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Abstract:We show existence and concentration results for a class of p&q critical problems given by

−div
(
a
(
ϵp|∇u|p) ϵp|∇u|p−2∇u

)
+ V(z)b

(|u|p) |u|p−2u = f (u) + |u|q*−2u in R
N ,

where u ∈ W1,p(RN) ∩ W1,q(RN), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q* = Nq/(N −

q). The potential V is positive and f is a superlinear function of C1 class. We use Mountain Pass Theorem

and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and

Compactness Principle in order to overcome the lack of compactness.

Keywords: Critical exponent, p&q Laplacian operator, Variational methods

MSC: Primary 35J60; Secondary 35J60, 35J10, 35J20.

1 Introduction
In this paper we are concernedwith a class of problems, named p&q problems type. In the last years themain

interest in this general class of problems has been due to the fact that they arise from applications in physics

and related sciences, such as biophysics, plasma physics and chemical reaction, as it can be seen for example

in [20], [23] and [35]. In addition, such a class of problems encompasses a large class of problems, as can be

seen in [4], [15] and [17].

More precisely, we show existence and concentration results of positive solutions for the critical problem

given by ⎧⎪⎨⎪⎩
−div

(
a
(
ϵp|∇u|p) ϵp|∇u|p−2∇u

)
+ V(z)b

(|u|p) |u|p−2u = f (u) + |u|q*−2u in R
N ,

u ∈ W1,p(RN) ∩ W1,q(RN),

(Pϵ)

where ϵ > 0, N ≥ 2, 1 < p ≤ q < N and q* = Nq/(N − q). The hypotheses on the function a are the following:

(a1)the function a is of class C1 and there exist constants k1, k2 ≥ 0 such that

k1t
p + tq ≤ a(tp)tp ≤ k2t

p + tq , for all t > 0;

(a2)the mapping t �→ a(tp)

tq−p
is nonincreasing for t > 0;
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(a3)if 1 < p < 2 ≤ N the mapping t �→ a(t) is nondecreasing for t > 0. If 2 ≤ p < N the mapping t �→ a(tp)tp−2

is nondecreasing for t > 0.

As a direct consequence of (a2) we obtain that the map a and its derivative a′ satisfy

a′(t)t ≤
(q − p)

p
a(t) for all t > 0. (1.1)

Now ifwedefine the function h(t) = a(t)t− q
p A(t), using (1.1)we canprove that the function h is nonincreasing.

Then, there exists a positive real constant γ ≥ q
p such that

1

γ
a(t)t ≤ A(t), for all t ≥ 0. (1.2)

The hypotheses on the function b are the following:

(b1)The function b is of class C1 and there exist constants k3, k4 ≥ 0 such that

k3t
p + tq ≤ b(tp)tp ≤ k4t

p + tq , for all t > 0;

(b2)the mapping t �→ b(tp)

tq−p
is nonincreasing for t > 0.

(b3)if 1 < p < 2 ≤ N the mapping t �→ b(t) is nondecreasing for t > 0. If 2 ≤ p < N the mapping t �→ b(tp)tp−2

is nondecreasing for t > 0.

Using the hypothesis (b2) and arguing as (1.1) and (1.2) we prove that there exists γ ≥
q
p such that

1

γ
b(t)t ≤ B(t), for all t ≥ 0. (1.3)

The nonlinearity f is assumed to be a C1 function with the following hypotheses:

(f1)

lim
|s|→0

f (s)

|s|q−1 = 0.

(f2) There exists q < r < q* = qN
N−q such that

lim
|s|→∞

f (s)

|s|r−1 = 0.

(f3) There exists θ ∈ (γp, q*) such that

0 < θF(s) ≤ f (s)s for s > 0,

where F(s) =

s∫
0

f (t)dt and γ > 0 was given in (1.2);

(f4) s �→ f (s)

sq−1
is nondecreasing for s > 0.

(f5) There exist τ ∈ (q, q*) and λ > 1

f (s) ≥ λsτ−1 ∀ s > 0.

We need to put some hypotheses on the potential V ∈ C(RN).

(V1)There is V0 > 0, such that

0 < V0 ≤ V(z) for all z ∈ R
N .

(V2)There exists a bounded domain Ω ⊂ R
N such that

0 < V0 = inf
z∈Ω

V(z) < inf
z∈∂Ω

V(z).



Gustavo S. Costa and Giovany M. Figueiredo, Existence and concentration | 245

In order to illustrate the degree of generality of the kind of problems studied here, with adequate hypotheses

on the functions a and b, in the following we present more some examples of problems which are also in-

teresting from the mathematical point of view and have a wide range of applications in physics and related

sciences.

Problem 1: Let a(t) = 1 + t
q−p
p and b(t) = 1 + t

q−p
p . In this case we are studying problem

−Δpu − Δqu + V(x)(|u|p−2u + |u|q−2u) = f (u) + |u|q*−2u in R
N .

The Problem 1 comes from a general reaction–diffusion system: ut = div(Du∇u) + g(x, u), where

Du := [|∇u|p−2+|∇u|q−2]. In such applications, the function u describes a concentration, the term div(Du∇u)

corresponds to the diffusion with a diffusion coefficient Du and g(·, u) is the reaction and relates to source

and loss processes. Usually, in chemical and biological applications, the reaction term g(·, u) is a polynomial

of u with variable coefficients.

Problem 2: Let a(t) = t
q−p
p and b(t) = t

q−p
p . In this case we are studying problem

−ϵqΔqu + V(x)|u|q−2u = f (u) + |u|q*−2u in R
N

and it is related to the main result showed in [3] in the case q = 2. In [19] the author have studied the case

1 < q < N.

Problem 3: Let a(t) = 1 + 1

(1+t)
p−2
p

and b(t) = 1. In this case we are studying problem

−ϵp div(|∇u|p−2∇u) − div

(
ϵp|∇u|p−2∇u

(1 + ϵp|∇u|p) p−2
p

)
+ V(x)|u|p−2u = f (u) + |u|q*−2u in R

N .

Problem 4: Let a(t) = 1 + t
q−p
p + 1

(1+t)
p−2
p

and b(t) = 1 + t
q−p
p . In this case we are studying problem

−ϵpΔpu − ϵqΔqu − div

(
ϵp|∇u|p−2∇u

(1 + ϵp|∇u|p) p−2
p

)
+ V(x)(|u|p−2u + |u|q−2u) = f (u) + |u|q*−2u in R

N .

The main result is the following:

Theorem 1.1. Suppose that a, b, f and V satisfy (a1) − (a3), (b1) − (b3), (f1) − (f5) and (V1) − (V2) respectively.

Then there are ϵ0 > 0 and λ* > 1 such that (Pϵ) has a positive solution wϵ ∈ W1,p(RN) ∩ W1,q(RN), for every

ϵ ∈ (0, ϵ0) and for every λ > λ*. In addition, if Pϵ is the maximum point of wϵ, then

lim
ϵ→0

V(Pϵ) = V0.

Moreover, there are positive constants C and α such that

|wϵ(z)| ≤ C exp

(
−α

∣∣∣∣ z − Pϵ

ϵ

∣∣∣∣),
for all ϵ ∈ (0, ϵ0) and for all z ∈ R

N.

In a seminal paper [31], Rabinowitz used his famous Mountain Pass Theorem(joint with Ambrosetti) [5] and

showed the existence of solution for a Nonlinear Schrödinger Equation given by⎧⎪⎨⎪⎩
−ϵ2Δu + V(x)u = f (u) in R

N ,

u > 0 in R
N ,

(R)

where V is a continuous potential satisfying (V1) and
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(R1)lim inf
|x|→∞

V(x) = V∞, where V∞ < ∞ or V∞ = ∞.

In [31], Rabinowitz used the force of the parameter ϵ and the geometry of the potential V in order to overcome

the lack of compactness of Sobolev’s embedding to obtain the positive solution. In [33], Wang showed that

the solution found by Rabinowitz concentrates around a local minimum of the potential V, when ϵ converges

to zero.Wang also noted that the concentration of any family of solutionswith energy uniformly bounded can

only occur in a critical point of V. In [12], Del Pino and Felmer weakened the hypothesis (R1) of Rabinowitz

and created a method that is known as Del Pino and Felmer’s penalization method.

As can be seen in [4], [15] and [17], p&q problems are generalizations of (R). However, as can seen below,

we show that the arguments found in [12], [31] and [33] cannot be used directly. But before that, we are going

to report some results on p&q problems type. There are interesting papers on such class of problems. We

start with some problems in a bounded domain. For example, in [15] the author shows the existence and

multiplicity of solutions for a critical p&q problem considering nonlinearity of type concave and convex. The

critical case with discontinuous nonlinearities has studied in [16].

