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A B S T R A C T   

The main focus of this study is to develop a multi-scale surrogate model for the FAO-56 Penman-Monteith (PM) 
evapotranspiration (ETo) using Hargreaves-Samani (HS) equation, which uses only temperature as a hydrome-
teorological variable to estimate ET. This feature is particularly useful for scarce data regions and climate change 
impact assessment studies, where the direct estimation of ETo from the PM equation can be problematic. As the 
parameters of the HS equation may vary across space, a Bayesian approach was adopted to estimate (or reca-
librate) them rather than relying on the fixed values as suggested in the traditional model. The Bayesian 
approach allows a sound development of our model in a multi-scale temporal framework, where the ETo at daily, 
monthly and annual scales are jointly used to estimate the HS equation parameters. The proposed and reference 
models are applied and tested using meteorological data from 17 stations located across the Han river basin in 
South Korea. The results indicate that the traditional HS equation with fixed parameters and without recali-
bration tends to overestimate the reference ET for all stations. The locally recalibrated approach to the HS 
equation at a daily temporal scale can effectively reduce the systematic bias associated with the use of the 
traditional HS equation but fails to reproduce the underlying distribution of ETo at different temporal scales (e.g., 
monthly and annual). This leads to a large systematic bias in ETo at these scales. In contrast, the proposed multi- 
scale surrogate model offers a more precise estimation of the reference ET at a daily timescale as well as at the 
aggregated monthly and annual temporal scales. This is particularly useful to minimize the systematic bias often 
observed when using traditional surrogate models for the reference ET in hydrological studies such as rainfall- 
runoff modeling and assessment of climate change impact on water resources.   

1. Introduction 

The hydrological cycle involves the continuous process of water 
fluxes across their reservoirs: land, oceans and atmosphere. Among the 
hydrologic flux components, evapotranspiration (ET) responds to a 
substantial transport of water over in the hydrological cycle (Kim et al., 
2018a; Kwon et al., 2012; McColl and Rigden, 2020; Novák, 2012; Zhao 
et al., 2013). In terms of the hydrological cycle, ET represents the key 
process of removing water from the surface to the atmosphere, which is 
the opposite process of precipitation. The land surface returns approx-
imately 60% of precipitation to the atmosphere annually via the ET 
process (L’vovich et al., 1990). Therefore, accurate estimation of ET is 

often required to establish effective management plans for water re-
sources (e.g., demand analysis of water, irrigation management, drought 
monitoring, etc.) (Zhao et al., 2013). 

The main concepts of ET can be divided into potential evapotrans-
piration (ETp) and reference evapotranspiration (ETo). The ETp refers to 
the maximum moisture loss from the surface, which is strongly affected 
by meteorological conditions and the surface type, assuming conditions 
of unlimited moisture supply (Lhomme, 1997). On the other hand, the 
reference evapotranspiration (ETo) can be defined as the hypothetical 
evapotranspiration rate of an extensive green grass surface (Allen et al., 
1998). 

ETo is routinely estimated through the physically-based FAO56 
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Penman-Monteith (FAO56-PM) equation, which is recommended by the 
Food and Agriculture Organization (FAO) and has been used by various 
organizations (e.g., WMO and ICID). However, the FAO56-PM method 
requires a set of meteorological data (i.e., wind speed, radiation, air 
temperature, and relative humidity) to estimate ETo that are not readily 
available and therefore limit the use of the FAO56-PM in data-sparse 
parts of the world, especially in developing countries. Such a problem 
arises in the study of the impact of climate change on water resources 
due to difficulties in obtaining reliable meteorological forcing data from 
climate change scenarios required for estimating ETo through the 
FAO56-PM Equation. 

In this context, the Hargreaves-Samani (HS) equation (Hargreaves 
and Samani, 1982, 1985) using daily air temperature data was proposed 
as a surrogate model to the FAO56-PM for the ETo. The HS equation has 
been widely applied for the estimation of ETo due to its accuracy, con-
sistency, and parsimonious nature. The HS formula has a physical 
interpretation, and the temperature range (Tmax - Tmin) between the 
maximum and minimum temperature is aiming to represent atmo-
spheric transparency. The air temperature used in the HS equation is one 
of the most widely observed meteorological data, permitting easy 
implementation with long-term temperature data (Mendicino and Sen-
atore, 2013). However, the HS equation relies on model coefficients, 
which in turn can be linked to the local climate conditions and topo-
graphical characteristics. Therefore, recalibration of the HS equation is 
required to minimize systematic error. 

Several studies have been proposed to improve the accuracy of the 
estimated ETo by recalibrating the parameters of the HS equation. In 
particular, the pattern of ETo appears to be different due to various 
meteorological factors affecting evapotranspiration. Thus, the HS 
equation has been evaluated under various climate regimes (e.g., arid 
and semiarid) and regions (e.g., inland and coast). Most studies focused 
on the assessment of ETo estimated from the HS equation in a particular 
climate zone (Gavilán et al., 2006; Martínez-Cob and Tejero-Juste, 2004; 
Raziei and Pereira, 2013; Todorovic et al., 2013; Yang et al., 2021). 
Almorox et al. (2015) evaluated 11 representative temperature-based 
models for estimating ETo in different climate zones across the world. 
More specifically, the applicability of the different temperature-based 
models was explored in the context of the Koppen climate classifica-
tion as a benchmark for the FAO56-PM method on a monthly timescale. 
The study concluded that the HS equation could provide satisfactory 
performance in different climate regimes (i.e., arid, semiarid, temperate, 
cold, and polar climates). An alternative approach was proposed for 
regional adjustment of the Hargreaves-Samani coefficient by examining 
its relationship with temperature. Vanderlinden et al. (2004) presented 
the Adjusted Hargreaves-Samani coefficient (AHC) and evaluated the 
estimated daily ETo against the ETo obtained from FAO56-PM at mete-
orological stations located inland and in coastal areas. The adjusted 
Hargreaves-Samani coefficient (AHC), which is obtained through 
regression analysis, appears to increase at coastal stations and decrease 
across inland stations. Su et al. (2022) provided a comparison between 
several temperature- and radiation-based evapotranspiration methods 
for the evaluation of regional irrigation water demand. The calibrated 
Hargreaves-Samani and Priestley-Taylor methods can greatly increase 
efficiency and accuracy in estimating regional or worldwide irrigation 
water demand. Shirmohammadi-Aliakbarkhani and Saberali (2020) 
presented a reliable alternative ETo models requiring fewer input data 
compared with the FAO Penman-Monteith method in Iran. In the study 
area, the temperature-based methods typically outperformed the 
radiation-based methods. More specifically, the Jensen-Haise method 
showed better performance for the warm growing season, while the 
Hargreaves-Samani method was the best performance for the cool 
growing season. 

