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“Physical laws should have mathematical beauty.”

(Paul Adrien Maurice Dirac)

“We are trying to prove ourselves wrong as quickly as possible,

because only in that way can we find progress.”

(Richard Feynman)

“Fall in love with some activity, and do it! Nobody ever figures out

what life is all about, and it doesn’t matter. Explore the world.

Nearly everything is really interesting if you go into it deeply enough.”

(Richard Feynman)
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Abstract

Title: On the Bulk Viscosity and Shear Induced Dispersion in Magnetohydro-

dynamic Flows

Author: Leonardo Afonso da Silva Inácio

Advisor: Francisco Ricardo da Cunha, Prof. Univ (ENM/UnB)

Master in Mechanical Sciences

In this dissertation, we explore two different flows in the context of magnetohydrody-

namics (MHD). The first one focus on a study of the bulk viscosity (i.e. the second

viscosity coefficient) in a compressible MHD flow, involving magnetoacoustic waves. In

the second problem, we examine the phenomenon of shear induced dispersion in an in-

compressible magnetohydrodynamic flow. The governing equations of both flow problems

represent a coupling between hydrodynamics and electrodynamics and the relevant physi-

cal parameters of the flow are presented after an appropriate dimensional analysis of these

equations. Only few studies in the current literature have explored the effect of a bulk

viscosity in compressible flows involving high frequency and propose how to determine

this quantity experimentally. Therefore, in the first part of this work, we present a study

on a flow of an electrically conducting barotropic gas in the presence of a bulk viscosity.

Firstly, an analysis of small perturbations around an equilibrium state results in a system

of linearized equations in the wave space. The dispersion relation for magnetic waves are

determined in the presence of a bulk viscosity. Secondly, we propose a model to calculate

the bulk viscosity in terms of the physical quantities related to magnetoacoustic waves.

The results show the behavior of the bulk viscosity as a function of the wavenumber for

different magnetic intensity and orientation, revealing how the rate of energy dissipation

associated with the bulk viscosity can be controlled by an external magnetic field. In

the second part of the work, we examine the phenomenon of shear induced dispersion

in a magnetohydrodynamic flow of an incompressible electrically conducting suspension.
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The mechanism underlying hydrodynamic dispersion involves symmetry breaking of par-

ticle trajectories after collisions. The governing equations are again presented and made

non-dimensional by an appropriated scaling analysis. A supplementary diffusion equation

based on hydrodynamic particle fluxes associated with both a gradient in particle con-

centration and a gradient in the shear rate is proposed and discussed. The resulting set

of equations is solved analytically by a regular perturbation analysis, as the parameter

Pe𝐾𝑐, where Pe is the Peclet number and 𝐾𝑐 is the non-dimensional diffusivity associ-

ated with the shear-induced dispersion, is considered a small parameter in the coupled

channel-flow. The results clearly show substantial variations of the velocity profile and

the effective viscosity with the particle diffusivity in a channel-pressure driven flow in the

presence of a uniform transversal magnetic field.

Key-words: Magnetohydrodynamic flows, pressure gradient, magnetic field, bulk viscos-

ity, conducting fluid, hydrodynamic dispersion
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Resumo

Título: Investigação sobre o Segundo Coeficiente de Viscosidade e Dispersão

Induzida por Cisalhamento em Escoamentos Magnetohidrodinâmicos

Autor: Leonardo Afonso da Silva Inácio

Orientador: Francisco Ricardo da Cunha, Prof. Univ (ENM/UnB)

Mestrado em Ciências Mecânicas

Nesta dissertação, são explorados dois escoamentos diferentes no contexto da magne-

tohidrodinâmica (MHD). O primeiro foca em um estudo da viscosidade expansional (i.e.

segundo coeficiente de viscosidade) em um escoamento MHD compressível, envolvendo

ondas magnetoacústicas. No segundo problema, o fenômeno de dispersão induzida por

cisalhamento é analisado em um escoamento magnetohidrodinâmico incompressível. As

equações governantes para ambos os escoamentos representam um acoplamento entre a

hidrodinâmica e a eletrodinâmica, e os parâmetros físicos relevantes do escoamento são

apresentados depois de uma análise dimensional apropriada das equações. Apenas poucos

estudos na atual literatura exploraram os efeitos da viscosidade expansional em escoamen-

tos compressíveis envolvendo alta frequência e propuseram como determinar essa quan-

tidade experimentalmente. Portanto, na primeira parte deste trabalho, é apresentado o

estudo do escoamento de um de um gás barotrópico eletricamente condutor na presença

da viscosidade expansional. Primeiramente, uma análise de pequenas perturbações em

torno de um estado de equilíbrio resulta em um sistema de equações linearizado no es-

paço de onda. As relações de dispersão para ondas hidromagnéticas são determinadas

na presença da viscosidade expansional. Posteriormente, é proposto um modelo para cal-

cular a viscosidade expansional em termos de quantidades físicas relacionadas às ondas

magnetoacústicas. Os resultados mostram o comportamento da viscosidade expansional

como função do número de onda para diferentes intensidades e orientações magnéticas,

mostrando como a taxa de dissipação de energia associada com a viscosidade expan-
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sional pode ser controlada por um campo magnético externo. Na segunda parte deste

trabalho, o fenômeno de dispersão induzida por cisalhamento é examinado em um escoa-

mento de uma suspensão incompressível eletricamente condutora. O mecanismo por trás

da dispersão hidrodinâmica envolve quebra de simetria das trajetórias das partículas após

colisões. Uma equação de difusão suplementar baseada no fluxo hidrodinâmico de partícu-

las, associado com os gradientes de concentração de partículas e de taxa de cisalhamento,

é proposta e discutida. O conjunto de equações resultantes é resolvida analiticamente

através de uma análise de perturbação regular, já que o parâmetro Pe𝐾𝑐, em que Pe é o

número de Peclet e 𝐾𝑐 é a difusividade adimensional associada com a difusão induzida por

cisalhamento, é considerado um parâmetro pequeno no escoamento acoplado em canal.

Os resultados mostram claramente variações substanciais do perfil de velocidade e da vis-

cosidade efetiva com a difusividade de partículas em um escoamento movido por pressão

em canal na presença de um campo magnético transversal uniforme.

Palavras-chaves: Escoamentos magnetohidrodinâmicos, gradiente de pressão, campo

magnético, segundo coeficiente de viscosidade, fluido condutor, dispersão hidrodinâmica

x



List of Figures

Figure 1 – Organization scheme of the work. . . . . . . . . . . . . . . . . . . . . . 7

Figure 2 – Scheme for the waves and the magnetic field. . . . . . . . . . . . . . . . 40

Figure 3 – Phase velocity 𝜔/𝑘 of the slow magnetoacoustic waves as a function of

𝐸𝑚 with 𝑅𝑒𝑘 → ∞, 𝛼 = 𝜋/4 and 𝛾 = 1.4. Inset: The same of the main

graphic, but for the root corresponding to fast waves. We note that in

this graphic the phase velocity is plotted for 4 different values of 𝑘, but

they all overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4 – Phase velocity 𝜔/𝑘 as a function of the angle 𝛼 with 𝑅𝑒𝑘 → ∞, 𝐸𝑚 = 2

and 𝛾 = 1.4. In this Figure, represents one root and an-

other root. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5 – Amplification factor as a function of 𝑅𝑒𝑘 with ̃︀𝑐 = 1.05, 𝜔𝜏 = 1, 𝛼 =

𝜋/4, 𝐸𝑚 = 2 and 𝛾 = 1.4. In this Figure, represents 𝑘 = 1,

𝑘 = 10, 𝑘 = 50, 𝑘 = 100. . . . . . . . . . . . . . . . 44

Figure 6 – Phase velocity as a function of 𝑅𝑒𝑘 with ̃︀𝑐 = 1.05, 𝜔𝜏 = 1, 𝛼 = 𝜋/4,

𝐸𝑚 = 2 and 𝛾 = 1.4. In this Figure, represents 𝑘 = 1, 𝑘 =

10, 𝑘 = 50, 𝑘 = 100. . . . . . . . . . . . . . . . . . . . . . 45

xi



Figure 7 – Non-dimensional bulk viscosity 𝜂2 as a function of the wavenumber 𝑘

for two different values of the magnetic parameter 𝐸𝑚 and 𝛾 = 1.4,

𝜔 = 103 and 𝛼 = 𝜋/4. From top to bottom in the plot the values of

𝐸𝑚 for the curves are: 0 and 300, respectively. For 𝐸𝑚 = 0, the non-

dimensional expansion viscosity has the maximum values for a given

𝑘; (𝜇𝑘)𝑚𝑎𝑥 = (𝜔2 − 𝛾𝑘2)/𝜔𝑘2. The insert depicts the 𝜂2 decay as 𝐸𝑚

increase for 𝑘 = 25. The appreciable difference of the attenuation of

the energy dissipation by controlling the intensity of magnetic field 𝐸𝑚

can be clearly observed. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 8 – Non-dimensional bulk viscosity 𝜂2 as a function of the wavenumber 𝑘

for two different values of the magnetic field orientation 𝛼. From top to

bottom of the curves in the plot 𝛼 = 0, 𝜋/6, 𝜋/4 and 𝜋/2, respectively.

In this plot, 𝛾 = 1.4, 𝜔 = 103 and 𝐸𝑚 = 300. The insert in the plot

shows 𝜂2 versus 𝛼 for 𝑘 = 25. . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 9 – Non-dimensional phase velocity for fast magnetoacoustic waves as a

function of the bulk viscosity for different wavenumbers. From top to

bottom the lines in the plot represent 𝑘 = 25, 50, 75 and 100, re-

spectively. The physical parameters used in this plot are: 𝛼 = 1.4,

𝐸𝑚 = 300, and 𝛼 = 𝜋/4. The nondispersive asymptotic limit of 𝜔/𝑘

for large values of 𝜂2 is exactly predicted by Equation (3.47) as being

𝜔/𝑘 = cos𝛼
√
𝐸𝑚. The supplementary result of 𝜔/𝑘 versus 𝜂2 for slow

magnetoacoustic waves is presented in the insert of the plot. . . . . . . 50

Figure 10 – Non-dimensional phase velocity for fast magnetoacoustic waves as a

function of magnetic Euler number 𝐸𝑚 for different wavenumbers. From

top to bottom the lines in the plot represent 𝑘 = 25, 50, 75 and 100,

respectively. The physical parameters used in this plot are: 𝛼 = 1.4,

𝜂2 = 1, and 𝛼 = 𝜋/4. The limit of 𝐸𝑚 = 0 corresponds to the high

frequency acoustic waves in a non-Stokesian Newtonian gas (i.e., with

bulk viscosity) in the absence of magnetic effects. . . . . . . . . . . . . 51

Figure 11 – Scheme for the MHD flow in channel. . . . . . . . . . . . . . . . . . . . 53

xii



Figure 12 – Non-dimensional velocity profiles of the incompressible MHD flow be-

tween parallel plates for different Hartman numbers. In this Figure,

represents 𝐻𝑎 = 0, 𝐻𝑎 = 0.1, 𝐻𝑎 = 1, 𝐻𝑎 =

5, 𝐻𝑎 = 10. Inset: Maximum velocity as a function of the Hart-

mann number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 13 – Induced magnetic fields for the incompressible MHD flow between par-

allel plates with different Hartmann numbers and 𝑅𝑒𝑚 = 1. In this

Figure represents 𝐻𝑎 = 0.1, 𝐻𝑎 = 1, 𝐻𝑎 = 5,

𝐻𝑎 = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 14 – Effective viscosity as a function of the Hartmann number for the in-

compressible MHD flow between parallel plates. . . . . . . . . . . . . . 61

Figure 15 – Local volume fraction of particles on the upper half of symmetry of

the channel for 𝜑0 = 0.1 and Ha = 1. In this Figure, represents

Pe𝐾𝑐 = 0, Pe𝐾𝑐 = 0.1, Pe𝐾𝑐 = 0.3 and Pe𝐾𝑐 =

0.5. Inset: Maximum of the local volume fraction as a function of the

parameter Pe𝐾𝑐. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 16 – Local volume fraction of particles on the upper half of symmetry of the

channel for 𝜑0 = 0.1 and Pe𝐾𝑐 = 0.05. In this Figure, represents

Ha = 0.01, Ha = 1, Ha = 5 and Ha = 7.5. . . . . . 73

Figure 17 – Shear rate for 𝜑0 = 0.1, Pe𝐾𝑐 = 0.05 and different values of Hart-

mann number. In this Figure, represents Ha = 0, Ha = 2,

Ha = 3 and Ha = 5. . . . . . . . . . . . . . . . . . . . . . 74

Figure 18 – Velocity profile for 𝜑0 = 0.1 and Ha = 1. In this Figure, repre-

sents Pe𝐾𝑐 = 0, Pe𝐾𝑐 = 0.1, Pe𝐾𝑐 = 0.3 and Pe𝐾𝑐 =

0.5. Inset: The maximum of the velocity profile as a function of the pa-

rameter Pe𝐾𝑐. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 19 – Magnetic field profile for 𝜑0 = 0.1 and Ha = 1. In this Figure, rep-

resents Pe𝐾𝑐 = 0, Pe𝐾𝑐 = 0.1, Pe𝐾𝑐 = 0.3 and Pe𝐾𝑐 =

0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 20 – Effective viscosity for 𝜑0 = 0.1. In this Figure, represents Ha = 0,

Ha = 0.5, Ha = 0.8 and Ha = 1. . . . . . . . . . . . 76

xiii



List of Tables

Table 1 – Non-dimensional physical parameters that govern magnetohydrodynam-

ics. Here 𝑢𝑐 is a characteristic velocity, ℓ𝑐 ia characteristic length, 𝜈 is

the hydrodynamic diffusivity and 𝐵𝑐 is a characteristic magnetic field. . 34

xiv



List of symbols

MHD Magnetohydrodynamics

𝑓𝐿 Lorentz force per unit volume vector field

𝜌𝑒 Electrical charge density scalar field

𝑢 Velocity vector field

𝐽 Electrical current density vector field

𝐵 Magnetic flux density vector field

𝜌 Mass density scalar field

𝑥 Spacial or Eulerian coordinate

𝑋 Material or Lagrangian coordinate

𝑡 Time parametrization variable

𝛿𝑉 Volume of a material element

𝜆 Molecular length scale

𝛿(𝑦) Dirac’s delta distribution centered on 𝑦

𝑑𝑆 Surface element

𝑑𝑥 Line element

𝐹 Deformation gradient tensor

𝐽 Jacobian determinant of the transformation 𝑥 → 𝑋

𝜀𝑖𝑗𝑘 Levi-Civita permutation symbol

𝒱 Vector space

xv



𝐷

𝐷𝑡
Material or Lagrangian derivative operator

∇ Nabla differential operator

𝑀 Mass of a subset of the continuum

𝑃 Linear momentum of a subset of the continuum

𝐹 Total force

𝐹 𝐵 Body force

𝐹 𝑆 Contact force

𝑛̂ Exterior normal vector

𝑏 Body force per unit volume

𝑡 Traction vector

𝜎 Cauchy’s stress tensor

𝐿 Total angular moment

𝑇 Total torque

𝑇 𝐵 Torque generated by body forces

𝑇 𝑆 Torque generated by surface forces

𝑇 𝑀 Magnetic torque

𝑡𝑀 Magnetic torque per unit volume

𝜖 Levi-Civita’s third order permutation tensor

𝑄 Orthogonal tensor

𝑝0 Thermodynamic pressure

𝐼 Second order identity tensor

𝜏 Shear stress tensor

𝐷 Symmetric part of the velocity gradient tensor

𝜂 Fourth order viscosity tensor

xvi



𝑝 Mechanical pressure

𝜂2 Bulk viscosity

𝜂 Dynamic viscosity

𝑥, 𝑦, 𝑧 Cartesian coordinates

Re Reynolds number

ℎ Half of the height of a channel

𝑄 Flow rate

𝑎 Radius of a tube

𝑐 Speed of light

𝑣 Relative velocity between two frames of reference

𝛽 Velocity 𝑣 non-dimensionalized by the speed of light 𝑐

𝜒 4-position vector

𝑒𝑖 𝑖-th basis vector

𝑔𝜇𝜈 Components of the 4-dimensional metric tensor

Λ𝜇
𝜈 Components of Lorentz transformation

𝐸 Electric field

𝜑𝑒 Electromagnetic scalar potential

𝐴 Electromagnetic vector potential

𝒜 Electromagnetic 4-potential

𝐽 Electric current density

𝒥 Electric 4-current

𝑄𝑒 Electric charge in a subset of the continuum

𝜌𝑒 Electric charge density

𝜇0 Magnetic permeability of the vacuum

xvii



𝐹 𝐿 Lorentz force

𝜎𝑒 Electrical conductivity tensor

𝜎𝑒 Electrical conductivity

𝜀0 Electrical permisivity of the vacuum

𝜈𝑚 Magnetic diffusivity

Ha Hartmann number

Re𝑚 Magnetic Reynolds number

𝐸𝑚 Euler magnetic number

𝜏 Relaxation time

𝜔 Angular frequency

Re𝑘 Expansional Reynolds number

𝑘 Wavenumber

𝜉 Amplification factor

𝐺 Negative of the pressure gradient in flow direction

𝜂𝑒𝑓𝑓 Effective viscosity

𝜑 Volume fraction of particles

𝑁 Local flux vector field

𝑁 𝑐 Down-gradient flux

𝒟𝑐 Down-gradient diffusivity tensor

𝒟𝑠 Self-diffusivity tensor

𝒟𝑓 Flux contribution to the diffusivity tensor

𝛾̇ Shear rate

𝑎𝑝 Radius of a particle

𝐾𝑐 Diffusivity coefficient of the gradient of volume fraction

xviii



𝐾𝜂 Diffusivity coefficient of the gradient of viscosity

𝐷𝑡 Translational Brownian diffusivity

𝑁 𝑏 Flux due to Brownian motion

𝑘 Boltzmann constant

𝜂0 Viscosity of the carrier fluid

𝑇 Temperature

𝐴 Transversal area

Pe Peclet number

𝜂𝑒 Einstein viscosity for the homogeneous suspension

𝜑𝑚 Maximum packing volume fraction

{𝑒𝑖} Basis vectors

{𝑒𝑖} Dual basis vectors

𝛿𝑖
𝑗 Kronecker delta

𝑔 Metric tensor or inner product

𝒱* Dual vector space

xix



List of Contents

1 INTRODUCTION 1

1.1 Overview on Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . 1

1.2 Magnetohydrodynamic Waves . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 MHD Internal Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Shear-Induced Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Organization of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 THEORETICAL FUNDAMENTALS 8

2.1 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Continuum Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Localization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Time Evolution of Material Surfaces . . . . . . . . . . . . . . . . . 9

2.1.4 Time Evolution of Material Volumes . . . . . . . . . . . . . . . . . 10

2.1.5 Material Derivative of the Jacobian Determinant . . . . . . . . . . . 11

2.1.6 Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . 11

2.1.7 Transport Theorem for a Flux Integral . . . . . . . . . . . . . . . . 12

2.1.8 Mass Balance Equation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.9 Linear Momentum Balance Equation . . . . . . . . . . . . . . . . . 13

2.1.10 Angular Momentum Balance . . . . . . . . . . . . . . . . . . . . . . 15

2.1.11 Constitutive Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.12 Constitutive Model for a Newtonian Fluid . . . . . . . . . . . . . . 17

2.1.13 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.13.1 Permanent Incompressible Unidirectional Flows . . . . . . 19

xx



2.1.13.2 Poiseuille’s Flow Between Parallel Plates . . . . . . . . . . 20

2.1.13.3 Poiseuille’s Flow in a Circular Pipe . . . . . . . . . . . . . 21

2.2 Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Lorentz Transformations and 4-vectors . . . . . . . . . . . . . . . . 21

2.2.2 Electromagnetic 4-potential . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Electromagnetic 4-current . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Electrical Charge Balance Equation . . . . . . . . . . . . . . . . . . 25

2.2.5 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.6 Constitutive Law for the Electric Current Density (Ohm’s Law) . . 28

2.2.7 Lorentz Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 MHD Approximations . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Transport Equation for the Magnetic Field . . . . . . . . . . . . . . 31

2.3.3 A Consequence of the Induction Equation . . . . . . . . . . . . . . 32

2.3.4 Hydromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.5 Magnetohydrodynamics Governing Equations . . . . . . . . . . . . 33

2.3.6 Non-dimensional Physical Parameters of MHD . . . . . . . . . . . . 34

3 BULK VISCOSITY ON MHD WAVES 35

3.1 Landau’s Model for the Bulk Viscosity . . . . . . . . . . . . . . . . . . . . 35

3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Non-dimensional Governing Equations . . . . . . . . . . . . . . . . . . . . 38

3.4 Linearization of the Equations . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Plane Wave Solutions and Dispersion Relations . . . . . . . . . . . . . . . 40

3.6 Results with Landau’s Model for the Bulk Viscosity . . . . . . . . . . . . . 41

3.7 Proposition of a Method to Estimate the Bulk Viscosity . . . . . . . . . . 46

3.7.1 Wave phase velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.2 Final Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 SHEAR INDUCED DISPERSION ON MHD FLOWS 53

4.1 Incompressible MHD Flow in a Channel . . . . . . . . . . . . . . . . . . . 53

4.1.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Non-dimensional Governing Equations . . . . . . . . . . . . . . . . 54

4.1.3 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.4 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xxi



4.1.5 Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.6 Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.7 Equation for the Non-dimensional Electric Field . . . . . . . . . . . 57

4.1.8 Complete Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.9 Effective Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Transport Equation for the Concentration of Particles . . . . . . . . . . . . 60

4.3 Shear-Induced Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Fick’s Law and the Down-Gradient Diffusivity . . . . . . . . . . . . . . . . 62

4.5 Equation for the Shear-Induced Particle Flux . . . . . . . . . . . . . . . . 63

4.6 MHD Flow in Channel with Shear-Induced Dispersion . . . . . . . . . . . . 65

4.6.1 Formulating the Problem . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.2 Full Set of Governing Equations . . . . . . . . . . . . . . . . . . . . 67

4.6.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.4 Non-dimensional Set of Governing Equations and Boundary Con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.5 Regular Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . 69

4.6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 CONCLUSION 77

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 80

Appendix 86

APPENDIX A Mathematical Constructions 87

A.1 Non-orthogonal Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . 87

A.2 Material Derivative of the Deformation Gradient Tensor . . . . . . . . . . 89

A.3 Exterior Product and Dual Relations . . . . . . . . . . . . . . . . . . . . . 90

xxii



1 INTRODUCTION

1.1 Overview on Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of the interaction between magnetic

fields and moving, electrically conducting fluids. Several general applications of magne-

tohydrodynamics can be cited, like the flow of plasma in astrophysics, MHD turbulence,

plasma containment in fusion reactors, materials processing, MHD pumping, magneto-

hydrodynamics of biological systems and many other well known applications. For these,

some good review studies are available in current literature, like the work of David-

son (1999), Knaepen and Moreau (2008), Morley et al. (2000), Rashidi, Esfahani and

Maskaniyan (2017), Yiwen et al. (2017) and Gregory et al. (2016). Some specific applica-

tions are justified in more details below:

• Plasma flows in astrophysics: Astrophysical phenomena of large scale are full of

plasma, the way that some of these can be well described by magnetohydrodynamics.

In particular, we cite solar wind, which are currents of charged particles realeased

from the solar corona;

• Geodynamo: In a general manner, there is an agreement that the earth’s magnetic

field is generated by the flow of iron in its core. The mechanical energy is con-

verted in magnetic energy through stretching and twisting of the magnetic field

lines (DAVIDSON, 2017).

• Conducting fluids in metallurgical industry: Several metallurgical process, includ-

ing open problems, can be described by the magnetohydrodynamic theory. In par-

ticular, magnetic fields can be used to heat, pump, stir and levitate liquid metals

(DAVIDSON, 2017). One problem of industrial nature is the magnetohydrodynamic

instabilities arising in aluminum reduction cells. When producing aluminum by elec-

1



CHAPTER 1. INTRODUCTION 2

trolysis (most of today’s aluminum is produced by this method), interfacial gravity

waves are generated. Depending on the configuration of the reduction cell, these

tends to grow, limiting the use of more energy-efficient configurations. A solution

to control these instabilities, enabling more energy-efficient configurations, would

result in significant energy savings in aluminum production, leading to substantial

cost reduction (URATA, 1994). Other application of much interest of magnetohy-

drodynamics is the stirring of liquid metal through application of rotating magnetic

fields. One can use such fields, homogenizing the solidification and, as a consequence,

the microstructure of the final piece. It is also important to note that a magnetic

field can also be used to damp convective currents in such solidification processes.