Nowwe comment some results inRN . Existence resultswas studied in [11] and [17]. In [2] the authors stud-

ied concentration results in Orlicz-Sobolev spaces with subcritical nonlinearity and the potential satisfying

the local condition introduced by Del pino and Felmer [12]. In [4], it was showed the existence and concen-

tration results with subcritical nonlinearity and the potential satisfying the global condition introduced by

Rabinowitz [31]( see also [33]).

The present work is strongly influenced by the articles above. Below we list what we believe that are the

main contributions of our paper.

(1) Unlike [4], [11] and [17], we show existence and concentration results considering the local hypothesis on

potential introduced by Del Pino and Felmer [12].

(2) Unlike [2], we are considering the critical nonlinearity.

(3) Since the operator is not homogeneous, some estimates are different and more delicate than some esti-

mates that can be found in [12] and [31] . For example, see Lemma 3.4, Proposition 5.1, Lemma 5.7 and all

the Lemmas of Section 7.

(4) In order to overcome the lack of compactness provoked by the critical growth, it is very common to use

the Talenti’s function (see [32]) to have some control on the minimax level, as can be seen in [10, Lemma

1.1]. The lack of homogenity of the p&q operator does not allow to use this argument. We overcome this

difficulty using the solution of a problem in a bounded domain, as can be seen in Lemma 3.5.

The interest in the study of nonlinear partial differential equations with p&q operator or fractional p&q oper-

ator has increasedbecausemany applications arising inmathematical physicsmaybe statedwith anoperator

in this form. We cite the papers [6], [7], [8], [9], [18], [21], [22], [26], [27], [28], [29], [30] and their references.

Several techniques have been developed or applied in their study, such as variational methods, fixed point

theory, lower and upper solutions, global branching, and the theory of multivalued mappings.

This paper is organized as follows. In Section 2, we define an auxiliary problem using the penalization argu-

ment introduced by Del Pino and Felmer [12]. The existence of solution for the auxiliary problemwas showed

in Section 3. In order to show the concentration result, in Section 4 we studied the autonomous problem. The

concentration result was showed in Section 5. In Section 6we showed that the solutions of the auxiliary prob-

lem are solutions of the original problem. In Section 7we showed the exponential decay of these solutions. To

conclude the paper, we showed in an appendix the existence of a solution to a problem in a bounded domain

that was important to overcome the lack of compactness.

2 Variational framework and an auxiliary problem
To prove Theorem 1.1, we will work with the problem below, which is equivalent to (Pϵ) by change variable

z = ϵx, which is given by
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⎧⎪⎨⎪⎩
−div

(
ϵa
(|∇u|p) |∇u|p−2∇u

)
+ V(ϵx)b

(|u|p) |u|p−2u = f (u) + |u|q*−2u in R
N ,

u ∈ W1,p(RN) ∩ W1,q(RN),

(P̃ϵ)

where ϵ > 0, N ≥ 2 and 1 < p ≤ q < N.

In order to obtain solutions of (P̃ϵ), consider the following subspace ofW
1,p(RN)

⋂
W1,q(RN) given by

Wϵ :=

{
v ∈ W1,p(RN) ∩ W1,q(RN) :

∫
RN

V(ϵx)b(|v|p)|v|pdx < +∞
}
,

which is a Banach space when endowed with the norm

‖u‖ = ‖u‖1,p + ‖u‖1,q ,

where

‖u‖1,m =

⎛⎝∫
RN

|∇u|mdx +

∫
RN

V(ϵx)|u|mdx

⎞⎠
1
m

, for m ≥ 1.

Since the approach is variational, consider the energy functional associated Jϵ : Wϵ → R given by

Jϵ(v) =
1

p

∫
RN

A
(|∇v|p) dx + 1

p

∫
RN

V(ϵx)B
(|v|p) dx − ∫

RN

F(v)dx −
1

q*

∫
RN

vq
*

+ dx,

where u+ = max{u, 0}. By standard arguments, one can prove that Jϵ ∈ C1(Wϵ ,R). As we are interested in

nonnegative solutions we can assume that f (s) = 0 for s ≤ 0.

Let β be a positive number satisfying β > max

{
pγθ

q(θ − pγ)
,
V0pγ

q
, 1

}
, where θ was given in (f3) and V0

appeared in (V1). From (f4), there exists η > 0 such that
f (η) + ηq*−1

ηq−1
=

V0

β
. Then, using the above numbers,

we define the function of C1 class given by

f̃ (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if s ≤ 0,

f (s) + sq
*−1 if 0 < s ≤ η

2 ,

V0

β
|s|q−2s if s > η.

We now define the function

g(z, s) := χΩ(z)[f (s) + (s
+)q

*−1] + (1 − χΩ(z))f̃ (s),

and the auxiliary problem⎧⎪⎨⎪⎩
−div

(
ϵa
(|∇u|p) |∇u|p−2∇u

)
+ V(ϵx)b

(|u|p) |u|p−2u = g(ϵx, u) in R
N ,

u ∈ Wϵ ,

(Pϵaux )

where χΩ is the characteristic function of the set Ω. It is easy to check that (f1) − (f4) imply that g is a

Carathéodory function and for x ∈ R
N , the function s → g(ϵx, s) is of class C1 and satisfies the following

conditions, uniformly for x ∈ R
N :

lim
|s|→0

g(ϵx, s)

|s|q−1 = 0 (g1)

g(ϵx, s) ≤ f (s) + sq
*−1, ∀ s > 0 and x ∈ R

N (g2)
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0 < θG(ϵx, s) ≤ g(ϵx, s)s, ∀ϵx ∈ Ω and ∀s > 0 (g3)i

and

0 < qG(ϵx, s) ≤ g(ϵx, s)s ≤
1

β
V(ϵx)|s|q , ∀ϵx ∈ ̸ Ω and ∀s > 0, (g3)ii

where G(ϵx, s) =

s∫
0

g(ϵx, t)dt.

The function

s →
g(ϵx, s)

|s|q−1 is nondecreasing. (g4)

Remark 1. Note that, for z = ϵx, if uϵ is a positive solution of (Pϵaux ) with |uϵ(z)| ≤ η
2 for every ϵx ∈ R

N \ Ω,

then uϵ(x) is also a positive solution of (Pϵ).

3 Existence of ground state for problem (Pϵaux)

Hereafter, let us denote by Iϵ : Wϵ → R the functional given by

Iϵ(v) =
1

p

∫
RN

A
(|∇v|p) dx + 1

p

∫
RN

V(ϵx)B
(|v|p) dx − ∫

RN

G(ϵx, v)dx.

We denote byNε the Nehari manifold of Iε, that is,

Nε := {u ∈ Wε \ {0} : 〈I′ε(u), u〉 = 0}

and define the number bε by setting

bε := inf
u∈Nε

Iε(u). (3.1)

Using (f1), (f2) and (g2) we have: for every ξ > 0 there exists Cξ such that

|g(εx, s)| ≤ ξ |s|q−1 + Cξ |s|r−1 + |s|q*−1 for all x ∈ R
N , s ∈ R. (3.2)

Then, by definition of g and (3.2), there is rε > 0 such that

‖u‖ ≥ rε > 0 for all u ∈ Nε . (3.3)

The main result in this section is:

Theorem 3.1. Let a satisfying (a1)−(a3), b satisfying (b1)−(b3), f satisfying (f1)−(f5)and V such that (V1)−(V2)

hold. Then, there is λ* > 1 such that (Pϵaux ) has positive solution uϵ ∈ W1,p(RN) ∩ W1,q(RN), for every λ > λ*.

Moreover, we would like to highlight that in section 5, more precisely in Lemma 5.5, we are going to show that

if Pϵ
ϵ is the maximum point of uϵ then

lim
ϵ→0

V(Pϵ) = V0.

In order to use the Mountain Pass Theorem [5], we define the Palais-Smale compactness condition. We say

that a sequence (un) ⊂ Wϵ is a Palais-Smale sequence at level c for the functional Iϵ if

Iϵ(un) → c and ‖I′ϵ(un)‖ → 0 in (Wϵ)
′,
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where

c := inf
η∈Γ

max
t∈[0,1]

Iϵ(η(t)) > 0 and Γ := {η ∈ C([0, 1], X) : η(0) = 0, Iϵ(η(1)) < 0}.

If every Palais-Smale sequence of Iϵ has a strong convergent subsequence, then one says that Iϵ satisfies

the Palais-Smale condition ((PS) for short).