In recent studies, machine learning (i.e., artificial neural network 
(ANN), extreme learning machine (ELM), wavelet neural network 
(WNN)) and Bayesian theory have been used to estimate parameters of 
the HS equation and forecast the ET0 (Falamarzi et al., 2014; Feng et al., 

2017, 2016; Kang et al., 2022; Traore et al., 2016). Traore et al. (2016) 
employed an ANN for short-term forecasting of ETo using climate in-
formation retrieved from climate forecast products in the public domain. 
Feng et al. (2017) calibrated the HS equation using Bayesian theory in 
the Sichuan basin of southwest China. The study concluded that the 
calibrated HS equation still overestimated ETo at different temporal 
scales, although the calibrated HS equation provided a better fit for the 
Penman-Monteith equation than that of the traditional HS equation. 
Since the HS equation was empirically developed based on data from 
arid to sub-humid conditions, it may not fit well in areas far different 
from those considered for its calibration, as is the case for humid cli-
mates (Raziei and Pereira, 2013). Almorox et al. (2015) evaluated the 
temperature-based evapotranspiration equation for each Köppen 
climate zone and found that the HS equation performed best in most 
climatic zones, including temperate climates in which the study area (i. 
e., South Korea) was located. 

Here a surrogate model based on the HS equation is developed, 
considering both daily ETo and monthly and annual ETo, which was 
referred to as “the multi-scale surrogate model”. Most studies locally 
recalibrated parameters of the HS equation using daily temperature data 
as input. The existing studies consider only a single temporal scale for 
estimating ETo, named “the single-scale surrogate model”. Since the 
single-scale surrogate model solely uses temperature data as an inde-
pendent variable, there may be a limitation in capturing the complex 
mechanism of the whole ET process using the HS equation. In this 
context, a modest difference in the daily estimates of ETo may lead to a 
significant increase in the ETo bias when estimated at aggregated 
monthly and annual scales. In this case, the estimated ETo from a single- 
scale surrogate model can be difficult to use for water resource man-
agement. Therefore, our goal in this study was to develop a novel 
approach to the HS equation for a better fit for the ETo obtained from the 
FAO56-PM method at multi-scale context as discussed above. A 
Bayesian modeling framework is also employed for parameter estima-
tion. The proposed model was fit and tested using meteorological data 
obtained for the Han-River watershed in South Korea. 

To the best of our knowledge, simultaneous parameter estimation at 
multiple time scales (i.e., daily, monthly and annual scales) in a surro-
gate model for the ETo has not been properly explored in the literature. 
This study explores the following types of surrogate models in terms of 
estimating model parameters for improving the existing surrogate model 
for the ETo: 

Model–1: single-scale surrogate model using daily temperature data as a 
baseline model. 

Model–2: multi-scale surrogate model using daily and monthly tempera-
ture data. 

Model–3: multi-scale surrogate model using daily and annual tempera-
ture data. 

Model–4: multi-scale surrogate model using daily, monthly, and annual 
temperature data. 

Given the four different models, this study sought to explore the 
following questions by comparing the performance in terms of repro-
ducing the underlying characteristics of the ETo estimated from the 
FAO56-PM equation over the Han-river watershed in South Korea:  

(1) How effective is a locally recalibrated approach for the HS equation in 
terms of minimizing systematic error at different time scales? 

(2) Can the HS model coefficients for the local daily ETo be simulta-
neously estimated by considering aggregated ETo at multiple time 
scales?  

(3) Can a multi-scale surrogate modeling approach accurately reproduce 
the underlying distribution of the ETo at different time scales? 

This paper is organized as follows. This section provides a brief 
background and the main purpose of this study. In Section 2, the study 
area and data used in this study are provided. The methodology for 
multi-scale surrogate models within a Bayesian modeling framework is 
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described in Section 3. The results and discussion are presented with a 
comparison between models in Section 4, and the summary and con-
clusions for this study are finally given in Section 5. 

2. Study area and meteorological data 

This study was carried out on the basis of 17 ASOS (automated 
synoptic observing service) stations operated by the KMA (Korea 
Meteorological Administration) over the Han-River basin in South 
Korea. The daily solar radiation, air temperature (i.e., average, 
maximum and minimum temperature), humidity, and wind speed data 
were collected from ASOS stations through the website https://data. 
kma.go.kr. The ETo was then obtained from the FAO56-PM method 
using a set of meteorological data listed above. The Han River is a major 
river in South Korea, which originates from the North and South Han 
rivers in the central part of the Korean peninsula (latitude 

36◦30’–38◦55’N, longitude 126◦24’–129◦02’E) and flows through the 
capital Seoul. The basin area is about 25,594 km2, covering a quarter of 
the land area of South Korea. The Han River receives annual average 
precipitation of about 1253 mm, and approximately 71% of the annual 
precipitation occurs during the summer season from June to September 
(So et al., 2017). Fig. 1 illustrates the location of the ASOS stations over 
the Han River basin and the stations selected for the study are described 
in Table 1. 

3. Methodology 

Among the temperature-based models for the ETo, the HS equation 
was considered as a surrogate model for the FAO56-PM method. The 
parameters of the HS equation were estimated through a Bayesian the-
ory to improve inference and better handle uncertainties in model pa-
rameters. The optimal model and its performance evaluation were 

Fig. 1. Location of the Han River basin in the Korean Peninsula (left panel) and KMA weather stations (right panel).  

Table 1 
Weather stations in the Han River basin.  

No. Station ID Station Name Latitude (◦) Longitude (◦) Elevation (m) Dataset length 

1 100 Daegwallyeong 37.6771 128.7183 772.43 1971–2020 
2 101 Chuncheon 37.9026 127.7357 75.82 1966–2020 
3 108 Seoul 37.5714 126.9658 85.67 1961–2020 
4 112 Incheon 37.4777 126.6249 68.99 1961–2020 
5 114 Wonju 37.3375 127.9466 150.11 1973–2020 
6 119 Suwon 37.2575 126.983 39.81 1964–2020 
7 127 Chungju 36.9705 127.9525 114.85 1973–2020 
8 131 Cheongju 36.6392 127.4407 58.7 1967–2020 
9 201 Ganghwa 37.7074 126.4463 47.84 1973–2020 
10 202 Yangpyeong 37.4886 127.4945 47.26 1973–2020 
11 203 Icheon 37.264 127.4842 80.09 1973–2020 
12 211 Inje 38.0599 128.1671 201.78 1973–2020 
13 212 Hongcheon 37.6836 127.8804 140.2 1973–2020 
14 221 Jecheon 37.1593 128.1943 264.62 1973–2020 
15 226 Boeun 36.4876 127.7342 171.31 1973–2020 
16 272 Yeongju 36.8718 128.5169 211.32 1973–2020 
17 273 Mungyeong 36.6273 128.1488 173.01 1973–2020  
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carried out using the deviance information criterion (DIC) value within a 
Hierarchical Bayesian modeling framework. A detailed procedure of the 
modeling process for the multi-scale surrogate model for ETo is illus-
trated in Fig. 2. As seen in Fig. 1, the ETo was obtained using the 
meteorological data in the Han River basin as input to both the FAO56- 
PM method and the traditional HS equation with fixed coefficients. 
Here, the ETo estimated by the FAO56-PM method (EToPM) was used for 
locally recalibrating the HS equation. In a regression framework, the 
EToPM can be regarded as a dependent variable. In this study, the sur-
rogate models can be classified as single-scale and multi-scale models in 
terms of temporal scale. In the final step, the results obtained from the 
different models are then demonstrated through goodness-of-fit mea-
sures and are compared with ETo PM and ETo HG(traditional). 