The principal metallurgical applications of MHD are discussed in more depth in the

review paper by Davidson (1999).

MHD models the flows of electrically conducting fluids coupling Maxwell’s equa-

tions with hydrodynamics equations (KNAEPEN; MOREAU, 2008). In this context, the

density of free charges is invariably very small, given that if the flow velocity is consider-

ably smaller than the velocity of electrons in the conductor fluid and the fluid is a good

conductor, any unbalance between the electrons charges and the positive charges will be

removed almost instantaneously by the electric field created by this unbalance (CUNHA,

2012). In this context of very small density of free charges, significantly simplifications

can be made in the governing equations, which are usually called MHD simplification.

The direct coupling is done introducing the Lorentz force per unit volume, given by

𝑓𝐿 = 𝜌𝑒𝑢 × 𝐵 = 𝐽 × 𝐵, (1.1)

as a body force in the dynamic equation for a continuum, i.e. it enters the equation

together with gravity as a force per unit volume in the form

𝑏 = 𝜌𝑔 + 𝐽 × 𝐵. (1.2)

Here, 𝜌𝑒 is the electric charge density, 𝑢 is the velocity vector field, 𝐽 is the electric current

density vector field, 𝐵 is the magnetic vector field, 𝜌 is the mass density scalar field and 𝑔

is the gravitational vector field. It is important to note that the microstructure of the fluid

and its constitutive equation (for the stress tensor) remains unchanged. This justifies the

fact that the magnetic effect enters the dynamic equations for the fluid as a body force.
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1.2 Magnetohydrodynamic Waves

An important consequence of the coupling between hydrodynamics and eletromag-

netic theory is the so called magnetohydrodynamic waves, which was first suggested to

exist by ALFVÉN (1942). These are hydromagnetic waves that travel in the conducting

fluid. The discovery of magnetohydrodynamic waves was a major breakthrough in plasma

physics and its applications to space physics and fusion research (FÄLTHAMMAR, 2007),

as it explains several physical phenomena involved. Posteriorly, several studies demon-

strated and investigated these waves experimentally (LUNDQUIST, 1949a; LUNDQUIST,

1949b; LEHNERT, 1954; JEPHCOTT, 1959; ALLEN et al., 1959; NAGAO; SATO, 1960;

WILCOX; BOLEY; SILVA, 1960). More recently, the majority of the papers published

on magnetohydrodynamic waves concerns space physics, more specifically the study of

these waves and their effects in solar corona. Several recent good work involving this field

can be cited, as an overview of these, we refer to the studies of Moortel and Nakariakov

(2012), Sokolov et al. (2013), Okamoto et al. (2007), Ptuskin et al. (2006), Goossens et

al. (2009), Goossens, Erdélyi and Ruderman (2011), Vigeesh et al. (2012), Banerjee et al.

(2021) and, as a good review paper, Nakariakov and Kolotkov (2020). Although magne-

tohydrodynamic waves are a well explored topic, only a very limited number of studies

approach the bulk viscosity on these. Only Ibánez (2007) have approached topics in this

context.

1.3 MHD Internal Flows

Some of the cited applications can take place in MHD internal flows, in special

the MHD pumping, heating and damping applications. The field of MHD internal flows

has been vastly explored, both in theoretical and experimental manner. Theoretically,

this study started with Hartmann (1937), which described entirely the MHD flow be-

tween parallel plates with an external field normal to the plates. After him, Shercliff

(1952) solved the more general MHD flow in a rectangular duct. Concerning analytical

solutions for MHD flows in circular tubes, several papers explore different configurations

of electrical conductivity and wall thickness for different limits of the Hartmann num-

ber (main nondimensional physical parameter in MHD internal flows, which measure the

ratio between Lorentz and viscous forces). The principal studies in this topic are those
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written by Shercliff (1956), Chang and Lundgren (1961), Uhlenbusch and Fischer (1961),

Tanazawa (1962), Gold (1962), Ihara, Matsushima and Tajima (1967) and Samad (1981).

This work, together, completely describe the MHD flow in circular tubes with a verti-

cal external magnetic field. Experimentally, the study of internal magnetohydrodynamic

flow of liquid is vastly explored, these being initiated with the work of Hartmann and

Lazarus (1937). After these authors, internal MHD flows have been vastly explored ex-

perimentally in many different situations, like the work by Fraim and Heiser (1968) and

Murgatroyd (1953) that explored things like transition to turbulence and by Hunt and

Malcolm (1968) that explored electrically driven flows. More recently, experiments with

internal MHD flow are done involving different applications and contexts. The internal

MHD flows are important to this work because shear induced dispersion will be analyzed

in this context.

1.4 Shear-Induced Dispersion

The so-called shear induced dispersion or hydrodynamic dispersion is a dispersion

of the particles in a suspension caused by the break of symmetry of particle’s trajectory

in collisions. This break of symmetry can be caused by several reasons, like the surface

roughness of the particles (CUNHA; HINCH, 1996), the shape of the particles (HUD-

SON, 2003), magnetic interactions (ROURE; CUNHA, 2018), interactions between three

particles (WANG; MAURI; ACRIVOS, 1998) and many others.

The studies on this effect of dispersion caused by shear starts with Karnis, Gold-

smith and Mason (1966) and Eckstein, Bailey and Shapiro (1977). After the initial stud-

ies, many papers explored experimentally and theoretically details of this physical effect

on much different physical configuration (LEIGHTON; ACRIVOS, 1987b; LEIGHTON;

ACRIVOS, 1987a; SCHAFLINGER; ACRIVOS; ZHANG, 1990; NIR; ACRIVOS, 1990;

ACRIVOS et al., 1992; ACRIVOS; MAURI; FAN, 1993; KAPOOR; ACRIVOS, 1995;

ZARRAGA; LEIGHTON DAVID T., 2002). These studies have employed scaling argu-

ments to analyze the dispersing effect and have conducted experimental measurements,

revealing the consequences of this dispersion induced by shear. Also, they show side effects

generate by this dispersion. Cunha and Hinch (1996) develop a model to the self-diffusivity

and down-gradient diffusivities in suspensions composed by rough spheres. This model is

extended to the study of suspension with magnetic interactions by Roure and Cunha
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(2018). As the hydrodynamic dispersion plays a fundamental role on suspension mechan-

ics, constitutive models to treat it in a continuum approach is needed. The first models

were proposed by Leighton and Acrivos (1987b) and Phillips et al. (1992). These are

based in experimental data and scale analysis of the problem. The model by Phillips et

al. (1992) was also modified for more complex cases, like bidisperse suspensions (KRISH-

NAN; BEIMFOHR; LEIGHTON, 1996) and for curvature-induced migration (KIM; LEE;

KIM, 2008). Although the hydrodynamic dispersion has been studied in several different

physical configurations, like with magnetic fluids (ROURE; CUNHA, 2018; SINZATO;

CUNHA, 2020; SINZATO; CUNHA, 2021; CUNHA; SINZATO; PEREIRA, 2022), as far

as we know, it was not explored yet in a electrically conducting suspension in the context

of magnetohydrodynamics.

1.5 Objectives

Based on the discussed throughout this section, this work has objectives in two

different studies. The first is the study of the effects of a bulk viscosity on magnetohydro-

dynamic waves and the second is the study of an incompressible electrically conducting

suspension of rigid monodisperse spheres in the presence of shear induced dispersion. The

specific objectives are listed below:

1. Construct the set of governing equations for the flow of a barotropic gas in the pres-

ence of a bulk viscosity and make this set of governing equations non-dimensional,

finding the relevant non-dimensional physical parameters that rules the problem;

2. Linearize the set of governing equations for the flow of an barotropic gas using small

perturbation around an equilibrium value of the physical quantities;

3. Find the dispersion relations for magnetohydrodynamic waves in the presence of a

bulk viscosity;

4. Analyze the effects of the bulk viscosity in the propagation of Alfvén’s wave and

magnetoacosutic waves with an already existing model for the bulk viscosity, the

Landau model (MANDELSHTAM; LEONTOVICH, 1937; LANDAU; LIFSHITZ,

1987);
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5. Propose a model to calculate the bulk viscosity coefficient using laboratory experi-

ments with magnetoacoustic waves;

6. Discuss the fluxes for the hydrodynamic dispersion and construct a mathematical

model in an unidirectional flow based in a already existing constitutive model;

7. Couple a diffusion equation for these fluxes with the magnetohydrodynamics equa-

tions and make all set of governing equations non-dimensional;

8. Solve the set of non-dimensional differential equations for the flow of an electrically

conducting dilute monidisperse suspension of rigid spheres in a channel using a

regular perturbation analysis;

9. Analyze the results, searching for the effects of the shear induced dispersion on the

flow and the effects of an external magnetic field in the flow, in special the effects

of this field on the dispersion of particles.

1.6 Organization of the Work

This dissertation is organized in 5 chapters, which are described below:

• Chapter 2 (Theoretical Fundamentals): A construction of the theoretical funda-

mentals needed thoughout the work, including fluid dynamics, electrodynamics and

magnetohydrodynamics fundamentals;

• Chapter 3 (Bulk Viscosity on Magnetohydrodynamic Waves): The full construction

of the model to study the effects of a bulk viscosity in MHD waves and the results

are presented in this section. Also, in this chapter we work on the objectives 1-5;

• Chapter 4 (Shear Induced Dispersion on MHD Flows): In this chapter we construct

the full model to analyze the shear induced dispersion in a channel MHD flow and

present the solutions to the model constructed. Also, in this chapter we work on the

objectives 6-9;

• Chapter 5 (Conclusion): Finally, this chapter summarize the results obtained through-

out the work. Also, in this chapter we discuss possibilities for future work.
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As two separate topics are treated in this work, the sequence of reading is not necessarily

the exact order of the chapters. Figure 1 shows a organization scheme of the work. In this,

the possible sequences of reading are shown.

Chapter 1

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Figure 1 – Organization scheme of the work.



2 THEORETICAL

FUNDAMENTALS

2.1 Fluid Dynamics

In this section, we construct the tools of continuum mechanics and, in specific,

fluid dynamics, as it is one of the pillars of the work done in this dissertation and will be

extensively used.

2.1.1 Continuum Hypothesis

The continuum hypothesis states the possibility of describing physical quantities

of a continuous medium as a continuous function of the space point 𝑥 and of the instant

of time 𝑡. A property of the continuum, 𝐺(𝑥, 𝑡), is defined as the volumetric average of a

microscopic property in the volume 𝛿𝑉 contained in the neighborhood of 𝑥, such that, in

the case of mass density,

𝜌(𝑥, 𝑡) = lim
𝛿𝑉 ′→𝛿𝑉

1
𝛿𝑉 ′

∫︁
𝛿𝑉 ′

∑︁
𝑘

𝑚(𝑘)𝛿(𝑦 − 𝑥𝑘)𝑑𝑦, (2.1)

where 𝑚(𝑘) is the mass of the 𝑘-th molecule in 𝛿𝑉 , 𝑥𝑘 represents the position of the 𝑘-th

molecule and 𝑦 is the position vector that reaches each point of 𝛿𝑉 in the neighborhood

of 𝑥. For this hypothesis be valid mathematically and physically, 𝛿𝑉 must be big enough

to contain a large number of molecules, such that the volumetric average of the properties

are well-defined and converges. Also, this volume must be small enough to be considered

a point in comparison with the global scale of the continuum, the way the properties

are continuous function of 𝑥, that represents this volume 𝛿𝑉 . This way, if 𝜆 represents a

molecular length scale and 𝐿 a global length scale of the continuum, then 𝛿𝑉 must satisfy

8
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𝜆3 ≪ 𝛿𝑉 ≪ 𝐿3. (2.2)

The scale in which the continuum hypothesis is valid is called continuum scale and the

material portion contained in 𝛿𝑉 is called a material particle or material element.

2.1.2 Localization Theorem

The localization theorem states that, 𝑓(𝑥, 𝑡) being a continuous function in the

region 𝑉 , a subset of the three-dimensional Euclidean space E3, and Ω being an arbitrary

volume such that Ω ⊆ 𝑉 , then, if
∫︁

Ω
𝑓(𝑥, 𝑡)𝑑𝑉 = 0 ∀ Ω ⊆ 𝑉, (2.3)

we have that

𝑓(𝑥, 𝑡) = 0 ∀ 𝑥 ∈ 𝒱 . (2.4)

This theorem can be proved noting that if 𝑓(𝑦, 𝑡) ̸= 0 for any 𝑦 ∈ 𝑉 , 𝑉 could not be

arbitrary, given that in the region Δ𝑦 ⊂ 𝑉 that describes the neighborhood of 𝑦 the

integral would have a non-zero value, characterizing a contradiction. It is important to

note that this theorem is a direct consequence of the continuity of 𝑓 .

2.1.3 Time Evolution of Material Surfaces

Let 𝑑𝑆 = 𝑑𝑆𝑛 be a material element of area (contained in the continuum) in a

generic time 𝑡 and 𝑑𝑆0 = 𝑑𝑆0𝑁 be the same material element of area in a reference fixed

instant of time 𝑡0. Here, 𝑛 and 𝑁 are the respective exterior normal vectors. Hence,

𝑑𝑆 = 𝑑𝑥1 × 𝑑𝑥2, (2.5)

𝑑𝑆0 = 𝑑𝑋1 × 𝑑𝑋2, (2.6)

where 𝑑𝑥1 and 𝑑𝑥2 are the infinitesimal material lines that generate the material surface

and 𝑑𝑋1 and 𝑑𝑋2 its form in the reference instant of time. Then, using the map Φ defined

by 𝑥 = Φ(𝑋, 𝑡)1, we have that

𝑑𝑆 =
(︃
𝜕𝑥1

𝜕𝑋1
· 𝑑𝑋1

)︃
×
(︃
𝜕𝑥2

𝜕𝑋2
· 𝑑𝑋2

)︃
, (2.7)

1 Also known as the trajectory of the particle identified by 𝑋.
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where (𝜕𝑥/𝜕𝑋)𝑖𝑗 = 𝜕𝑥𝑖/𝜕𝑋𝑗. But, as 𝑑𝑥1 and 𝑑𝑥2 are material lines that generate the

same material area,
𝜕𝑥1

𝜕𝑋1
= 𝜕𝑥2

𝜕𝑋2
= 𝐹 , (2.8)

where 𝐹 is known as the deformation gradient and 𝑑𝑥 = 𝐹 · 𝑑𝑋. This way, Equation

(2.7) can be rewritten as

𝑑𝑆 = (𝐹 · 𝑑𝑋1) × (𝐹 · 𝑑𝑋2) . (2.9)

On the other hand, the cofactor of the tensor 𝐹 , 𝐹 *, is also a second order tensor defined

by

(𝐹 · 𝑑𝑋1) × (𝐹 · 𝑑𝑋2) = 𝐹 * · (𝑑𝑋1 × 𝑑𝑋2) . (2.10)

Thus (CHANDRASEKHARAIAH; DEBNATH, 1994)

𝐹 * = 𝐽(𝐹 𝑇 )−1 = 𝐽𝐹 −𝑇 , (2.11)

where 𝐽 is the Jacobian determinant of the transformation given by the map Φ, i.e.2

𝐽 = 1
6𝜖

𝑖𝑗𝑘𝜖𝑙𝑚𝑛𝐹𝑖𝑙𝐹𝑗𝑚𝐹𝑘𝑛 = det 𝐹 , (2.12)

with 𝜖𝑖𝑗𝑘 being the Levi-Civita permutation symbol. It is important to note that in this

work we will use index notation for general systems, including non-orthogonal ones. The

introductory mathematical construction to it can be found on section A.1 of the Appendix.

Also, in Equation (2.12) Einstein’s summation convention3 has been used and will be used

throughout this work, when not it will be explicitly noted. Finally, using Equations (2.9),

(2.10) and (2.11),

𝑑𝑆 = 𝑑𝑆0𝐹
* · 𝑁 = 𝐽𝑑𝑆0𝐹

−𝑇 · 𝑁 , (2.13)

which relates the material surface in an arbitrary time with the same material surface in

a reference state.

2.1.4 Time Evolution of Material Volumes

Let 𝑑𝑥1, 𝑑𝑥2 and 𝑑𝑥3 be the infinitesimal material lines that generates the volume

element 𝑑𝑉 , such that

𝑑𝑉 = |𝑑𝑥1 · 𝑑𝑥2 × 𝑑𝑥3| , (2.14)
2 Latin indexes like 𝑖 and 𝑗 can assume the values 1, 2 or 3.
3 This convention states that every repeated index implies summation on this index.
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and 𝑑𝑋1, 𝑑𝑋2 and 𝑑𝑋3 be the reference configuration of these material lines, generating

the volume in the reference configuration, 𝑑𝑉0. Then we have

𝑑𝑉 = |(𝐹 · 𝑑𝑥1) · (𝐹 · 𝑑𝑥2) × (𝐹 · 𝑑𝑥3)|

= |det 𝐹 | |𝑑𝑋1 · 𝑑𝑋2 × 𝑑𝑋3|

= 𝐽𝑑𝑉0. (2.15)

The relation given by Equation (2.15) for the material volume is known as the Euler’s

first relation.

2.1.5 Material Derivative of the Jacobian Determinant

Let 𝑆 be a second order tensor and 𝜓(𝑆) a functional on second order tensor

space 𝒱 ⊗ 𝒱 , such that 𝜓 : 𝒱 ⊗ 𝒱 → R, defined by 𝜓(𝑆) = det 𝑆. Here 𝒱 represents the

three-dimensional inner product space on the continuum and R the field of real numbers.

Then,
𝐷

𝐷𝑡
𝜓(𝑆) = 𝜕𝜓

𝜕𝑆𝑖𝑗

𝐷𝑆𝑖𝑗

𝐷𝑡
. (2.16)

Here 𝐷/𝐷𝑡 = (𝜕/𝜕𝑡)𝑋 = 𝜕/𝜕𝑡 + 𝑢 · ∇ represents the Lagrangian or material derivative,

which indicates the variation of the properties viewed by the material elements. Perform-

ing the derivative 𝜕𝜓/𝜕𝑆𝑖𝑗, we obtain that 𝜕𝜓/𝜕𝑆𝑖𝑗 = 𝑆*
𝑖𝑗 (LIU, 2002). Thus, for the

specific case of the deformation gradient tensor, manipulating algebraically,

𝐷

𝐷𝑡
𝜓(𝐹 ) = (det 𝐹 ) tr

(︃
𝐷𝐹

𝐷𝑡
· 𝐹 −1

)︃
, (2.17)

where tr() is the trace operator. Finally, substituting Equation (A.15),

𝐷𝐽

𝐷𝑡
= 𝐽∇ · 𝑢. (2.18)

The expression given by Equation (2.18) is known as Euler’s second relation.

2.1.6 Reynolds Transport Theorem

Let 𝐺(𝑥, 𝑡) be a smooth arbitrary tensorial field, Ω(𝑡) an arbitrary material region

on the continuum and Ω0 this region in a reference time. Then, using Euler’s first relation,

Equation (2.15),
𝑑

𝑑𝑡

∫︁
Ω
𝐺𝑑𝑉 =

∫︁
Ω0

𝐷

𝐷𝑡
(𝐺𝐽) 𝑑𝑉0. (2.19)
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Using Euler’s second relation, Equation (2.18),

𝑑

𝑑𝑡

∫︁
Ω
𝐺𝑑𝑉 =

∫︁
Ω

(︂
𝐷𝐺

𝐷𝑡
+𝐺∇ · 𝑢

)︂
𝑑𝑉, (2.20)

or
𝑑

𝑑𝑡

∫︁
Ω
𝐺𝑑𝑉 =

∫︁
Ω

[︃
𝜕𝐺

𝜕𝑡
+ ∇ · (𝑢𝐺)

]︃
𝑑𝑉. (2.21)

The result presented by Equation (2.21) is known as the Reynolds transport theorem.

2.1.7 Transport Theorem for a Flux Integral

Let 𝑃 (𝑥, 𝑡) be a smooth vector field and 𝜕Ω(𝑡) an arbitrary material surface of

the continuum. Then, using Equation (2.13), the time derivative of the flux integral of 𝑃

through 𝜕Ω(𝑡) can be calculated as

𝑑

𝑑𝑡

∫︁
𝜕Ω

𝑃 · 𝑛𝑑𝑆 =
∫︁

𝜕Ω0

𝐷

𝐷𝑡

(︁
𝑃 · 𝐽𝐹 −𝑇

)︁
· 𝑁𝑑𝑆0. (2.22)

Using Euler’s second relation, Equation (2.18), and the relation deduced in the Appendix

A.2, Equation (A.17), we obtain that

𝑑

𝑑𝑡

∫︁
𝜕Ω

𝑃 · 𝑛𝑑𝑆 =
∫︁

𝜕Ω0

[︃
𝐷𝑃

𝐷𝑡
+ 𝑃 (∇ · 𝑢) − 𝑃 · ∇𝑢

]︃
· 𝐽𝐹 −𝑇 · 𝑁𝑑𝑆0. (2.23)

Therefore, using Equation (2.13) again,

𝑑

𝑑𝑡

∫︁
𝜕Ω

𝑃 · 𝑛𝑑𝑆 =
∫︁

𝜕Ω

[︃
𝐷𝑃

𝐷𝑡
+ 𝑃 (∇ · 𝑢) − 𝑃 · ∇𝑢

]︃
· 𝑛𝑑𝑆, (2.24)

or4

𝑑

𝑑𝑡

∫︁
𝜕Ω

𝑃 · 𝑛𝑑𝑆 =
∫︁

𝜕Ω

[︃
𝜕𝑃

𝜕𝑡
− ∇ × (𝑢 × 𝑃 ) + 𝑢 (∇ · 𝑃 )

]︃
· 𝑛𝑑𝑆. (2.25)

In a physical context, Equation (2.25) represents a purely kinematic relation. In fact,

Wald (2022) deduces it from a purely kinematic analysis, considering 𝜕Ω(𝑡) in different

times infinitesimally close.

2.1.8 Mass Balance Equation

In continuum mechanics, at a reference time the material in the neighborhood of

each point of the continuum is defined as a material element. Each material element is

labeled with its position 𝑋 at the reference time and stays the same element throughout
4 Using the identity given by ∇ × (𝑢 × 𝑃 ) = 𝑢 (∇ · 𝑃 ) − 𝑃 (∇ · 𝑢) + (𝑃 · ∇) 𝑢 − (𝑢 · ∇) 𝑃 .
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the time evolution, the way the mass of each material element is conserved. Therefore, if

𝑀 is the mass of an arbitrary material volume Ω(𝑡) that is defined by the same particles

at every instant of time, we have that

𝑑𝑀

𝑑𝑡
= 𝑑

𝑑𝑡

∫︁
Ω
𝜌𝑑𝑉 = 0, (2.26)

where 𝜌 is a positive integrable function 𝜌 : 𝒱 × R+ → R+ known as the mass density.

Using Reynolds transport theorem, given by Equation (2.21),
∫︁

Ω

[︃
𝜕𝜌

𝜕𝑡
+ ∇ · (𝑢𝜌)

]︃
𝑑𝑉 = 0. (2.27)

Finally, by the localization theorem, we obtain that

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢) = 0. (2.28)

Equation (2.28) states the conservation of the mass and is known as the mass continuity

equation.

In the special case of incompressible fluids, the mass density is conserved by each

material element. Thus, Equation (2.28) reduces to

∇ · 𝑢 = 0. (2.29)

2.1.9 Linear Momentum Balance Equation

Newton’s laws of dynamics states that exists a frame of reference, called inertial

frame, in which the time variation of the linear momentum of some mass equals the

resultant force acting on this mass. Now, consider an arbitrary material volume Ω(𝑡)

formed by the same particles in any instant of time. The surface of this material volume is

𝜕Ω(𝑡) and its total linear momentum is characterized by the vector 𝑃 (𝑡). Hence, applying

Newton’s laws of dynamics to this part of the continuum,

𝑑𝑃

𝑑𝑡
= 𝑑

𝑑𝑡

∫︁
Ω
𝜌𝑢𝑑𝑉 = 𝐹 , (2.30)

where 𝐹 represents the total force acting on Ω.