Lemma 3.2. The functional Iϵ : Wϵ → R satisfies the following conditions

(i) There are α, ρ > 0 such that

Iϵ(u) ≥ α, if ‖u‖ = ρ.

(ii) For any u ∈ C∞0 (Ωϵ , [0,∞)), we have

lim
t→∞

Iϵ(tu) = −∞.

Proof. Using (a1), (b1) and (3.2) we obtain

Iϵ(u) ≥
min{k1, k3}

p
‖u‖p1,p +

1

q
‖u‖q1,q −

ξ

p

∫
RN

|u|pdx − Cξ

r

∫
RN

|u|rdx − 1

q*

∫
RN

|u|q*dx.

By Sobolev embeddings, choosing ξ > 0 appropriate and taking ‖u‖ < 1 there are positive constants

C1, C2, C3, such that

Iϵ(u) ≥ C1

[
‖u‖p1,p + ‖u‖q1,q

]
− C2‖u‖r − C3‖u‖q

*

≥ C4‖u‖q − C2‖u‖r − C3‖u‖q
*

.

Then the item (i) follows.

Now we show that the item (ii) holds. Consider a positive function w ∈ C∞0 (Ωϵ), t > 0 and using (a1),

(b1), (f3) and Sobolev embedding, we have

Iϵ(tw) ≤
tp

p
max{k2, k4}‖w‖p1,p +

tq

q
‖w‖q1,q −

tq
*

q*

∫
Ωϵ

|w|q*dx.

This proves the second item.

Hence, there exists a Palais-Smale sequence (un) ⊂ Wϵ at level cϵ. Using (a2), (b2) and (f4), it is possible to

prove that

cϵ = bϵ = inf
u∈Wϵ\{0}

sup
t≥0

Iϵ(tu),

where bϵ was defined in (3.1).

In order to prove the Palais-Smale condition, we need to prove the next lemma.

Lemma 3.3. Let (un) be a (PS)d sequence for Iϵ, then the sequence (un) is bounded Wϵ. Moreover, for each

ξ > 0 there exists R = R(ξ ) > 0 such that

lim sup
n→∞

∫
RN\BR(0)

[a(|∇un|p)|∇un|p + V(ϵx)b(|un|p)|un|p]dx < ξ .

Proof. Since (un) is a (PS)d sequence for functional Id, then using (1.1), (1.3), (g3)i and (g3)ii we have that

on(1) + d + on(1)‖un‖ = Iϵ(un) −
1

θ
I′ϵ(un)un

≥

(
1

pγ
−
1

θ

)∫
RN

[
a(|∇un|p)|∇un|p +

[
1 + μV(x)

]
b(|un|p)|un|p

]
dx

−
1

β

∫
RN

[|∇u|q + V(ϵx)|u|q] dx

≥

(
1

pγ
−
1

θ

)(
min{k1, k3}‖un‖p1,p +

(
1 −

1

β

)
‖un‖q1,q

)
.
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Then, arguing as the [4, Lemma 2.3] , we can concluded that (un) is bounded inWϵ.

Let ηR ∈ C∞(RN) be such that ηR(x) = 0 if x ∈ BR/2(0) and ηR(x) = 1 if x ∈ ̸ BR(0), with 0 ≤ ηR(x) ≤ 1 and

|∇ηR| ≤ C

R
, where C is a constant independent of R. Since the sequence (ηRun) is bounded inWϵ, and fixing

R > 0 such that Ωϵ ⊂ BR/2(0) we obtain, by definition of the functional Iϵ,∫
RN\BR(0)

[
a(|∇un|p)|∇un|p + V(ϵx)b(|un|p)|un|p

]
dx = Iϵ(un)unηR +

∫
RN

g(ϵx, un)unηRdx

−

∫
RN

una(|∇un|p)|∇un|p−2∇un∇ηRdx + on(1).

Using (g3)ii we estimate (
1 −

1

β

) ∫
RN\BR(0)

[
a(|∇un|p)|∇un|p + V(ϵx)b(|un|p)|un|p

]
dx

≤

∫
RN

|un|a(|∇un|p)|∇un|p−1|∇ηR|dx + on(1).

As (un) is bounded inWϵ and |∇ηR| ≤ C

R
. Passing to the limit in the last estimate, we get

lim sup
n→∞

∫
RN\BR

[a(|∇un|p)|∇un|p + V(ϵx)b(|un|p)|un|p]dx < ξ .

for some R sufficiently large and for some fixed ξ > 0.

In the next result we show that the functional Iϵ satisfies the Palais-Smale condition for some levels. For this

work we are denoting by S the best Sobolev constant for the embedding of D1,q(RN) into Lq* (RN), that is, the

largest positive constant S such that

S

⎛⎝∫
RN

|u|q*dx
⎞⎠

q

q*

≤

∫
RN

|∇u|qdx for every u ∈ D1,q(RN). (3.4)

Lemma 3.4. The functional Iϵ satisfies the Palais-Smale condition at any level

d <

(
1

θ
−
1

q*

)
SN/q .

Proof. Let (un) ⊂ Wϵ be a Palais-Smale sequence at level d <

(
1

θ
−
1

q*

)
SN/q for the functional Iϵ. Arguing

as Lemma [4, Lemma 2.3] we have that (un) is bounded in Wϵ. Then by Sobolev embeddings we deduce, up

to a subsequence, that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
un ⇀ u weakly in Wϵ ,

∇un(x) → ∇u(x) q.t.p in R
N ,

un → u strongly in Ls
loc(R

N) for any p ≤ s < q*,

un(x) → u(x) for a.e x ∈ R
N .

(3.5)

Using the same kind of ideias contained [4, Lemma 2.3], we may conclude that u is a critical point of Iϵ.

From Lemma 3.3 and for each ξ > 0 given there exists R > 0 such that

lim sup
n→∞

∫
RN\BR(0)

[a(|∇un|p)|∇un|p + V(ϵx)b(|un|p)|un|p]dx < ξ .
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This inequality, (a1), (b1), (f1), (f2), (g2) and the Sobolev embeddings imply, for n large enough, there exists

a positive constant C1 such that∣∣∣∣∣∣∣
∫

RN\BR(0)

g(ϵx, un)undx

∣∣∣∣∣∣∣ ≤ C1

(
ξ + ξ r/q + ξ q

*/q
)
. (3.6)

On the other hand, taking R large enough, we suppose that∣∣∣∣∣∣∣
∫

RN\BR(0)

g(ϵx, u)udx

∣∣∣∣∣∣∣ < ξ . (3.7)

Therefore, by (3.6) and (3.7),∫
RN\BR(0)

g(ϵx, un)undx =

∫
RN\BR(0)

g(ϵx, u)u dx + on(1). (3.8)

We claim that ∫
BR(0)∩(RN\Ωϵ)

g(ϵx, un)undx =

∫
BR(0)∩(RN\Ωϵ)

g(ϵx, u)u dx + on(1). (3.9)

Indeed, we have, in view of the definition of g,

g(ϵx, un)un ≤ f (un)un +
(
η

2

)q*

+
V0

β
|un|q for any x ∈ R

N\Ωϵ .

Since the set BR(0) ∩ (RN\Ωϵ) is bounded we can use the above estimate, (f1), (f2), (3.5) and Lebesgue’s

Theorem to conclude that the convergence (3.9) holds.

Finally, we now prove the following convergence∫
Ωϵ

|un|q
*

dx =

∫
Ωϵ

|u|q* dx + on(1). (3.10)

Since (un) is bounded inWϵ andusing the Lions’s ConcentrationCompactness Principle [25], wemay suppose

that

|∇un|q ⇀ μ and |un|q
*

⇀ ν.