3.1. Evapotranspiration equations 

The evapotranspiration equations for estimating the ET (i.e., ETo and 
ETp) were empirically derived by considering physical relationships 
between ET and meteorological input variables. Xiang et al. (2020) 
provided details on the concepts, equations, and applications of refer-
ence evapotranspiration (ETo) and potential evapotranspiration (ETp). 
The ETp equations can be categorized into four groups based on key 
concepts and variables: (i) Dalton, (ii) temperature, (iii) radiation, and 
(iv) combination. Similarly, the ETo equations can be categorized into 
four types: (i) temperature, (ii) radiation, (iii) pan evaporation, and (iv) 
combination (Xiang et al., 2020). Various approaches to ETo have been 
widely applied in the field of hydrology, including FAO56 
Penman-Monteith (Allen et al., 1998), Hargreaves (Hargreaves and 
Samani, 1985, 1982), ASCE PM (Allen et al., 2005). This study mainly 
utilizes the physically-based FAO56-PM method and the 
temperature-based HS equation as a surrogate model for the FAO56-PM 
estimates. 

3.1.1. FAO56-Penman Monteith methods 
The FAO56-PM method has been demonstrated in many studies, and 

many institutions have recommended it as a representative approach for 
estimating the ETo. The FAO56-PM is a physics-based ET estimation 
method informed by various meteorological factors (i.e., temperature, 
relative humidity, solar radiation, wind speed, etc.), and it can be 
written as follows: 

ETo PM =
0.408△(Rn − G) + γ 900

T+273u2(es − ea)

Δ + γ(1 + 0.34u2)
(1)  

where ETo is the reference evapotranspiration (mm/day), Rn is the net 
radiation (MJ/m2/day), G is the soil heat flux density (MJ/m2/day), T is 

the mean daily air temperature at 2 m height (℃), u2 is the wind speed 
at 2 m height (m/s), es is the saturation vapor pressure (kPa), ea is the 
actual vapor pressure (kPa), es − ea is the saturation vapor pressure 
deficit (kPa), Δ is the slope vapor pressure curve (kPa/℃), and finally, 
the γ is the psychrometric constant (kPa/℃) (Allen et al., 1998; Zotarelli 
et al., 2010). 

3.1.2. Hargreaves-Samani equation 
Hargreaves and Samani (1985) proposed the HS equation, which is 

based mainly on temperature, for the estimation of ET. The HS equation 
consists of four terms, the maximum temperature (Tmax), minimum 
temperature (Tmin), average temperature, and radiant energy: 

ETo HS(traditional) = 0.0023⋅RA (T℃+ 17.8) TR0.50 (2)  

where RA is the extraterrestrial radiation in mm/day, TR is the tem-
perature range (or difference) between the maximum and minimum 
temperature in ℃, and T is the average temperature in ℃. There are 
three fixed parameters to define the relationship between the ETo and 
the extraterrestrial radiation RA and air temperature T. Hargreaves 
(1994) presented radiant energy according to latitude and month. Allen 
et al. (1998) recommended the HS equation as an alternative method 
when the input data of the FAO56-PM method is insufficient. 

Since only observed temperature data are required, the HS equation 
has been widely used for estimating and predicting ETo in worldwide 
locations where the FAO56-PM method is not feasible due to insufficient 
and unreliable meteorological data (Hargreaves and Allen, 2003). It is 
also desirable to calibrate (or re-estimate) the associated parameters in 
Eq. (2) for the specific region of interest (Lee and Park, 2008; Moon 
et al., 2013), as the evapotranspiration might be influenced by 
geographical features and local characteristics (e.g., land use, altitude 
and so on). 

The HS equation is generally calibrated using daily data, which 
might be insufficient to reproduce underlying characteristics at aggre-
gated time scales (i.e., monthly and annual scales) as the parameter 
estimates are subject to the daily variations of the input meteorological 
data. Moreover, the most common approach to estimating the regression 
coefficients is the least square method, where parameter uncertainties 
may not be sufficiently addressed. In this regard, this study offers a 
model within a Bayesian inference modeling framework to better 
quantify the uncertainty associated with parameters in the HS equation. 
The Bayesian approach to the HS equation is presented in the following 
section. 

Fig. 2. A flowchart for the proposed modeling framework.  
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3.2. Bayesian approach to the HS equation 

The Bayesian inference is a statistical tool to update the model pa-
rameters with observed data from a prior distribution p(θ) to the pos-
terior distribution p(θ|y) (Gelman et al., 2004). The Bayesian inference, 
which presents the parameters in the form of a probability distribution, 
can be used to quantitatively evaluate the uncertainty associated with 
the model parameters. To make probability statements about parameter 
θ given data y, a joint probability distribution p(θ, y) for θ and y is used. 
The joint probability density function can be written as a product of two 
probability densities that are often referred to as the prior distribution 
p(θ) and the likelihood p(y|θ): 

p(θ, y) = p(θ)p(y|θ) (3) 

The posterior distribution p(θ|y) can be defined as a conditional 
distribution by adopting Bayes’ rule (Gelman et al., 2004), given a prior 
distribution p(y) and a likelihood p(y|θ), with observations y: 

p(θ|y) =
p(θ, y)
p(y)

=
p(θ)p(y|θ)

p(y)
(4) 

A general form of the HS equation-based surrogated model for esti-
mating evapotranspiration can be found in Eq. (5). There are three pa-
rameters to be estimated with the observed temperature and the ETo 

obtained from the FAO-56 PM method. Several publications have pre-
sented improved parameters for HS equation in the different climatic 
zone (Gavilán et al., 2006; Martínez-Cob and Tejero-Juste, 2004; Raziei 
and Pereira, 2013; Todorovic et al., 2013; Yang et al., 2021). Among 
many others, the parameters suggested in the traditional HS equation 
(Hargreaves and Samani, 1985) are 0.0023, 17.8 and 0.5 for α, β and γ, 
respectively: 

ETo HS = α⋅RA × (T + β) × (Tmax − Tmin)
γ (5) 

