakup process of ferrofluid droplets depending on the magnetic field direction, with
its effect being proportional to the magnetic field intensity. When the magnetic field is
applied in the 𝑥 direction, the field-induced distortion occurs in the same direction as the
flow-induced one; hence, the required flow strength to induce breakup is lower so that 𝐶𝑎𝑐

decreases [see Fig. 4.25(a)]. On the other hand, for magnetic fields applied in the 𝑦 and
𝑧 direction, the field-induced forces are perpendicular to the extension direction so the
distortion in this direction is hardened due to droplet incompressibility, and consequentially
𝐶𝑎𝑐 increases [see Figs. 4.25(b) and (c)]. The hardening effect is more pronounced when
the magnetic field is applied in the 𝑧 direction rather than in the 𝑦 direction. This is due to
the fact that when the magnetic field is applied in the neutral direction (𝑧 direction), the
droplet distorts in that direction and the droplet radius in the extension plane (and the
effective 𝐶𝑎) decreases so the required 𝐶𝑎𝑐 increases. Overall, the tendency of 𝐶𝑎𝑐 with 𝜆
seems to be not affected by the presence of the magnetic field, at least in the observed
range of 𝜆 and 𝐶𝑎𝑚𝑎𝑔. This fact indicates a weak coupling between the effects of 𝜆 and
𝐻0 on the droplet breakup. In light of this, we can study more precisely the effects of the
magnetic field on the droplet breakup for a specific 𝜆, say 𝜆 = 1, and expect the results to
be qualitatively similar for the others, at least in some limiting fashion.

Figure 4.26(a) shows 𝐶𝑎𝑐 as a function of 𝐶𝑎𝑚𝑎𝑔 for 𝜆 = 1 and the external
magnetic field applied in each of the flow main directions with 𝐶𝑎𝑚𝑎𝑔 up to 𝐶𝑎𝑚𝑎𝑔 = 40.
The results confirm the overall trends discussed above and enlighten for possible saturation
effect. For magnetic fields applied in the 𝑥 direction, the 𝐶𝑎𝑐 reduction that an additional
increase in 𝐶𝑎𝑚𝑎𝑔 causes is smaller as 𝐶𝑎𝑚𝑎𝑔 increases. From 𝐶𝑎𝑚𝑎𝑔 = 0 to 𝐶𝑎𝑚𝑎𝑔 = 10,
the 𝐶𝑎𝑐 decreases by roughly 0.06, whereas from 𝐶𝑎𝑚𝑎𝑔 = 30 to 𝐶𝑎𝑚𝑎𝑔 = 40, it decreases
only by 0.01. A similar attenuation curve occurs when the magnetic field is applied in either
𝑦 or 𝑧 direction. This attenuation behavior is believed to be related to the hardening-like
response of the field-induced distortion [see Fig. 4.3]. Figure 4.26(b) shows the subcritical
deformations in the 𝑥𝑦 plane (𝐷𝑠;𝑥𝑦) and in the 𝑥𝑧 plane (𝐷𝑠;𝑥𝑧) as a function of 𝐶𝑎𝑐 for
different 𝐶𝑎𝑚𝑎𝑔 and external magnetic field direction. The subcritical deformations are
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Figure 4.26 – (a) Critical capillary number (𝐶𝑎𝑐) as a function of 𝐶𝑎𝑚𝑎𝑔 for 𝜆 = 1 and
different external magnetic field directions, and (b) subcritical droplet defor-
mation in the 𝑥𝑦 plane (𝐷𝑠;𝑥𝑦, circles) and in the 𝑥𝑧 plane (𝐷𝑠;𝑥𝑧, crosses) as
a function of 𝐶𝑎𝑐 for different 𝐶𝑎𝑚𝑎𝑔 and external magnetic field directions.
Red strips and symbols refer to the 𝑥 direction, blue ones to the 𝑦 direction,
and green ones to the 𝑧 direction. The subcritical deformations for the case
without a magnetic field are also shown in (b) (black symbols). In (b), each
point corresponds to the (𝐶𝑎𝑐, 𝐶𝑎𝑚𝑎𝑔) pair in (a). The black arrows show
the 𝐶𝑎𝑚𝑎𝑔 increasing direction. The black line graphs the linear equation
𝐷𝑠 = 0.86± 0.02 + (−4.93± 0.14)𝐶𝑎𝑐.