Continuum mechanics assumes that the total force force acting on some part of the

continuum can be divided in two parts, body forces and contact forces. The first results

from external forces acting within the whole material volume, like Newton’s gravitational
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force. The second acts on the surface of each material element and is a result of molecular

interaction. As molecular interactions decays quickly with the distance, in continuum

scales they are seen as forces on the surface of the elements. These two are written for

the volume Ω described respectively as

𝐹 𝐵 =
∫︁

Ω
𝑏𝑑𝑉, (2.31)

𝐹 𝑆 =
∮︁

𝜕Ω
𝑡𝑑𝑆, (2.32)

where 𝑏 is called the body force density (per unit volume) and 𝑡 is called the surface

traction (per unit surface area). While 𝑏 is a pure vector field, 𝑡 is not, as in general it

must depend on the surface it is acting on, i.e. 𝑡 = 𝑡(𝑛̂,𝑥, 𝑡). Thus, 𝑡 can not appear

in the field equations that describe the dynamic of the continuum. Cauchy was the first

to solve this problem writing 𝑡 = 𝑡(𝑛̂,𝑥, 𝑡) in terms of the traction acting on surfaces

whose exterior normal vectors are constant, in special the canonical basis vectors. Thus,

using a material tetrahedron defined by a triangular region that intercept each axis that

generates the canonical basis, we obtain that (LIU, 2002)

𝑡(𝑛̂,𝑥, 𝑡) = 𝑛̂(𝑥, 𝑡) · 𝜎(𝑥, 𝑡), (2.33)

where 𝜎, defined by 𝜎 = 𝑒𝑘 ⊗ 𝑡(𝑒𝑘,𝑥, 𝑡), is the so-called Cauchy’s stress tensor. Here, 𝑒𝑘

denotes the 𝑘-th canonical basis vector. Equation (2.33) is known as Cauchy’s theorem.

Therefore, using Equations (2.30), (2.31), (2.32) and (2.33),

𝑑

𝑑𝑡

∫︁
Ω
𝜌𝑢𝑑𝑉 =

∮︁
𝜕Ω

𝑛 · 𝜎𝑑𝑆 +
∫︁

Ω
𝑏𝑑𝑉. (2.34)

Applying Reynolds transport theorem, given by Equation (2.21), divergence theorem for

second order tensors (ARIS, 1989) and localization theorem, this equation reduces to

𝜌
𝐷𝑢

𝐷𝑡
= 𝜌

(︃
𝜕𝑢

𝜕𝑡
+ 𝑢 · ∇𝑢

)︃
= ∇ · 𝜎 + 𝑏. (2.35)

Equation (2.35) is known as Cauchy’s equation and represents the linear momentum bal-

ance in a continuum. It is important to note that the use of this equation requires a

prescription for the stress tensor, which is given by a constitutive relation. Such constitu-

tive relations are characterized by the materials, solids or fluids.
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2.1.10 Angular Momentum Balance

Newton’s laws of dynamics states that, in a inertial frame, the time variation of

the angular momentum of a mass equals the torque acting on it. Now, consider the same

material volume defined in subsection 2.1.9 and define its total angular momentum as 𝐿.

Then, we have
𝑑𝐿

𝑑𝑡
= 𝑑

𝑑𝑡

∫︁
Ω

𝑥 × 𝜌𝑢𝑑𝑉 = 𝑇 , (2.36)

where 𝑇 is the total torque acting on Ω(𝑡).

The total torque is divided into three parts: the torque generated by the body

forces, the torque generated by the contact forces, and an extra torque. The latter is a

new addition and is only necessary to account for magnetic torques, as it is well-established

that magnetic fields apply torques on particles with magnetic moment. These torques are

described respectively by

𝑇 𝐵 =
∫︁

Ω
𝑥 × 𝑏𝑑𝑉, (2.37)

𝑇 𝑆 =
∮︁

𝜕Ω
𝑥 × (𝑛̂ · 𝜎) 𝑑𝑆, (2.38)

𝑇 𝑀 =
∫︁

Ω
𝑡𝑀𝑑𝑉, (2.39)

where 𝑡𝑀 is the magnetic torque density (per unit volume). Therefore, using Equations

(2.36), (2.37), (2.38) and (2.39),

𝑑

𝑑𝑡

∫︁
Ω

𝑥 × 𝜌𝑢𝑑𝑉 =
∫︁

Ω
𝑥 × 𝑏𝑑𝑉 +

∮︁
𝜕Ω

𝑥 × (𝑛̂ · 𝜎) 𝑑𝑆 +
∫︁

Ω
𝑡𝑀𝑑𝑉. (2.40)

Applying the divergence theorem (ARIS, 1989), Reynolds transport theorem and manip-

ulating the expression algebraically, we obtain that
∫︁

Ω
𝑥 ×

(︂
𝜌
𝐷𝑢

𝐷𝑡
− ∇ · 𝜎 − 𝑏

)︂
𝑑𝑉 −

∫︁
Ω

(𝜖 : 𝜎 + 𝑡𝑀) 𝑑𝑉 = 0, (2.41)

where 𝜖 is the Levi-Civita’s third order permutation tensor. Using Cauchy’s Equation

(2.35) and applying the localization theorem, Equation (2.41) reduces to

𝜖 : 𝜎 = −𝑡𝑀 , (2.42)

which is the angular momentum balance equation.

Extra torques are caused, as far as we know, only in magnetic materials. These are

a direct effect of the external magnetic field trying to line up the magnetic moments with
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the external field direction. An example of such materials is ferrofluids, where this extra

magnetic torque is present. In cases such magnetohydrodynamics that the fluid does not

have magnetic moment, the angular momentum balance equation is just

𝜖 : 𝜎 = 0, (2.43)

which is equivalent to say that the stress tensor is a symmetric tensor, i.e. 𝜎 = 𝜎𝑇 . As

in our context we work only with pure magnetohydrodynamics, from now on we assume

the stress tensor to be symmetric.

2.1.11 Constitutive Formalism

It can be noted that, in general, Cauchy’s and continuity equations do not fully

describe the dynamics of a continuum material, as an expression for the stress tensor is

needed. Indeed, a expression for this tensor must be provided, as it describes the details

of the response of the material used to deformations. This way, this constitutive relation

for 𝜎 contains intrinsic characteristics of the material used, being it a solid or a fluid.

A constitutive equation can be built and proposed through theoretical models

based on the characteristics of the material. One can built it with physical or empiri-

cal arguments. Nonetheless, every constitutive equation must obbey some basic physical

principles to be consistent, they are (CUNHA, 2021b):

• Causality principle: establishes that the stress in any instant of time must depend,

in general, on the deformation states of the material in previous times 𝑡′. Hence, a

general constitutive equation must relates the stress state in a time 𝑡 with events in

previous times 𝑡′;

• Locality principle: establishes that only material neighborhood of 𝑥 can affect the

stress state of the material element 𝛿𝑉 (𝑥), given by 𝜎(𝑥, 𝑡);

• Coordinate system invariance: establishes that the functional that defines the stress

state in 𝑥 at time 𝑡 must be independent of the coordinate system used to describe

it. It is equivalent to say that this functional is invariant to the Galilean group;

• Fading memory principle: establishes that events more time separated from 𝑡 have

less influence on the stress state in 𝑡;



CHAPTER 2. THEORETICAL FUNDAMENTALS 17

• Objectivity principle (principle of material frame indifference): establishes that the

functional that defines the stress state must be invariant under a general change of

frame of reference. Physically it is equivalent to impose that the material character-

istics do not depend on the dynamic state of the frame of reference. Consider the

general transformation,

𝑥* = 𝑐(𝑡) + 𝑄(𝑡) · (𝑥 − 𝑥0) , (2.44)

𝑡* = 𝑡+ 𝑎, (2.45)

for some 𝑎 ∈ R, 𝑥0 ∈ 𝒱 , 𝑐(𝑡) ∈ 𝒱 and 𝑄(𝑡) ∈ 𝑂(𝒱), where 𝑂(𝒱) is the orthogonal

group on 𝒱 . This transformation is also known as homogenous transformation of

Truesdell and Noll (TRUESDELL, 1977). Hence, if ℱ is the functional describing

the stress tensor, based on this principle (CUNHA, 2021a),

𝑄(𝑡) · ℱ {𝜃,𝑘,𝑅} · 𝑄𝑇 (𝑡) = ℱ
{︁
𝜃,𝑄(𝑡) · 𝑘,𝑄(𝑡) · 𝑅 · 𝑄𝑇 (𝑡)

}︁
= ℱ {𝜃*,𝑘*,𝑅*} .

(2.46)

where 𝜃, 𝑘 and 𝑅 are, respectively, scalar, vector and second-order tensor func-

tion dependencies of the functional and 𝜃*, 𝑘* and 𝑅* represents their transformed

versions. We call ℱ the constitutive function or response function of 𝜎(𝑥, 𝑡).

Applying the constitutive principles exposed, a general constitutive equation for

the stress tensor must have the form given by

𝜎(𝑡) = ℱ
{︃
𝜕𝑥

𝜕𝑋
(𝑡′)

}︃
; −∞ < 𝑡′ < 𝑡, (2.47)

where the symbol −∞ was used to represent the time history before 𝑡. Furthermore,

Equation (2.47) must, under a homogenous Trusdell and Noll’s transformation, transform

accordingly to

𝑄(𝑡) · ℱ
{︃
𝜕𝑥

𝜕𝑋
(𝑡′)

}︃
· 𝑄𝑇 (𝑡) = ℱ

{︃
𝑄(𝑡) · 𝜕𝑥

𝜕𝑋
(𝑡′) · 𝑄𝑇 (𝑡)

}︃
. (2.48)

2.1.12 Constitutive Model for a Newtonian Fluid

It is known that a fluid at rest just feels normal stresses. Hence, the stress tensor

for a static fluid is given by

𝜎0 = −𝑝0(𝑥)𝐼, (2.49)
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where the scalar field 𝑝0 representing the norm of the normal stresses is called static or

thermodynamic pressure. In general, extra stresses should arise as a result of the movement

of the fluid, the way we write a general stress tensor for a moving fluid as

𝜎 = −𝑝0𝐼 + 𝜏 , (2.50)

where 𝜏 is the contribution to the stress tensor caused by the movement of the fluid, also

called viscous stresses.

The first model for viscous stresses was proposed by Newton. For a simple ex-

periment consisting of two parallel plates with fluid filling the gap, he proposed that,

when one of the plates is moving, the stress on the plate should be proportional to the

velocity gradient, with the proportion factor being the viscosity 𝜂 of the fluid. Fluids

that obeys Newton’s law of viscosity are called Newtonian fluids. Hence, we intend to use

a generalization of Newton’s law of viscosity to construct a constitutive model for the

viscous stress tensor. To do that, first we must note that the pure velocity gradient ∇𝑢

is not a good candidate to construct a constitutive equation, as it is not frame indiffer-

ent (CUNHA, 2021a; LIU, 2002). Thus, we use a combination of it, its symmetric part

𝐷 =
[︁
∇𝑢 + (∇𝑢)𝑇

]︁
/2, that can be shown to be frame indifferent, the way that

𝜏 = 𝜂 : 𝐷, (2.51)

where 𝜂 is a fourth order tensor. Equation (2.51) is the most general way of relating two

second order tensors linearly. For the case of isotropic and homogeneous fluids, we impose

that 𝜂 must be isotropic5 and homogeneous. Therefore,

𝜂′
𝑖𝑗𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙 (2.52)

and, by a direct consequence of Equation (2.52) (LIU, 2002)6,

𝜂𝑖𝑗𝑘𝑙 = 𝐶1𝑔𝑖𝑗𝑔𝑘𝑙 + 𝐶2𝑔𝑖𝑘𝑔𝑗𝑙 + 𝐶3𝑔𝑖𝑙𝑔𝑘𝑗, (2.53)

where 𝐶1, 𝐶2 e 𝐶3 are material constants, 𝜂′
𝑖𝑗𝑘𝑙 represents the components of 𝜂 is a

transformed coordinate system and 𝑔𝑖𝑗 are the components of the metric tensor. Using

Equations (2.53) and (2.51) in Equation (2.50) and renaming the material constants, the
5 Its components are the same in any coordinate system
6 Note that in Cartesian coordinate system, 𝑔𝑖𝑗 = 𝛿𝑖𝑗 .
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stress tensor can be shown to be (BATCHELOR, 1967; LANDAU; LIFSHITZ, 1987)

𝜎 = − (𝑝0 − 𝜂2∇ · 𝑢) 𝐼 + 2𝜂
[︂
𝐷 − 1

3 (tr𝐷) 𝐼
]︂
, (2.54)

where 𝜂 is the dynamic viscosity coefficient and 𝜂2 is the second viscosity coefficient. We

note that the second viscosity coefficient, or bulk viscosity, can depend on some properties

of the flow, like the frequency of some physical phenomena in this flow, and only have

significant effect in high frequency cases, as discussed by Landau and Lifshitz (1987). It

also important to define a quantity named the mechanical pressure, given by 𝑝 = −tr(𝜎)/3

and identified as 𝑝 = 𝑝0 − 𝜂2∇ · 𝑢.

The fluid whose stress tensor is described by Equation (2.54) is known as a New-

tonian non-Stokesian fluid. When the Stokes hypothesis is valid, i.e. 𝜂2 ≈ 0, the fluid is

called a Newtonian Stokesian fluid.

2.1.13 Navier-Stokes Equation

Using the stress tensor for a Newtonian non-Stokesian fluid, Equation (2.54), in

Cauchy’s Equation (2.35), we obtain that

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑝0 + ∇ (𝜂2∇ · 𝑢) + 𝜂∇2𝑢 + 1

3𝜂∇ (∇ · 𝑢) + 𝑏. (2.55)

Equation (2.55) is known as the Navier-Stokes equation, which together with continuity

Equation (2.28) describes the dynamics of Newtonian non-Stokesian fluids. In the special

case of a incompressible fluid, Navier-Stokes equation reduces to

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑝+ 𝜂∇2𝑢 + 𝑏, (2.56)

where 𝑝 = 𝑝0.

2.1.13.1 Permanent Incompressible Unidirectional Flows

Consider now an steady7 incompressible unidirectional flow in the 𝑥 direction, the

way that 𝑢 = 𝑢𝑒𝑥. Then, continuity Equation (2.28) states that 𝑢 = 𝑢(𝑦, 𝑧) and, by

consequence,

𝑢 · ∇𝑢 = 0. (2.57)
7 𝜕/𝜕𝑡 = 0 for any continuum’s quantity.
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This way, Navier-Stokes Equation (2.55) reduces to

∇𝑝 = 𝜂∇2𝑢 + 𝑏. (2.58)

It is important to note that Equation (2.57) shows that the unidirectional flow hypothesis

is valid only when |𝜌𝑢 · ∇𝑢| ≪
⃒⃒⃒
𝜂∇2𝑢

⃒⃒⃒
, what, in terms of a scale analysis, is equivalent

to

𝑅𝑒ℎ
ℎ

ℓ
≪ 1, (2.59)

where ℎ is a characteristic length scale in a principal direction of the velocity gradient,

ℓ is a length scale in the direction of the flow, 𝑅𝑒ℎ = 𝜌𝑢𝑐ℎ/𝜂 is the Reynolds non-

dimensional number based on ℎ and 𝑢𝑐 is a characteristic velocity. Equation (2.59) presents

the condition for a flow be considered unidirectional.

2.1.13.2 Poiseuille’s Flow Between Parallel Plates

Consider the flow of a fluid between plates that are parallel to the 𝑥𝑧 plane. For a

non-conductor Newtonian fluid, using the hypothesis of incompressible and unidirectional

flow, the cartesian-component of Navier-Stokes Equation (2.55) in the direction of the

flow, 𝑥-direction, is given by
𝑑2𝑢

𝑑𝑦2 = 1
𝜂

𝑑𝑝

𝑑𝑥
. (2.60)

The other components of the equation just states that 𝑝 = 𝑝(𝑥). If the plates are repre-

sented by the planes 𝑦 = ±ℎ, the no-slip boundary condition states that 𝑢(𝑦 = ±ℎ) = 0.

Thus, a simple double integration of Equation (2.60) and a later use of the no-slip bound-

ary conditions gives that

𝑢 = − 1
2𝜂
𝑑𝑝

𝑑𝑥

(︁
ℎ2 − 𝑦2

)︁
. (2.61)

The flow rate per unit length in the 𝑧 direction is given by

𝑄

ℓ
=
∫︁ ℎ

−ℎ
𝑢(𝑦)𝑑𝑦, (2.62)

such that
𝑄

ℓ
= − 2

3𝜂
𝑑𝑝

𝑑𝑥
ℎ3. (2.63)

Flows like this, pressure driven, are usually named Poiseuille’s flows.
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2.1.13.3 Poiseuille’s Flow in a Circular Pipe

Consider the flow of a fluid in a pipe of center coinciding with the 𝑧-axis and

radius 𝑎. For a non-conductor Newtonian fluid, using the hypothesis of incompressible

and unidirectional flow, the polar-component of Navier-Stokes Equation (2.55) in the

direction of the flow, 𝑧-direction, is given by

𝑑

𝑑𝑟

(︃
𝑟
𝑑𝑢

𝑑𝑟

)︃
= 𝑟

𝜂

𝑑𝑝

𝑑𝑧
. (2.64)

The other components of the equation just states that 𝑝 = 𝑝(𝑧). The no-slip boundary

condition applied for this case states that 𝑢(𝑟 = 𝑎) = 0. Also, we must impose that the

velocity field is finite at the center of the tube to eliminate the singularity generated by

integration of Equation (2.64). Therefore,

𝑢(𝑟) = − 1
4𝜂
𝑑𝑝

𝑑𝑧

(︁
𝑎2 − 𝑟2

)︁
. (2.65)

The flow rate is calculated from

𝑄 =
∫︁ 2𝜋

0

∫︁ 𝑎

0
𝑢𝑟𝑑𝑟𝑑𝜃, (2.66)

such that

𝑄 = − 1
8𝜂
𝑑𝑝

𝑑𝑧
𝜋𝑎4. (2.67)

Equation (2.67) is also known as Hagen-Poiseuille’s law.

2.2 Electrodynamics

In this section, we construct the basic tools of classical electrodynamics and give a

glimpse of special relativity and Lorentz transformation, as all electrodynamic equations

are not Galilean invariant, but Lorentz invariant.

2.2.1 Lorentz Transformations and 4-vectors

Great part of classical mechanics occurs in limits where the field equations are

simply Galilean invariant8, the way that quantities change accordingly to a Galilean trans-
8 Invariant under Galilean transformations.
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formation9,

𝑥′ = 𝑥 − 𝑣𝑡, (2.68)

𝑡′ = 𝑡, (2.69)

under change from an inertial frame to another inertial frame, 𝒦 → 𝒦′. Here, 𝑣 is a

constant vector that represents the relative velocity of the frames and 𝑥′ is the position

vector 𝑥 in the new inertial reference frame. This kind of transformation leaves the three-

dimensional distance defined by 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 invariant, i.e.

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2. (2.70)

Nonetheless, electromagnetic theory is incompatible with Galilean transforma-

tions, as it involves characteristic velocities comparable with the speed of light. Its field

equations are intrinsically Lorentz invariant10 (EINSTEIN, 1905), the way that quantities

change accordingly to a Lorentz transformation,

𝑥′ = 𝑥 + (𝛾 − 1) 𝛽 · 𝑥

𝛽2 𝛽 − 𝛾𝑐𝛽𝑡, (2.71)

𝑡′ = 𝛾

(︃
𝑡− 𝛽 · 𝑟

𝑐

)︃
, (2.72)

where 𝑐 is the speed of light, 𝛾 = (1 − 𝑣2/𝑐2)−1/2 is known as gamma factor, 𝛽 is the

non-dimensional velocity defined by 𝛽 = 𝑣/𝑐 and 𝛽 = |𝛽|. In contrast to Galilean trans-

formation, Lorentz transformation leaves the four-dimensional distance defined by

𝑑𝜒2 = −𝑐𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (2.73)

invariant, i.e.

−𝑐𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = −𝑐𝑑𝑡′2 + 𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2. (2.74)

The 4-dimensional distance defined by 𝑑𝜒 naturally induces a 4-dimensional space-time

with a position four-vector defined by

𝜒 = 𝑥𝜇𝑒𝜇

= 𝑥0𝑒0 + 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3

= 𝑐𝑡𝑒0 + 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3, (2.75)

9 This specific form of the transformation do not includes rotation.
10 Invariant under Lorentz transformations.
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where 𝑥𝜇 are called the contravariant components of the 4-position and we are using the

general index notation for non-orthogonal basis (see section A.1). It is important to note

that, in this work, latin letters indexes varies from 1 to 3 and greek letters indexes varies

from 0 to 311. In such formalism, the internal product 𝑑𝜒 · 𝑑𝜒 = 𝑑𝜒2 is defined by

𝑑𝜒2 = 𝑒𝜇 · 𝑒𝜈𝑑𝜒
𝜇𝑑𝜒𝜈

= 𝑔𝜇𝜈𝑑𝜒
𝜇𝑑𝜒𝜈 , (2.76)

where 𝑔𝜇𝜈 = 𝑒𝜇 · 𝑒𝜈 is the metric tensor of the metric space. In the case of the space-time

defined by Equation (2.73), the metric tensor is identified to be

(𝑔𝜇𝜈) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.77)

where the notation (𝑔𝜇𝜈) is used to represent the matrix representation of the tensor with

components 𝑔𝜇𝜈 . This metric is known as Minkowski metric and is the metric of Einstein’s

special theory of relativity (EINSTEIN, 1905). We also can define the so-called covariant

components of a vector in this space accordingly to

𝜒𝜇 = 𝑔𝜇𝜈𝜒
𝜈 , (2.78)

the way that 𝑥0 = −𝑥0 and 𝑥𝑖 = 𝑥𝑖. In terms of this notation, a general Lorentz transfor-

mation can be synthesized by

𝑥′𝜇 = Λ𝜇
𝜈𝑥

𝜈 , (2.79)

where Λ𝜇
𝜈 are the coefficients of the Lorentz transformation general matrix (BARUT,

1980). It is noticeable that the 4-nabla obeys the Lorentz transformations in Minkowski

metric, i.e.
𝜕

𝜕𝑥′
𝜇

= Λ𝜇
𝜈
𝜕

𝜕𝑥𝜈

, (2.80)

the way that combinations of 4-nabla and 4-tensors generates Lorentz invariant equations.
11 For example, 𝑥𝜇 can be 𝑥0, 𝑥1, 𝑥2 or 𝑥3, but 𝑥𝑖 can be only 𝑥1, 𝑥2 or 𝑥3.
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2.2.2 Electromagnetic 4-potential

It is known that electromagnetic theory can be described in terms of the so called

electromagnetic potentials (WALD, 2022), defined by

𝐸 = −∇𝜑𝑒 − 𝜕𝐴

𝜕𝑡
, (2.81)

𝐵 = ∇ × 𝐴, (2.82)

where 𝐸 is the total electric field, 𝜑𝑒 is the scalar potential and 𝐴 is the vector potential.

Furthermore, these potentials are even more fundamental than the electromag-

netic field strengths, statement that is discussed in more details by Wald (2022). These

potentials drastically simplify the description of electromagnetism, as one can defined a

4-potential by

𝒜 = 𝜑𝑒

𝑐
𝑒0 + 𝐴𝑖𝑒𝑖, (2.83)

such that the field equations can be constructed in terms of only one 4-vector, 𝒜, as

𝜑𝑒 and 𝐴 together fully describe the theory. The potential is constructed observing the

transformation laws for the potentials under change of inertial frames, such that the 4-

vector combined obeys the general Lorentz transformation, Equation (2.79). This is done

recognizing that electromagnetic theory is intrinsically Lorentz invariant12 (EINSTEIN,

1905).

