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Resumo

Neste trabalho, estudamos hipersuperfícies isoparamétricas em variedades produto de di-
mensão 4. Primeiramente, caracterizamos e classi�camos as hipersuperfícies isoparamétricas
com curvaturas principais constantes nos espaços produto Q2

c1×Q2
c2 , em que Q2

ci é uma forma
espacial com curvatura seccional constante ci, para ci ∈ {−1, 0, 1} e c1 ̸= c2. Mostramos
que tais hipersuperfícies são dadas por conjuntos abertos de uma hipersuperfície produto,
em que um dos fatores é uma curva de curvatura constante, ou de uma estrutura diagonal
em H2 × R2, construída a partir de horocírculos em H2 e retas em R2.

Em seguida, classi�camos as hipersuperfícies em Q3
ε × R que possuem as três curvat-

uras principais constantes distintas, em que neste caso ε ∈ {−1, 1}. Mostramos que tais
hipersuperfícies são cilindros sobre superfícies isoparamétricas de Q3

ε com duas curvaturas
principais distintas e não-nulas. Também provamos que as hipersuperfícies com curvaturas
principais constantes em Q3

ε×R são isoparamétricas. Além disso, fornecemos uma condição
necessária e su�ciente para uma hipersuperfície isoparamétrica em Q3

ε × R ter curvaturas
principais constantes.

Finalmente, descrevemos a evolução pelo �uxo da curvatura média de hipersuperfícies
isoparamétricas em variedades produto de dimensão 4. Mostramos que a evolução de hiper-
superfícies isoparamétricas de variedades Riemannianas pelo �uxo da curvatura média é
dada por uma reparametrização do �uxo por hipersuperfícies paralelas em um curto es-
paço de tempo, desde que a unicidade do �uxo de curvatura média seja válida para os
dados iniciais e o espaço ambiente correspondente. Através deste resultado, descrevemos a
evolução das hipersuperfícies classi�cadas na primeira e segunda partes do trabalho. Tam-
bém descrevemos as evoluções de hipersuperfícies isoparamétricas em S2 × S2 e H2 × H2,
classi�cadas por Urbano (2019) e Dong Gao, Hui Ma e Zeke Yao (2022), respectivamente,
e das hipersuperfícies isoparamétricas em Q3

ε × R com g curvaturas principais constantes
distintas, g ∈ {1, 2}, classi�cadas por Chaves e Santos (2019).

Palavras-chave: hipersuperfícies isoparamétricas, espaços produto, hipersuperfícies par-
alelas, curvaturas principais constantes, �uxo da curvatura média.



Summary

In this work, we study isoparametric hypersurfaces in product manifolds of dimension
4. First of all, we characterize and classify the isoparametric hypersurfaces with constant
principal curvatures in the product spaces Q2

c1×Q2
c2 , where Q

2
ci is a space form with constant

sectional curvature ci, for ci ∈ {−1, 0, 1} and c1 ̸= c2. We show that such hypersurfaces
are given as open subsets of either a product hypersurface, where one factor is a curve of
constant curvature, or a diagonal structure in H2 × R2, constructed from horocycles in H2

and straight lines in R2.
Next, we classify the hypersurfaces in Q3

ε ×R with the three distinct constant principal
curvatures, where in this case ε ∈ {−1, 1}. We show that such hypersurfaces are cylin-
ders over isoparametric surfaces of Q3

ε with two non-null distinct principal curvatures. We
also prove that the hypersurfaces with constant principal curvatures in Q3

ε ×R are isopara-
metric. Furthermore, we provide a necessary and su�cient condition for an isoparametric
hypersurface on Q3

ε × R to have constant principal curvatures.
Finally, we describe the evolution by the mean curvature �ow of isoparametric hyper-

surfaces in product manifolds of dimension 4. We show that the evolution of isopara-
metric hypersurfaces of Riemannian manifolds by the mean curvature �ow is given by a
reparametrization of the �ow by parallel hypersurfaces in a short time, as long as the
uniqueness of the mean curvature �ow holds for the initial data and the corresponding am-
bient space. Through this result, we describe the evolution of the hypersurfaces classi�ed
in the �rst and second parts of the work. We also describe the evolutions of isoparametric
hypersurfaces in S2 × S2 and H2 ×H2, classi�ed by Urbano (2019) and Dong Gao, Hui Ma
and Zeke Yao (2022), respectively, and of isoparametric hypersurfaces in Q3

ε × R with g
distinct constant principal curvatures, g ∈ {1, 2}, classi�ed by Chaves and Santos (2019).

Keywords: isoparametric hypersurfaces, product spaces, parallel hypersurfaces, constant
principal curvatures, mean curvature �ow.
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Introduction

A hypersurface Mn of a Riemannian manifold M̃n+1 is said to be isoparametric if it has
constant mean curvature as well as its nearby equidistant hypersurfaces (i.e., the correspon-
dent mean curvatures depend only on the distance to M). Equivalently, we say that M is
isoparametric if it is the level set of some isoparametric function de�ned on M̃ . Following
Domínguez-Vázquez [15], the �rst notion of isoparametric surfaces appeared in 1919 in the
work of C. Somigliana [39], which deals with the relations between the Huygens princi-
ple and geometric optics. This study represented the beginning of an important research
line in Di�erential Geometry, namely the isoparametric hypersurfaces studied by renowned
mathematicians such as Beniamino Segre, Élie Cartan, and Tullio Levi-Civita.

When the ambient space is a space form, i.e., a simply connected complete Riemannian
manifold with constant sectional curvature, the previous de�nition of isoparametric hyper-
surface is equivalent to saying that the hypersurface has constant principal curvatures (see [7]
and [15]). However, in other ambient spaces of nonconstant curvature, the equivalence be-
tween isoparametric hypersurfaces and hypersurfaces with constant principal curvatures
may no longer be true. For instance, Q. M. Wang, in [43], found examples of isoparametric
hypersurfaces in complex projective spaces that do not have constant principal curvatures.
For more examples, we refer [12], [13] and [21]. Recently, A. Rodríguez-Vázquez, in [33],
found an example of a non-isoparametric hypersurface with constant principal curvatures.
Another example was given in [22].

In this thesis, we study isoparametric hypersurfaces in product manifolds of dimension
4. More precisely, we consider as ambient spaces the products Q2

c1 ×Q2
c2 , for ci ∈ {−1, 0, 1}

and c1 ̸= c2, and Q3
ε×R, for ε ∈ {−1, 1}, where Qn

c denotes denotes the unit n-sphere Sn, if
c = 1, the n-dimensional Euclidean space Rn, if c = 0, and n-dimensional hyperbolic space
Hn, if c = −1. Furthermore, among other examples, we study the evolution by the mean
curvature �ow of isoparametric hypersurfaces that appear in such ambient spaces.

This thesis has four chapters. Chapter 1 is devoted to a brief presentation of some facts
already known in the literature about Jacobi �eld theory and isoparametric hypersurfaces,
which will be very useful throughout this work.

In Chapter 2, we consider the Riemannian products of 2-dimensional space forms Q2
c1 ×

Q2
c2 , with constant sectional curvatures c1 and c2, respectively, with c1 ̸= c2, where ci = 1, 0

or −1, i = 1, 2. Such a kind of ambient space was �rstly considered in this context by
Urbano [41], where it was obtained, among other results, the classi�cation of isoparametric
hypersurfaces in S2 × S2, i.e., when c1 = c2 = 1.

The case where c1 = 1 and c2 = 0, that is, when the ambient space is S2 × R2, was
considered by Julio-Batalla in [25] where he obtained a complete classi�cation of isopara-
metric hypersurfaces with constant principal curvatures. Using some ideas developed by
Urbano in [41], Julio-Batalla showed that if Σ is an isoparametric hypersurface in S2 × R2,
with constant principal curvatures and unit normal N = N1 + N2, then |N1| and |N2| are
constant, where N1 and N2 denote the components of N in S2 and R2, respectively. The
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classi�cation continues by showing that |N1| = 1 and |N2| = 0 or |N1| = 0 and |N2| = 1.
Thus, the hypersurface families obtained are S2 ×R, S2 × S1(r) (for r ∈ R+), or S1(t)×R2

(for t ∈ (0, 1]). Recently, and also following some of Urbano's ideas and techniques, D. Gao,
H. Ma and Z. Yao [19] classi�ed, among other results, the isoparametric hypersurfaces of
H2×H2 and the hypersurfaces with at most two distinct constant principal curvatures. The
case of hypersurfaces of H2×H2 with three distinct principal curvatures was also considered
under some additional conditions.

In this work, we extend and improve the results of [25] in the following sense. Considering
the ambient space Q2

c1 ×Q2
c2 with ci ∈ {−1, 0, 1} and c1 ̸= c2, we prove (see Theorem 2.1)

Theorem 0.1. Let Σ be an isoparametric hypersurface in Q2
c1 × Q2

c2, with ci ∈ {−1, 0, 1}
and c1 ̸= c2, and unit normal N = N1 +N2, where N1 and N2 denote the components of N
in Q2

c1 and Q2
c2, respectively. Then the principal curvatures of Σ are constant if and only if

|N1| and |N2| are constant.

In addition to the converse of a result obtained by Julio-Batalla, which states that if |N1|
and |N2| are constant, then Σ has constant principal curvatures, Theorem 0.1 also provides
the equivalence for the entire class of ambient spaces Q2

c1 × Q2
c2 , with ci ∈ {−1, 0, 1} and

c1 ̸= c2. To get this Theorem, we use the theory of Jacobi �elds, based on the ideas
developed by Domínguez-Vázquez and Manzano in [16], to analyze the extrinsic geometry
of hypersurfaces parallel to Σ. It is interesting to note that Jacobi �eld theory allows us
to obtain an alternative proof of Julio-Batalla's result. Moreover, we obtain the following
general classi�cation of isoparametric hypersurfaces with constant principal curvatures in
Q2
c1 × Q2

c2 , with ci ∈ {−1, 0, 1} and c1 ̸= c2, which includes the classi�cation for S2 × R2

given in [25] (see Theorem 2.2):

Theorem 0.2. Let Σ be an isoparametric hypersurface with constant principal curvatures
in Q2

c1 × Q2
c2, with ci ∈ {−1, 0, 1} and c1 ̸= c2. Then, up to rigid motions, Σ is an open

subset of one of the following hypersurfaces:

a) C1(κj)×Q2
c2 or Q2

c1 ×C1(κj), where C1(κj) is a complete curve with constant geodesic
curvature κj in Q2

cj .

b) Ψ(R3) ⊂ H2 × R2, where Ψ : R3 → H2 × R2 is an immersion given by

Ψ(s, u, v) = e−b s(α(u), 0⃗) +
(
cosh(−b s), 0, sinh(−b s), V0s

)
+
(
0⃗, p0 +W0v

)
,

(0.1)

where H2 ⊂ L3 is given as the standard model of the hyperbolic space in the Lorentz

3-space L3, the curve α is given by α(u) =

(
u2

2
, u, −u

2

2

)
, p0 ∈ R2, V0 and W0 are

constant orthogonal vectors in R2 such that ||W0|| = 1 and b =
√
1− ||V0||2, with

b ̸= {1, 0}.

Remember that, besides the geodesics, the complete curves C1(κj) ⊂ Q2
cj with constant

geodesic curvature are given by: S1(t) ⊂ S2 for t ∈ (0, 1); circles, horocycles or hypercycles
in H2 (see for example [36]); and S1(r) ⊂ R2 for r ∈ R+. Regarding the hypersurfaces
given in Theorem 2.2.b), geometrically, Ψ(R3) provides a hypersurface given as the union
of a family of geodesically parallel surfaces given by the products C1(1)×R, where C1(1) ⊂
H2 is a horocycle (see Remark 3). Furthermore, Ψ(R3) is an extrinsically homogeneous
hypersurface, i.e., it is a codimension-one orbit of a subgroup of the group of isometries of
H2 × R2 (see Remark 4).
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Chapter 3 is devoted to the study of hypersurfaces with constant principal curvatures in
the product spaces Q3

ε×R, where Q3
ε denotes the unit sphere S3 if ε = 1, and the hyperbolic

space H3 if ε = −1. Our main objective is to classify the hypersurfaces of Q3
ε ×R that have

the three distinct constant principal curvatures. As a consequence, we will conclude that the
hypersurfaces of Q3

ε×R with constant principal curvatures are isoparametric. Furthermore,
we will provide a necessary and su�cient condition for the converse to hold.

In recent years, several geometers have dedicated themselves to the study of hypersur-
faces in the product spaces Qn

ε × R. In [40], Tojeiro locally classi�ed the hypersurfaces of
Qn
ε ×R that have a special �eld T as a principal direction, and with that, he also obtained

the classi�cation of hypersurfaces with constant angle. Given a hypersurface Σ in Qn
ε × R,

the tangent �eld T and the angle function θ are de�ned by

∂t = T + cos(θ)N,

where N is the unit normal �eld to Σ and ∂t is a unit �eld tangent to the second factor R.
In [8], Chaves and Santos classi�ed the hypersurfaces in Sn×R and Hn×R, n ≥ 2, with

g distinct constant principal curvatures, g ∈ {1, 2, 3}, where n ≥ 4 if g = 3. Moreover, they
proved that such hypersurfaces are isoparametric in those spaces. Motivated by the results
of Chaves and Santos, in this work, we obtain the classi�cation of the hypersurfaces with
constant principal curvatures when g = 3 and n = 3, that is, we classify the hypersurfaces
in Q3

ε×R that have the three distinct constant principal curvatures. In order to do that, we
show that if Σ is a hypersurface of Q3

ε×R with three distinct constant principal curvatures,
then θ is constant. Using this characterization, we obtain the following result (see Theorem
3.6):

Theorem 0.3. Let Σ3 be a hypersurface of Q3
ε × R with three distinct constant principal

curvatures. Then Σ3 is an open part of the following hypersurfaces:

a) S1(c1)× S1(c2)× R, when ε = 1;

b) S1(c1)×H1(c2)× R, when ε = −1,

where c1 ̸= c2,
1

c1
+

1

c2
= ε and the principal curvatures of Σ3 are given by 0,

c1√
c1 + c2

and

−c2√
c1 + c2

.

The theorem above complements the classi�cation of the hypersurfaces of Qn
ε × R that

have g distinct constant principal curvatures, g ∈ {1, 2, 3}, stated in [8, Theorem 6.1].
It is worth mentioning that the problem when g ≥ 4 remains open. Furthermore, as a
consequence of Theorem 0.3 and Chaves and Santos classi�cation mentioned above, we
show that (see Corollary 3.7)

Corollary 0.4. Let Σ3 be a hypersurface of Q3
ε×R with constant principal curvatures. Then

Σ3 is isoparametric.

In the second Theorem of the Chapter 3 (Theorem 3.8), we obtained a necessary and
su�cient condition for an isoparametric hypersurface in Q3

ε × R to have constant principal
curvatures. In [16], Domínguez-Vázquez and Manzano, using Jacobi �eld theory, showed the
equivalence between being isoparametric and having constant principal curvatures is true
for hypersurfaces of homogeneous 3-manifolds with 4-dimensional isometry group, which
include the product spaces S2 × R and H2 × R. Besides that, a classi�cation for such
surfaces is given and, in the case of product spaces, they showed that isoparametric surfaces
of Q2

ε × R have constant angle function θ. For dimension n = 3, using a similar approach
employed by Domínguez-Vázquez and Manzano, we show that
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Theorem 0.5. Let Σ be an isoparametric hypersurface of Q3
ε × R. Then Σ has constant

principal curvatures if and only if θ is constant.

We point out that Chaves and Santos [8] showed that an isoparametric hypersurface Σ of
Qn
ε ×R having T as principal direction has constant principal curvatures if and only if, ||T ||

is constant. Therefore, Theorem 0.5 tells us that, at least for n = 3, we can improve Chaves
and Santos' result, since we do not use the assumption of T being a principal direction. In
fact, since ∂t is an unit vector �eld, it follows that ||T ||2 + cos(θ)2 = 1. Thus, Theorem 3.8
says that an isoparametric hypersurface in Q3

ε ×R has constant principal curvatures if and
only if ||T || is constant.

In Chapter 4, our goal is to study the evolution of isoparametric hypersurfaces of a Rie-
mannian manifolds by the mean curvature �ow. Given a hypersurface Mn of a Riemannian
manifold M̃n+1, we say thatM evolves by the mean curvature �ow (MCF) if there is a time-
dependent family of smooth hypersurfaces with M as initial data such that the velocity of
the evolution at each point of such family is given by the mean curvature vector �eld of the
correspondent hypersurface at that point. There is an extensive literature on the study of
MCF, mainly when the ambient space M̃n+1 is the Euclidean space Rn+1. However, cases
where the ambient space is a general Riemannian manifold and when the codimension is
greater than one have also been considered recently. We suggest the surveys [10, 38] and
references therein for a good overview of the mentioned topics.

In [37] the authors showed that a hypersurface Mn of a space form Qn+1
ε is the ini-

tial data for a solution for the MCF given by a reparametrization of the �ow of parallel
hypersurfaces if and only if Mn is an isoparametric hypersurface. In the sequence, the au-
thors showed in [37] that the MCF given in this way is reduced to an ordinary di�erential
equation, and provided explicit solutions. From such solutions, the exact collapsing times
of the singularities are provided. Following the ideas of [37], a version of their results was
provided in [18], for a class of isoparametric hypersurfaces of the product spaces Qn

ε ×R and
Qn
ε × S1. Recently, the author in [28] also used a reparametrization of the �ow by parallel

hypersurfaces of isoparametric hypersurfaces to consider the Weingarten �ow in Rieman-
nian manifolds, which has as a particular case the MCF. In this case, it is important to
point out that, following [5], isoparametric hypersurfaces are de�ned in [28] as those whose
parallels have constant principal curvatures, thus including the case in which the ambient
spaces are space forms. For submanifolds with higher codimensions, the MCF with initial
data given by an isoparametric submanifold was considered in [30, 31], when the ambient
space is a space form. For a class of ambient spaces (which includes the space forms with
non-negative curvature), the relation between singular Riemannian foliations in which the
leaves are isoparametric submanifolds (in the sense of [23]) with the MCF was investigated
in [2, 3, 29].

Here, we characterize reparametrizations of the �ows by parallel hypersurfaces as the
unique solution for the MCF with isoparametric hypersurfaces as initial data in general
ambient spaces. Namely, for an ambient space given by a complete Riemannian manifold
such that the curvature and its covariant derivatives up to order 2 are bounded, and with
injectivity radius bounded from below by a positive constant, we prove that (see Theorem
4.3)

Theorem 0.6. Let M̃n+1 be a complete Riemannian manifold such that the curvature and
its covariant derivatives up to order 2 are bounded and the injectivity radius is bounded
from below by a positive constant. Let Σn be a hypersurface of M̃n+1 such that the solution
F : Σn × [0, T ) → M̃n+1 of the MCF with initial data Σn has bounded second fundamental
form on [0, T−] for all T− < T . Then, Σn is isoparametric if and only if F is the �ow by
parallels for some δ0 ≤ T . Moreover, suppose that [0, δ) is the maximal interval where F is
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a reparametrization of the parallel �ow. If δ < T then F (., δ) is a hypersurface that is not
isoparametric.

This result provides an extension to general ambient spaces of [18,37] and an extension
of [28] to general isoparametric hypersurfaces when the MCF is considered. Moreover, we
also supply an improvement of their results since we show that isoparametric hypersurfaces,
besides providing solutions of the MCF through their parallel hypersurfaces, uniquely de-
termined such evolution as initial data, that is, the �ow is well described through the �ow
by parallel hypersurfaces and the solution of an ordinary di�erential equation. A crucial
element for proving the theorem above is the use of a uniqueness theorem for the solution
of MCF for general ambient spaces. The compact case is provided by Lemma 3.2 in [24].
For the complete non-compact hypersurfaces, the uniqueness is obtained under conditions
on the curvature of the ambient space, and on the second fundamental form (see [9]).

We end Chapter 4 by describing the evolution by the mean curvature �ow of isopara-
metric hypersurfaces in product manifolds of dimension 4, classi�ed in Chapters 2 and 3.
Moreover, we also describe the evolutions of isoparametric hypersurfaces in S2 × S2 and
H2 × H2, classi�ed by Urbano (2019) and Dong Gao, Hui Ma and Zeke Yao (2022), re-
spectively, and of isoparametric hypersurfaces in Q3

ε × R with g distinct constant principal
curvatures, g ∈ {1, 2}, classi�ed by Chaves and Santos (2019).

13



Chapter 1

Basic concepts and notations

Throughout this chapter, we will brie�y establish the basic notations and concepts that
will be common in the remaining chapters. For a better reading of this work, speci�c
concepts will be introduced at the beginning of each chapter.

1.1 The ambient spaces

In this brief section, in order to establish some notations, we will de�ne the ambient
spaces in which we will work throughout the thesis.

Let Rm be the m-dimensional Euclidean space with the canonical metric

ds2 = dx21 + dx22 + . . .+ dx2m,

and Lm the m-dimensional Lorentzian space with the canonical metric

ds2 = −dx21 + dx22 + . . .+ dx2m.

Let Qn
c be n-dimensional space form of constant sectional curvature c. When c = 0,

we have the n-dimensional Euclidean space Rn. For c ̸= 0, we have the following cases: if
c > 0, Qn

c will denote the n-dimensional sphere

Sn(c) =
{
(x1, . . . , xn+1) ∈ Rn+1| x21 + x22 + . . .+ x2n+1 =

1

c

}
⊂ Rn+1,

and, if c < 0, Qn
c will denote the n-dimensional hyperbolic space

Hn(c) =

{
(x1, . . . , xn+1) ∈ Ln+1| − x21 + x22 + . . .+ x2n+1 =

1

c

}
⊂ Ln+1.

In particular, we have the unit sphere Sn(1) = Sn if c = 1, and the hyperbolic space
Hn(−1) = Hn if c = −1. Thus, Sn and Hn will be considered as submanifolds of Rn+1 and
Ln+1, respectively, with the metric induced by such spaces.

In Chapter 2, we will consider the product space Q2
c1 × Q2

c2 , where Q2
c1 and Q2

c2 are
two 2-dimensional space forms of constant sectional curvatures c1 and c2, respectively, with
ci ∈ {−1, 0, 1} and c1 ̸= c2, and in Chapter 3, we will consider the product space Qn

c × R,
c ̸= 0, with the metric induced by the ambient space, given by Sn×R, if c = 1, and Hn×R,
if c = −1.

14



1.2 Jacobi �eld theory

In this section we shall present the notation, basic concepts and results of the Jacobi
�eld theory, which will be used in this work. This theory is an important tool to analyze
the extrinsic geometry of hypersurfaces equidistant to any hypersurface. In what follows,
we will give a brief description of this theory, following [4] and [15], where the reader can
�nd more details about it.