measured for the last stable cases in which further increment by Δ𝐶𝑎 in 𝐶𝑎 would lead
to breakup. We see that although the magnetic field applied in the 𝑥 direction decreases
𝐶𝑎𝑐, it enables the droplet to reach more elongated stable shapes: from 𝐷𝑠;𝑥𝑦 = 0.42 for
𝐶𝑎𝑚𝑎𝑔 = 5 to 𝐷𝑠;𝑥𝑦 = 0.75 for 𝐶𝑎𝑚𝑎𝑔 = 40. Moreover, as 𝐶𝑎𝑚𝑎𝑔 increases, the influence
of the planar extensional flow on the final shape becomes less important in the way that
𝐷𝑠;𝑥𝑧 approaches 𝐷𝑠;𝑥𝑦. When applied in the 𝑦 direction, an opposite trend occurs: as the
pair (𝐶𝑎𝑚𝑎𝑔, 𝐶𝑎𝑐) increases the subcritical configuration becomes more stretched in the
𝑦 direction than in the 𝑥 direction, reaching 𝐷𝑠;𝑥𝑦 = −0.2 for 𝐶𝑎𝑚𝑎𝑔 = 40, while 𝐷𝑠;𝑥𝑧

keeps about the same value as if there were no magnetic field. Here we recall the fact
that, in the absence of magnetic fields, the curvature in the 𝑥𝑦 is flattened at the same
time as the curvature in the 𝑥𝑦 plane, so both have the same importance in the breakup
process (see Fig. 4.23). This indicates that the curvature of the droplet surface in the 𝑥𝑧
can be the main responsible for the droplet breakup when the magnetic field is applied
in the 𝑦 direction with enough intensity. In that case, while the magnetic forces compete
with the flow-induced compression in the 𝑦 direction, the droplet is compressed in the 𝑧
direction. From above a certain value of distortion in the 𝑥𝑧 plane, the surface curvature
in that plane at the central portion becomes negative, and the breakup process starts
regardless of the surface curvature in the 𝑥𝑦 plane. Figure 4.27 shows the 𝑥𝑦 and 𝑥𝑧 plane
perspectives of the droplet during the breakup process for 𝐶𝑎𝑚𝑎𝑔 = 40 and 𝐶𝑎 = 0.23 when
the magnetic field is applied in the 𝑦 direction. We see that indeed the 𝑥𝑧 cross-section
becomes concave at the central portion prior to the 𝑥𝑦 cross-section (at around 𝑡 ≈ 18),
and as a consequence, the droplet distortion in the 𝑥 direction is accelerated, which in
turn leads to negative curvatures also in the 𝑥𝑦 cross-section.
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Figure 4.27 – Droplet breakup process for magnetic field applied in the 𝑦 direction with
𝐶𝑎𝑚𝑎𝑔 = 40 and 𝐶𝑎 = 0.23 from the 𝑥𝑦 plane perspective (top figures), and
from the 𝑥𝑧 plane perspective (bottom figures).

We see a similar trend when the magnetic field is applied in the 𝑧 direction. In
this case, however, 𝐷𝑠;𝑥𝑦 and 𝐷𝑠;𝑥𝑧 have their trends inverted: as the pair (𝐶𝑎𝑚𝑎𝑔, 𝐶𝑎)
increases, 𝐷𝑠;𝑥𝑧 becomes more pronounced, and 𝐷𝑠;𝑥𝑦 keeps about the same value as if
there were no magnetic field. This suggests that the surface curvature in the 𝑥𝑦 plane at
the central portion is responsible for initiating the breakup process when the magnetic
field is applied in the 𝑧 direction. Figure 4.28 shows the 𝑥𝑦 and 𝑥𝑧 plane perspectives of
the droplet during the breakup process for 𝐶𝑎𝑚𝑎𝑔 = 25 and 𝐶𝑎 = 0.23 when the magnetic
field is applied in the 𝑧 direction. This time, the surface becomes concave first in the 𝑥𝑦
cross-section (at around 𝑡 ≈ 7.5).