The Bayesian information criterion (BIC) is used to select the best- 
fitted distribution among various probability distributions. In this 
study, the ETo follows a lognormal distribution (LN) with mean μ and 
standard deviation σ, as shown in Eq. (6). The BIC values for each dis-
tribution is illustrated in the supplementary material (Table S1). The 
models with lower BIC are generally preferred. In Eq. (7), yday

obs(i,j,k) de-
notes the ETo value (i.e., EToPM) for the day i, month j, and year k, esti-
mated from the FAO56-PM method, and it is assumed to be a log-normal 
distribution with a mean of μday(i,j,k) and standard deviation of σ. Here, 
the mean μday(i,j,k) is a function of the temperature range between the 
maximum and minimum temperature and the average temperature T. In 
Bayesian inference, it is critical to choose a reasonable prior distribution 
for parameters. When sufficient data is available but prior information 
about parameters is weak, a non-informative prior distribution can be 
used. The prior distributions of each parameter (i.e., α,β,γ,σ) are defined 
in Eqs. 8 to 11. The α, β and γ represent parameters of the HS equation to 
be estimated with prior distributions (e.g., normal distribution (N) and 
gamma distribution (Γ)). Sufficient data (i.e., 40-year*365 days =
14,600 days) are available to estimate the four parameters. Further-
more, one can adopt non-informative prior distributions for the pa-
rameters, as proposed in (Gelman et al., 2004), considering our vague 
information about the parameters. 

LN(μ, σ) ∼ 1
yσ

̅̅̅̅̅̅
2π

√ exp

{

−
(log(y) − μ )

2

2σ2

}

(6)  

yday
obs(i,j,k) ∼ LN(μday(i,j,k), σ2), i = 1,…, I(j), j = 1,…, 12, k = 1,…,N (7a)  

μday(i,j,k) = α⋅RA(j) ×
(
T(i,j,k) + β

)
× (Tmax(i,j,k) − Tmin(i,j,k))

γ (7b)  

α ∼ N(0, 106) (8)  

β ∼ N(0, 106)|(Tmin,∼) (9)  

γ ∼ Γ(0.01, 0.01) (10)  

σ ∼ Γ(0.1, 1) (11)  

where, I(j) represents the number of days in month j. 
At some stations, the relatively low daily average temperature can 

lead to a negative term (Tt + β) in Eq. 5, resulting in a negative ETo. In 
this regard, as shown in Eq. 9, this study adopts a truncated normal 
distribution for the parameter β to be sampled from a constraint on the 
daily minimum temperature (Tmin). The joint posterior distribution of 
the set of parameters θ = [α, β, γ, σ] can be formulated as the product of 
the likelihood (Eq. 12) and priors as shown in Eq. 13: 

p(Y|θ) =
∏N

k=1

∏12

j=1

∏I(j)

i=1
LN
(

μday(i,j,k);α RA(j) ×
(
T(i,j,k) + β

)

×
(
Tmax(i,j,k) − Tmin(i,j,k)

)γ
, σ2

)
(12)  

p(θ|Y)∝p(Y|θ)⋅N(α|0, 106)⋅N(β|0, 106)|(Tmin,∼)⋅Γ(γ|0.01, 0.01)⋅Γ(σ|0.1, 1)
(13) 

Here, the surrogate model with the use of daily ETo is referred to as a 
single-scale model that is a reference model for comparison with the 
multi-scale models developed in this study. The set of parameters θ are 
estimated by maximizing the joint posterior distribution, as illustrated in 
Eq. 13, through the Gibbs sampling approach (Gilkst et al., 1995; Kim 
et al., 2015; Kwon et al., 2008; Lima et al., 2018; So et al., 2017), which 
is a special case of the Markov Chain Monte Carlo (MCMC) approach. 
The primary competitive advantage of Gibbs sampling is that it can 
provide an efficient way to deal with multidimensional data of the 
complex problem compared to other approaches such as the 
Metropolis-Hastings (MH) algorithm. 

3.3. Multi-scale Surrogate model 

The main purpose of this study is to improve the accuracy of ETo 

estimation at multiple temporal scales (i.e., daily, monthly, and annual) 
by recalibrating the single-scale model and its extension to the multi- 
scale model. More specifically, the multi-scale model is designed to 
better reproduce the ETo across different temporal scales by simulta-
neously maximizing the likelihood function associated with the ETo at 
multiple temporal scales. The proposed surrogate models for the ETo can 
be classified into 4 models based on the different combinations of 
temporal scales, as summarized in Table 2. 

The key step of this study is to simultaneously maximize the likeli-
hood functions of daily, monthly and annual ETo (as written in Eqs. 14a- 
14c) in a model of the multi-scale model by sequentially summing the 
monthly and annual evapotranspiration from the estimated daily ETo, as 
illustrated in Eqs. 15a-15c, respectively. More specifically, the monthly 
and annual ETo (i.e., ymonth

obs(j,k), yyear
obs(k)) are assumed to follow a lognormal 

distribution with the summed ETo as the mean (μmonth(j,k), μyear(k)) and 
standard deviation (σmonth, σyear) (Eqs. 14b, 14c). The multi-scale models 

Table 2 
Four types of experimental models considered in the study.   

Model- 
1 

Model-2 Model-3 Model-4 

Input data Daily Daily, 
Monthly 

Daily, 
Annual 

Daily, 
Monthly, 
Annual 

Parameters α,β, γ,σ α,β, γ,σday,

σmonth 

α,β, γ,σday,

σyear 

α,β, γ, σday ,σmonth,

σyear 

Number of 
parameters 

4 5 5 6  
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have a different number of parameters according to the temporal scales 
considered in each model, as illustrated in Table 2. More specifically, the 
multi-scale models consider daily, monthly and annual ETo when esti-
mating a set of parameters by simultaneously maximizing likelihood 
functions at three different temporal scales in an integrated manner, as 
summarized in Eqs. 14a-14c. The prior distributions for regression pa-
rameters (α, β and γ), including the standard deviation (σday, σmonth, σyear) 
of the lognormal distribution at each temporal scale can be defined as 
Eqs. 16 to 21. Like the single scale model represented in the previous 
section, there are sufficient data to estimate the regression parameters 
for the mean and standard deviation of the lognormal distribution. Thus, 
non-informative prior distributions for the parameters were considered 
as proposed in (Gelman et al., 2004). More specifically, normal prior 
distributions (N) were used for the regression parameters α, β while the 
Gamma prior distribution (Γ)) was adopted for the parameter γ. For the 
standard deviation (σday, σmonth, σyear) of the lognormal distribution, the 
Gamma prior distribution (Γ) which is a conjugate distribution of the 
lognormal distribution, was used. The conjugate prior distribution is the 
case that the prior and posterior distributions are in the same probability 
distribution family, leading to a computational advantage in the process 
of the parameter estimation (Gelman et al., 2004). 

