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"Police work wouldn’t be possible without coffee", Wallander said.

"No work would be possible without coffee."

They pondered the importance of coffee in silence.

(Henning Mankell, One Step Behind )

Karma police, arrest this man

He talks in maths

(Radiohead, Karma Police - OK Computer)
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Resumo Expandido

DOIS ENSAIOS SOBRE A MODELAGEM DA CURVA DE JUROS

[Introdução] Entender o comportamento das taxas de juro é essencial para a gestão macroe-

conômica e para as decisões dos investidores privados. A taxa de juros de curto prazo é definida

pela autoridade monetária de acordo com seus objetivos de política pública e essa taxa é obtida

por meio de operações de mercado aberto. O comportamento das taxas de juros pagas para

dívidas de prazo mais longo é influenciado pela taxa de curto prazo, mas esse é mais complexo

e depende das expectativas em relação ao comportamento futuro das taxas de curto prazo e da

inflação. A estrutura a termo das taxas de juros é a correspondência entre a maturidade de uma

dívida (tempo até o vencimento) e o nível das taxas de juros associado a mesma, e sua repres-

entação gráfica é denominada curva de rendimentos. Esta pode assumir diferentes formas, a

situação considerada normal é aquela em que as taxas de juros aumentam monotonamente com

a maturidade. Curvas invertidas, em "forma de S" e humped ocorrem quando o mercado espera

mudanças na taxa de curto prazo nos próximos meses ou anos. A dissertação avalia duas linhas

de análise estatística da curva de juros para o Brasil: a primeira preocupada com a interpolação

dos dados observados a cada dia para a estimação da curva completa, e a segunda preocupada

com a extrapolação de informações passadas da curva de juros. Muitas das aplicações da curva

de rendimentos dependem da relação entre maturidade e juros ser observável para todas as
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maturidades, o que não ocorre. Em cada dia útil são observadas apenas alguns pontos da curva

que correspondem aos títulos ou contratos futuros negociados naquele dia. Daí a relevância dos

exercícios implementados no segundo capítulo em que várias técnicas de interpolação são util-

izadas para obtenção da curva completa. Adicionalmente, a previsão da curva de rendimentos

é uma ferramenta essencial para a estruturação da dívida pública, para a condução da política

monetária, e para agentes privados que também emitem títulos de dívida ou compram os mes-

mos. Prever a curva de juros envolveria a modelagem das séries de juros de cada maturidade.

Uma forma alternativa, mais parcimoniosa, foi proposta para Diebold e Li (2006). Tal abor-

dagem é objeto do terceiro capítulo, comparando o desempenho desse modelo com técnicas

de previsão de referência. [Materiais e Métodos] Para as análises foram utilizados dados de

contratos futuros de taxas de juros (DI1) negociados no Brasil entre janeiro de 2018 e abril de

2023, totalizando 1313 dias úteis. Em cada dia são negociados em torno de 38 contratos de

diferentes maturidades. O segundo capítulo desenvolve uma análise comparativa de técnicas

de interpolação das taxas de juros que são estimadas em cada dia incluído na amostra. Os

modelos abordados neste capítulo são chamados empíricos, pois não impõem restrições deriva-

das de modelos teóricos (econômicos) de estrutura de termo durante o processo de estimação.

São considerados os modelos: regressão polinomial, modelos de spline, regressão de Kernel,

regressão local (Loess), modelo Nelson-Siegel estimado por mínimos quadrados e mínimos

quadrados não-lineares e extensões desse modelo (família Nelson-Siegel). Esses modelos são

avaliados em relação a: qualidade do ajuste, robustez (em relação a outliers), e suavidade. Para

a avaliação da qualidade do ajuste a cada dia é construído um conjunto de treinamento (in-

sample) e um conjunto de validação (out-of-sample). A performance no conjunto de validação

é o mais relevante para a avaliação dos modelos já que esse seria o problema típico subjacente

a estimação de curva de rendimentos. Para a avaliação da robustez, a curva de rendimentos

de cada dia da amostra é estimada duas vezes, uma com os dados originais e outra em que o

nível da taxa de juros de uma maturidade selecionada aleatoriamente foi modificada por uma

perturbação de mais ou menos, também definido aleatoriamente, 2%. Tanto para a avaliação da
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qualidade do ajuste quanto para a robustez são utilizadas as métricas de Erro Quadrático Médio

e Erro Médio Absoluto. Para a avaliação da suavidade são consideradas três métricas utilizadas

na literatura baseadas na segunda derivada das funções estimadas. O terceiro capítulo se vale

de estimativas dos parâmetros do modelo Nelson-Siegel feitas no segundo capítulo utilizando

mínimos quadrados ordinários e mínimos quadrados não-lineares para implementar o modelo

Diebold-Li. O filtro de Kalman é utilizado para avaliar a validade da interpretação dos parâ-

metros como variáveis latentes. As séries de estimativas são modeladas como três processos

autorregressivos separados e como um vetor autorregressivo para fins de previsão. Os parâ-

metros preditos são então utilizados para estimar o nível de juros em maturidades específicas

para avaliação da performance das previsões. Como modelos concorrentes são consideradas

as previsões de random-walk e o modelo de suavização exponencial de Holt-Winters. Para

avaliação da performance se utilizou a estratégia de “walk-forward validation”, considerando

um conjunto de treinamento inicial de 987 dias (75% da amostra). Destaca-se que o conjunto de

validação (de 3 de janeiro de 2022 até 20 de abril de 2023) abarca um período de mudanças con-

tínuas na forma da curva de rendimentos. Para a comparação dos diferentes modelos se utilizou

o teste de Diebold-Mariano, com a modificação proposta por Harvey e outros. [Resultados e

Considerações Finais] O segundo capítulo fez uma avaliação abrangente dos modelos de in-

terpolação para estimar a curva de juros. Além dos modelos normalmente considerados pela

literatura, foram considerados os modelos de regressão de Kernel e de regressão local (Loess)

até então não aplicados a esse tipo de problema. Foram consideradas três dimensões para a

comparação desses modelos, tanto na dimensão de qualidade do ajuste quanto na de robustez

o modelo Loess apresentou o melhor desempenho fora da amostra sendo que em algumas situ-

ações ele não tinha um desempenho estatisticamente diferente do modelo de smoothing splines.

Na dimensão relacionada a suavidade os modelos baseados em função (regressão polinomial e

família Nelson-Siegel) tiveram o melhor desempenho. Para a comparação dos modelos foi util-

izado o teste de comparações múltiplas, até então também não aplicado a esse tipo de problema.

O terceiro capítulo fez uma implementação do modelo Diebold-Li (alternativamente chamado

x



de Nelson-Siegel dinâmico) para a economia brasileira recente. O modelo dinâmico de Nelson-

Siegel teve um desempenho ruim em comparação com os resultados originais do Diebold and

Li (2006) e alguns exercícios anteriores usando dados brasileiros de outros períodos. Em muitos

casos, foi superado pela previsão de random-walk.

Palavras-chave: Estrutura de termo das taxas de juros, Curva de rendimentos, interpolação,

splines, previsão, teste de comparações múltiplas, modelo Nelson-Siegel, modelo Diebold-Li.
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Abstract

The dissertation undertakes two distinct lines of statistical analysis on the yield curve for Brazil:

the first involves the interpolation of daily observed data to estimate the complete curve. In

contrast, the second focuses on extrapolating past information to forecast the yield curve. These

analyses aim to model the behaviour of interest rates in Brazil, offering insights for improved

macroeconomic management and supporting investment decisions. The analysis utilizes data

from interest rate futures contracts traded in Brazil between January 2018 and April 2023.

The second chapter is dedicated to estimating empirical models of the Term Structure of

Interest Rates. Despite B3 periodically releasing yield curve estimates for monitoring the

Brazilian market, various estimation techniques are considered for alternative purposes due

to inherent trade-offs. The interest rate and maturity relationship holds for all terms, but daily

observations are limited to specific maturities corresponding to traded securities or derivat-

ives. Therefore, estimating the entire curve from these observed data points is crucial. This

chapter evaluates empirical models, which do not impose restrictions derived from theoretical

term structure models during the estimation process. These models are focused on obtain-

ing a smooth function from observed data while adhering to specific constraints, such as the

non-negativity of interest rates. The evaluation criteria include the quality of fit, robustness to

outliers, and smoothness of the estimated function. This chapter contributes to literature by

assessing models not previously applied to yield curve estimation and utilizing the multiple

comparison procedure. Results highlight the strong fit of spline models, emphasize the greater

smoothness of Nelson-Siegel family models, and recognize the noteworthy performance of the
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previously overlooked Loess model.

The third chapter delves into modelling the yield curve dynamics through a factor model

perspective to generate curve predictions. The analysis incorporates Brazilian data by imple-

menting the Nelson-Siegel Dynamic model proposed by Diebold and Li (2006) and further

developed in Diebold et al. (2006). Both original estimation procedures, two-step and one-step,

are considered, focusing on the latter using the Kalman filter. Out-of-sample predictive capacity

is assessed through the Diebold-Mariano test, comparing the performance of these implement-

ations against simpler models.

Keywords: Term Structure of Interest Rates, Yield Curve, interpolation, splines, forecast-

ing, multiple comparison test, Nelson-Siegel model, Diebold-Li model.
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Chapter 1

Introduction

1.1 Initial Considerations

Understanding the behaviour of interest rates is crucial for macroeconomic management and

private investors’ decision-making. In most countries, the monetary authority establishes a ref-

erence interest rate based on its policy objectives, such as stabilising inflation or managing ex-

change rates. Subsequently, it utilises open market operations to achieve the reference rate.

These operations encompass repurchase agreements ("repo") and reverse repurchase agree-

ments ("reverse repo"), which involve the purchase or sale of a bond today with a commitment

to sell or repurchase it the following day1. The slight price differential between the bought and

sold bonds implicitly defines the overnight interest rate, thereby allowing the monetary authority

to control short-term interest rates.

In Brazil, the National Monetary Council (Conselho Monetário Nacional - CNM) sets mon-

etary policy objectives, including inflation targets for the next few years2. Based on the inflation

1To provide an accurate description of repo and reverse repo operations, it is worth noting that these transactions
may involve spans of up to six months between the purchase and sale of the bond. However, one-day operations
are the most common in the context of short-term interest rate determination.

2At present, the CNM consists of three members: the Finance Minister, the Planning Minister, and the Central
Bank Governor. The CNM also has other responsibilities, such as determining the volume for various targeted
credit policies, though these aspects are not pertinent to the present discussion.
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target, the Brazilian Central Bank (BCB)’s Monetary Policy Committee (Copom)3 convenes

every 45 days to set the level of the Selic reference rate.

The term "Selic" stands for Special System for Settlement and Custody (Sistema Especial

de Liquidação e de Custódia). It is a system developed and managed by the BCB for trading

federal bonds in a dematerialised form. On a daily basis, as many financial agents engage in

securities trading through Selic, the BCB conducts repo and reverse repo operations within the

Selic system to maintain the interest rate around the level defined by the Copom.4

The Selic rate serves as the primary overnight rate in Brazil, although some overnight trans-

actions may occur at slightly different rates. In addition to dealing with bonds at the BCB, banks

perform short-term interbank borrowing operations using the Interbank Certificate of Deposit

(Certificado de Depósito Interbancário - CDI). These interbank operations are intended to en-

sure that no bank ends a working day with either a negative cash balance or an excess of funds.

The CDI rate represents the average rate of one-day interbank transactions conducted through

interbank certificates of deposits. While the BCB calculates the Selic rate, B3 calculates the

CDI rate.

As described earlier, the overnight interest rate is a product of daily transactions in the

money market, governed by central bank interventions. The impact of changes in the overnight

rate on long-term interest rates depends on how investors will adjust their portfolios. For in-

stance, when the overnight rate falls, bonds with slightly longer maturities (e.g. one month)

become more attractive as they offer higher interest rates for a modest increase in maturity.

This interest rate differential leads to increased demand for these bonds, driving up their prices

and reducing the interest rate for this maturity. This process subsequently recurs for longer ma-

turities. Nevertheless, due to the imperfect substitutability of bonds with different maturities,

the longer the maturity, the weaker the transmission of overnight rate changes. Consequently,

interest rates for longer terms (ranging from some months to several decades) exhibit more

3The Copom is comprised of BCB’s Board of Governors.
4The Selic rate is the average of rates used in all transactions conducted in the Selic system on a given day,

while the Selic reference rate is the target set by the Copom and pursued by the BCB.
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§1.1. INITIAL CONSIDERATIONS

intricate behaviour and are influenced by market expectations regarding the future behaviour of

overnight rates and inflation5.

In the long run, various debt instruments exhibit distinct characteristics, including default

risk, liquidity, taxation, and maturity, all of which affect the interest rates they bear. Default

risk pertains to the possibility that a debt issuer may fail to meet its outstanding obligations,

such as interest or the par value. For example, a company facing financial difficulties may cease

its interest payments6, and a financially distressed company may default on its debt altogether.

In contrast, government bonds are generally considered free of default risk. Therefore, when

assessing the appropriate interest rate for a bond with default risk, it is compared to the rate paid

by government bonds. As a result, investors demand a higher interest rate for a bond issued by

a private firm compared to what the government pays, and this disparity is known as the risk

premium. The more uncertain the solvency of the debt issuer, the higher the risk premium.

Liquidity refers to the ease with which an asset can be converted into cash. Investors value

liquidity because they may wish to pursue more profitable alternatives or rebalance their port-

folios should the bond they hold start to depreciate. Consequently, a liquidity premium is es-

tablished, with less liquid assets generally demanding higher interest rates. An asset’s liquidity

depends on the number of agents trading that asset and the frequency of transactions conducted

by these agents in each period. More agents and transactions result in higher liquidity for an

asset, and government bonds are typically the most liquid securities in the market.

Moreover, investors are concerned about the net (real) rate. Thus, the taxation of bond yields

influences the interest rate required to invest in a bond. In Brazil, fixed-income instruments are

subject to a standard taxation schedule, with rates declining from 22.5% (for maturities less

than 180 days) to 15% (for maturities exceeding 720 days), with some exceptions7. Therefore,

5"[...] the longer the relevant time horizon, the less can the authorities be regarded as in control.", Goodhart
(1989, p. 219).

6As an example, in April 2023, the electricity distribution company "Light" (LIGT3), which operates in the
state of Rio de Janeiro, suspended its debt payments, citing the need to rebalance its cash flow.

7An example of an exception is "debentures incentivadas," securities with special tax treatment intended to
promote investment in specific sectors, such as infrastructure. Lower taxation for investors implies that the security
issuer can offer a lower interest rate.
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in most cases, government and private bonds face the same taxation8.

Given the considerations regarding default risk, liquidity, and taxation, government bonds

are the ideal reference for evaluating medium- and long-term interest rates. Maturity, or term

to maturity, represents the time until a bond’s principal is repaid. Depending on the bond’s

characteristics, it may pay interest only at maturity alongside the principal (referred to as a

zero-coupon bond - ZCB), as depicted in Figure 1.1a, or it may provide intermediate interest

payments (coupons), as shown in Figure 1.1b.

Figure 1.1: Cash flows for Zero-Coupon Bond and Coupon Bond

2023 2024 2025 2026 2027

01 02 03 04 05

Market price

Face Value

(a) ZCB Cash Flow

2023 2024 2025 2026 2027

01 02 03 04 05

Market price

Coupon Coupon Coupon

Face Value + Coupon payment

(b) Coupon Bond Cash Flow

Obtaining the interest rate for a given maturity is straightforward with ZCB data. One

only needs to compare the repayment value (named face or par value, PT ) of a bond of the

desired maturity (m) with its current market price (Pt). After that, adjust for the time to ma-

turity (m = T − t) to obtain the interest rate per cent per year. This expression is called

yield-to-maturity. For calculation convenience, yield-to-maturity is often considered as com-

pounding interest continuously (ỹt) instead of yearly compounding (yt). There is a small but

non-negligible difference between the two quantities, as demonstrated in the annex, illustrating

how to derive one quantity from the other. The yield-to-maturity (yt or ỹt depending on the
8Although there are generally no tax distinctions between government and private bonds, there is a difference

in taxation based on the bond’s maturity. Short-term investments are subject to higher tax rates compared to long-
term investments. The regulation defines short-term investments as those with a redemption period of less than
365 days, while long-term investments have a redemption period exceeding this threshold (initially defined by
Instrução Normativa SRF nº 487, 30 December 2004, and presently established in Instrução Normativa SRF nº
1585, 31 August 2015). This fact complicates comparisons of the net return on bonds with different maturities.
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context) corresponds to the spot interest rate for a ZCB traded at time t, the reference date, that

matures at time T > t:

yt(m) =

(
PT

Pt

)1/m

− 1︸ ︷︷ ︸
yearly compounded

ỹt(m) =
ln
(

PT

Pt

)
m︸ ︷︷ ︸

continuously compounded

.

The term structure of interest rates is the mapping from time to maturity to ZCB interest

rates level: 3 months 7→ 2% per annum, 6 months 7→ 2.5% per annum. Therefore, since matur-

ities and interest rates are always positive, one can write:

yt : R+
0 → R+

0 .

The subscript t indicates that the term structure of interest rates evolves; each working day has

a different yield curve. Besides the yield-to-maturity (or spot rate) form, other related con-

cepts may express the term structure of interest rates. Instead, one could consider the discount

function:

dt(m) = e−ỹt(m)×m.

Considering a ZCB with face value of 1 monetary unit and maturity of m, dt(m) represents

the discount applied on the bond’s face value (PT = 1) such that it matches the bond’s current

market price (Pt). Otherwise, one could regard the implied forward rate f(t, t′, T ), which is

obtained from two ZCB with the same reference date (t), but different maturity dates (t′ and T ,

with t′ < T ). Considering interest continuously compounded (ỹt), one may write:

f(t, t′, T ) =
(T − t)× ỹt(m)− (t′ − t)× ỹt(t

′)

(T − t′)
.

The forward rate represents the rate for a debt starting in t′ and maturing in T implied by

5
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bond prices in t.

Interest rates in this context are often called yield, and the graphic representation of the term

structure of interest rates is called the yield curve. As shown in Figure 1.2, yield curve can

take different forms. The case in which interest rates monotonically increase with the time to

maturity is considered the "normal" scenario, with inverted, "S-shaped", and "humped" curves

occurring when the market expects changes in the short-run rate in the following months or

years.

Figure 1.2: Yield Curve shapes
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Source: Elaborated by the author using DI1 data from B3.

Besides the different shapes that yield curves can have, Mishkin (2000, p. 92-93) and

Diebold and Li (2006, p. 343) mention some stylised facts that should be taken into account

when modelling it:

• Typically, yield curves exhibit an upward slope (positive inclination) and concavity. There-

fore, this configuration is considered the normal shape for a yield curve.
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• Commonly, the short-term rate governs the form of the yield curve. If short-term rates are

low, one would expect a positive inclination. Conversely, when short-term rates are high,

one would expect a flat curve or a negative inclination (i.e. an inverted yield curve).