Given a hypersurface Σn of a Riemannian manifold M̃n+1 with unit normal vector �eld
N , let ε be a positive real number and, for r ∈ (−ε, ε), consider the application

Φr : Σ
n → M̃n+1,
p 7→ expp(rN(p)),

(1.1)

where expp : TpM̃ → M̃ denotes the exponential map of M̃n+1 at p ∈ Σ. For ε > 0 small
enough, the map Φr is smooth and it parametrizes the parallel displacement of Σ at an
oriented distance r in the direction N . The parallel hypersurface Φr(Σ) will be denoted by
Σr.

Let γ : I → M̃ be a geodesic parametrized by arc length with 0 ∈ I ⊂ R, p = γ(0) ∈ Σ
and γ̇(0) = N(p). Let c : I → Σ be a smooth curve with c(0) = p and ċ(0) ∈ TpΣ, where α̇
denotes the tangent vector �eld of a smooth curve α. Observe that V (s, t) = Φt(c(s)) = γs(t)
is a smooth geodesic variation of γ = γ0, where c(s) = γs(0) ∈ Σ and N ◦ c(s) = γ̇s(0) ∈
T⊥
c(s)Σ for all s. This variation generates the Jacobi �eld ξ(s) = d

dsV (s, 0) determined by
the initial values

ξ(0) = ċ(0) ∈ TpΣ and ξ′(0) = −Aξ(0),

where A is the shape operator of Σ and ξ′ denotes the covariant derivative of ξ along γ. A
Jacobi �eld ξ along γ whose initial values satisfy these two conditions is called an Σ-Jacobi
�eld. When Σr is a hypersurface, the main properties of Σ-Jacobi �eld in relation to the
extrinsic geometry of Σr are given as follows:

i) Tγ(r)Σr = {ξ(r) : ξ is a Σ-Jacobi �eld along γ};

ii) γ̇(r) provides a unit normal to Σr with corresponding shape operator Ar given by
Arξ(r) = −ξ′(r).

In what follows, we describe another very interesting way to determine the shape operator
Ar.

For each r let us de�ne the endomorphism D(r) : γ̇(r)⊥ −→ γ̇(r)⊥ as follows. If Z ∈ TpΣ

and P̃γ is the parallel transport along γ, then D is de�ned such that ξ = D ◦ P̃γZ is the
Jacobi �eld along γ with initial values ξ(0) = Z and ξ′(0) = −AZ. It follows that D is a
solution of

D′′ + R̃(D, γ̇)γ̇ = 0, D(0) = idTpΣ, D′(0) = −A, (1.2)

where D′ and D′′ stand for the �rst and second covariant derivatives of the tensor �eld D,
respectively, and idTpΣ is the identity operator of TpΣ. Since Σr is a hypersurface, then
D(r) is regular and we have that

Ar(D ◦ P̃γZ)(r) = Ar(ξ(r)) = −ξ′(r) = −(D ◦ P̃γZ)′(r) = −D′(r)P̃γZ.

Therefore, the shape operator of the parallel hypersurface Mr associated to the unit normal
γ̇(r) is given by

Ar = −(D′ ◦D−1)(r). (1.3)
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Consequently, by the Jacobi formula, the mean curvature of the hypersurface Σr is given by

h(r) = −(detD)′

n detD
(r). (1.4)

1.3 Isoparametric hypersurfaces

In this section, we introduce some known facts about isoparametric hypersurfaces of
Riemannian manifolds in general. For more details on this topic, the reader can look up the
reference [15].

We start by presenting the de�nition of isoparametric function. According to [15], this
de�nition was possibly introduced by T. Levi-Civita [27] in 1937.

De�nition 1.1. Let (M̃, g) be a connected Riemannian manifold. A non-constant smooth

function f : M̃ −→ R is called isoparametric if there exist smooth functions a, b : R −→ R
such that

(1) ||∇f ||2 = a(f) and (2) ∆f = b(f).

The smooth hypersurfaces Σr = f−1(r) for r regular value of f are called isoparametric
hypersurfaces. Note that ||∇f || and ∆f are constant along the level sets of f . As we can
see in [15], the condition of the gradient of an isoparametric function f means, roughly
speaking, that its level sets are equidistant to each other. On the other hand, the condition
on the Laplacian of f has also a geometric meaning: the regular level sets of f have constant
mean curvature. These facts are summarized in the following theorem (see [15]).

Theorem 1.1. Let M̃ be a Riemannian Manifold. Let f : M̃ −→ R be an isoparametric
map r ∈ R a regular value for f , and Σ = f−1(r) the corresponding level hypersurface. Then
Σ is an isoparametric hypersurface.

Conversely, if Σ is an isoparametric hypersurface in M̃ , then for each p ∈ Σ there is an
open neighborhood U such that U is a regular level set of an isoparametric map f : V −→ R,
for some open subset V of M̃ .

Remark 1. An interesting fact that is used in the proof of the above theorem, and that we
will use later, is that the normal vector �eld N = ∇f

||∇f || of the hypersurface Σ = f−1(r) is a

geodesic �eld, that is, ∇̃NN = 0.

Using the theorem above, we can establish the following de�nition of isoparametric
hypersurface, which is equivalent to the De�nition 1.1.

De�nition 1.2. An immersed hypersurface M of a Riemannian manifold M̃ is called an
isoparametric hypersurface if, for each p ∈ M , there exists an open neighborhood U of p in
M such that U and the nearby equidistant hypersurfaces to U have constant mean curvature.

When the ambient space is a space form, that is, a simply connected complete Rieman-
nian manifold with constant sectional curvature, the previous de�nition of isoparametric
hypersurface is equivalent to saying that the hypersurface has constant principal curva-
tures. This important result was obtained in 1938 by Cartan [7]. More precisely, Cartan
showed the following theorem, whose an alternative proof can be found in [15].

Theorem 1.2. Let Σ be a hypersurface in a space form Qn
c . Then Σ is isoparametric if and

only if Σ has constant principal curvatures.
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In this work, we will use the classi�cation of isoparametric surfaces in the 3-dimensional
space forms S3 and H3. Such a classi�cation is due to Cartan [7], and in addition to
the umbilical surfaces, such surfaces are given by certain products of curves of constant
curvature. Speci�cally, for future reference in this text, following the notation according
to [34] and [35], we will enunciate in a theorem the classi�cation of isoparametric surfaces
with two distinct principal curvatures in the hyperbolic space H3 and in the unit sphere S3
(see Theorem 1 in [35]).

Theorem 1.3. Let Σ2 be an isoparametric surface with two distinct principal curvatures in
Q3
ε, with ε

2 = 1. Then Σ2 is an open subset of one of the following surfaces:

a) S1(c1)× S1(c2), when ε = 1,

b) S1(c1)×H1(c2), when ε = −1,

where c1 ̸= c2,
1

c1
+

1

c2
= ε and the principal curvatures of Σ2 are given by

c1√
c1 + c2

and

−c2√
c1 + c2

.

Unlike space forms, in arbitrary ambient spaces, the isoparametricity of a hypersur-
face and the constancy of the principal curvatures are, a priori, unrelated conditions. For
instance, examples of isoparametric hypersurfaces with nonconstant principal curvatures
were given in [12], [13], [21] and [43], and examples of non-isoparametric hypersurfaces with
constant principal curvatures, can be found in [22] and [33].
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Chapter 2

Isoparametric Hypersurfaces in

Q2
c1 ×Q2

c2

In this chapter, we consider the ambient space Q2
c1 ×Q2

c2 , where Q
2
ci is a space form with

constant sectional curvature ci, for ci ∈ {−1, 0, 1} and c1 ̸= c2. We aim to characterize and
classify the isoparametric hypersurfaces with constant principal curvatures in Q2

c1×Q2
c2 , with

ci ∈ {−1, 0, 1} and c1 ̸= c2. For this, we combine the techniques of Domínguez-Vázquez and
Manzano [16], Urbano [41] and Julio-Batalla [25]. In [16], Domínguez-Vazquéz and Man-
zano provided the classi�cation of the isoparametric surfaces and surfaces with constant
principal curvatures in E(κ, τ), in [41], Urbano classi�ed the homogeneous and isoparamet-
ric hypersurfaces in S2 × S2, and in [25], Julio-Batalla obtained the classi�cation of the
isoparametric hypersurfaces in S2 ×R2 with constant principal curvatures. In addition, like
Domínguez-Vázquez and Manzano, we will use Jacobi �eld theory to describe the geometry
of the family of parallels hypersurfaces to a given one. This theory was brie�y described in
the Section 1.2.

The content of this chapter is a joint work with João Paulo do Santos [17], entitled
"Isoparametric hypersurfaces in product spaces", to appear in "Di�erential Geometry and
its Applications".

2.1 Preliminary notions and results

Before stating and proving the main results of this chapter, we will brie�y present some
background content in the product space Q2

c1 ×Q2
c2 .

For i = 1, 2, we denote by ⟨, ⟩i and Li the standard metric and the standard complex
structure in Q2

ci , respectively. If Q
2
ci is the 2-dimensional S2 of curvature ci = 1, Li is given

by

Li : TS2 −→ TS2

v −→ Li(v) = p× v,

for p ∈ S2, v ∈ TpS2, see [14]. When Q2
ci is the hyperbolic space H2 of curvature ci = −1,

as stated in Chapter 1, we will consider its standard Lorentzian model. In this case, the
3-dimensional Minkowski space L3 is endowed with the Lorentzian cross product ⊠, de�ned
by

(a1, a2, a3)⊠ (b1, b2, b3) = (a3b2 − a2b3, a3b1 − a1b3, a1b2 − a2b1).
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In this model, Li is given by

Li : TH2 −→ TH2

v −→ Li(v) = p⊠ v,

for p ∈ H2, v ∈ TpH2, see [14] and [20]. Finally, if Q2
ci is the space form R2 of curvature

ci = 0, Li is de�ned by

Li : R2 −→ R2

v −→ Li(q1, q2) = (−q2, q1),

see [25].
It is easy to see that Li satis�es the following properties:

L2
i = −Id, and ⟨Li(v), Li(w)⟩ = ⟨v, w⟩. (2.1)

The Kähler 2-form associated to standard complex structure Li on Q2
ci is de�ned by

ωi(v, w) = ⟨Li(v), w⟩i,

for all v, w ∈ TQ2
ci . Observe that, since Q2

ci has dimension 2, it follows that dωi = 0, that
is, the Kähler 2-form ωi is closed, which implies that Q2

ci is a Kähler manifold. It is well-
known that the Kähler 2-form of a Riemannian manifold is closed if and only if its standard
complex structure is parallel with respect to the covariant derivative, see [26]. Thus, we
conclude that Li is parallel on Q2

ci .
We endow Q2

c1 ×Q2
c2 with the standard product metric, denoted by ⟨, ⟩. Moreover, given

Y ∈ T (Q2
c1 × Q2

c2), we write Y = Y Q2
c1 + Y Q2

c2 , where the components Y Q2
c1 and Y Q2

c2 of
Y are given as its tangent parts to Q2

c1 and Q2
c2 , respectively. We de�ne on Q2

c1 × Q2
c2 the

complex strutures
J1 = L1 + L2, J2 = L1 − L2,

and we denote by ∇̃ and R̃ its Levi-Civita connection and curvature tensor, respectively.
Note that, using (2.1), the complex structures Ji, i = 1, 2, satisfy

J2
i = −Id, and ⟨Ji(Y ), Ji(Z)⟩ = ⟨Y,Z⟩,

for all Y, Z ∈ T (Q2
c1 × Q2

c2). In addition, since Li is parallel on Q2
ci , we have that J1

and J2 are parallel on Q2
c1 × Q2

c2 with respect to the Levi-Civita connection ∇̃, that is,

∇̃J1 = ∇̃J2 = 0, and hence, Q2
c1 ×Q2

c2 is a kähler manifold.
Now, let us consider the product structure P in Q2

c1 ×Q2
c2 de�ned by

P
(
Y Q2

c1 + Y Q2
c2

)
= Y Q2

c1 − Y Q2
c2 ,

for any vector Y ∈ T (Q2
c1 ×Q2

c2). Note that P satis�es

P = −J1J2 = −J2J1.

In fact, given Y ∈ T (Q2
c1 ×Q2

c2), we have that

J1J2(Y ) = J1J2(Y
Q2

c1 + Y Q2
c2 ) = J1

(
L1(Y

Q2
c1 )− L2(Y

Q2
c2 )
)
=
(
L2
1(Y

Q2
c1 )− L2

2(Y
Q2

c2 )
)

= −Y Q2
c1 + Y Q2

c2 = −P (Y Q2
c1 + Y Q2

c2 ),

that is, P = −J1J2. Analogously, we obtain P = −J2J1.

19



Moreover, the product structure P of Q2
c1 ×Q2

c2 has the following properties:

P 2 = I (P ̸= I), ⟨PY,Z⟩ = ⟨Y, PZ⟩, and (∇̃Y P )(Z) = 0,

for any vector �elds Y,Z ∈ T (Q2
c1 × Q2

c2). Indeed, the �rst and second properties are
immediate. For the third property, given vector �elds Y,Z ∈ T (Q2

c1 ×Q2
c2) and denoting by

∇Q2
c1 and ∇Q2

c2 the Levi-Civita connection of Q2
c1 and Q2

c2 , respectively, it follows that

(∇̃Y P )(Z) = ∇̃Y PZ − P ∇̃Y Z

= ∇̃
Y

Q2
c1+Y

Q2
c2
P (ZQ2

c1 + ZQ2
c2 )− P

(
∇

Q2
c1

Y
Q2
c1
ZQ2

c1 +∇
Q2

c2

Y
Q2
c2
ZQ2

c2

)
= ∇̃

Y
Q2
c1+Y

Q2
c2
(ZQ2

c1 − ZQ2
c2 )−

(
∇

Q2
c1

Y
Q2
c1
ZQ2

c1 −∇
Q2

c2

Y
Q2
c2
ZQ2

c2

)
= ∇

Q2
c1

Y
Q2
c1
ZQ2

c1 −∇
Q2

c2

Y
Q2
c2
ZQ2

c2 −
(
∇

Q2
c1

Y
Q2
c1
ZQ2

c1 −∇
Q2

c2

Y
Q2
c2
ZQ2

c2

)
= 0.

Let us write R̃ in terms of P . Denoting by Rci the curvature tensor of Q2
ci , and using

the curvature tensor formula of a manifold of constant sectional curvature, it follows that

R̃(V,W,Z, Y ) = Rc1(V Q2
c1 ,WQ2

c1 , ZQ2
c1 , Y Q2

c1 ) +Rc2(V Q2
c2 ,WQ2

c2 , ZQ2
c2 , Y Q2

c2 )

= c1

{
⟨V Q2

c1 , Y Q2
c1 ⟩1⟨WQ2

c1 , ZQ2
c1 ⟩1 − ⟨V Q2

c1 , ZQ2
c1 ⟩1⟨WQ2

c1 , Y Q2
c1 ⟩1

}
+ c2

{
⟨V Q2

c2 , Y Q2
c2 ⟩2⟨WQ2

c2 , ZQ2
c2 ⟩2 − ⟨V Q2

c2 , ZQ2
c2 ⟩2⟨WQ2

c2 , Y Q2
c2 ⟩2

}
,

for any vector �elds V,W,Z, Y ∈ T (Q2
c1 ×Q2

c2). Note that for all T ∈ T (Q2
c1 ×Q2

c2), we have

TQ2
c1 =

PT + T

2
, TQ2

c2 =
T − PT

2
.

Thus, we get

⟨V Q2
c1 , Y Q2

c1 ⟩1 =
1

2
⟨V, PY + Y ⟩, ⟨WQ2

c1 , ZQ2
c1 ⟩1 =

1

2
⟨PW +W,Z⟩,

⟨V Q2
c2 , Y Q2

c2 ⟩2 = −1

2
⟨V, PY − Y ⟩, ⟨WQ2

c2 , ZQ2
c2 ⟩2 = −1

2
⟨PW −W,Z⟩.

Therefore,

R̃(V,W,Z, Y ) =
c1
4

{
⟨V, PY + Y ⟩⟨PW +W,Z⟩ − ⟨W,PY + Y ⟩⟨PV + V,Z⟩

}
+
c2
4

{
⟨V, PY − Y ⟩⟨PW −W,Z⟩ − ⟨W,PY − Y ⟩⟨PV − V,Z⟩

}
.

Let Σ3 ⊂ Q2
c1 ×Q2

c2 be an oriented hypersurface with unit normal vector N = N1 +N2,
where N1 and N2 denote the components of N in Q2

c1 and Q2
c2 , respectively, and Levi-Civita

connection ∇. We de�ne in Σ3 a smooth function C and a tangent vector �eld X by

C = ⟨PN,N⟩ and X = PN − CN. (2.2)

Observe that X is the tangential component of PN and |X|2 = 1 − C2, which implies
−1 ≤ C ≤ 1.
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Let A be the shape operator of Σ. Using the curvature tensor of Q2
c1 ×Q2

c2 , the Codazzi
equation of Σ is given by

∇S(V,W,Z)−∇S(W,V,Z) = R̃(V,W,Z,N), (2.3)

where

R̃(V,W,Z,N) =
c1
4

{
⟨V, PN +N⟩⟨PW +W,Z⟩ − ⟨W,PN +N⟩⟨PV + V,Z⟩

}
+
c2
4

{
⟨V, PN −N⟩⟨PW −W,Z⟩ − ⟨W,PN −N⟩⟨PV − V,Z⟩

}
=
c1
4

{
⟨V,X⟩⟨PW +W,Z⟩ − ⟨W,X⟩⟨PV + V,Z⟩

}
+
c2
4

{
⟨V,X⟩⟨PW −W,Z⟩ − ⟨W,X⟩⟨PV − V,Z⟩

}
,

with V,W,Z ∈ TΣ.
In what follows, we are going to compute the gradient of the function C. Given Y ∈ TΣ,

since P is parallel, we have

⟨∇C, Y ⟩ = Y (C) = Y ⟨PN,N⟩
= ⟨∇Y PN,N⟩+ ⟨PN,∇YN⟩
= ⟨P∇YN,N⟩+ ⟨PN,∇YN⟩
= 2⟨PN,∇YN⟩ = −2⟨X + CN,AY ⟩
= −2⟨X,AY ⟩ = −2⟨AX,Y ⟩,

which implies that the gradient of C is given by

∇C = −2AX.

2.2 Main results

We are now in a position to prove the main results of this chapter. Our �rst result char-
acterizes the isoparametric hypersurfaces with constant principal curvatures in the product
spaces Q2

c1 ×Q2
c2 , for ci ∈ {−1, 0, 1} and c1 ̸= c2.

Theorem 2.1. Let Σ be an isoparametric hypersurface in Q2
c1 × Q2

c2 , with ci ∈ {−1, 0, 1}
and c1 ̸= c2, and unit normal N = N1 +N2, where N1 and N2 denote the components of N
in Q2

c1 and Q2
c2, respectively. Then the principal curvatures of Σ are constant if and only if

|N1| and |N2| are constant.

Proof. Let Σ be an isoparametric hypersurface in Q2
c1×Q2

c2 with ci ∈ {−1, 0, 1} and c1 ̸= c2,
and unit normal N = N1 + N2. In order to prove Theorem 2.1, it is enough to show that
the principal curvatures of Σ are constant if and only if the function C, given in (2.2),
is constant. In fact, as |N1|2 = 1+C

2 and |N2|2 = 1−C
2 , it follows that |N1| and |N2| are

constant if and only if C is constant.
In what follows, we will establish some relations between the function C and the shape

operator of Σ. Recall that the family of hypersurfaces parallel to Σ in the direction of
N is given by (1.1) and the parallel hypersurface at an oriented distance r is denoted by
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Σr. We �rst observe that, since Σ is isoparametric and the product structure P is parallel,
the function C, de�ned on the family of parallel hypersurfaces, does not depend on the
displacement parameter r, once N(C) = 0. In fact, since C = ⟨PN, N⟩ and ∇NN = 0, we
have

N(C) = ⟨∇NN,PN⟩+ ⟨N,P∇NN⟩ = 0.

Let us recall that |C| ≤ 1. Consider the open set

U =
{
p ∈ Σ | C2(p) < 1

}
.

We can assume that U ̸= ∅, otherwise C2 = 1 on Σ. In this case, let us take in U the
following orthonormal frame

B =

{
B1 =

X√
1− C2

, B2 =
J1N + J2N√

2(1 + C)
, B3 =

J1N − J2N√
2(1− C)

}
,

where X = PN − CN.
Given p ∈ Σ, let γp be a geodesic of Q2

c1 ×Q2
c2 with γp(0) = p and γ̇p(0) = N(p). By the

de�nition of Σr we have that γ̇q(r) is a normal vector to Σr at γq(r). Thus, we can extend
the unit normal N to U × (−ϵ, ϵ) by N(γq(r)) = γ̇q(r), q ∈ U . Consequently, we also can
extend the �elds Bi.

Recall that a Jacobi �eld along γp is a vector �eld ξ satisfying the Jacobi equation
ξ′′ +R(ξ, γ̇p)γ̇p = 0. For each j ∈ {1, 2, 3}, take the Jacobi �eld ξj along γp with the initial
conditions

ξj(0) = Bj and ξ′j(0) = −ABj ,

where A is the shape operator of Σ associated with N .
Since these initial conditions are orthogonal to γ̇p(0), each Jacobi �eld ξj is also orthog-

onal to N(γp(r)) = γ̇p(r) and, hence, it can be written as

ξj = b1jB1 + b2jB2 + b3jB3,

for certain smooth functions bij on (−ϵ, ϵ).
Let us observe that ∇NBi = 0, for all i = 1, 2, 3. In fact, since N(C) = 0 and P is

parallel, we have ∇NX = 0, which implies ∇NB1 = 0. Furthermore, since Ji is also parallel,
for i = 1, 2, we conclude that ∇NBj = 0, j = 2, 3. Thus, we have, on the one hand,

ξ′′j = b′′1jB1 + b′′2jB2 + b′′3jB3. (2.4)

On the other hand, if we denote by Rci the curvature tensor of Q2
ci , we get

R̃(B1, N)N = Rc1(B
Q2

c1
1 , N1)N1 +Rc2(B

Q2
c2

1 , N2)N2

=
1

8
√
1− C2

(
Rc1(X + PX,N + PN)(N + PN)

+Rc2(X − PX,N − PN)(N − PN)

)
= 0,

since X + PX = (1 − C)(N + PN) and X − PX = −(1 + C)(N − PN). Now, using the
curvature tensor formula of a manifold of constant sectional curvature, we get
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R(B2, N)N = c1

(
⟨N1, N1⟩1B2 − ⟨B2, N1⟩1N1

)
=
c1||N + PN ||2

4
B2,

R(B3, N)N = c2

(
⟨N2, N2⟩2B3 − ⟨B3, N2⟩2N2

)
=
c2||N − PN ||2

4
B3.

Therefore,

R̃(ξj , γ̇p)γ̇p = R̃(ξj , N)N

= b1jR(B1, N)N + b2jR(B2, N)N + b3jR(B3, N)N

= b2j
c1||N + PN ||2

4
B2 + b3j

c2||N − PN ||2

4
B3

= b2j
c1(1 + C)

2
B2 + b3j

c2(1− C)

2
B3.

(2.5)

Since ξj is a Jacobi �eld, we have from (2.4) and (2.5) the following homogeneous linear
system of ordinary di�erential equations

b′′1j = 0, b′′2j + δ1b2j = 0, b′′3j + δ2b3j = 0, (2.6)

where δ1 =
c1(1+C)

2 and δ2 =
c2(1−C)

2 .
In what follows, we describe the initial conditions of the system (2.6). Firstly, as ξj(0) =

Bj , we get

b11(0) = 1, b12(0) = 0, b13(0) = 0,
b21(0) = 0, b22(0) = 1, b23(0) = 0,
b31(0) = 0, b32(0) = 0, b33(0) = 1.

