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Abstract: We show existence and concentration results for a class of p&q critical problems given by
~div (a (?|Vul?) €’ |VulPVu) + V(2)b (Jul?) [ul’2u = f(u) + [u|? 2u inRY,

where u € WHP(RY) 0 WH9(RY), € > 0is a small parameter, 1 < p < ¢ < N, N = 2 and ¢° = Ng/(N -
q). The potential V is positive and f is a superlinear function of C! class. We use Mountain Pass Theorem
and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and
Compactness Principle in order to overcome the lack of compactness.
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1 Introduction

In this paper we are concerned with a class of problems, named p&gq problems type. In the last years the main
interest in this general class of problems has been due to the fact that they arise from applications in physics
and related sciences, such as biophysics, plasma physics and chemical reaction, as it can be seen for example
in [20], [23] and [35]. In addition, such a class of problems encompasses a large class of problems, as can be
seen in [4], [15] and [17].

More precisely, we show existence and concentration results of positive solutions for the critical problem
given by

~div (a (e?|VulP) €?|VulP2vu) + V(z)b (Jul?) [ulP~?u = f(u) + [ul? 2u inRY,
(Pe)
u € WHP(RN) 0 wha(RY),

wheree >0,N>2,1<p<gqg<Nandq =Nq/(N - q). The hypotheses on the function a are the following:
(a1)the function a is of class C! and there exist constants ki, k> = 0 such that

kit? +t? <a(t’)tP < kytP +t1, forall t>0;

a(t?)

(ay)the mapping t » T

is nonincreasing for t > 0;
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(a3)if 1 < p < 2 < N the mapping t » a(t) is nondecreasing for t > 0. If 2 < p < N the mapping t » a(t’)tP~2
is nondecreasing for t > 0.
As a direct consequence of (a,) we obtain that the map a and its derivative a satisfy

a (bt < (q;fp)a(t) forall ¢ > 0. (1.1)

Now if we define the function h(t) = a(t)t- %A(t), using (1.1) we can prove that the function h is nonincreasing.
Then, there exists a positive real constant v > Iﬂ) such that

%a(t)t <A(f), foralltso. (1.2)

The hypotheses on the function b are the following:
(b1)The function b is of class C! and there exist constants k3, k4 = 0 such that

IstP +t9 < b(EP)P < kyt? + ¢4, forall t>O0;

b(¢?)

P is nonincreasing for ¢ > 0.

(by)the mapping t =

(b3)if 1 < p < 2 < N the mapping t » b(t) is nondecreasing for t > 0.If 2 < p < N the mapping t > b(tP)tP~2
is nondecreasing for t > 0.

Using the hypothesis (b,) and arguing as (1.1) and (1.2) we prove that there exists v > g such that

lb(t)t < B(t), forallt=0. (1.3)
0
The nonlinearity f is assumed to be a C! function with the following hypotheses:
" (s)
. S
1 =0
5150 [s]7T
(f2) Thereexists g < r< q" = A‘f—f; such that
lim fs)
BESES

(f3) There exists 6 € (yp, g*) such that

0 < OF(s) < f(s)s for s >0,
S
where F(s) = /f(t)dt and v > 0 was given in (1.2);
0
(fa) s> g—fz is nondecreasing for s > 0.
(fs) There exist T € (g, g*)and A > 1
f(s)=As"t vs>o.

We need to put some hypotheses on the potential V € C(RY).
(V{)There is V > 0, such that
0< Vo< V(z)forall z ¢ RV,

(V3)There exists a bounded domain Q ¢ R such that

0< Vo =inf V(z) < inf V(z).
zeQ z€00
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In order to illustrate the degree of generality of the kind of problems studied here, with adequate hypotheses
on the functions a and b, in the following we present more some examples of problems which are also in-
teresting from the mathematical point of view and have a wide range of applications in physics and related
sciences.

Problem 1: Let a(t) = 1 + t7 and b(t)=1+ ¢’ . In this case we are studying problem
~Apu - Aqu + V) (uP~2u + [u|?2u) = f(u) + |u|q*’2u inRY,

The Problem 1 comes from a general reaction—diffusion system: u; = div(DuVu) + g(x, u), where
Du :=[|Vu[P~?+|Vu|?2]. In such applications, the function u describes a concentration, the term div(DuVu)
corresponds to the diffusion with a diffusion coefficient Du and g(-, u) is the reaction and relates to source
and loss processes. Usually, in chemical and biological applications, the reaction term g(-, u) is a polynomial
of u with variable coefficients.

Problem 2: Let a(t) = % and b(t) = t7 . In this case we are studying problem
—€TAqu + V()|u|7%u = f(u) + |u|q*‘2u in RY

and it is related to the main result showed in [3] in the case g = 2. In [19] the author have studied the case
1<g<N.

Problem 3: Let a(t) = 1 + —1— and b(t) = 1. In this case we are studying problem

p-2
(1+t) »

€eP|VulP2vu
_EIVul Vi

—€P div(|VuP2vu) - div (
(1+ep|Vup)r

) + VOO uP?u = f(u) + |u\q*_2u inRN.

4-p
1
p 72
(1+t) »

+

Problem 4: Leta(¢t) =1+t and b(t) =1 + ¢ . In this case we are studying problem

p p-2 .
-ePApu - €A qu - div M + V(x)(|u|p_2u + |u|q_2u) =f(u) +|u|? 2y in RN,
(1+er|Vup)»
The main result is the following:
Theorem 1.1. Suppose that a, b, f and V satisfy (a1) — (a3), (b1) - (b3), (f1) - (f5) and (V) — (V) respectively.
Then there are €y > 0 and A™ > 1 such that (P¢) has a positive solution we € WHP(RN) n WH4(RN), for every
€ € (0, €9) and for every A > A". In addition, if P is the maximum point of we, then

lim V(P¢) = Vp.
e>0
Moreover, there are positive constants C and a such that

|we(2)| < Cexp <—a zZ-Pe

foralle € (0, €g) and for all z € RV,
In a seminal paper [31], Rabinowitz used his famous Mountain Pass Theorem(joint with Ambrosetti) [5] and

showed the existence of solution for a Nonlinear Schrédinger Equation given by

—e2Au+ V(x)u = f(u) in RY,
(R)

u>0in RY,

where V is a continuous potential satisfying (V) and
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(Rl)l}n‘l inf V(x) = Voo, where Ve < 0o 01 Voo = o0,
X|>oo

In [31], Rabinowitz used the force of the parameter € and the geometry of the potential V in order to overcome
the lack of compactness of Sobolev’s embedding to obtain the positive solution. In [33], Wang showed that
the solution found by Rabinowitz concentrates around a local minimum of the potential V, when € converges
to zero. Wang also noted that the concentration of any family of solutions with energy uniformly bounded can
only occur in a critical point of V. In [12], Del Pino and Felmer weakened the hypothesis (R) of Rabinowitz
and created a method that is known as Del Pino and Felmer’s penalization method.