– The short end of the yield curve is more volatile than the long end.

– Long rates are more persistent than short rates.

• Interest rates for bonds with different maturities move together over time, i.e., a change

in the short-run rate happens concurrently with changes in the same direction (yet with

different magnitudes) by long-run rates.

• Yield dynamics are persistent, and spread9 dynamics are much less persistent.

Theories of the term structure

Various theories have attempted to explain the economic rationale behind yield curve shapes

and the empirical regularities mentioned earlier. However, no single theory comprehensively

accounts for all observed yield curve behaviours, and much of the empirical research on the term

structure pertains to testing these theories. Nonetheless, one can provide a concise overview of

the leading theories as follows:

• Expectation hypothesis: The expectation hypothesis posits that the interest rate for a

long-term debt (e.g., maturing in 10 years) equates to the average of short-term rates

(monthly or yearly) expected over this period. According to this theory, an investor would

be indifferent between purchasing and holding a ten-year bond until maturity or buying

and reinvesting in a one-year bond annually over ten years. Following Campbell and

Shiller (1991), the expectation hypothesis may be formally expressed as:

yt(n) =

(
1

k

k−1∑
i=0

Et [yt+mi(m)]

)
+ c, k = n/m ∈ Z. (1.1)

9The spread between the n-period rate and the m-period rate, with n > m is: st(n,m) = yt(n)− yt(m).

7



CHAPTER 1. INTRODUCTION §1.1. INITIAL CONSIDERATIONS

Here, yt(n) represents the yearly interest paid for a bond maturing in n years at period

t, and yt+mi(m) is the yearly interest for a shorter bond in subsequent periods. The term

c denotes an excess return that an n-period bond offers over an m-period bond and is

referred to as the term premium. This term premium may vary based on the difference

between these maturities (n − m) but is considered constant over time. In the context

of the pure expectation hypothesis, assuming c = 0, the explanation for a yield curve

with a normal shape would entail agents expecting short-term interest rates to rise in the

forthcoming periods.10

– Fisher effect : The Fisher effect pertains to the tendency for an increase in expected

inflation to lead to a rise in nominal interest rates, first proposed by Fisher (1930).

It can be approximated as i ≈ r + Et[π], which is an approximation of (1 + i) =

(1 + r)(1 + Et[π]), where i signifies the nominal interest rate, r represents the

real interest rate, and Et[π] denotes the expected inflation at period t. Utilising the

Fisher equation, it is possible to infer the market’s expectations about inflation by

comparing the yield-to-maturity of inflation-indexed and nominal bonds (Valentim,

2022).

• Liquidity preference: The liquidity preference hypothesis asserts that investors prefer

to convert their investments into cash sooner, demonstrating a preference for liquidity.

Consequently, they would demand a higher yield – a liquidity premium – to hold long-

term bonds rather than short-term bonds. This liquidity premium accounts for the inflation

and interest rate risks associated with long-term bonds. If inflation or overnight interest

rates rise, the value of a long-term bond would be more affected than that of a short-term

bond. This hypothesis was initially proposed by Hicks (1946) and evolved from Keynes’

liquidity preference theory. Formally, the liquidity preference hypothesis implies c ̸= 0

in equation 1.1.

10Explanations for the term structure following the expectation hypothesis date back to Fisher (1896).
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• Segmented market: The segmented market hypothesis argues that bonds with different

maturities are not substitutes; supply and demand at each maturity level set the interest

rate level. Consequently, distinct maturity ranges correspond to different bond markets.

For instance, while banks focus their transactions on short-term bonds due to their pref-

erence for liquidity, pension funds and insurance companies strongly prefer long-term

bonds. An extreme version of this hypothesis would consider expectations about future

rates as irrelevant. This theory was introduced by Culbertson (1957).

• Preferred habitat: The preferred habitat hypothesis contrasts with the segmented mar-

ket hypothesis because it assumes that bonds with different maturities are substitutes,

albeit imperfect ones. Therefore, an investor would purchase a bond with a maturity out-

side its preferred range (the "preferred habitat") if it offers a premium. However, the

preferred habitat hypothesis has the same consequence as the liquidity preference hypo-

thesis, meaning that equation 1.1 would have c ̸= 0. The preferred habitat hypothesis was

put forward by Modigliani and Sutch (1966, 1969).

1.2 General Objective

The principal objective of this dissertation is to model the behaviour of interest rates in Brazil,

with the aim of enhancing macroeconomic management and providing support for investment

decisions. To accomplish this objective, we pursue two interconnected approaches, as outlined

below:

Chapter 2 assesses empirical models of the Term Structure of Interest Rates. Although B3

periodically releases yield curve estimates to monitor the Brazilian market (B3 Manual, 2022),

we explore various estimation techniques. Each technique yields estimates with distinct charac-

teristics, involving a trade-off between goodness-of-fit and smoothness. Different applications

may prioritise specific estimate features based on their requirements. Thus, we map how well

each technique performs along distinct dimensions.

9
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Although the relationship between yield and maturity applies to all maturities, each day, we

observe only a few data points corresponding to the bonds or derivatives traded on that working

day. Therefore, it is necessary to estimate the entire curve based on these data points. The

models examined in this chapter are referred to as empirical models because they do not impose

constraints from term structure theoretical models during the estimation process. These models

are solely concerned with deriving a smooth function from observed data points while adher-

ing to certain restrictions, such as ensuring non-negativity of interest rates. The evaluation of

these models encompasses criteria such as goodness-of-fit, stability/robustness to outliers, and

smoothness. These empirical models differ from equilibrium models, which are not considered

in this dissertation, as they derive specific functional forms from general equilibrium models

before estimation.

The main goal of Chapter 2 is to compare various parametric and nonparametric techniques

using recent Brazilian data, akin to the approaches taken by Ioannides (2003) for British data

and Nymand-Andersen (2018) for European data. Previous studies in a similar vein to this

chapter, such as Varga (2009) and Caldeira (2011), are around a decade old. The recent fiscal

and monetary developments in Brazil may have altered the conclusions of these earlier analyses.

Additionally, these previous studies encompass a different range of models compared to those

examined here. Therefore, Chapter 2 offers an up-to-date evaluation of yield curve estimation,

providing valuable support for asset pricing and macroeconomic analysis.

Chapter 3 adopts a factor model perspective to delve into the dynamics of the yield curve,

aiming to generate predictions. These models posit that a small number of factors can effect-

ively summarise the entire yield curve, which comprises interest rates at various maturities on

a given day. Analysing the dynamics of these factors provides insights into how the yield curve

evolves. The concept of factor models for yield curve analysis dates back to the work of Litter-

man and Scheinkman (1991). Notably, the parameters from the Nelson-Siegel model, explored

in Chapter 2, can be interpreted as factors associated with yield curve’s level, steepness, and

curvature.

10
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The analysis specifically incorporates Brazilian data by implementing the Nelson-Siegel

Dynamic model proposed by Diebold and Li (2006) and developed in Diebold et al. (2006).

Both original estimation procedures, two-step and one-step, are considered, focusing on the

latter utilising the Kalman filter. The out-of-sample predictive capacity is rigorously assessed

through the Diebold-Mariano test, allowing for a robust comparison of the performance of these

implementations against simpler models.

1.3 Data Sources

As previously discussed, the ideal source of information for the term structure of interest rates

is government bonds’ prices (or rates) with various maturities, given their status as the closest

option to a risk-free asset with high liquidity. However, time series data for the government

bonds’ secondary market are available through proprietary databases. For example, Anbima

provides data on the transactions of the last five working days for free.11 For more extended

periods, the data is exclusively available through subscription, limiting access to researchers

with institutional database access.12

An alternative data source for federal government bonds is the Tesouro Direto system13, de-

veloped by STN, enabling individuals to directly trade federal bonds with the Treasury. How-

ever, this database provides a partial market perspective, capturing only transactions between

individuals and STN, excluding banks and institutional investors. Furthermore, during periods

of heightened bond market volatility, STN may suspend transactions, diminishing the research

utility of these data.

As a result, most empirical studies on the term structure of interest rates turn to data from

One-day Interbank Deposit Futures ("DI1")14 contracts provided by B315. These data represent

11Ambima - taxas de títulos públicos.
12The work by Souza Junior (2021) uses this data, for instance.
13STN - Tesouro Direto.
14Among others, that is the case of Fraletti (2004), Caldeira (2011), Franklin Jr. et al. (2012), and Caldeira et al.

(2016).
15B3 - Histórico / Boletins Diarios / Pesquisa por Pregão.

11

https://www.anbima.com.br/pt_br/informar/taxas-de-titulos-publicos.htm
https://www.tesourodireto.com.br/titulos/historico-de-precos-e-taxas.htm
https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/historico/boletins-diarios/pesquisa-por-pregao/pesquisa-por-pregao/
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the daily average of one-day interest rate futures contracts, expressed as a percentage rate per

annum compounded daily based on a 252-day year. Due to the specific settlement character-

istics of these futures contracts, they are often considered close to being risk-free and exhibit

significant liquidity. Notably, the interest rates specified in DI1 contracts correspond to spot

rates (Berger, 2015, p. 71-72), making them suitable for estimating the term structure of in-

terest rates in its yield-to-maturity form. In some cases, researchers may opt to include the

first point (maturity = 0) in the term structure, usually derived from the CDI-Overnight rate

(Interbank Certificate of Deposit Overnight).16

16Over time, the Selic and CDI-Over rates tend to move in tandem, but the CDI rate consistently hovers slightly
below. According to IMF (2018), the Selic rate provides a more accurate reflection of the true capital cost as it is
more representative of the market. It encompasses all repo market transactions among participants in the SELIC
system. Furthermore, the Selic market boasts significantly greater magnitude compared to the CDI market. On the
other hand, the CDI rate considers only a subset of interbank transactions, specifically those at fixed interest rates,
excluding the ones involving floating overnight DI transactions. The marginal disparity in the CDI rate compared
to Selic can be attributed to the dominant market influence of larger banks, as suggested by the IMF. These banks
possess greater liquidity and hold an advantage over smaller banks with surplus funds but limited investment
options. Fraletti (2004, 54-56) elaborates on the disparity between these rates, citing the lack of liquidity in the
CDI-Over market as a contributing factor. However, the author emphasises that CDI-Over tends to converge
with Selic as arbitrage opportunities diminish, and for most financial applications, both rates are considered as
substitutes.

12

https://www.b3.com.br/pt_br/market-data-e-indices/indices/indices-de-segmentos-e-setoriais/serie-historica-do-di.htm


Chapter 2

Estimating the Term Structure of Interest

Rates: a comparison of techniques using

Brazilian data

2.1 Introduction

The term structure of interest rates, which depicts the relationship between time to maturity and

the level of interest rates paid by a bond, is a fundamental concept with extensive applications in

finance and macroeconomics. Whether it’s pricing fixed-income debt instruments or extracting

insights into inflation and activity level expectations embedded in the yield curve, the term

structure plays a pivotal role.

Most uses of the term structure depend on it being fully observable, which does not happen.

Thus, estimating the term structure from the available data points is essential. The yield curve

is expected to exhibit smoothness as it transitions between known data points and extrapol-

ates beyond the last known maturity to estimate long-term interest rates. Additionally, a yield

curve estimate should ideally exhibit key economic characteristics, including non-negativity of

interest rates and an upper limit on long-term rates.
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This chapter employs various techniques to estimate the Term Structure of Interest Rates

using Brazilian data spanning from January 2018 to April 2023. This timeframe encompasses

diverse economic scenarios that give rise to various forms of the yield curve, as reported in

literature. The comparison of these techniques considers their goodness-of-fit, robustness to

outliers, and smoothness.

The choice of estimation technique may vary depending on the application’s specific re-

quirements. For instance, derivatives pricing may necessitate capturing even minor fluctuations

in term structures, while macroeconomists may prefer a smoother curve, primarily concerned

with its overall shape. The objective here isn’t to rank these techniques but to comprehensively

study their strengths and weaknesses.

As outlined in the previous chapter, three interrelated concepts allow us to describe the term

structure: yield-to-maturity, discount function, and forward rates. Given that the data used in

this chapter is already in a yield-to-maturity format, this concept forms the foundation for all

modelling exercises.

This chapter is structured into five sections. Section 2.2 delves into spline and function-

based techniques, providing a review of existing literature that has applied these methods to

yield curve estimation. Section 2.3 introduces the criteria employed to compare the models,

considering dimensions like in- and out-of-sample goodness-of-fit, robustness, and smoothness.

Furthermore, it presents formal tests to compare model performance. Section 2.4 offers insights

into the data employed and outlines the estimation procedures for implementing the presented

models. Section 2.5 unveils the results, while Section 2.6 concludes this chapter.

2.2 Estimation methods of the term structure of interest rates

Estimating a nonlinear relationship, which may have different shapes, is a challenge commonly

encountered in various statistical applications. From a limited dataset, the objective is to dis-

cern a nonlinear function denoted as y(m) = f(m) + ϵ, which governs the underlying data.

14
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Estimating the yield curve entails interpolating between known maturities and extrapolating

the yield level beyond the final maturity. Since the seminal work of McCulloch (1971, 1975),

the nonparametric approach has employed splines as a means to approximate the yield curve.1.

Following a different approach, a branch of parsimonious parametric models originated with

the Nelson-Siegel model (Nelson and Siegel, 1987). These parametric models have undergone

further refinement, resulting in occasionally more intricate specifications.

This section presents the statistical formulation of those models and the estimation strategies

used in their implementation. Furthermore, we also consider how nonparametric regression

(kernel and local regression) performs in the yield curve estimation. While nonparametric re-

gression is not widely used in this context, there is no reason for not considering these models

since their goal is aligned with the yield curve estimation.

To illustrate the flexibility of the techniques, we will consider data from two yield curves

with different shapes in this section: a normal curve, using data from 22 October 2018, and an

inverted curve, with data from 16 January 2023.

2.2.1 Spline based models

A spline is a piecewise polynomial, a function formed by joining different – yet of a specific

degree – polynomials at fixed points of its domain, the knots.

The sequence of points ξ = {k0, k1, . . . , kK}, which partitions a given interval [a, b] ⊂

R into subintervals is called a knots sequence (or a knot set), where a = k0 < k1 < . . . <

kK = b. The points k1, . . ., kK−1 are called interior knots, and the points k0 and kK boundary

knots, (Hämmerlin and Hoffman, 1991, p. 229-230). The spline corresponds to the polynomials

fitted to the observations between two knots in each segment. And the smooth connection

between different segments is ensured by imposing on the polynomials certain differentiability

conditions.
1It is worth noting that McCulloch originally estimated the discount curve, and depending on the dataset, it may

be more tractable to estimate either the discount or forward curves, with the yield-to-maturity curve subsequently
derived from these alternatives.

15
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This subsection presents different splines specifications and how they have been used on the

yield curve estimation.

Linear interpolation

A first approach to model a nonlinear relationship can be to approximate it by a set of different

linear relationships over different ranges of the independent variable. Hence, what is known as

piecewise linear regression. Firstly in an ad hoc manner, one can set breakpoints (knots), over

the predictor’s relevant range, positioning them where the function appears to change inclina-

tion. After that, it is possible to define indicator functions from these knots.

Let say that over R+
0 one can identify that the yield curve increases from 0 to k1, changes

its inclination at k1 and flattens after k3. From the knots definition, it is possible to create the

variables: 1[k1,k2[(m) and 1[k2,∞[(m). Then the following regression can be estimated:

yt(m) = β0 + β1m+ β2(m− k1)1[k1,k2[(m) + β3(m− k2)1[k2,∞[(m) + ϵt,m. (2.1)

A similar alternative would be to model the nonlinear relationship using step functions,

which corresponds to converting a continuous variable into an ordered categorical variable,

(James et al., 2021, p. 290). For that, one would create K knots (k1, k2, . . . , kK) in the relevant

range and then construct K new variables using indicator functions: 1[k1,k2[(m), 1[k2,k3[(m), . . .,

1[kK ,∞[(m). In this case, the relevant regression is yt(m) = β0+β11[k1,k2[(m)+β21[k2,k3[(m)+

. . .+ βK1[kK−1,kK [(m) + ϵt,m.

While the estimation of equation (2.1) is a simple way to estimate the yield curve, the

resulting curve is not smooth, and there are no derivatives at the knots, (Valentim, 2022, p. 89).

Therefore this approach is inappropriate for many applications that demand differentiability

from the yield curve estimates.

The choice of the number of knots in linear interpolation illustrates the bias-variance trade-

off, which also is relevant in more complex splines implementations. On the one hand, increas-
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ing the number of knots will provide a better fit, and, on the limit, one could consider each

observation as a knot (maximising bias and minimising variance). On the other hand, more

knots will imply a loss of degrees of freedom and increase the number of non-differentiable

points.

Polynomial regression

A more direct approach to model a nonlinear relationship is to engage with polynomial regres-

sion since a high-degree polynomial can produce complex nonlinear relationships2.

According to Bolder and Gusba (2002, 3-4), considering N+1 distinct points {(x0, f(x0)),

(x1, f(x1)), . . ., (xN+1, f(xN+1))} and defining PN as the set of all polynomials of degree at

most N, there is a unique polynomial p ∈ PN such that p(xi) = f(xi). Thus one can fit N + 1

points uniquely with a polynomial of degree N .

Such polynomial regression of degree N can be written as equation (2.2) and estimated by

least squares as an usual linear model, (James et al., 2021, p. 290):

yt(m) = β0 + β1m+ β2m
2 + β3m

3 + . . .+ βNm
N + ϵt,m. (2.2)

However, considering polynomials of higher degree, the estimation procedure is trouble-

some. Consider the matrix representation of the linear model y = Xβ:

2This approach follows from the Weierstrass Approximation Theorem that states that for a given degree of
error ϵ any continuous function can be approximated by a polynomial with degree higher enough, Estep (2002,
p. 509-510).
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Determining the coefficients β by least squares depends on inverting the Vandermonde mat-

rix, which is plagued by numerical problems (Bolder and Gusba, 2002, p. 4-6; Howard, 2017,

p. 97-99). Besides the computational problems, a higher degree polynomial regression has other

issues. For example, although the curve will lie close to the sample points, it may fluctuate re-

markably between them, which is known as Runge’s phenomenon. Additionally, the curve can

become too flexible and assume unexpected forms near the independent variable (m) boundar-

ies. For these reasons, usually, one considers a polynomial of degree 3 or 4 at the maximum.

Approaching the term structure modelling problem from the discount curve perspective,

McCulloch (1971, p.28-29) pointed out that because market participants give more weight to

minor yield differences in the near future than in the far future, the term structure will have a

more complex form at shorter maturities than at the long end. Thus, a low-degree polynomial

will fit the data at longer maturities but will not conform with observations at shorter maturities.

According to McCulloch, only an "extremely high-order polynomial" would fit both the long

and short ends.