Then we obtain an at most countable index set Γ, sequences (xi) ⊂ R
N and (μi), (νi) ⊂ (0,∞), such that

μ ≥ |∇u|q +
∑
i∈Γ

μiδxi , ν = |u|q* +
∑
i∈Γ

νiδxi and Sνq/q
*

i ≤ μi , (3.11)

for all i ∈ Γ, where δxi is the Diracmass at xi ∈ R
N . Thus it is sufficient to show that {xi}i∈Γ∩Ωϵ = ∅. Then, we

suppose by contradiction that xi ∈ Ωϵ for some i ∈ Γ. Consider R > 0 and the function ψR := ψ(xi − x), where

ψ ∈ C∞0 (R
N , [0, 1]) is such that ψ ≡ 1 in BR(xi), ψ ≡ 0 inR

N\B2R(xi), |∇ψ|∞ ≤ 2, where R > 0 will be chosen

in such way that the support of ψ is contained in Ωϵ. Then, as (ψRun) is bounded and I′ϵ(un)ψRun = on(1),∫
RN

una(|∇un|p)|∇un|p−2∇un ·∇ψR dx +

∫
RN

ψRa(|∇un|p)|∇un|p dx

+

∫
RN

ψRV(ϵx)b(|un|p)|un|p dx =

∫
RN

f (x, un)ψRun dx +

∫
RN

ψR|un|q
*

dx + on(1).
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Note that, using (a1), (b1) and that the function f has subcritical growth, we have

lim
R→0

⎡⎣ lim
n→∞

∫
RN

una(|∇un|p)|∇un|p−2∇up
n ·∇ψR dx

⎤⎦ = 0,

lim
R→0

⎡⎣ lim
n→∞

∫
RN

V(ϵx)b(|un|p)|un|pψR dx

⎤⎦ = 0,

and

lim
R→0

⎡⎣ lim
n→∞

∫
RN

f (x, un)ψRundx

⎤⎦ = 0.

Therefore, by (a1) again, ∫
RN

ψR|∇un|qdx ≤
∫
RN

|un|q
*

ψRdx + on(1).

Since ψR has compact support and letting n → ∞ in the above expression, we see that∫
RN

ψRdμ ≤

∫
RN

ψRdν,

which implies

μi ≤ νi .

From this inequality and (3.11) one easily sees that SN/q ≤ νi . As β >
pγθ

q(θ − pγ)
and SN/q ≤ νi we have, by

previous arguments,

d = Iϵ(un) −
1

θ
I′ϵ(un)un + on(1) ≥

(
θ − pγ

pγθ
−

1

qβ

)
‖un‖q1,q +

(
1

θ
−
1

q*

)∫
Ωϵ

|un|q
*

dx + on(1)

≥

(
1

θ
−
1

q*

)∫
Ωϵ

ψR|un|q
*

dx + on(1).

Hence, taking the limit and using (3.11), we get

d ≥

(
1

θ
−
1

q*

)∑
i∈Γ

ψR(xi)νi =

(
1

θ
−
1

q*

)
νi ≥

(
1

θ
−
1

q*

)
SN/q

which does not make sense. Thus we obtain the convergence (3.10).

Therefore ∫
RN

g(ϵx, un)un dx =

∫
RN

g(ϵx, u)u dx + on(1). (3.12)

Finally, we prove that, up to a subsequence, un → u in Wϵ. Since I′ϵ(un)un = on(1), I
′
ϵ(u) = 0, (3.12) and

Fatou’s Lemma we have

0 ≤

∫
RN

[
a(|∇un|p)|∇un|p − a(|∇u|p)|∇u|p] dx + ∫

RN

V(ϵx)
[
b(|un|p)|un|p − b(|u|p)|u|p] dx

+

∫
RN

[
g(ϵx, u)u − g(ϵx, un)un

]
dx = on(1).

Then, using (a1) and (b1), we obtain ‖un − u‖ = on(1), that is, the sequence (un) converges strongly to u.
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For each fixed ϵ > 0, let us consider the following problem{
−k2Δpu − Δqu + V(k4|u|p−2u + |u|q−2u) = |u|τ−2u in Ωϵ ,

u ∈ W1,q
0 (Ωϵ),

(Pτ)

where τ is the constant which appears in the hypothesis (f5) and V := max
x∈Ωϵ

V(x) is a positive constant. We

have associated to problem (Pτ) the functional

Iτ(u) =
1

p

∫
Ωϵ

[
k2|∇u|p + Vk4|u|p

]
dx +

1

q

∫
Ωϵ

[|∇u|q + V|u|q] dx − 1

τ

∫
Ωϵ

|u|τdx

and the associated Nehari manifold

Nτ = {u ∈ W1,q
0 (Ωϵ) : u ≠ 0 and I′τ(u)u = 0}.

From Appendix there exists wτ ∈ W1,q
0 (Ωϵ) such that

Iτ(wτ) = cτ := inf
u∈Nτ

Iτ(u), I′τ(wτ) = 0

and

cτ ≥

(
τ − q

τq

)∫
RN

|wτ|τdx. (3.13)

Since λ is the parameter which appears in the hypothesis (f5) we have the following result.

Lemma 3.5. There exists λ* > 1, such that if λ > λ*, then cϵ <

(
1

θ
−
1

q*

)
SN/q.

Proof. First of all, by the hypotheses (a1), (b1) and (f5), we obtain∫
RN

a(|∇wτ|p)|∇wτ|pdx +
∫
RN

V(ϵx)b(|wτ|p)|wτ|pdx ≤
∫
Ωϵ

[
k2|∇wτ|p + Vk4|wτ|p

]
dx

+

∫
Ωϵ

[|∇wτ|q + V|wτ|q
]
dx =

∫
Ωϵ

|wτ|τdx ≤
∫
Ωϵ

f (wτ)wτdx ≤

∫
RN

g(ϵx, wτ)wτdx,

where V := max
x∈Ωϵ

V(x). This inequality implies that I′ϵ(w
±
τ)w

±
τ ≤ 0, and then there exists t ∈ (0, 1) such that

twτ ∈ Nϵ. Using (a1), (b1) and (f5), we obtain

cϵ ≤ Iϵ(twτ)

≤
tp

p

∫
Ωϵ

[
k2|∇wτ|p + Vk4|wτ|p

]
dx +

tq

q

∫
Ωϵ

[|∇wτ|q + V|wτ|q
]
dx −

λ

τ
tτ
∫
Ωϵ

|wτ|τdx.

Since t ∈ (0, 1), p ≤ q and I′ϵ(wτ)wτ = 0, we get

cϵ ≤ Iϵ(twτ)

≤
tp

p

∫
Ωϵ

[
k2|∇wτ|p + Vk4|wτ|p

]
dx +

tp

p

∫
Ωϵ

[|∇wτ|q + V|wτ|q
]
dx −

λ

τ
tτ
∫
Ωϵ

|wτ|τdx

=

[
tp

p
− λ

tτ

τ

] ∫
Ωϵ

|wτ|τdx ≤ max
s≥0

[
sp

p
− λ

sτ

τ

] ∫
Ωϵ

|wτ|τdx.

Using (3.13), we have

cϵ ≤ max
s≥0

[
sp

p
− λ

sτ

τ

]
cτqτ

(τ − q)
≤

[
τ − p

pλp/(τ−p)

]
cτq

(τ − q)
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By some straightforward algebric manipulations, we get

cϵ ≤

[
τ − p

pλp/(τ−p)

]
cτq

(τ − q)
.

Then, if we choose λ > λ* := max

{
1,

[
(τ−p)
(τ−q)

q
p

θq*

(q*−θ)
cτ

SN/q

](τ−p)/p}
in the hypothesis (f5), the proof is complete.

3.1 Proof of the Theorem 3.1

Proof. The proof is a consequence of Lemma 3.2, Lemma 3.4 and Lemma 3.5.

4 The Autonomous Problem
In order to prove the concentration result, we consider the following problem⎧⎨⎩ −div

(
a(|∇u|p)|∇u|p−2∇u

)
+ V0b(|u|p)|u|p−2u = f (u) + |u|q*−1 in R

N

u ∈ W1,p(RN) ∩ W1,q(RN)

(P0)

which the functional associated I0 is given by

I0(u) =
1

p

∫
RN

[A(|∇u|p) + V0B(|u|p)]dx −
∫
RN

F(u)dx −
1

q*

∫
RN

|u|q*dx,

and the corresponding Nehari manifold is given by

N0 = {u ∈ W1,p(RN) ∩ W1,q(RN)\{0}; I′0(u)u = 0}.

We also define

c0 = inf
N0

I0.

Using the same arguments of the prove of Lemma 3.5, we conclude that

c0 <

(
1

θ
−

1

q*

)
SN/q . (4.1)

The next result allows to show that problem (P0) has a solution that reaches c0.

Lemma 4.1. Let (un) ⊂ N0 be a sequence such that I0(un) → c0. Then there are a sequence (yn) ⊂ R
N and

constants R, η > 0 such that

lim sup
n→∞

∫
BR(yn)

|un|qdx ≥ η. (4.2)

Proof. Suppose that (4.2) is not satisfied. Since (un) is bounded inW1,p(RN) ∩ W1,q(RN) we have, by in [24,

Lemma 2.1],

lim
n→∞

∫
RN

|un|sdx = 0 for all s ∈ (q, q*).