(2.7)

Secondly, let the shape operator of Σ be determined by the relations ABi = σi1B1 +
σi2B2 + σi3B3, for certain smooth functions σij . Since A is symmetric, we have σ12 = σ21,
σ13 = σ31 and σ32 = σ23. Furthermore, taking into account that ξ′j = ∇̃Nξj = −Aξj , we
obtain

b′11(0) = −σ11, b′12(0) = −σ21, b′13(0) = −σ31,
b′21(0) = −σ12, b′22(0) = −σ22, b′23(0) = −σ23,
b′31(0) = −σ13, b′32(0) = −σ23, b′33(0) = −σ33.

(2.8)

With the initial conditions (2.7) and (2.8), the solution of system (2.6) is given by

b11(r) = −σ11r + 1,

b12(r) = −σ12r,
b13(r) = −σ13r,
b21(r) = −σ12Sδ1(r),
b22(r) = −σ22Sδ1(r) + Cδ1(r),

b23(r) = −σ32Sδ1(r),
b31(r) = −σ13Sδ2(r),
b32(r) = −σ32Sδ2(r),
b33(r) = −σ33Sδ2(r) + Cδ2(r),

(2.9)
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where we consider the auxiliary functions

Sδi(r) =


r if δi = 0,

1√
−δi

sinh(r
√
−δi) if δi < 0,

1√
δi
sin(r

√
δi) if δi > 0,

Cδi(r) =


1 if δi = 0,

cosh(r
√
−δi) if δi < 0,

cos(r
√
δi) if δi > 0.

for i ∈ {1, 2}.
For every r, the shape operator Ar of Σr with respect to the normal γ̇p(r) is given by

(1.3), where D(r) is a linear endomorphism of Tγp(r)Σr, determined by the relations

D(r)Bj(γp(r)) = ξj(r), D′(r)Bj(γp(r)) = ξ′j(r).

Considering the orthonormal basis {B1(γp(r)), B2(γp(r)), B3(γp(r))} of Tγp(r)Σr, the
matrix form of the operator D(r) is given by

D(r) =

 b11(r) b12(r) b13(r)
b21(r) b22(r) b23(r)
b31(r) b32(r) b33(r)

 , (2.10)

From now on, our strategy is as follows. Firstly, we are going to get explicitly the
formulas of detD(r) and d

dr (detD(r)) in terms of the functions bij and its derivatives.
Secondly, we will apply such formulas to construct

f(r) =
d

dr
(detD(r)) + 3h(r) detD(r),

which vanishes identically on (−ϵ, ϵ), by equation (1.4). Finally, we will use the fact that
f ≡ 0 as well as its derivatives to obtain some algebraic relations between the components
of A on the basis {Bi}3i=1 and the function C.

From (2.9), we have that

b11b22b33 = −σ11σ22σ33rSδ1(r)Sδ2(r) + σ11σ22rSδ1(r)Cδ2(r) + σ11σ33rSδ2(r)Cδ1(r)

− σ11rCδ1(r)Cδ2(r) + σ22σ33Sδ1(r)Sδ2(r)− σ22Sδ1(r)Cδ2(r)

− σ33Sδ2(r)Cδ1(r) + Cδ1(r)Cδ2(r),

b12b23b31 = −σ21σ32σ13rSδ1(r)Sδ2(r),
b13b32b21 = −σ31σ23σ12rSδ1(r)Sδ2(r),
b31b22b13 = −σ213σ22rSδ1(r)Sδ2(r) + σ213rSδ2(r)Cδ1(r),

b32b23b11 = −σ11σ223rSδ1(r)Sδ2(r) + σ223Sδ1(r)Sδ2(r),

b12b21b33 = −σ33σ212rSδ1(r)Sδ2(r) + σ212rSδ1(r)Cδ2(r).

Thus, we obtain

detD(r) = b11b22b33 + b12b23b31 + b13b32b21 − b31b22b13 − b32b23b11 − b33b12b21

= rSδ1(r)Sδ2(r)(−σ11σ22σ33 − σ21σ32σ13 − σ31σ32σ12

+ σ213σ22 + σ223σ11 + σ212σ33)

+ rSδ1(r)Cδ2(r)(σ11σ22 − σ212) + rSδ2(r)Cδ1(r)(σ11σ33 − σ213)

− σ11rCδ1(r)Cδ2(r) + Sδ1(r)Sδ2(r)(σ22σ33 − σ223)− σ22Sδ1(r)Cδ2(r)

− σ33Sδ2(r)Cδ1(r) + Cδ1(r)Cδ2(r)

= A1rSδ1(r)Sδ2(r) +A2rSδ1(r)Cδ2(r) +A3rSδ2(r)Cδ1(r)

+A4Sδ1(r)Sδ2(r)− σ11rCδ1(r)Cδ2(r)− σ22Sδ1(r)Cδ2(r)

− σ33Sδ2(r)Cδ1(r) + Cδ1(r)Cδ2(r),
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where

A1 = −detA, A2 = σ11σ22 − σ212,
A3 = σ11σ33 − σ213, A4 = σ22σ33 − σ223.

(2.11)

Now, taking into account that S′
δi
(r) = Cδi(r) and C

′
δi
(r) = −δiSδi(r), we obtain

d

dr
(detD(r)) = A1 (Sδ1(r)Sδ2(r) + rCδ1(r)Sδ2(r) + rSδ1(r)Cδ2(r))

+A2 (Sδ1(r)Cδ2(r) + rCδ1(r)Cδ2(r)− rδ2Sδ1(r)Sδ2(r))

+A3 (Sδ2(r)Cδ1(r) + rCδ2(r)Cδ1(r)− rδ1Sδ2(r)Sδ1(r))

+A4 (Cδ1(r)Sδ2(r) + Sδ1(r)Cδ2(r))

− σ11 (Cδ1(r)Cδ2(r)− rδ1Sδ1(r)Cδ2(r)− rδ2Cδ1(r)Sδ2(r))

− σ22 (Cδ1(r)Cδ2(r)− δ2Sδ1(r)Sδ2(r))

− σ33 (Cδ2(r)Cδ1(r)− δ1Sδ2(r)Sδ1(r))

− δ1Sδ1(r)Cδ2(r)− δ2Cδ1(r)Sδ2(r).

Thus, the function f is given explicitly as

f(r) = A1

(
Sδ1(r)Sδ2(r) + rCδ1(r)Sδ2(r) + rSδ1(r)Cδ2(r)

+ 3rh(r)Sδ1(r)Sδ2(r)
)

+A2

(
Sδ1(r)Cδ2(r) + rCδ1(r)Cδ2(r)− rδ2Sδ1(r)Sδ2(r)

+ 3rh(r)Sδ1(r)Cδ2(r)
)

+A3

(
Sδ2(r)Cδ1(r) + rCδ2(r)Cδ1(r)− rδ1Sδ2(r)Sδ1(r)

+ 3rh(r)Sδ2(r)Cδ1(r)
)

+A4

(
Cδ1(r)Sδ2(r) + Sδ1(r)Cδ2(r) + 3h(r)Sδ1(r)Sδ2(r)

)
− σ11

(
Cδ1(r)Cδ2(r)− rδ1Sδ1(r)Cδ2(r)− rδ2Cδ1(r)Sδ2(r)

+ 3rh(r)Cδ1(r)Cδ2(r)
)

− σ22
(
Cδ1(r)Cδ2(r)− δ2Sδ1(r)Sδ2(r) + 3h(r)Sδ1(r)Cδ2(r)

)
− σ33

(
Cδ2(r)Cδ1(r)− δ1Sδ2(r)Sδ1(r) + 3h(r)Sδ2(r)Cδ1(r)

)
− δ1Sδ1(r)Cδ2(r)− δ2Cδ1(r)Sδ2(r) + 3h(r)Cδ1(r)Cδ2(r).

(2.12)

Taking the derivative in (2.12), we get

f ′(r) = A1

(
2Cδ1(r)Sδ2(r) + 2Sδ1(r)Cδ2(r)− rSδ1(r)Sδ2(r)(δ1 + δ2)

+ 2rCδ1(r)Cδ2(r) + 3h(r)Sδ1(r)Sδ2(r) + 3rh′(r)Sδ1(r)Sδ2(r)

+ 3rh(r)Cδ1(r)Sδ2(r) + 3rh(r)Sδ1(r)Cδ2(r)
)

+A2

(
2Cδ1(r)Cδ2(r)− 2δ2Sδ1(r)Sδ2(r)− rSδ1(r)Cδ2(r)(δ1 + δ2)

− 2δ2rCδ1(r)Sδ2(r) + 3h(r)Sδ1(r)Cδ2(r) + 3rh′(r)Sδ1(r)Cδ2(r)

+ 3rh(r)Cδ1(r)Cδ2(r)− 3δ2rh(r)Sδ1(r)Sδ2(r)
)

+A3

(
2Cδ2(r)Cδ1(r)− 2δ1Sδ2(r)Sδ1(r)− rSδ2(r)Cδ1(r)(δ1 + δ2)

− 2δ1rCδ2(r)Sδ1(r) + 3h(r)Sδ2(r)Cδ1(r) + 3rh′(r)Sδ2(r)Cδ1(r)

+ 3rh(r)Cδ2(r)Cδ1(r)− 3δ1rh(r)Sδ2(r)Sδ1(r)
)

(2.13)
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+A4

(
2Cδ1(r)Cδ2(r)− Sδ1(r)Sδ2(r)(δ1 + δ2) + 3h′(r)Sδ1(r)Sδ2(r)

+ 3h(r)Cδ1(r)Sδ2(r) + 3h(r)Sδ1(r)Cδ2(r)
)

− σ11

(
− 2δ1Sδ1(r)Cδ2(r)− 2δ2Cδ1(r)Sδ2(r)− rCδ1(r)Cδ2(r)(δ1 + δ2)

+ 2δ1δ2rSδ1(r)Sδ2(r) + 3h(r)Cδ1(r)Cδ2(r) + 3rh′(r)Cδ1(r)Cδ2(r)

− 3δ1rh(r)Sδ1(r)Cδ2(r)− 3δ2rh(r)Cδ1(r)Sδ2(r)
)

− σ22

(
− Sδ1(r)Cδ2(r)(δ1 + δ2)− 2δ2Cδ1(r)Sδ2(r) + 3h′(r)Sδ1(r)Cδ2(r)

+ 3h(r)Cδ1(r)Cδ2(r)− 3δ2h(r)Sδ1(r)Sδ2(r)
)

− σ33

(
− Sδ2(r)Cδ1(r)(δ1 + δ2)− 2δ1Cδ2(r)Sδ1(r) + 3h′(r)Sδ2(r)Cδ1(r)

+ 3h(r)Cδ2(r)Cδ1(r)− 3δ1h(r)Sδ2(r)Sδ1(r)
)

− Cδ1(r)Cδ2(r)(δ1 + δ2) + 2δ1δ2Sδ1(r)Sδ2(r) + 3h′(r)Cδ1(r)Cδ2(r)

− 3δ1h(r)Sδ1(r)Cδ2(r)− 3δ2h(r)Cδ1(r)Sδ2(r).

As f ≡ 0, so is its derivative. Then, applying r = 0 in the derivative above, we obtain
the following relation:

0 = f ′(0) = 2(A2 +A3 +A4)− 9h2(0) + 3h′(0)− (δ1 + δ2), (2.14)

where h(0) is the mean curvature of Σ.
Note that Ai, δi, h(0) and h′(0), depend only, in principle, on the base point p ∈

Σ. However, by assumption, Σ is isoparametric and hence, h(0) and h′(0) are constants
throughout Σ, that is, they are independent of the chosen base point p ∈ Σ of normal
geodesic γp.

Furthermore, observe that

9h2(0) = σ211 + σ222 + σ233 + 2(σ11σ22 + σ11σ33 + σ22σ33),

and
tr(A2) = σ211 + σ222 + σ233 + 2(σ212 + σ213 + σ223).

Thus, by the de�nitions of the functions Ai, i = 1, . . . , 4, in (2.11), we have 2(A2 + A3 +
A4)− 9h2(0) = −tr(A2). Substituting in (2.14), we get

tr(A2) = 3h′(0)− (δ1 + δ2), (2.15)

where δ1 + δ2 =
1
2(C(c1 − c2) + c1 + c2).

We are in position to prove the equivalence claimed in the statement of the theorem. If
Σ has constant principal curvatures µ1, µ2, µ3, then tr(A2) = µ21 + µ22 + µ23 is constant and
hence, C is constant, since c1 ̸= c2.

Conversely, suppose C is constant. Since the gradient of the function C is given by
∇C = −2A(X), then A(X) = 0. Therefore, σ1j = σj1 = 0, for all j = 1, 2, 3. Thus, we have
A1 = A2 = A3 = 0 and we can rewrite (2.14) as

0 = 2A4 − 9h2(0) + 3h′(0)− (δ1 + δ2),

and, as a consequence, we have that A4 is constant.
Moreover, as σ1j = σj1 = 0, the characteristic polynomial QA of A is given by

QA(λ) = −λ3 + 3h(0)λ2 −A4λ.

Therefore, since A4 is constant, it follows that the principal curvatures of Σ are constant.
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Remark 2. It is worth mentioning that Theorem 2.1 holds in a more general setting, where
c1 ̸= c2 but not necessarily ci ∈ {−1, 0, 1}. Adjusting the ambient spaces and their corre-
sponding complex structures for arbitrary values of ci, the computations and arguments in
the proof of Theorem 2.1 remain the same only with the assumption that c1 ̸= c2. In fact,
this hypothesis is used in equation (2.15) to show that if Σ has constant principal curvatures,
then C is constant. The converse holds, however, even if c1 = c2.

Observe that Theorem 2.1 tells us that the converse of a result obtained by Julio-
Batalla [25] holds, that is, we proved that if |N1| and |N2| are constant, then Σ has constant
principal curvatures. In addition, the Jacobi �eld theory, used in the proof of Theorem 2.1,
allows us to obtain an alternative proof of Julio-Batalla's result.

Our next result classi�es the isoparametric hypersurfaces with constant principal cur-
vatures in the product spaces Q2

c1 × Q2
c2 , for ci ∈ {−1, 0, 1} and c1 ̸= c2. As previously

mentioned, this classi�cation includes the classi�cation obtained by Julio-Batalla in the
product space S2 × R2.

Theorem 2.2. Let Σ be an isoparametric hypersurface with constant principal curvatures
in Q2

c1 × Q2
c2, with ci ∈ {−1, 0, 1} and c1 ̸= c2. Then, up to rigid motions, Σ is an open

subset of one of the following hypersurfaces:

a) C1(κj)×Q2
c2 or Q2

c1 ×C1(κj), where C1(κj) is a complete curve with constant geodesic
curvature κj in Q2

cj .

b) Ψ(R3) ⊂ H2 × R2, where Ψ : R3 → H2 × R2 is an immersion given by

Ψ(s, u, v) = e−b s(α(u), 0⃗) +
(
cosh(−b s), 0, sinh(−b s), V0s

)
+
(
0⃗, p0 +W0v

)
,

(2.16)

where H2 ⊂ L3 is given as the standard model of the hyperbolic space in the Lorentz

3-space L3, the curve α is given by α(u) =

(
u2

2
, u, −u

2

2

)
, p0 ∈ R2, V0 and W0 are

constant orthogonal vectors in R2 such that ||W0|| = 1 and b =
√
1− ||V0||2, with

b ̸= {1, 0}.

Proof. Let Σ be an isoparametric hypersurface in Q2
c1 ×Q2

c2 with constant principal curva-
tures, where ci ∈ {−1, 0, 1} and c1 ̸= c2. By Theorem 2.1, we have that C is constant. If
C = 1 we have PN = N , and thus, N = (N1, 0). If C = −1 we have PN = −N , and then,
N = (0, N2). In such cases, Σ is an open subset of C1(κj)×Q2

c2 or Q
2
c1×C1(κj), respectively,

where C1(κj) is a curve in Q2
cj of constant geodesic curvature κj .

In fact, let us suppose that N = (N1, 0), then Σ is an open subset of C1 × Q2
c2 , where

C1 is a regular curve in Q2
c1 . Let ψ be a parametrization by arc length of C1, with unit

normal vector nψ = ±N1. Let {e1, e2, e3} a orthonormal frame in C1 × Q2
c2 , with e1 = ψ′

and {e2, e3} an orthonormal basis in Q2
c2 . If we denote the shape operator of Σ by A,

considering without loss of generality that N1 = nψ, we have

Ae1 = −∇̃e1N1 = −∇̃
Q2

c1
ψ′ nψ = κjψ

′ = κje1,

Ae2 = −∇̃e2N1 = 0,

Ae3 = −∇̃e3N1 = 0.

Therefore, the geodesic curvature κj of C1 is a principal curvature of Σ, which implies that
κj is constant. The case where N = (0, N2) is analogous.
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From now on, we are going to prove that, if |C| < 1, the only remaining possibility is
the case when one ci is negative. Therefore, in what follows, let us assume that C ∈ (−1, 1).
In this case, as in the proof of Theorem 2.1, let us consider the frame

B =

{
B1 =

X√
1− C2

, B2 =
J1N + J2N√

2(1 + C)
, B3 =

J1N − J2N√
2(1− C)

}
,

the function f given in (2.12) and its derivative given in (2.13). Again, taking derivative in
(2.13), we get

f ′′(r) = A1

(
6Cδ1(r)Cδ2(r)− 3Sδ1(r)Sδ2(r)(δ1 + δ2)− rCδ1(r)Sδ2(r)(δ1 + δ2)

− rSδ1(r)Cδ2(r)(δ1 + δ2)− 2δ1rSδ1(r)Cδ2(r)− 2δ2rCδ1(r)Sδ2(r)

+ 6h′(r)Sδ1(r)Sδ2(r) + 6h(r)Cδ1(r)Sδ2(r) + 6h(r)Sδ1(r)Cδ2(r)

+ 3rh′′(r)Sδ1(r)Sδ2(r) + 6rh′(r)Cδ1(r)Sδ2(r) + 6rh′(r)Sδ1(r)Cδ2(r)

+ 6rh(r)Cδ1(r)Cδ2(r)− 3rh(r)Sδ1(r)Sδ2(r)(δ1 + δ2)
)

+A2

(
− 3Sδ1(r)Cδ2(r)(δ1 + δ2)− 6δ2Cδ1(r)Sδ2(r)− rCδ1(r)Cδ2(r)(δ1 + δ2)

+ δ2rSδ1(r)Sδ2(r)(δ1 + δ2) + 2δ1δ2rSδ1(r)Sδ2(r)− 2δ2rCδ1(r)Cδ2(r)

+ 6h′(r)Sδ1(r)Cδ2(r) + 6h(r)Cδ1(r)Cδ2(r)− 6δ2h(r)Sδ1(r)Sδ2(r)

+ 3rh′′(r)Sδ1(r)Cδ2(r) + 6rh′(r)Cδ1(r)Cδ2(r)− 6δ2rh
′(r)Sδ1(r)Sδ2(r)

− 3rh(r)Sδ1(r)Cδ2(r)(δ1 + δ2)− 6δ2rh(r)Cδ1(r)Sδ2(r)
)

+A3

(
− 4δ1Sδ1(r)Cδ2(r)− 3Cδ1(r)Sδ2(r)(δ1 + δ2)− rCδ2(r)Cδ1(r)(δ1 + δ2)

− rδ1Sδ1(r)Sδ2(r)(δ1 + δ2)− 2δ1Cδ2(r)Sδ1(r) + 6h′(r)Sδ2(r)Cδ1(r)

+ 6h(r)Cδ2(r)Cδ1(r)− 6δ1h(r)Sδ2(r)Sδ1(r) + 3rh′′(r)Sδ2(r)Cδ1(r)

+ 6rh′(r)Cδ2(r)Cδ1(r)− 6δ1rh
′(r)Sδ2(r)Sδ1(r)− 6δ1rh(r)Cδ2(r)Sδ1(r)

− 3rh(r)Sδ2(r)Cδ1(r)(δ1 + δ2)
)

+A4

(
− 2δ1Sδ1(r)Cδ2(r)− 2δ2Cδ1(r)Sδ2(r)− Cδ1(r)Sδ2(r)(δ1 + δ2)

− Sδ1(r)Cδ2(r)(δ1 + δ2) + 3h′′(r)Sδ1(r)Sδ2(r) + 6h′(r)Cδ1(r)Sδ2(r)

+ 6h′(r)Sδ1(r)Cδ2(r) + 6h(r)Cδ1(r)Cδ2(r)− 3h(r)Sδ1(r)Sδ2(r)(δ1 + δ2)
)

− σ11

(
− 3Cδ1(r)Cδ2(r)(δ1 + δ2) + 6δ1δ2Sδ1(r)Sδ2(r) + δ1rSδ1(r)Cδ2(r)(δ1 + δ2)

+ δ2rCδ1(r)Sδ2(r)(δ1 + δ2) + 2δ1δ2rCδ1(r)Cδ2(r) + 2δ1δ2rSδ1(r)Cδ2(r)

+ 6h′(r)Cδ1(r)Cδ2(r)− 6δ1h(r)Sδ1(r)Cδ2(r)− 6δ2h(r)Cδ1(r)Sδ2(r)

− 3rh′′(r)Cδ1(r)Cδ2(r)− 6δ1rh
′(r)Sδ1(r)Cδ2(r)− 6δ2rh

′(r)Cδ1(r)Sδ2(r)

+ 6δ1δ2rh(r)Sδ1(r)Sδ2(r)− 3rh(r)Cδ1(r)Cδ2(r)(δ1 + δ2)
)

− σ22

(
− Cδ1(r)Cδ2(r)(δ1 + δ2) + δ2Sδ1(r)Sδ2(r)(δ1 + δ2) + 2δ1δ2Sδ1(r)Sδ2(r)

− 2δ2Cδ1(r)Cδ2(r) + 3h′′(r)Sδ1(r)Cδ2(r) + 6h′(r)Cδ1(r)Cδ2(r)

− 6δ2h
′(r)Sδ1(r)Sδ2(r)− 3h(r)Sδ1(r)Cδ2(r)(δ1 + δ2)− 6δ2h(r)Cδ1(r)Sδ2(r)

)
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− σ33

(
− Cδ2(r)Cδ1(r)(δ1 + δ2) + δ1Sδ1(r)Sδ2(r)(δ1 + δ2) + 2δ1δ2Sδ1(r)Sδ2(r)

− 2δ1Cδ2(r)Sδ1(r) + 3h′′(r)Sδ2(r)Cδ1(r) + 6h′(r)Cδ2(r)Cδ1(r)

− 6δ1h
′(r)Sδ1(r)Sδ2(r)− 6δ1h(r)Cδ2(r)Sδ1(r)− 3h(r)Cδ1(r)Sδ2(r)(δ1 + δ2)

)
+ δ1Sδ1(r)Cδ2(r)(δ1 + δ2) + δ2Cδ1(r)Sδ2(r)(δ1 + δ2) + 2δ1δ2Cδ1(r)Sδ2(r)

+ 2δ1δ2Sδ1(r)Cδ2(r) + 3h′′(r)Cδ1(r)Cδ2(r)− 6δ1h
′(r)Sδ1(r)Cδ2(r)

− 6δ2h
′(r)Cδ1(r)Sδ2(r) + 6δ1δ2h(r)Sδ1(r)Sδ2(r)− 3h(r)Cδ1(r)Cδ2(r)(δ1 + δ2).