Evidence supporting this conclusion can be seen in Figure (2.1), which presents two poly-

nomial regressions applied to the Brazilian data. Whereas a polynomial of degree 4 was enough

to fit a normal curve (Figure 2.1a), the inverted curve, which has a more complex form at shorter

maturities, demanded a higher degree polynomial (degree 9) to attain a satisfactory fit (Figure

2.1b). Notice that the extrapolated estimates at the long range have a behaviour inconsistent

with the economic theory. An unbounded growth at longer maturities can be inferred from
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Figure (2.1a).

Figure 2.1: Polynomial regression
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(a) Polynomial regression - degree 4
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(b) Polynomial regression - degree 9

Source: Elaborated by the author.

Chambers et al. (1984) assumed that term structure in its yield-to-maturity form can be ex-

pressed as a polynomial yt(m) =
∑N

n=1 βt,nm
n−1, like equation (2.2) above. However, this

authors could not estimate this specification directly because he did not observe the interest

rates in the yield-to-maturity form. His problem was similar to McCulloch’s, his data ori-

ginated from coupon bond prices, and he needed to estimate discount functions for coupon

payments. Considering continuously compounded interest rates, his assumption in terms of

discount function becomes dt(m) = e−yt(m)×m = e−
∑N

n=1 βt,nmn−1 . Then he estimated Pt =∑T
t=1 cte

−
∑N

n=1 βt,n(T−t)n−1 , where Pt and ct are the bond price and the coupon payment at mo-

ment t respectively, by nonlinear least squares.

Chambers et al. consider polynomials from degree one to five and conclude that third or

fourth-degree polynomials explain much of the variation. Their residual analysis supports Mc-

Culloch’s statement about the curve’s short-end complexity since they observe a lack of fit at
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shorter maturities. Even though his data complicated their estimation procedure, if they had

yield-to-maturity data, they could have adopted a specification as equation (2.2) and used or-

dinary least squares.

Regression splines

The approaches presented previously are special cases of the linear basis expansion. The basis

corresponds to the original predictors (the X matrix), whereas its expansion corresponds to

transformations of the original xi variables by the basis functions b1(.), b2(.), . . ., bK(.). These

functions are known and fixed and their use result in more predictors (i.e. the original X matrix

augmented with new columns created by the transformations).

For the linear interpolation, the basis function is the indicator function, bj(mi) = 1[kj ,kj+1[(mi),

while for the polynomial regression, the basis function corresponds to bj(mi) = mj
i . Using lin-

ear basis expansions increases the dimensionality of the predictor’s matrix (X), producing a

more flexible regression model, (Berk, 2016, p. 42). Therefore, instead of fitting the model on

the original predictors one estimates a linear model of yi against b1(mi), b2(mi), . . ., bK(mi):

yi = β0 + β1b1(mi) + β2b2(mi) + β3b2(mi) + . . .+ βKbK(mi) + ϵi. (2.3)

Splines are constructed defining basis functions that represent the polynomial and the knots

over the predictor’s relevant range. A common choice for the basis functions is considering

cubic splines (i.e. a spline of degree 3 and order 4). As in linear interpolation, K knots divide

the relevant predictor’s range. Then, one can fit a polynomial function, as equation (2.4), using

least squares for each data subset delimited by the knots:

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi xi ∈ [kj, kj+1[. (2.4)

However, the cubic spline imposes some constraints on the polynomials to obtain a smooth
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function: continuity, and continuity of the first and second derivatives. Continuity means that

the function should assume the same value when approaching a knot from either side. The same

should happen when evaluating the first and second derivatives3.

One way of including those restrictions into equation (2.4) is to add to the basis of a cubic

polynomial (b1(m) = 1, b2(m) = m, b3(m) = m2, b4(m) = m3) a truncated power basis with

a function for each knot, (James et al., 2021, p. 297). The truncated power basis functions have

the form:

(m− k)r+ ≡ [max{m− k, 0}]r r = 1, 2, 3, . . . or alternatively

b(mi, kj) = (m− k)r+ = (mi − kj)
r1>0(mi − kj) =


(mi − kj)

r if mi > kj

0 if mi ≤ kj

.

Considering the definition above, the cubic spline regression equation for K knots can be

written as:

yi = β0 + β1mi + β2m
2
i + β3m

3
i +

K∑
j=1

θj(m− k)r+ + ϵi (2.5)

= β0b1(X) + β1b2(X) + β2b3(X) + β3b4(X) +
K∑
j=1

θjb(mi, kj) + ϵi. (2.6)

Hence, a basis representing a cubic spline with three knots (ξ = {k1, k2, k3}, with k1 < k2

< k3) would be composed of seven basis functions: b1(X) = 1, b2(X) = X , b3(X) = X2,

b4(X) = X3, bk1(X) = (m− k1)
3
+, bk2(X) = (m− k2)

3
+, bk3(X) = (m− k3)

3
+.

Equation (2.5) can be estimated by least squares. Considering K = 3, three knots divide

the predictor’s range into four subsets. In each subset, one needs to estimate four parameters

(one intercept and three coefficients). Thus estimating a cubic spline with 3 knots corresponds

to estimating 3 × 4 = 12 regression coefficients. The cubic spline imposes three continuity

3There are some alternatives, for instance, the cubic Hermite and the cubic Bessel, whose constraint is continu-
ity of the first derivative, (Boor, 2001, 39-41).
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conditions in each knot, which frees 3 × 3 = 9 degrees of freedom. Thus estimating a cubic

spline with three knots demands 12− 9 = 3 degrees of freedom.

Similarly to the polynomial regression, estimated values beyond the predictors’ boundaries

may behave unexpectedly. For instance, considering the yield curve, this behaviour could be a

steep inclination (positive or negative) after the final maturity observed. This lack of stability at

the end of the maturity range is corrected by imposing an additional constraint: linearity after

the last observation. When the model includes the linearity constraint (second derivative equals

zero at the terminal points, f ′′(x1) = f ′′(xN) = 0), it is called natural cubic spline. As pointed

out by Boor (2001, 44), this restriction is somewhat arbitrary and produces increased errors near

the ends.

The works McCulloch (1971, 1975) pioneered the use of splines for estimating the dis-

count curve and, from this function, obtaining the yield curve and forward interest rates. While

McCulloch (1971) employed quadratic splines, McCulloch (1975) used natural cubic splines.

Because the interest rates considered in the term structure correspond to the zero-coupon bonds

yield-to-maturity, and this kind of bond is scarce in most maturities, McCulloch was initially

concerned with extracting information from coupon bonds, i.e. bonds that regularly pay interest

before maturity, equivalent to that from zero-coupon bonds. For that, he considered a coupon

bond as a portfolio in which each coupon payment is a zero-coupon bond. In this perspective,

the discount function estimate was the key to disentangle each synthetic zero-coupon bond from

the original coupon bond price.

McCulloch (1971) expressed the problem of choosing the appropriate number of knots and

their positions regarding the bias-variance trade-off4 even though he did not use this termino-

logy. McCulloch suggested that one should choose the number of knots to minimise the un-

biased estimator of the variance. However, because this is a computationally expensive method

with more than one local minimum, this author suggests determining the number of knots (K)

4"If k is too low, we will not be able to fit the discount function closely when it takes on difficult shapes. If it
is too high, the discount function may conform too closely to outliers instead of being smooth. If k is as high as n,
there will be no way to estimate σ2.", McCulloch (1971, p. 31).

22



§2.2. METHODS

as a function of the sample size (n) considering the closest integer to K(n) = n1/2. Then

the knots should be placed such that each segment has a similar number of observations (i.e.

rounding n/K(n)).

Two implementations of natural cubic splines following McCulloch’s rule for knot quantity

and position using Brazilian data can be seen in Figure (2.2). The extrapolated estimates are

well-behaved, not showing abrupt curve changes after the last observation, which contrasts with

polynomial regression estimates.

Figure 2.2: McCulloch Cubic Splines
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Source: Elaborated by the author.

Exponential splines

Vasicek and Fong (1982) proposed the exponential splines to model the discount curve as a

superior alternative to McCulloch’s cubic splines implementations. According to these authors,

piecewise polynomials would not be an appropriate choice to model the discount curve because

this is a known exponential decay relation. The local fit of a piecewise polynomial could not be
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good when approximating such functions, despite its flexibility.

Considering that the discount function has the form dt(m) = e−γ×m, they suggested a vari-

able transformation such that the exponential function was transformed into a power function,

which polynomial splines could better approximate. Considering an arbitrary constant α, the

transformed variable x, with 0 ≤ x < 1, would be obtained in the following way:

m = − 1

α
ln(1− x) ⇒ dt(m) = e−γ×m ⇒ dt(m) = dt

(
− 1

α
ln(1− x)

)
= gt(x)

gt(x) = e−γ×− 1
α
ln(1−x)) = e

γ
α
ln(1−x) = (1− x)

γ
α .

According to Vasicek and Fong (1982), the problems with polynomial splines are that they

"weave" around the underlying exponential function points, resulting in a poor local fit, and

would be incapable of reproducing the exponential decay at longer maturities. Therefore, ap-

proximating gt(x) = (1 − x)
γ
α by splines would surpass these faults. However, Shea (1985)

pointed out that while Vasicek and Fong (1982) were right about the difficulties in approxim-

ating an exponential function by a polynomial, that was not the case when one considers local

polynomial approximations, as splines. Furthermore, Shea concludes that estimates from expo-

nential splines give estimates identical to those obtained by polynomial splines but demand a

more complex procedure.

Since the data used in this dissertation allows modelling yield-to-maturity directly, avoid-

ing discount curve estimation, we will not consider exponential splines. Furthermore, Steeley

(2008) found that superior yield curve estimates are obtained when the yield curve is fitted

directly instead of fitting the discount function and then obtaining the yield curve.

B-Splines representation

According to Boor (2001), the collection of all piecewise polynomial functions of order M for a

given set of K breaks corresponds to a linear space of dimension MK. Therefore, the piecewise

polynomial function (f ) that approximates an underlying unknown function (that generated the
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data) can be obtained from a basis for that linear space. Furthermore, when one imposes some

conditions of f, such as first and second derivatives continuity, it is possible to consider the

subspace corresponding to those conditions.

These facts make it possible to express any spline as a linear combination of the proper

basis. The basis for the space of all splines is called basis splines (B-Splines) and Boor (2001,

87-103) presents a method to obtain it. Such basis depends on the spline degree and on the

number of knots (breaks). To obtain the B-Spline basis function of order m, Bi,m(x), one must

expand the original sequence of K breaks, corresponding to the knots sequence k0 < k1 < . . . <

kK . This expansion is done by adding M new knots before k0 and after kK , with m ≤ M :

τ−M ≤ . . . ≤ τ−1 ≤ k0 < . . . < kK︸ ︷︷ ︸
ξ=Original knots sequence

≤ τK+1 ≤ . . . ≤ τK+M︸ ︷︷ ︸
τ=Expanded knots sequence

.

The values defined for τi are arbitrary and may be the same as the boundary knots (k0 for

i < 0 and kK for i > K). Despite this redundancy, the additional knots are necessary due

to the recursive construction of higher-order B-Splines. Then, one can apply equation (2.7),

corresponding to the Haar basis functions, to the expanded knots sequence to obtain first-order

B-Splines. After that, higher order B-Splines basis, say of order n, can be calculated using

equation (2.8) and values from the previous order (n− 1) as follows:

Bi,1(x) =


1 if τi ≤ x < τi+1

0 otherwise
for i = −M, . . . ,M (2.7)

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x

τi+m − τi+1

Bi+1,m−1(x) for m > 1. (2.8)

This recursive basis construction will produce sets of functions for each order, the B-Spline

basis of that order, over the ranges delimited by the knots. Figure 2.3 panels show some ex-

amples; each colour represents a different function on each order B-Spline basis. The number
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of functions on a B-Spline basis equals the spline order (m) plus the number of (internal) knots

(K). For instance, consider Figure 2.3 third panel, that shows a cubic B-Spline (m = M = 4)

basis over [−2, 2] with three interior knots (the sequence ξ = −1, 0, 1), thus K = 3). In this

case, one has a B-Spline basis of order 4, composed of seven basis functions (m + K = 7).

There are four non-zero basis functions for each segment delimited by adjacent knots. Adjacent

segments, e.g. [−1, 0] and [0, 1], have three common non-zero basis functions.

Figure 2.3: B-Spline basis of orders 1 to 4, with interior knots at {-1,0,1}
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Source: Elaborated by the author.
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Concluding, for a spline of order m with K knots, one would have a B-Spline basis with

m + K functions. The spline can then be expressed as a linear combination of these basis

functions (Bi,m(x), i = 1, . . . ,m+K), which is called the B-form. However, B1,m(x) is usually

dropped to avoid perfect correlation when estimating a spline represented in the B-form. Thus

it is considered as the intercept. In contrast, the other terms will translate into columns on the

predictor matrix

f(x) =
m+K∑
i=1

βiBi,m(x) x ∈ [k0, kK ]. (2.9)

As pointed out by Berk (2016, p. 66-69), B-Spline representation is a computationally con-

venient tool to construct piecewise cubic polynomials and natural cubic splines; there is no

substantive meaning in the β coefficients in the equation (2.9). However, Hastie et al. (2009,

p. 187-189) emphasize that many knots in a large sample may have an unbearable computational

cost.

Since most applications of B-Splines for the term structure estimation consider it with

smoothing splines instead of regression splines we review this literature on the following ses-

sion.

Smoothing splines

An essential feature of the methods discussed so far is that the quantity and position of the knots

are determined before the estimation. This is a characteristic of regression splines, and one can

either follow McCulloch’s rule or define the number and placement of the knots by comparing

different alternatives as a model selection problem. However, this is cumbersome due to many

possible candidates, (Berk, 2016, 64-65). The number and position of knots directly influence

the final estimate, with smoothness being a function of the number of interior knots for the cubic

splines. Smoothing splines present an alternative approach that incorporates the determination

of the knot set into the estimation process. This can be achieved using the maximal set of knots
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and penalised regression.

To restate the problem, our objective is to achieve the best possible approximation of the

underlying unknown function yt(m) using a spline ft(m):

yt(mi) = ft(mi) + ϵt,i ϵt,i
iid∼ N(0, σ2).

However, including all data points as knots and simply minimising RSS =
∑N

i=1(yi −

ft(mi))
2 will interpolate all data points, and f(x) will not be smooth. Therefore, regularisation

is necessary to balance fit quality and smoothness. This can be done considering equation

(2.10), in which λ ≥ 0 is a tuning parameter

RSS(f, λ) =
N∑
i=1

[yi − f(xi)]
2 + λ

∫
[f ′′(t)]

2
dt. (2.10)

While including a knot will improve the fit, reducing the first term on the right-hand side,

it will also increase the penalty term, the second term on the right-hand side. The penalty term

is the sum of the f(.) second derivative at each data point and corresponds to a measure of the

roughness of f(.).

James et al. (2021, p. 302) point out that the minimisation of equation (2.10) results in a

shrunken version of the natural cubic spline. The tuning parameter λ adjusts the bias-variance

trade-off. If λ = 0, the penalty term will not affect the estimation, interpolating all points.

On the other hand, a high value for λ will result in an ordinary linear regression. Therefore

smoothing splines replace the knots’ set choice by the tuning parameter determination.

One way to determine λ using the data is to minimise the cross-validated RSS, James et al.

(2021, p. 302). This option can balance bias and variance on the final estimate, (Berk, 2016,

p. 83-84). The effects of different λ values are illustrated in Figures 2.4, 2.5, and 2.6.

Regarding the implementation that determined the λ value by cross-validation, one can see

that it does not appear to overfit the data and has narrow confidence bands. However, when ex-
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amining the extrapolated values for the normal curve in Figure (2.5a), a behaviour inconsistent

with the economic theory becomes apparent, as it displays a slight decreasing trend beyond the

last observation.

Figure 2.4: Smoothing splines - λ = 0
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Source: Elaborated by the author.

Fisher et al. (1995) applied the smoothing splines technique to model the discount curve and

forward rate function, considering cubic B-spline basis. Furthermore, they considered gener-

alised cross-validation (GCV)5 to determine the appropriate tuning parameter (λ). To evaluate

the performance, they proceeded with Monte Carlo simulations, simulating the term structure of

the interest rates and then interpolating the data with smoothing splines; secondly, they applied

it to seven years of US data. Trying to recover the "true" parameters from the simulated term

structure the authors report that the selection of λ by GCV resulted in the least biased and most

accurate estimates. However, when considering actual data this procedure was not so accurate

5Cross-validation is a methodology that entails partitioning the given dataset into training and validation sets to
assess the model’s performance in an out-of-sample context, specifically regarding prediction error. Generalized
cross-validation approximates the "leave-one-out" cross-validation approach, furnishing a criterion to appraise
model performance by striking a balance between data fitting and model complexity.
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Figure 2.5: Smoothing splines - λ by GCV
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(a) Normal Yield Curve - λ by GCV
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(b) Inverted Yield Curve - λ by GCV

Source: Elaborated by the author.

Figure 2.6: Smoothing splines - λ = 100
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Source: Elaborated by the author.
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but the estimates were coherent with financial theory.

Bliss (1996) noticed that the Fisher et al. (1995) method tends to have a worse performance

at the short end. As highlighted before, the term structure usually has a more complex shape

at the short end. Furthermore, the short end tends to be more populated by data points than the

long end.

Waggoner (1997) proposed a way to handle these characteristics within the smoothing

splines framework. Since the problem with the yield curve demands more flexibility at the

short end than at the long end, this author proposed a variable tuning parameter λ(m). Instead

of selecting the tuning parameter by GCV, it follows an ad hoc step function of maturity that

is small for shorter maturities and large for long maturities. Because Waggoner was concerned

with the US term structure, he defined the steps at maturities associated with different bonds

traded in that market (bills, notes, and bonds). This specification is shown in equation (2.12);

notice that maturity is measured in years in this case:

RSS(f, λ) =
M∑
i=1

[yi − f(mi)]
2 + λ(m)

∫
[f ′′(m)]

2
dt (2.11)

λ(m) =


0.1 0 ≤ m ≤ 1

100 1 ≤ m ≤ 10

100.000 0 ≤ 10 ≤ m

. (2.12)

To evaluate his method, Waggoner (1997) sets his results against those obtained with McCulloch

and Fisher et al. techniques. He considered two measures of goodness-of-fit (weighted mean

absolute error and hit rate) and a smoothness measure. Considering in-sample goodness-of-

fit, the variable tuning parameter method at shorter maturities performed better than the regular

smoothing splines (Fisher et al. specification) and slightly better than McCulloch’s natural cubic

spline. On the other hand, Fisher et al. specification performed better at longer maturities.

Anderson and Sleath (2001) put forward a different specification for the variable smoothing
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spline. Because these authors modelled the UK term structure, the tuning parameter definition

in steps adopted by Waggoner did not apply. British bond characteristics did not lead to a natural

division of the maturity range. These authors then considered a tuning parameter which varies

continuously with maturity, accordingly with Formula (2.13). The parameters in this function

(L, S, and µ) were initially estimated from the maximisation of out-of-sample goodness-of-fit.