2.2.3 Electromagnetic 4-current

The electric current density vector field, 𝐽(𝑥, 𝑡), is a field that describes the current

of charge in each point in space-time. As the stress in a material, it depends of the

properties of the materials and needs a constitutive equation to be described. Similarly

to what was done in subsection 2.2.2, we can define a 4-vector including both charge and

current densities by

𝒥 = 𝑐𝜌𝑒𝑒0 + 𝐽 𝑖𝑒𝑖, (2.84)

which acts as a font of the field 𝒜. Here 𝜌𝑒 is a positive integrable function 𝜌𝑒 : 𝒱 ×R+ →

R+ known as electric charge density
12 Even by experiments.
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2.2.4 Electrical Charge Balance Equation

A fundamental statement of electromagnetism is that charge must not be created

or destroyed. This is manifested in the fact that, for an arbitrary volume of the continuum

Ω(𝑡) with surface 𝜕Ω(𝑡), the temporal change in its total charge equals the flux of charge

into the volume, i.e.
𝑑𝑄𝑒

𝑑𝑡
= 𝑑

𝑑𝑡

∫︁
Ω
𝜌𝑒𝑑𝑉 = −

∫︁
𝜕Ω

𝐽 · 𝑛̂𝑑𝑆, (2.85)

where 𝑄𝑒 is the total electric charge in the volume Ω(𝑡). Thus, using divergence theorem

(ARIS, 1989) and localization theorem,

𝜕𝜌𝑒

𝜕𝑡
+ ∇ · 𝐽 = 0, (2.86)

which is known as continuity of charge equation. Note that Equation (2.86) can be rewrit-

ten, in the notation presented for Lorentz invariant theory, as

𝜕(𝑐𝜌𝑒)
𝜕(𝑐𝑡) + 𝜕𝐽 𝑖

𝜕𝑥𝑖
= 0 (2.87)

or
𝜕𝒥 𝜇

𝜕𝑥𝜇
= 0. (2.88)

2.2.5 Maxwell’s Equations

To deduce the field equations for the electromagnetic field, we will state six premises

based on known facts about the electrodynamics and construct the field equations for the

4-potential based on them. These are:

(i) Electrically charged matter has long range interactions. This means that the decay

of field strength must obey a power law, not a exponential one;

(ii) By experience, electromagnetic phenomena obey the superposition principle, so the

field equations must also obey it. Hence, field equations must be linear;

(iii) Field equations must be Lorentz invariant, i.e. they must be composed of quantities

that obey Lorentz transformation when a change of inertial frame is done;

(iv) Field equations must have as fonts the charge and current densities. Note that the

4-vector 𝒥 can be used as a font of the equation, as it obeys Lorentz transformation;
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(v) The principle of conservation of electric charge is valid, so that 𝜕𝒥 𝜇/𝜕𝑥𝜇 = 0;

(vi) As classical waves must be solution of the field equations, we impose these to be

differential equations of second order.

To adhere to premise (iii), we will only utilize combinations and derivatives of 𝒜 and 𝒥 to

construct the field equations, as they transform accordingly to Lorentz transformations.

This way, using the premise (iv) we have a general form of the field equations given by

sum of terms involving 𝒜𝜇 ∝ 𝒥 𝜇. (2.89)

From premises (ii) and (vi), the left-hand side of Equation (2.89) can only contain com-

ponents of 4-vectors of the form

𝜕2𝒜𝜇

𝜕𝑥𝜈𝜕𝑥𝜈

,
𝜕2𝒜𝜈

𝜕𝑥𝜇𝜕𝑥𝜈
and/or 𝐴𝜇. (2.90)

Thus, we rewrite Equation (2.89) in the most general form as

𝜕2𝒜𝜇

𝜕𝑥𝜈𝜕𝑥𝜈

+ 𝑏
𝜕2𝒜𝜈

𝜕𝑥𝜇𝜕𝑥𝜈
+ 𝑎𝐴𝜇 = 𝑘𝒥 𝜇, (2.91)

where 𝑎, 𝑏 and 𝑘 are constants to be determined by the premises. Using premise (i) and

the 0-component of Equation (2.91), we conclude that 𝑎 = 0. On the other hand, applying

𝜕/𝜕𝑥𝜇 on both sides of Equation (2.91) and using the continuity of charge 𝜕𝒥 𝜇/𝜕𝑥𝜇 we

obtain that 𝑏 = −1. Finally, the constant 𝑘 can be obtained just comparing the phase

velocity of the wave solutions, the way that 𝑘 = 𝜇0, with 𝜇0 being the vacuum magnetic

permeability. Therefore, the field equations given by Equation (2.91) reduces to

𝜕ℱ𝜈𝜇

𝜕𝑥𝜈
= 𝜇0𝒥 𝜇, (2.92)

where the electromagnetic field strength tensor ℱ is defined by

ℱ𝜇𝜈 = 𝜕𝐴𝜈

𝜕𝑥𝜇

− 𝜕𝐴𝜇

𝜕𝑥𝜈

. (2.93)

Equations (2.92) are known as the non-homogeneous Maxwell’s equations. To complete

the set, one must use the definition of the electromagnetic field strength, the way that

𝜕ℱ𝜇𝜈

𝜕𝑥𝛼
+ 𝜕ℱ𝜈𝛼

𝜕𝑥𝜇
+ 𝜕ℱ𝛼𝜇

𝜕𝑥𝜈
= 0 (2.94)

or

𝜖𝜇𝜈𝜎𝜏
𝜕ℱ𝜎𝜏

𝜕𝑥𝜈

= 0, (2.95)
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where 𝜖𝜇𝜈𝜎𝜏 is the 4-dimensional Levi-Civita’s permutation symbol. Equations (2.94) are

called homogeneous Maxwell’s equations. Note that the homogeneous Maxwell’s equa-

tions are just a consequence of the geometrical structure of electromagnetism. Indeed, in

Riemann’s differential geometry, equations like Equation (2.94) are named Bianchi iden-

tities and are consequences of the definition of Riemann’s curvature tensor in a specific

kind of space. In modern formulations of electromagnetism, it is viewed as a gauge the-

ory, a formal geometrical theory where ℱ is its curvature tensor and the homogeneous

field equations are just the associated Bianchi identities. One can have a glimpse of this

modern formulation noting that Equations (2.91) resembles curvature equations.

Although Equations (2.92) and (2.94) describes the full dynamics of the electro-

magnetic field, it is important to write these equations in a less enigmatic way. We first

note that, using the definition of the 4-potential, the magnetic field is just the dual-vector

(see Appendix A.3 for details) associated with the spacial part of electromagnetic tensor

𝐹 𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 , i.e.

𝐵𝑖 = 𝜖𝑖𝑗𝑘
𝜕𝐴𝑘

𝜕𝑥𝑗

= 1
2𝜖𝑖𝑗𝑘ℱ 𝑗𝑘, (2.96)

and the electric field is related with the electromagnetic field tensor by

𝐸𝑖 = −𝜕𝜑𝑒

𝜕𝑥𝑖
− 𝜕𝐴𝑖

𝜕𝑡
= −𝑐𝜕𝒜0

𝜕𝑥𝑖
− 𝑐

𝜕𝐴𝑖

𝜕𝑥0 = 𝑐ℱ0𝑖. (2.97)

Thus, substituting these relations in non-homogeneous Maxwell’s equations, Equation

(2.92), we obtain

∇ · 𝐸 = 𝜌𝑒

𝜀0
, (2.98)

∇ × 𝐵 − 1
𝑐2
𝜕𝐸

𝜕𝑡
= 𝜇0𝐽 , (2.99)

where 𝜀0 is the vacuum permittivity. On the other hand, substituting in Maxwell’s homo-

geneous equations, Equation (2.94), we obtain

∇ · 𝐵 = 0, (2.100)

∇ × 𝐸 + 𝜕𝐵

𝜕𝑡
= 0. (2.101)

The set of Equations (2.98), (2.99), (2.100) and (2.101) are the full set of Maxwell’s

equations in classical notation, a set that describes the dynamics of the electromagnetic

fields. Equation (2.98) is known as Gauss law for the electric field, Equation (2.99) as

Ampere’s law, Equation (2.100) as Gauss law for magnetic field and Equation (2.101) as
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Faraday’s law.

2.2.6 Constitutive Law for the Electric Current Density (Ohm’s Law)

The electric current density vector field 𝐽(𝑥, 𝑡) describes the electric charge flux

in each space-time point of the continuum. Thus, 𝐽 must be defined by a constitutive

equation, as the way that electric charges moves through the continuum is intrinsically

dependent on the type of the material, on its molecular nature. For an electric current be

established, a driving force is necessary to generate the movement of charges, which in

general is the electromagnetic force. Hence,

𝐽 ∝ 𝐹 𝐿, (2.102)

where 𝐹 𝐿 is the electromagnetic force, also known as Lorentz force. As magnetic fields

are a relativistic manifestation of electric fields (BARUT, 1980), we first use a inertial

frame of reference in which the charges are at rest, the way the current density is linear

to the electric field. Hence,

𝐽 ∝ 𝐸𝑟, (2.103)

where 𝐸𝑟 represents the electric field observed by such frame of reference. We note that,

in general, even in a rest frame the charges should be influenced by a magnetic field.

But for the majority of materials, it is known that for a conductor at rest the electric

force on charges is much more significant than the magnetic force (GRIFFITHS, 1999).

This way, the linear constitutive relation given by Equation (2.103) is observed for most

of electrically conducting materials, including the materials explored in this work in the

context of magnetohydrodynamics. The most general form of relating two vectors linearly

is through a second order tensor (ARIS, 1989). Then

𝐽 = 𝜎𝑒 · 𝐸𝑟, (2.104)

where 𝜎𝑒 is called the electric conductivity tensor. In the special case of the material being

homogeneous and isotropic, 𝜎𝑒 must also be a homogeneous and isotropic tensor-valued

function, the way that 𝜎𝑒 = 𝜎𝑒𝐼, where 𝜎𝑒 is the electric conductivity material constant.

Therefore, in this special case,

𝐽 = 𝜎𝑒𝐸𝑟. (2.105)

Equation (2.105) is known as Ohm’s law.
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To generalize Equation (2.105) to more general frame of references, where the

conductor is not at rest, we apply a Lorentz transformation to a frame where the conductor

has velocity vector field 𝑢(𝑥, 𝑡). The transformation law for the electric field through

Lorentz transformations can be obtained through the transformation for the 4-potential,

i.e. 𝒜′𝜇 = Λ𝜇
𝜈 𝒜𝜈 . Therefore (DAVIDSON, 2017),

𝐽 = 𝜎𝑒 (𝐸 + 𝑢 × 𝐵) . (2.106)

Equation (2.106) is the form of Ohm’s law that will be used throughout this work for a

electrically conductor fluid.

2.2.7 Lorentz Force

It is known, from Coulomb’s law, that in a frame of reference where a point particle

with electric charge is at rest, the force under it is

𝐹 𝐿𝑟 = 𝑞𝐸𝑟, (2.107)

where 𝑞 is the electric charge of the particle. Analogous to what was done in subsec-

tion 2.2.6, performing a Lorentz transformation to a general frame of reference, we obtain

the Lorentz force:

𝐹 𝐿 = 𝑞(𝐸 + 𝑣 × 𝐵), (2.108)

where 𝑣 is the velocity of the particle. In the case of a continuum of material particles,

we have a velocity field 𝑢(𝑥, 𝑡) and the Lorentz force can be written per unit volume as

𝑓𝐿 = 𝜌𝐸 (𝐸 + 𝑢 × 𝐵) . (2.109)

2.3 Magnetohydrodynamics

In this section, we couple the equations of fluid dynamics and electrodynamics and

use some approximations to reach the equations governing magnetohydrodynamic flows.

2.3.1 MHD Approximations

The equations of electromagnetic theory can be simplified in the context of non-

relativistic magnetohydrodynamic flows, in regimes where the flow characteristic velocity
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is small compared to the velocity of electrons traveling relatively to the conductor. The

flows explored throughout this work are included in this case, as the charge relaxation

time in the typical conductors is notably small compared with the characteristic times of

the flows explored.

Substituting Ohm’s law for conducting fluids, Equation (2.106), and Gauss law,

Equation (2.98), in charge continuity Equation (2.86), we obtain that

𝜕𝜌𝑒

𝜕𝑡
+ 𝜌𝑒

𝜏𝑒

+ 𝜎𝑒∇ · (𝑢 × 𝐵) = 0, (2.110)

where 𝜏𝑒 = 𝜀0
𝜎𝑒

is a electric charge relaxation time. Now, in the case where 𝑢 = 0, i.e. rest

case, we have that
𝜕𝜌𝑒

𝜕𝑡
= −𝜌𝑒

𝜏𝑒

. (2.111)

Hence,

𝜌𝑒(𝑡) = 𝜌𝑒(0)𝑒−𝑡/𝜏𝑒 . (2.112)

Equation (2.112) shows that, given the necessary time, any free charge in the interior

of the conductor is moved to the surface. The characteristic time of this process is 𝜏𝑒,

which can be interpreted as the characteristic time necessary to any electric charge un-

balance be relaxed. In the case of typical metallic conductors, the charge relaxation time

is approximately 10−18 s (DAVIDSON, 2017). Hence, charges move to the surface almost

immediately. In the general MHD case we have that⃒⃒⃒⃒
⃒𝜕𝜌𝑒

𝜕𝑡

⃒⃒⃒⃒
⃒ ≪

⃒⃒⃒⃒
𝜌𝑒

𝜏𝑒

⃒⃒⃒⃒
. (2.113)

Returning to the general case where the conductor have movement, Equation

(2.110) can be rewritten, in the case of typical conductors, as

𝜌𝑒 = −𝜀0∇ · (𝑢 × 𝐵) . (2.114)

From Equations (2.114) and (2.106) we obtain by a scale analysis that

𝜌𝑒 |𝐸| ∼ 𝑢𝑐𝜏𝑒

ℓ𝑐

𝐽𝑐𝐵𝑐, (2.115)

where 𝑢𝑐, ℓ𝑐, 𝐽𝑐 e 𝐵𝑐 are, respectively, characteristics velocity, length, current density and

magnetic field. Thus, as 𝜌𝑒 |𝐸| ≪ |𝐽 × 𝐵|, we have that the Lorentz force reduces to

𝑓𝐿 = 𝐽 × 𝐵. (2.116)
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We note from Equation (2.114) that, in the case with movement, the flow can maintain

charges inside the conductor and not in the surface. Nonetheless, this effect is so weak

that that the electric force is negligible in relation to the magnetic force.

On the other hand, as 𝜏𝑒 is very small, we show by the Ohm’s law, Equation (2.106)

that

𝜀0

⃒⃒⃒⃒
⃒𝜕𝐸

𝜕𝑡

⃒⃒⃒⃒
⃒ ∼ 𝜏𝑒

⃒⃒⃒⃒
⃒𝜕𝐽

𝜕𝑡

⃒⃒⃒⃒
⃒ ≪ |𝐽 | . (2.117)

Hence, charge continuity Equation (2.86) and Ampere-Maxwell law, Equation (2.99), in

the MHD context reduces to, respectively,

∇ · 𝐽 = 0, (2.118)

∇ × 𝐵 = 𝜇0𝐽 . (2.119)

We note that, in this context, Equation (2.118) is equivalent to

𝜕𝜌𝑒

𝜕𝑡
= 0. (2.120)

2.3.2 Transport Equation for the Magnetic Field

To complete the set of magnetohydrodynamics equations, it is necessary a evolu-

tion equation for the magnetic field 𝐵. To achieve this goal, we first apply the rotational

operator to Ohm’s law, Equation (2.106), and then substitute Faraday’s law, Equation

(2.101), inside it, obtaining

∇ × 𝐽 = 𝜎𝑒

[︃
−𝜕𝐵

𝜕𝑡
+ ∇ × (𝑢 × 𝐵)

]︃
. (2.121)

Now, using reduced form of Ampere’s law for MHD, Equation (2.119), the last equation

can be written as
𝜕𝐵

𝜕𝑡
= ∇ × (𝑢 × 𝐵) − 1

𝜇0𝜎𝑒

∇ × ∇ × 𝐵. (2.122)

By Gauss law for magnetism, Equation (2.100), 𝐵 is solenoidal (i.e. ∇ · 𝐵 = 0), the way

that13

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢 × 𝐵) + 𝜈𝑚∇2𝐵, (2.123)

where 𝜈𝑚 = 1/𝜇0𝜎𝑒 is the magnetic diffusion coefficient. Using the vector calculus identity

for ∇ × (𝑢 × 𝐵)14 and, again, the fact that 𝐵 is solenoidal, Equation (2.123) is shown to
13 Using ∇ × ∇ × 𝐵 = ∇ (∇ · 𝐵) − ∇2𝐵.
14 ∇ × (𝑢 × 𝐵) = 𝑢 (∇ · 𝐵) − 𝐵 (∇ · 𝑢) + (𝐵 · ∇) 𝑢 − (𝑢 · ∇) 𝐵
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be equivalent to
𝐷𝐵

𝐷𝑡
= 𝐵 · ∇𝑢 − 𝐵 (∇ · 𝑢) + 𝜈𝑚∇2𝐵. (2.124)

Equation (2.124) dictates the evolution of the magnetic vector field and is known as the

magnetic induction equation. Its terms can be interpreted as follows:

• 𝐷𝐵

𝐷𝑡
: Temporal change of 𝐵 felt by a material particle;

• 𝐵 · ∇𝑢: Stretching and rotation of the magnetic field lines by the flow;

• 𝐵 (∇ · 𝑢): Effect of the volumetric expansion of the material element on the mag-

netic field lines;

• 𝜈𝑚∇2𝐵: Diffusive transport of 𝐵.

2.3.3 A Consequence of the Induction Equation

Let 𝑆0 be an arbitrary material surface in the continuum in the time 𝑡0 and 𝑆(𝑡)

its form carried to a time 𝑡. Therefore, the derivative of the flux of the magnetic field 𝐵

through 𝑆(𝑡) can be calculated using Equation (2.13) as

𝑑

𝑑𝑡

∫︁
𝑆

𝐵 · 𝑛̂𝑑𝑆 =
∫︁

𝑆

𝐷𝐵

𝐷𝑡
· 𝑛̂𝑑𝑆+

∫︁
𝑆0

𝐵 ·𝐷𝐽
𝐷𝑡

𝐹 −𝑇 ·𝑁𝑑𝑆0 +
∫︁

𝑆0
𝐵 ·𝐽𝐷𝐹 −𝑇

𝐷𝑡
·𝑁𝑑𝑆0. (2.125)

Using Equations (2.18) and (A.17), we obtain that

𝑑

𝑑𝑡

∫︁
𝑆

𝐵 · 𝑛̂𝑑𝑆 =
∫︁

𝑆

[︃
𝐷𝐵

𝐷𝑡
+ 𝐵(∇ · 𝑢) − 𝐵 · ∇𝑢

]︃
· 𝑛̂𝑑𝑆. (2.126)

Thus, as a consequence of the magnetic induction Equation (2.124),

𝑑

𝑑𝑡

∫︁
𝑆

𝐵 · 𝑛̂𝑑𝑆 =
∫︁

𝑆
𝜈𝑚∇2𝐵 · 𝑛̂𝑑𝑆. (2.127)

In the special case where the fluid is a perfect conductor (its magnetic diffusivity goes to

zero), this relation states that
∫︁

𝑆0
𝐵(𝑡0) · 𝑛̂𝑑𝑆 =

∫︁
𝑆

𝐵(𝑡) · 𝑛̂𝑑𝑆. (2.128)

The last equation states that the magnetic field lines are frozen into a perfect conductor

fluid 15. This way, if we take a specific material surface, the flux of 𝐵 through this surface
15 If one define a 4-velocity by 𝑢𝜇 = 𝑑𝑥𝜇/𝑑𝜏 , where 𝜏 is the invariant parameter of time evolution, this

result can be stated in a mathematical elegant way. In the context on differentiable manifolds, this
results states that Lie derivative of electromagnetic field strength 𝐹 = 𝐹 𝜇𝜈𝑒𝜇 ⊗ 𝑒𝜈 is null along the
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will remain the same at any time. We note that this exact behavior occurs to the vorticity

in perfect fluids (with no viscosity).

2.3.4 Hydromagnetic Waves

Consider the case of a perfect conductor and remember the result presented in

subsection 2.3.3. As the magnetic field lines are frozen in the fluid, it can be viewed as

elastic strings carrying fluid elements (mass). These elastic strings are under magnetic

tension given by 𝐵2
0/𝜇0 (DAVIDSON, 2017), where 𝐵0 is the intensity of the magnetic

field acting on the fluid. Therefore, any disturbance on the fluid will cause this magnetic

string to oscillate (the particles in it oscillate) normal to the line. These waves are named

Alfvén waves, as it was first pointed to exist by (ALFVÉN, 1942), and are well known to

be incompressible waves (DAVIDSON, 2017), i.e. they do not modify the mass density of

the fluid. Also as a consequence, compression and expansion of the fluid elements in the

direction of the magnetic field will give rise to waves in this direction. These are named

magnetoacoustic waves and are known to be compressible waves, as they are originated

by compression and expansion of the fluid in this direction. The conjunction of these two

kinds of waves are known as magnetohydrodynamic waves.

2.3.5 Magnetohydrodynamics Governing Equations

The set of equations that rules the magnetohydrodynamics is formed by the cou-

pling of fluid dynamics laws, the electrodynamics laws and the appropriate approxima-

tions. As the microstructure of the fluid is not changed in MHD general applications, the

only change in Navier-Stokes is Lorentz force, that is a body force. Thus, the governing

equations of magnetohydrodynamics is given by modified Navier-Stokes equation, conti-

nuity equation and the transport equation for the magnetic field, respectively given by

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑝0 + ∇ (𝜂2∇ · 𝑢) + 𝜂∇2𝑢 + 1

3𝜂∇ (∇ · 𝑢) + 𝐽 × 𝐵 + 𝜌𝑔, (2.129)

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢) = 0, (2.130)

flow defined by 𝑢𝜇, i.e. £𝑢𝐹 = 0, where £𝑢 is the Lie derivative along the flow of the vector field
given by 𝑢𝜇.
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𝐷𝐵

𝐷𝑡
= 𝐵 · ∇𝑢 − 𝐵 (∇ · 𝑢) + 𝜈𝑚∇2𝐵. (2.131)

All of the electromagnetic equations in MHD context, given by Equation (2.106), (2.98),

(2.99), (2.101), (2.118) e (2.119) acts as auxiliary equations.

2.3.6 Non-dimensional Physical Parameters of MHD

Some important non-dimensional physical parameters are of most interest in mag-

netohydrodynamics context, giving the balance between important mechanisms of this

kind of flow. The principal ones are presented by Table 1. We note that the Reynolds

Table 1 – Non-dimensional physical parameters that govern magnetohydrodynamics.

Here 𝑢𝑐 is a characteristic velocity, ℓ𝑐 ia characteristic length, 𝜈 is the hydrody-

namic diffusivity and 𝐵𝑐 is a characteristic magnetic field.

Parameter Name
Symbol and Definition Physical meaning

Reynolds number
Re = 𝑢𝑐ℓ𝑐/𝜈

Ratio between inertial
and viscous forces

Hartman number
Ha = 𝐵𝑐ℓ𝑐

√︁
𝜎𝑒/𝜌𝜈

Ratio between Lorentz
and viscous forces

Interaction parameter
N = Ha2/Re

Ratio between Lorentz
and inertial forces

Magnetic Reynolds number
Re𝑚 = 𝑢𝑐ℓ𝑐/𝜈𝑚

Ratio between
diffusion and advection

times of 𝐵

Euler magnetic number
𝐸𝑚 = 𝐵2

0/𝜇0𝑝0

Ratio between
magnetic and characteristic

flow pressures

magnetic number defines the magnetic regime. If Re𝑚 ≫ 1, the fluid is a perfect conduc-

tor, i.e. there is no molecular diffusion of magnetic field and we say that the magnetic

field lines are frozen in the fluid. This is analogous to vorticity lines frozen in the fluid in

the case of an ideal fluid. In the case that Re𝑚 ≪ 1, we have pure molecular diffusion of

𝐵, where its evolution equation is given simply by a diffusion equation.



3 BULK VISCOSITY ON MHD

WAVES

3.1 Landau’s Model for the Bulk Viscosity

Second viscosity or bulk viscosity is directly related to compression and expansion

of the material volumes in a fluid, as it appears accompanied by ∇ · 𝑢, that measure the

volumetric expansion of a fluid element (BATCHELOR, 1967). Indeed, if we consider a

material volume under real compression or expansion, as any rapid thermodynamic pro-

cess, it ceases the local equilibrium momentarily and immediately an internal process to

restore equilibrium position is set up inside the material element. As this process is not

quasi-static, it is irreversible, involving energy dissipation and increasing entropy. If the

relaxation time (the time to restore equilibrium) is large compared to the frequency of

compression/expansion, bulk dissipation can be significant, resulting in the second viscos-

ity coefficient having values comparable to the dynamic viscosity. Therefore, in flows that

involve high frequencies (i.e. the product of the frequency by a relaxation time is 𝒪(1)),

the second viscosity effects can be significant and must be included in the formulation (in

these cases the Stokes hypothesis is not valid). Throughout this section, a methodology

first explored by Mandelshtam and Leontovich (1937) and and later discussed by Landau

and Lifshitz (1987) will be discussed to present a model for the second viscosity coefficient.