As can be seen in [4], [15] and [17], p&q problems are generalizations of (R). However, as can seen below,
we show that the arguments found in [12], [31] and [33] cannot be used directly. But before that, we are going
to report some results on p&q problems type. There are interesting papers on such class of problems. We
start with some problems in a bounded domain. For example, in [15] the author shows the existence and
multiplicity of solutions for a critical p&q problem considering nonlinearity of type concave and convex. The
critical case with discontinuous nonlinearities has studied in [16].

Now we comment some results in RV, Existence results was studied in [11] and [17]. In [2] the authors stud-
ied concentration results in Orlicz-Sobolev spaces with subcritical nonlinearity and the potential satisfying
the local condition introduced by Del pino and Felmer [12]. In [4], it was showed the existence and concen-
tration results with subcritical nonlinearity and the potential satisfying the global condition introduced by
Rabinowitz [31]( see also [33]).

The present work is strongly influenced by the articles above. Below we list what we believe that are the
main contributions of our paper.

(1) Unlike [4], [11] and [17], we show existence and concentration results considering the local hypothesis on
potential introduced by Del Pino and Felmer [12].

(2) Unlike [2], we are considering the critical nonlinearity.

(3) Since the operator is not homogeneous, some estimates are different and more delicate than some esti-
mates that can be found in [12] and [31] . For example, see Lemma 3.4, Proposition 5.1, Lemma 5.7 and all
the Lemmas of Section 7.

(4) In order to overcome the lack of compactness provoked by the critical growth, it is very common to use
the Talenti’s function (see [32]) to have some control on the minimax level, as can be seen in [10, Lemma
1.1]. The lack of homogenity of the p&q operator does not allow to use this argument. We overcome this
difficulty using the solution of a problem in a bounded domain, as can be seen in Lemma 3.5.

The interest in the study of nonlinear partial differential equations with p&q operator or fractional p&q oper-
ator has increased because many applications arising in mathematical physics may be stated with an operator
in this form. We cite the papers [6], [7], [8], [9], [18], [21], [22], [26], [27], [28], [29], [30] and their references.
Several techniques have been developed or applied in their study, such as variational methods, fixed point
theory, lower and upper solutions, global branching, and the theory of multivalued mappings.

This paper is organized as follows. In Section 2, we define an auxiliary problem using the penalization argu-
ment introduced by Del Pino and Felmer [12]. The existence of solution for the auxiliary problem was showed
in Section 3. In order to show the concentration result, in Section 4 we studied the autonomous problem. The
concentration result was showed in Section 5. In Section 6 we showed that the solutions of the auxiliary prob-
lem are solutions of the original problem. In Section 7 we showed the exponential decay of these solutions. To
conclude the paper, we showed in an appendix the existence of a solution to a problem in a bounded domain
that was important to overcome the lack of compactness.

2 Variational framework and an auxiliary problem

To prove Theorem 1.1, we will work with the problem below, which is equivalent to (P¢) by change variable
z = €x, which is given by
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~div (€a (|VulP) [VulP~2Vu) + V(ex)b (JulP) [u[P~u = f(u) + u[? 2y in RV, B
(Pe)
u e WHPRN) 0 WwhHeRY),
wheree >0, N22and1<p<qg<N.
In order to obtain solutions of (P¢), consider the following subspace of WP (RYN) N W4(RN) given by

We im {v e W) N WHIEY) : [ Vienb(vPIvPds < +oo},
RN

which is a Banach space when endowed with the norm

[l = llully,p +[ull1,q5
where
m
ull1,m = /|Vu|mdx+ /V(ex)|u|mdx , form=1.
N RN

Since the approach is variational, consider the energy functional associated Je : We > R given by

1 1 1 -
Je(v) = E/A (|VvP) dx + E/V(ex)B (JvIP) dx—/F(v)dx— ?/vf dx,

RN RN RN RN

where u; = max{u, 0}. By standard arguments, one can prove that /¢ € CYH(W¢, R). As we are interested in
nonnegative solutions we can assume that f(s) = 0 for s < 0.

py0  Vopy
q@-p7) 4q

Let B be a positive number satisfying f > max { s 1}, where 0 was given in (f3) and V

q-1
appeared in (V7). From (f;), there exists > O such that f(ﬂ)% = %. Then, using the above numbers,
we define the function of C! class given by
0 if s<O0,
(s) = fs)+s7 1 if O<s< 1,
E|s|q’zs if s>n.

We now define the function
8(z,5) = xo@If(s) + ()7 1+ (1 - X0 )F (),
and the auxiliary problem

—div (ea (|VulP) [VulP~2vu) + V(ex)b (|ulP) [ulP~*u = g(ex, u) in RV,
(Peaux)
uec We,

where o is the characteristic function of the set Q. It is easy to check that (f;) - (f5) imply that g is a
Carathéodory function and for x € RY, the function s > gl(ex, s) is of class C 1 and satisfies the following
conditions, uniformly for x € RV:

. glex,s)
1 =0
s> [s[T (81)

g(ex, s) < f(s) + sq*’l, vs>O0andx e RY (g2)
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0 < 6G(ex, s) < glex, s)s, Vex € Q and Vs >0 (g3);
and 1
0 < qG(ex, s) < g(ex, s)s < EV(eX)|s|q, Vex ¢ Q and Vs > 0, (g3)ii
S
where G(ex, s) = /g(ex, t)dt.
0
The function
g\(;){;ils ) is nondecreasing. (g4)

Remark 1. Note that, for z = €x, if uc is a positive solution of (Pe,,,) with |ue(2)| < 1 for every ex € RV \ 0,
then uc(x) is also a positive solution of (P¢).

3 Existence of ground state for problem (P, )
Hereafter, let us denote by I : We - R the functional given by

Ie(v) = % /A (IVvP) dx + 117 / V(ex)B ([v|P) dx - / G(ex, v)dx.

RN RN RN

We denote by N¢ the Nehari manifold of I, that is,
Ne := {u € We \ {0} : (I:(w), u) = 0}
and define the number b; by setting
be := uienjgg I (u). By
Using (f1), (f2) and (g,) we have: for every & > O there exists C ¢ such that
g(ex, s)| < &|s|T7" + Cls|t + |s|q*"1 forallx € RV, s ¢ R. (3.2)
Then, by definition of g and (3.2), there is re > 0 such that
llu|| = re >0 forallu € Ne. (33)
The main result in this section is:

Theorem 3.1. Let a satisfying (a1)-(as3), b satisfying (b1)-(b3), f satisfying (f1)-(fs) and V such that (V1)-(V>)
hold. Then, there is A" > 1 such that (Pe,,,) has positive solution ue € WHP(RN) n WL4(RN), for every A > A”.