However, the authors obtained multiple maxima from different parameter values, so they chose

those that produced the highest level of smoothness:

ln[λ(m)] = L− (L− S)× e(
−m
µ ). (2.13)

2.2.2 Nonparametric regression models

Nonparametric regression occupies an intermediate position in the spectrum of modelling tech-

niques, situating itself between the spline models discussed in the previous section and para-

metric models. The latter typically rely on specific formulae to describe the underlying data

generating process. Like spline models, nonparametric regression models hinge upon the crit-

ical balance between achieving a good fit (minimising bias) and maintaining smoothness (re-

ducing variance). As James et al. (2021, p.304-306) pointed out, local regression is similar

to splines but allows regions used in the estimation to overlap. The choice of the bandwidth,

or the span, used for smoothing is pivotal in this regard, as it can lead to models that either

connect all observations (overfitting the data) or converge towards linear regression. While the

bandwidth may be set based on some prior knowledge about the data, it can also be determined

using cross-validation.

This section delves into two conventional approaches to nonparametric regression: kernel

regression and local regression. Although these methods have not seen widespread adoption in

the yield curve estimation literature, there is no intrinsic reason not to consider their applica-

tion. Nonparametric regression techniques are aptly described as smoothers because they aim

to approximate an unknown function using a smooth curve, aligning closely with the central
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objective of yield curve estimation.

Kernel regression

In contrast to spline models that partition the domain and estimate a polynomial for each seg-

ment, nonparametric regression employs a sliding window over the domain to estimate local

trends. At each point (x0) in the sample, i.e. for each window definition, it assigns different

weights for the remainder of observations (xi, i ̸= 0). These weights are determined by a

weighting function known as the kernel, Kλ(x0, xi).

The parameter λ defines the bandwidth around x0 considered in the estimates.6 It specifies

how local the estimates will be. Observations within the bandwidth will be weighted according

to their distance to x0, while observations outside the bandwidth will have a weight of zero.

The problem of yield curve estimation can be stated as a nonparametric regression model,

such as Y = g(m) + ϵ, where the pairs of interest and maturity (Yi, Mi) are random variables.

Assuming g(.) is a smooth function, which is appropriate for the yield curve, it can be non-

parametrically estimated using kernel methods. In this case g(m) would be obtained as the

conditional mean of Y given M = m:

g(m) = E(Y |M = m) =

∫
yfY |M=m(y)dy =

∫
yfM,Y (m, y)dy

fM(m)
. (2.14)

The problem amounts to the task of obtaining estimates for the joint probability density

function, fM,Y (m, y), and the marginal probability density function of M , fM(m), all without

making any assumptions about their specific functional forms. Considering the empirical CDF,

6In addition to defining the bandwidth, a statistically appropriate kernel should exhibit the following char-
acteristics: it must be a nonnegative, bounded function that is normalised (with

∫
K(v)dv = 1), symmetric

(K(v) = K(−v)), and its use should not reduce a random variable to a constant (with
∫
v2K(v)dv = κ2 > 0),

see Li and Racine (2007, p. 9).
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F̂n(m) = 1
n

∑N
i=1 1mi<m(mi), these densities can be estimated as

f̂M(m) =
F̂n(m+ h)− F̂n(m− h)

2h
=

∑N
i=1 1[m−h,m+h](mi)

2hn
(2.15)

=
1

nh

N∑
i=1

1[m−h,m+h](mi)

2︸ ︷︷ ︸
(I)

. (2.16)

The term (I) in equation (2.16) functions as a kernel (uniform rectangular window). It sets

the bandwidth centred around the value m with a width of 2h and assigns a constant weight

of 1/2 to all observations within this bandwidth. However, an alternative approach involves

using a kernel with weights that gradually decrease as you move further from the centre. This

approach leads to what is known as the Nadaraya-Watson Kernel Regression, or Local Constant

Kernel Estimation, (Li and Racine, 2007, p. 60-64):

ĝ(m) =

∫
yfX,Y (x, y)dy

fX(x)
=

∑N
i=1 yiKλ

(
mi−m

λ

)∑N
i=1 Kλ

(
mi−m

λ

) . (2.17)

Several kernel functions can be employed with the Nadaraya-Watson estimator, including

the Epanechnikov (K(v) = 3
4
(1 − v2)) , Gaussian (K(v) = ϕ(v) = 1√

2π
e−

1
2
v2), and tricube

(K(v) = (1−|v|3)3) kernels, among others. Both the definition of the bandwidth and the selec-

tion of the kernel function have a significant impact on the outcomes of these estimates. These

choices play a crucial role in determining the accuracy and characteristics of the Nadaraya-

Watson estimator’s results.

Figure (2.7) illustrates yield curve estimates obtained through the Nadaraya-Watson estim-

ator, utilising a Gaussian kernel and bandwidth selection via least-squares cross-validation, as

described by Hayfield and Racine (2008). However, the chosen bandwidth selection method

apparently overfits the data and results in unstable confidence bands at specific data points for

both curves. In contrast, Figure (2.8) presents the estimates while fixing the bandwidth at 0.3,

which successfully eliminates the issue of overfitting and produces stable confidence bands.
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Naturally, this model extrapolation maintains its stability, as it replicates the last local average

for the additional maturities.

Figure 2.7: Nadaraya and Watson Kernel Regression - CV bandwidth = 0.0809
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(b) Inverted Yield Curve

Source: Elaborated by the author.

Local regression (Loess)

As evident in the short-end of the yield curves in Figure (2.8), the Nadaraya-Watson kernel

estimator exhibits bias at the boundaries. Moreover, estimates may be biased at interior points

when the observations are not uniformly distributed across the domain, as exemplified in Figure

(2.8b) for maturities ranging from 0 to 1000. The bandwidth is notably asymmetric at the

boundaries, leading to bias. At interior points, the bias arises from the disproportionate entry

and exit of observations within the bandwidth. One approach to mitigate this bias is to locally

fit a linear regression instead of relying on a local average.

The LOcally WEighted Scatterplot Smoothing (Lowess), also referred to as LOcal regrES-

Sion (Loess), was introduced by Cleveland (1979) as a technique for smoothing scatterplots.
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Figure 2.8: Nadaraya and Watson Kernel Regression - bandwidth = 0.3
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(b) Inverted Yield Curve

Source: Elaborated by the author.

This method involves the local estimation of a polynomial regression (linear, quadratic, or cu-

bic) for each data point in the sample. Unlike kernel regression, which uses a fixed distance

(λ) to define the bandwidth, Loess considers a fixed proportion of points to compute local re-

gressions (i.e. the bandwidth may change its size for each observation). The span (s = k/n)

determines which points will be used in each step, and weights are assigned based on a ker-

nel function. The span serves to balance the trade-off between bias and variance in a manner

akin to how the number of knots operates in regression splines or how the smoothing parameter

functions in smoothing splines, (Berk, 2016, p. 89).

Considering a linear specification, the Loess implementation would follow algorithm below.

Algorithm - Local regression

• For each mi following i = 1, . . . , N

1. Select s = (k/n)% of the sample, which corresponds to the mj points which are nearest to mi.
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2. Assign a weight K(mi,mj) to each of these points such that the nearest point has the higher

weight, while the farthest has weight zero. Assign weight zero to points outside the subsample.

3. Estimate a weighted least squares regression considering the weights assigned in step 2:

min
β0,β1

N∑
j=1

K(mi,mj)(yj − β0 − β1xj)
2

4. Get the estimate: m̂i = β̂0 + β̂1xi.

Yield curve estimates obtained with Loess are presented in Figure (2.9) setting a span of 20%

and using tricubic weighting7. What is noteworthy in these estimates is the downward trend

in the extrapolated values, as in Figure (2.9a), which is not appropriate given the underlying

economic theory.

Figure 2.9: Loess
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12.0

12.5

13.0

13.5

14.0

0 1000 2000 3000
Time to maturity (working days)

In
te

re
st

 (
%

 p
er

 y
ea

r)

Key:

IC 95%
LOESS
Observed Yields

(b) Inverted Yield Curve

Source: Elaborated by the author.

7K(v) = (1− (distancev − distancemax)3)3.
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2.2.3 Nelson-Siegel family models

The polynomial regression discussed in Section 2.2.1 seeks to model the entire maturity domain

using a single function. However, as mentioned earlier, obtaining a satisfactory fit with polyno-

mial regression often requires a highly complex model. This complexity can be computationally

expensive to estimate and may entail undesirable properties. In contrast, spline models, while

adept at providing a good data fit, entail estimating a series of regressions across the domain.

These models yield parameter sets that are not easily summarised or interpreted in economic

terms.

This section introduces a family of models, beginning with the specification by Nelson

and Siegel (1987), designed to represent the term structure of interest rates with a parsimoni-

ous function in terms of parameters. These models can effectively depict various yield curve

shapes. Furthermore, they allow for a direct association of a small number of parameters with

underlying economic features, facilitating the interpretation of their behaviour. These features

have contributed to the widespread popularity of these models among central banks worldwide.

According to a survey by BIS (2005), most central banks utilise Nelson-Siegel’s or Svensson’s

specifications. Additionally, a more recent account by Nymand-Andersen (2018) notes that the

European Central Bank also employs these specifications.

In addition to its role as an estimation technique, this approach serves as an initial step in

modelling yield curve dynamics, as proposed by Diebold and Li (2006). When examining a

single working day with a cross-section of yields and maturities, the models presented in this

section require parameter estimation. In the context of dynamic modelling, estimates of function

parameters over a sequence of working days can be modelled as a time series, enabling yield

curve forecasting. However, this exercise is beyond the scope of this chapter.
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The Nelson-Siegel model

The model proposed by Nelson and Siegel (1987) is rooted in the expectation theory of the

term structure of interest rates. This theory motivates the exploration of functions that could

serve as solutions to differential and difference equations, generating various yield curve shapes.

Thus, these authors introduced a function, presented in Equation (2.18), which comprises a

constant term and a Laguerre function, which is characterised by a polynomial multiplied by an

exponential decay term, as follows8:

yt(m) = β0,t + β1,t

(
1− e−m/λt

m/λt

)
+ β2,t

(
1− e−m/λt

m/λt

− e−m/λt

)
+ ϵm,t. (2.18)

In Equation (2.18), three factors (β0,t, β1,t, β2,t) and their factor loadings (the exponential

decay terms) contribute to the model’s formulation. The factors and loadings in this equation

play distinct roles in shaping the yield curve. Specifically:

• Factor β0,t is associated with the long-run interest rate and controls the overall level of

the function.

• Factor β1,t is linked to the short-run interest rate and governs the function’s inclination.

The factor loading makes it most influential when m = 0, decaying monotonically after-

wards.

• Factor β2,t shapes medium-term interest rates and controls the curvature of the function.

The exponential decay parameter (λt) determines the maturity at which it exerts the most

influence.

The parameter λt regulates the decay speed for the factor loadings (for β1,t and β2,t). Figure

2.10 presents how the factor loadings evolve with the maturity for two distinct λt levels. It’s

8The specification presented in Equation (2.18) refers to the yield-to-maturity TSIR representation; it is possible
to obtain equivalent specifications for the other forms following the relations presented in Appendix A.
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important to note that λt is not scale-free, and its value depends on how maturity is measured

(e.g., days, months, or years).

Figure 2.10: Evolution of Nelson-Siegel factor loadings over time
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Source: Elaborated by the author.

According to Nelson and Siegel (1987, p. 475), the theoretical motivation suggests consid-

ering different decay parameters for short- and medium-term factors. However, their analysis

argues that including a second decay factor in Equation (2.18) results in over-parametrisation

without substantial gains in model fit.

Treating λt as an unknown parameter alongside the factors (βs) implies that Equation (2.18)

is nonlinear, necessitating estimation through nonlinear least squares. Nelson and Siegel (1987)

recommends exploring a grid of λt values and employing ordinary least squares to determine

the factors. The optimal λt value is then chosen based on the best-fitting estimate among those

in the grid. Two examples of the Nelson-Siegel model fitted through ordinary least squares,

with λt = 150, is displayed in Figure 2.11. Contrastingly, two estimates for the same days

using nonlinear least squares are presented in Figure 2.12.
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Figure 2.11: Nelson-Siegel ordinary least squares fit
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Source: Elaborated by the author.

Figure 2.12: Nelson-Siegel nonlinear least squares fit
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Source: Elaborated by the author.
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In their initial analysis, (Nelson and Siegel, 1987, p. 480) observed that despite their spe-

cification yielding a good fit across various samples, the resulting fitted curve generated non-

random residuals displaying dependence on maturity. Consequently, they opted not to delve

into the statistical significance of coefficient estimates. Subsequent literature has similarly over-

looked this aspect, concentrating primarily on evaluating the model’s fit.

Estimating Nelson-Siegel parameters using nonlinear or ordinary least squares methods

presents several challenges, as highlighted by Gilli et al. (2010). Two primary issues emerge:

the collinearity problem and the optimisation problem. The former is attributed to the calcula-

tion of factor loadings, and the latter is inherent in the nature of the optimisation problem.

Specifically, when applying the factor loadings formulae, numerous combinations of ma-

turities and decay parameter values (λt) can lead to pronounced collinearity among the loading

factors. The impact of this phenomenon is demonstrated in Table 2.1 using synthetic data,

revealing alterations in the correlation between factor loadings with varying λt values. Sub-

sequently, Table 2.2 holds the λt value constant, allowing an assessment of how the correlation

changes with distinct maturity vectors.

Table 2.1: Factor loadings correlation: dependence on λ.

λ = 1.37 λ = 3 λ = 10

FL1 FL2 FL3 FL1 FL2 FL3 FL1 FL2 FL3

FL1 1 1 1
FL2 1 0.084 1 -0.524 1 -0.966
FL3 0.084 1 -0.524 1 -0.966 1

Factor loadings generated with different λ values for the same maturity vector, λ set in a scale for yearly data.
Synthetic maturity vector used for illustration.

While the correlation of factor loadings does not directly influence the fit of the linear re-

gression model, it does impact parameter estimates. As emphasized by Greene (2003, p. 56-57),

the effects of multicollinearity include minor fluctuations in the data leading to substantial vari-

ations in the estimates, individual coefficients potentially having high standard errors (resulting

in low significance) even when all coefficients are jointly significant, and the possibility of coef-
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Table 2.2: Factor loadings correlation: dependence on the maturity vector.

m1 m2

FL1 FL2 FL3 FL1 FL2 FL3

FL1 1 1
FL2 1 0.084 1 0.985
FL3 0.084 1 0.985 1

Factor loadings generated with λ = 1.37 set in a scale for yearly data.
Synthetic maturity vector used for illustration.

ficient estimates exhibiting an inverted signal concerning the underlying theory, coupled with

inaccuracies in their magnitude. Table 2.3 provides a glimpse into these effects, illustrating two

estimates for the Nelson-Siegel specification. Both estimates use identical yield-maturity data,

and the variations in λt results in substantial fluctuations in the coefficient estimates (β1,t, β2,t).

Table 2.3: Regression Estimation Sensitivity to Correlated Factor Loadings

Dependent variable:

y(m)

(1) (2)

FL1 9.090∗∗∗ 9.243∗∗∗

(0.204) (0.192)

FL2 4,625.388∗∗∗ 4.186
(1,073.282) (2.624)

FL3 −4,721.613∗∗∗ −22.596∗∗∗

(1,090.307) (4.893)

Observations 38 38
R2 0.986 0.989
Adjusted R2 0.985 0.988
Residual Std. Error (df = 35) 1.059 0.957
F Statistic (df = 3; 35) 822.277∗∗∗ 1,008.807∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Factor loadings generated with different λ values (1.37, 10) for the same data points.
Data from 22 October 2018, the normal curve considered in this section.

The instability in parameter estimates poses a significant challenge when attempting to align

these estimates with economic concepts. For instance, associating the short-run interest with the
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sum of two coefficients, expressed as y(0) = β1,t+β2,t, becomes problematic in the presence of

inaccurate estimates. Furthermore, in the context of the dynamic Nelson-Siegel model proposed

by Diebold and Li, it seems improbable for substantial variations to occur across consecutive

days in the sample, such as β1,t+1 differing significantly from β1,t.

Despite the acknowledged collinearity problem, literature suggests that estimating Equation

2.18 using OLS, i.e., by fixing λt = λ, results in more stable trajectories for the coefficients

over time.

To address the collinearity problem, Annaert et al. (2013) introduced a three-step estimation

procedure. This approach involves determining the decay factor through a grid search. In

cases where the resulting loading factors exhibit high correlation, the authors employ a ridge

regression approach to fit Equation 2.18. By employing this procedure, they observed more

stable time paths for the coefficients across the days in their sample.

The optimisation problem manifests itself when estimating all parameters through nonlinear

least squares. Minimising the sum of squared residuals using Equation 2.18 proves to be an

ill-conditioned problem – it lacks convexity, and the surface of the sum of squared residuals

exhibits multiple local minima. Furthermore, the optimisation needs to account for constraints

on the parameters in order that the estimates maintain economic meaning. While it is possible

to achieve a good fit with NLS, the instability of parameter estimates persists in this scenario as

well.

The optimisation problem results in many works reporting numerical difficulties when im-

plementing NLS for the Nelson-Siegel estimation. The approaches to handle these problems

encompass using a global and a local search algorithm (Bolder and Stréliski, 1999), the use of

a genetic algorithm for the optimisation (Franklin Jr. et al., 2012), the use of a heuristic for

the optimisation (Gilli et al., 2010, 2019), and strategies for defining the initial guesses and

constraints (Wahlstrøm et al., 2022).

The following specifications share the same estimation difficulties, enhanced by more para-

meters.
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The Bliss model

According to Bliss (1996, p. 11-12), the over-parametrisation identified by Nelson and Siegel in

equation (2.18) was attributed to the inclusion of relatively short-maturity bonds (US Treasury

bills) in their sample. Bliss addressed this issue by considering bonds with longer maturities,

thereby mitigating the over-parametrisation previously observed. Notably, Bliss achieved su-

perior results using a model featuring five parameters – specifically, incorporating two distinct

decay parameters – as opposed to the original specification.

While Bliss termed this modified approach the "extended Nelson-Siegel method", it has

been alternatively referred to as the Bliss model or Bliss specification in other contexts. The

formulation is illustrated in equation (2.19),

yt(m) = β0,t + β1,t

(
1− e−m/λ1,t

m/λ1,t

)
+ β2,t

(
1− e−m/λ2,t

m/λ2,t

− e−m/λ2,t

)
+ ϵm,t. (2.19)

Bliss estimated the above equation through nonlinear constrained optimisation. The con-

straints were stated in relation to the discount function, with the aim of ensuring non-negative

forward rates and a positive discount rate in both the short and long ranges.9

The Svensson model

Studying a particularly turbulent period on Swedish economy, Svensson (1994) noticed that the

Nelson and Siegel (1987) specification was not capable of capturing the yield curve shape in

his data. Therefore, he proposed a specification – equation (2.20) – with a second medium-term

factor, with a specific decay parameter. His intent was to model a second "hump" on the yield

curve,

9dt(m) ≥ dt(m+ 1) ⇒ e−ỹt(m)×me−ỹt(m+1)×(m+1)∀m ≤ mmax, and y(mmin) ≥ 0, y(∞) ≥ 0.
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yt(m) = β0,t + β1,t

(
1− e−m/λ1,t

m/λ1,t

)
+ β2,t

(
1− e−m/λ1,t

m/λ1,t

− e−m/λ1,t

)
+

β3,t

(
1− e−m/λ2,t

m/λ2,t

− e−m/λ2,t

)
+ ϵm,t. (2.20)

The Five-factors model

A further specification in the Nelson-Siegel family considered in this chapter is the Five-factors

model. Two variants of the five-factor models were proposed in different contexts, Björk and

Christensen (1999) investigated what parametric representations of the forward rate curves

would be consistent with arbitrage-free interest rate models.10 In particular, they were con-

cerned with Heath et al. (1992) no-arbitrage formulation. Noting that the Nelson-Siegel spe-

cification is inconsistent with the arbitrage-free assumption, they developed a variant with five

factors which is consistent with the Heath–Jarrow–Morton model.