Despite the odd breakup behavior observed when the magnetic field is applied in
the 𝑦 or 𝑧 direction for 𝐶𝑎 > 𝐶𝑎𝑐, the droplet shapes when 𝐶𝑎 is close to 𝐶𝑎𝑐, i.e., the
subcritical shapes, are always ellipsoidal, as shown in Fig. 4.29. A further noteworthy
aspect regarding the subcritical deformations is that the 𝐷𝑠;𝑥𝑦 and 𝐷𝑠;𝑥𝑧 vary linearly with
𝐶𝑎𝑐 regardless of the applied magnetic field direction and intensity [see Fig. 4.26(b)]. In
fact, they seem to obey very similar trends. A slope of (−4.93± 0.14)𝐶𝑎𝑐 was observed
for both 𝐷𝑠;𝑥𝑦 and 𝐷𝑠;𝑥𝑧 for the magnetic field applied in the 𝑥 direction, 𝐷𝑠;𝑥𝑦 for the
magnetic field applied in the 𝑦 direction, and 𝐷𝑠;𝑥𝑧 for the magnetic field applied in the 𝑧
direction. This indicates that 𝐶𝑎𝑐 is tightly linked to the subcritical deformations 𝐷𝑠;𝑥𝑦

and 𝐷𝑠;𝑥𝑧 regardless of the magnetic field intensity and direction. In view of that, we could
estimate the subcritical deformations of ferrofluid droplets subjected to external magnetic

Figure 4.28 – Droplet breakup process for magnetic field applied in the 𝑧 direction with
𝐶𝑎𝑚𝑎𝑔 = 25 and 𝐶𝑎 = 0.23 from the 𝑥𝑦 plane perspective (top figures), and
from the 𝑥𝑧 plane perspective (bottom figures).
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h
Figure 4.29 – Droplet subcritical shapes for 𝜆 = 1 with 𝐶𝑎𝑚𝑎𝑔 = 40 and the magnetic field

applied in the (a) 𝑥 direction, (b) 𝑦 direction, and 𝑧 direction. 𝐶𝑎 is equal
to 0.02, 0.22, and 0.25, respectively.

fields with certain accuracy by simply knowing the critical capillary number.

It is known that in the absence of magnetic fields, the droplet reaches very long
slender shapes without breaking up, in the way that the experimental devices or numerical
domains are not able to see the rupture happen. This was the case for our computational
domain of size 𝑆𝑥 = 20 in the extension direction. This was also the case in almost all
our numerical experiments with external magnetic fields. Exceptions occur at 𝐶𝑎𝑚𝑎𝑔 ≥ 35
when the magnetic field is applied in the 𝑧 direction. Figure 4.30 shows the breakup of the
droplet into two daughter droplets of the same size at 𝐶𝑎𝑚𝑎𝑔 = 35 with 𝐶𝑎 = 0.25. The
intense magnetic field in the 𝑧 direction tapers the droplet in the 𝑥𝑦 plane. As a result,
the droplet becomes more susceptible to being ripped in smaller elongations. It should
be mentioned that although the method accurately predicts the condition the breakup
occurs, the post-breakup dynamics [e.g. from 𝑡 > 10.5 in Fig. 4.30] is unphysical due to
the finite size of the grid which, in turn, leads to incorrect computation of the curvature
and smoothed properties near the point of rupture (a singularity).