Now, applying r = 0 in (2.13) and in the second derivative above, we obtain the following
relations:

0 = f ′(0) = 2(A2 +A3 +A4)− 9h2(0) + 3h′(0)− (δ1 + δ2), (2.17)

0 = f ′′(0) = 6A1 + 6h(0)(A2 +A3 +A4)− 18h′(0)h(0) + 2σ11(δ1 + δ2) (2.18)

+ 2σ22δ2 + 2σ33δ1 + 3h′′(0),

where the functions Ai, i = 1, . . . , 4, are given in (2.11).
Let us recall that as C is constant we have σ1i = σi1 = 0 (since A(X) = −∇C/2 = 0),

which implies that A1 = A2 = A3 = 0. Moreover, since h(0) is the mean curvature of Σ, we
also conclude that

3h(0) = σ22 + σ33. (2.19)

Thus, we can rewrite (2.17) and (2.18) as follows:

0 = 2(σ22σ33 − σ223)− 9h2(0) + 3h′(0)− (δ1 + δ2), (2.20)

0 = 6h(0)(σ22σ33 − σ223)− 18h′(0)h(0) + 2σ22δ2 + 2σ33δ1 + 3h′′(0). (2.21)

Inserting the expression for 2(σ22σ33 − σ223) obtained from (2.20) into (2.21), and using
(2.19), we have that

2σ33(δ1 − δ2) + 3h(0)(δ1 + δ2) + 6h(0)δ2 + 27h3(0)− 27h′(0)h(0) + 3h′′(0) = 0.

Note that (δ1 − δ2) =
1
2(c1 − c2 +C(c1 + c2)) ̸= 0, since C ∈ (−1, 1) and c1 ̸= c2. Therefore

σ33 is constant and hence, from (2.19) and (2.20), we have that σ22 and σ23 are also constant.
On the other hand, we are going to use the Codazzi equation to compute X(σ22),

X(σ23) and X(σ33), and for this, we will regard A as a (0, 2)-tensor, that is, A(Bi, Bj) =
⟨ABi, Bj⟩ = ⟨Bi, ABj⟩. Since each Ji is parallel and A(X) = 0 (since ∇C = −2A(X)), we
have ∇XBj = 0 for all j = 1, 2, 3. In this way, since

X(σij) = X(A(Bi, Bj)) = ∇A(X,Bi, Bj)

it follows from the Codazzi equation (2.3) that

X(σ22) = ∇A(B2, X,B2) +
c1
4
{⟨X,X⟩⟨PB2 +B2, B2⟩ − ⟨B2, X⟩⟨PX +X,B2⟩}

+
c2
4
{⟨X,X⟩⟨PB2 −B2, B2⟩ − ⟨B2, X⟩⟨PX −X,B2⟩}

= −C⟨AB2, AB2⟩+ ⟨PAB2, AB2⟩+
c1||X||2

2

= −C(σ222 + σ223) + σ222 − σ223 +
c1(1− C2)

2

=
c1(1− C2)

2
+ (1− C)σ222 − (1 + C)σ223,
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X(σ23) = ∇A(B2, X,B3) +
c1
4
{⟨X,X⟩⟨PB2 +B2, B3⟩ − ⟨B2, X⟩⟨PX +X,B3⟩}

+
c2
4
{⟨X,X⟩⟨PB2 −B2, B3⟩ − ⟨B2, X⟩⟨PX −X,B3⟩}

= −C⟨AB2, AB3⟩+ ⟨PAB2, AB3⟩
= −C(σ22σ23 + σ23σ33) + σ22σ23 − σ23σ33

= (1− C)σ22σ23 − (1 + C)σ23σ33,

X(σ33) = ∇A(B3, X,B3) +
c1
4
{⟨X,X⟩⟨PB3 +B3, B3⟩ − ⟨B3, X⟩⟨PX +X,B3⟩}

+
c2
4
{⟨X,X⟩⟨PB3 −B3, B3⟩ − ⟨B3, X⟩⟨PX −X,B3⟩}

= −C⟨AB3, AB3⟩+ ⟨PAB3, AB3⟩ −
c2||X||2

2

= −C(σ223 + σ233) + σ223 − σ233 −
c2(1− C2)

2

=
c2(C

2 − 1)

2
+ (1− C)σ223 − (1 + C)σ233.

Therefore,

c1(1− C2)

2
+ (1− C)σ222 − (1 + C)σ223 = 0, (2.22)

c2(C
2 − 1)

2
+ (1− C)σ223 − (1 + C)σ233 = 0, (2.23)

(1− C)σ22σ23 − (1 + C)σ23σ33 = 0. (2.24)

Let us show that σ23 = 0. Suppose by contradiction that σ23 ̸= 0. From (2.24), we have

(1− C)2σ222 − (1 + C)2σ233 = 0. (2.25)

Now, multiplying (2.22) by 1− C and (2.23) by 1 + C, we have

c1(1− C)(1− C2)

2
+ (1− C)2σ222 − (1− C2)σ223 = 0, (2.26)

c2(1 + C)(C2 − 1)

2
+ (1− C2)σ223 − (1 + C)2σ233 = 0. (2.27)

Adding (2.26) to (2.27) and using (2.25), we get

c1(1− C) = c2(1 + C),

Since C ∈ (−1, 1) and c1 ̸= c2, we have a contradiction. Therefore σ23 = 0.
If σ23 = 0, the system given by equations (2.22), (2.23) and (2.24) is reduced to

σ222 = −c1(1 + C)

2
, σ233 = −c2(1− C)

2
. (2.28)

Observe that the only possibility of solving (2.28) is to consider that one ci is negative
and the other is zero. Then, without loss of generality, let us assume from now on that
c1 = −1 and c2 = 0. Thus, the previous computation shows us that σij = 0, for i ̸= j
and σ11 = σ33 = 0. Therefore, we conclude that {B1, B2, B3} must be a frame of principal
directions of Σ, with principal curvatures

µ1 = 0, µ2 = ±
√

1 + C

2
, µ3 = 0.
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In what follows, we consider the case when µ2 =
√

1+C
2 . The shape operator A is given,

with respect to the frame B, by

A =

 0 0 0
0 σ22 0
0 0 0

 .

Moreover, since

PB1 =
PX√
1− C2

=
1√

1− C2

(
P 2N − CPN

)
=

1√
1− C2

(
N − CPN + C2N − C2N

)
=

1√
1− C2

(
− C(PN − CN) + (1− C2)N

)
=

1√
1− C2

(
− CX + (1− C2)N

)
= −CB1 +

√
1− C2N,

PB2 =
P (J1N + J2N)√

2(1 + C)
=
P (2L1(N1), 0)√

2(1 + C)

=
(2L1(N1), 0)√

2(1 + C)
=

(J1N + J2N)√
2(1 + C)

= B2,

PB3 =
P (J1N − J2N)√

2(1− C)
=
P (0, 2L2(N2))√

2(1− C)

=
(0,−2L2(N2))√

2(1− C)
= −(J1N − J2N)√

2(1− C)

= −B3,

the tangential component of the product structure P T is given, with respect to the frame
B, by

P T =

 −C 0 0
0 1 0
0 0 −1

 .

Now, let us determine the Levi-Civita connection ∇̃ of H2 × R2 in the frame B. Note
that

∇̃BiBj = ∇BiBj + σijN.

Since P and Ji are parallel and σ1i = σi1 = 0, we get ∇̃B1Bj = 0, for i = 1, 2, 3.
Moreover, we have that

∇B2B3 =
1√

2(1− C)
(∇̃B2J1N − J2N)⊤

=
1√

2(1− C)
(−J1AB2 + J2AB2)

⊤

=
1√

2(1− C)
(−σ22J1B2 − σ23J1B3 + σ22J2B2 + σ23J2B3)

⊤.
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Since σ23 = 0 and

J1B2 =
J1(J1N + J2N)√

2(1 + C)
=

−N − PN√
2(1 + C)

,

J2B2 =
J2(J1N + J2N)√

2(1 + C)
=

−PN −N√
2(1 + C)

,

it follows that ∇B2B3 = 0, and hence, ∇̃B2B3 = 0. Analogously, we get

∇̃B1Bi = 0, ∇̃B2B3 = 0, ∇̃B3B2 = 0,

∇̃B2B1 = −
√

1−C
2 B2, ∇̃B2B2 =

PN+N√
2(1+C)

, ∇̃B3B1 = 0,

∇̃B3B3 = 0.

Note that [B1, B3] = [B2, B3] = 0. Now, let λ a function such that

B1(λ) = −λ
√

1− C

2
, B2(λ) = 0 and B3(λ) = 0.

In this way, we have

[B1, λB2] =

(
B1(λ) + λ

√
1− C

2

)
B2 = 0 (2.29)

and [λB2, B3] = 0. Therefore, by Frobenius Theorem there is a parametrization Ψ : Ω ⊂
R3 −→ Σ, where Ω is an open subset of R3 with coordinates (t, u, v), such that

Ψt = B1, Ψu = λB2 and Ψv = B3.

Now, we are going to construct the parametrization Ψ. Since Ψv = B3, B3 has no component
in H2, and ∇̃B3B3 = 0, i.e., B3 is a geodesic �eld of H2 × R2, when we integrate it with
respect to v, we have

Ψ =

(
ΨH2

(t, u), β(t, u) +B3v

)
,

where ΨH2
is the component of Ψ in H2.

Before integrating with respect to the variable u, we �rst observe that B2 has no com-
ponent in R2 and

∇̃B2B2 = ∇H2

BH2
2

BH2

2 =
PN +N√
2(1 + C)

.

Therefore,

||∇H2

BH2
2

BH2

2 ||2 = ⟨∇H2

BH2
2

BH2

2 ,∇H2

BH2
2

BH2

2 ⟩ = 1

2(1 + C)

(
2⟨PN,N⟩+ ⟨PN,PN⟩+ ⟨N,N⟩

)
=

1

2(1 + C)
(2C + 2) = 1,

that is, if φ is a curve parametrized by arc length, with φ′ = BH2

2 , then the geodesic
curvature kg of φ is kg = 1, and hence φ is a horocycle. Up to rigid motions, φ is given by

φ(u) =

(
1 +

u2

2
, u,−u

2

2

)
∈ L3.
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Moreover, as Ψu =

(
ΨH2

u , βu

)
= λB2, then it follows that β does not depend on u.

Thus, Ψu = λB2 = λ(t) (u, 1, −u, 0, 0), once B2(λ) = B3(λ) = 0. When we integrate ΨH2

u

with respect to u, we have

ΨH2
(t, u) = λ(t)

(
u2

2
, u,−u

2

2

)
+ Λ(t),

where Λ(t) is a smooth curve in H2. Hence,

Ψ(t, u, v) =

(
λ(t)α(u) + Λ(t), β(t) +B3v

)
, (2.30)

with α(u) =
(
u2

2 , u,−
u2

2

)
.

Finally, we integrate B1 = Ψt =

(
λ′(t)α(u)+Λ′(t), β′(t)

)
. Since ∇̃B1B1 = 0, B1 is also a

geodesic �eld of H2×R2. Therefore, β(t) = p0+V0t. Considering γ(t, u) = λ(t)α(u)+Λ(t),

we have Ψt =

(
γt, V0

)
= B1, with V0 = BR2

1 . It follows by the de�nition of B1 that

∥BR2

1 ∥ =
√

1+C
2 . As ∥γt∥2 + ∥BR2

1 ∥2 = 1, we get ∥γt∥ = ∥BH2

1 ∥ =
√

1−C
2 .

For any u0 �xed, we note that

Dγt
dt

(t, u0) = γtt(t, u0)− ∥BH2

1 ∥2γ(t, u0)

= α(u0)

(
λ′′(t)− ∥BH2

1 ∥2λ(t)
)
+ Λ′′(t)− ∥BH2

1 ∥2Λ(t).

Since γ(t, u0) is a geodesic in H2, u0 is arbitrary and α does not depend on t, we have that

λ′′(t)− ∥BH2

1 ∥2λ(t) = 0 and Λ′′(t)− ∥BH2

1 ∥2Λ(t) = 0,

and hence λ(t) and Λ(t) are given by

λ(t) = b1 cosh(ωt) + b2 sinh(ωt),

Λ(t) = V1 cosh(ωt) + V2 sinh(ωt),
(2.31)

where ω = ±∥BH2

1 ∥, bi are real constants and Vi orthonormal vectors. If Λ = (Λ1,Λ2,Λ3),
using ⟨γ, γ⟩ = −1, it follows that

−1 = ⟨λα+ Λ, λα+ Λ⟩
= λ2⟨α, α⟩+ 2λ⟨α,Λ⟩+ ⟨Λ,Λ⟩

= λ2u2 + 2λ(−u
2

2
Λ1 + Λ2u− u2

2
Λ3)− 1,

which implies

λ2u2 + 2λ(−u
2

2
Λ1 + Λ2u− u2

2
Λ3) = 0.

Thus, we obtain the following polynomial equation in u:

(λ− (Λ1 + Λ3))u
2 + 2Λ2u = 0,

that is,

λ− (Λ1 + Λ3) = 0 and Λ2 = 0. (2.32)
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If V1 = (v11, v12, v13) and V2 = (v21, v22, v23), we have

Λ1 + Λ3 = (v11 + v13) cosh(ωt) + (v21 + v23) sinh(ωt),

Λ2 = v12 cosh(ωt) + v22 sinh(ωt),
(2.33)

and consequently, combining (2.31), (2.32) and (2.33) it follows that v12 = v22 = 0, b1 =
v11 + v13 and b2 = v21 + v23. Now we know that the second coordinate of V1 and V2 is
zero. Then, writing V1 = (cosh(a1), 0, sinh(a1)) and V2 = (sinh(a1), 0, cosh(a1)), we get
b1 = b2 = ea1 . Thus, we conclude that

λ(t) = eωt+a1 ,

Λ(t) =

(
cosh(ωt+ a1), 0, sinh(ωt+ a1)

)
.

From (2.29), it follows that

ω +

√
1− C

2
= 0.

Thus, we obtain that ω = −∥BH2

1 ∥, and therefore, using the linear change of variable

s = t+
a1
ω
, we write

λ(s) = e−∥BH2

1 ∥s,

Λ(s) =

(
cosh(−∥BH2

1 ∥s), 0, sinh(−∥BH2

1 ∥s)
)
.

(2.34)

Writing b = ||BH2

1 || =
√

1− ||BR2

1 ||2 =
√
1− ||V0||2 and W0 = B3, when we replace (2.34)

in (2.30), we obtain the parametrization (2.16).
For the converse, suppose that Σ is parametrized by (2.16). Note that

Ψs = −b
(
e−bs(α(u), 0⃗) +

(
sinh(−bs), 0, cosh(−bs),−V0

b

))
,

Ψu = e−bs(α′(u), 0⃗),

Ψv =
(
0⃗,W0

)
.

Now, let us to �nd a unit normal vector �eld to Σ. Consider the position vector

ΨH2
= e−b s(α(u), 0⃗) +

(
cosh(−b s), 0, sinh(−b s), 0⃗

)
.

Taking the cross product of ebsΨu with ΨH2
, we get

ebsΨu ⊠ΨH2
= −

(
sinh(−b s) + e−bsu2

2
, e−bsu, cosh(−b s)− e−bsu2

2
, 0⃗

)
,

that is, the normal vector takes the form

Ñ = −
(
sinh(−b s) + e−bsu2

2
, e−bsu, cosh(−b s)− e−bsu2

2
, µV0

)
,

where µ is a real constant.
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It is easy to see that ⟨Ñ ,Ψu⟩ = ⟨Ñ ,Ψv⟩ = 0. Moreover, since

⟨Ñ ,Ψs⟩ = −b
(
sinh(−b s) + e−bsu2

2

)(
sinh(−b s) + e−bsu2

2

)
+ be−2bsu2

+ b

(
cosh(−b s)− e−bsu2

2

)(
cosh(−b s)− e−bsu2

2

)
− µ||V0||2

= b− be−bsu2(cosh(−b s) + sinh(−b s)) + be−2bsu2 − µ||V0||2

= b− µ||V0||2,

it follows that ⟨Ñ ,Ψs⟩ = 0 if and only if µ =
b

||V0||2
. Thus, we have

Ñ = −
(
sinh(−b s) + e−bsu2

2
, e−bsu, cosh(−b s)− e−bsu2

2
,

b

||V0||2
V0

)
.

Finally, since

⟨Ñ , Ñ⟩ =
(
sinh(−b s) + e−bsu2

2

)2

+

(
cosh(−b s)− e−bsu2

2

)
+ e−2bsu2 +

b2

||V0||2

= 1 +
b2

||V0||2

=
1

||V0||2
,

we conclude that an unit normal vector �eld N to Σ is given by

N = −||V0||
(
e−bs(α(u), 0⃗) +

(
sinh(−bs), 0, cosh(−bs), b

||V0||2
V0

))
.

Denoting by D̃ the covariant derivative in L3, we obtain

D̃ΨsN = b||V0||
(
e−bsα(u) +

(
cosh(−bs), 0, sinh(−bs)

)
, 0⃗

)
= b||V0||ΨH2

,

D̃ΨuN = −||V0||e−bs(α′(u), 0⃗)

= −||V0||Ψu,

D̃ΨvN = 0.

It follows immediately from the derivatives above and the parametrization Ψ that

⟨D̃ΨuN,Ψ
H2⟩ = ⟨D̃ΨvN,Ψ

H2⟩ = 0 and ⟨D̃ΨsN,Ψ
H2⟩ = −b||V0||.

Therefore, since ∇̃VW = D̃VW + ⟨D̃VW,Ψ
H2⟩ΨH2

, we get

∇̃ΨsN = 0,

∇̃ΨuN = −||V0||Ψu,

∇̃ΨvN = 0,
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which implies that Σ has principal curvatures µ1 = 0, µ2 = ||V0|| and µ3 = 0. Finally, since

PN = −||V0||
(
e−bs(α(u), 0⃗) +

(
sinh(−bs), 0, cosh(−bs),− b

||V0||2
V0

))
and b =

√
1− ||V0||2, it follows that

C = ⟨PN,N⟩

= ||V0||2
(
e−2bsu2 + 2e−bs

(
− u2

2
sinh(−bs)− u2

2
cosh(−bs)

)
− sinh2(−bs) + cosh2(−bs)− b2

||V0||2

)
= ||V0||2

(
1− b2

||V0||2

)
= 2||V0||2 − 1,

which implies that ||V0|| =
√

1 + C

2
.

To conclude, let us show that Σ is isoparametric. Note that in this case, using (2.9), the
matrix D (2.10) is given by

D(r) =

 1 0 0
0 − sinh(

√
−δ1r) + cosh(

√
−δ1r) 0

0 0 1

 ,

since σ11 = σ12 = σ13 = σ32 = σ33 = 0, σ22 =

√
1 + C

2
, δ1 =

−(1 + C)

2
and δ2 = 0. Thus,

we get
detD(r) = − sinh(

√
−δ1r) + cosh(

√
−δ1r),

and consequently

(detD(r))′ = −
√
−δ1(cosh(

√
−δ1r)− sinh(

√
−δ1r)).

Therefore, from (1.4), we obtain

h(r) = −(detD)′

3 detD
(r)

= −−
√
−δ1(cosh(

√
−δ1r)− sinh(

√
−δ1r))

3(− sinh(
√
−δ1r) + cosh(

√
−δ1r))

=
1

3

√
1 + C

2

=
1

3
||V0||,

that is, the mean curvature of the parallel hypersurfaces to Σ is constant, and hence Σ is
isoparametric.

Remark 3. Following the notation established in the proof of Theorem 2.2, let us provide a
geometric description of the hypersurface given by the parametrization Ψ. Note that a unit
normal vector to the horocycle

φ(u) =

(
1 +

u2

2
, u,−u

2

2

)
,
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is given by

n(u) =

(
u2

2
, u, 1− u2

2

)
.

Fixing u, v ∈ R, let us consider in H2×R2 the following geodesic parametrized by arc length

γ(s) =
(
cosh(ωs)φ(u) + sinh(ωs)n(u), g(v) + V0s

)
,

where g(v) = p0 +W0v is a geodesic in R2 with normal vector V0. Since

γ′(s) =
(
ω sinh(ωs)φ(u) + ω cosh(ωs)n(u), V0

)
,

it follows that
1 = ||γ′(s)||2 = ω2 + ||V0||2,

which implies ω = ±
√
1− ||V0||2 = ±b. Considering ω = −b, we get

γ(s) = e−b s(α(u), 0⃗) +
(
cosh(−b s), 0, sinh(−b s), V0s

)
+
(
0⃗, p0 +W0v

)
.