Hence, from (f1) − (f3), ∫
RN

f (un)undx = on(1).
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Since we also have (g3) and that I
′
ϵn (un)un = on(1), we get∫

RN

|un|q
*

dx =

∫
RN

[
a(|∇un|p)|∇un|pdx + V0b(|un|p)|un|p

]
dx + on(1) := l

We claim that l > 0. Indeed, if the claim is not true then, by (a1) and (b1), we have c0 = 0 which is a contra-

diction. Therefore

lim
n→∞

∫
RN

|un|q
*

dx = l > 0. (4.3)

By definition of the constant S, we have

S ≤

∫
RN

|∇un|qdx

⎛⎝ ∫
RN

|un|q
*

dx

⎞⎠q/q*
≤ lq/N . (4.4)

Thus, using (1.2), (1.3) and (f3), we deduce that

c0 + on(1) = I0(un) −
1

θ
I0(un)un ≥

(
1

θ
−
1

q*

)∫
RN

|un|q
*

dx + on(1).

Using (4.3), (4.4) and that c0 > 0, we obtain c0 ≥

(
1

θ
−
1

q*

)
SN/q which is a contradiction with (4.1).

We are going to show that the problem (P0) has a solution that reaches the level c0.

Lemma 4.2. (A Compactness Lemma) Let (un) ⊂ N0 be a sequence satisfying

I0(un) → c0. Then there exists a sequence (ỹn) ⊂ R
N such that, up to a subsequence,

vn(x) = un(x + ỹn) converges strongly in W1,p(RN) ∩ W1,q(RN). In particular, there exists a minimizer

for c0.

Proof. ApplyingEkeland’sVariational Principle (see Theorem8.5 in [34]),wemay suppose that (un) is a (PS)c0
for I0. Since (un) is bounded in W1,p(RN) ∩ W1,q(RN) we can assume, up to subsequences, that un ⇀ u in

W1,p(RN) ∩ W1,q(RN).

Using arguments found in [4, Lemma 2.3], we have that

∇un(x) → ∇u(x) a.e in R
N and I′0(u) = 0. (4.5)

Then, by (1.2), (1.3) and the Fatou’s Lemma,

0 ≤
1

p

∫
RN

[
A(|∇u|p) + V0B(|u|p)

]
dx −

1

θ

∫
RN

[
a(|∇u|p)|∇u|p + V0B(|u|p)|u|p

]
dx

≤ lim inf
n→+∞

⎧⎨⎩1

p

∫
RN

[
A(|∇un|p) + V0B(|un|p)

]
dx −

1

θ

∫
RN

[
a(|∇un|p)|∇un|p + V0B(|un|p)|un|p

]
dx

⎫⎬⎭
Hence, if u ∈ N0,

c0 ≤ I0(u) −
1

θ
I′0(u)u ≤ lim inf

n→+∞

[
I0(un) −

1

θ
I′0(un)un

]
= lim

n→+∞
I0(un) = c0.

By (4.5), (a1), (b1) and Lebesgue’s theorem we conclude that un → u inW1,p(RN)∩W1,q(RN). Consequently,

I0(u) = c0 and the sequence (ỹn) is the null sequence.
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If u ≡ 0, then in that case we cannot have un → u strongly in W1,p(RN) ∩ W1,q(RN) because cV0
> 0.

Hence, using Lemma 4.1, there exists a sequence {ỹn} ⊂ R
N such that

vn ⇀ v in W1,p(RN) ∩ W1,q(RN),

where vn := un(x + ỹn). Therefore, (vn) is also a (PS)c0 sequence for I0 and v ≡ ̸ 0. It follows from the above

arguments that, up to a subsequence, (vn) converges strongly inW1,p(RN) ∩ W1,q(RN) and the proof is com-

plete.

5 Concentration results
In this section we prove some technical results in order to show the concentration result.

Proposition 5.1. Let ϵn → 0 and (un) ⊂ Nϵn be such that Iϵn (un) → c0. Then there exists a sequence (ỹn) ⊂
R

N such that vn(x) := un(x + ỹn) has a convergent subsequence in W1,p(RN) ∩ W1,q(RN). Moreover, up to a

subsequence, yn → y ∈ Ω, where yn = ϵn ỹn.

Proof. Since V satisfies (V1) and c0 > 0, we repeat the same arguments in Lemma 4.1 to conclude that there

exist positive constants R and β̃ and a sequence (ỹn) ⊂ R
N such that

lim inf
n→∞

∫
BR(ỹn)

| un |
q≥ β̃ > 0.

Since the sequence (un) is bounded in W1,p(RN) ∩ W1,q(RN) we immediately obtain, up to a subsequence,

vn ⇀ v ≡ ̸ 0 inW1,p(RN) ∩ W1,q(RN), where vn(x) := un(x + ỹn). Let tn > 0 be such that

ṽn = tnvn ∈ N0. (5.1)

Then, since un ∈ Nϵn , we have

c0 ≤ I0(ṽn) ≤ Iϵn (ṽn) ≤ Iϵn (vn) = Iϵn (un) = c0 + on(1), (5.2)

which implies that I0(ṽn) → c0, as n → +∞.

From boundedness of (vn) and (5.2), we obtain that (tn) is bounded. As a consequence, the sequence (ṽn)

is also bounded inW1,p(RN) ∩ W1,q(RN) which implies, up to a subsequence, ṽn ⇀ ṽ weakly inW1,p(RN) ∩
W1,q(RN).

Note that we can assume that tn → t0 > 0. Then, this limit implies that ṽ ≡ ̸ 0. From Lemma 4.2, we

conclude that ṽn → ṽ inW1,p(RN) ∩ W1,q(RN) and this implies that vn → v inW1,p(RN) ∩ W1,q(RN).

To conclude the proof of this proposition, we consider yn := ϵn ỹn. Our goal is to show that (yn) has a

subsequence, still denoted by (yn), satisfying yn → y for y ∈ Ω. First of all, we claim that (yn) is bounded.

Indeed, suppose that there exists a subsequence, still denote by (yn), verifying |yn| → ∞. From (a1), (b1) and

(V1) we have∫
RN

[
k1|∇vn|p + |∇vn|q

]
dx + V0

∫
RN

[
k3|vn|p + |vn|q

]
dx ≤

∫
RN

g(ϵnx + yn , vn)vndx.

Fix R > 0 such that BR(0) ⊃ Ω and let XBR(0)
be the characteristic function of BR(0). Since

XBR(0)
(ϵx + yn) = on(1) for all x ∈ BR(0) and vn → v inW1,p(RN) ∩ W1,q(RN), then∫

RN

XBR(0)
(ϵx + yn)g(ϵx + yn , vn)vndx = on(1).
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By definition of f̃ we obtain that∫
RN

[
k1|∇vn|p + |∇vn|q

]
dx + V0

∫
RN

[
k3|vn|p + |vn|q

]
dx ≤

∫
RN\BR(0)

f̃ (vn)vndx + on(1)

≤
V0

β

∫
RN

|vn|qdx + on(1).

It follows that vn → 0 inW1,p(RN) ∩ W1,q(RN), obtain this way a contradiction because c0 > 0.

Hence (yn) is bounded and, up to a subsequence,

yn → y ∈ R
N .

Arguing as above, if y ∈ ̸ Ω we will obtain again vn → 0 in W1,p(RN) ∩ W1,q(RN), and then y ∈ Ω. Now if

V(y) = V0, we have y ∈ ̸ ∂Ω and consequently y ∈ Ω. Suppose by contradiction that V(y) > V0. Then, we have

c0 = I0(ṽ) <
1

p

∫
RN

A(|∇ṽ|p)dx + 1

p

∫
RN

V(y)B(|ṽ|p)dx −
∫
RN

F(ṽ)dx −

∫
RN

|ṽ|q*dx.

Using the fact that ṽn → ṽ inW1,p(RN) ∩ W1,q(RN), from Fatou’s Lemma we obtain

c0 < lim inf
n→∞

[
1

p

∫
RN

A(|∇ṽn|p)dx + 1

p

∫
RN

V(ϵnz + yn)B(|ṽn|p)dx −
∫
RN

F(ṽn)dx −

∫
RN

|ṽn|q
*

dx.

]

Since un ∈ Nϵn , this implies that

c0 < lim inf
n→∞

Iϵn (tnun) ≤ lim inf
n→∞

Iϵn (un) = c0,

obtaining a contradiction.

Lemma 5.2. Let (ϵn) be a sequence such that ϵn → 0 and (un) ⊂ Nϵn a solution of problem (Pϵaux ). Then (vn)

converges uniformly on compacts ofRN, where vn(x) := un(x + ỹn). Moreover, given ξ > 0, there exist R > 0 and

n0 ∈ N such that

‖vn‖L∞(RN\BR(0))
< ξ for all n ≥ n0,

where (ỹn) is the sequence of Proposition 5.1.