Let 𝜁 be a physical quantity that characterizes the state of a material element in

the neighborhood of its local thermodynamic equilibrium value 𝜁0. If the physical property

is tending to equilibrium, we can expand 𝜁 in a Taylor series, the way we obtain that

𝜁 = 𝜁0 − 𝑑𝜁

𝑑𝑡
(𝑡− 𝑡0) + 𝒪[(𝑡− 𝑡0)2], (3.1)

where 𝑡 is a generic time and 𝑡0 is the time that 𝜁 reaches equilibrium. As the oscillations

35
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are in the neighborhood of the equilibrium value, we can despise second order terms and

rearrange the expression to reach

𝑑𝜁

𝑑𝑡
= (𝜁0 − 𝜁)

𝜏
, (3.2)

where 𝜏 = 𝑡− 𝑡0 is a relaxation time, i.e. the time needed to reach equilibrium.

Next we consider the continuum where this material element is contained to be

under adiabatic compression and expansion, disturbing the media periodically. Thus, the

local equilibrium values of physical quantities changes periodically, such that

𝜁0 = 𝜁00 + 𝜁 ′
0, (3.3)

where 𝜁 ′
0 have the form 𝐴𝑒𝑖𝜔𝑡, with 𝐴 being some constant amplitude of oscillation, 𝜔

the frequency of the continuum’s oscillation and 𝑖 the imaginary unit. We now write, for

convenience, that 𝜁 = 𝜁00 + 𝜁 ′, with 𝜁 ′ being a generic function. Using Equations (3.2)

and (3.3) and noting that 𝜁 − 𝜁0 = 𝜁 ′ − 𝜁 ′
0, we can write that

𝑑𝜁 ′

𝑑𝑡
+ 𝜁 ′

𝜏
= −𝐴𝑒𝑖𝜔𝑡

𝜏
. (3.4)

The ordinary differential Equation (3.4) is simply integrated multiplying both sides by

𝑒𝑡/𝜏 , the integration factor. This way we obtain

𝜁 ′ = 𝜁 ′
0

1 − 𝑖𝜔𝑡
. (3.5)

Equation (3.5) shows that 𝜁 ′ is also a periodic function of time.

Now we turn to a specific property, the pressure 𝑝. For this case, where this media

is being disturbed by compression and expansion, we have that 𝑝 = 𝑝(𝜌, 𝜁(𝜌)). Then

𝑑𝑝

𝑑𝜌
=
(︃
𝜕𝑝

𝜕𝜌

)︃
𝜁

+
(︃
𝜕𝑝

𝜕𝜁

)︃
𝜌

𝑑𝜁

𝑑𝜌
. (3.6)

Using Equation (3.5), the last equation can be rewritten as

𝑑𝑝

𝑑𝜌
= 1

(1 − 𝑖𝜔𝑡)

⎡⎣(︃𝜕𝑝
𝜕𝜌

)︃
𝑒𝑞

− 𝑖𝜔𝜏

(︃
𝜕𝑝

𝜕𝜌

)︃
𝜁

⎤⎦ , (3.7)

where (︃
𝑑𝑝

𝑑𝜌

)︃
𝑒𝑞

=
(︃
𝜕𝑝

𝜕𝜌

)︃
𝜁

+
(︃
𝜕𝑝

𝜕𝜁

)︃
𝜌

𝜕𝜁0

𝜕𝜌
(3.8)

is just the derivative of 𝑝 with respect to 𝜌 in a quasi-static process, such that 𝜉 ≈ 𝜉0.
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Alternatively, using that

𝛿𝑝0 =
(︃
𝑑𝑝

𝑑𝜌

)︃
𝑒𝑞

𝛿𝜌, (3.9)

𝛿𝑝 = 𝑑𝑝

𝑑𝜌
𝛿𝜌, (3.10)

we obtain that

𝑝− 𝑝0 =
⎡⎣𝑑𝑝
𝑑𝜌

−
(︃
𝑑𝑝

𝑑𝜌

)︃
𝑒𝑞

⎤⎦ 𝛿𝜌. (3.11)

Therefore, combining Equations (3.7) and (3.11) and rearranging the terms,

𝑝− 𝑝0 = 𝑖𝜔𝜏

1 − 𝑖𝜔𝜏

⎡⎣(︃𝑑𝑝
𝑑𝜌

)︃
𝑒𝑞

−
(︃
𝑑𝑝

𝑑𝜌

)︃
𝜁

⎤⎦ 𝛿𝜌. (3.12)

As we are working with a continuum, we can relate 𝛿𝑝 = 𝜌 − 𝜌00 = 𝐶𝑒−𝑖𝜔𝑡 with the

velocity field through continuity Equation (2.28), the way we can write that

𝐷𝛿𝜌

𝐷𝑡
+ 𝜌∇ · 𝑢 = 0 (3.13)

or, performing the derivative,

𝛿𝜌 = 𝜌

𝑖𝜔
∇ · 𝑢. (3.14)

Finally, substituting Equation (3.14) in Equation (3.12), we obtain that

𝑝− 𝑝0 = 𝜏𝜌

1 − 𝑖𝜔𝜏
(𝑐2

0 − 𝑐2
∞)∇ · 𝑢 (3.15)

and, using the constitutive equation for the mechanical pressure 𝑝− 𝑝0 = −𝜂2∇ · 𝑢,

𝜂2 = 𝜏𝜌

1 − 𝑖𝜔𝜏
(𝑐2

∞ − 𝑐2
0). (3.16)

Here 𝑐0 is the sound velocity in equilibrium condition and 𝑐∞ is the sound velocity in a

fixed thermodynamic state. Equation (3.16) represents a model for the second viscosity

coefficient for small oscillations. If we make Landau’s model for 𝜂2 non-dimensional, we

obtain that

𝜂*
2 = 1

Re𝑘

(︃
𝑐2 − 1

1 − 𝑖𝜔𝜏

)︃
, (3.17)

where 𝑐 = 𝑐∞/𝑐0 and Re𝑘 = ℓ𝑐/(𝜏𝑐0) is the expansional Reynolds number, which gives the

ratio between the flow time, which in this case is the acoustic time, and the relaxation

time. This non-dimensional physical parameter measure the relative importance of the

bulk viscosity effects in this model.
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3.2 Governing Equations

As the effects of the standard viscosity on hydromagnetic waves are well known,

we only intend to investigate the effects of the second viscosity coefficient in our analysis.

Thus, we use a Euler’s fluid with second viscosity, i.e. we will use Euler’s equation of

motion with an additional term for the bulk viscosity. Therefore, the equations of motion

are given by

𝜌

(︃
𝜕𝑢

𝜕𝑡
+ 𝑢 · ∇𝑢

)︃
= −∇𝑝0 + ∇ [𝜂2(𝜌)∇ · 𝑢] − 1

𝜇0
𝐵 × (∇ × 𝐵) , (3.18)

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢) = 0. (3.19)

where we have used Ampere’s law for 𝐽 , given by Equation (2.119). As we want to

investigate the hydromagnetic waves and the effect of second viscosity on it and not the

mechanisms that prevent this kind of waves in low conductivity fluids, the fluid will be

considered as a perfect conductor. Hence, induction Equation (2.124) simply becomes

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢 × 𝐵) . (3.20)

In addition, as we are not interested in temperature, we will consider a barotropic fluid,

such that 𝑝0 = 𝑝0(𝜌). Therefore, we also have the barotropic equation:

𝐷

𝐷𝑡

(︃
𝑝0

𝜌𝛾

)︃
= 0, (3.21)

where 𝛾 is just a barotropic coefficient. The set of Equations (3.18), (3.19), (3.20) and

(3.21) is the governing set equations for the hydromagnetic waves we intend to construct.

3.3 Non-dimensional Governing Equations

In order to make the governing equations non-dimensional, the following new quan-

tities are defined in terms of characteristic quantities of the flow problem:

∇* = ℓ𝑐∇, 𝑢* = 𝑢

𝑐0
, 𝑡* = 𝑐0𝑡

ℓ𝑐

, 𝜌* = 𝜌

𝜌0
, 𝑝*

0 = 𝑝0

𝑝00
, and 𝐵* = 𝐵

𝐵0
, (3.22)

where the variables with * are the non-dimensional version of the variables, 𝜌0 is the

equilibrium value of the mass density, ℓ𝑐 is a characteristic length of the flow, 𝑝00 is the

equilibrium value of the thermodynamic pressure and 𝐵0 is the norm of the magnetic field
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in equilibrium. Note that 𝜂2 scales with 𝜏𝜌𝑜𝑐𝑜
2. In this way, recalling that 𝑘 = 𝑘(𝜌), the

non-dimensional governing equations can be written as

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢) = 0, (3.23)

𝜌

(︃
𝜕𝑢

𝜕𝑡
+ 𝑢 · ∇𝑢

)︃
= −∇𝑝0 + 𝜂2 [∇𝜌 (∇ · 𝑢) + 𝜌∇ (∇ · 𝑢)] − 𝐸𝑚𝐵 × (∇ × 𝐵) , (3.24)

𝐷

𝐷𝑡

(︃
𝑝0

𝜌𝛾

)︃
= 0, (3.25)

𝜕𝐵

𝜕𝑡
= ∇ × (𝑢 × 𝐵) , (3.26)

where 𝐸𝑚 is defined as the Euler magnetic number, given by

𝐸𝑚 = 𝐵2
0

𝜇0𝑝00
. (3.27)

The non-dimensional physical parameter gives a ratio between the magnetic pressure and

the thermodynamic pressure. Note that in this step the asterisks were removed from non-

dimensional variables for simplicity in notation. This notation change will remain till the

end of the chapter.

3.4 Linearization of the Equations

As we want to study hydromagnetic waves, that are oscillations around an equilib-

rium value of the physical quantities, we assume the relevant physical quantities to have

the form given by

𝐵 = 𝐵0 + 𝐵1, (3.28)

𝑢 = 0 + 𝑢1, (3.29)

𝑝0 = 1 + 𝑝1, (3.30)

𝜌 = 1 + 𝜌1. (3.31)

Here the variables with subscript 1 represents the fluctuation of small amplitude of the

respective quantity around the equilibrium and 𝐵0 is the equilibrium magnetic field.

Substituting these forms of the variables in the non-dimensional governing Equations
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(3.23), (3.24), (3.25) and (3.26), we obtain the following set of linearized equations:

𝜕𝜌1

𝜕𝑡
+ ∇ · 𝑢1 = 0, (3.32)

𝜕𝑢1

𝜕𝑡
+ ∇𝑝1 − 𝜂2 [∇ (∇ · 𝑢1)] + 𝐸𝑚𝐵0 × (∇ × 𝐵1) = 0, (3.33)

𝜕𝑝1

𝜕𝑡
− 𝛾

𝜕𝜌1

𝜕𝑡
= 0, (3.34)

𝜕𝐵1

𝜕𝑡
− ∇ × (𝑢1 × 𝐵0) = 0. (3.35)

The last set of equations are the governing equations for small fluctuations around equi-

librium values.

3.5 Plane Wave Solutions and Dispersion Relations

Consider solutions of plane waves traveling in the 𝑧 direction to the disturbances

and a constant magnetic field 𝐵0 given by

𝐵0 = sin𝛼𝑒𝑥 + cos𝛼𝑒𝑧, (3.36)

where 𝛼 is the angle between the magnetic field 𝐵0 and the wave number vector 𝑘. This

configuration is shown by Figure 2. Hence, if 𝐺 is some general physical quantity, its

fluctuation can be written as

𝐺1 = 𝐺𝑎𝑒
𝑖𝑘𝑧+𝑠𝑡, (3.37)

where 𝐺𝑎 is the amplitude of oscillation and 𝑠 is a complex valued function given by

𝑠 = 𝜉 − 𝑖𝜔. (3.38)

Here 𝜉 is called the amplification factor and 𝜔 is the frequency of the fluctuations. If

𝛼

𝐵0

𝑘

𝑥

𝑧

Figure 2 – Scheme for the waves and the magnetic field.

the amplification factor is negative or zero, the waves are said to be stable under small

oscillations, as they will not grow with time. On the other hand, the amplification factor
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being positive implies that the amplitude of the waves grows exponentially. In this case

the waves are said to be unstable under small oscillations.

Substituting these solutions in Equations (3.32), (3.33), (3.34) and (3.35) and

noting that for this kind of solutions ∇ = 𝑖𝑘 and 𝜕/𝜕𝑡 = 𝑠, we obtain the following set

of equations in the wave-space:

𝑠𝜌𝑎 + 𝑖𝑘𝑢𝑎𝑧 = 0, (3.39)

𝑠𝑢𝑎𝑥 − 𝑖𝑘𝐸𝑚𝐵𝑎𝑧𝐵𝑎𝑥 = 0, (3.40)

𝑠𝑢𝑎𝑦 − 𝑖𝑘𝐸𝑚𝐵𝑎𝑧𝐵𝑎𝑦 = 0, (3.41)

𝑠𝑢𝑎𝑧 + 𝑖𝑘𝑝𝑎 + 𝜂2𝑘
2𝑢𝑎𝑧 + 𝑖𝑘𝐸𝑚𝐵𝑎𝑥𝐵𝑎𝑥 = 0, (3.42)

𝑠𝐵𝑎𝑥 + 𝑖𝑘𝑢𝑎𝑧𝐵𝑎𝑥 − 𝑖𝑘𝑢𝑎𝑥𝐵𝑎𝑧 = 0, (3.43)

𝑠𝐵𝑎𝑦 − 𝑖𝑘𝑢𝑎𝑦𝐵𝑎𝑧 = 0, (3.44)

𝑠𝐵𝑎𝑧 = 0, (3.45)

𝑠𝑝𝑎 − 𝛾𝑠𝜌𝑎 = 0. (3.46)

The consistency condition for Equation (3.41) and Equation (3.44) gives

𝑠2 + 𝑘2𝐸𝑚 cos2 𝛼 = 0. (3.47)

The relation given by Equation (3.47) is a quadratic equation representing Alfvén waves

(DAVIDSON, 2017). The consistency condition for Equations (3.39), (3.40), (3.42), (3.43)

and (3.46) gives us

𝜂2
(︁
𝑠𝑘4𝐸𝑚 cos2 𝛼 + 𝑠3𝑘2

)︁
+
(︁
𝑠2 + 𝑘2𝐸𝑚 cos2 𝛼

)︁ (︁
𝑠2 + 𝑘2𝛾

)︁
+ 𝑘2𝑠2𝐸𝑚 sin2 𝛼 = 0. (3.48)

The relation given by Equation (3.48) is a equation that have two pair of roots. They

correspond to fast and slow magnetoacoustic waves (BITTENCOURT, 2004).

3.6 Results with Landau’s Model for the Bulk Viscosity

Equation (3.47) represents Alfvén waves. In this case, the amplification factor (𝜉)

is always null, what means that the Alfvén waves have a neutral value for the amplification

factor. Under this condition, this kind of wave is always stable in the ideal MHD context

considered here. Besides that, it is also clear from this relation that the expansional

viscosity does not have any influence on the behavior of this type of waves. This was
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expected as these disturbance are basically incompressible waves. Moreover, the dispersion

relation obtained for this kind of wave is given by

𝜔2 − 𝑘2𝐸𝑚 cos2 𝛼 = 0, (3.49)

which is completely independent of the extensional Reynolds number.

In contrast, Equation (3.48) makes clear that the expansional Reynolds number,

the nondimensional frequency and the ratio of sound speed may exert a significant in-

fluence on the propagation of magnetoacoustic waves. Consequently, magnetoacoustic

disturbances are compressible ones and the expansional effects of the fluid affects directly

the wave dispersion relation and its stability.

Also from the equation that represents the magnetoacoustic waves, Equation (3.48),

we obtain four roots for 𝑠, from which the values of the real part, the amplification factor,

and the values for the imaginary part, the frequency 𝜔, can be evaluated for different val-

ues of the physical parameters and different wave numbers, showing what is the influence

of these physical parameters on the stability and on the phase velocity 𝜔/𝑘 of the waves.

By varying the physical parameters of the flow system, different graphical results for 𝜉

and for 𝜔/𝑘 are presented in this section.

Analyzing Figure 3, it is seen that the phase velocity of the waves, 𝜔/𝑘, does not

depend on the value of the wave number when the high frequency expansional effects are

negligible, that means that the propagation velocity at short and long wave of small am-

plitudes are invariant for any mode of the wave. Indeed, according to Bittencourt (2004),

the magnetoacoustic waves without expansional high frequency effects are nondispersive

waves (i.e. its phase velocity does not depend on 𝑘) and its dispersion relations have

four roots, one corresponding to fast waves, a second one corresponding to slow waves

and the others two ones representing just the first two waves propagating in the opposite

direction. This behavior is clearly depicted in Figure 3. Also, for the case where the high

frequency effects term is not present, Equation (3.48) is a biquadratic equation that can

be solved analytically and used to validate the numerical solution. The analytical behavior

expressed by

𝑠2 = 1
2𝑘

2 (𝛾 + 𝐸𝑚) ± 1
2𝑘

2
[︁
(𝛾 + 𝐸𝑚)2 − 4𝛾𝐸𝑚 cos2 𝛼

]︁1/2
(3.50)

is exactly recovered by the numerical code solving Equation (3.48) in the asymptotic limit

of 𝑅𝑒𝑘 → ∞, as presented in Figure 3.
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Figure 3 – Phase velocity 𝜔/𝑘 of the slow magnetoacoustic waves as a function of 𝐸𝑚

with 𝑅𝑒𝑘 → ∞, 𝛼 = 𝜋/4 and 𝛾 = 1.4. Inset: The same of the main graphic,

but for the root corresponding to fast waves. We note that in this graphic the

phase velocity is plotted for 4 different values of 𝑘, but they all overlap.
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Figure 4 – Phase velocity 𝜔/𝑘 as a function of the angle 𝛼 with 𝑅𝑒𝑘 → ∞, 𝐸𝑚 = 2 and

𝛾 = 1.4. In this Figure, represents one root and another root.

Now, varying the values of the Euler magnetic number, 𝐸𝑚, and the 𝛼 angle, the

magnitude of the phase velocity of both slow and rapid waves are affected substantially
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as shown in Figure 3 and Figure 4. For instance, 𝜔/𝑘 of the slow waves increases fast with

𝐸𝑚 for all wave numbers and it reaches a constant value for 𝐸𝑚 around 20, i.e. as the

magnetic pressure is twenty times greater than the thermodynamic one. In contrast, the

root corresponding to fast waves, shown in Figure 3 (b), increases with the nondimen-

sional magnetic pressure in the full interval of 𝐸𝑚 with a dependence of 𝜔/𝑘 following

basically the scaling 𝐸𝑚
1/2. Again, since that the waves in the limit of very high 𝑅𝑒𝑘 are

nondispersive, the observation here works for all spectrum of wave numbers (short and

long waves). These results indicate that the ratio between magnetic pressure and thermo-

dynamic pressure and the angle 𝛼 are key physical parameters that determines the phase

velocity of the wave. On the other hand, changing the angle 𝛼 raises or decreases the

roots representing the slow magnetoacoustic waves and the fast magnetoacoustic waves,

depending on the root. For slow waves, raising 𝛼 decreases the phase velocity and for fast

waves raising 𝛼 increases the phase velocity. So, the orientation of the applied magnetic

field with respect to the direction of wave propagation change quite differently the wave

speed, depending on how fast or slow is its velocity. It suggests that the orientation of a

magnetic field can be used to control the propagation velocity of magnetoacoustic waves

in a conductor fluid.
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Figure 5 – Amplification factor as a function of 𝑅𝑒𝑘 with ̃︀𝑐 = 1.05, 𝜔𝜏 = 1, 𝛼 = 𝜋/4,

𝐸𝑚 = 2 and 𝛾 = 1.4. In this Figure, represents 𝑘 = 1, 𝑘 = 10,

𝑘 = 50, 𝑘 = 100.

Solving 𝑠 for the amplification factor (the real part) on the asymptotic case where
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Figure 6 – Phase velocity as a function of 𝑅𝑒𝑘 with ̃︀𝑐 = 1.05, 𝜔𝜏 = 1, 𝛼 = 𝜋/4, 𝐸𝑚 = 2

and 𝛾 = 1.4. In this Figure, represents 𝑘 = 1, 𝑘 = 10, 𝑘 =

50, 𝑘 = 100.

𝑅𝑒𝑘 → ∞, we get from both analytical and numerical solutions that it is null for any

value of the wave number, of the Euler magnetic number and of the angle 𝛼. This shows

that these waves are always stable in the absence of expansional high frequency effects.

On the other hand, from the numerical solution, for finite values of 𝑅𝑒𝑘 (i.e., when the

expansional effects at high frequency take place), these effects change considerable the

wave growth rate, as indicated in Figure 5. They make 𝜉 be more negative, behavior

which points out that the expansional high frequency effects tends to attenuate the wave

amplitude in any mode of velocity, showing the strong dissipative effects of high frequency

flows on this kind of waves. In addition, Figure 5 shows that at the asymptotic limit of

very high 𝑅𝑒𝑘 the wave growth rate tent to a null value for both short and long waves

(i.e. small and large scales of wavelengths).

Figure 6 presents a diagram for the phase velocity (𝜔/𝑘) of the waves as a func-

tion of the 𝑅𝑒𝑘, showing its behavior in cases where the expansional high frequency

effects assumes finite values. The results indicate the importance of the expansional high

frequency effects for varying the wave phase velocity as well. As in the asymptotic limit

where 𝑅𝑒𝑘 → ∞ the magnetoacoustic waves are nondispersive, from Figure 6 we see that

these high frequency effects acts upon these waves making a dispersive action (i.e. they

make the phase velocities have a dependence on the wave number) mainly in short waves
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regimes. Additionally, Figure 6 corroborates that long waves propagate faster than short

waves for finite values of 𝑅𝑒𝑘. It is important to notice that only one root for 𝜔/𝑘 was

shown in Figure 6, but the same physical interpretation can be obtained from the other

ones, as the results are analogous.

3.7 Proposition of a Method to Estimate the Bulk Viscosity

At this point we may obtain an expression for the bulk viscosity 𝜂2. Using the

dispersion relation for magnetoacoustic waves Equation (3.48) and substituting 𝑠 = −𝑖𝜔

gives

𝜂2(𝜔, 𝑘;𝐸𝑚, 𝛼) = 𝑘2𝜔2𝐸𝑚 sin2 𝛼− (𝜔2 − 𝑘2𝐸𝑚 cos2 𝛼)(𝜔2 − 𝑘2𝛾)
𝑖(𝜔3𝑘2 − 𝜔𝑘4𝐸𝑚 cos2 𝛼) . (3.51)

Here 𝜂2 is assumed to be a complex function like in the classic Landau’s model. Therefore,

taking the real part of Equation (3.51) we get the following expression:

𝜂2(𝜔, 𝑘;𝐸𝑚, 𝛼) = (𝜔2 − 𝑘2𝐸𝑚 cos2 𝛼)(𝜔2 − 𝑘2𝛾) − 𝑘2𝜔2𝐸𝑚 sin2 𝛼

(𝜔3𝑘2 − 𝜔𝑘4𝐸𝑚 cos2 𝛼) , (3.52)

where 𝜂2 now is just the imaginary part of the complex bulk viscosity given in Equation

(3.51). Equation (3.52) represents an explicit expression to estimate values for the bulk

viscosity at high frequency MHD flows of baratropic gases in terms of the wave and fluid

properties such as the wavenumber, the wave frequency, the Euler magnetic parameter,

the orientation of the applied field and the barotropic coefficient of the fluid. It should be

important to note that the expression of Mandelshtam and Leontovich (1937), Landau

and Lifshitz (1987) for the bulk viscosity given in Equation (3.16) is not the same the

one obtained in Equation (3.52). Differently, the bulk viscosity in this section is estimated

based on an modal analysis of magnetoacoustic waves propagating in compressible MHD

flows.

In Figure 7 we show a plot of our non-dimensional bulk viscosity 𝜂2 as a function of

the wavenumber 𝑘 for two different values of the magnetic parameter 𝐸𝑚, i.e. 0 and 300.

The case when 𝐸𝑚 = 0 represents standard acoustic waves which have the maximum of

the rate of energy dissipation, for a given 𝑘, due to compressional effect at high frequency

with (𝜂2)𝑚𝑎𝑥 = (𝜔2 −𝛾𝑘2)/𝜔𝑘2. In addition, the result indicates a considerable decrease of

the non-dimensional bulk viscosity as the magnetic parameter 𝐸𝑚 increases from 0 to 300.