yday
obs(i,j,k) ∼ LN

(
μday(i,j,k), σday

2
)
, i = 1,…, I(j), j = 1,…, 12, k = 1,…,N

(14a)  

ymonth
obs(j,k) ∼ LN

(
μmonth(j,k), σmonth

2
)
, j = 1,…, 12, k = 1,…,N (14b)  

yyear
obs(k) ∼ LN

(
μyear(k), σyear

2
)
, k = 1,…,N (14c)  

μday(i,j,k) = α⋅RA(j) ×
(
T(i,j,k) + β

)
× (Tmax(i,j,k) − Tmin(i,j,k))

γ
, i = 1,…, I(j), j

= 1,…, 12, k = 1,…,N
(15a)  

μmonth(j,k) =
∑N

k=1

∑12

j=1

∑I(j)

i=1
μday(i,j,k), j = 1,…, 12, k = 1,…,N (15b)  

μyear(k) =
∑N

k=1

∑12

j=1
μmonth(j,k), k = 1,…,N (15c)  

α ∼ N(0, 106) (16)  

β ∼ N(0, 106)|(Tmin,∼) (17)  

γ ∼ Γ(0.01, 0.01) (18)  

σday ∼ Γ(0.1, 1) (19)  

σmonth ∼ Γ(0.1, 1) (20)  

σyear ∼ Γ(0.1, 1) (21) 

Among the multi-scale models, the likelihood function and joint 
posterior distribution for Model-4 are expressed as Eqs. 22 and 23 using 
Bayes’ rule, respectively. 

p(y|θ) =
∏N

k=1

∏12

j=1

∏I(j)

i=1
LN
(

μday(i,j,k); α⋅RA(j) ×
(
T(i,j,k) + β

)

×
(
Tmax(i,j,k) − Tmin(i,j,k)

)γ
, σday

2
)
× LN

(

μmonth(j,k);
∑N

k=1

∑12

j=1

×
∑I(j)

i=1
μday(i,j,k), σmonth

2

)

× LN

(

μyear(k);
∑N

k=1

∑12

j=1
μmonth(j,k), σyear

2

)

(22)  

p(θ|y)∝
∏N

k=1

∏12

j=1

∏I(j)

i=1
LN
(

μday(i,j,k);α⋅RA(j) ×
(
T(i,j,k) + β

)

×
(
Tmax(i,j,k) − Tmin(i,j,k)

)γ
, σday

2
)
× LN

(

μmonth(j,k);
∑N

k=1

∑12

j=1

×
∑I(j)

i=1
μday(i,j,k), σmonth

2

)

× LN

(

μyear(k);
∑N

k=1

×
∑12

j=1
μmonth(j,k), σyear

2

)

⋅N(α|0, 106)⋅N(β|0, 106)|(Tmin,

∼)⋅Γ(γ|0.01, 0.01)⋅Γ(σday|0.1, 1)⋅Γ(σmonth|0.1, 1)⋅Γ(σyear |0.1, 1) (23) 

Here, the deviance information criterion (DIC) was used to explore 
the model performance. The DIC value was computed to measure the 
fitness of a candidate model for a given datum by penalizing the fitness 
of the model for model complexity defined by the effective number of 
parameters. In other words, overfitting may occur as the number of 
parameters increases, so that DIC gives a penalty for the number of 
parameters. DIC is used to determine the best model among competing 
models in Bayesian inference, where the posterior distribution of the 
model is obtained through the MCMC method. 

D(θ) = − 2log(p(y|θ)) (24)  

pD = D(θ) − D(θ) (25)  

DIC = pD + D(θ) (26) 

The deviance D(θ) expressed in Eq. 24 is calculated by multiplying 
the log-likelihood by − 2 and using the posterior mean of the parameters. 
pD means the effective number of parameters that are calculated as Eq. 
25. DIC is calculated as the sum of D(θ) and pD as in Eq. 26. The smaller 
value in the DIC value confirmed the improved performance. 

3.4. Goodness-of-fit measures for model validation 

Statistical goodness-of-fit measures (GoF) were used to evaluate the 
ETo estimated through the models during the calibration and validation 
processes. Here, the estimated EToPM obtained from the FAO56-PM 
method approach is used to validate the estimated EToHS(traditional) (i.e., 
traditional regression coefficients in HS equation) and simu-
lated EToModel (i.e., recalibrated regression coefficients). The model 
performance during the calibration and validation phase was measured 
using the correlation coefficient (CC) – representing the degree of a 
linear relationship between observed (O) and simulated (S) values. A 
stronger relationship was obtained as CC approaches 1. Model perfor-
mance was also measured using the root mean square error (RMSE) – a 
value representing the difference between the observed and the esti-
mated values. RMSE values closer to zero indicate the good fitness of the 
model. The third metric to gage model performance was the index of 
agreement (IoA) – a standardized value of the degree of error in model 
predictions. An IoA of 1 indicates perfect agreement. The fourth GoF 
indicator is the percentage bias. The percentage bias can show under- or 
over-estimation for the model results. Eqs. 27 to 30 show the statistical 
indicators considered in this study. 

CC =

∑N

i=1
(Si − S)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Si − S)2∑N

i=1
(Oi − O)

2

√ (27)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Si − Oi)

2

√
√
√
√ (28)  
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IoA = 1 −

∑N

i=1
|Oi − Si|

i

∑N

i=1
|Si − O| + |Oi − Si|

i
(29)  

Percentage Bias =

∑N

i=1
(Si − Oi)

∑N

i=1
(Oi)

× 100 (30) 

The daily, monthly, and annual ETo obtained from both the tradi-
tional HS equation and calibrated models through the re- 
parameterization process were compared with the ETo data obtained 
from the FAO56-PM method. The periods selected for calibration and 
validation were 1973–2010 and 2011–2020, respectively. The model 
validation was conducted in the out-of-sample period where data were 
not used in the calibration process. 

4. Results 

In this section, results from the multi-scale model are compared with 
EToPM calculated by the FAO56-PM method at different time scales. As 
indicated, the DIC values for each model can be the benchmark for 
choosing the optimal model. The multi-scale models are fully compared 
to both the single-scale model and the traditional HS equation for the 
calibration and validation phase in the context of cross-validation. 

4.1. Model comparison based on DIC values 

To statistically examine the effectiveness of multi-scale models 
considering multiple temporal scales accounting for model performance 
and model complexity, DIC values are computed for the four types of 
models fit in each gauge station (Fig. 3). The proposed multi-scale 
models (Model-2, Model-3 and Model-4) outperform the single-scale 
model in terms of model fitness based on the DIC value. Model-3, 
which simultaneously includes the evapotranspiration series at daily 
and annual scales in estimating model parameters, can be more effective 
than Model-2 considering the evapotranspiration series at daily and 
monthly scales. The DIC value for Model-4, including evapotranspira-
tion at three temporal scales (i.e., daily, monthly and annual ETo), for all 
stations, is the smallest, making it the superior model compared to the 
others. 