Proof. Note that vn is a solution of problem{
−div

(
a
(|∇vn|p

) |∇vn|p−2∇vn
)
+ V(ϵx + yn)b

(|vn|p) |vn|p−2vn = g(ϵx + yn , vn) in R
N ,

vn ∈ Wϵ ,

where yn = ϵn ỹn. Adapting some arguments explored in [4, Lemma 5.5], we have that the sequence (vn) is

bounded in L∞(RN) and there exist R > 0 and n0 ∈ N such that

‖vn‖L∞(RN\BR(0)
< ξ , for all n ≥ n0.

Then, for any bounded domain Ω′ ⊂ R
N , from (g1) − (g2) and continuity of V there exists C > 0 such that

|V(ϵx + yn)v
p−1
n − g(ϵx + yn , vn)| ≤ C, for all n ∈ N.

Hence,

|V(ϵx + yn)v
p−1
n − g(ϵx + yn , vn)| ≤ C + |∇vn|p , for all n ∈ N.

Considering Ψ(x) = C, we get that Ψ ∈ Lt(Ω′) with t > p
p−1N. From [13, Theorem 1], we have

‖∇vn‖ ∈ L∞loc(R
N).



258 | Gustavo S. Costa and Giovany M. Figueiredo, Existence and concentration

Therefore, for all compact K ⊂ Ω′ there exists a constant C0 > 0, dependent only on C, N, p and dist(K, ∂Ω′),

such that

|∇vn|∞,K ≤ C0.

Then,

|vn|C0,ν
loc
(RN ) ≤ C, for all n ∈ N and 0 < ν < 1.

From Schauder’s embedding, (vn) has a subsequence convergent in C0,ν
loc
(RN).

Lemma 5.3. Given ϵ > 0, the solution uϵ of problem (Pϵaux ) satisfies

lim
ϵ→0

Iϵ(uϵ) = cV0
.

Proof. Consider z0 ∈ Ω such that V(z0) = V0. Let us now consider R > 0 and set Q ∈ ∂BR(z0). If necessary,

take R small enough such that B(Q, R/4) ⊂ Ω. Taking ψ : RN → R such that ψ ≡ 1 in B(Q, R/4) and ψ ≡ 0

in R
N\B(Q, R/2).
Let w0 ∈ W1,p(RN) ∩ W1,q(RN) be a ground-state positive solution of the problem (P0) which satisfies

c0 = I0(w0) (see Lemma 4.2). Then, we consider the function wϵ : R
N → R be given by

wϵ(x) := ψi(ϵx)w0

(
x −

z0
ϵ

)
∈ Wϵ

and tϵ > 0, such that tϵwϵ ∈ Nϵ. Then, with a direct computation, we have

Iϵ(uϵ) ≤ Iϵ(tϵwϵ) = c0 + oϵ(1).

Finally, taking R → 0 in the last inequality and using the continuity of theminimax function (see [1], [31])

we get

lim sup
ϵ→0

Iϵ(uϵ) ≤ c0.

Let tϵ,0 > 0 be such that tϵ,0uϵ ∈ N0. Then,

c0 ≤ I0(tϵ,0uϵ) ≤ Iϵ(tϵ,0uϵ) ≤ Iϵ(uϵ)

and the proof is complete.

Lemma 5.4. Let (ϵn) be a sequence such that ϵn → 0 and for each n ∈ N, let (un) ⊂ Nϵn be a solution of

problem (Pϵaux ). Then, there are δ* > 0 and n0 ∈ N such that, for vn(x) = un(x + ỹn), we have

vn(x) ≥ δ*, for all x ∈ BR(0) and n ≥ n0,

where R > 0 and (ỹn) were given in Lemma 5.2.

Proof. Suppose, by contradiction, that ‖un‖L∞(|x|<R) = ‖un‖L∞(|x−ỹn|<R) → 0. By Lemma 5.2, we have

‖vn‖L∞(RN ) → 0. It follows from (f1) that

|f (vn) + vq
*−1

n | ≤ V0

2
|vn|q−1 for n sufficient large. (5.3)

Thus, ∫
RN

a(|∇vn|p)|∇vn|pdx +

∫
RN

V(ϵnx + yn)b(|vn|p)|vn|pdx

=

∫
RN

f (vn)vndx + on(1)

≤
V0

2

∫
RN

|vn|qdx + on(1),
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which implies from (a1) and (b1) that,

‖un‖Wϵn
→ 0,

which is a contradiction with Lemma 5.3.

We are now ready to show the concentration of the ground state solution.

Lemma 5.5. If Pϵ
ϵ is the maximum point of uϵ, then

lim
ϵ→0

V(Pϵ) = V0.

Proof. We first notice that using Lemma 5.4 there exist δ* > 0 and n0 ∈ N such that

vn(qn) := max
z∈RN

vn(z) = un(qn + ỹn) ≥ un(x) ≥ δ*, for all n ≥ n0, for all x ∈ BR(0).

We claim that (qn) is bounded, otherwise using Lemma 5.2 and 5.4, there exists R* > 0 such that

‖vn‖L∞(RN\BR* )
≤ δ*

2 , which implies that |vn(qn)| ≤ δ*

2 , where we obtain a contradiction.

Then, Pϵn = ϵnqn + yn which implies

lim
n→+∞

Pϵn = lim
n→+∞

yn = y ∈ Ω.

Hence from continuity of V it follows that

lim
n→+∞

V(Pϵn ) = V(y) ≥ V0.

We claim that V(y) = V0. Indeed, suppose by contradiction that V(y) > V0. Then, we have

c0 = I0(ṽ) <
1

p

∫
RN

A(|∇ṽ|p)dx + 1

p

∫
RN

V(y)B(|ṽ|p)dx −
∫
RN

F(ṽ) −
1

q*

∫
RN

|ṽ|q*dx.

Using that ṽn → ṽ inW1,p(RN) ∩ W1,q(RN) we obtain, from Fatou’s Lemma,

c0 < lim inf
n→∞

[
1

p

∫
RN

A(|∇ṽn|p)dx + 1

p

∫
RN

V(ϵnz + yn)B(|ṽn|p)dx −
∫
RN

F(ṽn) −
1

q*

∫
RN

|ṽn|q
*

dx

]
,

and therefore

c0 < lim inf
n→∞

Iϵn (tnun) ≤ lim inf
n→∞

Iϵn (un) = c0.

This contradiction shows that V(y) = V0.

Lemma 5.6. Let {ϵn} be a sequence of positive numbers such that ϵn → 0 as n → ∞ and let (xn) ⊂ Ωϵn be a

sequence such that uϵn (xn) ≥ Υ > 0 for some constant Υ, where for each n ∈ N, uϵn is a solution of (Pϵaux ). Then,

lim
n→∞

V(xn) = V0

where xn = ϵnxn.

Proof. Up to a subsequence,

xn → x ∈ Ω.

From Lemma 5.3 we have that

Iϵn (uϵn ) → c0,
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and there exists a positive constant C such that

‖uϵn‖ ≤ C, ∀ n ∈ N , for some C > 0.

Setting vn(z) := uϵn (z + xn), we have ‖vn‖ ≤ C and vn ⇀ v inW1,p(RN) ∩ W1,q(RN). Recalling that

vn(0) = uϵn (xn) ≥ Υ > 0,

we conclude that v ≡ ̸ 0.
Fix tn > 0 verifying ṽn = tnvn ∈ N0, for each n ∈ N. Hence,

c0 ≤ I0(ṽn) ≤ Iϵn (tnvn) ≤ Iϵ(vn) = Iϵ(un) = c0 + on(1).

Thus, I0(ṽn) → c0, with {ṽn} ⊂ N0. By Lemma 4.2, we have

ṽn → ṽ in W1,p(RN) ∩ W1,q(RN) and I0(ṽ) = c0. (5.4)

Since ṽ ≠ 0, by Proposition 5.1 we have yn = 0, for n ∈ N. Moreover, recalling that V is continuous, we have

lim
n→∞

V(xn) = V(x).

We claim that V(x) = V0. Indeed, Suppose by contradiction that V(x) > V0, then

c0 = I0(ṽ) <
1

p

∫
RN

A(|∇ṽ|p)dx + 1

p

∫
RN

V(x)B(|ṽ|p)dx −
∫
RN

F(ṽ)dx −
1

q*

∫
RN

|ṽ|q*dx.