For a condition of shorter waves, i.e. 𝑘 = 50, the bulk viscosity 𝜂2 decreases approximately

50% with respect to its value as 𝐸𝑚 = 0. The insert in Figure 7 makes clear that the rate
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of energy dissipation per unit of volume in the flow associated with the bulk viscosity,

𝜂2(∇ · 𝑢)2, can be suppressed by controlling the intensity of the applied magnetic field

(i.e. in non-dimensional terms, the physical parameter 𝐸𝑚). The non-dimensional bulk

viscosity for a MHD compressible flow at high frequency, i.e. 𝜔 = 103 and 𝑘 = 25 may

vary from 1.6 for 𝐸𝑚 = 0 to approximately 0.9 for 𝐸𝑚 = 103. For shorter waves the value

of 𝜂2 could still go to zero, depending on the intensity of the applied magnetic field.
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Figure 7 – Non-dimensional bulk viscosity 𝜂2 as a function of the wavenumber 𝑘 for two

different values of the magnetic parameter 𝐸𝑚 and 𝛾 = 1.4, 𝜔 = 103 and

𝛼 = 𝜋/4. From top to bottom in the plot the values of 𝐸𝑚 for the curves are:

0 and 300, respectively. For 𝐸𝑚 = 0, the non-dimensional expansion viscosity

has the maximum values for a given 𝑘; (𝜇𝑘)𝑚𝑎𝑥 = (𝜔2 − 𝛾𝑘2)/𝜔𝑘2. The insert

depicts the 𝜂2 decay as 𝐸𝑚 increase for 𝑘 = 25. The appreciable difference

of the attenuation of the energy dissipation by controlling the intensity of

magnetic field 𝐸𝑚 can be clearly observed.

Figure 8 shows the bulk viscosity 𝜂2 as a function of the wavenumber 𝑘 for various

values of the magnetic field orientation 𝛼 with respect to direction of the wave propagation

(or flow). Interestingly, an increase of the field orientation from 0 to 𝜋/2 also results in

an appreciable decrease of the bulk viscosity. Clearly, the field orientation for a given

wavenumber has a major effect on the bulk viscosity as 𝛼 = 𝜋/2, i.e. as the field is

orientated crosswise the direction of wave propagation. In addition, the insert of the same

plot shows a typical decrease of the bulk viscosity with field orientation 𝛼 for 𝑘 = 25,
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𝜔 = 103 and 𝐸𝑚 = 300. We can also see that there is inflection point in the bulk viscosity

function at 𝛼 = 𝜋/4. Below the inflection point the bulk viscosity continues decreasing

with the field orientation and its value saturates to 𝜂2 = 1.3 for 𝛼 = 𝜋/2, corresponding to

its minimum value. Under the given conditions, the effect of the bulk viscosity on the flow

could be clearly attenuated by around 20% just varying the orientation of the magnetic

field 𝛼 from 0 to 𝜋/2.
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Figure 8 – Non-dimensional bulk viscosity 𝜂2 as a function of the wavenumber 𝑘 for two

different values of the magnetic field orientation 𝛼. From top to bottom of the

curves in the plot 𝛼 = 0, 𝜋/6, 𝜋/4 and 𝜋/2, respectively. In this plot, 𝛾 = 1.4,

𝜔 = 103 and 𝐸𝑚 = 300. The insert in the plot shows 𝜂2 versus 𝛼 for 𝑘 = 25.

3.7.1 Wave phase velocity

At this point it is important to examine how the wave phase velocity of the magnet-

icacoustic waves is influenced by the bulk viscosity alone. For this end, we have calculated

numerically the four roots of 𝑠 in the dispersion relation of magnetoacoustic wave given

in Equation (3.48). Figure 9 depicts the non-dimensional wave phase velocity 𝜔/𝑘 for fast

waves (first root) as a function of the non-dimensional bulk viscosity 𝜂2 for four different

wavenumbers: 𝑘 = 25, 50, 75 and 100, respectively. The others parameters used in the

plot were 𝛾 = 1.4, 𝜔 = 103, 𝐸𝑚 = 300 and 𝛼 = 𝜋/4. The second root corresponding to

slow magnetoacoustic waves is shown as an insert of the main plot. The other two roots
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give just the phase velocity of two waves propagating in the opposite direction of the one

explored here, as discussed by Bittencourt (2004).

Figure 9 shows that the non-dimensional phase velocity of the fast waves decreases

monotonically rapid as the bulk viscosity increases and this behavior is observed at all

wavenumbers examined. However, 𝜔/𝑘 reaches a saturation for large values of the bulk

viscosity (e.g. 𝜂2 = 10). It is interesting to note that for large values of the bulk viscosity

the dispersion relation of magnetoacoustic waves described by Equation (3.48) tends to

the relation of the Alfvén, the non-dispersive magnetic waves given by Equation (3.47).

In this asymptotic limit of the bulk viscosity the root corresponding to fast waves is

𝜔/𝑘 = cos𝛼
√
𝐸𝑚. As expected this relation is completely independent of the bulk viscosity

since these waves behaves like incompressible ones, but the intensity of the magnetic field

and its orientation with respect the direction of the wave propagation still affects the

propagation speed of the wave in a context of electrically conducting fluids. We also

conjecture that for large values of bulk viscosity a typical time scale of the dissipation

mechanism by 𝜂2 is 𝜏0 ∼ (𝜌0ℓ
2)/𝜇0

2 ≪ 𝜆0/𝑐0, where 𝜆0 is a characteristic wavelength and 𝑐𝑜

the wave speed velocity. Therefore, under this limit condition the wave does not responds

to changes in the flow bulk viscosity. On the other hand, for moderate and finite values of

𝜂2, the results presented in Figure 9 indicates that the bulk viscosity may exert a strong

influence on the propagation velocity of magnetoacoustic waves. Since magnetoacoustic

disturbances are in general compressible dispersive waves, compressional effects at high

frequency in the flow may change drastically the wave propagation in an electrically

conducting gas. Additionally, the insert of Figure 5 shows a similar behavior for the

second root of Equation (3.48) in terms of 𝜔/𝑘 versus 𝜂2. We can see, however, that in the

case of slow magnetoacoustic waves, large values of 𝜂2 completely dissipate the motion of

these second type of waves (i.e. 𝜔/𝑘 goes to zero) for all wavenumbers. In addition, results

shown in Figure 5 also corroborates that long waves propagate faster than short waves

for a given finite and moderate value of the bulk viscosity. As a complementary result,

Figure 10 shows a plot of 𝜔/𝑘 versus the magnetic Euler number 𝐸𝑚 for different values

of the wavenumbers. Clearly, the applied field has a major effect on the phase velocity

of magnetoacoustic waves. Longer waves propagates with higher phase velocities and an

increase in the magnetic parameter substantially enhances the wave velocity. It is also

interesting to note that the growth rate of 𝜔/𝑘 is different depending on the wavelength.

As can be seen, longer waves have a higher growth rate with 𝐸𝑚 as compared to shorter

waves.
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Figure 9 – Non-dimensional phase velocity for fast magnetoacoustic waves as a function of

the bulk viscosity for different wavenumbers. From top to bottom the lines in

the plot represent 𝑘 = 25, 50, 75 and 100, respectively. The physical parameters

used in this plot are: 𝛼 = 1.4, 𝐸𝑚 = 300, and 𝛼 = 𝜋/4. The nondispersive

asymptotic limit of 𝜔/𝑘 for large values of 𝜂2 is exactly predicted by Equation

(3.47) as being 𝜔/𝑘 = cos𝛼
√
𝐸𝑚. The supplementary result of 𝜔/𝑘 versus 𝜂2

for slow magnetoacoustic waves is presented in the insert of the plot.

3.7.2 Final Remark

A interesting result of the study presented here was to find that a reduction of the

energy dissipation rate associated with the bulk viscosity can be controlled by the intensity

of an applied magnetic in a MHD flow. This finding may lead to a drag reduction in

compressible flows of electrically conduction gases, since the mechanical energy dissipation

per unit of mass, 𝜂2(∇ · 𝑢)2/𝜌, can be considerably attenuated by action of an applied

magnetic field. For instance, while 𝜂2 ≈ 0.4 for 𝑘 = 50 and 𝐸𝑚 = 0, 𝜇𝑘 ≈ 0.25 at the

same 𝑘 for 𝐸𝑚 = 100. This corresponds to a decrease of approximately 38% in the flow

dissipation associated with the high frequency expansion of the fluid. Another interesting

finding was to have established, even in a study of small amplitudes waves, a closure

expression which could be used to evaluate the bulk viscosity in terms of the applied

magnetic field parameter (𝐸𝑚), the wave quantities (𝑘 and 𝜔) and fluid properties. We

expect that this model can be useful for estimating the bulk viscosity by experiments
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Figure 10 – Non-dimensional phase velocity for fast magnetoacoustic waves as a function

of magnetic Euler number 𝐸𝑚 for different wavenumbers. From top to bottom

the lines in the plot represent 𝑘 = 25, 50, 75 and 100, respectively. The

physical parameters used in this plot are: 𝛼 = 1.4, 𝜂2 = 1, and 𝛼 = 𝜋/4.

The limit of 𝐸𝑚 = 0 corresponds to the high frequency acoustic waves in

a non-Stokesian Newtonian gas (i.e., with bulk viscosity) in the absence of

magnetic effects.

involving flows of conducting gases in which typical frequencies and the wavenumbers of

magnetoacoustic waves can be measured in laboratory scale.

The study presented in this chapter provide insights into the role of a bulk viscos-

ity in the propagation of magnetoacoustic waves, which was a significant step forward in

understanding how to control the phase velocity of magnetic waves and the rate of me-

chanical dissipation in compressible flows at high frequency by controlling field intensity

and orientation. This study was even submitted to the journal Physics of Fluids and we are

now in process of preparation of the revised version (CUNHA; INÁCIO, 2024). Currently,

we have no experimental results with which to compare our predictions. In this way, we

suggest an experimental investigation in laboratory scale involving measurements of mag-

netoacoustic parameters such as the wavelength and frequency in compressible MHD flow

at high frequency, where the bulk viscosity become an important quantity of the flow. A

next step could also be to extent our studies to explore bubble dynamics phenomenon in

the presence of a bulk viscosity and a magnetic field effects on the high frequency radial
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oscillations of a spherical gas bubble in a liquid.



4 SHEAR INDUCED

DISPERSION ON MHD FLOWS

4.1 Incompressible MHD Flow in a Channel

In this section, we construct the solution for the unidirectional flow of an incom-

pressible electrically conducting fluid in a channel with an external longitudinal magnetic

field applied. The construction includes the induction of a magnetic field in the flow di-

rection. The solution to this problem is needed because it will serve as non-perturbed

solution in further analysis of the shear induced dispersion phenomenon.

4.1.1 Governing Equations

ℎ

𝑥

𝑦

ℎ

𝐵0

𝑢(𝑦)

Figure 11 – Scheme for the MHD flow in channel.

The unidirectional flow between parallel plates with an external magnetic field is

described by Figure 11. We observe that gravity exert only static effect on the flow, so that

it can be added to the pressure, generating an modified pressure given by 𝑝 = 𝑝* − 𝜌𝑔 · 𝑥.

53



CHAPTER 4. SHEAR INDUCED DISPERSION ON MHD FLOWS 54

In this flow, we can write the total magnetic field as a sum of a external field

contribution with a induced field contribution, so that

𝐵 = 𝐵𝑥(𝑦)𝑒𝑥 +𝐵0𝑒𝑦, (4.1)

where 𝐵𝑥 = 𝐵𝑥(𝑦)𝑒𝑥 is the induced magnetic field in the direction of the flow. This form

of the induced field is obtained using the unidirectional flow condition in the induction

equation. On the other hand, from Faraday’s law for permanent permanent regime,

∇ × 𝐸 = 0. (4.2)

Hence, 𝐸𝑧 = 𝐸0 is a constant. Then, as the 𝑧-component of current density is given by

Ohm’s law,

𝐽𝑧 = 𝜎𝑒 (𝐸0 + 𝑢𝐵0) , (4.3)

we have that Lorentz law gives that

𝑓𝐿 = 𝐽 × 𝐵 = 𝜎𝑒 (𝐸0 + 𝑢𝐵0) (−𝐵0𝑒𝑥 +𝐵𝑥𝑒𝑦) . (4.4)

Using Lorentz force, given by Equation (4.4), in modified Navier-Stokes Equation (2.129),

we find that

𝐺+ 𝜂
𝑑2𝑢

𝑑𝑦2 − 𝜎𝑒𝐸0𝐵0 − 𝜎𝑒𝑢𝐵
2
0 = 0, (4.5)

−𝜕𝑝

𝜕𝑦
+ 𝜎𝑒𝐵𝑥 (𝐸0 +𝐵0𝑢) = 0, (4.6)

where 𝐺 = − 𝜕𝑝
𝜕𝑥

. Equations (4.5) and (4.6) are the differential equations that determine

the velocity field and the pressure field, respectively.

From the transport equation for the magnetic field for a incompressible fluid,

Equation (2.131), we have that

𝐵0
𝑑𝑢

𝑑𝑦
+ 𝜈𝑚

𝑑2𝐵𝑥

𝑑𝑦2 = 0. (4.7)

Equation (4.7) is the differential equation that determines the induced magnetic field.

4.1.2 Non-dimensional Governing Equations

Consider the following set of definitions of non-dimensional variables:

𝑢* = 𝑢

𝑈
, 𝑦* = 𝑦

ℎ
, 𝑝* = 𝑝ℎ

𝜂𝑈
, 𝐵*

𝑥 = 𝐵𝑥

𝐵0
e 𝐸*

0 = 𝐸0

𝑈𝐵0
. (4.8)
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where 𝑈 is the mean velocity. Then, the governing differential equations of the problem,

Equations (4.5), (4.6) and (4.7), becomes

𝐺* + 𝑑2𝑢*

𝑑𝑦*2 − Ha2𝐸*
0 − Ha2𝑢* = 0, (4.9)

−𝜕𝑝*

𝜕𝑦* + Ha2𝐵*
𝑥 (𝐸*

0 + 𝑢*) = 0, (4.10)

𝑑2𝐵*
𝑥

𝑑𝑦*2 + Re𝑚
𝑑𝑢*

𝑑𝑦* = 0. (4.11)

Here, Ha represents the Hartmann number, which gives the ratio between Lorentz and

viscous forces. Till the end of the solution for MHD flow between parallel plates, the

notation of non-dimensional variables, *, will be suppressed to ease the notation.

4.1.3 Velocity Field

The non-dimensional velocity field is determined by Equation (4.9), which is an or-

dinary differential equation whose solution is given by a sum of the homogeneous solution

with the particular solution. Hence, the general solution to 𝑢 is given by

𝑢 = 𝐺

Ha2 − 𝐸0 + 𝐶1 sinh (Ha𝑦) + 𝐶2 cosh (Ha𝑦), (4.12)

where 𝐶1 and 𝐶2 are constants. Applying the no-slip boundary condition in the walls,

these constants are determined as

𝐶1 = 0 (4.13)

𝐶2 = 𝐸0 − Ha−2𝐺

cosh (Ha) . (4.14)

Therefore, the velocity profile is given by

𝑢(𝑦) =
(︂
𝐺

Ha2 − 𝐸0

)︂ [︃
1 − cosh (Ha𝑦)

cosh (Ha)

]︃
. (4.15)

4.1.4 Magnetic Field

The non-dimensional magnetic field is determined by Equation (4.11). Then, sub-

stituting the solution to the velocity field and integrating twice, we obtain that

𝐵𝑥(𝑦) = −Re𝑚

(︂
𝐺

Ha2 − 𝐸0

)︂ [︃
𝑦 − sinh (Ha 𝑦)

Ha cosh (Ha)

]︃
+ 𝐶3𝑦 + 𝐶4, (4.16)
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where 𝐶3 and 𝐶4 are integration constants. In this case without magnetization, the mag-

netic boundary condition gives 𝐵𝑥(𝑦 = ±1) = 0, so that

𝐶3 = Re𝑚

(︂
𝐺

Ha2 − 𝐸0

)︂ [︃
1 − sinh (Ha)

Ha cosh (Ha)

]︃
(4.17)

𝐶4 = 0. (4.18)

Therefore, the induced magnetic field can be obtained as

𝐵𝑥(𝑦) = Re𝑚

Ha cosh (Ha)

(︂
𝐺

Ha2 − 𝐸0

)︂
[sinh (Ha 𝑦) − sinh (Ha) 𝑦] . (4.19)

4.1.5 Pressure Field

In the flow treated here, the pressure gradient is what generates the flow and is

imposed, i.e.
𝜕𝑝

𝜕𝑥
= −𝐺, (4.20)

such that

𝑝(𝑥, 𝑦) = −𝐺𝑥+ 𝑓(𝑦), (4.21)

where 𝑓 is a function of 𝑦 that arise from integration. Taking the partial derivative in the

𝑦-direction of Equation (4.21) we are left with

𝜕𝑝

𝜕𝑦
= 𝑑𝑓(𝑦)

𝑑𝑦
. (4.22)

Substituting Equation (4.10) we obtain a differential equation for 𝑓(𝑦), given by

𝑑𝑓(𝑦)
𝑑𝑦

= Ha2𝐵𝑥 (𝐸0 + 𝑢) . (4.23)

Substituting the results for the velocity field and for the induced magnetic field and then

integrating, we obtain the pressure field as

𝑝(𝑥, 𝑦) = −𝐺𝑥+ 𝑝0 + Re𝑚

cosh (Ha)

(︂
𝐺

Ha2 − 𝐸0

)︂{︃(︂
𝐺

Ha2 − 𝐸0

)︂ [︃1 − cosh2 (Ha 𝑦)
2 cosh (Ha)

+ tanh (Ha) sinh (Ha 𝑦)𝑦 + tanh (Ha)
Ha (1 − cosh (Ha 𝑦))

]︃

+ 𝐺

Ha2

[︃
cosh (Ha 𝑦) − Ha

2 sinh (Ha)𝑦2 − 1
]︃}︃

, (4.24)

where 𝑝0 = 𝑝(0, 0).
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4.1.6 Flow Rate

The non-dimensional flow rate is given by

𝑄 = 1
2

∫︁ 1

−1
𝑢(𝑦)𝑑𝑦. (4.25)

The characteristic flow rate is given by |𝑄| ∼ 2𝑈ℎℓ, where ℓ is the length of the channel

in the 𝑧-direction. Therefore, using the velocity field given by Equation (4.15),

𝑄 = 1
2

∫︁ 1

−1

(︂
𝐺

Ha2 − 𝐸0

)︂ [︃
1 − cosh (Ha𝑦)

cosh (Ha)

]︃
𝑑𝑦. (4.26)

Integrating we obtain that

𝑄 =
(︂
𝐺

Ha2 − 𝐸0

)︂ [︃
1 − tanh (Ha)

Ha

]︃
. (4.27)

We note that, by definition, this non-dimensional flow rate must equals 1, as the charac-

teristic velocity is the mean velocity 𝑈 .

4.1.7 Equation for the Non-dimensional Electric Field

The non-dimensional electric field present in the problem, 𝐸0, is coupled to the

magnetic field by the nature of Maxwell’s equations. Even through we do not apply an

external electric field, generally 𝐸0 exists and, in this case, is the induced electric field.

Then, 𝐵𝑥, 𝐸0 and 𝑢 are tied together. Indeed, applying an external electric field, the flow

would be modified and, by consequence, the magnetic field too, so that 𝐸0 and 𝐵𝑥 can

not be established independently. This fact is mathematically traduced using Ohm’s law,

Equation (2.106), in conjunction with the Ampère’s law, Equation (2.119), giving that

𝐸 = 1
𝑅𝑒𝑚

∇ × 𝐵 − 𝑢 × 𝐵, (4.28)

Note that this equation is already in the non-dimensional form. Substituting the expres-

sions obtained for the MHD parallel plates problem,

𝐸0 = 1
𝑅𝑒𝑚

𝑑𝐵𝑥

𝑑𝑦
− 𝑢. (4.29)

As 𝐸0 is constant, it can be determined evaluating Equation (4.29) in the walls of the

channel, so that we eliminate the velocity profile from the equation by the no-slip condi-
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tion. Then,

𝐸0 = 1
𝑅𝑒𝑚

𝑑𝐵𝑥

𝑑𝑦

⃒⃒⃒⃒
⃒
𝑦=±1

. (4.30)

Therefore, substituting the expression obtained for the magnetic field,

𝐸0 = − 𝐺

Ha2

[︃
Ha

tanh (Ha) − 1
]︃
. (4.31)

4.1.8 Complete Solution

Using the non-dimensional form of the electric field, given by Equation (4.31),

in the Equations for the velocity field, for the magnetic field and for the pressure, we

respectively obtain

𝑢 = 𝐺

Ha tanh (Ha)

[︃
1 − cosh (Ha 𝑦)

cosh (Ha)

]︃
, (4.32)

𝐵𝑥 = Re𝑚

𝐻𝑎2
𝐺

sinh (Ha) [sinh (Ha 𝑦) − sinh (Ha)𝑦] , (4.33)

𝑝 = 𝑝0 −𝐺𝑥+ 𝑅𝑒𝑚

𝐻𝑎2𝐺
2
[︃
−𝑦2

2 + sinh (Ha 𝑦)
sinh (Ha) 𝑦 − 1

2
sinh2 (Ha 𝑦)
sinh2 (Ha)

]︃
. (4.34)

We note that as the non-dimensional flow rate was defined in the way that 𝑄 = 1, 𝐺 can

not be arbitrary and must be coupled to the rest of the problem, so that this constraint

for 𝑄 is satisfied. Thus, using the equation for 𝐸0, Equation (4.31), in the expression for

the flow rate, Equation (4.27), we obtain that 𝐺 must be determined by

𝐺 = Ha[︁
coth (Ha) − Ha−1

]︁ . (4.35)

We note that in this case the flow is intrinsically coupled to the magnetic quantities.

4.1.9 Effective Viscosity

Although the fluid is electrically conductor, the dimensional flow rate for the case

of non-conducting fluid flowing between two parallel plates can be used to defined the

effective viscosity, letting

𝑄* = 2𝐺*ℎ3ℓ

3
1
𝜂𝑒𝑓

, (4.36)

where 𝑄* and 𝐺* represents the dimensional flow rate and pressure gradient (only till the

end of this solution) and 𝜂𝑒𝑓 represents the effective viscosity. By definition, this effective

viscosity represents the viscosity that a non-conducting fluid must have to have the same
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relation between the flow rate and the pressure gradient that the conducting fluid to a

fixed Hartmann number. This way, the effective viscosity must depend on the Hartmann

number Ha. From the flow rate of the electrically conducting fluid,

𝑄* = 2𝐺*ℎ3ℓ

3

{︃
3
𝜂Ha

[︃
1

tanh (Ha) − 1
Ha

]︃}︃
, (4.37)

so that, by direct comparison, the effective viscosity non-dimensionalized by the viscosity

of the conducting fluid is given by

𝜂𝑒𝑓

𝜂
= Ha

3
[︁
coth (Ha) − Ha−1

]︁ . (4.38)

4.1.10 Results
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Figure 12 – Non-dimensional velocity profiles of the incompressible MHD flow between

parallel plates for different Hartman numbers. In this Figure, represents

𝐻𝑎 = 0, 𝐻𝑎 = 0.1, 𝐻𝑎 = 1, 𝐻𝑎 = 5, 𝐻𝑎 = 10.

Inset: Maximum velocity as a function of the Hartmann number.

Figures 12, 13 and 14 present graphically the results for the velocity profiles, the

induced magnetic fields and for the effective viscosity respectively. From these figures, it is

clear that increasing the effects of the external magnetic field (raising Hartmann number)

causes a damping of the flow. This damping effect is also observed on the effective viscosity,

as raising Hartmann number raises the effective viscosity. The damping effect that Lorentz
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force causes in the flow is well-known and have several applications in engineering. For

example, NASA1 already used this magnetic damping to brake rockets in the atmosphere

entrance (CUNHA, 2021b). This kind of effect is also used in metallurgical industry to

damp the motion of liquid metals, which is needed in several applications (DAVIDSON,

1999). Although the external magnetic field just brakes the flow, we note that, as a

0
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𝐵
𝑥

𝑦

Figure 13 – Induced magnetic fields for the incompressible MHD flow between paral-

lel plates with different Hartmann numbers and 𝑅𝑒𝑚 = 1. In this Figure

represents 𝐻𝑎 = 0.1, 𝐻𝑎 = 1, 𝐻𝑎 = 5, 𝐻𝑎 = 10.

consequence of the coupling between the velocity field, the magnetic field and the electric

field, the existence of a flow with a magnetic field induces a electric field. This is a hint that

one can generate a flow using an external electric field in a electrically conducting fluid,

characterizing a MHD pump (MULLER; BUHLER, 2001). Indeed, the MHD pumping is

a known effect vastly applied in specific cases in the industry (DAVIDSON, 1999).