Moreover, we would like to highlight that in section 5, more precisely in Lemma 5.5, we are going to show that
if Pe is the maximum point of u. then

lim V(Pe) = V.

€>0

In order to use the Mountain Pass Theorem [5], we define the Palais-Smale compactness condition. We say
that a sequence (un) C W is a Palais-Smale sequence at level c for the functional I if

Ic(up) > ¢ and ||I'€(un)|\ > 0in (W),
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where

c:=inf max I.(n(t)) >0 and T :={n e C([0,1],X):n(0) =0, I.(n(1)) < 0}.
nerl telo,1]

If every Palais-Smale sequence of I has a strong convergent subsequence, then one says that I, satisfies
the Palais-Smale condition ((PS) for short).

Lemma 3.2. The functional I : We - R satisfies the following conditions
(i) Thereare a, p > O such that
Ie(u) =z a, if |jull =p.
(ii) Foranyu € C3(Qe, [0, o)), we have
grllole(tu) = —oo,

Proof. Using (a1), (b1) and (3.2) we obtain

min{ky, k3}, p 1, g & p Ce r 1 7
IS(u)Zf”uul,p*'a'lul‘l,q_g |ul dX‘T |ul dx—? lul* dx.
RN RN RN

By Sobolev embeddings, choosing § > O appropriate and taking [lu| < 1 there are positive constants
C1, C,, Cs3,such that

Te() = Co [l + luld, o] = Callull” = C3lul > Callul? - CalJul” = Cs ).

Then the item (i) follows.
Now we show that the item (ii) holds. Consider a positive function w € C3(Q¢), t > 0 and using (a;),
(b1), (f3) and Sobolev embedding, we have

Le(ew) < & max{lo, ke wl? + Sywyd - & 7q
e(tw) = T max{ka, ka} Wi, + Il g - = [ 1w dx.

This proves the second item.
O

Hence, there exists a Palais-Smale sequence (un) C We at level ce. Using (a5), (b>) and (f), it is possible to
prove that

—be= inf Ie(tw),
o= Pe = ewn\(0} oo e(t)

where b was defined in (3.1).
In order to prove the Palais-Smale condition, we need to prove the next lemma.

Lemma 3.3. Let (un) be a (PS), sequence for I, then the sequence (un) is bounded W. Moreover, for each
& > 0 there exists R = R(&) > O such that

lim sup / [a(|Vun|P)|Vunl? + V(exX)b(Jun|P)|un|Pldx < &.
oo
! RN\ Bg(0)

Proof. Since (uy) is a (PS), sequence for functional I, then using (1.1), (1.3), (g3); and (g3);; we have that

0n(D) + d+ on(Wunll = ITelun) - gL Cun)ut

(}% - %) / [a(|Vun|P)[Vun[P + [1+pV ()] b(lunlP)|unP] dx
RN

Lf
-2 [ [IVul? + V(ex)|u|?] dx
BRZ

11\ (.. » 1 .
(3= 5) (minthe oy et + (1- 5 ) hunl, )
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Then, arguing as the [4, Lemma 2.3] , we can concluded that (uy) is bounded in We.

Let g € C=(RY) be such that nz(x) = 0if x € Bg/,(0) and ng(x) = 1if x ¢ Bg(0), with 0 < ng(x) < 1 and
|[Vng| < %, where C is a constant independent of R. Since the sequence (nzun) is bounded in We, and fixing
R > 0 such that Q¢ C Bg/,(0) we obtain, by definition of the functional I,

a(|VunP)|[Vun|P + V(exX)b(|un|P)|unl? | dx = Ic(un)unng + / glex, un)unnrdx

RN\ Bg(0) RN

—/una(|Vun\p)|Vun\p’2VuanRdx+on(l).

RN

Using (g3);; we estimate

(1 - %) / [a(Vun|p)Vun|p + V(exX)b(Jun|P)|unl? | dx

RN\ Bg(0)

s/|un|a(\Vun|p)\Vun|p"1|VnR|dx+on(l).

RN

As (uy) is bounded in We and |Vrg| < % Passing to the limit in the last estimate, we get

lim sup / [a(|[Vun|P)|Vunl? + V(exX)b(Jun|P)|un|Pldx < &.
n—>oo B4 By

for some R sufficiently large and for some fixed ¢ > 0. O

In the next result we show that the functional I satisfies the Palais-Smale condition for some levels. For this
work we are denoting by S the best Sobolev constant for the embedding of D**9(RN) into L4 (RV), that is, the
largest positive constant S such that

2
S /\u\q dx s/|Vu|"dx for every u € D 4(RN). (3.4)

N RN

Lemma 3.4. The functional I satisfies the Palais-Smale condition at any level

1 1)\ cng
d<(6 q*>5 .

Proof. Let (un) C W be a Palais-Smale sequence at level d < % - % SN/4 for the functional I¢. Arguing

as Lemma [4, Lemma 2.3] we have that (1) is bounded in We. Then by Sobolev embeddings we deduce, up
to a subsequence, that

un — u weakly in We,
Vun(x) > Vu(x) g.t.p in RV,
un > u strongly in LfOC(RN) forany p<s<gq’,
un(x) > u(x) fora.e x ¢ RV,

(3.5

Using the same kind of ideias contained [4, Lemma 2.3], we may conclude that u is a critical point of I.
From Lemma 3.3 and for each & > O given there exists R > 0 such that

lim sup / [a(|Vun|P)|Vunl? + V(exX)b(Jun|P)|un|’ldx < &.
T EnB0)
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This inequality, (a1), (b1), (f1), (f2), (g2) and the Sobolev embeddings imply, for n large enough, there exists
a positive constant C; such that

g(ex, un)undx| < Cy (§+ .{’/q + {q*/q) . (3.6)
RN\ B (0)

On the other hand, taking R large enough, we suppose that

glex, Wudx| < &. 3.7
RN\ B (0)
Therefore, by (3.6) and (3.7),
glex, un)undx = / glex, wu dx + on(1). (3.8)
RN\ Bg(0) RN\ BR(0)
We claim that
glex, up)undx = / glex, u)u dx + on(1). (3.9)
Br(O)N(RN\Q,) Br(O)N(RN\ Q)
Indeed, we have, in view of the definition of g,
.
g(ex, un)un < f(un)un + (g) + %mn\q for any x € RN\ Q.