Thus, by (5.4) and Fatou’s Lemma, we have

c0 < lim inf
n→∞

[
1

p

∫
RN

A(|∇ṽn|p)dx + 1

p

∫
RN

V(ϵnz + xn)B(|ṽn|p)dx −
∫
RN

F(ṽn)dx −
1

q*

∫
RN

|ṽ|q*dx
]

≤ lim inf
n→∞

[
1

p

∫
RN

A(|∇tnvn|p)dx + 1

p

∫
RN

V(ϵnz + xn)B(|tnvn||p)dx −
∫
RN

G(ϵnz + x, tnvn)dx

]

= lim inf
n→∞

Iϵn (tnun) ≤ lim inf
n→∞

Iϵn (un) = c0,

which leads a absurd. Consequently lim
n→∞

V(xn) = V0.

Lemma 5.7. If mϵ is given by mϵ = sup{max
∂Ωϵ

uϵ : is a solution of (Pϵaux ) }, then there exists ϵ > 0 such that the

sequence (mϵ) is bounded for all ϵ ∈ (0, ϵ). Moreover, we have lim
ϵ→0

mϵ = 0.

Proof. Suppose, by contradiction, lim
ϵ→0

mϵ = +∞, then there exist uϵ a solution of (Pϵaux ) inNϵ and Υ > 0 such

that

max
∂Ωϵ

uϵ ≥ Υ > 0

Thus there exists {ϵn} ⊂ R
+ with ϵn → 0 and there exists a sequence {xn} ⊂ ∂Ωϵn such that

uϵn (xn) ≥ Υ > 0.

Thus, by Lemma 5.6, we have

lim
n→∞

V(xn) = V0,

where xn = ϵnxn and {xn} ⊂ ∂Ω. Hence, up to a subsequence, we have xn → x in ∂Ω and V(x) = V0, which

does not make sense by (V2). Hence, there exists ϵ > 0 such that (mϵ) is bounded, for all ϵ ∈ (0, ϵ).
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Suppose by contradiction that there exists δ > 0 and a sequence {ϵn} ⊂ R
+ satisfying

mϵn ≥ δ > 0

Thus, there exists uϵn a solution of (Pϵaux ) such that

mϵn −
δ

2
< max

∂Ωϵn

uϵn ≤ mϵn .

Hence,

δ

2
= δ −

δ

2
≤ mϵn −

δ

2
< max

∂Ωϵ

uϵn ,

and then there exists a sequence (xn) ⊂ ∂Ωϵn , such that

uϵn (xn) ≥
δ

2
.

Repeating the above arguments, we will get an absurd. Thus, the proof is finished.

6 Proof of Theorem 1.1
Proof. Let uϵ be a solution of (Pϵaux ). By Lemma 5.7, there exists ϵ > 0 such that mϵ < η

2 for all ϵ ∈ (0, ϵ̄),

then (uϵ −
η
2 )+(x) ≡ 0 for a neighborhood from ∂Ωϵ. Hence, (uϵ −

η
2 )+ ∈ W1,p

0 (RN\Ωϵ)∩W1,q
0 (RN\Ωϵ) and the

function (uϵ −
η
2 )

*
+ ∈ W1,p(RN) ∩ W1,q(RN), where

(uϵ −
η

2
)*+(x) :=

⎧⎨⎩ 0 if x ∈ Ωϵ ,

(uϵ −
η
2 )+(x) if x ∈ R

N\Ωϵ .

Using (uϵ −
η
2 )

*
+ as test function. Then, by (a1), (b1) and (g3)ii, we have

0 ≤

∫
RN\Ωϵ

a(|∇uϵ|p)|∇(uϵ −
η

2
)*+|pdx

+

∫
RN\Ωϵ

[
V0b(|uϵ|p)|uϵ|p−2 − V0

β
|uϵ|q−2

]
((uϵ −

η

2
)*+)

2dx

+

∫
RN\Ωϵ

[
V(ϵx)b(|uϵ|p)|uϵ|p−2 − V0

β
|uϵ|q−2

]
η

2
(uϵ −

η

2
)*+dx = 0

The last equality implies

(uϵ −
η

2
)*+ = 0, a.e in x ∈ R

N\Ωϵ .

This implies that |uϵ| ≤ η
2 for z ∈ R

N\Ωϵ, and by Remark 1 the result follows.

7 Exponential decay of the solution uϵ

Finally, we are going to prove the exponential decay. First technical results
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Lemma 7.1. Consider M, α > 0 and ψ(x) := M exp(−α|x|). Then

i) − div(a
(|∇ψ|p) |∇ψ|p−2∇ψ)

= αp−1

[
−pαp+1a′(αpψp)ψ2p−1 + a(αpψp)ψp−1

(
(N − 1)

|x| − α(p − 1)

)]
,

ii) − div(a
(|∇ψ|p) |∇ψ|p−2∇ψ) ≥

(
(N − 1)

|x| − α(q − 1)

)
a(αpψp)αp−1ψp−1.

Proof. Note that

∂ψ

∂xi
(x) = M exp(−α|x|) ∂

∂xi
(−α|x|) = M exp(−α|x|)(−α) xi|x| = −α

xi
|x|ψ(x),

which implies |∇ψ| = αψ. Then

−div(a
(|∇ψ|p) |∇ψ|p−2∇ψ) = −

N∑
i=1

∂

∂xi

[
a
(|∇ψ|p) |∇ψ|p−2 ∂ψ

∂xi

]

= αp−1
N∑
i=1

∂

∂xi

[
a
(
αpψp

)
ψp−1 xi

|x|
]

= αp−1
N∑
i=1

[
a′
(
αpψp

) ∂

∂xi

(
αpψp

)
ψp−1 xi

|x| + a(αpψp)
∂

∂xi

(
ψp−1 xi

|x|
)]

= αp−1
N∑
i=1

[
a′
(
αpψp

)
αppψ2p−2 ∂ψ

∂xi

xi
|x| + a(αpψp)

( |x|2 − x2i
|x|3 ψp−1 + (p − 1)ψp−2 ∂ψ

∂xi

xi
|x|
)]

= αp−1

[
−pαp+1a′(αpψp)ψ2p−1 + a(αpψp)ψp−1

(
(N − 1)

|x| − α(p − 1)

)]
,

this prove the first item.

To prove the item ii) we are going to use (1.2) and the item i). Hence we have

−a′(αpψp)αpψp ≥ −
(q − p)

p
a(αpψp),

and consequently

−pαp+1a′(αpψp)ψ2p−1 ≥ −αψp−1(q − p)a(αpψp).

Therefore, by the item i),

−div(a
(|∇ψ|p) |∇ψ|p−2∇ψ)

≥ αp−1

[
−α(q − p)a(αpψp)ψp−1 +

(
(N − 1)

|x| − α(p − 1)

)
a(αpψp)ψp−1

]

=

(
(N − 1)

|x| − α(q − 1)

)
a(αpψp)αp−1ψp−1.

Corollary 7.2. Since V(x) ≥ V0 in R
N, then for α > 0 small enough we have

−div(a
(|∇ψ|p) |∇ψ|p−2∇ψ) + k3V0ψ

p−1 +
V0

4
ψq−1 ≥ 0 in R

N .

Proof. Using (a1) and Lemma 7.1 we obtain that

−div(a
(|∇ψ|p) |∇ψ|p−2∇ψ) ≥ −α(q − 1)a(αpψp)αp−1ψp−1

≥ −α(q − 1)
(
k2α

p−1ψp−1 + αq−1ψq−1
)
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= −α(q − 1)k2α
p−1ψp−1 − α(q − 1)αq−1ψq−1

Moreover, since V0 > 0 and α > 0 is small enough, we concluded that

k3V0 − α(q − 1)k2α
p−1 ≥ 0

and

V0

4
− α(q − 1)αq−1 ≥ 0.

Consequently

−div(a
(|∇ψ|p) |∇ψ|p−2∇ψ) + k3V0ψ

p−1 +
V0

4
ψq−1 ≥ 0 in R

N .

Let us now relate the positive solution vϵ to the exponential function ψ for small ϵ.

Lemma 7.3. Let uϵ be the solution found in Theorem 3.1 and vϵ(x) := uϵ(x + ỹϵ) given in Proposition 5.1. For

φϵ = max{vϵ − ψ, 0} and ϵ > 0 sufficient small, we have∫
RN

a(|∇vϵ|p)|∇vϵ|p−2∇vϵ∇φϵ dx + k3V0

∫
RN

|vϵ|p−1φϵ dx +
V0

4

∫
RN

|vϵ|q−1φϵ dx ≤ 0.