4.2. Model performance comparison 

The mean of estimated parameters for the superior model (i.e., 
Model-4) are summarized in Table 3 as a representative model. More-
over, the posterior distributions of regression parameters (Model-4) for 
all stations can be found in supplementary material (Table S2). The 
regression parameters (α,β, γ) and the standard deviations (σday, σmonth, 
σyear) are in the ranges 0.0015–0.0028, 19.3–36, 0.25–0.49, 
0.2229–0.3085, 0.0801–0.1359, and 0.037–0.0567, respectively, as 
obtained from the posterior distribution. The estimated parameters β 
and γ showed distinctive parameter space from that of the traditional HS 
equation (e.g., 17.8 and 0.50 for β and γ), while the parameter α is 
comparable to that of the traditional HS equation (α = 0.0023) as pro-
posed by (Hargreaves and Samani, 1985). In addition, the credible in-
tervals can be presented from the posterior distributions of regression 
parameters. The credible interval of models was obtained by simulating 
the ETo with parameters of the posterior distributions and demonstrated 
as the boxplots in the supplemental material (Fig. S1). 

In this section, we describe the results of the optimal multi-scale 
model (Model-4) with a systematic comparison of the existing tradi-

Fig. 3. Comparison of deviance information criterion (DIC) values for four models defined in Table 2 over all the stations. The DIC values are shown along the y-axis, 
while the number on the x-axis shows the gauge station ID, as summarized in Table 1. The green-filled triangles are DIC values of the single-scale model (Model-1), 
while the magenta, cyan, and blue-filled triangles represent those of multi-scale models (Model-2, Model-3 and Model-4), respectively. The DIC value for Model-4, 
including evapotranspiration at three temporal scales (i.e., daily, monthly and annual ETo), is the smallest for all gauge stations. 

Table 3 
The mean of estimated regression parameters and standard deviation for Model- 
4, including evapotranspiration series at three temporal scales, during the cali-
bration process.  

Station No. Regression Parameters and Standard Deviation 

α β γ σday σmonth σyear 

100 0.0020 33.2 0.34 0.3085 0.1359 0.0516 
101 0.0020 20.4 0.43 0.2558 0.0969 0.0414 
108 0.0016 32.3 0.49 0.2229 0.0801 0.0541 
112 0.0026 36.0 0.25 0.2548 0.0913 0.0466 
114 0.0021 20.6 0.40 0.2435 0.1137 0.0567 
119 0.0028 20.3 0.30 0.2540 0.0976 0.0393 
127 0.0024 19.8 0.36 0.2455 0.1156 0.0395 
131 0.0028 19.3 0.33 0.2376 0.0957 0.0417 
201 0.0026 21.1 0.34 0.2577 0.0975 0.0450 
202 0.0023 23.4 0.34 0.2657 0.1105 0.0442 
203 0.0025 19.3 0.36 0.2479 0.1130 0.0448 
211 0.0024 22.2 0.36 0.2342 0.0966 0.0412 
212 0.0023 20.7 0.36 0.2340 0.1167 0.0370 
221 0.0024 20.6 0.35 0.2493 0.1059 0.0542 
226 0.0027 19.7 0.32 0.2364 0.1081 0.0453 
272 0.0020 34.3 0.33 0.2976 0.1154 0.0372 
273 0.0015 31.0 0.48 0.2692 0.1058 0.0408  
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Fig. 4. Comparison of daily averaged ETo values over the calibration (1973–2010) and validation (2011–2020) periods from different models for 8 stations (i.e., ST. 
Nos. 101, 127, 201, 202, 203, 212, 226 and 272). The daily averaged ETo values from FAO56-PM (solid red line), traditional HS equation (solid black line), Model-1 
(single-scale, solid green line), and Model-4 (multi-scale, blue solid line) are compared. The biases, representing difference values between evapotranspiration 
FAO56-PM and proposed models (Model-1 and Model-4), are shown as the orange (Model-1) and sky-blue (Model-4) bars. 
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tional HS equation and single-scale model (Model-1). The estimated 
daily average ETo series was obtained from the traditional HS equation, 
single-scale model, and multi-scale model in representative stations of 
the study area. These are presented for a comparison with the FAO56- 
PM in Fig. 4. The effectiveness of the recalibration process for the HS 
equation as an intervention was confirmed through the distinctive dif-
ference in the bias between EToHS(traditional) (i.e., black solid line) and 
ETo single− scale (i.e., green solid line) for the calibration and validation 

phases, as shown in Fig. 4. Parameter recalibration is clearly desirable to 
effectively capture the geographical impact on the estimation of 
evapotranspiration in a specific region of interest. Similarly, the effec-
tiveness of the multi-scale model can be explained by the noticeable 
reduction in the bias between ETo single− scale (i.e., solid green line) and 
ETo multi− scale (i.e., solid blue line), especially during the summer season 
for both the calibration and validation phase. 

To be more specific, ETo HS(traditional) (i.e., solid black line), which uses 

Fig. 4. (continued). 
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Fig. 5. Comparison of monthly aggregated ETo values over the calibration (1973–2010) and validation (2011–2020) periods from different models for 8 stations (i.e., 
ST. Nos. 101, 127, 201, 202, 203, 212, 226 and 272). The monthly averaged ETo values from FAO56-PM (red-solid line), traditional HS equation (black solid line), 
Model-1 (single-scale, green solid line) and Model-4 (multi-scale, blue solid line) are compared. The bias values, representing difference values between evapo-
transpiration FAO56-PM and proposed models (Model-1 and Model-4), are shown as the orange (Model-1) and sky-blue (Model-4) bars. 
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the fixed parameters without recalibration, clearly leads to an over-
estimation at a daily timescale over all the stations. The single-scale 
model (ETo single− scale, solid green line) reproduces the ETo PM (i.e., solid 
red line) fairly well during the dry season, while it fails to provide an 
accurate estimation during the wet season. In contrast, the multi-scale 
model (ETo multi− scale, solid blue line) offers an accurate approximation 
to the ETo PM compared to the single-scale model at a daily timescale. 
Further, the aggregated monthly results over the entire period demon-
strate a clear difference in model bias for both the calibration and 

validation phase, as shown in Fig. 5. As already demonstrated in the 
daily timescale, the monthly average value (ETo HS(traditional), solid black 
line) obtained from the traditional HS equation showed a tendency to 
systematically overestimate at a monthly timescale for all stations and 
years. Overall, the multi-scale model results (ETo multi− scale, solid blue 
line) present a more accurate estimation of the reference evapotrans-
piration compared to those of the single-scale. It was also observed that 
estimated ETo shows a strong decreasing tendency during the monsoon 
period, especially in July. The boxplot in Fig. 5 represents the entire 

Fig. 5. (continued). 
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range of ETo PM obtained from the entire period for each month, and the 
range becomes larger during the spring and summer season, resulting in 
a relatively larger bias in that season while being smaller during the 
winter season. More specifically, the bias of the multi-scale model can be 
more extensive in spring and summer due to the higher variability in 
temperature and precipitation. The enhancement of the efficacy of the 

recalibration process at multiple temporal scales can be more easily 
explained and justified through a scatter plot representing the correla-
tion with monthly ETo PM, as illustrated in Fig. 6. 