Since the set Bg(0) N (R¥\Q¢) is bounded we can use the above estimate, (f1), (f,), (3.5) and Lebesgue’s
Theorem to conclude that the convergence (3.9) holds.
Finally, we now prove the following convergence

/\unl"*dX=/|u|"’ dx + on(1). (3.10)
Qe Q¢

Since (uy) is bounded in W, and using the Lions’s Concentration Compactness Principle [25], we may suppose
that
[Vun|? = u  and  |un|? —v.

Then we obtain an at most countable index set I', sequences (x;) ¢ RN and (y;), (v;) € (0, o), such that
pz |Vl + Y pibxg, v= | + > vibx; and Sv?/‘f < u;, (3.11)
ier ier

foralli e I', where 8y, is the Dirac mass at x; € RV. Thus it is sufficient to show that {x;};cr N Qe = (. Then, we
suppose by contradiction that x; € Q¢ for somei € I'. Consider R > 0 and the function yy := P(x; - x), where
P e CT(RY, [0, 1]) is such that 1 = 1in Bg(x;), P = 0in RN\ B,z (x;), V| < 2, where R > 0 will be chosen
in such way that the support of 1 is contained in Qc. Then, as (guy») is bounded and It (un)Pprun = 0n(1),

/una(\wn|l’)|wn|l"2w,.-vlpR dx+/l,bRa(|Vun|p)|Vun|p dx
RN RN

+ YrV(EeX)b(|unP)|unl? dx = | f(x, un)Prun dx + ll)R|Lln|q* dx + on(1).
! / /
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Note that, using (a1), (b1) and that the function f has subcritical growth, we have

lim | lim /una(\Vun|p)\Vun|p"2Vu§,’-Vl/)R dx| =0,
R0 | n>oo

RN

i ; DYy (P -
}lgr(l) r%l_;l;lo/V(é‘X)b(\uﬂ JunPpr dx| =0,
RN
and

Il_gr(l) igrolo/f(x, un)Prundx| = 0.
]RN

Therefore, by (a;) again,

/!I)R\Vun|qus/|un|q*l,dex+on(l).
RN RN

Since i has compact support and letting n - oo in the above expression, we see that

/l/)Rd]l S/l/)RdV,
RN RN

which implies

py0

609 and SV? < v; we have, by

From this inequality and (3.11) one easily sees that S¥/9 < v;. As B >

previous arguments,

]

1. - 1 1 1 *
d = Ie(un) - @Ie(un)un +op(l) = <6p71;’y - @) HunH({,q + (5 - ?) /|u"|q dx + on(1)
Qc

1 1 -
(g - ?) /¢R‘Un|q dX + On(l).
Qe

Hence, taking the limit and using (3.11), we get
11 (1 1 11\ g
d: (5—?> GZfl,[)}q(XﬂV,'— (5_?) Vi 2 (5—?)5
1

which does not make sense. Thus we obtain the convergence (3.10).
Therefore
/g(ex, Un)Un dx = /g(ex, wu dx + on(1). (3.12)

RN RN
Finally, we prove that, up to a subsequence, un > u in We. Since I(un)un = on(1), I.(u) = 0, (3.12) and
Fatou’s Lemma we have
0 < / [a(Vun )| Vunl? - a(Vul?)|Vul?] dx + / V(ex) [b(un”)unl” -~ b(ulP)ul?] dx
RN RN

+/ [g(ex, u)u - glex, un)un] dx = on(1).
RN

Then, using (a;) and (b;), we obtain |jun — u|| = 0n(1), that is, the sequence (u,) converges strongly to u. [J
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For each fixed € > 0, let us consider the following problem

{ —kaApu - Agqu + V(kg uP~2u + [u|97%u) = [u|™%u in Qc, P.)
T

uc Wé’q(.Qe),

where 7 is the constant which appears in the hypothesis (fs) and V := max V(x) is a positive constant. We
XEQ,

have associated to problem (P7) the functional

IT(u)=%/[k2|Vu\p+\7k4|u|p] dx+%/ [[Vul?+V]ul] dx—%/|u\’dx
Qc Qe Qc

and the associated Nehari manifold
Ne = {ue Wy (Qe): u#0and I(wu = 0}.
From Appendix there exists wr € W,?(Qe) such that

Ir(we) = ¢ := inf I:(u), I;(WT) =0
ueN;

Cr2 <%) /|WT|TdX. (3.13)
R

Since A is the parameter which appears in the hypothesis (f5) we have the following result.

and

Lemma 3.5. There exists A* > 1, such that if A > A", then ce < (% - %) SN/,

Proof. First of all, by the hypotheses (a1), (b1) and (f5), we obtain

/a(\Vwr|p)|VwT\pdx+/V(ex)b(\wr|p)\wr|pdxs/[kz\Vwr|p+\7k4|wT\p] dx
RN RN Qe
/[|wa|q+\7|w1| Jdx = /|W1—| dx</f(wr)wfdx</g(€x wo)wrdx,

-Qe RN

where V := max V(x). This inequality implies that I.(wf)w% < 0, and then there exists t € (0, 1) such that
XEQ,

twr € Ne. Using (a1), (b1) and (f5), we obtain

ce < Ie(twr)

ta
—/ [ka|[Vwe P + Vi |we|P] dx+5/ [IVwe|T +V|we|? ]dx—4 /|wr\ dx.
Qc Qe

Since t € (0, 1), p < g and I.(w:)w; = 0, we get

Ce < IG(tWT)

¢
—/ (ko |[Vwe|P + Vi |we|P] dx+;/“VwT|q+\7|wT\ }dx—f /|WT\ dx

_ [Z’ }/\Wﬂ dx<max[ }/|wr| dx. ’

Using (3.13), we have

Ce < max

507ty it
520

p (t-¢q) | pAr/@P) | (1-q)



254 — Gustavo S. Costa and Giovany M. Figueiredo, Existence and concentration DE GRUYTER

By some straightforward algebric manipulations, we get

o< | TP crq
T pwlan | (1-q)°

N (t-p)/p
Then, if we choose A > 1" := max { 1, [g:’;g %(qe*i-e) Sﬁ,f,q} } in the hypothesis (f5), the proof is complete.

O

3.1 Proof of the Theorem 3.1

Proof. The proofis a consequence of Lemma 3.2, Lemma 3.4 and Lemma 3.5. O

4 The Autonomous Problem

In order to prove the concentration result, we consider the following problem

~div (a(|Vul[P)|VulP~2Vu) + Vob(|u[P)|ulPu = f(u) + 9t inRN
(Po)
ue WHP(RY) 0 whHa(RN)

which the functional associated I is given by

I - % / [A(Vul?) + VoB(|u/")ldx - / Fuw)dx - qi / ul? dx,

RN RN RN

and the corresponding Nehari manifold is given by
No = {u € WHP(RN) 0 whI(RN)\{0}; In(u)u = 0}.