Varying the parameters (s, u, v) ∈ R3, the construction above provides exactly the parametriza-
tion Ψ. Therefore, the hypersurface Ψ(R3) is the union of a family of geodesically parallel
hypersurfaces of H2 × R2, given by products of horocycles in H2 and straight lines in R2.

Remark 4. Another interesting property of the hypersurface Ψ(R3) is its extrinsic homo-
geneity. A hypersurface of a Riemannian manifold M is called extrinsically homogeneous if
it is a codimension-one orbit of a subgroup of the group of isometries of M . Let us show in
this remark that Ψ(R3) ⊂ H2 × R2 is a homogeneous hypersurface.

Following Domínguez-Vázquez and Manzano [16], we consider the family of complete
graphs Σ̃h ⊂ H2 × R of constant mean curvature h, with 4h2 − 1 < 0, called parabolic
helicoids. Considering the half-space model of H2 = (R2

+, g) where

R2
+ = {(x, y), y > 0} , and g =

dx2 + dy2

y2
,

such surfaces are parametrized in H2 × R as

Φh(x, y) = (x, y, a log(y)), with a =
2h√

1− (2h)2
. (2.35)

Domínguez-Vázquez and Manzano showed that the parabolic helicoids are homogeneous sur-
faces. Now, if we consider the product Σ̃h × R ⊂ (H2 × R) × R ⊂ H2 × R2, we conclude
that Σ̃h × R is a homogeneous hypersurface in H2 × R2. Since a homogeneous hypersurface
is isoparametric and has constant principal curvatures (see for instance [15, Proposition
2.10]), it follows from Theorem 2.2 that Σ̃h × R is congruent to either a product hypersur-
face as given in item a), or to Ψ(R3), as in item b). A straightforward computation shows
that a unit normal to Σ̃h × R is given by N = N1 + N2, where N1 = (0, ay)/

√
1 + a2 and

N2 = (−1, 0)/
√
1 + a2. Thus, for a ̸= 0, we conclude that Σ̃h × R must be congruent to

Ψ(R3), which shows that Ψ(R3) is homogeneous.
We can go further and write the parametrization (2.16) using the half-space model of H2.

Recall that an isometry between the Lorentzian model and the half-space model is given by

(x1, x2, x3) 7→
(

x2
x1 + x3

,
1

x1 + x3

)
.
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Considering the �rst three coordinate functions of parametrization Ψ

x1 = cosh(−bs) + u2

2
e−b s,

x2 = ue−b s,

x3 = sinh(−bs)− u2

2
e−b s,

it follows that (
x2

x1 + x3
,

1

x1 + x3

)
=
(
u, eb s

)
.

Therefore, the parametrization (2.16) is rewritten as follows

Ψ(s, u, v) =
(
u, eb s, p0 +W0v + V0s

)
.

Applying an isometry IW0,V0 such that

IW0,V0

(
u, eb s, p0 +W0v + V0s

)
=
(
u, eb s, e2v + ||V0||e1s

)
,

where {e1, e2} is the canonical basis of R2, we obtain

IW0,V0 ◦Ψ(s, u, v) =
(
u, eb s, ||V0||s, v

)
.

Finally, making the change of variables s =
1

b
log(y), we have

IW0,V0 ◦Ψ(y, u, v) =

(
u, y,

||V0||
b

log(y), v

)
=

(
u, y,

||V0||√
1− ||V0||2

log(y), v

)
.

(2.36)

On the one hand, we know that the mean curvature of Ψ(R3) is ||V0||/3. On the other
hand, since the principal curvatures of Σ̃h × R are κ1, κ2 and 0, where κ1 and κ2 are the
principal curvatures of Σ̃h, the mean curvature h of Σ̃h×R is given by h = 2h/3. Therefore,
2h = ||V0|| and, by Equations (2.35) and (2.36), we conclude that

IW0,V0 ◦Ψ(y, u, v) = (Φh(u, y), v) .
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Chapter 3

Hypersurfaces of Q3
ε × R with

constant principal curvatures

In this chapter, we will consider the ambient space Q3
ε × R, where Q3

ε denotes the
unit sphere S3 if ε = 1, or the hyperbolic space H3 if ε = −1. Our main objective is to
characterize and classify the hypersurfaces with three distinct constant principal curvatures
in Q3

ε × R. We also show that the hypersurfaces with constant principal curvatures in
Q3
ε × R are isoparametric. At last, we provide a necessary and su�cient condition for an

isoparametric hypersurface of Q3
ε × R to have constant principal curvatures.

The results presented in this chapter will compose a joint work with Fernando Man�o,
João Paulo dos Santos and Joeri Van der Veken.

The chapter is organized as follows. In Section 3.1, we will present some basic content
and results in the product space Qn

ε × R already known in the literature, and Section 3.2
will be devoted to the proof of the main results of this chapter.

3.1 Preliminary concepts and results

Let Σn be a hypersurface in Qn
ε × R with unit normal N and let ∂t be the coordinate

vector �eld of the second factor R. The orthogonal projection of ∂t onto the tangent space
of Σn will be denoted by T . Also, let θ be the angle function between N and ∂t. Then we
have the following decomposition

∂t = T + cos θN.

Since ∂t is a vector �eld of norm 1, it follows that

cos2(θ) + ||T ||2 = 1.

In what follows, we will present the main equations that a hypersurface of Qn
ε × R

satis�es, as obtained in [11]. Such equations are important since they provide the necessary
and su�cient conditions for the existence of a hypersurface on Qn

ε × R, and they will be
used throughout the chapter. The description of the equations below follows the structure
according to [1].

We will denote by ⟨, ⟩, R̄ and ∇ the metric, the curvature tensor and the Riemannian
connection ofQn

ε×R, respectively, and by∇, R, A the Riemannian connection, the curvature
tensor and the shape operator of a hypersurface Σn in Qn

ε ×R, respectively. We will consider

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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We begin by presenting the Gauss and Codazzi equations.

Proposition 3.1. Let Σn be a hypersurface of Qn
ε × R. The Gauss and Codazzi equations

of Σn are given, respectively, by

⟨R(X,Y )Z,W ⟩ = ε
(
⟨X,W ⟩⟨Y,Z⟩ − ⟨X,Z⟩⟨Y,W ⟩

+ ⟨X,T ⟩⟨Z, T ⟩⟨Y,W ⟩+ ⟨Y, T ⟩⟨W,T ⟩⟨X,Z⟩

− ⟨Y, T ⟩⟨Z, T ⟩⟨X,W ⟩ − ⟨X,T ⟩⟨W,T ⟩⟨Y,Z⟩
)

+ ⟨AX,W ⟩⟨AY,Z⟩ − ⟨AX,Z⟩⟨AY,W ⟩,

(3.1)

∇X(AY )−∇Y (AX)−A[X,Y ] = ε cos θ[⟨Y, T ⟩X − ⟨X,T ⟩Y ], (3.2)

where X, Y, Z, W ∈ TΣn.

Proof. Let Σn ⊂ Qn
ε × R be a hypersurface with unit normal vector denoted by N . In this

case, since Σn is an isometric immersion in Qn
ε × R, its Gauss equation is given by

⟨R̄(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩+ ⟨B(Y,W ), B(X,Z)⟩ − ⟨B(X,W ), B(Y,Z)⟩,

where B denotes the second fundamental form of Σn and X, Y, Z, W ∈ TΣn. Note that,
since B(X1, X2) = ⟨A(X1), X2⟩N , it follows that

⟨R̄(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩+ ⟨A(Y ),W ⟩⟨A(X), Z⟩ − ⟨A(X),W ⟩⟨A(Y ), Z⟩.

Let ∇Qn
ε and ∇R the Riemannian connections and RQn

ε and RR the curvature tensors of
Qn
ε and R, respectively. Then, since Qn

ε has constant sectional curvature ε, we obtain that

⟨R̄(X,Y )Z,W ⟩ = ε
(
⟨Y Qn

ε , ZQn
ε ⟩⟨XQn

ε ,WQn
ε ⟩ − ⟨XQn

ε , ZQn
ε ⟩⟨Y Qn

ε ,WQn
ε ⟩
)
,

and hence

⟨R(X,Y )Z,W ⟩ = ε
(
⟨Y Qn

ε , ZQn
ε ⟩⟨XQn

ε ,WQn
ε ⟩ − ⟨XQn

ε , ZQn
ε ⟩⟨Y Qn

ε ,WQn
ε ⟩
)

− ⟨A(Y ),W ⟩⟨A(X), Z⟩+ ⟨A(X),W ⟩⟨A(Y ), Z⟩,
(3.3)

where the component Y Qn
ε of Y is given as its tangent part to Qn

ε .
Now, decomposing X ∈ Qn

ε × R into X = XQn
ε + ⟨X,T ⟩∂t, we have

⟨Y Qn
ε , ZQn

ε ⟩⟨XQn
ε ,WQn

ε ⟩ − ⟨XQn
ε , ZQn

ε ⟩⟨Y Qn
ε ,WQn

ε ⟩
= ⟨Y,Z⟩⟨X,W ⟩ − ⟨X,Z⟩⟨Y,W ⟩ − ⟨Y,Z⟩⟨X,T ⟩⟨W,T ⟩
+ ⟨X,Z⟩⟨Y, T ⟩⟨W,T ⟩ − ⟨X,W ⟩⟨Y, T ⟩⟨Z, T ⟩
+ ⟨Y,W ⟩⟨X,T ⟩⟨Z, T ⟩,

and replacing this value in (3.3), we obtain

⟨R(X,Y )Z,W ⟩ = ε
(
⟨Y,Z⟩⟨X,W ⟩ − ⟨X,Z⟩⟨Y,W ⟩ − ⟨Y, Z⟩⟨X,T ⟩⟨W,T ⟩

+ ⟨X,Z⟩⟨Y, T ⟩⟨W,T ⟩ − ⟨X,W ⟩⟨Y, T ⟩⟨Z, T ⟩+ ⟨Y,W ⟩⟨X,T ⟩⟨Z, T ⟩
)

− ⟨A(Y ),W ⟩⟨A(X), Z⟩+ ⟨A(X),W ⟩⟨A(Y ), Z⟩.

For the Codazzi equation, remember that for a hypersurface on a Riemannian manifold,
the Codazzi equation is given by

R̄(X,Y )N = ∇YAX −∇XAY +A[X,Y ].
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On the other hand, since NQn
ε = N − ⟨N, ∂t⟩∂t, we get

R̄(X,Y )N = ε
(
⟨Y Qn

ε , NQn
ε ⟩XQn

ε − ⟨XQn
ε , NQn

ε ⟩Y Qn
ε

)
= ε
(
⟨Y − ⟨Y, ∂t⟩∂t, N − ⟨N, ∂t⟩∂t⟩(X − ⟨X, ∂t⟩∂t)

− ⟨X − ⟨X, ∂t⟩∂t, N − ⟨N, ∂t⟩∂t⟩(Y − ⟨Y, ∂t⟩∂t)
)

= ε
(
− ⟨Y, ∂t⟩⟨N, ∂t⟩(X − ⟨X, ∂t⟩∂t) + ⟨X, ∂t⟩⟨N, ∂t⟩(Y − ⟨Y, ∂t⟩∂t)

)
= ε
(
− ⟨Y, ∂t⟩⟨N, ∂t⟩X + ⟨X, ∂t⟩⟨N, ∂t⟩Y

)
= ε cos(θ)

(
− ⟨Y, T ⟩X + ⟨X,T ⟩Y

)
.

Therefore, we conclude that

∇XAY −∇YAX −A[X,Y ] = ε cos(θ)
(
⟨Y, T ⟩X − ⟨X,T ⟩Y

)
.

We will now obtain two interesting properties that T and cos(θ) satisfy and which will
be of great importance. First, observe that ∂t is a parallel �eld in Qn

ε × R. Indeed, if ∇Qn
ε

and ∇R denote the Riemannian connections of Qn
ε and R, respectively, it follows that

∇X∂t = ∇Qn
ε

XQn
ε
∂t +∇R

XR∂t = ∇Qn
ε

XQn
ε
0 +∇R

XR∂t = ∇R
XR∂t,

for X ∈ T (Qn
ε × R). Since XR = ⟨X, ∂t⟩∂t, we get

∇X∂t = ∇R
⟨X,∂t⟩∂t∂t = ⟨X, ∂t⟩∇R

∂t∂t = 0.

Due to this fact, we have the following result.

Proposition 3.2. Let Σn be a hypersurface of Qn
ε × R. Given X tangent to Σn, it holds

that

∇XT = cos(θ)AX, (3.4)

X(cos(θ)) = −⟨AX,T ⟩. (3.5)

Proof. Since ∂t is parallel in Qn
ε × R, we have that

0 = ∇X∂t = ∇X(T + cos(θ)N) = ∇XT + cos(θ)∇XN +X(cos(θ))N, (3.6)

for all X ∈ TΣn. Now, since

∇XT = ∇XT + ⟨T,AX⟩N,

replacing this in (3.6), we have

0 = ∇XT + ⟨T,AX⟩N − cos(θ)AX +X(cos(θ))N

= ∇XT − cos(θ)AX + [⟨T,AX⟩+X(cos(θ))]N.

Therefore, once ∇XT−cos(θ)AX is tangent to Σ and [⟨T,AX⟩+X(cos(θ))]N is orthogonal,
it follows that

∇XT − cos(θ)AX = 0, and ⟨T,AX⟩+X(cos(θ)) = 0.
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We �nish this section with some interesting results about hypersurfaces of Qn
ε × R,

which will be useful in the next section. The �rst result is due to Fernando Man�o and Ruy
Tojeiro [32], which classi�es hypersurfaces when T and cos(θ) vanish identically.

Proposition 3.3. Let f : Σn −→ Qn
ε × R be a hypersurface.

i) If T vanishes identically, then f(Σ) is an open subset of a slice Qn
ε × {t}.

ii) If cos(θ) vanishes identically, then f(Σ) is an open subset of a Riemannian product
Mn−1 × R, where Mn−1 is a hypersurface of Qn

ε .

Using the Codazzi equation Joeri Van der Veken and Luc Vrancken [42] classify the
totally geodesic hypersurfaces in Sn×R, and in [6], also using the Codazzi equation, Giovanni
Calvaruso, Daniel Kowalczyk and Joeri Van der Veken show that this classi�cation is also
obtained in Hn × R. In short, they got the following

Theorem 3.4. Let f : Σn −→ Qn
ε × R be a totally geodesic hypersurface. Then f(Σ) is an

open part of a hypersurface Qn
ε × {t0} for some t0 ∈ R, or of a hypersurface Mn−1 × R,

where Mn−1 is a totally geodesic hypersurface of Qn
ε .

3.2 Main results

As we pointed out before, in this section, we will present the proof of the main results of
this chapter. We start by characterizing, in terms of the angle function, the hypersurfaces of
Q3
ε×R that have constant and distinct principal curvatures. Through this characterization,

we provide an explicit classi�cation of such hypersurfaces. Furthermore, we prove that the
hypersurfaces of Q3

ε×R with constant principal curvatures are isoparametric in those spaces.
We �nish this section by showing that an isoparametric hypersurface of Q3

ε×R has constant
principal curvatures if and only if the angle function is constant.

Lemma 3.5. Let Σ be a hypersurface of Q3
ε × R with three distinct constant principal

curvatures. Then cos(θ) is constant on Σ.

Proof. Let Σ3 be a hypersurface of Q3
ε × R with distinct constant principal curvatures µ1,

µ2 and µ3. Consider {e1, e2, e3} a frame of orthonormal principal directions with µi being
the principal curvature associated to ei, i = 1, 2, 3, that is,

Ae1 = µ1e1, Ae2 = µ2e2, and Ae3 = µ3e3,

where A denotes the shape operator of Σ3. Since T is tangent to Σ3, we can write

T =
3∑
i=1

biei, (3.7)

where b1, b2, b3 : Σ3 −→ R are smooth functions. Furthermore, if ∇ denotes the Levi-Civita
connection of Σ3, let us write

∇eiej =

3∑
k=1

ωkj (ei)ek, (3.8)

where ωkj are the connection forms of Σ3. With this notation and the hypothesis that µi are
constant functions, let us get the consequences of equations (3.1), (3.2), (3.4) and (3.5). In
what follows, we will use the indices i, j and k for computations and n, m and l for distinct
indices in {1, 2, 3} to stablish the consequences.
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We begin with the Codazzi equation (3.2) with X = ei and Y = ej , i ̸= j. Using
equations (3.7) and (3.8) we have

ε cos(θ) (bjei − biej) = µj∇eiej − µi∇ejei −A(∇eiej −∇ejei)

=
3∑

k=1

[
µjω

k
j (ei)− µiω

k
i (ej)− µkω

k
j (ei) + µkω

k
i (ej)

]
ek.

Thus, we get

3∑
k=1

[
(µj − µk)ω

k
j (ei)− (µi − µk)ω

k
i (ej)

]
ek = ε cos(θ) (bjei − biej) .

Considering the coe�cients of each principal direction we conclude that

(µm − µn)ω
n
m(en) = ε cos(θ)bm,

(µm − µl)ω
l
m(en) = (µn − µl)ω

l
n(em).

Consequently, there is a function Ω such that

ωnm(en) =
ε cos(θ)bm
µm − µn

, (3.9)

ωlm(en) =
ε cos(θ)Ω

µm − µl
. (3.10)

Now, from equations (3.4) and (3.7), we have

cos(θ)µnen =

3∑
i=1

en(bi)ei +

3∑
i=1

bi∇enei

=
3∑
i=1

en(bi)ei +
3∑

k=1

bk∇enek

=
3∑
i=1

en(bi)ei +
3∑

k=1

3∑
i=1

bkω
i
k(en)ei

=

3∑
i=1

[
en(bi) +

3∑
k=1

bkω
i
k(en)

]
ei,

that is,

en(bn) = cos(θ)µnen −
3∑

k=1

bkω
n
k (en),

en(bm) = −
3∑

k=1

bkω
m
k (en) =

3∑
k=1

bkω
k
m(en).

Thus, using the equations (3.9) and (3.10), we conclude that

en(bn) =

[
µn − ε

(
b2l

µl − µn
+

b2m
µm − µn

)]
cos(θ), (3.11)

en(bm) = ε

(
Ωbl

µm − µl
+

bnbm
µm − µn

)
cos(θ). (3.12)

43



On the other hand, equation (3.5) supplies

en(cos(θ)) = −µnbn. (3.13)

Now we proceed with Gauss equation. In order to do that we compute the intrinsic
curvature of Σ3. Firstly, the bracket between principal directions is given by

[em, en] =
3∑

k=1

(
ωkn(em)− ωkm(en)

)
ek

= ωmn (em)em − ωnm(en)en +
(
ωln(em)− ωlm(en)

)
el,

which enables to conclude that

R(em, en)em = ∇em∇enem −∇en∇emem −∇[em,en]em

= ∇em

(
3∑

k=1

ωkm(en)ek

)
−∇en

(
3∑

k=1

ωkm(em)ek

)
− ωmn (em)∇emem + ωnm(en)∇enem −

(
ωln(em)− ωlm(en)

)
∇elem

=

3∑
k=1

(
em(ω

k
m(en))ek + ωkm(en)∇emek

)
−

3∑
k=1

(
en(ω

k
m(em))ek + ωkm(em)∇enek

)
− ωmn (em)∇emem + ωnm(en)∇enem −

(
ωln(em)− ωlm(en)

)
∇elem

=
3∑

k=1

em(ω
k
m(en))ek +

3∑
k=1

3∑
j=1

ωkm(en)ω
j
k(em)ej −

3∑
k=1

en(ω
k
m(em))ek

−
3∑

k=1

3∑
j=1

ωkm(em)ω
j
k(en)ej −

3∑
k=1

ωmn (em)ω
k
m(em)ek

+
3∑

k=1

ωnm(en)ω
k
m(en)ek −

3∑
k=1

(
ωln(em)− ωlm(en)

)
ωkm(el)ek.

Therefore, we have

⟨R(em, en)em, en⟩ = em(ω
n
m(en)) +

3∑
k=1

ωkm(en)ω
n
k (em)− en(ω

n
m(em))

−
3∑

k=1

ωkm(em)ω
n
k (en)− ωmn (em)ω

n
m(em) + (ωnm(en))

2

−
(
ωln(em)− ωlm(en)

)
ωnm(el)

= ωlm(en)ω
n
l (em) + em(ω

n
m(en))− ωlm(em)ω

n
l (en)− en(ω

n
m(em))

+ (ωmn (em))
2 + (ωnm(en))

2 − ωln(em)ω
n
m(el) + ωlm(en)ω

n
m(el)

=
cos2(θ)Ω2

(µm − µl)(µl − µn)
+ em

(
ε cos(θ)bm
µm − µn

)
+

cos2(θ)b2l
(µl − µm)(µl − µn)

+ en

(
ε cos(θ)bn
µn − µm

)
+

cos2(θ)b2n
(µn − µm)2

+
cos2(θ)b2m
(µn − µm)2

− cos2(θ)Ω2

(µn − µl)(µm − µn)

+
cos2(θ)Ω2

(µm − µl)(µm − µn)
,
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that is,

⟨R(em, en)em, en⟩ =
cos2(θ)Ω2

(µm − µl)(µl − µn)
+

cos2(θ)b2l
(µl − µm)(µl − µn)

+
cos2(θ)(b2n + b2m)

(µn − µm)2

+
ε

µm − µn
(em(cos(θ))bm + cos(θ)em(bm))−

cos2(θ)Ω2

(µn − µl)(µm − µn)

+
ε

µn − µm
(en(cos(θ))bn + cos(θ)en(bn)) +

cos2(θ)Ω2

(µm − µl)(µm − µn)
.

Now, using (3.11) and (3.13), we get

⟨R(em, en)em, en⟩ =
cos2(θ)Ω2

(µm − µl)(µl − µn)
+

cos2(θ)b2l
(µl − µm)(µl − µn)

+
cos2(θ)(b2n + b2m)

(µn − µm)2

− cos2(θ)Ω2

(µm − µn)

( 1

(µn − µl)
− 1

(µm − µl)

)
− εµmb

2
m

µm − µn
− εµnb

2
n

µn − µm

+
ε cos2(θ)

µm − µn

[
µm − ε

( b2l
µl − µm

+
b2n

µn − µm

)]
+
ε cos2(θ)

µn − µm

[
µn − ε

( b2l
µl − µn

+
b2m

µm − µn

)]
=

2 cos2(θ)Ω2

(µm − µl)(µl − µn)
+

cos2(θ)b2l
(µl − µm)(µl − µn)

+
2 cos2(θ)(b2n + b2m)

(µn − µm)2

+
ε(µnb

2
n − µmb

2
m)

µm − µn
+ ε cos2(θ) +

cos2(θ)b2l
(µn − µm)

( 1

(µl − µm)
− 1

(µl − µn)

)
=

2 cos2(θ)Ω2

(µm − µl)(µl − µn)
+
ε(µnb

2
n − µmb

2
m)

µm − µn
+ ε cos2(θ) +

2 cos2(θ)(b2n + b2m)

(µn − µm)2
.