To increase the flexibility and fit of the Nelson-Siegel family, Rezende and Ferreira (2013);

Rezende (2011) proposed a specification with two short-term components and two medium-

term components that decay accordingly to different parameters. While both variants have five

factors, they differ slightly in how maturity influences the factor loading on the fifth factor. For

the model assessment exercise, we consider only the Rezende and Ferreira specification:

yt(m) = β0,t + β1,t

(
1− e−m/λ1,t

m/λ1,t

)
+ β2,t

(
1− e−m/λ2,t

m/λ2,t

)
+

β3,t

(
1− e−m/λ1,t

m/λ1,t

− e−m/λ1,t

)
+ β4,t

(
1− e−m/λ2,t

m/λ2,t

− e−m/λ2,t

)
+ ϵm,t. (2.21)

10An arbitrage opportunity arises when a positive pay-off is guaranteed with no net investment required. An
illustrative example is borrowing money at a rate b and simultaneously lending it at a rate c, where c > b, all
without incurring operational costs, (Dybvig and Ross, 1989). An arbitrage-free interest rate model imposes some
constraints in the mathematical representation of the term structure in order that the behaviour of the instantaneous
forward rate curves offers no arbitrage opportunities. These models are not discussed any further in this chapter.
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2.3 Model comparison criteria

To compare estimates from the models presented in the previous section, it is imperative to

define metrics that enable the evaluation of various dimensions by which a yield curve estim-

ate can be assessed. Relevant literature11 consistently considers dimensions such as flexibility

(goodness-of-fit), robustness (stability to outliers), and smoothness.

When evaluating goodness-of-fit, the aim is to measure how well the underlying method fits

each data point in the sample. This assessment can be conducted using metrics such as Mean

Squared Error (MSE) or Mean Absolute Error (MAE):

MSE =

∑M
i=m1

(yi − ŷi)
2

M
MAE =

∑M
i=m1

|yi − ŷi|
M

. (2.22)

However, as most estimation procedures presented hinge on minimising the sum of square

errors (SSE), a straightforward comparison of metrics like the MSE would inherently favour

more parametrised models over their more parsimonious counterparts. In the context of yield

curve estimation, relying solely on this metric in the full sample would not accurately portray

the actual performance of the models, (Bliss, 1996). Moreover, the yield curve’s short end

is typically more populated (with more bonds or derivative contracts) than the long-range, and

usually, it has a more complex form. Thus, considering a single fit metric for the whole maturity

range could be misleading. A model with an average performance over all maturities could be

levelled with others which systematically perform poorly at a specific range.

To overcome these difficulties, we consider a training set (or in-sample set) and a valida-

tion set (or out-of-sample set) for each day in the sample. A typical working day has around

38 data points; we classify these points into three groups according to maturity: maturities up

to one year, maturities above one year and below three years, and maturities over three years.

11Noteworthy works, including Bliss (1996), Seppälä and Viertiö (1996), Anderson and Sleath (2001), and
Nymand-Andersen (2018), explore these dimensions, albeit with some differences in the specific measures em-
ployed.
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For each of these groups, we randomly select two data points, ensuring that the validation set

comprises six observations (roughly 15% of all observations in that day), consisting of two ob-

servations from each group. The only restriction in this process was that the shortest and the

longest maturities on a given day should be in the training set.

All models are estimated for each day in the sample, utilising their respective training sets.

Subsequently, the performance of in-sample estimates is evaluated by assessing how well they

fit in- and out-of-sample data using MSE and MAE. This evaluation considers both the entire

maturity range and its divisions. Figure 2.13a illustrates this process with synthetic data: the

blue dots represent the in-sample data used to estimate the dashed line, while the red dots

represent the out-of-sample data. In-sample performance is gauged by comparing the distance

between the blue dots and the dashed line, whereas out-of-sample performance is evaluated by

comparing the distance between the red dots and the dashed line.

Figure 2.13: An illustration of goodness-of-fit and robustness assessment procedures.
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Note: Synthetic data used for illustration. Source: Elaborated by the author.

The robustness evaluation aims to assess how the estimates respond to a disturbance in
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the interest rates of a specific maturity. In essence, it seeks to understand how the estimates

behave in the presence of outliers or measurement errors. To conduct the robustness evaluation,

a hypothetical data set is constructed for each day. In this set, a randomly selected maturity

(excluding the first and the last) has its interest rate disturbed by an increase or decrease of 2%.

Subsequently, each model is estimated using the data with the disturbance, and the estimated

curve is used to calculate the MSE and MAE, considering the original data while excluding

the disturbed point. An ill-conditioned12 model would exhibit a significant increase in these

measures, indicating that the disturbance has affected the estimates across multiple maturities.

Figure 2.13b illustrates this process with synthetic data. The third maturity was selected in

this case, and its interest rate level was reduced by 2%. Subsequently, the model was estimated

considering both the red and blue dots. The resulting dashed line represents the estimated curve,

and goodness-of-fit measurements were calculated using the grey and blue dots.

Smoothness is a valued quality for two crucial reasons. Firstly, many applications relying

on yield curve estimates depend on their differentiability; consequently, an estimate with kinks

at numerous maturities would be of limited utility. Secondly, an excessively rough estimate

may suggest overfitting of the data, potentially impairing its interpolation ability. Ramsay and

Silverman (2005, p. 84) point out that a way to quantify the notion "roughness" of a function is

to consider the integrated squared second derivative of that function

R(yt) =

∫ M

m1

[D2y(s)]2 ds. (2.23)

The roughness measure in equation (2.23) was adopted by Adams and Deventer (1994,

p. 54) and Varga (2009, p. 381) in the context of comparing smoothness of the yield curve es-

timates.13 Seppälä and Viertiö (1996, p. 21) argue that since we have more information at the

12"A mathematical problem is called well-conditioned provided that small changes in the data leads only to
small changes in the (exact) solution. If this is not the case, we call. the problem ill- conditioned.", Hämmerlin
and Hoffman (1991, p. 20-21)

13Nymand-Andersen (2018) adopted a different approach to evaluate smoothness, this author used the spread
between the n-period rate and the m-period (st(n,m) = yt(n)− yt(m)) as an indicator. This approach is not used

49



CHAPTER 2. ESTIMATING THE TERM STRUCTURE §2.3. COMPARISON CRITERIA

short end than at the long end and expect a more complex behaviour at the short end (McCul-

loch, 1971), the fact that the roughness measure in equation (2.23) equally penalises changes in

yield curve’s slope in any maturity is not appropriate. Thus, these authors propose a modified

roughness measure which weights the slope changes by maturity

R2(yt) =

∫ M

m1

[s×D2y(s)]2 ds. (2.24)

Given the increasing weight of second derivatives at longer maturities, R2(.) also helps to

detect changes in the yield curve steepness after the last observed maturity. In other words, it

helps evaluate whether the models’ extrapolation ability aligns with the underlying economic

reasoning.

Alternatively, Waggoner (1997) considers a different modification considering the average

roughness instead of the total roughness. When comparing different models this modification

makes sense once one is considering different maturity ranges for different models, that is,

roughness will not be inflated by a longer maturity range,

R3(yt) =
1

M −m1

∫ M

m1

[D2y(s)]2 ds. (2.25)

We employ these three roughness metrics by computing them daily for each model across

a maturity span of 0 to 3800 working days (approximately 15 years). This range, reflective

of the average most extended maturity observed daily, facilitates the evaluation of the models’

extrapolation characteristics.

2.3.1 Two formal tests

Although the metrics presented above offer ways to compare estimates from different models,

determining the best model in one of these dimensions from the repeated daily measures re-

in this text.
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quires clarification. Descriptive statistics, such as the out-of-sample MAE averaged over the

days, provide insight into each model’s performance. However, relying solely on these meas-

ures can be tricky since nothing can be said about the statistical significance of the differences.

To overcome this challenge, we adopt the approach introduced by Koning et al. (2005) to com-

pare the forecast performance of several models applied to many time series. Although our

focus is on interpolation accuracy instead of forecasting accuracy, we face a similar problem of

comparing different models’ performance.

On each day in the sample, model performance can be ranked according some of the met-

rics (MAE or smoothness’ R, for instance). The Friedman test is a nonparametric test which

provides a way to evaluate whether different rankings are equal (H0), i.e. they correspond to an

ordering of i.i.d. random variables for each day, against the alternative hypothesis that the rank-

ings are indeed different (HA), i.e. each day the ranking is an ordering of independent random

variables that indeed differ in location. To compare K models evaluated (ranked) over D days,

under H0 we have the test statistic S:

S =
12D

K(K + 1)

K∑
k=1

(
R̄k −

K + 1

2

)2

∼
D→∞

χ2
K−1. (2.26)

Where R̄k =
∑D

d=1 Rk,d

D
is the average rank position of model k on all days in the sample, and

Rk,d is the rank position of model k on day d.

The Friedman test is an overall test, and the rejection of H0 in the Friedman test indicates

that one of the rankings is different from the others. However, it does not provide a means to

directly compare the models’ performance, i.e., to evaluate whether one model is systematically

superior to another. Hollander et al. (2014, p. 316-321) present a generalisation of the Fried-

man test, the Wilcoxon–Nemenyi–McDonald–Thompson test, which allows multiple pairwise

comparisons.

Let τk be the effect of model k on the underlying random variable that determines its position

in the ranking on a given day. The WNMT test considers a series of null hypotheses H0,k1,k2 :
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τk1 = τk2 , where k1 = 1, 2, . . . , K and k2 = 1, 2, . . . , K|k2 ̸= k1, against the corresponding

alternative hypotheses HA,k1,k2 : τk1 ̸= τk2 where k1 ̸= k2. The pairs of H0 and HA correspond

to the possible combinations among the models under analysis. Then, each H0 is rejected if and

only if

|R̄k1 − R̄k2 | ≥ rα,K,D, (2.27)

where the critical value, rα,K,D, is set to make the experimentwise error rate equal to α (Hol-

lander et al., 2014, p. 316; Koning et al., 2005, p. 399). Thus, the rα,K,D is the largest con-

stant such that PH0

(
(maxR̄k)− (minR̄k) ≥ rα,K,D

)
≤ α, and the large-sample approximation

(large D in the present case) for equation (2.27) gives

rα,K,D ≈ qα,K

√
K(K + 1)

12D
,

where qα,K is the upper α percentile of the range of K independent N(0, 1) variables.14

To implement the multiple comparison tests, we follow Koning et al. (2005) once again,

who used plots to present the results compactly. In subsection 2.5, for each model k, an interval

is drawn with length rα,K,D and centred at R̄k. If the intervals for two models do not overlap,

H0 – indicating that both models perform equally in ranking terms – is rejected.

A line is drawn at the upper boundary of the interval of the best model (i.e. that with the

lowest average ranking for a given metric). That will be the lowest upper boundary among the

models analysed and this reference line corresponds to "the unconstrained multiple-comparison

procedure with the best, deducted from all pairwise comparisons", (Hsu, 1996, as cited in

Koning et al.,2005, p. 400). Therefore, all models with confidence interval above the reference

line perform significantly worse than the best model.

To our knowledge, multiple comparison tests have not been used before in evaluating yield

14qα,K can be obtained in R using the function cRangeNor() from the package NSM3.
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curve models. The closest related work is Varga (2009, p. 385-387), which applied the Friedman

test pairwise to evaluate yield curve models regarding absolute error performance.

2.4 Data and estimation procedures

The data used in this chapter comprises of rates of One-day Interbank Deposit Futures ("DI1").

Each working day, B3 releases two to five versions of its Price Report, documenting all trans-

actions during that day. Historical data from the Price Report is available in XML files, which

were downloaded from 2 January 2018 (the oldest report available) to 22 April 2023, using the

R package RSelenium. This timeframe encompasses 1313 working days, as calculated by the

R package bizdays, using the calendar "Brazil/ANBIMA."

For each day, we considered the last Price Report release, except for 4 April 2021, where the

last released XML file was corrupted. For this day, we utilised the second-last file. The XML

files were parsed using R’s XML package, extracting information solely about DI1 transactions.

Typically, a day has 37 or 38 records, each corresponding to a different DI1 maturity. Even

though there are some variables related to DI1 transactions each day we used two key pieces

of information: the date when the contract is due ("data de referência") as maturity, and the

adjusted rate ("taxa ajuste") as the interest rate level. During the analysis it was detected that

data from 2 December 2022 had its first maturity equal to "-1" and the correspondent yield

equal to "NA". We excluded only this pair maturity-yield from this day data.

Estimation procedures

All estimates and plots were performed using the R software. The functions, algorithms, and

their options used in the estimation of the different models are documented below:

• Polynomial Regression: this model was implemented using the lm() and poly()

functions. A rule of thumb was adopted to determine the polynomial degree, employing

degree 4 for a normal curve and degree 9 for inverted or humped curves.
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• McCulloch Cubic Splines: the knots were defined according "McCulloch’s rule" using

the quantile function on each day’s maturity vector. Then the natural cubic splines

basis was generated using function ns() from the splines package. Finally the splines

were estimated using the lm() function.

• Smoothing Splines: this model was implemented using the ss() function from the

npreg package, (Helwig, 2022). The smoothing parameter was defined by generalised

cross-validation.

• Kernel Regression: this model was implemented using the npreg() function from the

np package, using the local constant option to obtain the Nadaraya-Watson estimator. We

considered one specification with a fixed bandwidth (0.3) and other with the bandwidth

defined by cross-validation, for the latter we allowed the process of optimising the cross-

validation function to restart twice from different (random) initial points.

• Local regression - Loess: this model was implemented using the loess() function

from the stats package with a span fixed in 0.2.

• Nelson Siegel model: this model was implemented in two ways, firstly fixing λt = 368

following Diebold and Li (see Appendix A) and estimating the model by OLS. Secondly,

the model was implemented using nonlinear least squares with the function nloptr from

the package with the same name (Ypma et al., 2022), utilising the "Improved Stochastic

Ranking Evolution Strategy" algorithm for optimisation and a convergence criterion of

10−6 limited to 15,000 iterations. This algorithm was chosen because it allows inequal-

ity restrictions on the parameter values, two restrictions were imposed β0,t > 0 and

β0,t + β1,t > 0. The initial guesses were made according Wahlstrøm et al. (2022) re-

commendation: β0,t equal the average yield from the three shorter maturities, β1,t equal

first maturity yield minus the average yield from the three shorter maturities , β3,t equal

zero, and λt equal 368.
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• Bliss, Svensson, and the Five-factor models: these models were implemented using the

nonlinear Nelson-Siegel approach, employing the nloptr function with the "Improved

Stochastic Ranking Evolution Strategy" algorithm. The primary distinction lies in the

expansion of the initial guesses vector. For the Svensson specification an additional re-

striction was included in the optimisation: λ2,t > λ1,t. For the Five-factor model, we

allowed 30,000 iterations, while the others were limited to 15,000 iterations.

2.5 Results: comparing estimation techniques

We estimated 11 different specifications for each day over the sample period from 2 January

2018 to 22 April 2023. Each specification was estimated at least three times daily: in-sample

estimate, full-sample estimate, and disturbed sample estimate. Here, we compare the models’

performance according to the dimensions explained in section 2.3 and test whether the perform-

ances of the models are statistically different.

2.5.1 Goodness-of-fit analysis

In this section, we analyse the goodness-of-fit of all models. Starting with descriptive statistics,

Table 2.4 presents the average MAE for the days in the sample, illustrating the in-sample and

out-of-sample fit and how each model adapts to different maturity ranges. Similarly, Table 2.5

shows the average MSE.

From these averages, nonparametric and local regression models systematically fit better

than the parametric specifications. On average, the smoothing spline has the best in-sample fit.

However, considering out-of-sample performance, the Loess outperforms even the smoothing

spline on all different ranges considered. This is remarkable since we do not know of previous

applications of Loess to yield curve estimation.

Both Kernel regression specifications fit the out-of-sample data poorly, especially at the

short range. Considering the Nelson-Siegel family, the baseline Nelson-Siegel specification
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estimated by OLS has the worst performance when estimated with all maturities and on the

short-range sub-sample. The other variants have very similar performance according to the

descriptive statistics.

When assessing long-range performance, several models demonstrate a comparable fit. Mc-

Culloch’s Splines, Smoothing Splines, and Loess exhibit similar performance in terms of MAE

or MSE. Similarly, within the Nelson-Siegel family, the models exhibit comparable results.

The key takeaways from Tables 2.4 and 2.5 are:

• The Smoothing Spline has the best fit in-sample but is outperformed by the Loess out-of-

sample.

• The Kernel regression specifications fit out-of-sample data poorly.

• The Nelson-Siegel family has a similar fit, but the Nelson-Siegel specification estimated

by OLS has a poor fit in the short range.

• The Polynomial regression fit is not much worse than that of the Nelson-Siegel family.

Even though the descriptive statistics provide some insight into the models’ relative per-

formance, it is challenging to establish whether one systematically outperforms the others. For

this kind of evaluation, firstly, we perform a Friedman rank test, considering the daily MAE

rankings. Results shown in Table 2.6 confirm that the models have different performances.

Then, we implement the multiple comparison procedure on Figures 2.14 and 2.15.

From Figure 2.14a, it is possible to conclude that the smoothing splines model has the best

in-sample performance considering the whole maturity range. However, according to Figure

2.14b, the smoothing splines and the Loess are not statistically different in fitting out-of-sample

data. Likewise, considering the fit at the short range (Figures 2.14c and 2.14d), both models are

not statistically different but fit the data systematically better than the alternatives.

Again, for the Medium Range, the smoothing splines model has the best in-sample per-

formance, but the smoothing splines and the Loess are not statistically different in fitting out-
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of-sample data (Figures 2.15a and 2.15b). Finally, for the Long Range data, the smoothing

splines model has the best in-sample performance once more. However, considering out-of-

sample fit, the McCulloch Cubic Spline is not statistically different from the smoothing splines,

and the latter is not statistically different from the Loess, (Figures 2.15c and 2.15d).

The key takeaway from the multiple comparison procedures is that smoothing splines and

the Loess are not statistically different for out-of-sample interpolation.