We also define
=infI,.
Co ljl\flo 0

Using the same arguments of the prove of Lemma 3.5, we conclude that
1 1
Co < <a—?)SN/q. (4.1)

The next result allows to show that problem (Pg) has a solution that reaches cg.

Lemma 4.1. Let (un) C Ny be a sequence such that Io(un) > co. Then there are a sequence (yn) C RN and

constants R, n > O such that
n—->co

lim sup / [un|?dx = 1. (4.2)
BR(YH)

Proof. Suppose that (4.2) is not satisfied. Since (un) is bounded in WP (RY) n W9(R") we have, by in [24,
Lemma 2.1],
lgm / lun|*dx =0 forall s € (q,q").
n ]RN
Hence, from (f1) - (f3),
/ Fun)undx = on(1).
RN
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Since we also have (g3) and that It, (un)un = on(1), we get

[ st dx = [ a9Vt + Vob(un Puan "] i+ 0n(1) = 1
RN RN

We claim that [ > 0. Indeed, if the claim is not true then, by (a;) and (b), we have ¢y = 0 which is a contra-
diction. Therefore

lim / un| dx =15 0. 4.3)

n—>oco
RN

By definition of the constant S, we have

s<_ R _ <9/, (44)

Thus, using (1.2), (1.3) and (f3), we deduce that

|

Co+ on(1) = Io(un) - So(un)un > (1 - ql) / unl? dx + 0n(2).
RN

Using (4.3), (4.4) and that co > 0, we obtain ¢q > <% - %) SN/4 which is a contradiction with (4.1). O

We are going to show that the problem (Pg) has a solution that reaches the level cg.

Lemma4.2. (A Compactness Lemma) Let (un) C No be a sequence satisfying
Io(un) > co. Then there exists a sequence (yn) C RN such that, up to a subsequence,
van(x) = un(x + yn) converges strongly in WHP(RY) n WH4(RN). In particular, there exists a minimizer
for co.

Proof. Applying Ekeland’s Variational Principle (see Theorem 8.5 in [34]), we may suppose that (un) isa (PS),
for I. Since (un) is bounded in WHP(RN) n Wh4(RY) we can assume, up to subsequences, that u, — u in
WEP(RN) 0 Wha(RN),

Using arguments found in [4, Lemma 2.3], we have that

Vun(x) > Vulx) a.e in RN and I,(u) =0. (4.5)

Then, by (1.2), (1.3) and the Fatou’s Lemma,
0c< 119/ [A(VulP) + VoB(|ul?)] dx - %/ [a(VuP)|VulP + VoB(|luP)|ulP] dx

RN RN

n>+oo

<timinf § = [ [AQVunP) + VoB(unt)] dx = 5 [ [a(¥un)IVunt” + VoB(un")unl”] i
RN RN
Hence, if u € Ny,
1. .. 1. .
co < Ip(u) - ZI,(w)u < liminf [Io(un) - fIO(un)un] = lim Iy(un) = co.
0 n—>+oo 0 n—>+oco

By (4.5), (a1), (b1) and Lebesgue’s theorem we conclude that u, > u in WP (RN) 0 Wh49(RN). Consequently,
Io(u) = ¢ and the sequence (yn) is the null sequence.
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If u = 0, then in that case we cannot have u, > u strongly in WP (RN) n W4(RN) because cy, > 0.
Hence, using Lemma 4.1, there exists a sequence {y,} ¢ R such that

Vn — v in WYP(@RN) 0 wha(RY),

where vy := un(x + yn). Therefore, (v,) is also a (PS)., sequence for Iy and v # 0. It follows from the above
arguments that, up to a subsequence, (vy) converges strongly in WP (RY) n W4(R") and the proof is com-
plete. O

5 Concentration results

In this section we prove some technical results in order to show the concentration result.

Proposition 5.1. Let €, > 0 and (un) C N, be such that Ic,(un) > co. Then there exists a sequence (yn) C
RY such that vn(x) := un(x + yn) has a convergent subsequence in WHP(RN) n W-9(RY). Moreover, up to a
subsequence, yn > y € Q, where yn = €nyn.

Proof. Since V satisfies (V1) and co > 0, we repeat the same arguments in Lemma 4.1 to conclude that there
exist positive constants R and f and a sequence (§7,) ¢ RY such that

liminf | un |22 /NS > 0.
n—co
Br(7n)

Since the sequence (uy) is bounded in WP (RN) n WH4(RN) we immediately obtain, up to a subsequence,
vn — v 2 0in WHP(RN) 0 WH9(RYN), where vn(x) := un(x + yn). Let tn > 0 be such that

Vn =tnvn € No. (5.1)
Then, since un € Ne,, we have
co < Ip(¥n) < Ien(f/n) < Ien(Vn) = Ie,.(un) = co + on(1), (5.2)

which implies that I5(V,) - co, as n - +oo.

From boundedness of (v,) and (5.2), we obtain that (¢,) is bounded. As a consequence, the sequence (7,)
is also bounded in W P(RY) n W4(RY) which implies, up to a subsequence, 7, — ¥ weakly in WP (RY) N
WLH4(RN).

Note that we can assume that t, - ty > 0. Then, this limit implies that ¥ = 0. From Lemma 4.2, we
conclude that v, > 7 in WHP(RY) n Wh49(RY) and this implies that v, > vin WYP(RN) 0 Wh4(RN),

To conclude the proof of this proposition, we consider y, := enjn. Our goal is to show that (y») has a
subsequence, still denoted by (yn), satisfying yn > y for y € Q. First of all, we claim that (y,) is bounded.
Indeed, suppose that there exists a subsequence, still denote by (y»), verifying |yn| - oo. From (a;), (b1) and
(V1) we have

/ [k1|Vvn P + |Vvn|T] dx + VO/ [ks|valP + |vn|T] dx < /g(enx +Yn, Vn)Vndx.
RV RV RN

Fix R > 0 such that Bg(0) > Q and let Xp o be the characteristic function of Bg(0). Since
X, (0)(€X + yn) = 0n(1) for all x € Bg(0) and vy > v in WHP(RY) 0 WH4(RY), then

/ Xp,(0)(€X +yn)g(ex + yn, va)vndx = 0n(1).
RN
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By definition of f we obtain that

fn)vndx + on(1)

IN

/ [k1|VvnlP +|Vvn|T] dx + Vo / [k3|vnlP + |va|?] dx

RN RN RN\ Bg(0)

< %/\vn|qu+on(1).
RN

It follows that v, > 0 in WY P(RY) n W9(RN), obtain this way a contradiction because cq > 0.
Hence (yn) is bounded and, up to a subsequence,

yn >y eRN.