Proof. From Lemma 5.2, Lemma 5.3 and hypothesis (f1), there exist ρ0 > 0 such that ϵ > 0 small enough,

f (vϵ) + vq
*−1

ϵ

|vϵ|q−1 ≤
3

4
V0, for all |x| ≥ ρ0.

Since ψ(x) := M exp(−α|x|) for x ∈ R
N , we can find M̃ > 0 such that if M ≥ M̃,

then φϵ := max{|vi,ϵ| − ψ, 0} ≡ 0 in Bρ0 (0) and φϵ ∈ W1,p(|x| ≥ ρ0) ∩ W1,q(|x| ≥ ρ0). Therefore, the above

inequality and (b1),∫
RN

a(|∇vϵ|p)|∇vϵ|p−2∇vϵ∇φϵ dx + V0

∫
RN

[
k3|vϵ|p−1φϵ + |vϵ|q−1φϵ

]
dx

≤

∫
RN

a(|∇vϵ|p)|∇vϵ|p−2∇vϵ∇φϵ dx +

∫
RN

V(ϵx + yϵ)b(|vϵ|p)|vϵ|p−2vϵφϵ dx

≤

∫
RN

f (vϵ)φϵ dx ≤
3V0

4

∫
RN

|vϵ|q−1φϵdx

and the lemma is proved.

Finally we are going to show the exponential decay for the functions uϵ.

Proposition 7.4. There are ϵ0 > 0 and C > 0 such that

|uϵ(z)| ≤ C exp

(
−α

∣∣∣∣ z − Pϵ

ϵ

∣∣∣∣), for all z ∈ R
N .

Proof. From [14, Lemma 2.4], we have that〈
a(|x|p)|x|p−2x − a(|y|p)|y|p−2y, x − y

〉
≥ 0, ∀ x, y ∈ R

N .

Consider vϵ(x) := uϵ(x + ỹϵ) the set

Λ := {x ∈ R
N : |x| ≥ ρ0 and |vϵ| − ψ ≥ 0},
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where ψ is the function is given by Lemma 7.1, (ỹn) is given by Proposition 5.1. Then, using Corollary 7.2 and

Proposition 7.3, we obtain

0 ≥

∫
RN

〈
a(|∇vϵ|p)|∇vϵ|p−2∇vϵ − a(|∇ψ|p)|∇ψ|p−2∇ψ,∇φ̃

〉
dx

+V0k3

∫
RN

(
|vϵ|p−1 − |ψ|p−1

)
φ̃ dx +

V0

4

∫
RN

(
|vϵ|q−1 − |ψ|q−1

)
φ̃ dx

≥ V0k3

∫
RN

(
|vϵ|p−1 − |ψ|p−1

)
φ̃dx +

V0

4

∫
RN

(
|vϵ|q−1 − |ψ|q−1

)
φ̃dx

= V0k3

∫
Λ

(
|vϵ|p−1 − |ψ|p−1

)
(vϵ − ψ)dx

+
V0

4

∫
Λ

(
|vϵ|q−1 − |ψ|q−1

)
(vϵ − ψ)dx ≥ 0.

Then |Λ| = 0 and consequently
vϵ(x) ≤ M exp(−α|x|), ∀ |x| ≥ ρ0.

Considering x = z − ỹϵ and using Lemma 5.5 there exists a constant C > 0 satisfying

|uϵ(z)| ≤ M exp
(
−α
∣∣∣ z − yϵ

ϵ

∣∣∣) = M exp

(
−α

∣∣∣∣ z − Pϵ + ϵqϵ

ϵ

∣∣∣∣)
≤ M exp

(
−α

∣∣∣∣ z − Pϵ

ϵ

∣∣∣∣) exp (−α |qϵ|) ≤ C exp

(
−α

∣∣∣∣ z − Pϵ

ϵ

∣∣∣∣) ,

(7.1)

for all |z − ỹϵ| ≥ ρ0 and for ϵ > 0 small enough.

Now we are going to show the inequality (7.1) holds, for all z ∈ R
N . Since (yϵ) converges, it follows that

|z| ≥ ρ0 − |ỹϵ| = ρ0 −
|yϵ|
ϵ

> ρ0 −
1 + |yϵ|

ϵ
→ −∞ as ϵ → 0.

Then, there exists ϵ0 > 0 such that

|uϵ(z)| ≤ C exp

(
−α

∣∣∣∣ z − Pϵ

ϵ

∣∣∣∣) , ∀ z ∈ R
N and ∀ ϵ ∈ (0, ϵ0).

Appendix
In this appendix we are going to show the existence of positive solution for a problem in a bounded domain

with smooth boundary, denoted by Ω. More precisely, we are going to study the following problem{
−k2Δpu − Δqu + Vk4|u|p−2u + V|u|q−2u = |u|τ−2u in Ω

u = 0 on ∂Ω,
(Pτ)

where Ω is a bounded domain inR
N and k2, k4, V are positive constants. We have associated to problem (Pτ)

the functional

Iτ(u) =
1

p

∫
Ω

[
k2|∇u|p + Vk4|u|p

]
dx +

1

q

∫
Ω

[|∇u|q + V|u|q] dx − 1

τ

∫
Ω

|u|τdx

and the Nehari manifold

Nτ = {u ∈ W1,q
0 (Ω) : u ≠ 0 and I′τ(u)u = 0}
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Lemma 7.5. For all u ∈ W1,q
0 (Ω)\{0} there exists a unique tu ∈ (0, +∞), such that tu ∈ Nτ.

Proof. Note that if u ∈ W1,q
0 (Ω)\{0} and t > 0, we have

Iτ(tu) = tτ

⎡⎣ tp−τ

p

∫
Ω

[
k2|∇u|p + Vk4|u|p

]
dx +

tq−τ

q

∫
Ω

[|∇u|q + V|u|q] dx − 1

τ

∫
Ω

|u|τdx
⎤⎦ .

Then,

lim
t→0

Iτ(tu)

tτ
= +∞ and lim

t→+∞

Iτ(tu)

tτ
= −

1

τ

∫
Ω

|u|τdx < 0.

Consequently, there exists tu ∈ (0, +∞) such that Iτ(tuu) = sup
t≥0

Iτ(tu) and tuu ∈ Nτ.

In order to show the unicity of tu, consider f (t) = tτ and note that f (t)
tq is increasing.

Lemma 7.6. The following properties hold:

(i) There exists ρτ > 0 such that

⎡⎣ ∫
Ω

|∇u|qdx
⎤⎦1/q ≥ ρτ, for all u ∈ Nτ;

(ii) There exists a constant Cτ > 0 such that Iτ(u) ≥ Cτ

∫
Ω

|∇u|qdx, for all u ∈ Nτ.

Proof. By Sobolev’s embeddings, there exists C > 0 such that∫
Ω

|∇u|qdx ≤
∫
Ω

[
k2|∇u|p + Vk4|u|p

]
dx +

∫
Ω

[|∇u|q + V|u|q] dx = ∫
Ω

|u|τdx

≤ C

⎡⎣∫
Ω

|∇u|qdx
⎤⎦τ/q

.

Since τ > q, the item (i) follows.

To verify the second assertion observe that

Iτ(u) = Iτ(u) −
1

τ
I′τ(u)u ≥

(
1

p
−
1

τ

)∫
Ω

[
k2|∇u|p + Vk4|u|p

]
dx

+

(
1

q
−
1

τ

)∫
Ω

[|∇u|q + V|u|q] dx ≥ (1
q
−
1

τ

)∫
Ω

|∇u|qdx.

Proposition 7.7. There exists wτ ∈ W1,q
0 (Ω) such that wτ is a solution of (Pτ) and Iτ(wτ) = inf

Nτ

Iτ.

Proof. Let (un) be a minimizing sequence for Iτ in Nτ. By Lemma 7.6, we conclude that (un) is bounded in

W1,q
0 (Ω). Then there exists u ∈ W1,q

0 (Ω) such that, up to a subsequence, un ⇀ u inW1,q
0 (Ω) and{

un → u strongly in Ls(Ω) for any 1 ≤ s < q*,

un(x) → u(x) for a.e x ∈ Ω.
(7.2)

Since τ ∈ (q, q*) we have, by Lemma 7.6 again, that u ≠ 0. Hence,

cτ ≤ Iτ(tuu) ≤ lim inf
n→∞

Iτ(tuun) ≤ lim inf
n→∞

Iτ(un) + on(1) = cτ .

Considering wτ := tuu we have Iτ(wτ) = cτ and using Implicit Theorem we conclude that

I′τ(wτ) = 0.
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