One further analysis can be made about the goodness-of-fit by evaluating how the metrics

evolve across the sample. Figures 2.16 and 2.17 plot the daily MAE for all models under

analysis. All models experience a performance deterioration between mid-2021 and mid-2022.

This decline is attributed to the change in the shape of the Yield Curve. Figure 2.18 provides

a glimpse of the Yield Curve dynamics, indicating that the period of increased MAE for all

models corresponds to humped yield curves – indicating a term structure where the medium

range has the highest interest levels.
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Figure 2.14: Multiple Comparison Procedure for Goodness-of-Fit - Models Ranked by MAE
(Overall and Short Range)
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(b) Out-of-sample
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(c) In-sample Short Range
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(d) Out-of-Sample Short Range

Source: Elaborated by the author.
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Figure 2.15: Multiple Comparison Procedure for Goodness-of-Fit - Models Ranked by MAE
(Medium Range and Long Range)
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(b) Out-of-sample Medium Range
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(c) In-sample Long Range
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(d) Out-of-Sample Long Range

Source: Elaborated by the author.
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Figure 2.16: In-sample and Out-of-sample Accuracy Across Sample Days (1 of 2)
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Panels: (a) McCulloch Natural Cubic Spline. (b) Smoothing Splines. (c) Loess.
(d) Polynomial Regression. (e) Kernel Regression (Fixed bandwidth). (f) Kernel
Regression (Bandwidth by CV). (g) Nelson-Siegel (NLS). (h) Nelson-Siegel (OLS).
(i) Bliss.
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Figure 2.17: In-sample and Out-of-sample Accuracy Across Sample Days (2 of 2)
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Source: Elaborated by the author.

Figure 2.18: The Yield Curve Evolution: January 2018 - April 2023

Source: Elaborated by the author.
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2.5.2 Robustness analysis

This section analyses how the model fit changes when one outlier is introduced to the sample.

Table 2.7 presents the MAE and MSE average values considering the models estimated using

the original and modified data (with a disturbance in a random maturity each day).

The table shows that all models experience a deterioration in their fit, as measured by MAE

and MSE. However, the Smoothing Splines model and the Loess still have the best average

fit, even in the presence of an outlier. The Kernel regression specifications show the largest

worsening in the fit metrics (in absolute terms). On the other hand, the Nelson-Siegel family

models are remarkably robust to outliers.

Table 2.7: Assessing Model Robustness: MAE and MSE in Original and Perturbed Sets

Modelo
MAE MSE

Original data Perturbed data Original data Perturbed data

Polynomial Regression 0.120535 0.145309 0.034326 0.041096
McCulloch CS 0.022069 0.087315 0.001165 0.018092
Smoothing Spline 0.003673 0.067968 0.000146 0.079302

Kernel Regression (fixed bdw) 0.085938 0.113314 0.031320 0.043631
Kernel Regression (cv bdw) 0.046772 0.148206 0.015330 0.066718
Loess 0.008231 0.076976 0.000204 0.052546

Nelson-Siegel (NLS) 0.114567 0.132499 0.024878 0.029479
Nelson-Siegel (OLS) 0.154595 0.161646 0.044970 0.044966
Bliss 0.109715 0.130170 0.023354 0.029164
Svensson 0.110072 0.132498 0.022748 0.029438
Five-factors 0.093842 0.121020 0.018988 0.026120

The Friedman test statistic in Table 2.6 indicates significant differences among the models

in both the original sample and the sample with disturbance. The multiple comparison test in

Figure 2.19 reveals that, except for the Kernel regression specifications, the average rankings

of the models remain unchanged with the introduction of the outlier, and the smoothing spline

maintains the best-fit rank in both settings.
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For the robustness analysis, we also depict the evolution of MAE over the sample days,

considering both estimates in Figures 2.20 and 2.21. The graphical analysis highlights that the

disturbance led to an upward shift in the average MAE across the days. This effect is particularly

noticeable in the spline models and Loess. However, for the Nelson-Siegel family, this effect is

not as pronounced.

Figure 2.19: Multiple Comparison Procedure for Robustness - Models Ranked by MAE
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(b) Sample with disturbance

Source: Elaborated by the author.
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Figure 2.20: Robustness Across Sample Days (1 of 2)
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Figure 2.21: Robustness Across Sample Days (2 of 2)
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2.5.3 Smoothness analysis

This section analyses how smooth the models’ estimates are according to the three roughness

metrics presented previously. Table 2.8 provides the average metrics considering all days in the

sample.

Considering R, Polynomial, Svensson, and Loess specifications present the lower rough-

ness. Analysing the average R3 indicates that the Polynomial and the Kernel regression with

fixed bandwidth are the smoother estimates. However, all models present low values for R and

R3, making it hard to tell differences from the averages.

Regarding R2, a different pattern emerges; the Nelson-Siegel family correspond to the

smoother estimates. Conversely, the cubic spline’s performance is inferior. This discrepancy

arises due to the metric’s weighting that penalises steepness at higher maturities. A high R2

suggests that the yield curve estimate curvature changes substantially for the smoothing splines

after the last observed maturity, aligning more with the example in Figure 2.4 than that in Figure

2.5. In other words, a high R2 for the smoothing spline indicates poor extrapolation after the

last observation.

Table 2.8: Assessing Model Smoothness: Three Roughness Measures

Model R R2 R3

Polynomial Regression 8.563060E-08 6.874353E-01 2.253437E-11
McCulloch CS 3.882038E-07 1.925056E-02 1.021589E-10
Smoothing Spline 3.093370E-03 3.942163E+04 8.140449E-07

Kernel Regression (fixed bdw) 1.347686E-07 2.775508E-01 3.546542E-11
Kernel Regression (cv bdw) 2.406275E-06 1.534375E+01 6.332302E-10
Loess 7.055688E-06 5.557780E-01 1.856760E-09

Nelson-Siegel (NLS) 1.408724E-06 1.241196E-02 3.707169E-10
Nelson-Siegel (OLS) 1.407544E-06 1.244910E-02 3.704063E-10
Bliss 1.536130E-06 1.224638E-02 4.042447E-10
Svensson 7.260830E-07 1.164079E-02 1.910745E-10
Five-factors 5.578462E-07 1.195935E-02 1.468016E-10

Ranking the models according the smoothness metrics and applying the Friedman tests in-
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dicates that models’ performance in terms of roughness are indeed different.15

Figure 2.22 shows the multiple comparison procedure. Estimates within the Nelson-

Siegel family are not statistically different in any setting. Considering the rank by R, the

Nelson-Siegel family and the Polynomial regression systematically have the lowest roughness

in the sample. Considering R2, the Nelson-Siegel family is unchallenged, while the rankings

given by R3 show the Polynomial regression with the fewest rough estimates.

15The Friedman statistics are: 5915.6, when the models are ranked by R; 10228, when the models are ranked by
R2; and 10823, when the models are ranked by R3. In all cases with 10 degrees of freedom and a p-value smaller
than 2.2e−16.
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Figure 2.22: Multiple Comparison Procedure for Smoothness - Models Ranked by R, R2, R3
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(b) R2
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(c) R3

Source: Elaborated by the author.
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2.6 Conclusion

This chapter provides a comprehensive evaluation of empirical models of the Term Structure of

Interest Rates, commonly known as the Yield Curve. The Yield Curve represents the relation-

ship between time to maturity and the level of interest rates, playing a pivotal role in economic

analysis. However, the Yield Curve is not fully observable on a daily basis. Each day, one only

observes interest levels at specific maturities corresponding to the bonds or derivatives contracts

traded that day. The models analysed in this chapter aim to interpolate the observed points and

extrapolate over the last observed maturity to estimate the complete Yield Curve.

Literature usually considers nonparametric or spline models in addition to the parsimoni-

ous function models, derived from Nelson and Siegel (1987)’s seminal work. Even though the

chapter surveyed more spline models, only the two primary tools of the trade were considered

for the comparison of the estimates: McCulloch’s Natural Cubic Spline and Smoothing Splines.

On the other hand, the chapter analysed four specifications from the Nelson-Siegel family and

two possible estimation methods for the baseline Nelson-Siegel model. As well that, we con-

sidered two Kernel regression specifications and the Loess for estimating the Yield curve. This

addition is a relevant contribution since the surveyed literature has ignored these options so far.

Using data from Brazilian interest rate derivatives over 1313 days, we compared model

performance, evaluating them according to goodness-of-fit (in-sample and out-of-sample), ro-

bustness to outliers, and smoothness metrics. Besides the descriptive statistics on these metrics,

the Friedman test and the multiple comparison procedure were used to assess the statistical sig-

nificance of differences among the models. It’s worth noting that the application of the multiple

comparison procedure in the context of yield curve estimation appears to be a novel contribu-

tion.

As stated in the introduction, different applications of yield curve estimates may prefer

some characteristics over others. The Smoothing Spline consistently has the best fit in-sample

but is outperformed by the Loess out-of-sample on all different maturity ranges. Among the
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Nelson-Siegel family models, the more parametrised versions have no clear advantage in terms

of goodness-of-fit. However, the baseline model estimated by OLS under-performs the others.

The robustness analysis shows that outliers mainly harm the Kernel regression estimates. At

the same time, the Smoothing Spline and the Loess are robust and have the best fit even in the

presence of outliers. Finally, the smoothness analysis favours the parametric models. It also

suggests that the smoothing spline is the worst option for extrapolating the yield for longer

maturities.
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Chapter 3

Forecasting the Yield Curve: an

implementation of the Dynamic

Nelson-Siegel model

3.1 Introduction

Comprehending the yield curve dynamics holds significant importance for policy-makers and

private investors. On the one hand, having insights into the expected behaviour of interest rates

in the coming months or years aids governments in optimising their debt structures. Addition-

ally, more precise forecasts of the yield curve empower policy-makers to enhance the execution

of monetary policy by anticipating market reactions to overnight interest rates and other mac-

roeconomic variables. From the private sector perspective, these forecasts enable institutional

investors to manage risk in their portfolios effectively, thereby enhancing their long-term in-

vestment strategies.

This chapter delves into an examination of the modelling and forecasting capabilities of the

Dynamic Nelson-Siegel model, as proposed by Diebold and Li (2006) and further developed

in Diebold et al. (2006), in comparison to baseline models (random walk and Holt-Winters)
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for forecasting the term structure of interest rates in Brazil. The landscape of models for term

structure is diverse, with various theoretical and empirical approaches. While theoretical models

might face challenges accurately fitting real-world data, empirical models, although effective

in fitting data, often lack a solid economic foundation, making their interpretation for policy

purposes complex. Additionally, only a few models estimate and forecast the term structure.

The Diebold-Li specification, along with its variations, stands out as an advantageous option,

exhibiting both good forecasting performance in various scenarios and interpretable parameters.

In this chapter, we utilise Brazilian data obtained from interest rate futures contracts ("DI1")

spanning from January 2018 to April 2023 to estimate and forecast the term structure of interest

rates. The raw data is subjected to interpolation using natural cubic splines, ensuring that all

models operate with interest rates at predefined maturities as their input. The chosen time frame

encompasses various shapes of the Yield Curve, providing a comprehensive basis for evaluating

the forecasting performance of the models.

This chapter is organised into four sections, each serving a distinct purpose alongside this

introduction. Section 3.2 provides an overview of the Diebold-Li specification and the meth-

odologies used for its estimation. Additionally, it reviews previous studies that have employed

this framework for forecasting the Brazilian Yield Curve. Section 3.3 provides detailed inform-

ation about the data used in the forecasting exercises and outlines the criteria for comparing the

forecasts. Section 3.4 reveals the out-of-sample performance of the models, and Section 3.5

concludes this chapter.

3.2 Methods for forecasting yield curve

The model introduced by Nelson and Siegel (1987) gave rise to a new category of yield curve

estimation techniques known as parsimonious parametric models, characterised by their few

parameters requiring estimation. Not only do these models fit interest rate data well, but their

parameters are also easily interpretable, contributing to their popularity among central banks

73



CHAPTER 3. FORECASTING THE YIELD CURVE §3.2. METHODS FOR FORECASTING

and money market agents. Three model parameters are associated with the short- (β1), medium-

(β2), and long-term (β0) components of the term structure, the fourth parameter (λ) is a decay

factor that influences the maturity at which the medium-term factor reaches its maximum:

y(m) = β0 + β1

(
1− e−m/λ

m/λ

)
+ β2

(
1− e−m/λ

m/λ
− e−m/λ

)
+ εm. (3.1)

When faced with a cross-section of yield-maturity pairs, the model can be estimated, and yield

estimates for unobserved maturities can be obtained using the model. However, the presence of

the parameter λ in equation (3.1) forces the utilisation of nonlinear least squares to estimate all

four parameters. Nelson and Siegel suggested employing a grid of λ, then estimating the other

parameters using ordinary least squares (OLS) and selecting the appropriate value for λ based

on the sum of squared residuals (SSR).

Later, Diebold and Li (2006) proposed a dynamic version of the original model,

yt(m) = β0,t + β1,t

(
1− e−m/λ

m/λ

)
+ β2,t

(
1− e−m/λ

m/λ
− e−m/λ

)
+ εm,t. (3.2)

In this instance, they set the value for λ constant across all days in their sample, taking into ac-

count the average maturity at which the curvature factor reaches its maximum.1 By considering

a series of Nelson-Siegel parameter estimates over a sequence of days or months, they could be

treated as a set of time series:


{β̂0,t} = β̂0,1, β̂0,2, β̂0,2, . . .

{β̂1,t} = β̂1,1, β̂1,2, β̂1,2, . . .

{β̂2,t} = β̂2,1, β̂2,2, β̂2,2, . . .

(3.3)

Therefore, one could model and forecast the parameters, resulting in a forecast of the yield

1Diebold and Li fixed the decay parameter (λt = λ;∀t, see the Appendix A) and estimated the others using
OLS, see section 2.2.3 for the Nelson-Siegel estimation details.
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curve. Furthermore, Diebold and Li provided an alternative interpretation for these parameters

as latent factors, aligning with Litterman and Scheinkman (1991). The latter authors proposed

summarising the yield variability over different maturities into a few factors that govern the

yield curve’s shape. In this context, the Nelson-Siegel parameters are associated with the yield

curve’s level (β0), steepness (β1), and curvature (β2). To illustrate this association, Diebold and

Li (2006, p. 341 and 350) suggest comparing Nelson-Siegel factor estimates with empirical (or

data-based) measures of level, inclination, and curvature.2

Originally, Diebold and Li (2006) introduced a two-step estimation procedure. In the first

step, equation (3.2) is estimated by OLS (i.e. with a fixed λ) for a sequence of days or months.

Subsequently, the resulting series (3.3) are modelled as following three first-order autoregress-

ive processes or a first-order a vector autoregressive process. Then the yield curve forecasts are

produced using the formula

ŷt+h|t(m) = β̂0,t+h|t + β̂1,t+h|t

(
1− e−m/λ

m/λ

)
+ β̂2,t+h|t

(
1− e−m/λ

m/λt

− e−m/λ

)
, (3.4)

where:

β̂i,t+h|t = âi + γ̂iβ̂i,t; i = 0, 1, 2 for the AR(1) processes, or

β̂t+h|t = α̂ + γ̂β̂t for the VAR(1) process.

In the context of AR(1) modelling, one can proceed in two ways to obtain h-steps ahead fore-

casts. One approach involves considering the original data frequency and producing multi-step

forecasts from 1 to h. Alternatively, as suggested by Diebold and Li (2006), estimates âi and

γ̂i can be obtained by regressing β̂i,t on an intercept and β̂i,t−h, aiming to minimise the forecast

2Specifically, one should observe: β1,t = yt(∞) and −β2,t = yt(∞) − yt(0), where ∞ correspond to the
longest maturity observed on a given working day. Further, β3,t ≈ 2yt(18)− yt(1)− yt(48). This comparison is
made on figure 3.3, contrasting Nelson-Siegel factors estimated daily by OLS and the data-based measures given
by: Level = yt(120), Slope = −(yt(120) − yt(3)), and Curvature = 1

0.3 × 2yt(24) − yt(3) − yt(120); with
maturity measured in months.
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root mean squared error (RMSE). Once the parameters are forecasted, yields for the whole ma-

turity range are calculated using the formula (3.4). Then, one assesses the forecasting quality

by comparing these calculated yields with out-of-sample yield observations (in t + h) rather

than comparing parameter forecasts in period t with parameter estimates in period t+ h.

While the Diebold and Li (2006) forecasts outperformed competing models in many matur-

ity ranges, the two-step procedure had some inconsistencies. Specifically, the series of factors

modelled as autoregressive processes are non-stationary. Furthermore, the determination of λ is

somewhat ad hoc. To address the inconsistencies, Diebold et al. (2006) proposed a one-step es-

timation procedure. Starting with the VAR representation of the Nelson-Siegel parameter series

and writing equation (3.2) in matrix form, one gets:


yt(m1)

yt(m2)

...

yt(mM)


︸ ︷︷ ︸

y(m)

=


1 1−e−m1/λt

m1/λt

1−e−m1/λt

m1/λt
− e−m1/λt

1 1−e−m2/λt

m2/λt

1−e−m2/λt

m2/λt
− e−m2/λt

...
...

...

1 1−e−m1/λt

mM/λt

1−e−mM/λt

mM/λt
− e−mM/λt


︸ ︷︷ ︸

Λ


β0,t

β1,t

β2,t


︸ ︷︷ ︸

βt

+


εt(m1)

εt(m2)

...

εt(mM)


︸ ︷︷ ︸

εt

(3.5)


β0,t − µ0

β1,t − µ1

β2,t − µ2


︸ ︷︷ ︸

βt−µ

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


︸ ︷︷ ︸

A


β0,t−1 − µ0

β0,t−1 − µ1

β0,t−1 − µ2


︸ ︷︷ ︸

βt−1−µ

+


η0,t

η1,t

η2,t


︸ ︷︷ ︸

ηt

. (3.6)

In a more concise form using vector-matrix notation, the system of equations modelling the

parameters’ evolution and the yield curve estimation in the state-space representation can be

expressed as:

yt = Λβt + εt Measurement equation (3.7)

(βt − µ) = A(βt−1 − µ) + ηt State equation. (3.8)
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Contrasting with models studied in chapter 2, besides estimating the term structure each

day with equation (3.7) the dynamic Nelson-Siegel specification also models the term structure

evolution over the days with equation (3.8). To estimate this system using the Kalman filter,

Diebold et al. (2006) assumes that the error components in the measurement and transition

equations are orthogonal to each other and that the parameters in the first period (t = 0) are

orthogonal to the error term in the correspondent equation:

εt

ηt

 ∼ WN

0

0

 ,

H 0

0 Q

 ;


E(β0ε

′
t) = 0

E(β0η
′
t) = 0

(3.9)

Further assumptions are that the errors at different maturities are uncorrelated (H is diagonal),

while errors affecting level, slope, and curvature may be correlated (Q is nondiagonal).3 Re-

markably, this approach enables the daily estimation of the four parameters in the measurement

equation (level, slope, curvature, and the decay parameter, λt). Furthermore, other potentially

relevant variables in the yield curve evolution, such as inflation and activity level, may be in-

cluded in the state equation.