Arguing as above, if y ¢ Q we will obtain again v, > 0 in WYP(RY) n Wh4(RY), and then y € Q. Now if
V(y) = Vo, wehavey ¢ 0 and consequently y € Q. Suppose by contradiction that V(y) > V. Then, we have

co = Io(@) < }% / A(VVP)dx + 117 / V)B(7”)dx - / F()dx - / w7 dx.
RN RN RN RN
Using the fact that v, > v in WHP(RN) n Wh4(RY), from Fatou’s Lemma we obtain

o <1irginf[l/A(|V7n|p)dx+1/V(enz+yn)B(|Vn\p)dx—/F(Vn)dx—/\Vn|q*dx.}
e p]RN pRN RV RN

Since un € Ne,, this implies that
co < liminf I, (tnun) < liminf I, (un) = co,
n—>oco n—»>oco
obtaining a contradiction. O

Lemma 5.2. Let (€r) be a sequence such that €, - 0 and (un) C Ne, a solution of problem (Pe,,,). Then (vy)
converges uniformly on compacts of RN, where vn(x) := un(x + y/n). Moreover, given & > 0, there exist R > 0 and
ng € N such that

[IVnllL=@n\Br(oy < § forall n=no,

where (Jn) is the sequence of Proposition 5.1.

Proof. Note that vy is a solution of problem

{ =div (a (|VvalP) [VvaP"2Vvn) + V(ex + yn)b ([valP) [vaP~*vn = g(€x + yn, vn) in RV,
vn € We,

where yn, = enyn. Adapting some arguments explored in [4, Lemma 5.5], we have that the sequence (v,) is
bounded in L*°(RN) and there exist R > 0 and no € N such that

[Vallp=@m\Bgo) < §» forall n=no.
Then, for any bounded domain Q" c RV, from (g1) - (g,) and continuity of V there exists C > 0 such that
|V(ex +yn)VE ' — glex + yn,vn)| < C, forall neN.

Hence,
|V(ex +yn)VE ™ — glex + yn, va)| < C + |[Vva|P, forall n e N.

Considering ¥(x) = C, we get that ¥ € L{(Q") with ¢ > p%lN . From [13, Theorem 1], we have

[Vvall € L RY).
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Therefore, for all compact K c Q' there exists a constant Co > 0, dependent only on C, N, p and dist(K, 0Q"),
such that
[VVn|oo,x < Co.
Then,
[Vl oy < €, forall ne N and O <v<1.

From Schauder’s embedding, (v») has a subsequence convergent in C?&Z(RN ). O

Lemma 5.3. Given € > 0, the solution uc of problem (Pe,,,) satisfies

Li_r)l(}le(ue) = CVo'

Proof. Consider zo € Q such that V(zg) = Vy. Let us now consider R > 0 and set Q € dBy(zp). If necessary,
take R small enough such that B(Q, R/4) c Q. Taking ¥ : R¥ - R such that 3 = 1in B(Q, R/4) and ¢ = 0
in RN\ B(Q, R/2).
Let wo € WHP(RN) n WH9(RN) be a ground-state positive solution of the problem (Py) which satisfies
co = Ip(wp) (see Lemma 4.2). Then, we consider the function we : RY - R be given by
we(x) := Pi(ex)wo (x - Z?O) € We

and t¢ > 0, such that tewe € Ne. Then, with a direct computation, we have

Ie(ue) < Ie(tewe) = co + 0e(1).

Finally, taking R - 0 in the last inequality and using the continuity of the minimax function (see [1], [31])
we get
lim sup Ie(ue) < cop.
e>0
Let t¢,o > 0 be such that ¢ oue € No. Then,
Co = Io(te,oue) < Ie(te,oue) < Te(ue)

and the proof is complete. O

Lemma 5.4. Let (en) be a sequence such that e, - 0 and for each n € N, let (un) C Ne, be a solution of
problem (Pe,,.). Then, there are 6" > 0 and nq € N such that, for va(x) = un(x + yn), we have

va(x) = 8", forall x € Bg(0) and n > no,

where R > 0 and (yn) were given in Lemma 5.2.

Proof. Suppose, by contradiction, that |[un/p=(x<z) = lUnllz=(x-y,<ky > O. By Lemma 5.2, we have
[Vallp=@gxy = O. It follows from (f1) that
If(vn) + vg*'1| < ?|vn|q’1 for n sufficient large. (5.3)
Thus,
/a(|an|p)\an|pdx + /V(enx+yn)b(|vn\p)|vn|pdx
RN RN
= /f(vn)vndx +0n(1)
RN

? / [vn|?dx + on(1),
]RN
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which implies from (a;) and (b,) that,
unlw,, = 0,

which is a contradiction with Lemma 5.3. O

We are now ready to show the concentration of the ground state solution.

Lemma 5.5. If % is the maximum point of ue, then

lim V(P¢) = Vp.
€>0

Proof. We first notice that using Lemma 5.4 there exist 8" > 0 and ny € N such that

vn(gn) := m%)lg Vn(z) = un(gn + yn) = un(x) = 6", foralln=ny, forall x € BR(0).
ze

We claim that (gn) is bounded, otherwise using Lemma 5.2 and 5.4, there exists R* > 0 such that
[lvall L~(RM\B) < %, which implies that |vn(gn)| < 57, where we obtain a contradiction.
Then, P¢, = €nqn + yn Which implies

nLlIPoo Pen N n19u+noo yn=Y € 0.
Hence from continuity of V it follows that
lim V(Pe,) = V() = Vo.
n—>+oo
We claim that V(y) = V,. Indeed, suppose by contradiction that V(y) > V. Then, we have
1 —» 1 [ i 1 [ ~q
co=1o) < o [ AQVVP)dx+ - [ VIB(Wdx - [ F@) - [ 917 dx.
RN RN RN 1 RN
Using that v, > vin WHP(RY) n WH4(RY) we obtain, from Fatou’s Lemma,
1 ~ 1 . S D e
Co <11r21nf ) A(| V] )dx+5 V(enz + yn)B(jvnP)dx - [ F(vn) - = [ |va|? dx|,
e P o o T

and therefore
co < liminf I, (thun) < liminf I, (un) = co.
n—>oco n—>eco
This contradiction shows that V(y) = V. O

Lemma 5.6. Let {e€n} be a sequence of positive numbers such that e, > 0 as n > oo and let (xn) C Qe, be a
sequence such that ue,(xn) = Y > 0 for some constant Y, where for each n € N, ue, is a solution of (Pe,,,). Then,