On the other hand, by Gauss equation (3.1), we have

⟨R(em, en)em, en⟩ = ε
(
⟨em, en⟩⟨en, em⟩ − ⟨em, em⟩⟨en, en⟩

+ ⟨em, T ⟩⟨em, T ⟩⟨en, en⟩+ ⟨en, T ⟩⟨en, T ⟩⟨em, em⟩

− ⟨en, T ⟩⟨em, T ⟩⟨em, en⟩ − ⟨em, T ⟩⟨en, T ⟩⟨en, em⟩
)

+ ⟨Aem, en⟩⟨Aen, em⟩ − ⟨Aem, em⟩⟨Aen, en⟩
= ε(b2m + b2n − 1)− µmµn,

and therefore,

2 cos2(θ)Ω2

(µm − µl)(µl − µn)
+
ε(µnb

2
n − µmb

2
m)

µm − µn
+ 2ε cos2(θ) +

2 cos2(θ)(b2n + b2m)

(µn − µm)2
+ εb2l + µmµn = 0.

Consequently, from the above equation, we get:

2 cos2(θ)Ω2

(µ3 − µ1)(µ3 − µ2)
=
ε(µ1b

2
1 − µ2b

2
2)

µ2 − µ1
+

2 cos2(θ)(b21 + b22)

(µ2 − µ1)2
+ 2ε cos2(θ)

+ µ1µ2 + εb23,

(3.14)

2 cos2(θ)Ω2

(µ2 − µ1)(µ3 − µ1)
=
ε(µ2b

2
2 − µ3b

2
3)

µ3 − µ2
+

2 cos2(θ)(b22 + b23)

(µ3 − µ2)2
+ 2ε cos2(θ)

+ µ2µ3 + εb21,

(3.15)
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2 cos2(θ)Ω2

(µ2 − µ1)(µ3 − µ2)
=
ε(µ1b

2
1 − µ3b

2
3)

µ3 − µ1
+

2 cos2(θ)(b21 + b23)

(µ3 − µ1)2
+ 2ε cos2(θ)

+ µ1µ3 + εb22.

(3.16)

In what follows, we will eliminate Ω in the above equations. Replacing (3.14) in (3.15)
and (3.16), we get the following equations on the variables b21, b

2
2 and b

2
3:[

εµ1(µ3 − µ2)

µ2 − µ1
+

2 cos2(θ)(µ3 − µ2)

(µ2 − µ1)2
− ε(µ2 − µ1)

]
b21

+

[
εµ2(µ2 − µ3)

µ2 − µ1
− εµ2(µ2 − µ1)

µ3 − µ2
+

2 cos2(θ)(µ3 − µ2)

(µ2 − µ1)2
− 2 cos2(θ)(µ2 − µ1)

(µ3 − µ2)2

]
b22

+

[
εµ3(µ2 − µ1)

µ3 − µ2
− 2 cos2(θ)(µ2 − µ1)

(µ3 − µ2)2
+ ε(µ3 − µ2)

]
b23

+ 2ε cos2(θ)(µ3 − µ2)− 2ε cos2(θ)(µ2 − µ1) + µ1µ2(µ3 − µ2)− µ2µ3(µ2 − µ1) = 0

(3.17)

and[
εµ1(µ3 − µ1)

µ2 − µ1
− εµ1(µ2 − µ1)

µ3 − µ1
+

2 cos2(θ)(µ3 − µ1)

(µ2 − µ1)2
− 2 cos2(θ)(µ2 − µ1)

(µ3 − µ1)2

]
b21

+

[
εµ2(µ1 − µ3)

µ2 − µ1
+

2 cos2(θ)(µ3 − µ1)

(µ2 − µ1)2
− ε(µ2 − µ1)

]
b22

+

[
εµ3(µ2 − µ1)

µ3 − µ1
− 2 cos2(θ)(µ2 − µ1)

(µ3 − µ1)2
+ ε(µ3 − µ1)

]
b23

+ 2ε cos2(θ)(µ3 − µ1)− 2ε cos2(θ)(µ2 − µ1) + µ1µ2(µ3 − µ1)− µ1µ3(µ2 − µ1) = 0.

(3.18)

Since ||T ||2+cos(θ)2 = 1, writing t = cos2(θ), we have b23 = 1−t−b21−b22. Then, substituting
such expression for b23 in (3.17) and (3.18), we obtain[

εµ1(µ3 − µ2)

µ2 − µ1
− εµ3(µ2 − µ1)

µ3 − µ2
+

2t(µ3 − µ2)

(µ2 − µ1)2
+

2t(µ2 − µ1)

(µ3 − µ2)2
+ ε(µ1 − µ3)

]
b21

+

[
εµ2(µ2 − µ3)

µ2 − µ1
− εµ2(µ2 − µ1)

µ3 − µ2
− εµ3(µ2 − µ1)

µ3 − µ2
+

2t(µ3 − µ2)

(µ2 − µ1)2
− ε(µ3 − µ2)

]
b22

+
2t2(µ2 − µ1)

(µ3 − µ2)2
+

(
2(µ1 − µ2)

(µ3 − µ2)2
+
εµ3(µ1 − µ2)

µ3 − µ2
+ ε(µ3 − µ2) + 2ε(µ1 − µ2)

)
t

+
εµ3(µ2 − µ1)

µ3 − µ2
+ µ1µ2(µ3 − µ2) + µ2µ3(µ1 − µ2) + ε(µ3 − µ2) = 0

and [
εµ1(µ3 − µ1)

µ2 − µ1
− εµ1(µ2 − µ1)

µ3 − µ1
− εµ3(µ2 − µ1)

µ3 − µ1
+

2t(µ3 − µ1)

(µ2 − µ1)2
− ε(µ3 − µ1)

]
b21

+

[
εµ2(µ1 − µ3)

µ2 − µ1
− εµ3(µ2 − µ1)

µ3 − µ1
+

2t(µ3 − µ1)

(µ2 − µ1)2
+

2t(µ2 − µ1)

(µ3 − µ1)2

− ε(µ3 − µ1)− ε(µ2 − µ1)

]
b22 +

2t2(µ2 − µ1)

(µ3 − µ1)2

+

(
2(µ1 − µ2)

(µ3 − µ1)2
+
εµ3(µ1 − µ2)

µ3 − µ1
+ ε(µ3 − µ1) + 2ε(µ1 − µ2)

)
t

+
εµ3(µ2 − µ1)

µ3 − µ1
+ µ1µ2(µ3 − µ1) + µ1µ3(µ1 − µ2) + ε(µ3 − µ1) = 0,
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that is, we obtain the following system of variables b21 and b
2
2:[

2t(µ2 − µ3)
3 + 2t(µ2 − µ1)

3 + C11

(µ2 − µ1)2(µ3 − µ2)2

]
b21 +

[
2t(µ3 − µ2) + C12

(µ2 − µ1)2

]
b22

+
2t2(µ2 − µ1)

(µ3 − µ2)2
+ q1(t) = 0,

[
2t(µ3 − µ1) + C21

(µ2 − µ1)2

]
b21 +

[
2t(µ3 − µ1)

3 + 2t(µ2 − µ1)
3 + C22

(µ2 − µ1)2(µ3 − µ1)2

]
b22

+
2t2(µ2 − µ1)

(µ3 − µ1)2
+ q2(t) = 0.

Here, C11, C12, C21 and C22 are real constants that depend on µ1, µ2, µ3, ε and q1(t) and
q2(t) are linear functions on the variable t, given by

q1(t) =

(
2(µ1 − µ2)

(µ3 − µ2)2
+
εµ3(µ1 − µ2)

µ3 − µ2
+ ε(µ3 − µ2) + 2ε(µ1 − µ2)

)
t

+
εµ3(µ2 − µ1)

µ3 − µ2
+ µ1µ2(µ3 − µ2) + µ2µ3(µ1 − µ2) + ε(µ3 − µ2)

and

q2(t) =

(
2(µ1 − µ2)

(µ3 − µ1)2
+
εµ3(µ1 − µ2)

µ3 − µ1
+ ε(µ3 − µ1) + 2ε(µ1 − µ2)

)
t

+
εµ3(µ2 − µ1)

µ3 − µ1
+ µ1µ2(µ3 − µ1) + µ1µ3(µ1 − µ2) + ε(µ3 − µ1).

Then, b21 and b
2
2 are solutions of the linear system

(
d11 d12
d21 d22

)(
b21
b22

)
=


2t2(µ1 − µ2)

(µ3 − µ2)2
− q1(t)

2t2(µ1 − µ2)

(µ3 − µ1)2
− q2(t)

 ,

where dij are the elements of the matrix of coe�cients D̃ = (dij), given by

D̃ =


2t(µ2 − µ3)

3 + 2t(µ2 − µ1)
3 + C11

(µ2 − µ1)2(µ3 − µ2)2
2t(µ3 − µ2) + C12

(µ2 − µ1)2

2t(µ3 − µ1) + C21

(µ2 − µ1)2
2t(µ3 − µ1)

3 + 2t(µ2 − µ1)
3 + C22

(µ2 − µ1)2(µ3 − µ1)2

 .

Thus, we have

b21 =
1

det D̃

[(
2t(µ3 − µ1)

3 + 2t(µ2 − µ1)
3 + C22

(µ2 − µ1)2(µ3 − µ1)2

)(
2t2(µ1 − µ2)− (µ3 − µ2)

2q1(t)

(µ3 − µ2)2

)
−
(
2t(µ3 − µ2) + C12

(µ2 − µ1)2

)(
2t2(µ1 − µ2)− (µ3 − µ1)

2q2(t)

(µ3 − µ1)2

)]
=

1

det D̃

[
4t3(µ1 − µ2)

(
(µ3 − µ1)

3 + (µ2 − µ1)
3
)

(µ2 − µ1)2(µ3 − µ1)2(µ3 − µ2)2
+

4t3(µ1 − µ2)(µ2 − µ3)

(µ2 − µ1)2(µ3 − µ1)2

+
2t2C22(µ1 − µ2)− 2t(µ3 − µ2)

2q1(t)
(
(µ3 − µ1)

3 + (µ2 − µ1)
3
)
− C22(µ3 − µ2)

2q1(t)

(µ2 − µ1)2(µ3 − µ1)2(µ3 − µ2)2

− 2t2C12(µ1 − µ2)− 2t(µ3 − µ1)
2(µ3 − µ2)q2(t)− C12(µ3 − µ1)

2q2(t)

(µ2 − µ1)2(µ3 − µ1)2

]
=

4t3(µ1 − µ2)
(
(µ3 − µ1)

3 + (µ2 − µ1)
3 + (µ2 − µ3)

3
)
+ q3(t)

det D̃(µ2 − µ1)2(µ3 − µ1)2(µ3 − µ2)2
,
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where q3(t) is a polynomial of degree 2, given by

q3(t) = 2t2(µ1 − µ2)(C22 − C12(µ3 − µ2)
2)− C22(µ3 − µ2)

2q1(t)

− 2t(µ3 − µ2)
2q1(t)((µ3 − µ1)

3 + (µ2 − µ1)
3)

+ 2t(µ3 − µ1)
2(µ3 − µ2)

3q2(t) + C12(µ3 − µ1)
2(µ3 − µ2)

2q2(t).

Now we consider the coe�cient of degree 3. Since

4

(
(µ3 − µ1)

3 + (µ2 − µ1)
3 + (µ2 − µ3)

3

)
= 12µ23(µ2 − µ1)− 12µ3(µ

2
2 − µ21) + 8(µ32 − µ31)− 12µ1µ2(µ2 − µ1)

= (µ2 − µ1)
(
12µ23 − 12µ1µ3 − 12µ2µ3 + 8µ22 + 8µ21 − 4µ1µ2

)
= 2(µ2 − µ1)

(
3(µ1 − µ3)

2 + 3(µ2 − µ3)
2 + (µ1 − µ2)

2
)
,

it follows that

b21 =

−2t3(µ1 − µ2)
2

(
3(µ1 − µ3)

2 + 3(µ2 − µ3)
2 + (µ1 − µ2)

2

)
+ q3(t)

det D̃(µ2 − µ1)2(µ3 − µ1)2(µ3 − µ2)2
.

Analogous computations provide

b22 =
12t3(µ1 − µ2)

2(µ1 − µ3)(µ2 − µ3) + q4(t)

det D̃(µ2 − µ1)2(µ3 − µ1)2(µ3 − µ2)2
,

where q4(t) is a polynomial of degree 2, given by

q4(t) = 2t2(µ1 − µ2)(C11 − C21(µ3 − µ1)
2)− C11(µ3 − µ1)

2q2(t)

− 2t(µ3 − µ1)
2q2(t)((µ3 − µ2)

3 + (µ2 − µ1)
3)

+ 2t(µ3 − µ2)
2(µ3 − µ1)

3q1(t) + C21(µ3 − µ2)
2(µ3 − µ1)

2q1(t).

Now we will compute the determinant of D̃. Note that

det D̃ =

4t2
(
(µ3 − µ2)

3 + (µ2 − µ1)
3

)(
(µ3 − µ1)

3 + (µ2 − µ1)
3

)
(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2

+

2t

(
C11(µ3 − µ1)

3 + C11(µ2 − µ1)
3 + C22(µ3 − µ2)

3 + C22(µ2 − µ1)
3

)
+ C11C22

(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2

+
4t2(µ1 − µ3)(µ3 − µ2)

(µ1 − µ2)4
−

2t

(
C12(µ3 − µ1) + C21(µ3 − µ2)

)
+ C12C21

(µ1 − µ2)4

=

4t2(µ2 − µ1)
3

(
(µ3 − µ2)

3 + (µ3 − µ1)
3 + (µ2 − µ1)

3

)
(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2

+

2t

(
C11(µ3 − µ1)

3 + C11(µ2 − µ1)
3 + C22(µ3 − µ2)

3 + C22(µ2 − µ1)
3

)
(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2

−
2t(µ1 − µ3)

2(µ2 − µ3)
2

(
C12(µ3 − µ1) + C21(µ3 − µ2)

)
(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2

+
C11C22 + C12C21(µ1 − µ3)

2(µ2 − µ3)
2

(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2
.
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As before we note that

4

(
(µ3 − µ2)

3 + (µ3 − µ1)
3 + (µ2 − µ1)

3

)
= 8(µ33 − µ31)− 12µ2(µ

2
3 − µ21) + 12µ22(µ3 − µ1)− 12µ1µ3(µ3 − µ1)

= (µ3 − µ1)
(
8µ21 − 12µ1µ2 − 4µ1µ3 + 12µ22 − 12µ2µ3 + 8µ23

)
= 2(µ3 − µ1)

(
(µ1 − µ3)

2 + 3(µ1 − µ2)
2 + 3(µ2 − µ3)

2
)
.

Hence, we conclude that

det D̃ =

2t2(µ1 − µ3)(µ1 − µ2)
3

(
(µ1 − µ3)

2 + 3(µ1 − µ2)
2 + 3(µ2 − µ3)

2

)
+ q5(t)

(µ1 − µ2)4(µ1 − µ3)2(µ2 − µ3)2
,

where q5(t) is a linear function given by

q5(t) = 2t

(
C11(µ3 − µ1)

3 + C11(µ2 − µ1)
3 + C22(µ3 − µ2)

3 + C22(µ2 − µ1)
3

)
− 2t(µ1 − µ3)

2(µ2 − µ3)
2

(
C12(µ3 − µ1) + C21(µ3 − µ2)

)
+ C11C22 − C12C21(µ1 − µ3)

2(µ2 − µ3)
2.

Therefore,

b21 =

−2t3(µ1 − µ2)
4

(
3(µ1 − µ3)

2 + 3(µ2 − µ3)
2 + (µ1 − µ2)

2

)
+ q3(t)

2t2(µ1 − µ3)(µ1 − µ2)3
(
(µ1 − µ3)2 + 3(µ1 − µ2)2 + 3(µ2 − µ3)2

)
+ q5(t)

and

b22 =
12t3(µ1 − µ2)

4(µ1 − µ3)(µ2 − µ3) + q4(t)

2t2(µ1 − µ3)(µ1 − µ2)3
(
(µ1 − µ3)2 + 3(µ1 − µ2)2 + 3(µ2 − µ3)2

)
+ q5(t)

.

Consequently, as b23 = 1− t− b21 − b22, we have

b23 =

−2t3(µ2 − µ3)(µ1 − µ2)
3

(
3(µ1 − µ2)

2 + 3(µ1 − µ3)
2 + (µ2 − µ3)

2

)
+ q6(t)

2t2(µ1 − µ3)(µ1 − µ2)3
(
(µ1 − µ3)2 + 3(µ1 − µ2)2 + 3(µ2 − µ3)2

)
+ q5(t)

,

where q6(t) is given by

q6(t) = (1− t)q5(t) + 2t2(µ1 − µ3)(µ1 − µ2)
3

(
(µ1 − µ3)

2 + 3(µ1 − µ2)
2 + 3(µ2 − µ3)

2

)
− q3(t)− q4(t).

In fact, the coe�cient of t3 is given by
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− 2t3(µ1 − µ3)(µ1 − µ2)
3

(
(µ1 − µ3)

2 + 3(µ1 − µ2)
2 + 3(µ2 − µ3)

2

)
+ 2t3(µ1 − µ2)

4

(
3(µ1 − µ3)

2 + 3(µ2 − µ3)
2 + (µ1 − µ2)

2

)
+ 12t3(µ1 − µ2)

4(µ1 − µ3)(µ2 − µ3)

= −2t3(µ1 − µ2)
3

[
(µ1 − µ3)

3 + 3(µ1 − µ3)(µ1 − µ2)
2 + 3(µ1 − µ3)(µ2 − µ3)

2

− 3(µ1 − µ2)(µ1 − µ3)
2 − 3(µ1 − µ2)(µ2 − µ3)

2 − (µ1 − µ2)
3

+ 6(µ1 − µ2)(µ1 − µ3)(µ2 − µ3)

]
= −2t3(µ1 − µ2)

3

[
(µ1 − µ3 − µ1 + µ2)

3 + 3(µ2 − µ3)

(
(µ1 − µ3)(µ2 − µ3)

− (µ1 − µ2)(µ2 − µ3) + 2(µ1 − µ2)(µ1 − µ3)

)]
= −2t3(µ2 − µ3)(µ1 − µ2)

3

[
(µ2 − µ3)

2 + 3

(
(µ1 − µ3)(µ2 − µ3)

− (µ1 − µ2)(µ2 − µ3) + 2(µ1 − µ2)(µ1 − µ3)

)]
= −2t3(µ2 − µ3)(µ1 − µ2)

3

(
3(µ1 − µ2)

2 + 3(µ1 − µ3)
2 + (µ2 − µ3)

2

)
.

Therefore, we conclude that

b2i (t) =
pi(t)

q(t)
, (3.19)

where pi(t) and q(t) are polynomials on the variable t, of degree 3 and 2, respectively.
Now we will calculate e1(b21), e2(b

2
2), e3(b

2
3) and use (3.11) to �nd polynomial identities

on the variable t. Let us start with e1(b
2
1). First, note that bi ̸= 0 for all i ∈ {1, 2, 3},

otherwise as the principal curvatures are distinct, by (3.19), it follows that t is constant,
and with that, we would �nish the proof of the lemma. Using (3.13) and (3.19), we have

2b1e1(b1) = e1(b
2
1) = e1

(
p1(t)

q(t)

)
=

(p′1(t)q(t)− p1(t)q
′(t))e1(t)

q2(t)

=
2 cos(θ)e1(cos(θ))(p

′
1(t)q(t)− p1(t)q

′(t))

q2(t)

= −2µ1 cos(θ)b1(p
′
1(t)q(t)− p1(t)q

′(t))

q2(t)
,

that is,

e1(b1) = −µ1 cos(θ)(p
′
1(t)q(t)− p1(t)q

′(t))

q2(t)
.

Now, using (3.11), we get[
µ1 − ε

(
b23

µ3 − µ1
+

b22
µ2 − µ1

)]
= −µ1(p

′
1(t)q(t)− p1(t)q

′(t))

q2(t)
,
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which implies

µ1(µ3 − µ1)(µ1 − µ2)(p
′
1(t)q(t)− p1(t)q

′(t)) = ε(µ1 − µ2)q
2(t)b23 + ε(µ1 − µ3)q

2(t)b22

+ µ1(µ3 − µ1)(µ2 − µ1)q
2(t).