3.2.1 The estimation process using the Kalman Filter

The Kalman filter is a recursive procedure to obtain the optimal estimator of the state vector

(βt) at time t, using information available up to time t, (Harvey, 1989, p. 104). The system

of equations (3.7) and (3.8) combined with the assumptions (3.9) constitute a linear Gaussian

state-space model.

Following Koopman et al. (2010), the state vector (βt) can be estimated using past and

current values of the observed yields (y1, y2, . . ., yt). Let bt|s represent the Minimum Mean

Square Linear Estimator (MMSLE) of βt
4, and Bt,s denote the Mean Square Error (MSE) matrix

3"[Then] application of the Kalman filter then delivers maximum-likelihood estimates and optimal filtered and
smoothed estimates of the underlying factors.", Diebold et al. (2006, p. 313).

4As presented by Harvey (1989, p. 110-111): bt = Et(βt) = E(βt|yt)
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for s = t − 1. With the knowledge of the values of bt|t−1 and Bt,t−1, the Kalman filter updates

these values by incorporating the new yield observations yt during the filtering step:

bt|t = bt|t−1 + Bt|t−1Λ
′F−1

t vt, (3.10)

Bt|t = Bt|t−1 − Bt|t−1Λ
′F−1

t ΛBt|t−1 (3.11)

Where:

• Λ is the loading factors matrix, as in Formula (3.5);

• vt = yt − ΛBt|t−1, is the prediction error one-step ahead; and

• Ft = ΛBt|t−1Λ
′ + Q, is the prediction error variance matrix.

After updating the estimates of βt, the prediction step of the filter computes the MMSLE of

the state vector for the subsequent period,

bt+1|t = (I − A)µ+ Abt|t, (3.12)

Bt+1|t = ABt|tA′ + Q. (3.13)

Where A is the coefficients matrix from the state equation.

Considered jointly, the updating equations (3.10 and 3.10) the prediction equations (3.12

and 3.13) constitute the Kalman filter. Let’s consolidate all unknown parameters, including the

coefficients in A, the λt in Λ, µ, and the unknown matrices (H and Q), into a parameter vector

(Ψ). Considering the distributional assumptions in (3.9) one can write the likelihood function

for the sample, following Harvey (1989, p. 125-126):

L(y,Ψ) =
T∏
t=1

p(yt|y1, . . . , yt−1) (3.14)

ℓ(Ψ) = −NT

2
ln(2π)− 1

2

T∑
t=1

ln|Ft| −
1

2

T∑
t=1

v′
tF

−1
t vt. (3.15)
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Then, starting with initial values (β1 = µ, and B1,0), the unknown parameters are estimated

recursively over the sample of days t = 1, . . . , T . For each day t, the parameter estimates are

obtained by maximising the log-likelihood function in relation to Ψ.

3.2.2 Related studies for the Brazilian Yield Curve

In their comparative analysis, Vicente and Tabak (2008) evaluated the performance of the dy-

namic Nelson-Siegel model using Brazilian data, employing the two-step procedure over a 12-

month horizon. They compared two Nelson-Siegel specifications – one with a fixed decay and

the other with the decay parameter estimated alongside others by NLS – with two affine term

structure models (ATMS) specifications and random walk ("no change") forecasts. Through the

assessment of mean squared errors in out-of-sample forecasts, they concluded that the Diebold

and Li (2006) model exhibited superior performance, particularly for longer time spans, as de-

termined by the Diebold-Mariano test (Diebold and Mariano, 1995).

Similarly, Cajueiro et al. (2009) conducted a comparison of Diebold-Li forecast perform-

ance (using the two-steps procedure) with the Functional Signal Plus Noise (FSPN) model

developed by Bowsher and Meeks (2006) and random walk forecasts. Utilising the Diebold-

Mariano test, they concluded that while the FSPN model provided better forecasts up to three

months, it was outperformed by the Diebold-Li specification in longer maturities.

Employing Brazilian data, Almeida et al. (2009) applied a dynamic version of the Svens-

son (1994) specification5 using the two-step estimation procedure proposed by Diebold and Li

(2006). They conducted a forecast comparison between the dynamic Nelson-Siegel and the

dynamic Svensson models, considering AR(1) and VAR(1) processes, along with random walk

forecasts. Both the Nelson-Siegel and Svensson specifications utilised fixed decay parameters,

determined as the value minimising in-sample root mean square error (RMSE). This work found

that the dynamic Svensson model produced better estimates in three forecast horizons (one day,

5An extension of the baseline Nelson-Siegel model, incorporating a second curvature (medium-term) factor.
Refer to section 2.2.3 for details on the Svensson model.
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one month, and three months ahead) according to the Diebold-Mariano test.

The study conducted by Caldeira et al. (2010) estimated the Diebold-Li specification in the

state-space form using the Kalman filter with Brazilian data. They fixed the decay parameter for

the two-step estimating procedure, ensuring that the curvature factor reached its maximum in

maturities between 13 and 18 months. In comparing the two-step and one-step forecasts three

and six months ahead, they found that the latter estimation produced superior out-of-sample

forecasts for RMSE, as indicated by the Diebold-Mariano test.

The study conducted by Carvalho and Moura (2014) compared the performance of dynamic

versions of the Nelson-Siegel and Svensson models, estimated using the two-step procedure

with AR(1) and VAR(1) structures. The comparison included a two-factor model (a Nelson-

Siegel specification without the curvature term) and a random walk forecast. The findings in-

dicated that the dynamic Nelson-Siegel and Svensson models were outperformed, as measured

by out-of-sample RMSE, by the random walk and two-factor models on many horizons and

maturities considered.

The study by Caldeira et al. (2016) implemented an arbitrage-free dynamic Nelson-Siegel

(AFNS) model to estimate and forecast the Brazilian yield curve. Both the conventional Diebold-

Li and the AFNS specifications were estimated using the Kalman filter. The estimation process

involved a rolling window of 2 years (500 working days), and the models generated forecasts

for various time horizons: one week, one month, three months, and six months ahead. The

performance of these models was compared against forecasts generated by the random walk,

AR(1), and VAR(1) models. The results showed that while the Diebold-Li and AFNS mod-

els performed better at longer horizons, they were outperformed by other models in shorter

horizons.

Finally, the study conducted by Vieira et al. (2017) explored the impact of additional mac-

roeconomic information on forecasting the Brazilian yield curve. Rather than incorporating

a few extra factors, as done by Diebold et al. (2006) in the state equation, they condensed a

substantial number of macroeconomic variables using principal components. Consequently, the
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state equation adopted the form of a factor-augmented VAR. They registered an improvement

in forecast accuracy over other models, mainly at short maturities.

3.3 Data

Similar to Chapter 2, this chapter relies on data related to rates of One-day Interbank Deposit

Futures ("DI1") from 2 January 2018 to 22 April 2023. This dataset covers various yield curve

shapes, offering a comprehensive foundation for assessing forecasting performance. For each

working day, the last Price Report made available by B3 in XML files was downloaded, using

the R package RSelenium resulting in a sample of 1313 working days. Typically, a day has

37 or 38 records, each corresponding to a different DI1 maturities. We used two key pieces

of information: the date when the contract is due ("data de referência") as maturity, and the

adjusted rate ("taxa ajuste") as the interest rate level.

Due to the daily variation in available maturities, this chapter adopts the complete term

structure estimated by McCulloch’s Natural Cubic Spline (refer to Section 2.2.1). Daily yields

were extracted for maturities of 3, 6, 9, 12, 18, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120

months. While not mandatory, this is a standard procedure in literature.6

Figure 3.1 presents how yield curve evolved over our sample period: starting with a normal

(positively inclined) curve that changed its level, becoming a humped curve in 2022, and finally

an inverted curve in 2023.

Table 3.1 present the descriptive statistics for the selected maturities, as well as for the data-

based measures of level, slope and curvature. Considering the column with average yields at

different maturities, one can observe that the "average yield curve" is increasing and concave,

characteristic of a normal yield curve. Furthermore, the standard error column aligns with the

6Similar datasets have been utilised in previous studies such as Vicente and Tabak (2008), Cajueiro et al. (2009),
Almeida et al. (2009), Caldeira et al. (2010), and Caldeira et al. (2016). Standardising maturities by estimating
the yield curve in advance is a common practice in literature, even though it is not a prerequisite for the primary
estimation procedure addressed in this chapter. For instance, Diebold and Li (2006) used linear interpolation to
standardise the maturities.
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Figure 3.1: Brazilian Term Structure, January 2018 - April 2023
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Note: McCulloch Natural Cubic Splines Estimates.
Source: Elaborated by the author.

stylised fact of greater variability in the short end compared to the long end. The autocorrela-

tion estimates at lags of 1, 6, and 12 months are presented; the high values of these statistics

indicate a high persistence of interest rates at these maturities. On the other hand, the partial

autocorrelations are relatively low. Assessing the descriptive statistics of the empirical factors,

one can observe that the averages are theoretically coherent (level > 0 and level + slope > 0, for

instance), and the factors exhibit a high degree of persistence.
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Table 3.1: Descriptive statistics for the Yield Curves - January 2018 - April 2023

Maturity (months) X̄ s.e. min max ρ̂(1) ρ̂(6) ρ̂(12) pacf(1) pacf(6)

3 7.0730 3.9083 1.8729 13.8884 0.9713 0.6868 0.1529 -0.0078 -0.0040
6 7.2976 3.9606 1.8881 14.2306 0.9724 0.7008 0.1879 -0.0017 -0.0006
9 7.4763 3.9101 1.9953 14.4259 0.9724 0.7074 0.2078 0.0046 0.0028

12 7.6207 3.7643 2.1858 14.4899 0.9717 0.7101 0.2188 0.0075 0.0041
18 7.8878 3.4102 2.6826 14.4019 0.9684 0.7097 0.2297 0.0115 -0.0002
24 8.1505 3.0902 3.2339 14.1820 0.9635 0.7052 0.2325 0.0166 -0.0005
30 8.3998 2.8270 3.7675 13.9414 0.9577 0.6976 0.2298 0.0186 0.0042
36 8.6252 2.6378 4.2093 13.7848 0.9518 0.6882 0.2243 0.0175 0.0086
48 8.9954 2.4270 4.9328 13.7466 0.9433 0.6697 0.2119 0.0128 0.0152
60 9.2749 2.3093 5.4841 13.7802 0.9375 0.6536 0.2002 0.0097 0.0203
72 9.4839 2.2241 5.9054 13.7709 0.9329 0.6404 0.1899 0.0100 0.0235
84 9.6460 2.1576 6.2385 13.7374 0.9289 0.6294 0.1815 0.0116 0.0254
96 9.7744 2.1040 6.4328 13.7076 0.9253 0.6199 0.1744 0.0124 0.0266

108 9.8756 2.0609 6.5485 13.7433 0.9224 0.6117 0.1687 0.0129 0.0275
120 9.9555 2.0262 6.6521 13.7686 0.9200 0.6049 0.1641 0.0129 0.0280

Level 9.9555 2.0262 6.6521 13.7686 0.9200 0.6049 0.1641 0.0129 0.0280
Slope -2.8825 2.4533 -6.5232 2.2814 0.9395 0.5532 -0.0873 0.0248 -0.0009
Curvature -0.7274 1.3021 -3.6680 3.8600 0.8426 0.4195 -0.0904 0.0270 -0.0007

3.4 Empirical Results

This section employs the one-step procedure (the Kalman filter) to estimate the dynamic Nelson-

Siegel model. This approach aims to evaluate the latent factor interpretation proposed by

Diebold and Li. Additionally, we conduct a comparative analysis of the forecasting accur-

acy between the dynamic Nelson-Siegel model estimated via the two-step procedure, where

coefficients are modelled as either an AR(1) process or a VAR(1) process. This comparison

involves assessing the model against two baseline forecasting techniques: the random walk

forecast, where predictions correspond to the last observation in the training set and an expo-

nential smoothing technique known as Holt-Winters.

3.4.1 Latent factors interpretation

Diebold and Li (2006) introduced an alternative interpretation for the coefficients within the

Nelson-Siegel formula. Initially, Nelson and Siegel had linked these coefficients to interest com-
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ponents of various maturities (long, medium, and short-term components). However, Diebold

and Li suggested an alternative perspective, positing that these coefficients could be construed

as latent factors intrinsic to yield curve characteristics: level, slope, and curvature. Each factor

is influenced by its respective factor loading (denoted as matrix Λ in Formula (3.5)). The as-

sessment of the latent factor interpretation is presented in Table 3.2 as correlation coefficients

and graphically in Figure 3.3.

Three series of factor estimates are considered: the data-based factors calculated using

yields from the natural cubic splines estimates, the Nelson-Siegel estimates obtained by OLS,

and the Nelson-Siegel estimates obtained from the Kalman filter.

The correlations and co-movements of the series support the latent factor interpretation,

indicating that the Nelson-Siegel parameters summarise much of the yield curve information.

However, the curvature factors estimated by the Kalman filter exhibit a slight deviation from

the others, showing a lower correlation.

Table 3.2: Correlation between Model-based and Data-based factors

Data-based Model-based (OLS) Model-based (Kalman)
level slope curvature β0,OLS β1,OLS β2,OLS β0,KF β1,KF β2,KF

level 1 0.518 0.332 0.918 0.572 0.318 0.981 0.578 0.078
slope 0.518 1 0.040 0.311 0.985 -0.040 0.394 0.973 -0.334

curvature 0.332 0.040 1 0.017 0.201 0.992 0.237 0.227 0.577

β0,OLS 0.918 0.311 0.017 1 0.317 0.024 0.964 0.314 0.011
β1,OLS 0.572 0.985 0.201 0.317 1 0.123 0.439 0.996 -0.265
β2,OLS 0.318 -0.040 0.992 0.024 0.123 1 0.235 0.149 0.619

β0,KF 0.981 0.394 0.237 0.964 0.439 0.235 1 0.450 0.023
β1,KF 0.578 0.973 0.227 0.314 0.996 0.149 0.450 1 -0.303
β2,KF 0.078 -0.334 0.577 0.011 -0.265 0.619 0.023 -0.303 1
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Figure 3.2: Kalman filter estimates and actual yields
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(b) Kalman filter estimates

Source: Elaborated by the author.
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Figure 3.3: Model-based and Data-based level, slope, and curvature factors.

Time

Le
ve

l

8
10

12
14

jan 2018 jan 2019 jan 2020 jan 2021 jan 2022 jan 2023

Time

S
lo

pe

−
10

−
5

0
5

jan 2018 jan 2019 jan 2020 jan 2021 jan 2022 jan 2023

Time

C
ur

va
tu

re

−
2

0
2

4

jan 2018 jan 2019 jan 2020 jan 2021 jan 2022 jan 2023

Nelson-Siegel (OLS) estimates ■
Kalman filter factor estimates ■

Data-based estimates ■

Note: Data-based factors correspond to daily measures of: Level = yt(120), Slope = −(yt(120)− yt(3)), and
Curvature = 1

0.3 × 2yt(24)− yt(3)− yt(120); with maturity measured in months.
Source: Elaborated by the author.

86



§3.4. EMPIRICAL RESULTS

3.4.2 Out-of-sample forecasting performance

To evaluate the out-of-sample forecasting performance, we consider a training set with 987 days

running from 2 January 2018 to 30 December 2021, representing around 75% of the days in the

sample, and a test set with 326 days spanning from 3 January 2022 to 20 April 2023. The period

chosen for the test set is particularly interesting for evaluating forecast performance. As shown

in figures 2.18 and 3.1, it captures various shapes of the yield curve. It begins as a normal curve,

evolves into a humped curve, and eventually transforms into an inverted curve in the subsequent

periods.

Four horizons, namely one month, three months, six months, and one year, are employed to

evaluate the forecasts. The evaluation of models is conducted through a walk-forward valid-

ation (or forward chaining) strategy. This approach estimates the models recursively using an

expanding window over the test set for each horizon. We define the forecast error h steps ahead

at the maturity m as:

et+h(m) ≡ yt+h(m)− ŷt+h(m).

For each horizon the Root Mean Square Error (RMSE) at each maturity is presented.

RMSEh(m) =

√∑M
i=m1

(et+h(m))2

M

In Table 3.3 and Table 3.4, RMSE for out-of-sample forecasts are presented across differ-

ent horizons, namely one-month, three-month, six-month, and twelve-month, spanning from

January 2022 to April 2023. The comparison includes forecasts generated by the Random Walk

(RW), Exponential Smoothing (HW), Nelson-Siegel modelled as first order auto-regressive (NS

(AR)), and Nelson-Siegel modelled as vector auto-regressive (NS (VAR)) models. Notably, the

results indicate that both dynamic Nelson-Siegel specifications perform, at best, on par with

the random walk forecast across various horizon-maturity scenarios. However, the competitive
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models often exhibit similar performance levels, making it challenging to discern a clear superi-

ority among them. Nelson-Siegel specifications perform relatively better at longer maturities.

The RMSE values for the Nelson-Siegel specifications, although higher than those for the

random walk in our sample, align with findings from previous research. Specifically, the ob-

served values are consistent with the results reported by Caldeira et al. (2010, p. 45) for three-

and six-month forecasts using dynamic Nelson-Siegel estimates with both two-step and one-

step estimation procedures.

Table 3.3: RMSE for out-of-sample forecasts (January 2022 - April 2023)

Maturity One month ahead Three months ahead
(months) RW HW NS (AR) NS (VAR1) RW HW NS (AR) NS (VAR1)

3 0.360836 0.183001 0.379267 0.297998 0.883602 0.680470 1.310603 0.661419
6 0.311177 0.280051 0.720071 0.417138 0.696030 0.822909 1.541759 0.857052
9 0.364549 0.404355 0.878323 0.612168 0.662001 0.997509 1.612765 1.061739
12 0.461427 0.523285 0.883702 0.685592 0.737891 1.168571 1.554355 1.181116
18 0.628204 0.697699 0.790608 0.733999 0.923757 1.356668 1.355409 1.295441
24 0.704208 0.761764 0.717859 0.762511 1.023426 1.342455 1.198958 1.331268
30 0.725325 0.762786 0.679568 0.783560 1.058070 1.237628 1.093156 1.326141
36 0.727914 0.754846 0.672500 0.796786 1.065510 1.163954 1.047802 1.310544
48 0.722067 0.735294 0.679223 0.780535 1.056660 1.087053 1.076606 1.278453
60 0.711521 0.726293 0.693809 0.757009 1.039495 1.078596 1.136577 1.250975
72 0.699961 0.722628 0.708053 0.743037 1.021190 1.075721 1.178398 1.227135
84 0.687902 0.692448 0.719924 0.734419 1.002296 1.004077 1.206631 1.207037
96 0.677150 0.679353 0.730328 0.729975 0.985348 0.979376 1.226136 1.191272

108 0.669370 0.676366 0.739946 0.728743 0.972728 0.985876 1.240543 1.179641
120 0.664527 0.669290 0.748497 0.729472 0.964690 0.962248 1.251413 1.171194

To evaluate the statistical significance of the difference in the forecasting accuracy of differ-

ent models, we use the Diebold-Mariano test (Diebold and Mariano, 1995). The null hypothesis

is that the two forecasts have the same accuracy, and the alternative hypothesis is that the ac-

curacy is different. The test statistic is based on the comparison of the forecast error (et+h)

produced by the different models (M1 and M2).