’}gilo V(xn) = Vo
where Xn = €nXn.
Proof. Up to a subsequence,
Xn > X € Q.
From Lemma 5.3 we have that

I, (ue,) > co,
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and there exists a positive constant C such that
lue, | <C, ¥VneN , forsome C>O0.
Setting vn(2) := ue, (z + xn), we have ||[vy|| < C and vy — vin WHP(RN) 0 WH4(RY). Recalling that
vn(0) = ue,(xn) 2 Y > 0,

we conclude that v # 0.
Fix t, > O verifying v, = thvn € Ny, for each n € N. Hence,

co < Io(vn) < Ie,(tnvn) < Ie(vn) = Ie(un) = co + on(1).
Thus, Io(Vn) > co, with {v,} C Nop. By Lemma 4.2, we have
V>V in WHPRN) N WhIRY) and Io(v) = co. (5.4)
Since v # 0, by Proposition 5.1 we have y, = 0, for n € N. Moreover, recalling that V is continuous, we have
r%l_}tg V(xn) = V().
We claim that V(x) = V,. Indeed, Suppose by contradiction that V(x) > V,, then
co = Io() < %/A(|V7|p)dx+ 11? / VEB(P)dx - /F(V)dx— % / V|7 dx.
RN RN RN RN

Thus, by (5.4) and Fatou’s Lemma, we have

Co < liminf [1 ?/(W% [P)dx + 1 %(enz +Xn)B(|Va|P)dx - %Vn)dx - i* / |V|‘1* dx}
n>eo | P p q
RN RN RN RN

IN

liniinf F ?f(|thvn|p)dx + 1 f(enz + Xn)B(|tnvn|[P)dx - ff(enz +X, tnvn)dx}
e p]RN pRN RV

liminf I, (thun) < liminf I, (un) = co,
n—>oco n—>oco
which leads a absurd. Consequently 1i_)m V(xn) = Vo. O
n—->oco

Lemma 5.7. If mc is given by me = sup{rggx Ue : is a solution of (Pe,,.) }, then there exists € > O such that the

sequence (me) is bounded for all € € (0, €). Moreover, we have li_I)g me = 0.
€

Proof. Suppose, by contradiction, ligl& Me = +oo, then there exist u¢ a solution of (P¢,,, ) in Ne and Y > 0 such
€
that

maxuec=2Y >0
00

Thus there exists {ex} C R* with e, - 0 and there exists a sequence {xn} C 0Q¢, such that
llen(Xn) >Y >0.

Thus, by Lemma 5.6, we have
lim V(xn) = Vo,
lim V(xn) = Vo

where Xn = enxn and {Xn} C 0Q. Hence, up to a subsequence, we have X, - X in 0Q and V(x) = Vy, which
does not make sense by (V). Hence, there exists € > 0 such that (m¢) is bounded, for all € € (0, €).
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Suppose by contradiction that there exists § > 0 and a sequence {€,} C R* satisfying
Me,26>0

Thus, there exists ue, a solution of (P¢,,, ) such that
6
Me, — = <Maxue, < Me,.
2 0.,
Hence,
§—5—§<m —§<maxu
2 277 T

and then there exists a sequence (xn) C 9Qc,, such that

6
Ue, (xn) = 7"

Repeating the above arguments, we will get an absurd. Thus, the proof is finished. O

6 Proof of Theorem 1.1

Proof. Let ue be a solution of (Pe,,,). By Lemma 5.7, there exists € > 0 such that me < % forall € € (0, €),
then (ue - 1)+ (x) = 0 for a neighborhood from 0Qc. Hence, (ue - 1)+ € Wé’p(]RN\Qe) N Wé’q(RN\Qe) and the
function (ue - 1); € WHP(RN) n Wh4(RY), where

(e = 2)00) 2= {

Using (ue - g): as test function. Then, by (a1), (b1) and (g3);;, we have

0ifx € Q¢,

(Ue‘ - g)+(X) ifx € RN\QQ.

0 < / a(\Vue|p)\V(ue—g):\pdx

RN\ Q,

2V - *
o [ [Vobtue et - Tl e - 1y ax
RA\Q,

+ / {V(e‘)()b(\uel”)\ueI"”2 - %\uel"’z} g(ue - g)idx =0
RN\ Q,
The last equality implies

(ue - g): =0, a.ein x e ]RN\QE.

This implies that |ue| < 2 for z € R¥\Qe, and by Remark 1 the result follows. O

7 Exponential decay of the solution u,

Finally, we are going to prove the exponential decay. First technical results
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Lemma 7.1. Consider M, a > 0 and (x) := M exp(-a|x|). Then
i) - div(a ([VIP) [VPIP2 Vi)
-1 +1 2p-1 4 [((N-1)
=@ | pa? @y + al@ Y (S e - 1)

(N-1)
x|

if) - divia ([VP) [VIP2vy) = ( ~alq- 1)) a(aP YP)ar- P,
Proof. Note that
¥ () = Mexp(-alx)) - (~alx)) = Mexp(-alx)(-a) X = ~a i p(x),
ox; ax; X =

which implies |[Vi| = aip. Then

~div(a ([V[P) [V P2V) = —%1 a?q [ (IVyIP) [Vl Zaﬂ

al@wyw ]

x|* - x
xP

0X;
=@t @) o @)t saten) o (v )
g

(aPyYP) aPpp®P” 2§¢ ad +a(a"lP")(

x|

Lt -2 gL X))

X x|

I
|
3
—

Ul -paria (@ P2t + alaPyryyrt (% —a(p- 1))} ,

this prove the first item.
To prove the item ii) we are going to use (1.2) and the item i). Hence we have

“d @y > - P a@ry),
and consequently
_paerla'(apll)p)ll)Zp*l > —alppil(q _p)a(aplpp)'
Therefore, by the item i),
~div(a ([VyIP) VP2 Vp)

(N-1)
x|

> o’ {—a(q - pla(a’ PPt + (

) <(N\;\1)

—a(p- 1)) a(apgbp)zpp-l}

-alq - 1)) a(a?yPP)aP Pt

Corollary 7.2. Since V(x) = Vyin RN, then for a > 0 small enough we have
~div(a ([VPP) [VPP2VP) + ks Voy? L + %l/ﬂ'l - 0inRY,

Proof. Using (a1) and Lemma 7.1 we obtain that

v

~div(a (|VYP) VPP 2VY) > —alg - Da(aPpP)aP P!

-a(g-1) (kzap‘ll,bp'l + aq’lz/)q‘l)

v
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= —alg- Dka? 1Pt —a(g - 1)a? T
Moreover, since Vo > 0 and a > 0 is small enough, we concluded that
k3Vo - alg - Dk’ 120
and
% —a(g-1a?t 0.