Figure 4.30 – Droplet breakup process for magnetic field applied in the 𝑧 direction with
𝐶𝑎𝑚𝑎𝑔 = 35 and 𝐶𝑎 = 0.25 from the 𝑥𝑦 plane perspective (top figures), and
from the 𝑥𝑧 plane perspective (bottom figures).
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5 Concluding remarks

In this work, we have performed three-dimensional numerical simulations of super-
paramagnetic ferrofluid droplets suspended in a nonmagnetizable viscous fluid under the
action of planar extensional flows and uniform external magnetic fields. The full incom-
pressible Navier-Stokes equations for a biphase system in a nondimensional form with the
addition of the magnetic term were solved in a Lattice domain using a projection method.
The interface problem was treated with the Level-Set method. Validation tests concerning
the isolated influence of either the flow or the magnetic field on the droplet’s steady shape
confirmed the reliability of the numerical model with respect to hydrodynamic, magnetic,
and interfacial problems. In our simulations, four distinct directions for the external field
were explored: the three main directions of the extensional flow (𝑥, 𝑦, and 𝑧 directions),
and the 𝑥 = 𝑦 direction.

With regard to the droplet dynamics, we found that the shape of the droplet
depends on a tight balance between the viscous, capillary, and magnetic forces at the
droplet surface. These forces, in turn, are connected with the external field intensity and
direction. While the capillary forces try to keep the spherical shape of the droplet, the
flow-induced viscous forces stretch the droplet in the extension direction and compress it
in the compression direction, and the field-induced forces tend to stretch the droplet in
the external field direction. If the droplet reaches a steady shape, it assumes the form of a
general ellipsoid. Under certain conditions, when the external field is in the compression
or neutral direction, the droplet assumes an oblate shape. The required 𝐶𝑎𝑚𝑎𝑔 to obtain
such a shape, 𝐶𝑎⋆

𝑚𝑎𝑔, varies linearly with 𝐶𝑎, at least in the observed range of parameters.

When the extension rate is sufficiently high, the flow-induced viscous forces lead
the system to an unsteady situation in which the droplet is continuously stretched until
breakup. The critical capillary number, 𝐶𝑎𝑐, which marks the transition between steady
and breakup situations, is a function of the applied magnetic field intensity and direction.
When applied in the extension direction, the external field induces breakup, whereas it
prevents the droplet from breaking up when applied in the other two main directions.
The way the droplet initiates a continuous elongation also depends on the external field
direction. In the absence of external fields, the curvatures of the 𝑥𝑦 cross-section and that
of the 𝑥𝑧 cross-section change in sign at the same time, even though the deformation
in the respective planes are not equal. When the external field is in the 𝑥 direction, the
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curvatures also change in sign at the same time, but now the deformations approach one
another as long as 𝐶𝑎𝑚𝑎𝑔 increases. When the external field is in the 𝑦 direction, the
curvature of the 𝑥𝑧 cross-section changes in sign before that of the 𝑥𝑦 cross-section. The
deformation in the 𝑥𝑧 plane is comparable to when there is no magnetic field. When the
external field is in the 𝑧 direction, the opposite occurs: the change in sign happens first in
the 𝑥𝑦 cross-section, and the deformation in that plane is comparable to the case with no
magnetic field. If 𝐶𝑎𝑚𝑎𝑔 is sufficiently high, the subcritical shape major axis lies in the
direction of the external field. Despite these interesting variations, the magnetic field does
not change significantly the way 𝐶𝑎𝑐 varies with the viscosity ratio between the phases.

In steady situations, the flow pattern within the droplet, induced by the planar
extensional flow outside, is characterized by four recirculation regions in the 𝑥𝑦 cross-
section with a symmetric distribution with respect to the 𝑥 and 𝑦 direction. This pattern
is also present when the magnetic field is applied in one of the flow main directions since
the droplet shape remains symmetric with respect to the referential axes. A topological
transformation occurs, however, when the magnetic field is applied in the 𝑥 = 𝑦 direction.
In that case, the droplet’s major axis points in a direction between the 𝑥 and 𝑥 = 𝑦

direction. As a result, the viscous forces promote a merger of two vortices, and the flow
pattern is characterized by three recirculation regions.