Let us consider: dt ≡ g(et+h,M1) − g(et+h,M2), where g(.) is a loss function, and d̄ =

1
T

∑T
t=1 dt, and fd(0) the spectral density of d at frequency 0. Under the null hypothesis we

88



§3.4. EMPIRICAL RESULTS

Table 3.4: RMSE for out-of-sample forecasts (January 2022 - April 2023)

Maturity Six months ahead Twelve months ahead
(months) RW HW NS (AR) NS (VAR1) RW HW NS (AR) NS (VAR1)

3 1.436782 2.089686 2.427101 1.169927 2.264261 7.127739 4.274294 3.624677
6 1.087949 2.142048 2.558256 1.405076 1.540010 6.978356 4.186049 3.834345
9 0.892931 2.253410 2.529404 1.535254 1.130956 7.002021 3.974402 3.875049
12 0.820218 2.343242 2.377662 1.549841 0.984947 6.819685 3.682832 3.792143
18 0.790369 2.243716 2.015190 1.476108 0.948257 5.778081 3.167886 3.552346
24 0.805346 1.913122 1.743295 1.413426 0.991109 4.448723 2.873178 3.375484
30 0.846843 1.466021 1.568094 1.379319 1.092762 3.088495 2.734377 3.251877
36 0.893568 1.174432 1.487622 1.374473 1.211415 1.967097 2.683500 3.159278
48 0.952551 0.936440 1.508837 1.409003 1.369060 1.242420 2.694599 3.014237
60 0.986320 0.962490 1.579982 1.439781 1.460259 1.139037 2.736700 2.876062
72 1.005815 1.020808 1.625935 1.450027 1.507464 1.293122 2.761343 2.733469
84 1.015293 0.916778 1.653208 1.450493 1.522351 1.087105 2.771152 2.599741
96 1.020174 0.952218 1.668718 1.447241 1.519613 1.273343 2.770277 2.480504

108 1.023477 1.004368 1.678307 1.443441 1.511735 1.395453 2.763599 2.378169
120 1.025995 0.984581 1.684558 1.439923 1.504964 1.241041 2.754163 2.292040

have

DM =
d̄√

2πfd(0)
T

∼ N(0, 1).

In this section we use the modified version of the Diebold-Mariano test, following Harvey et al.

(1997), which considers the test statistic

DM∗ =

√
T + 1− 2h+ h(h+ 1)

T
×DM ∼ tT−1,

as implemented in the function dm.test() from the package forecast.

In Table 3.3 and Table 3.4, the DM∗ statistic is presented for the different horizons and

maturities analysed. Following the interpretation of Caldeira et al. (2010), a negative value

indicates the superior accuracy of the first model in the pairwise comparison; in turn, only a

statistic equal or greater than 1.96 would be significant at 95%.

The results reveal a nuanced performance across different forecasting horizons. For shorter

horizons, the accuracy of the NS(AR) specification is somewhat mixed, and in some instances, it
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is outperformed by the random walk (RW). However, the situation is reversed at longer horizons,

with the random walk outperforming the NS(AR) specification in all maturities. Interestingly,

the random walk and NS(VAR) comparison does not yield significant differences at longer

horizons, suggesting a comparable forecasting accuracy between the two models in this context.

Table 3.5: Diebold-Mariano tests (one and three months ahead)

Maturity One month ahead
(months) RWxHW RWxNS(AR) RWxNS(VAR) HWxNS(AR) HWx_NS(VAR) NS(AR)xNS(VAR1)

3 1.363532 -0.620856 0.487307 -2.043085 -1.859487 0.792874
6 0.503500 -3.321056 -2.411610 -2.768548 -1.825784 2.789220
9 -0.808256 -2.986749 -2.610254 -2.565919 -1.833769 2.755543
12 -1.159176 -2.514921 -2.422708 -1.955901 -1.392196 2.226347
18 -1.271097 -1.456481 -2.598031 -0.632869 -0.443821 0.743763
24 -1.078024 -0.230946 -2.240613 0.430236 -0.017935 -0.670435
30 -0.926483 1.604127 -1.323625 1.345754 -1.530881 -1.660807
36 -0.956248 2.845019 -1.253002 2.186293 -1.495481 -2.000399
48 -0.697779 2.011436 -1.199975 1.498317 -1.304805 -1.624712
60 -0.852574 0.457769 -1.242215 0.602428 -1.165688 -1.004218
72 -1.256657 -0.163608 -1.438830 0.235673 -1.114168 -0.543807
84 -0.383916 -0.579655 -1.878166 -0.415579 -1.970015 -0.220462
96 -0.235658 -0.906188 -2.506075 -0.754745 -2.607874 0.005269

108 -0.748325 -1.150488 -2.981642 -0.916244 -3.256587 0.164786
120 -0.560092 -1.317765 -3.031053 -1.111725 -3.089192 0.275866

Three months ahead
RWxHW RWxNS(AR) RWxNS(VAR) HWxNS(AR) HWx_NS(VAR) NS(AR)xNS(VAR1)

3 0.491688 -2.309746 0.435996 -1.289454 0.067495 1.088589
6 -0.659359 -1.860462 -0.880751 -1.384767 -0.163254 1.273432
9 -2.885082 -1.698736 -3.592556 -1.199837 -0.327287 1.142839
12 -3.011165 -1.478076 -3.781157 -0.755565 -0.056517 0.841884
18 -2.214430 -0.981536 -4.943526 0.002551 0.262365 0.160822
24 -1.541888 -0.550485 -8.372753 0.328029 0.055749 -0.433971
30 -0.989837 -0.157894 -5.620412 0.400549 -0.675585 -0.923887
36 -0.724005 0.109344 -3.374237 0.419098 -2.398539 -1.180889
48 -0.474775 -0.165405 -2.425232 0.058532 -3.371488 -1.004346
60 -0.674301 -0.774401 -2.276211 -0.323517 -3.503083 -0.581752
72 -1.094533 -1.126858 -2.304990 -0.563613 -3.343477 -0.240059
84 -0.031632 -1.332735 -2.395884 -0.995690 -3.626049 -0.001906
96 0.171356 -1.458494 -2.419677 -1.258036 -3.418076 0.156247

108 -0.429979 -1.534405 -2.335896 -1.268294 -3.000458 0.262777
120 0.077274 -1.577922 -2.197719 -1.379453 -2.805802 0.335908
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Table 3.6: Diebold-Mariano tests (six and twelve months ahead)

Maturity Six months ahead
(months) RWxHW RWxNS(AR) RWxNS(VAR) HWxNS(AR) HWx_NS(VAR) NS(AR)xNS(VAR1)

3 -9.16777523 -1.41830939 0.34470058 -0.47823388 13.1740699 0.96353208
6 -17.5858323 -1.22023776 -5.95909265 -0.58648889 9.70541356 1.05415282
9 -2.89669866 -1.15603669 -1.86134696 -0.4646511 8.16839914 1.08947797
12 -4.01110365 -1.11097847 -1.43287035 -0.06999037 8.02127677 1.08796465
18 -13.770531 -1.0857069 -1.42009104 0.57482543 7.12936813 1.03895229
24 -10.7889661 -1.16625437 -1.97037072 0.51090646 4.83774533 0.96837443
30 -6.43926946 -1.3143259 -3.23402472 -0.37120504 0.93482965 0.92232702
36 -3.61543036 -1.50928781 -4.44204092 -1.02707847 -2.66172948 1.67530886
48 0.39804093 -2.49614098 -10.2408604 -4.99709982 -9.65195086 2.03440247
60 0.79564063 -6.92334231 -10.3589688 -6.19574838 -10.2809476 3.01962859
72 -0.29836431 -19.1052972 -8.93523241 -12.4959222 -2.83171133 3.89502759
84 3.96862461 -19.7807339 -3.41600458 -15.3635863 -10.5149828 4.51744343
96 5.94283549 -20.022551 -2.46012311 -17.7637795 -8.96066568 4.89342926

108 0.66030512 -20.0733263 -2.05541663 -17.6717936 -3.69282774 5.10172322
120 3.9262308 -20.0537387 -1.83511263 -17.5555542 -2.30237404 5.20703454

Twelve months ahead
RWxHW RWxNS(AR) RWxNS(VAR) HWxNS(AR) HWx_NS(VAR) NS(AR)xNS(VAR1)

3 -27.28709 -30.0412399 -1.58772243 18.2191472 17.9054074 3.961338
6 -4.85249401 -27.11486 -1.20765896 4.09190464 8.42650135 0.54051077
9 -5.81716019 -23.9990784 -1.07328045 5.27229381 4.86644024 0.11860206
12 -16.9072759 -21.0846129 -0.96267304 17.4207304 2.25335932 -0.05534562
18 -4.48795456 -17.51471 -0.81413235 3.24792565 0.95292642 -0.1953936
24 -1.98124438 -17.0850581 -0.75142177 1.18585134 0.35940382 -0.23036938
30 -1.44685496 -18.3166344 -0.72277152 0.45242457 -0.05467218 -0.2251799
36 -0.47721344 -19.6340178 -0.69594393 -0.93058385 -0.35242166 -0.2027254
48 0.35885891 -14.8391179 -0.64016176 -15.8193292 -0.61717672 -0.13618789
60 1.29642908 -5.1890762 -0.59239511 -24.7145192 -0.62287417 -0.05826171
72 1.6478331 -4.28630113 -0.55023322 -7.53090401 -0.58594189 0.02145237
84 1.65568961 -3.99145882 -0.51496956 -5.10568342 -0.58371264 0.0985989
96 20.053491 -3.86298893 -0.48563972 -4.79631723 -0.55064665 0.17028869

108 6.29638752 -3.7791777 -0.46030249 -4.05205409 -0.50244745 0.23474598
120 16.3238005 -3.70377532 -0.43783354 -4.85783986 -0.51093479 0.2916388
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3.5 Conclusion

This chapter comprehensively introduced the dynamic Nelson-Siegel model, exploring various

estimation methods. It surveyed the existing literature on the Brazilian yield curve, providing

a foundation for the subsequent analysis. The dynamic Nelson-Siegel model was then applied

to investigate latent factor interpretations. Parameter estimates were compared across different

methodologies, including data-based calculations, daily OLS and Kalman filter estimation of

the Nelson-Siegel model. The consistency of these estimates lent support to the latent factor

interpretation.

Subsequently, a forecasting exercise was executed, employing the Diebold-Li specification

with two-step estimation procedures. The dynamics were modelled as three auto-regression

and a vector auto-regression estimation procedures. These results were benchmarked against

baseline techniques, such as naive (random walk) and exponential smoothing forecasts.

The dynamic Nelson-Siegel model performed poorly compared with the original results of

Diebold and Li (2006) and some previous exercises using Brazilian data. In many instances, it

was outperformed by the naive forecast.
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Final Considerations

In conclusion, the two chapters provide valuable insights into yield curve modelling and fore-

casting aspects. Chapter 2 comprehensively evaluates empirical models for the term structure

of interest rates, emphasizing the importance of accurate yield curve estimation in economic

analysis. Through a thorough comparison of various models, including spline and parametric

approaches, this chapter contributes to understanding the trade-offs involved in model selec-

tion. The introduction of Kernel regression and Loess models represents a novel addition to the

literature, enhancing the range of available options for yield curve estimation.

Chapter 3 delves into the dynamic Nelson-Siegel model, exploring different estimation

methods and assessing latent factor interpretations. The consistent parameter estimates across

methodologies support the latent factor interpretation, providing a robust foundation for further

analysis. The forecasting exercise, however, reveals the limitations of the dynamic Nelson-

Siegel model in comparison to baseline techniques. The model’s under-performance, particu-

larly against the naive forecast, highlights the challenges in achieving accurate predictions using

this approach.

Taken together, these chapters underscore the complexity of yield curve modelling and the

need for careful consideration of model characteristics, estimation methods, and forecasting

strategies. While Chapter 1 enriches the tool-kit for yield curve estimation, Chapter 2 sheds
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light on the performance of a specific dynamic model in forecasting scenarios. The combined

insights contribute to a more nuanced understanding of yield curve dynamics, offering valuable

implications for researchers and practitioners in financial modelling and economic analysis.
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Appendix A

Math Addendum

This appendix lists some useful elementary mathematical results related to the yield curve.

A.1 Continuous compounded interest

Considering a ZCB, the yield-to-maturity (yt) corresponds to the interest rate that would break

even the current bond price (Pt) to its face value (PT ) once the investor holds it over the maturity

(m = T − t):

Pt =
PT

(1 + yt)m
⇔ yt =

(
PT

Pt

) 1
m

− 1.

The above formula considers that the interest is calculated once a year, over m years. Interest

calculated n times per year results in the formula

Pt =
PT((

1 + yt
n

)n)m ⇔
(
1 +

yt
n

)n×m

=
PT

Pt

.

Continuously compounding the interest rate means that n → ∞, thus we can take the limit

on the right-hand-side expression above. Since the yield-to-maturity differs from the discrete
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interest calculation we use the notation ỹt for the continuous compounded yield-to-maturity.

lim
n→∞

(
1 +

ỹt
n

)n×m

= lim
n→∞

PT

Pt

⇒

 lim
n→∞

(
1 +

ỹt
n

)n

︸ ︷︷ ︸
=eỹt


m

=
PT

Pt

⇒ em×ỹt =
PT

Pt

ln
(
m×ỹt

)
= ln

(
PT

Pt

)
⇒ m× ỹt = ln

(
PT

Pt

)
⇒ ỹt =

ln
(

PT

Pt

)
m

A.2 Yield-to-maturity, discount function, and implied forward rate

Throughout the main text, we considered the term structure of interest rates expressed in its

yield-to-maturity (or spot rate) form, yt(m). This is the logical option given the data, One-

day Interbank Deposit Futures ("DI1"), which corresponds to spot rate values. However, other

expressions for the term structure of interest rates can be obtained from the relations described

below. Let Pt(m) represents the price of a ZCB with maturity m in day t, and let PT =

1 represents bond’s face value. If ỹt(m) represents the continuously compounded yield-to-

maturity, the discount curve is given by

dt(m) = e−ỹt(m)×m.

The instantaneous forward rate curve is given by

ft(m) = −d′t(m)

dt(m)
.

And it relates with yield-to-maturity following

ỹt(m) =
1

m

∫ m

0

ft(ν)dν.
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A.3 Optimal λ for a given maturity in Nelson-Siegel model

In their seminal work, Nelson and Siegel (1987) estimated their model considering a grid of

values for the parameter λ in

y(m) = β0 + β1

(
1− e−m/λ

m/λ

)
+ β2

(
1− e−m/λ

m/λ
− e−m/λ

)
︸ ︷︷ ︸

Curvature loading factor

+ϵm.

For each value assigned to λ, it is possible to estimate the model by ordinary least squares and

then choose the appropriate λ value based on a goodness-of-fit criterion. In turn, the dynamic

model developed by Diebold and Li (2006, p. 346) used a fixed value for λ, which was justified

based on numerical trustworthiness. Considering that λ determines the maturity in which the

curvature (or medium-term) loading factor reaches its maximum, they argued that it should

occur between two and three years. Thus, they set 1/λ = 0.0609 such that the medium-term

loading factor reaches its maximum at precisely 30 months.

We demonstrate how to determine the optimal λ for the medium-term loading factor to reach

its maximum at a given maturity. Firstly, one can write the loading factor as a function

f(m,λ) =
1− e−m/λ

m/λ
− e−m/λ.

Then consider a fixed value for the maturity, m = k, like Diebold and Li (2006) did. Fur-

thermore, consider a variable transformation to simplify the differentiation v = −k/λ.

f(m,λ) =
1− e−m/λ

m/λ
− e−m/λ ⇒ f(λ) =

1− e−k/λ

k/λ
− e−k/λ ⇒ g(v) =

ev − 1

v
− ev
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Now it is possible to obtain the first-order condition differentiating g(v) with respect to v:

g′(v) =
(ev − 0)× v − 1× (ev − 1)

v2
− ev

=
vev − ev + 1

v2
− ev =

−v2ev + vev − ev + 1

v2

Since the first-order condition for a maximum is f ′(v) = 0, we can work only with the numer-

ator:

−v2ev + vev − ev + 1 = 0 ⇒ v2ev − vev + ev = 1 ⇒ v2 − v + 1 =
1

ev

Solving for v will determine the critical points. The trivial solution v∗ = 0 is not helpful

since it implies λ = ∞. Therefore, one must resource numerical methods to find a different

solution. For that, one can write the first-order condition as two functions: h(v) = v2 − v + 1,

l(v) = 1
ev

. Both functions are plotted in Figure A.1.

Figure A.1: Optimal v numerical determination

0

2

4

6

−1.9 −1.7 −1.0 0.0 1.0
v

h(
v)

,l(
v) Key:

h(v)
l(v)

Source: Elaborated by the author.
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1 v <- seq(-1.85,-1.75, by = 0.00001)

2 h_v <- v^2 - v + 1

3 sit1 <- factor("h(v)")

4 l_v <- 1/exp(v)

5 sit2 <- factor("l(v)")

6 numerical2 <- rbind(data.frame(v = v, y = h_v, equation = sit1),

7 data.frame(v = v, y = l_v, equation = sit2))

8 compare <-

9 filter(numerical2, between(v,-1.85,-1.75)) %>%

10 pivot_wider(names_from = equation, values_from = y) %>%

11 mutate(diff = abs(`h(v)` - `l(v)`))

12 sprintf("%.100f",compara[which.min(compara$diff),]$v)

Listing 1: Optimal v numerical determination

Besides the trivial solution, another critical point lies in the interval [-1.9,-1.7]. The code

presented on Listings 1 determines the second critical point numerically: v∗ = -1.79328.

With this value, we can work the transformation v = −k/λ backwards to find the optimal λ.

Setting k = 30 months, we have

v∗ =
−k

λ∗ ⇒ −1.79328 =
−30

λ∗ ⇒ λ∗ =
−30

−1.79328
≈ 16, 72 .

Which is close to the value set by Diebold and Li, 1/λ = 0.0609 ⇔ λ = 16.42. Thus,

our estimate for λ aligns with Diebold and Li, and differences in the numerical optimization

explain the discrepancy.

As mentioned in Chapter 2, λ is not scale-free, and its value depends on how maturity is

measured. While Diebold and Li (2006) measured maturity in months, we use working days

throughout the main text. Therefore, to reproduce their result, it is necessary to convert the

30 months into working days, approximately 660(= 30 × 22), to obtain the correspondent λ.

Using working days as measurement unit results λ∗ = −k
v∗

= −660
−1.79328

≈ 368. Alternatively, it is

possible to convert it directly: λ∗ = 16.72× 22 = 367.84.
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