Consequently
. p p-2 p-1 VO q-1 : N
~divia ([VYP) VP> Vy) + ks Voy? ' + 297 2 0in R,

Let us now relate the positive solution ve to the exponential function ) for small €.

Lemma 7.3. Let uc be the solution found in Theorem 3.1 and ve(x) := ue(x + je) given in Proposition 5.1. For
Qe = max{ve — P, 0} and € > O sufficient small, we have

/a(\Vve|p)|Vve\p’2vaV(pe dx + k3 Vg / [VelP L e dx + % / Vel pe dx < 0.
RV RN RV

Proof. From Lemma 5.2, Lemma 5.3 and hypothesis (f;), there exist pg > 0 such that € > 0 small enough,

foe+vit 3
vela? 4

IN

Vo, forall |x|=zpo.

Since Y(x) := Mexp(-alx]) for x € RN, we can find M > 0 such that if M = M,
then @c := max{|v; ¢| - ¥, 0} = 0in By,(0) and ¢ € W"P(|x| = po) N W9(|x| = po). Therefore, the above
inequality and (b4),

/a(|Vv€|p)\Vve|p’2Vv€V<pe dx + VO/ [k3\ve\p‘1<p€ + |v€|q‘1<p€} dx
RN RN

s/a(|va\p)|Vve\p’2VveV(pe dx+/V(ex+ye)b(|ve|p)\ve|p’2ve(pe dx
RY RN

V _
s/f(ve)(pe dx < BTO/\Vqu 1(p€dx
RN RN

and the lemma is proved. O

Finally we are going to show the exponential decay for the functions ue.

Proposition 7.4. There are €y > 0 and C > 0 such that

- P,

lue(z)| < Cexp (—a z

), for all zc RV,

Proof. From [14, Lemma 2.4], we have that
(alxP)xP2x = alyPlyP 2y, x-y) 20, Vx,y € R,
Consider ve(x) := ue(x + je) the set

A:={xe]RN:|x|2po and |ve| -y = 0},
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where 1 is the function is given by Lemma 7.1, (y») is given by Proposition 5.1. Then, using Corollary 7.2 and
Proposition 7.3, we obtain

0> / (a(Vve )Vl 29ve - a(VPPIVHP 2, v ) dx

RN
- 1\ » Vi - 1\ -
sVoks [ (el =Pt pax+ 52 [ (Ivel”™ = i) p x
RN RN
p-1_ . pp-1) 7 Vo a-1_ a1\ 7~
= Vaks [ (1vel? ™ =1917) pax+ 2 [ (velt? = pi*t) pax
RN RN
= V()k3 / ('Ve‘p71 - |ll)‘p71> (Ve - ll))dX
A
+E/ (\ve\q_l - \1/)|q"1) (ve —)dx = 0.
4
A

Then |A| = 0 and consequently
ve(x) < Mexp(-alx|), ¥ |x| = po.

Considering x = z - j¢ and using Lemma 5.5 there exists a constant C > 0 satisfying

) = Mexp (—a )
< Mexp (—a z Pe

;PGD exp (-a |ge|) < Cexp <—a 27T

z—-Pe +€qe

g |F Ve
\ue(z)\sMexp((x’ c c

1)

for all |z - J¢| = po and for € > 0 small enough.
Now we are going to show the inequality (7.1) holds, for all z € RY. Since (ye) converges, it follows that

. 1+
|Z|2po—|ye\=po—@>po— Ye

€

| > —oco0 as € > 0.
Then, there exists €9 > 0 such that

z - Pe¢

|ue(z)| < Cexp (—a

>, v zeRY and V € € (0, ).

Appendix

In this appendix we are going to show the existence of positive solution for a problem in a bounded domain
with smooth boundary, denoted by Q. More precisely, we are going to study the following problem

~kaApu — Aqu + Vig|ulP~2u + Vu|7%u = [u|"2u in Q
(Pr)
u=0 on 0Q,

where Q is a bounded domain in RN and k», ks, V are positive constants. We have associated to problem (P)
the functional

1,(u)=%/[kz\Vu|P+Vk4\u|P} dx+%/[|Vu|q+\7|u|q] dx—%/|u|fdx
Q Q Q

and the Nehari manifold
Ne={ue W(l)’q(Q) : u#0and I,(Wu = 0}
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Lemma 7.5. Forallu € Wé’q(Q)\{O} there exists a unique t, € (0, +o0), such that tu € Nr.

Proof. Note thatifu e Wé’q(!))\{o} and t > 0, we have

Ir(tu) = t* o / [ka|VulP +Vik4|ufP] dx + %/ [IVul?+Vu|?] dx - % / lu|"dx
) 0 0
Then,
lti_1>13 Ifl(ju) = +oo and tl_;g:o Ifgu) = —%/|u|fdx <0.
o

Consequently, there exists t, € (0, +oo) such that I (tyu) = sup I-(tu) and t,u € Nr.
£0

In order to show the unicity of t,, consider f(t) = t* and note that % is increasing. O

Lemma 7.6. The following properties hold:
1/q

(i) There exists pr > O such that / |[Vu|?dx 2 pr, forallu € Ne;
)

(ii) There exists a constant Cr > 0 such that I:(u) = C¢ / |Vu|?dx, for all u € Nr.
0

Proof. By Sobolev’s embeddings, there exists C > 0 such that

/|Vu\qus/[k2|Vu\p+\7k4|u|p] dx+/[|Vu\q+V|u\q} dx=/\u\rdx
0 0 0 0
T/q

<C /|Vu\qu
0

Since T > g, the item (i) follows.
To verify the second assertion observe that

L) = Ir(u) - %I;(u)u > (% - %) / (Ko [Vul? + Vi ul?] dx
Q

+(1_1)/[|Vu|q+\7|u|q] dx > (1—1>/|qudx.
q T q T
Q Q

Proposition 7.7. There exists wr € Wé"’(Q) such that wr is a solution of (Pr) and I:(w¢) = %glf I;.

T

Proof. Let (un) be a minimizing sequence for I in N. By Lemma 7.6, we conclude that (uy) is bounded in
Wé’q(Q). Then there exists u € Wé’q(Q) such that, up to a subsequence, u, — uin W(l)’q(Q) and

Un > u stronglyin L(Q) forany 1<s<q’,
(72)
un(x) 2> u(x) fora.e x € Q.
Since T € (g, ¢") we have, by Lemma 7.6 again, that u # 0. Hence,
cr < It(tyu) < liminf I (tyup) < liminf It (un) + 0n(1) = 1.
n—->oco n—->oco
Considering wr := t,u we have I:(w;) = c¢; and using Implicit Theorem we conclude that

I;’(WT) =0. O
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