4.2 Transport Equation for the Concentration of Particles

Let 𝜑(𝑥, 𝑡) be a local volumetric concentration of particles scalar field, 𝑁 the local

flux vector field or current of this concentration, 𝑉 an arbitrary volume on the continuum

and 𝑆 the surface of 𝑉 . Hence, as the time variation of the quantity of particles in 𝑉 must
1 National Aeronautics and Space Administration
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Figure 14 – Effective viscosity as a function of the Hartmann number for the incompress-

ible MHD flow between parallel plates.

equals the flux of this quantity entering 𝑉 through its boundary 𝑆, we have that

𝑑

𝑑𝑡

∫︁
𝑉
𝜑𝑑𝑉 = −

∫︁
𝑆

𝑁 · 𝑛̂𝑑𝑆. (4.39)

Using divergence theorem (ARIS, 1989) and Reynolds transport theorem, given by Equa-

tion (2.21), it follows that
∫︁

𝑉

[︃
𝜕𝜑

𝜕𝑡
+ ∇ · (𝑢𝜑) + ∇ · 𝑁

]︃
𝑑𝑉 = 0. (4.40)

Finally, using the localization theorem, Equation (4.40) reduces to

𝜕𝜑

𝜕𝑡
+ ∇ · (𝑢𝜑) = −∇ · 𝑁 (4.41)

Equation (4.41) is the general diffusion equation and can be used to model the transport

of concentration of particles. In the special case of an incompressible fluid, it reduces to

𝐷𝜑

𝐷𝑡
= −∇ · 𝑁 (4.42)

or
𝜕𝜑

𝜕𝑡
+ 𝑢 · ∇𝜑 = −∇ · 𝑁 . (4.43)

It is worthwhile to note that continuity equation is a special case of the last equation. If

we take the volumetric mass concentration, i.e. the mass density, we have no net mass
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flux and Equation (4.41) would be simply the mass continuity equation. Also, much of

the fluxes are Fickian, meaning that we can write a linear relation between 𝑁 and the

gradient of 𝜑.

4.3 Shear-Induced Dispersion

In a suspension, we expect a dispersion of particles to occur. This dispersion is,

generally, composed of different diffusions, each coming from a different underlying mecha-

nism. In the rest of this section, we discuss these diffusions and the associated mechanisms.

The first is the bulk effect of Brownian motion. Depending on the size of the parti-

cles in a suspension, the molecules of the fluid medium hitting these particle can generate

a random walk in the particles, characterizing the Brownian motion. In macroscopic anal-

ysis, the bulk effect of this random walk can generate a flux of particles. The second

order tensor associated with this self-diffusivity of a single particle is called self-diffusivity

tensor 𝒟𝑠. Its important to note that this kind of diffusion is independent of particle

interactions.

The second mechanism is the shear induced or hydrodynamic dispersion. Consider

two particles colliding in a suspension, if these particles are in creeping flow, are perfectly

smooth and spherical and have no magnetic moment, the trajectories should be reversible,

i.e. after the interaction the particles should get back to the original streamline it was.

On the other hand, some mechanisms can break the reversibility of these interactions, like

surface roughness of the particles, deformation of the particles, geometry of the particles

and magnetic force interactions. When this reversibility is broken, the particles deviate

from its original streamline after collisions, generating a bulk effect viewed as a dispersion

of the particles (DAVIS, 1996). As the collisions are introduced by the shear, this effect

is called shear induced dispersion, as cited before.

4.4 Fick’s Law and the Down-Gradient Diffusivity

In general, diffusion arise macroscopically from a microscopic random process. Due

to the randomness of the process, a net flux characterizing this diffusion must be from

regions of higher concentration to regions of lower concentrations, the way the flux have

a linear relation with the gradient of concentration. Therefore, a general expression for
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this flux is given by

𝑁 𝑐 = 𝒟𝑐 · ∇𝜑, (4.44)

where 𝒟𝑐 is the down-gradient diffusivity tensor. Equation (4.44) is known as Fick’s law.

We note that, when there is no irreversible particle-particle interactions, the down-gradient

diffusion is just the self-diffusion. On the other hand, when irreversible interactions takes

place, a flux contribution must enter the relation. For a monodisperse dilute suspension

of non-Brownian rigid rough particles under shear flows, Cunha and Hinch (1996) showed

through theoretical calculations a exact relation between the diffusivity tensors discussed,

this is given by

𝒟𝑐 = 2𝒟𝑠 + 𝒟𝑓 , (4.45)

where 𝒟𝑓 is a flux contribution. Cunha and Hinch (1996) also show that 𝒟𝑐 have order

of magnitude of 10𝒟𝑠.

Besides these ordinary fluxes2 described, a gradient of shear and also a gradient

of viscosity should generate a diffusion, as higher shear rates induces more collisions of

particles and higher viscosity should also influence the dispersion. Indeed, in the next

sections a model to these fluxes will be deduced, in which this flux proportional to ∇𝛾̇

will appear naturally in the construction. Here 𝛾̇ represents the shear rate. The diffusion

due to gradient of shear rate is named hydrodynamic migration and the associated flux

is named particle migration.

4.5 Equation for the Shear-Induced Particle Flux

Phillips et al. (1992) were the first to construct a constitutive relation for the shear-

induced particle flux, basing their work on the previous experimental work of Leighton and

Acrivos (1987b). Therefore, throughout this work, we will follow closely this constitutive

model. It is important to note that shear-induced dispersion is highly anisotropic. Thus,

the model that will be deduced here with isotropic diffusivities can only be used properly

in unidirectional flows.

Consider a dilute mono-dispersed suspension, so that only two-particles interac-

tions can arise. As the higher shear rate and higher concentrations imply more collisions,

the collision frequency of a particle scales with 𝛾̇𝜑. On the other hand, each collision im-
2 Ordinary in the sense that they are linearly related to the gradient of concentration.
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plies a displacement of the particle 𝒪(𝑎𝑝), where 𝑎𝑝 is the radius of the particle, thus the

particle’s migration velocity scales with 𝑎𝑝𝛾̇𝜑. In this sense, the gradient of the migration

velocity should induce a net flux of particles, as adjacent layers of fluid with different

migration velocity should push a different number of particle to each other, which char-

acterizes a net flux. Therefore,

𝑁 𝑐 ∝ 𝜑∇(𝑎𝑝𝛾̇𝜑), (4.46)

where no self-diffusivity of a single particle alone is taken into account. The shear-induced

dispersion is quite anisotropic, but as we will only work in unidirectional flows, the pro-

portion relation given by Equation (4.46) can be substituted by a equality simply by a

scalar diffusivity. Hence,

𝑁 𝑐 = −𝐾𝑐𝑎
2
𝑝𝜑∇(𝛾̇𝜑), (4.47)

where an extra 𝑎𝑝 is added via the proportion coefficient to make 𝐾𝑐 have dimension of

diffusivity. Equation (4.47) can be rewritten as

𝑁 𝑐 = −𝐾𝑐𝑎
2
𝑝

(︁
𝜑2∇𝛾̇ + 𝛾̇𝜑∇𝜑

)︁
, (4.48)

where the first term on the right hand side represents hydrodynamic migration (flux from

regions of higher shear rate to regions of lower shear rate) and the second term represents

hydrodynamic dispersion (flux from regions of higher concentrations to regions of lower

concentrations). It is important to note that both fluxes have the same diffusion coefficient

because they both have the same underlying mechanism. On the other hand, a gradient

of viscosity should also generate a flux, as this gradient produces a change in the particle

pairs center of rotation and, by consequence, a displacement. This flux should depend on

the concentration 𝜑, on the frequency of collision 𝛾̇𝜑 and on the relative spacial variation

of the viscosity. Thus,

𝑁 𝜂 = −𝐾𝜂𝑎
2
𝑝𝛾̇𝜑

2 ∇𝜂

𝜂
, (4.49)

where 𝐾𝜂 is a diffusivity associated with the gradient of viscosity mechanism. Equation

(4.49) can also be written as

𝑁 𝜂 = −𝐾𝜂𝑎
2
𝑝𝛾̇𝜑

2 1
𝜂

𝑑𝜂

𝑑𝜑
∇𝜑, (4.50)

as 𝜂 can be written, in general, as a function of the concentration of particles.

We must also include a Brownian flux, as it is the mechanism that balances the

hydrodynamic dispersion. Indeed, the shear tends to disperse the particles to regions
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of lower shear rate, while the Brownian motion tends to randomize the suspension, ho-

mogenizing the suspension. Using a homogeneous and isotropic diffusivity tensor, the

diffusivity for the Brownian motion is simply the translational Brownian diffusivity, given

by (GRAHAM, 2018)

𝐷𝑡 = 𝑘𝑇

6𝜋𝜂0𝑎𝑝

. (4.51)

Therefore, the flux associated with the Brownian motion is

𝑁 𝑏 = − 𝑘𝑇

6𝜋𝜂0𝑎
∇𝜑. (4.52)

Here 𝑘 is the Boltzmann constant, 𝑇 is the temperature of the base liquid of the suspension

and 𝜂0 is the viscosity of the base liquid.

Finally, using the fluxes given by Equations (4.48) and (4.50) in the diffusion

Equation for a incompressible suspension, Equation (4.42), we obtain that

𝐷𝜑

𝐷𝑡
= −∇ · (𝑁 𝑏 + 𝑁 𝑐 + 𝑁 𝜂)

= ∇ ·
[︃
𝑘𝑇

6𝜋𝜂0𝑎
∇𝜑+𝐾𝑐𝑎

2
𝑝

(︁
𝜑2∇𝛾̇ + 𝛾̇𝜑∇𝜑

)︁
+𝐾𝜂𝑎

2
𝑝𝛾̇𝜑

2 1
𝜂

𝑑𝜂

𝑑𝜑
∇𝜑

]︃
. (4.53)

Equation (4.53) is a closure equation to the problem of a suspension in which hydrody-

namic dispersion and Brownian flux are present.

4.6 MHD Flow in Channel with Shear-Induced Dispersion

In this section, we will model the problem of the incompressible MHD flow of a

monodisperse suspension of spherical particles in a channel (flow between parallel plates).

We will also construct solutions to this flow and discuss these solutions.

4.6.1 Formulating the Problem

Consider the permanent incompressible flow of an electrically conductive suspen-

sion in a channel under the action of a external magnetic field. This problem is analogous

to the ordinary MHD channel flow, but in the presence of particles in the fluid and dif-

fusion of them. The flow is unidirectional in 𝑥-direction, i.e. 𝑢 = 𝑢𝑒𝑥, and the external

magnetic field is constant in the 𝑦-direction.
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The movement equation is just Cauchy equation simplified to this case, i.e.

∇ · 𝜏 + 𝐽 × 𝐵 = ∇𝑝, (4.54)

where 𝜏 = 2𝜂(𝜑)𝐷 is the shear stress tensor. We note that we can not use directly Navier-

Stokes Equation (2.56) because now 𝜂 is not a constant, as assumed before. Calculating

∇ · 𝜏 we obtain that

∇ · 𝜏 =
(︃
𝑑𝜂

𝑑𝜑

𝑑𝜑

𝑑𝑦

𝑑𝑢

𝑑𝑦
+ 𝜂

𝑑2𝑢

𝑑𝑦2

)︃
𝑒𝑥. (4.55)

On the other hand, the magnetic field is given by 𝐵 = 𝐵𝑥(𝑦)𝑒𝑥 + 𝐵0𝑒𝑦, where 𝐵𝑥𝑒𝑥 is

the induced field in flow’s direction and 𝐵0𝑒𝑦 is the external constant magnetic field. The

Lorentz force 𝐽 × 𝐵 is the same obtained in the ordinary MHD channel flow. Therefore,

the two components of the movement equation are

−𝜎𝑒𝐵0 (𝐸0 + 𝑢𝐵0) + 𝜂
𝑑2𝑢

𝑑𝑦2 +𝐺+ 𝑑𝜂

𝑑𝜑

𝑑𝜑

𝑑𝑦

𝑑𝑢

𝑑𝑦
= 0, (4.56)

𝜎𝑒𝐵𝑥(𝐸0 + 𝑢𝐵0) − 𝜕𝑝

𝜕𝑦
= 0, (4.57)

where 𝐺 = −𝜕𝑝/𝜕𝑥 is the pressure gradient in 𝑥-direction and 𝐸0 = 𝜈𝑚𝑑𝐵𝑥/𝑑𝑦 − 𝑢𝐵0.

Since the transport equation does not change explicitly due to the diffusion of particles,

just implicitly by 𝑢, the transport of magnetic field equation is equal to the one deduced

in the ordinary problem, it is given by

𝐵0
𝑑𝑢

𝑑𝑦
+ 𝜈𝑚

𝑑2𝐵𝑥

𝑑𝑦2 = 0. (4.58)

Now, in the presence of hydrodynamic dispersion, Equations (4.56), (4.57) and (4.58) must

be coupled to a diffusion equation to the concentration of particles, given by Equation

(4.53). In the case of this permanent and unidirectional flow,

𝐷𝜑

𝐷𝑡
= 0, (4.59)

so that ∇ · 𝑁 = 0. Thus, as the flow quantities only vary in 𝑦-direction and 𝛾̇ = 𝑑𝑢/𝑑𝑦,

𝑑

𝑑𝑦

[︃(︃
𝑘𝑇

6𝜋𝜂0𝑎3
𝑝

−𝐾𝑐
𝑑𝑢

𝑑𝑦
𝜑−𝐾𝜂

𝜑2

𝜂

𝑑𝑢

𝑑𝑦

𝑑𝜂

𝑑𝜑

)︃
𝑑𝜑

𝑑𝑦
−𝐾𝑐𝜑

2𝑑
2𝑢

𝑑𝑦2

]︃
= 0. (4.60)



CHAPTER 4. SHEAR INDUCED DISPERSION ON MHD FLOWS 67

4.6.2 Full Set of Governing Equations

Collecting Equations (4.56), (4.57), (4.58), (4.60) and the Equation for 𝐸0 (an

auxiliary equation), we obtain the following set of equations:

−𝜎𝑒𝐵0 (𝐸0 + 𝑢𝐵0) + 𝜂
𝑑2𝑢

𝑑𝑦2 +𝐺+ 𝑑𝜂

𝑑𝜑

𝑑𝜑

𝑑𝑦

𝑑𝑢

𝑑𝑦
= 0, (4.61)

𝜎𝑒𝐵𝑥(𝐸0 + 𝑢𝐵0) − 𝜕𝑝

𝜕𝑦
= 0, (4.62)

𝐵0
𝑑𝑢

𝑑𝑦
+ 𝜈𝑚

𝑑2𝐵𝑥

𝑑𝑦2 = 0, (4.63)

𝑑

𝑑𝑦

[︃(︃
𝑘𝑇

6𝜋𝜂0𝑎3
𝑝

−𝐾𝑐
𝑑𝑢

𝑑𝑦
𝜑−𝐾𝜂

𝜑2

𝜂

𝑑𝑢

𝑑𝑦

𝑑𝜂

𝑑𝜑

)︃
𝑑𝜑

𝑑𝑦
−𝐾𝑐𝜑

2𝑑
2𝑢

𝑑𝑦2

]︃
= 0, (4.64)

𝜈𝑚
𝑑𝐵𝑥

𝑑𝑦
− 𝑢𝐵0 = 𝐸0. (4.65)

This set of equations closes the problem in question. It is important to note that the

continuity equation is already embedded in the fact that 𝑢 = 𝑢(𝑦).

4.6.3 Boundary Conditions

The boundary conditions of the problem are, simply, the no-slip condition, given

by

𝑢(𝑦 = ±ℎ) = 0, (4.66)

the condition that there is no flux through the walls of the channel, given by(︃
𝑘𝑇

6𝜋𝜂0𝑎3
𝑝

−𝐾𝑐
𝑑𝑢

𝑑𝑦
𝜑−𝐾𝜂

𝜑2

𝜂

𝑑𝑢

𝑑𝑦

𝑑𝜂

𝑑𝜑

)︃
𝑑𝜑

𝑑𝑦
−𝐾𝑐𝜑

2𝑑
2𝑢

𝑑𝑦2 = 0, 𝑦 = ±ℎ, (4.67)

and the condition that the induced magnetic field is equal to the external magnetic field

on the walls, so that

𝐵𝑥(𝑦 = ±ℎ) = 0. (4.68)

The Equation (4.67) is just a consequence of 𝑁 · 𝑛̂ being 0 on the walls of the channel.

Also, if we have a imposed mean velocity or a imposed flow rate,
∫︁

𝐴
𝑢𝑑𝑆 = 𝑢𝐴, (4.69)

can be used as a closure condition. Here 𝐴 is the transversal area of the channel and 𝑢

is the mean velocity. Finally, the mean value of the particle volume fraction distribution,
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𝜑(𝑦), must be equal the volume fraction on the a half of symmetry of the fluid, 𝜑0. Thus,

𝜑 = 1
ℎ

∫︁ ℎ

0
𝜑𝑑𝑦 = 𝜑0, (4.70)

where 𝜑 is the mean value of 𝜑.

4.6.4 Non-dimensional Set of Governing Equations and Boundary Condi-

tions

Consider the the non-dimensional variables defined by

𝑝* = 𝑝ℎ

𝜂0𝑈
, 𝜂* = 𝜂

𝜂0
, 𝑦* = 𝑦

ℎ
, 𝑢* = 𝑢

𝑈
,𝐵*

𝑥 = 𝐵𝑥

𝐵0
, 𝐸*

0 = 𝐸0

𝑈𝐵0
. (4.71)

Then, the set of governing equations can be written in the non-dimensional form in the

following way:

−𝐻𝑎2 (𝐸0 + 𝑢) + 𝜂
𝑑2𝑢

𝑑𝑦2 +𝐺+ 𝑑𝜂

𝑑𝜑

𝑑𝜑

𝑑𝑦

𝑑𝑢

𝑑𝑦
= 0, (4.72)

𝐻𝑎2𝐵𝑥(𝐸0 + 𝑢) − 𝜕𝑝

𝜕𝑦
= 0, (4.73)

𝑅𝑒𝑚
𝑑𝑢

𝑑𝑦
+ 𝑑2𝐵𝑥

𝑑𝑦2 = 0, (4.74)

𝑑

𝑑𝑦

[︃(︃
1

Pe −𝐾𝑐
𝑑𝑢

𝑑𝑦
𝜑−𝐾𝜂

𝜑2

𝜂

𝑑𝑢

𝑑𝑦

𝑑𝜂

𝑑𝜑

)︃
𝑑𝜑

𝑑𝑦
−𝐾𝑐𝜑

2𝑑
2𝑢

𝑑𝑦2

]︃
= 0, (4.75)

1
𝑅𝑒𝑚

𝑑𝐵𝑥

𝑑𝑦
− 𝑢 = 𝐸0. (4.76)

Note that we dropped the * notation for the non-dimensional variables in the last set of

equations. This was done to ease the notation and will carried throughout this chapter.

Here 𝑃𝑒 = 6𝜋𝜂0𝑎
3
𝑝𝛾̇𝑐/𝑘𝑇 is Péclet number, which gives a ratio between the Brownian

diffusion time and advection time, and 𝛾̇𝑐 is the characteristic shear rate. The set of

boundary conditions can be rewritten in the non-dimensional form as

𝑢(𝑦 = ±1) = 0 (4.77)(︃
1

Pe −𝐾𝑐
𝑑𝑢

𝑑𝑦
𝜑−𝐾𝜂

𝜑2

𝜂

𝑑𝑢

𝑑𝑦

𝑑𝜂

𝑑𝜑

)︃
𝑑𝜑

𝑑𝑦
−𝐾𝑐𝜑

2𝑑
2𝑢

𝑑𝑦2 = 0, 𝑦 = ±1, (4.78)

𝐵𝑥(𝑦 = ±1) = 0, (4.79)∫︁ 1

−1
𝑢𝑑𝑦 = 1, (4.80)∫︁ 1

0
𝜑𝑑𝑦 = 𝜑0. (4.81)
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4.6.5 Regular Perturbation Analysis

In here we intend to work only with small effects of the hydrodynamic dispersion.

Hence, to solve the problem for the shear induced dispersion in a channel containing an

electrically conducting suspension, we use a regular perturbation analysis of the problem.

To proceed to the solution, it also needed a few simplifications, they are:

• Viscosity gradient terms are neglected, since this effect is very small for dilute

suspensions (SINZATO; CUNHA, 2020; SINZATO; CUNHA, 2021; CUNHA; SIN-

ZATO; PEREIRA, 2022);

• The velocity profile 𝑢 is set to 𝑢0 (without hydrodynamic dispersion effects, but still

electrically conducting) in the diffusion equation, as even more drastic simplifications

in the velocity profile of this kind of equation are shown to give a minor deviation

by Sinzato (2021).

Using these simplifications, the set of governing equations is reduced to

𝜂
𝑑2𝑢

𝑑𝑦2 −𝐻𝑎2 (𝐸0 + 𝑢) +𝐺 = 0, (4.82)

𝐻𝑎2𝐵𝑥(𝐸0 + 𝑢) − 𝜕𝑝

𝜕𝑦
= 0, (4.83)

𝑅𝑒𝑚
𝑑𝑢

𝑑𝑦
+ 𝑑2𝐵𝑥

𝑑𝑦2 = 0, (4.84)

𝑑

𝑑𝑦

[︃
𝑑𝜑

𝑑𝑦
− Pe𝐾𝑐

𝑑𝑢0

𝑑𝑦
𝜑
𝑑𝜑

𝑑𝑦
− Pe𝐾𝑐

𝑑2𝑢0

𝑑𝑦2 𝜑
2
]︃

= 0, (4.85)

1
𝑅𝑒𝑚

𝑑𝐵𝑥

𝑑𝑦
− 𝑢 = 𝐸0. (4.86)

Note that the second simplification completely decouples the diffusion equation from the

movement equation. This is necessary to solve the system of equation. Using a pertur-

bation expansion in terms of the small parameter Pe𝐾𝑐, the quantities involved in this

system of equations can be written as

𝜑 = 𝜑0 + Pe𝐾𝑐𝜑1 + 𝒪(Pe2𝐾2
𝑐 ), (4.87)

𝑢 = 𝑢0 + Pe𝐾𝑐𝑢1 + 𝒪(Pe2𝐾2
𝑐 ), (4.88)

𝐵𝑥 = 𝐵𝑥0 + Pe𝐾𝑐𝐵𝑥1 + 𝒪(Pe2𝐾2
𝑐 ). (4.89)

We note that the choice of the parameter Pe𝐾𝑐 to be small is a consequence of Equation

(4.85). From it is clear that the shear induced effect is small when Pe𝐾𝑐 is small. The
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induced magnetic field is not perturbed as it is a direct consequence of the velocity

field. Substituting these in the governing Equations (4.82), (4.83), (4.84) and (4.85) and

matching the terms with the same power of 𝐾𝑐, we obtain a set of equations for each of

the contributions on Equations (4.87) and (4.89). These are

𝒪(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑0 = constant = 𝜑,

𝜂𝑒
𝑑2𝑢0

𝑑𝑦2 = Ha2(𝐸0 + 𝑢0) −𝐺,

𝑑2𝐵𝑥0

𝑑𝑦2 = −𝑅𝑒𝑚
𝑑𝑢0

𝑑𝑦
,

(4.90)

𝒪(Pe𝐾𝑐)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝜑1

𝑑𝑦
= 𝑑2𝑢0

𝑑𝑦2 𝜑
2
0,

𝜂𝑒
𝑑2𝑢1

𝑑𝑦2 = −5
2𝜑1

𝑑2𝑢0

𝑑𝑦2 ,

𝑑2𝐵𝑥1

𝑑𝑦2 = −𝑅𝑒𝑚
𝑑𝑢1

𝑑𝑦
,

(4.91)

𝒪(Pe2𝐾2
𝑐 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝜑2

𝑑𝑦
= 𝑑𝑢0

𝑑𝑦
𝜑0
𝑑𝜑1

𝑑𝑦
+ 2𝑑

2𝑢0

𝑑𝑦2 𝜑0𝜑1,

𝜂𝑒
𝑑2𝑢2

𝑑𝑦2 = −5
2

[︃
𝜑1
𝑑2𝑢1

𝑑𝑦2 + 𝜑2
𝑑2𝑢0

𝑑𝑦2

]︃
,

𝑑2𝐵𝑥2

𝑑𝑦2 = −𝑅𝑒𝑚
𝑑𝑢2

𝑑𝑦
,

(4.92)

where 𝜂𝑒 is just Einstein’s non-dimensional suspension viscosity for the mean volume

fraction, 1+2.5𝜑. Also, boundary conditions given by Equations (4.77), (4.79), (4.80) and