Thus, replacing (3.19) in the above equation, we conclude that

µ1(µ1 − µ2)(µ3 − µ1)(p
′
1(t)q(t)− p1(t)q

′(t))− µ1(µ1 − µ2)(µ1 − µ3)q
2(t)

= ε(µ1 − µ3)q(t)p2(t) + ε(µ1 − µ2)q(t)p3(t).
(3.20)

Observe that the left side of (3.20) is a polynomial on t of degree at most 4. On the other
hand, since

ε(µ1 − µ3)q(t)p2(t) + ε(µ1 − µ2)q(t)p3(t) = εq(t)

[
12t3(µ1 − µ2)

4(µ1 − µ3)
2(µ2 − µ3)

− 2t3(µ1 − µ2)
4(µ2 − µ3)

(
3(µ1 − µ2)

2 + 3(µ1 − µ3)
2 + (µ2 − µ3)

2

)
+ (µ1 − µ3)q4(t) + (µ1 − µ2)q6(t)

]
= εq(t)

[
2t3(µ1 − µ2)

4(µ2 − µ3)

(
3(µ1 − µ3)

2 − 3(µ1 − µ2)
2 − (µ2 − µ3)

2

)
+ (µ1 − µ3)q4(t) + (µ1 − µ2)q6(t)

]
= εq(t)

[
4t3(µ1 − µ2)

4(µ2 − µ3)
2
(
3µ1 − 2µ2 − µ3

)
+ (µ1 − µ3)q4(t) + (µ1 − µ2)q6(t)

]
,

we obtain a polynomial equation such that the coe�cient of greatest degree, which is 5, is
given by

8ε(3µ1−2µ2−µ3)(µ1−µ2)7(µ2−µ3)2(µ1−µ3)
(
(µ1−µ3)2+3(µ1−µ2)2+3(µ2−µ3)2

)
. (3.21)

Now let us compute e2(b22). Following similarly to the previous case, we obtain

µ2(µ1 − µ2)(µ2 − µ3)(p
′
2(t)q(t)− p2(t)q

′(t))− µ2(µ2 − µ1)(µ2 − µ3)q
2(t)

= ε(µ2 − µ3)q(t)p1(t) + ε(µ2 − µ1)q(t)p3(t).
(3.22)

Note that the left side of (3.22) is a polynomial on t of degree at most 4. Now, since

ε(µ2 − µ3)q(t)p1(t) + ε(µ2 − µ1)q(t)p3(t)

= εq(t)

[
− 2t3(µ2 − µ3)(µ1 − µ2)

4

(
3(µ1 − µ3)

2 + 3(µ2 − µ3)
2 + (µ1 − µ2)

2

)
+ 2t3(µ2 − µ3)(µ2 − µ1)

4

(
3(µ1 − µ2)

2 + 3(µ1 − µ3)
2 + (µ2 − µ3)

2

)
+ (µ2 − µ3)q3(t) + (µ2 − µ1)q6(t)

]
= εq(t)

[
4t3(µ1 − µ2)

4(µ2 − µ3)

(
(µ1 − µ2)

2 − (µ2 − µ3)
2

)
+ (µ2 − µ3)q3(t) + (µ2 − µ1)q6(t)

]
,
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that is,

ε(µ2 − µ3)q(t)p1(t) + ε(µ2 − µ1)q(t)p3(t)

= εq(t)

[
4t3(µ1 − µ2)

4(µ2 − µ3)(µ1 − µ3)
(
µ1 − 2µ2 + µ3

)
+ (µ2 − µ3)q3(t) + (µ2 − µ1)q6(t)

]
,

we get a polynomial equation of degree 5 on variable t, such that the coe�cient of t5 is
given by

8ε(µ1−2µ2+µ3)(µ1−µ2)7(µ1−µ3)2(µ2−µ3)
(
(µ1−µ3)2+3(µ1−µ2)2+3(µ2−µ3)2

)
. (3.23)

Finally, let us compute e3(b23). As before, we obtain

µ3(µ1 − µ3)(µ3 − µ2)(p
′
2(t)q(t)− p2(t)q

′(t))− µ3(µ3 − µ1)(µ3 − µ3)q
2(t)

= ε(µ3 − µ1)q(t)p2(t) + ε(µ3 − µ2)q(t)p1(t),
(3.24)

where the left side is a polynomial on t of degree at most 4. Now, since

ε(µ3 − µ1)q(t)p2(t) + ε(µ3 − µ2)q(t)p1(t) = εq(t)

[
− 12t3(µ1 − µ2)

4(µ1 − µ3)
2(µ2 − µ3)

+ 2t3(µ1 − µ2)
4(µ2 − µ3)

(
3(µ1 − µ3)

2 + 3(µ2 − µ3)
2 + (µ1 − µ2)

2

)
+ (µ3 − µ1)q4(t) + (µ3 − µ2)q3(t)

]
= εq(t)

[
2t3(µ1 − µ2)

4(µ2 − µ3)

(
3(µ2 − µ3)

2 − 3(µ1 − µ3)
2 + (µ1 − µ2)

2

)
+ (µ3 − µ1)q4(t) + (µ3 − µ2)q3(t)

]
= εq(t)

[
4t3(µ1 − µ2)

5(µ3 − µ2)
(
µ1 + 2µ2 − 3µ3

)
+ (µ3 − µ1)q4(t) + (µ3 − µ2)q3(t)

]
,

we have a polynomial equation of degree 5 on vaiable t, such that the coe�cient of t5 is
given by

8ε(µ1+2µ2−3µ3)(µ1−µ2)8(µ1−µ3)(µ3−µ2)
(
(µ1−µ3)2+3(µ1−µ2)2+3(µ2−µ3)2

)
. (3.25)

Note that, if one of the coe�cients (3.21), (3.23) or (3.25) does not vanish, we conclude
that t is constant, and hence, cos(θ) is constant.

Then, suppose by contradiction that the three coe�cients vanish. As the principal
curvatures are all distinct, we have the following homogeneous linear system

3µ1 − 2µ2 − µ3 = 0, (3.26)

µ1 − 2µ2 + µ3 = 0, (3.27)

µ1 + 2µ2 − 3µ3 = 0. (3.28)

From (3.26) and (3.27), we obtain that µ1 = µ2 = µ, and therefore, from (3.28), we conclude
that µ3 = µ, which contradicts the fact that the principal curvatures are distinct. Thus, we
conclude the proof of the lemma.
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In [8], and Santos classi�ed the hypersurfaces in the product space Qn
ε × R, with g

distinct constant principal curvatures, g ∈ {1, 2, 3}, with n ≥ 4 when g = 3. In the next
result, we obtain the classi�cation of the hypersurfaces of Q3

ε × R that have three distinct
principal curvatures.

Theorem 3.6. Let Σ3 be a hypersurface of Q3
ε × R with three distinct constant principal

curvatures. Then Σ3 is an open part of the following hypersurfaces:

a) S1(c1)× S1(c2)× R, when ε = 1;

b) S1(c1)×H1(c2)× R, when ε = −1,

where c1 ̸= c2,
1

c1
+

1

c2
= ε and the principal curvatures of Σ3 are given by 0,

c1√
c1 + c2

and

−c2√
c1 + c2

.

Proof. Let Σ3 be a hypersurface of Q3
ε×R with three distinct constant principal curvatures.

By Lemma 3.5, cos(θ) is constant. Since the principal curvatures are distinct, there is no
open Ω where T ≡ 0, otherwise Ω is part of a slice Q3

ε × {t0}, t0 ∈ R, which is totally
geodesic (see Proposition 3.3 and Theorem 3.4). Therefore by (3.5), by continuity, T is a
principal direction, with principal curvature associated equal 0.

Suppose that cos(θ) ̸= 0 on Σ. Then, from [8, Theorem 4.1], it follows that ε = −1
and Σ is locally parametrized by f(p, s) = h̃s(p) +Bs∂t, for some B ∈ R, B > 0, where h̃s
is a family of horospheres in H3. Moreover, the principal curvature associated to the �eld
T is equal to 0, and the other two principal curvatures are both equal, depending on the

choice of orientation, to
B√

1 +B2
or − B√

1 +B2
. Thus, we have a contradiction with the

assumption that the three principal curvatures are distinct.
Therefore cos(θ) = 0 on Σ. Then Σ3 is an open part of a vertical cylinder over an

isoparametric surface in Q3
ε with two distinct non-zero constant principal curvatures. In

this case, the classi�cation follows from the Theorem 1.3.

Using the classi�cation of the hypersurfaces in Qn
ε ×R with constant principal curvatures

obtained by Chaves and Santos in [8], we prove Corollary 3.7.

Corollary 3.7. Let Σ3 be a hypersurface of Q3
ε×R with constant principal curvatures. Then

Σ3 is isoparametric.

Proof. In [8, Theorem 6.1], Chaves and Santos classi�ed the hypersurfaces with constant
principal curvatures when g ∈ {1, 2} and n ≥ 2. In both cases, cos(θ) is constant. Moreover,
if g = 3, i.e., all the principal curvatures are distinct, by Lemma 3.5, we obtain that cos(θ)
is also constant.

Now, if T ≡ 0, which is the case when g = 1, Σ3 is an open part of a slice. Once the
normal vector �eld of a slice is the geodesic vector �eld ∂t, we conclude that the parallel
hypersurfaces to a slice are slices. Therefore Σ3 is isoparametric, since each slice is totally
geodesic. If T ̸= 0, since cos(θ) is constant, it follows from [8, Corollary 3.4], that Σ3 is also
isoparametric. Thus, we conclude the proof of the corollary.

In the last result of this chapter, we use the Jacobi �eld theory to obtain a necessary and
su�cient condition for an isoparametric hypersurface of Q3

ε × R to have constant principal
curvatures. In [8], Chaves and Santos showed that if Σ is an isoparametric hypersurface in
Qn
ε × R having T as a principal direction, then Σ has constant principal curvatures if and

only if ||T || is constant. Our result improves, at least for n = 3, their result, since we do
not use the assumption of T being a principal direction.
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Theorem 3.8. Let Σ be an isoparametric hypersurface of Q3
ε × R. Then Σ has constant

principal curvatures if and only if θ is constant.

Proof. Let Σ be an isoparametric hypersurface in Q3
ε × R with unit normal N , and let

{e1, e2, e3} an orthonormal frame of principal directions with corresponding principal cur-
vatures µ1, µ2 and µ3, respectively.

In order to prove Theorem 3.8, it is enough to show that the principal curvatures of Σ
are constant if and only if the function ||T || is constant. In fact, as ∂t = T + cos(θ)N is a
unit vector �eld, it follows that 1 = ||T ||2 + cos2(θ), and hence, θ is constant if only if ||T ||
is constant.

The family of hypersurfaces parallel to Σ in the direction of N is given by (1.1) and
these hypersurfaces are denoted by Σr. Given p ∈ Σ, let γp be a geodesic of Q3

ε × R with
γp(0) = p and γ′p(0) = N(p). By de�nition of Σr, the normal to Σr at γp(r) is given by
γ̇p(r).

For each i ∈ {1, 2, 3}, consider the Jacobi �eld ξi = DPei along γp, where Pei is the
parallel transport of ei along γp with Pei(0) = ei, given by the following initial conditions{

ξi(0) = ei,

ξ′i(0) = −Aei = −µiei.

Denoting Pei(r) = ei(r), we can write

D(r)(ei(r)) =

3∑
j=1

dij(r)ej(r),

where dij(r) are the elements of the matrix that represents D(r), and from this, we see that

ξi(r) =

3∑
j=1

dij(r)ej(r). (3.29)

Remember that, since ξi is a Jacobi �eld along γp, then ξi satis�es the Jacobi equation
ξ′′i + R̃(ξi, γ̇p)γ̇p = 0.

As ei(r) is parallel for all i, taking the derivatives in (3.29), we have

ξ′′i (r) =
3∑
j=1

d′′ij(r)ej(r). (3.30)

Therefore, since

R̃(ξi, γ̇p)γ̇p =
3∑
l=1

⟨R̃(ξi, γ̇p)γ̇p, el⟩el =
3∑
j=1

3∑
l=1

dij⟨R̃(ej , γ̇p)γ̇p, el⟩el,

it follows, from (3.30) and the Jacobi equation, that

d′′il +
3∑
j=1

dij⟨R̃(ej , γ̇p)γ̇p, el⟩ = 0. (3.31)

Suppose, without loss of generality, that γp is parametrized by arc length and is given in
the form

γp(r) =

(
γQ3

ε
(||T ||r), γR(cos(θ)r)

)
,
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where γQ3
ε
and γR denote the component of γp in Q3

ε and R, respectively. Note that

γ̇p(r) = ||T ||γ̇Q3
ε
+ cos(θ)∂r.

Writing ei = e
Q3

ε
i + ⟨ei, ∂t⟩∂t, where eQ

3
ε

i is the component of ei in Q3
ε, we have that

⟨R̃(ej , γ̇p)γ̇p, el⟩ = ⟨RQ3
ε(e

Q3
ε

j , ||T ||γ̇Q3
ε
)||T ||γ̇Q3

ε
, e

Q3
ε

l ⟩

= ε

(
||T ||2⟨eQ

3
ε

j , e
Q3

ε
l ⟩ − ||T ||2⟨eQj , γ̇Q3

ε
⟩⟨eQ

3
ε

l , γ̇Q3
ε
⟩
)
,

once Q3
ε has constant sectional curvature ε. Furthermore, since

0 = ⟨ej , N⟩ = ⟨ej , γ̇⟩ = ⟨eQ
3
ε

j , ||T ||γ̇Q3
ε
⟩+ ⟨ej , ∂t⟩ cos(θ),

and

δjl = ⟨eQ
3
ε

j , e
Q3

ε
l ⟩+ ⟨ej , ∂t⟩⟨el, ∂t⟩,

we get

⟨eQ
3
ε

j , γ̇Q3
ε
⟩ = −Tj cos(θ)

||T ||
and ⟨eQ

3
ε

j , e
Q3

ε
l ⟩ = δjl − TjTl,

with Tj = ⟨ej , T ⟩. Thus, we obtain

⟨R̃(ej , γ̇p)γ̇p, el⟩ = ε||T ||2
(
δjl − TjTl −

TjTl cos
2(θ)

||T ||2

)
= ε||T ||2

(
δjl −

TjTl
||T ||2

(||T ||2 + cos2(θ))

)
= ε(||T ||2δjl − TjTl),

and replacing this value in (3.31), we conclude that

d′′il + ε
3∑
j=1

dij

[
||T ||2δjl − TjTl

]
= 0.

Hence, the elements dij are solutions of the following linear system d′′11 d′′12 d′′13
d′′21 d′′22 d′′23
d′′31 d′′32 d′′33

 = −ε

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 ||T ||2 − T 2
1 T1T2 −T1T3

−T2T1 ||T ||2 − T 2
2 −T2T3

−T3T1 −T3T2 ||T ||2 − T 2
3

 .

Since ξj(0) = ej , we have

d11(0) = 1, d12(0) = 0, d13(0) = 0,
d21(0) = 0, d22(0) = 1, d23(0) = 0,
d31(0) = 0, d32(0) = 0, d33(0) = 1.

Thus, d′′11(0) d′′12(0) d′′13(0)
d′′21(0) d′′22(0) d′′23(0)
d′′31(0) d′′32(0) d′′33(0)

 = −ε

 ||T ||2 − T 2
1 T1T2 −T1T3

−T2T1 ||T ||2 − T 2
2 −T2T3

−T3T1 −T3T2 ||T ||2 − T 2
3

 . (3.32)
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By (1.4), we can consider the function

f(r) =
d

dr
(detD(r)) + 3h(r) detD(r),

which vanishes identically. Note that

f ′(r) =
d2

dr2
(detD(r)) + 3h′(r) detD(r) + 3h(r)

d

dr
(detD(r)).

In what follows, we are going to obtain explicitly the formulas of
d

dt
(detD(t)) |t=0 and

d2

dt2
(detD(t)) |t=0. First, taking into account that ξi = ∇̃Nξi = −µiei, we get

d′11(0) = −µ1, d′12(0) = 0, d′13(0) = 0,
d′21(0) = 0, d′22(0) = −µ2, d′23(0) = 0,
d′31(0) = 0, d′32(0) = 0, d′33(0) = −µ3,

that is, D′(0) = −A. By Jacobi formula, we have

d

dr
(detD(r)) = detD(r)tr(D(r)−1D′(r)). (3.33)

Hence, at r = 0, we get

d

dr
(detD(r)) |r=0= −trA = −3h(0),

where h(0) is the mean curvature of Σ. Now, taking the derivative in (3.33), it follows that

d2

dr2
(detD(r)) =

d

dr
(detD(r))tr(D(r)−1D′(r))

+ detD(r)tr

(
(D(r)−1)′D′(r) +D(r)−1D′′(t)

)
.

Since D(r)−1D(r) = Id, we obtain

(D(r)−1)′ = −D(r)−1D′(r)D(r)−1.

This means that (D(0)−1)′ = A. Therefore, taking the trace in (3.32), we get

d2

dt2
(detD(t)) |t=0 = (tr(A))2 − tr(A2) + tr(D′′(0))

= 9h(0)2 − tr(A2)− 2ε||T ||2.

In this way, at r = 0, we have that

f ′(0) = −tr(A2) + 3h′(0)− 2ε||T ||2.

As f ≡ 0, so is its derivative. This shows that

tr(A2) = 3h′(0)− 2ε||T ||2. (3.34)

By assumption, Σ is isoparametric and hence, h′(0) is constant throughout Σ. Therefore, if
Σ has constant principal curvatures µ1, µ2 and µ3, then tr(A2) = µ21 + µ22 + µ23 is constant,
and hence, ||T || is constant.
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Conversely, if ||T || is constant, from (3.34), we have that tr(A2) is constant. It easy to
see that the characteristic polynomial QA of A is given by

QA(λ) = −λ3 + 3h(0)λ2 − (µ1µ2 + µ1µ3 + µ2µ3)λ+ detA.

Now, observe that

9h2(0) = µ21 + µ22 + µ23 + 2(µ1µ2 + µ1µ3 + µ2µ3).

Thus, we have
9h2(0)− tr(A2) = 2(µ1µ2 + µ1µ3 + µ2µ3),

which implies

QA(λ) = −λ3 + 3h(0)λ2 − 9h2(0)− tr(A2)

2
λ+ detA.

Notice that if T ≡ 0, then Σ3 is an open part of a slice Q3
ε × {t0}, t0 ∈ R, which is

totally geodesic, and hence, has constant principal curvatures. Thus, suppose that T ̸= 0.
Since ||T || is constant it follows that cos(θ) is constant, which implies that T is a principal
direction with correspondent principal curvature 0. This means that detA = 0. Therefore,
since Σ is isoparametric, then h(0) is constant, and thus we conclude that the coe�cients
of characteristic polynomial QA are real constants, and hence, Σ has constant principal
curvatures.
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Chapter 4

Solutions to the mean curvature �ow

In this chapter, we describe the evolution by the mean curvature �ow (MCF) of isopara-
metric hypersurfaces in product manifolds of dimension 4. We show that the evolution of
isoparametric hypersurfaces of Riemannian manifolds by the mean curvature �ow is given
by a reparametrization of the �ow by parallel hypersurfaces in a short time, as long as
the uniqueness of the mean curvature �ow holds for the initial data and the corresponding
ambient space. Such a result is given in a general sense, not necessarily restricted to the
ambient spaces considered in this work, which has its own interest. Through this result, we
describe the evolution of the hypersurfaces classi�ed in Chapters 2 and 3. We also describe
the evolutions of isoparametric hypersurfaces in S2 × S2 and H2 ×H2, classi�ed by Urbano
(2019) and Dong Gao, Hui Ma and Zeke Yao (2022), respectively, and of isoparametric
hypersurfaces in Q3

ε × R with g distinct constant principal curvatures, g ∈ {1, 2}, classi�ed
by Chaves and Santos (2019).

Part of the results of this chapter composes a joint work with João Paulo do Santos and
Felipe Guimarães [22], entitled "Isoparametric hypersurfaces of Riemannian manifolds as
initial data for the mean curvature �ow".

4.1 An isoparametric hypersurface as initial data for MCF

Before stating and proving the main results and their applications, let us present some
short background content on the uniqueness of the mean curvature �ow.

Let Σn be a 2-sided hypersurface of a Riemannian manifold M̃n+1. The family of
hypersurfaces F : Σn × I → M̃n+1, 0 ∈ I ⊂ R, is a solution to the mean curvature �ow
(abbreviated as MCF) with initial data Σ, if{

∂tF (p, t) = h(p, t)N(p, t), (p, t) ∈ Σn × I;
F (p, 0) = p ∈ Σ.

(4.1)

Here, h(p, t) is the mean curvature and N(p, t) is a unit normal vector �eld of the hyper-
surface Σt := F (Σ, t).

Remark 5. Observe that it is enough to ask for 2-sided hypersurface, since we only need a
well-de�ned normal vector �eld. In case the manifold M̃n+1 is orientable, such condition is
equivalent to Σn being an orientable hypersurface.

In order to characterize the evolution by the mean curvature �ow of isoparametric hy-
persurfaces, we will need to understand the uniqueness of the MCF. It is well-known that
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it holds when the initial data is compact (as can be seen, for example, in [24, Lemma 3.2]).
As for the noncompact case, we will use the following result, which will be stated here in
the hypersurface case:

Theorem 4.1 (Chen-Yin [9]). Let (M̃n+1, g̃) be a complete Riemannian manifold of dimen-
sion n+1 such that the curvature and its covariant derivatives up to order 2 are bounded and
the injectivity radius is bounded from below by a positive constant, i.e., there are constants
C̃ and δ̃ such that

(|R̃|+ |∇̃R̃|+ |∇̃2R̃|)(p) ≤ C̃, inj(M̃n+1, p) > δ̃,

for all p ∈ M̃n+1. Let F0 : Σ
n → M̃n+1 be an isometrically immersed Riemannian manifold

with bounded second fundamental form in M̃n+1. Suppose F1 and F2 are two solutions to
the mean curvature �ow on Σn × [0, T ] with the same F0 as initial data and with bounded
second fundamental forms on [0, T ]. Then F1 = F2 for all (p, t) ∈ Σn × [0, T ].

In what follows, we will study the properties of hypersurfaces that have a particular
solution for MCF:

De�nition 4.1. Let F : Σn× [0, T ) → M̃n+1 be a solution to the MCF in M̃n+1 with initial
data Σn. We say that this solution is a reparametrization of the parallel �ow (abbreviated
as RPF) in [0, δ), 0 < δ ≤ T , with parameter ϵ : [0, δ) → R, ϵ(0) = 0 if

F (p, t) = expp(ϵ(t)N(p)), (4.2)

for all t ∈ [0, δ), where expp : TpM̃ → M̃ denotes the exponential map of M̃ at p ∈ Σ, and
N is a unit normal vector �eld of the hypersurface Σ.

Our �rst result is given by Lemma below, which provides a necessary condition for a
solution to the MCF to be an reparametrization of the parallel �ow. Lemma 4.2 has its
own interest since it extends to Riemannian manifolds the results of [37] for space forms.
Furthermore, the �rst part of Lemma 4.2 coincides with Proposition 1 [28] when the MCF
is considered, complementing it with the second part, since it provides the corresponding
ordinary di�erential equation concretely in terms of the endomorphism D presented in
Section 1.2. For completeness, we will present its entire proof.

Lemma 4.2. Let Σn be a 2−sided hypersurface of M̃n+1, such that Σn is the initial data
of a solution F : Σ × [0, T ) → M̃n+1 for the MCF. If F restricted to Σ × [0, δ) for some
0 < δ ≤ T is a RPF with parameter ϵ : [0, δ) → R, then Σ is an isoparametric hypersurface

of M̃n+1. Moreover, ϵ satis�es the ODE

ϵ′(t) = −(detD)′

n detD
(ϵ(t)) , (4.3)

where D is a solution of (1.2), and the right-hand side of (4.3) is independent of p ∈ Σ.