Finally, the aggregated annual ETo time series over the entire period 
are illustrated in Fig. 7 for both the calibration and validation phase. The 
multi-scale model for estimating annual ETo shows similar efficacy and 

Fig. 6. Scatter plots on monthly ETo results over the calibration (1973–2010) and validation (2011–2020) period from different models for 8 stations (i.e., ST. Nos. 
101, 127, 201, 202, 203, 212, 226 and 272). The relationship between monthly ETo PM and the simulated ETo results obtained from the traditional HS equation 
(black-filled circles), Model-1 (single-scale model, the green-filled circles) and Model-4 (multi-scale model, blue-filled circles) are represented. 
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superior performance as its preceding temporal scales with respect to 
reduction in the bias but noticeable interannual variation due to climate 
variability. Although the temperature-based surrogate model for the 
estimation of the reference evapotranspiration has limitations in 
reproducing all the associated properties, the annual ETo multi− scale esti-
mated from the multi-scale model shows competitive performance 
compared to the traditional HS equation (ETo HS(traditional)) and the single- 
scale model (ETo single− scale). Moreover, we found that the multi-scale 
model demonstrates a high correlation between ETo multi− scale (blue fil-
led circle) and ETo PM, indicating that the recalibration of parameters at 
multiple temporal scales could be primarily responsible for the differ-
ences observed in the single-scale model (green filled circle) and the 
traditional HS equation (black filled circle), as illustrated in Fig. 8. 

4.3. Model validation with statistical GoF measures 

It has been acknowledged that daily ETo from the HS equation can be 
strongly affected by the large variabilities in temperature, wind and 
solar radiation, leading to an increase in bias. Thus, the smoothed ag-
gregation approach to the HS equation using five-day or longer climate 
variables has been recommended as an alternative method (Hargreaves 
and Allen, 2003). However, daily estimates are typically used to simu-
late daily long-term streamflow sequences through a continuous 
rainfall-runoff model. As noted, this study aims to reproduce the un-
derlying characteristics of the ETo across different temporal scales. In 
these contexts, the monthly and annual reference evapotranspiration 
estimates are evaluated using statistical GoF measures (i.e., CC, RMSE, 
IoA, percentage bias). Statistical GoF for the calibration (1973–2010) 

Fig. 6. (continued). 
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and validation (2011–2020) periods are evaluated in the Han River 
basin, as summarized in Fig. 9. 

The correlation coefficient (CC) for the monthly evapotranspiration 
ranges from 0.967 to 0.992 (from 0.976 to 0.994) for the traditional HS 
equation ETo HS(traditional) (black triangles), from 0.973 to 0.993 (from 
0.974 to 0.994) for the single-scale model ETo single− scale (green squares), 
and from 0.970 to 0.993 (from 0.972 to 0.994) for the multi-scale model 
ETo multi− scale (blue circles) describing the calibration period (or the 
validation period), respectively. As shown in Fig. 9, the range of the 
correlation coefficient is relatively narrow, and noticeable changes were 
not observed, although the traditional HS equation showed slightly 
better performance. It should be noted that the correlation coefficient is 
a statistical measure for evaluating a linear relationship, so one cannot 
expect an improvement within the recalibration (or bias correction) 
process (Kim et al., 2018b). On the other hand, both single-scale and 
multi-scale models demonstrate better performance in terms of the 
RMSE, representing a significant reduction in the RMSE. More specif-
ically, the RMSE for the monthly evapotranspiration ranges from 9.01 to 
25.65 mm/month (from 8.19 to 24.80) for the traditional HS equation 
ETo HS(traditional) (black triangles), from 6.13 to 9.29 mm/month (from 
7.28 to 12.51) for the single-scale model ETo single− scale (green squares) 
and from 5.39 to 7.98 mm/month (from 5.50 to 9.32) for the multi-scale 
model ETo multi− scale (blue circles) describing the calibration period (or 
the validation period), respectively. There is a significant increase in the 
degree of reduction in the RMSE to between 11% and 69%. In addition, 
the index of agreement (IoA) was evaluated, and a similar pattern 
observed in the RMSE was identified. Finally, the percentage bias for 
models (i.e., HS model, the single-scale and multi-scale model) can 
effectively represent under- and over-estimation of the simulation 

results. The results illustrated that ETo HS(traditional) (black triangles) was 
overestimated and ETo single− scale (green squares) was slightly under-
estimated. The ETo multi− scale (blue circles) was placed almost close to zero 
for the calibration and validation period. Further, the model perfor-
mance for the annual evapotranspiration was also explored. The corre-
lation coefficient for the annual evapotranspiration is the range of 
0.242–0.808 (0.408–0.970) for the traditional HS equation 
ETo HS(traditional) (black triangles), 0.134–0.805 (0.402–0.958) for the 
single-scale model ETo single− scale (green squares), and 0.217–0.796 
(0.436–0.957) for the multi-scale model ETo multi− scale (blue circles) 
describing the calibration period (or the validation period), respectively. 
As already demonstrated in the monthly evapotranspiration, the corre-
lation coefficient over the single- and multi-scale models was not 
significantly different for the annual scale. However, the RMSE for the 
annual evapotranspiration is in the range of 52.80–268.36 mm/year 
(53.38–257.76) for the traditional HS equation (black triangles), 
44.86–66.01 mm/year (22.35–117.31) for the single-scale model (green 
squares), and 28.05–50.34 mm/year (21.51–78.40) for the multi-scale 
model (blue circles) describing the calibration period (or the valida-
tion period), respectively. More importantly, there was a noticeable 
reduction in the RMSE that led to a decrease of about 15–81% for the 
calibration and validation periods. Additionally, the variability of RMSE 
results for models is presented by the boxplot in supplemental material 
(Fig. S2). As seen in Figure, the model performance of the multi-scale 
model is outperformed in all timescales. All the GoF results over all 
the stations for different time scales can be found in supplementary 
material (Table S3). 