(4.81) can be written in terms of each contribution as

𝑢0(𝑦 = ±1) = 𝑢1(𝑦 = ±1) = 𝑢2(𝑦 = ±1) = 0, (4.93)

𝐵𝑥0(𝑦 = ±1) = 𝐵𝑥1(𝑦 = ±1) = 𝐵𝑥2(𝑦 = ±1) = 0, (4.94)∫︁ 1

−1
𝑢0𝑑𝑦 = 1 and

∫︁ 1

−1
𝑢1𝑑𝑦 =

∫︁ 1

−1
𝑢2𝑑𝑦 = 0 (4.95)∫︁ 1

0
𝜑0𝑑𝑦 = 𝜑 and

∫︁ 1

0
𝜑1𝑑𝑦 =

∫︁ 1

0
𝜑2𝑑𝑦 = 0. (4.96)

Then, using the boundary conditions given by Equations (4.93)-(4.96), the coefficients of

the expansion can be found. The leading order solution is

𝜑0 = 𝜑, (4.97)

𝑢0 = 𝐺0√
𝜂𝑒Ha tanh (Ha/√𝜂𝑒)

[︃
1 −

cosh (Ha𝑦/√𝜂𝑒)
cosh (Ha/√𝜂𝑒)

]︃
, (4.98)

𝐵𝑥0 = Re𝑚𝐺0

Ha2 sinh (Ha/√𝜂𝑒)

[︃
sinh

(︃
Ha𝑦
√
𝜂𝑒

)︃
− 𝑦 sinh

(︃
Ha
√
𝜂𝑒

)︃]︃
. (4.99)
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Here 𝐺0 is just the pressure gradient in the case without shear induced effects. The next

order solutions, 𝒪(𝐾𝑐), are given by

𝜑1 = 𝜑2
0[︁

1 − √
𝜂𝑒 tanh (Ha/√𝜂𝑒)/Ha

]︁ [︃1 − 1
cosh (Ha/√𝜂𝑒)

(︃
1 + Ha

√
𝜂𝑒

sinh (Ha𝑦/√𝜂𝑒)
)︃]︃

,

(4.100)

𝑢1 = 5𝜑2
0

16𝜂𝑒 sinh2 (Ha/√𝜂𝑒)
1(︁

coth (Ha/√𝜂𝑒) − √
𝜂𝑒/Ha

)︁2

×
{︃

Ha
√
𝜂𝑒

[︃
𝑦 sinh

(︃
2Ha
√
𝜂𝑒

)︃
− sinh

(︃
2Ha𝑦
√
𝜂𝑒

)︃]︃
+ 8

[︃
cosh

(︃
Ha
√
𝜂𝑒

)︃
− 1

]︃
cosh

(︃
Ha𝑦
√
𝜂𝑒

)︃

−8
[︃
cosh

(︃
Ha
√
𝜂𝑒

)︃
− 1

]︃
cosh

(︃
Ha
√
𝜂𝑒

)︃}︃
, (4.101)

𝐵𝑥1 = 5Re𝑚𝜑
2
0

32Ha√
𝜂𝑒 sinh2 (Ha/√𝜂𝑒)

1(︁
coth (Ha/√𝜂𝑒) − √

𝜂𝑒/Ha
)︁2

×
{︃

Ha2

𝜂𝑒

sinh
(︃

2Ha
√
𝜂𝑒

)︃
− Ha2

𝜂𝑒

𝑦2 sinh
(︃

2Ha
√
𝜂𝑒

)︃
+ 16 sinh

(︃
Ha𝑦
√
𝜂𝑒

)︃

− 16𝑦 sinh
(︃

Ha
√
𝜂𝑒

)︃
− 16 cosh

(︃
Ha
√
𝜂𝑒

)︃
sinh

(︃
Ha𝑦
√
𝜂𝑒

)︃
Ha
√
𝜂𝑒

cosh
(︃

2Ha𝑦
√
𝜂𝑒

)︃
− Ha

√
𝜂𝑒

cosh
(︃

2Ha
√
𝜂𝑒

)︃
+ 8𝑦 sinh

(︃
2Ha
√
𝜂𝑒

)︃}︃
. (4.102)

The pressure gradient 𝐺 can be found through the equation
∫︀ 1

−1 𝑢𝑑𝑦 = 1, so that

𝐺 =
Ha√

𝜂𝑒(︁
coth (Ha/√𝜂𝑒) − √

𝜂𝑒/Ha
)︁

+ 5𝜑2
0Pe𝐾𝑐

2 sinh (Ha/√𝜂𝑒) tanh (Ha/√𝜂𝑒)
(︁
coth (Ha/√𝜂𝑒) − √

𝜂𝑒/Ha
)︁3

×
[︃
cosh

(︃
Ha
√
𝜂𝑒

)︃
− 1

]︃ [︃
Ha
√
𝜂𝑒

− tanh
(︃

Ha
√
𝜂𝑒

)︃]︃
. (4.103)

4.6.6 Results

Figure 15 shows the results of the local volume fraction of particles distribution

for different values of 𝐾𝑐 in a half of symmetry of the flow. This figure shows that in the

presence of hydrodynamic dispersion the particle tends to migrate to the 𝑦-center of the

channel. When there is no hydrodynamic dispersion, the volume fraction is homogeneous

across y-direction. These behaviours were expected, as in the presence of such dispersion

the particles tend to migrate from regions of higher shear rate to regions of lower shear
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rate. Indeed, regions of higher shear rate produces more collisions, making particles in

such regions migrate more. Hence, as they migrate more, after some time these particles

happen to be in regions of lower shear rate, where the migration effect is lower. Looking

the net flux, particles from higher shear rate regions migrate more and particles from

lower shear rate regions have lower migration coefficients, generating a net flux towards

the regions of lower shear rate. Although in small scales, this is the exactly behavior

observed in Figure 15.
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Figure 15 – Local volume fraction of particles on the upper half of symmetry of the chan-

nel for 𝜑0 = 0.1 and Ha = 1. In this Figure, represents Pe𝐾𝑐 = 0,

Pe𝐾𝑐 = 0.1, Pe𝐾𝑐 = 0.3 and Pe𝐾𝑐 = 0.5. Inset: Maxi-

mum of the local volume fraction as a function of the parameter Pe𝐾𝑐.

On the other hand Figure 16 shows the effect of the magnetic field on the volume

fraction distribution, as it shows this volume fraction distribution for a half of symmetry

of the flow for some values of the Hartmann number. It is evident that the magnetic field

tends to homogenize the suspension distribution of particles in the channel, except in the

walls. Indeed, as we increase the magnetic field, the particle distribution is homogenized

from 𝑦 = −0.8 to 𝑦 = 0.8. This also shows that the magnetic field expels particles

from the regions near the walls (𝑦 from −1 to −0.8 and 0.8 to 1). This behavior is not

trivial and indicates that a external magnetic field can be used to control the particle

distribution on a electrically conducting suspension. For example, an external magnetic

field can be used to expel particles from the regions near wall when it is needed, as
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particles interacting with the wall can be a problem depending on the application. Also,

when a more homogeneous flow in the core of the channel is needed, a external magnetic

field can be used to induce this configuration. One can note that the magnetic field can

help the shear induced near the walls, between 𝑦 = 0.8 and 𝑦 = 1, but it helps differently

in the core flow. Indeed, Figure 17 gives a glimpse of this non-linear behavior. It shows

that the magnetic field changes substantially the shear rate, such that it is no longer

linear on the half of symmetry of the channel, it is non-linear, so that the gradient of

shear rate is substantially increased in some regions of the channel. As the shear induced

can be direct influenced by the gradient of shear rate, this change in the magnetic field

must contribute to the shear-induced dispersion. These results indicates the need of a

solution that can achieve a wider range of parameters, as these effects of the magnetic

field could be explored better, such that the effects of this non-linearity could generate

some different physical insights. We note that in a wider range of the parameters, the

shear-induced effect associated with the gradient of shear rate can grow considerably, as

the flux coefficient in the equation for 𝜑 scales with 𝜑2
0Pe𝐾𝑐. The way that the combined

mechanism of the gradient of shear rate with the action of the magnetic field can generate

different physical results in these wider ranges.
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Figure 16 – Local volume fraction of particles on the upper half of symmetry of the chan-

nel for 𝜑0 = 0.1 and Pe𝐾𝑐 = 0.05. In this Figure, represents Ha = 0.01,

Ha = 1, Ha = 5 and Ha = 7.5.

From Figure 18 we see the behavior of the velocity profile for different 𝐾𝑐. As the
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Figure 17 – Shear rate for 𝜑0 = 0.1, Pe𝐾𝑐 = 0.05 and different values of Hartmann

number. In this Figure, represents Ha = 0, Ha = 2, Ha = 3

and Ha = 5.

hydrodynamic dispersion tends to concentrate particles on the center of the channel, the

change in the local volume fraction indicates that this kind of dispersion will increase

the viscosity of the suspension on the center, decreasing the flow velocity and the flow

rate more on this region. Hence, the velocity profile is lower on the center of the channel.

Note that this behavior is observed on Figure 18. This result is also observed in Figure

20, as the result of the dispersion is to increase the effective viscosity, i.e. to the flow rate

increasing 𝐾𝑐 has the same effect of increasing the viscosity. This behavior of the effective

viscosity and of the velocity profile makes the possibility of controlling the dispersion via

an external magnetic field even more important, as it is shown here that the dispersion

present in flow of suspensions can decrease the flow rate, which can be a undesired effect

in many applications. Figure 19 shows the induced magnetic field for different values of

Pe𝐾𝑐. As expected by Equations (4.90)-(4.92), the magnetic field is a direct consequence

of the velocity profile. As the velocity is lower on the profile due to shear-induced effects,

it induces less intense magnetic field.

Although the analysis presented here shows exciting results, it was done for small

effects of the hydrodynamic dispersion. In more general range of the parameters, the

solution can present behaviors not observed here, like non-linear ones. Hence, the results

presented here emboldens a more general solution, a numerical one, to analyze the effect of
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Figure 18 – Velocity profile for 𝜑0 = 0.1 and Ha = 1. In this Figure, represents

Pe𝐾𝑐 = 0, Pe𝐾𝑐 = 0.1, Pe𝐾𝑐 = 0.3 and Pe𝐾𝑐 = 0.5.

Inset: The maximum of the velocity profile as a function of the parameter

Pe𝐾𝑐.

hydrodynamic dispersion on electrically conducting suspensions on more general range of

parameters, including situations that the hydrodynamic dispersion effect is substantially

more intense. Indeed, although the perturbation analysis provides great insights on the

flow of an electrically conducting suspension in the presence of hydrodynamic dispersion

effects, only a small range of the parameters could be analyzed and on some different

configurations even more interesting effects could appear. This way, as a next work, we

are looking forward to do a numerical study of the equations solved here with regular

perturbation analysis.
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5 CONCLUSION

In this dissertation, two fronts of work were explored. In the first, we studied the

effects of a bulk viscosity in magnetohydrodynamic waves traveling in a barotropic gas,

like Alfvén’s and magnetoacoustic waves. In the second, we explored the hydrodynamic

dispersion in the flow of an electrically conducting suspension in a channel.

Regarding the first front, we formulated and nondimensionalized the governing

equations for the flow of a barotropic gas, considering dissipation solely from the bulk

viscosity, given the well-established impact of standard viscosity on the waves under ex-

amination. These equations were perturbed with oscillations of small amplitude around

the equilibrium, the way that linearized equations in wave space were obtained. These

could be combined in a way that the dispersion relations for magnetohydrodynamic waves

arise. Firstly, stability and phase velocity of these waves were analyzed in aid of a already

existing model for the bulk viscosity. The results showed that the high frequency effects

accounted by the bulk viscosity have no influence under Alfvén’s waves, as these are in-

compressible. On the other hand, it was clear that this bulk viscosity has an influence

on magnetoacoustic waves. The magnetoacoustic waves was shown to obtain dispersive

effects under the effects of the bulk viscosity, i.e. in the a high frequency context, the

phase velocity of these waves depends on the wave number. Also, we have shown that

the magnetoacoustic waves are stable perturbations on the fluid. We even showed that

the bulk viscosity helps this stability, i.e. it makes the amplification factor more negative,

showing that this bulk viscosity indeed has a dissipative effect on magnetoacoustic waves,

as expected. Secondly, a model to estimate the bulk viscosity on laboratory based on

MHD waves properties was proposed. The equation of this model was analyzed graph-

ically. This analysis have shown how the dissipation of energy associated with the bulk

viscosity can be controlled by a external magnetic field on magnetohydrodynamic flows.

In special, this control can lead to a drag reduction in compressible flows of electrically

conducting gases.
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Regarding the second front, an in-depth discussion on hydrodynamic dispersion

mechanism was made first. Each mechanism involved was discussed separately, making

possible a construction for a flux model for each of these mechanism. This flux is shown to

be associated with the gradient of particle concentration in the suspension and the gradi-

ent of shear rate. These constructions were based on an already existing constitutive model

for shear-induced dispersion, which had been previously tested and compared with exper-

imental results. Subsequently, a diffusive equation was proposed based on these fluxes.

This equation, along with momentum and induction equations, constituted the governing

equations of the problem. They were analyzed for the case of channel flow and made

non-dimensional, thereby highlighting the non-dimensional physical parameters govern-

ing the problem. To solve the resulting coupled system of differential equations, a regular

perturbation analysis was proposed, along with justified simplifications. Initially, it was

demonstrated that the external magnetic field could control the volume fraction of particle

distribution along the channel, which was an interesting finding. Specifically, the external

magnetic field was shown to expel particles from regions near the wall while simultane-

ously homogenizing the particle distribution outside this wall region, which constituted

80% of the volume of the core flow. It was also discussed that the velocity profile and

effective viscosity are affected, as hydrodynamic dispersion causes the flow to be slower

in the core and reduces the flow rate. This last result was emphasized to highlight the

usefulness of the possibility of controlling the local volume fraction with the application

of an external magnetic field in this type of suspension.

5.1 Future Work

As briefly discussed in earlier sections, there is still room for further development

to build upon the findings presented in this dissertation. Therefore, we propose several

points to be addressed in future work:

• Use the model proposed to the bulk viscosity to analyze a concrete problem in the

context of electrically conducting gases, like the problem of an oscillating bubble;

• Solve the channel flow of an electrically conducting non-dilute suspension with hy-

drodynamic dispersion effects numerically, allowing a much more vast range of pa-

rameters. To start this study, we propose using other model for the suspension

viscosity, as Einstein’s model account only for dilute suspensions. For example, the
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model by Krieger and Dougherty (1959), which proposes that, for a non-dilute sus-

pension,

𝜂 = 𝜂0

(︃
1 − 𝜑

𝜑𝑚

)︃−{𝜂}𝜑𝑚

, (5.1)

where {𝜂} is denominated intrinsic viscosity and 𝜑𝑚 is the maximum packing vol-

ume fraction. Note that {𝜂} is non-dimensional and the values of {𝜂} and 𝜑𝑚 are

determined empirically.
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A Mathematical Constructions

A.1 Non-orthogonal Coordinate Systems

Consider a n-dimensional (finite) real inner product space 𝒱 (a vector space equipped

with a inner product 𝑔) that have a basis {𝑒1, 𝑒2, ..., 𝑒𝑛}, such that any vector 𝑢 in this

space can be written as

𝑢 =
𝑛∑︁

𝑖=1
𝑢𝑖𝑒𝑖 (A.1)

= 𝑢𝑖𝑒𝑖, (A.2)

where 𝑢𝑖 are said to be the components of 𝑢 in the basis {𝑒𝑖} and in the second line

we have used Einstein summation convention1. The inner product is a positive-definite

symmetric bilinear map 𝑔 : 𝒱 × 𝒱 → R. The inner product of two vectors 𝑢 and 𝑣 is

𝑔(𝑢,𝑣) = 𝑢 · 𝑣 = 𝑢𝑖𝑣𝑗𝑒𝑖 · 𝑒𝑗. (A.3)

The tensor-valued functions 𝑒𝑖 ·𝑒𝑗 are usually represented by 𝑔𝑖𝑗 and are named the metric

of the space. The norm of a vector 𝑢 can be defined by its inner product, by

|𝑢| =
√

𝑢 · 𝑢. (A.4)

Now, note that we can construct a set of vectors orthogonal to 𝑒𝑖 at each point.

Hence, given the basis {𝑒𝑖, ...𝑒𝑛}, we can construct a set of vectors {𝑒𝑖, ...𝑒𝑛} such that

𝑒𝑖 · 𝑒𝑗 = 𝛿𝑖
𝑗, (A.5)

where 𝛿𝑖
𝑗 is the Kronecker delta. To prove that {𝑒𝑖} form a basis to 𝒱 , we have to prove

that this set of vectors is linearly independent and that it spans 𝒱 . First note that this
1 This convention states that every repeated index implies summation on this index.
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set is linearly independent, as if 𝑢𝑖𝑒
𝑖 = 0, then

𝑢𝑖𝑒
𝑖 · 𝑒𝑗 = 𝑎𝑖𝛿

𝑖
𝑗 = 𝑎𝑗 = 0. (A.6)

We can also see that this set spans 𝒱 . To see this, first note that

𝑒𝑖 · 𝑣 = 𝑒𝑖 · (𝑣𝑗𝑒𝑗) = 𝑣𝑗𝛿𝑖
𝑗 = 𝑣𝑖. (A.7)

Then,

𝑢 · 𝑣 = 𝑔𝑖𝑗𝑢
𝑖𝑣𝑗 = 𝑔𝑖𝑗𝑢

𝑖(𝑒𝑗 · 𝑣) = (𝑔𝑖𝑗𝑢
𝑖𝑒𝑗) · 𝑣, (A.8)

which implies that 𝑢 can be written as

𝑢 = 𝑢𝑗𝑒
𝑗, (A.9)

where 𝑢𝑗 = 𝑔𝑖𝑗𝑢
𝑖. Therefore, as {𝑒𝑖} are linearly independent and spans 𝒱 , it is proved

that it is also a basis for 𝒱 . We say that the bases {𝑒𝑖} and {𝑒𝑖} are a pair of dual bases

for 𝒱 . The components 𝑢𝑗 are called contravariant components of 𝑢, while 𝑢𝑗 are called

the covariant components of 𝑢.

Note that the metric act as a map between contravariant and covariant compo-

nents. Indeed, in more general treatments, one can construct vector spaces without a

defined inner product or metric. This way, to obtain a operation on vectors returning

real numbers, one construct the space of linear functionals (also a linear space) on 𝒱 , the

so-called dual space 𝒱*. A element of 𝒱* is a linear functional 𝜔 such that 𝜔 : 𝒱 → R. If

𝑒𝑗 is a basis of 𝒱*, any linear functional (also called 1-forms) can be written as

𝜔 = 𝜔𝑖𝑒
𝑖, (A.10)

and acts on a vector 𝑢 by

𝜔(𝑢) = 𝜔𝑖𝑢
𝑗𝑒𝑖(𝑒𝑗). (A.11)

As 𝑒𝑖 are linear functionals on a vector space 𝒱 , they are completely defined by the action

on the basis of 𝒱 . This way we can choose a basis for 𝒱* satisfying 𝑒𝑖(𝑒𝑗) = 𝛿𝑖
𝑗. Note

that in this general construction, the elements with basis {𝑒𝑖} are completely different

mathematical elements from vectors with basis {𝑒𝑖}, the way that they action can not be

identified as an inner product, as inner products acts between elements of the same space.

To reduce this general treatment to the case presented before, where the dual vectors

belonged to the same space of the vectors, we must simply introduce the metric. Indeed,

the metric acts as a natural isomorphism between 𝒱 and 𝒱* (a linear bijector map between
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𝒱 and 𝒱*). For example, through the metric we can defined a map from 𝒱 to 𝒱* by

𝑔(𝑢) = 𝑔𝑖𝑗𝑢
𝑗𝑒𝑖. (A.12)

The inverse mapping, from 𝒱* to 𝒱 , can be defined with aid of the components of the

inverse of the metric, which must be proved to exist by the properties of the metric. Hence,

to the dual basis be also vectors as the natural basis, we must introduce extra structure

to the vector space, the metric (the inner product). More details on this general approach

can be found in (NAKAHARA, 2003).

A.2 Material Derivative of the Deformation Gradient Tensor

Applying the material derivative operator on 𝐹𝑖𝑗 and using its definitions,

𝐷𝐹 𝑖
𝑗

𝐷𝑡
=
[︃
𝜕

𝜕𝑡

(︃
𝜕𝑥𝑖

𝜕𝑋𝑗

)︃]︃
𝑋

= 𝜕

𝜕𝑋𝑗

(︃
𝜕𝑥𝑖

𝜕𝑡

)︃
𝑋

= 𝜕

𝜕𝑋𝑗
𝑢𝑖(𝑋, 𝑡). (A.13)

Thus, using the 𝑖-th component of the velocity field of the continuum, 𝑢𝑖 = 𝑢𝑖(𝑥(𝑋, 𝑡), 𝑡),

we obtain that
𝐷𝐹 𝑖

𝑗

𝐷𝑡
=
[︃
𝜕

𝜕𝑥𝑘
𝑢𝑖(𝑥, 𝑡)

]︃
𝜕𝑥𝑘

𝜕𝑋𝑗
, (A.14)

or, multiplying both sides of the equation by 𝑒𝑖 ⊗ 𝑒𝑗 and applying summations on the

indexes 𝑖 and 𝑗,
𝐷𝐹

𝐷𝑡
= (∇𝑢)𝑇 · 𝐹 . (A.15)

We can also find the material derivative of the inverse of the deformation gradient

tensor. Applying the material derivative on 𝐹 · 𝐹 −1 = 𝐼, we are left with

−𝐹 · 𝐷𝐹 −1

𝐷𝑡
= 𝐷𝐹

𝐷𝑡
· 𝐹 −1. (A.16)

Thus, using Equation (A.15),

𝐷𝐹 −1

𝐷𝑡
= −𝐹 −1 · (∇𝑢)𝑇 . (A.17)
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A.3 Exterior Product and Dual Relations

Consider two vectors, 𝑢 and 𝑣, on a vector space 𝒱 . Let us define a new operation

∧ : 𝒱 × 𝒱 → 𝒱 ⊗ 𝒱 by

𝑢 ∧ 𝑣 = 𝑢 ⊗ 𝑣 − 𝑣 ⊗ 𝑢, (A.18)

known as exterior or wedge product. Note that the resultant tensor is skew-symmetric.

Thus, we can represent the space of skew-symmetric tensors by Skw(𝒱 ⊗ 𝒱) = 𝒱 ∧ 𝒱 . The

basis for 𝒱 ⊗ 𝒱 is {𝑒𝑖 ⊗ 𝑒𝑗}, what implies that the basis for 𝒱 ∧ 𝒱 is just {𝑒𝑖 ∧ 𝑒𝑗}.

In three-dimensional spaces, skew-symmetric tensors have only 3 independent com-

ponents, the way that dimension(𝒱) = dimension(𝒱 ∧ 𝒱). Thus, in a Euclidean three-

dimensional space, we can define a linear map 𝜏 : 𝒱 ∧ 𝒱 → 𝒱 , called duality map, by

𝜏(𝑒𝑖 ∧ 𝑒𝑗) = 𝜖𝑖𝑗𝑘𝑒𝑘. (A.19)

If 𝑒𝑖 is orthogonal, the duality map 𝜏 establishes the correspondence given by

𝑒1 ∧ 𝑒2 = 𝑒3, (A.20)

𝑒2 ∧ 𝑒3 = 𝑒1, (A.21)

𝑒3 ∧ 𝑒1 = 𝑒2. (A.22)

Thus, if 𝑊 is a skew-symmetric tensor, i.e.

𝑊 = 𝑊 𝑖𝑗𝑒𝑖 ⊗ 𝑒𝑗 = 1
2𝑊

𝑖𝑗𝑒𝑖 ∧ 𝑒𝑗, (A.23)

the correspondent vector is given by

𝑤 = 𝜏(𝑊 )

= 1
2𝑊

𝑖𝑗𝜏(𝑒𝑖 ∧ 𝑒𝑗)

= 1
2𝜖𝑖𝑗𝑘𝑊

𝑖𝑗𝑒𝑘. (A.24)

If the basis is orthonormal, we have

𝑤𝑖 = 1
2𝜖𝑖𝑗𝑘𝑊𝑗𝑘, (A.25)

𝑊𝑖𝑗 = 𝜖𝑖𝑗𝑘𝑤𝑘. (A.26)

Equations (A.25) and (A.26) are known as duality relations and 𝑤 is called the dual
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vector of 𝑊 .
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