Another important change occurs when the external field is in a direction different
from the flow’s main directions. The droplet magnetization lies in the direction of the
external field when the latter points in one of the flow main directions. This is due to
the symmetric distribution of the droplet shape with respect to that direction. On the
other hand, when the external field is not in one of the flow main directions the droplet
magnetization direction is no longer parallel to the external field due to a nonsymmetric
distribution in that direction. The angle between the magnetization and the external
field increases with 𝐶𝑎 and is a weak function of 𝐶𝑎𝑚𝑎𝑔. In all cases, the magnetization
intensity is proportional to the droplet elongation in the direction of the external field.

From the continuum perspective, one can regard the single droplet-continuous phase
system as an infinitesimal parcel of a dilute ferrofluid emulsion of corresponding volume
fraction. The droplet configuration corresponds to a microstructural unit of the emulsion,
and the droplet magnetization to the emulsion magnetization. Under the above conclusions
of droplet configuration and magnetization can be extrapolated to the corresponding
dilute ferrofluid emulsion. It means that the microstructure can be anisotropic when the
emulsion is subjected to planar extensional flows. Further, even though the ferrofluid is
superparamagnetic, a dilute ferrofluid emulsion is not. By accounting for the droplet stress,
using the procedure of Cunha et al. (2020), we have also analyzed the effects of external
magnetic fields on the extensional rheology of dilute ferrofluid emulsions.

The extensional rheology is tightly connected with the emulsion’s microstructure
and magnetization. The dispersed phase contribution to the two conventional extensional
viscosities is generally affected by the presence of external magnetic fields. When the
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external field is applied in the 𝑥 direction, the planar extensional viscosity increases with
the field intensity, characterizing a field-induced viscous hardening effect. The second
extensional viscosity, in this case, remains constant. When the field is in the 𝑦 direction,
both coefficients increase with the field intensity. When the field is in the 𝑧 direction,
the planar extensional viscosity remains constant, while the second extensional viscosity
decreases with field intensity, characterizing a field-induced viscous softening effect. This
reduction is such that for enough field intensity, the droplet contribution to the second
extensional viscosity becomes negative, meaning that the presence of the dispersed phase
can facilitate the motion in the 𝑦𝑧 plane. The manner in which these two coefficients vary
with the extension rate can be also modified by the presence of magnetic fields. Changing
the external field direction from the 𝑥 to the 𝑦 direction, the behavior of the emulsion
changes from extensional-thickening to extensional-thinning, with respect to the planar
extensional viscosity.

When the external field is in the 𝑥 = 𝑦 direction, the two extensional viscosities have
field-induced viscous-hardening behavior. The mechanical behavior of the emulsion becomes
planar-extensional-thickening and second-extensional-thinning. These two coefficients,
however, are not enough to fully characterize the extensional rheology in such a case.
Field-induced internal torques appear in the system as the emulsion magnetization is not
parallel to the external field anymore. The hydrodynamic response to this torque results in
a nonsymmetric stress tensor of the bulk emulsion. To account for these unexpected shear
components, we define two new material functions: the shear viscosity and the rotational
viscosity in the 𝑥𝑦 plane. These results clarified the fact that for a general external field
direction, which can for instance point in a direction that does not lie in any main flow
planes, it would be required eight material functions to fully characterize the extensional
rheology. The two usual extensional viscosities, and three pairs of shear and rotational
viscosity coefficients.

Overall, this work provided a detailed assessment of the magnetization and exten-
sional rheology of dilute ferrofluid emulsions in the presence of external uniform magnetic
fields. In addition, it provides an analysis of the dynamics of suspended ferrofluid droplets
in planar extensional flows. We believe these findings contribute to the field-assisted control
of dilute ferrofluid emulsions properties and individual ferrofluid droplets. Moreover, they
evidence the appearance of shear stresses in a material subjected to an extensional motion,
which is of valuable importance to the non-Newtonian fluid mechanics field.

Despite the contributions of this work, many questions regarding the behavior
of ferrofluid emulsions still remain. How the extensional rheology and magnetization of
dilute ferrofluid emulsions are affected if we consider a more general Langevin regime of
magnetization? How the viscosity ratio impacts these properties? How does such emulsion
respond to permanent oscillatory extensional flows? And if we consider the case of highly
concentrated ferrofluid emulsions? These are some of the questions to be addressed in
future works.
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