Fig. 6. (continued). 
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Fig. 7. Comparison of annual ETo values over the calibration (1973–2010) and validation (2011–2020) period from different models for 8 stations (i.e., ST. Nos. 101, 
127, 201, 202, 203, 212, 226 and 272). The annual ETo values from FAO56-PM (red-solid line), traditional HS equation (solid black line), Model-1 (single-scale 
model, solid green line), and Model-4 (multi-scale model, solid blue line) are compared. The black dotted vertical line represents the reference year for dividing the 
calibration and validation period. 
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5. Summary and conclusions 

Existing studies have focused on recalibrating the parameters of the 
HS equation locally to improve the accuracy of the estimation of refer-
ence evapotranspiration using daily temperature data (Feng et al., 2017; 
Haslinger and Bartsch, 2016; Mehdizadeh et al., 2017; Mendicino and 
Senatore, 2013; Vanderlinden et al., 2004). The HS equation provides a 

systematic framework for the estimation of reference evapotranspiration 
in the simplest, most parsimonious manner as a surrogate model. 
However, there is likely to be a limitation in representing the complex 
mechanism of the evapotranspiration process using the HS equation, 
which solely uses temperature data as an independent variable. Under 
these circumstances, this study proposed a novel, multi-scale context (i. 
e., daily, monthly, and annual scales) approach to the HS equation for a 

Fig. 8. Scatter plots for annual ETo results over the calibration (1973–2010) and validation (2011–2020) period from different models for 8 stations (i.e., ST. Nos. 
101, 127, 201, 202, 203, 212, 226 and 272). The relationship between annual ETo PM and the simulated ETo results obtained from the traditional HS equation (black- 
filled circles), Model-1 (single-scale model, the green-filled circles) and Model-4 (multi-scale model, blue-filled circles) are represented. 
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better fit of the reference evapotranspiration obtained from the 
FAO56-PM method. The proposed models were evaluated using mete-
orological data for the Han-River watershed in South Korea. This study 
explored four types of surrogate models in terms of estimating model 
parameters for improving the existing HS equation for reference 
evapotranspiration. A Bayesian modeling framework for the inference of 
model parameters was further proposed. Among the models, the model 
performances were compared through the deviance information crite-
rion (DIC) with the single-scale model (Model-1) and the traditional HS 
equation that is based on fixed parameters. Finally, the models were 
evaluated by GoF measures during the calibration period (1973–2010) 
and validation period (2011–2020) in the cross-validation framework. 
The key findings from this study are as follows:  

(1) The HS equation with the fixed parameters without recalibration 
clearly leads to an overestimation of the reference ET for all 
stations. On one hand, the locally recalibrated approach to the HS 
equation at a daily temporal scale (i.e., single-scale model, 
Model-1) can effectively reduce the systematic bias associated 
with the use of the traditional HS equation with fixed parameters 
reflecting the geographical impact on the estimation of evapo-
transpiration in a specific region of interest. The single-scale 
model can reproduce the reference evapotranspiration fairly 
well during the dry season while failing to provide an accurate 
estimation, particularly during the wet season. On the other 
hand, the recalibrated HS model using only daily evapotranspi-
ration during the parameter estimation process is insufficient to 
reproduce the underlying distribution of evapotranspiration at 

Fig. 8. (continued). 
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different temporal scales (e.g., monthly and annual), which may 
lead to a large systematic bias in the rainfall-runoff modeling or 
assessment of climate change impact on water resources.  

(2) This study developed a novel approach to the HS equation to 
better reproduce the reference evapotranspiration across 
different temporal scales by simultaneously maximizing the 
likelihood function at multiple temporal scales within a Bayesian 
modeling framework. More specifically, the multi-scale model for 
the HS equation exploits multiple likelihood functions defined at 
three different temporal scales (i.e., daily, monthly and annual) 
in a model by sequentially summing the monthly and annual 
evapotranspiration from the estimated daily evapotranspiration. 
The regression parameters (α, β, γ) of the multi-scale model for 
the Model-4, including daily, monthly and annual evapotranspi-
ration series, were in the ranges of 0.0015–0.0028, 19.3–36, 
0.25–0.49, respectively, over all the stations. More importantly, 
the estimated parameters β and γ showed somewhat different 
parameter space from that of the traditional HS equation, while 
the parameter α was similar to that of the traditional HS equation.  

(3) The multi-scale model offered an accurate approximation to the 
reference evapotranspiration compared to the single-scale model 
at a daily timescale. Overall, the multi-scale model demonstrated 
a more precise estimation of the reference evapotranspiration at 
the aggregated temporal scales (i.e., monthly and annual) 
compared to those of the single-scale. The enhanced efficacy of 
the recalibration process at multiple temporal scales can be more 
easily explained and justified through GoF measures such as the 
RMSE and IoA. To be more specific, the multi-scale models 
showed a significant increase in the degree of reduction in the 
RMSE achieved by up to about 60% and 70% compared to that of 

the traditional HS equation for the monthly and annual evapo-
transpiration estimation, respectively. Moreover, a similar 
pattern observed in the RMSE was also identified for the index of 
agreement (IoA) measure.  

(4) The main limitation of this study is that the HS equation largely 
relies on the standard PM model, which requires a set of meteo-
rological data to estimate ETo that are not readily available in 
many countries. Data requirements for the standard PM model 
can hinder the use of the HS equation in a practical application. 
Meanwhile, the HS equation is still effective as a surrogate model 
to the standard PM model due to the advantages of accuracy, 
consistency, and parsimoniousness. Thus, a regionalization 
approach to the HS parameters can be alternatively introduced by 
considering the local climate conditions and topographical 
characteristics. 

To the best of our knowledge, this study is the first attempt to obtain 
a set of parameters of the HS equation for estimating evapotranspiration 
by simultaneously considering evapotranspiration at multiple time 
scales. The proposed model still shows limitations in reproducing the 
inherent characteristics of evapotranspiration during the summer sea-
son. This may be due to different responses to temperature in estimating 
evapotranspiration in the HS equation. This issue was not fully explored 
in the current study, and time-varying parameters on the basis of the 
seasonality of evapotranspiration will be investigated in future work. 
More formally, future work will focus on developing a regional surro-
gate model within a hierarchical Bayesian modeling framework to better 
characterize the spatio-temporal patterns of evapotranspiration. 

Fig. 8. (continued). 
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Fig. 9. Comparison of statistical GoF measures (i.e., CC, IoA, RMSE, Percentage Bias) for (a) the monthly, (b) annual scales over the calibration (1973–2010) and 
validation (2011–2020) period from different models for all stations. The GoF measures between ETo PM and the simulated ETo results obtained from the traditional 
HS equation (black-filled circles), Model-1 (single-scale model, the green-filled circles) and Model-4 (multi-scale model, blue-filled circles) are represented. Here, a 
percentage bias is given only on the monthly scale because the value of the annual scale is the same as the monthly scale. 
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