Proof. By hypothesis we have that F (p, t) = expp(ϵ(t)N(p)) satis�es

∂tF (p, t) = h(p, t)Ñ(p, t),

where Ñ(·, t) and h(·, t) stand for the normal unit vector �eld and the mean curvature of
the hypersurface F (·, t), for t ∈ [0, δ), respectively. On the one hand, we have

∂tF (p, t) = ϵ′(t)
(
d expp

)
ϵ(t)N(p)

N(p).
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On the other hand, it follows from Gauss's lemma that(
d expp

)
ϵ(t)N(p)

N(p) = Ñ(p, t)

for any p ∈ Σn and t ∈ [0, δ). Thus, ϵ′(t) = h(p, t) and the hypersurface Σt = F (Σ, t) has
constant mean curvature ϵ′(t). In particular, Σn is an isoparametric hypersurface.

Since ϵ′(t) is the mean curvature of the hypersurface Σt = F (Σ, t) and the MCF is RPF
with parameter ϵ, we have from (1.4) that

ϵ′(t) = h(ϵ(t)) = −(detD)′

n detD
(ϵ(t)),

where D is the solution of (1.2), which will be independent of the choice of p ∈ Σ, once Σ
is isoparametric.

Lemma 4.2 says that if a solution of the MCF is given by an RPF, then the initial
hypersurface of this solution must be isoparametric. We will make use of it and Theorem
4.1 to obtain the Theorem 4.3 below, which supplies the characterization of the MCF when
the initial data is an isoparametric hypersurface, for a regular enough ambient space (in
the sense of Theorem 4.1). For this, we will need the following formula, which is a direct
consequence of the Riccati equation (see [33, Section 3]):

h′(r) = R̃ic(γ̇(r), γ̇(r)) + |Aγ̇(r)|2, (4.4)

where R̃ic is the Ricci tensor of M̃ .

Theorem 4.3. Let M̃n+1 be a complete Riemannian manifold such that the curvature and
its covariant derivatives up to order 2 are bounded and the injectivity radius is bounded
from below by a positive constant. Let Σn be a hypersurface of M̃n+1 such that the solution
F : Σn × [0, T ) → M̃n+1 of the MCF with initial data Σn has bounded second fundamental
form on [0, T−] for all T− < T . Then, Σn is isoparametric if and only if F is the �ow by
parallels for some δ0 ≤ T . Moreover, suppose that [0, δ) is the maximal interval where F is
a reparametrization of the parallel �ow. If δ < T then F (., δ) is a hypersurface that is not
isoparametric.

Proof. Let Σ be an isoparametric hypersurface of M̃n+1. Then the mean curvatures of its
nearby parallel hypersurfaces depend only on the parallel displacement r ≥ 0. In this case, if
D is a solution of (1.2), then the right-hand side of (1.4), which provides the mean curvature
of a parallel hypersurface of Σ, depends only on r. Therefore the ODE

ϵ′(t) = −(detD)′

n detD
(ϵ(t)) ,

is well de�ned in a neighborhood of r = 0. Let ϵ be a solution of such ODE, with ϵ(0) = 0,
de�ned in [0, δ0) for some δ0 > 0 such that |ϵ(t))| < δ̃, for all t ∈ [0, δ0) where δ̃ is the
uniform bound for the injectivity radius of M̃. Thus, proceeding as in the proof of Lemma
4.2, the family F : Σn × [0, δ) → M̃n+1 given by F (p, t) = expf(p)(ϵ(t)N(p)), where N is
a unit normal vector �eld of Σn, whose direction is given by the vector mean curvature,
is a solution of the MCF, with initial data given by Σn. Since the ambient space satis�es
the conditions of Theorem 4.1 and Σn is isoparametric, it follows by equation (4.4) that
the second fundamental form is bounded for all t ∈ [0, δ). Consequently, it follows from
Theorem 4.1 that F = F in [0, δ). The converse follows from Lemma 4.2.

Let [0, δ) be the maximal interval where the solution of the MCF F : Σn×[0, T ) → M̃n+1

is RPF. When δ < T , we �rstly observe that F (., δ) is a regular hypersurface, since the F
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is de�ned at t = δ. Secondly, we claim that F (Σ, δ) is not a isoparametric hypersurface. In
fact, suppose by contradiction that F (Σ, δ) is isoparametric. Then we can consider it as an
initial data for the mean curvature �ow and, by the uniqueness, we will then extend F as
RPF beyond δ, which contradicts the maximality of [0, δ).

Remark 6. Theorem 4.3 provides a re�nement of Theorem 2.2 of [37] when the ambient
space is a space form. It assures that the unique solution for the MCF in a short time, with
initial data being an isoparametric hypersurface, is given by the family of parallel hypersur-
faces provided by the parameter ϵ arising as the unique solution of the ordinary di�erential
equation (4.3). Similarly, for Riemannian manifolds where being isoparametric is equivalent
to having constant principal curvatures as ambient spaces and when the MCF is considered,
the unique solution by parallel hypersurfaces given in Corollary 2 of [28], will be, in fact, the
unique solution to the MCF, as long as the conditions of Theorem 4.1 are satis�ed (recall
that the author in [28] de�nes isoparametric hypersurfaces as those with constant principal
curvatures).

4.2 Applications: evolution of isoparametric hypersurfaces in

product spaces

In this section, we will study the evolution of isoparametric hypersurfaces in the product
spaces Q2

c1×Q2
c2 and Q3

ε×R. We highlight that these ambient spaces are homogeneous man-
ifolds and products of spaces of constant curvature. Therefore, they satisfy the conditions
of Theorem 4.1.

To study the evolution of such hypersurfaces, we will need the parallel surfaces and
curves given in the space forms. By (1.1), if Σ is surface in Q3

ε or a curve in Q2
ci , then the

parallels to Σ are given by

Φr(p) = Cε(r)p+ Sε(r)N(p), (4.5)

where p ∈ Σ, N(p) is the unit normal to Σ at p, and the functions Sε(r) and Cε(r) are given
by

Sε(r) =


r if ε = 0,

sinh(r) if ε = −1,

sin(r) if ε = 1,

Cε(r) =


1 if ε = 0,

cosh(r) if ε = −1,

cos(r) if ε = 1.

(4.6)

Moreover, if µ denotes either a principal curvature or the curvature of Σ (the last case when
Σ is a curve), then a principal curvature or the curvature of the parallels to Σ are given by

µr =
εSε(r) + µCε(r)

Cε(r)− µSε(r)
, (4.7)

see [15].

4.2.1 On hypersurfaces of Q2
c1
×Q2

c2

In this subsection, we will study the evolution of isoparametric hypersurfaces by the
MCF in the following ambient spaces: S2 × R2, S2 ×H2, H2 × R2, S2 × S2, H2 ×H2.

We will start by considering the hypersurfaces classi�ed by Theorem 2.2, i.e., when the
ambient spaces are given by Q2

c1 ×Q2
c2 , for ci ∈ {−1, 0, 1} and c1 ̸= c2.
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i) On hypersurfaces of S2 × R2: The isoparametric hypersurfaces with constant
principal curvatures in S2×R2 are of the form S2×R, S2×S1(b) (for b ∈ R+) or S1(a)×R2

(for a ∈ (0, 1]), where S1(r) is the circle with radius r ∈ R (see also [25]). As was pointed
out previously, these hypersurfaces are characterized by a constant function C de�ned as
C = ⟨PN,N⟩, where P is a product structure in S2 × R2 de�ned by P (v1, v2) = (v1,−v2)
and N is the unit normal. On these hypersurfaces, the function C assumes the values 1 or
−1.

Let us take a look at each case separately.
First, for S2×R, we have C = −1 and the unit normal is of the form N = (0, N2), where

N2 is the component of N in R2 with |N2|2 = 1−C
2 . Given v = (v1, v2) ∈ T (S2×R), we have

AN (v) = −∇̃vN = −∇R2

v2 N2 = −dN2(v2) = 0,

where ∇̃ is the Levi Civita connection of S2 × R2. Then, we have that S2 × R is totally
geodesic and h = 0. Since we are in the conditions of Theorem 4.1, the �ow is stationary,
i.e., ϵ(t) = 0 for all t.

For S2 × S1(b) (for b ∈ R+), we also have C = −1 and N = (0, N2). For any w =
(w1, w2) ∈ T (S2 × S1(b)), we get

AN (w) = −∇̃wN = −∇R2

w2
N2 = −dN2(w2) = −1

b
w2.

Then, given an orthonormal basis {u1, u2, u3} in S2 × S1(b), with u1, u2 ∈ TS2 and u3 ∈
TS1(b), we have

AN (u1) = AN (u2) = 0 and AN (u3) = −1

b
u3,

that is, the principal curvatures of S2 × S1(b) are 0, 0 and −1

b
. Moreover, from (4.5), the

displacement of S2 × S1(b) in direction N at distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

(
p, q + rN2(q)

)
= S2 × S1(b+ r),

(4.8)

and from (4.7), the principal curvatures of the parallel hypersurface S2×S1(b+ r) are given
by 0, 0 and − 1

r + b
. Thus, its mean curvature is given by h(r) = − 1

3(r + b)
, which implies

that the MCF with initial data S2 × S1(b) is given by Φϵ(t), where ϵ is the solution of the
ODE (4.3):

ϵ′(t) = − 1

3(ϵ(t) + b)
, (4.9)

that is, 3(ϵ(t) + b)2 = K1 − 2t, where K1 is a constant. Therefore ϵ(t) =

√
b2 − 2t

3
− b.

Finally, for S1(a) × R2 with a ∈ (0, 1), we have C = 1 and the unit normal is of the
form N = (N1, 0), where N1 is the component of N in S2 with |N1|2 = 1+C

2 . For any
u = (u1, u2) ∈ T (S1(a)× R2), we have

AN (u) = −∇̃uN = −∇S2
u1N1 = −dN1(u1) = cot(ϕa)u1,

where 0 < ϕa < π and ∇̃ is the Levi Civita connection of S2 × R2. Then, given an
orthonormal basis {v1, v2, v3} in S1(a)× R2, with v1 ∈ TS1(a) and v2, v3 ∈ TR2, we have

AN (v1) = cot(ϕa)v1 and AN (v2) = AN (v3) = 0,
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that is, the principal curvatures of S1(a)×R2 are 0, 0 and cot(ϕa). By (4.5), the displacement
of S1(a)× R2 in direction N at distance r is given by

Φr(p, q) =

(
(cos r)p+ (sin r)N1(p), q

)
,

and from (4.7), its principal curvatures are 0, 0 and cot(ϕa − r), and hence, its mean

curvature is given by h(r) =
cot(ϕa − r)

3
. Therefore, the MCF with initial data S1(a)×R2

with a ∈ (0, 1), is given by Φϵ(t), where ϵ is the solution of the ODE (4.3):

ϵ′(t) =
cot(ϕa − ϵ(t))

3
, (4.10)

that is, cos(ϕa − ϵ(t)) = cos(ϕa)e
t
3 . Note that when a = 1, we have that S1 × R2 is totally

geodesic, and therefore the MCF with initial data S1 ×R2 is stationary, i.e., ϵ(t) = 0 for all
t.

ii) On hypersurfaces of S2×H2: Isoparametric hypersurfaces with constant principal
curvatures in S2 ×H2 are of the form S1(a)×H2 (for a ∈ (0, 1]) or S2 ×C1(κj) where S1(a)
is the circle with radius a and C1(κj) is a complete curve of constant geodesic curvature
in H2, that is, besides the geodesics, the complete curve C1(κj) ⊂ H2 is either a circle, a
horocycle or a hypercycle. As in the previous case, these hypersurfaces are characterized by
a constant function C de�ned as C = ⟨PN,N⟩, where in this case P is a product structure
in S2 × H2 also de�ned by P (v1, v2) = (v1,−v2) and N is the unit normal. Moreover, on
these hypersurfaces, the function C also assumes the values 1 or −1.

The solution of the MCF with initial data S1(a) × H2 is analogous to the case i) with
the same function ϵ(t), so here we will present the ODE (4.3) of the MCF with initial data
S2 × C1(κj).

In this case, we have C = −1 and the unit normal is of the form N = (0, N2), where N2

is the component of N in H2 with |N2|2 = 1−C
2 . For any v = (v1, v2) ∈ T (S2 × C1(κj)), we

have
AN (v) = −∇̃vN = −∇H2

v2 N2 = −dN2(v2) = κjv2,

where ∇̃ is the Levi Civita connection of S2 × H2. Thus, given an orthonormal basis
{u1, u2, u3} in S2 × C1(κj), with u1, u2 ∈ TS2 and u3 ∈ TC1(κj), we have

AN (u1) = AN (u2) = 0 and AN (u3) = κju3,

that is, the principal curvatures of S2×C1(κj) are 0, 0 and κj , which implies that the mean

curvature is hκj =
κj
3
. Moreover, using (4.5), the displacement of S2 × C1(κj) in direction

N at distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

(
p, (cosh r)q + (sinh r)N2(q)

)
.

Observe that when C1(κj) is a geodesic, we have hκj = 0, which implies that the �ow is
stationary, i.e., ϵ(t) = 0 for all t.

If C1(κj) is a horocycle, we have κj = 1, which implies that the principal curvatures of
S2×C1(κj) are 0, 0 and 1. From (4.7), the principal curvatures of the parallel hypersurfaces
to S2 × C1(κj) at distance r are also given by 0, 0 and 1, and hence, its mean curvature is
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h(r) =
1

3
. Therefore the MCF with initial data S2 × C1(κj) is given by Φϵ(t), where ϵ is the

solution of the ODE (4.3):

ϵ′(t) =
1

3
, (4.11)

that is, ϵ(t) =
1

3
t.

If C1(κj) is a hypercycle, it follows that the curvature κj is given by κj = tanh(ϕα),
see [36]. Thus, it follows that the principal curvatures of S2 ×C1(κj) are 0, 0 and tanh(ϕα),
and from (4.7), the principal curvatures of the parallel hypersurfaces to S2 × C1(κj) at
distance r are given by 0, 0 and tanh(ϕα − r), and hence, its mean curvature is given by

h(r) =
tanh(ϕα − r)

3
. Therefore, the MCF with initial data S2 × C1(κj) with C1(κj) being

a hypercycle, is given by Φϵ(t), where ϵ is the solution of the ODE (4.3):

ϵ′(t) =
tanh(ϕα − ϵ(t))

3
, (4.12)

that is, sinh(ϕα − ϵ(t)) = sinh(ϕα)e
− t

3 .
Finally, if C1(κj) is a circle, we have that the curvature κj is given by κj = coth(ϕα),

see [36]. Thus, it follows that the principal curvatures of S2 ×C1(κj) are 0, 0 and coth(ϕα).
From (4.7), the principal curvatures of the parallel hypersurfaces to S2 ×C1(κj) at distance
r are given by 0, 0 and coth(ϕα − r), which implies that its mean curvature is given by

h(r) =
coth(ϕα − r)

3
. Therefore, the MCF with initial data S2 × C1(κj) with C1(κj) being

a circle, is given by Φϵ(t), where ϵ is the solution of the ODE (4.3):

ϵ′(t) =
coth(ϕα − ϵ(t))

3
, (4.13)

that is, cosh(ϕα − ϵ(t)) = cosh(ϕα)e
− t

3 .
iii) On hypersurfaces of H2 ×R2: In this case, if Σ is an isoparametric hypersurface

with constant principal curvatures in H2 ×R2, then it follows that Σ is an open part of one
of the following hypersurfaces:

a) C1(κj)× R2, H2 × R or H2 × S1(b) (for b ∈ R+), where S1(b) is a circle with radius b
in R2 and C1(κj) is a complete curve with constant geodesic curvature κj in H2.

b) Ψ(R3) ⊂ H2 × R2, where Ψ : R3 → H2 × R2 is an immersion given by

Ψ(s, u, v) = e−b s(α(u), 0⃗) +
(
cosh(−b s), 0, sinh(−b s), V0s

)
+
(
0⃗, p0 +W0v

)
,

(4.14)

where H2 ⊂ L3 is given as the standard model of the hyperbolic space in the Lorentz

3-space L3, the curve α is given by α(u) =

(
u2

2
, u, −u

2

2

)
, p0 ∈ R2, V0 and W0 are

constant orthogonal vectors in R2 such that ||W0|| = 1 and b =
√

1− ||V0||2, with
b ̸= {1, 0}.

Note that the solution of the MCF with the initial data being a hypersurface of item a)
is obtained analogously to cases i) and ii).

Now, let us provide the solution of the MCF with the initial data being the hypersurface
parametrized by (4.14). Remember that the unit normal vector �eld N to Σ is given by

N = −||V0||
(
e−bs(α(u), 0⃗) +

(
sinh(−bs), 0, cosh(−bs), b

||V0||2
V0

))
,
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and the principal curvatures of Σ are given by

µ1 = 0, µ2 =

√
1 + C

2
, µ3 = 0,

where the function C is de�ned by (2.2). Thus, the mean curvature of Σ is given by

h =
1

3

√
1+C
2 . Note that, as N has a component in both factors, the displacement of Σ in

direction N at distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

(
cosh (||N1||r)p+ ||N1||−1 sinh (||N1||r)N1(p), q + rN2(q)

)
=

(
cosh (||N1||r)

(
e−bsα(u) + (cosh(−bs), 0, sinh(−bs))

)
− ||N1||−1||V0|| sinh (||N1||r)

(
e−bsα(u) + (sinh(−bs), 0, cosh(−bs))

)
,

p0 +W0v + V0s−
brV0
||V0||

)
=

(
e−bsα(u)(cosh (||V0||r)− sinh (||V0||r))

+ (cosh (−||V0||r − bs), 0, sinh (−||V0||r − bs)), p0 +W0v + V0s−
brV0
||V0||

)
= e−||V0||r−bs(α(u), 0⃗) +

(
cosh (−||V0||r − bs), 0, sinh (−||V0||r − bs), V0s

)
(
0⃗, p0 +W0v −

brV0
||V0||

)
.

Furthermore, as we saw in the proof of Theorem 2.2, the mean curvature of the parallel

hypersurfaces to Σ is also given by h(r) =
1

3

√
1+C
2 . In this way, the MCF with initial data

Σ is given by Φϵ(t), where ϵ is the solution of the ODE (4.3):

ϵ′(t) =
1

3

√
1 + C

2
,

that is, ϵ(t) =
1

3

√
1 + C

2
t.

iv) On hypersurfaces of S2 × S2: In this case, the isoparametric hypersurfaces were
classi�ed in [41]. They are congruent to S1(a)× S2, a ∈ (0, 1], or to Mt, t ∈ (−1, 1), which
is de�ned as

Mt = {(p, q) ∈ S2 × S2 ↪→ R3 × R3 : ⟨p, q⟩R3 = t}.

The solution of the MCF with initial data S1(a)× S2 is essentially the same as in the case
i), so here we will present the ODE 4.3 of the MCF with initial data Mt for t ∈ (−1, 1).

In what follows, the products ⟨, ⟩ are all in R3. In [41] it was provided the normal vector
�eld

N(p, q) =
1√

1− t2
(q − tp, p− tq) ,

and the mean curvature ht =
√
2t

3
√
1−t2 of Mt. A straightforward computation, using the

coordinates of the normal given above, shows that the displacement of Mt in direction N
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at distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

((
cos

r√
2

)
p+

(
sin

r√
2

)
q − tp√
1− t2

,

(
cos

r√
2

)
q +

(
sin

r√
2

)
p− tq√
1− t2

)
= (Pr(p, q),Qr(p, q)) .

Since ⟨Pr(p, q),Qr(p, q)⟩ = t cos
(√

2r
)
+
√
1− t2 sin

(√
2r
)
, it follows that Φr(Mt) =Mϕ(r,t),

where ϕ(r, t) = t cos
(√

2r
)
+
√
1− t2 sin

(√
2r
)
.

The MCF with initial data Ms is given by Φϵ(t), where ϵ is the solution of the ODE
(4.3):

ϵ′(t) = hϕ(ϵ(t),s)

=

√
2ϕ(ϵ(t), s)

3
√
1− ϕ(ϵ(t), s)2

=

√
2
(
s cos

(√
2ϵ(t)

)
+
√
1− s2 sin

(√
2ϵ(t)

))
3

√
1−

(
s cos

(√
2ϵ(t)

)
+
√
1− s2 sin

(√
2ϵ(t)

))2 .
(4.15)

v) On hypersurfaces of H2 × H2: The isoparametric hypersurfaces of H2 × H2 were
classi�ed in [19]. Such hypersurfaces are also characterized by a constant function C de�ned
as C = ⟨PN,N⟩, where P is a product structure in H2×H2 de�ned by P (v1, v2) = (v1,−v2)
and N is the unit normal.

Let us start withMΓ, whereMΓ is of the formMΓ =
{
(x, y) ∈ H2 ×H2 |x ∈ Γ, y ∈ H2

}
,

whith Γ being a curve of H2 with constant geodesic curvature. On this hypersurface, the
function C assumes the value 1 and the unit normal is of the form N = (N1, 0), where N1

is the component of N in H2 with |N1|2 = 1+C
2 . Now, if κΓ denotes the curvature of Γ in

H2, then MΓ has principal curvatures κΓ, 0 and 0, see Example 3.1 of [19]. Therefore the

mean curvature of MΓ is given by h =
κΓ
3
, and the solution of the MCF with initial data

MΓ is also obtained analogously to case ii).
Now we will present the ODE 4.3 of the MCF with initial data M c

1,−1 for c ∈ (0, 1),
where the hypersurface M c

1,−1 is parametrized by

Ψ(t, u, v) =

(
cosh(

√
ct)γ(u) + sinh(

√
ct)n(u),

cosh(
√
1− ct)γ̃(v) + sinh(

√
1− ct)ñ(v)

)
,

(4.16)

with unit normal vector �eld N given by

N =

(√
1− c sinh(

√
ct)γ(u) +

√
1− c cosh(

√
ct)n(u),

−
√
c sinh(

√
1− ct)γ̃(v)−

√
c cosh(

√
1− ct)ñ(v)

)
,

(4.17)

where γ(u) and γ̃(v) are horocycles parametrized by arc length in H2, i.e.,

γ(u) =

(
1 +

u2

2
, u,

u2

2

)
⊂ L3, γ̃(v) =

(
1 +

v2

2
, v,

v2

2

)
⊂ L3,
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with n, ñ being its unit normal vector �elds given, respectively, by

n(u) =

(
− u2

2
,−u, 1− u2

2

)
, ñ(v) =

(
v2

2
, v,−1 +

v2

2

)
,

see [19].
The hypersurface M c

1,−1 has constant C = 1 − 2c and constant principal curvatures
0,

√
1− c and

√
c (see example 3.6 of [19]), that is, its mean curvature is given by hc =√

1− c+
√
c

3
.

Moreover, if we write N = (N1, N2), since ||N1||2 = 1 − c and ||N2||2 = c, then the
displacement of M c

1,−1 in direction N at distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

(
cosh (

√
1− cr)p+

1√
1− c

sinh (
√
1− cr)N1(p),

cosh (
√
cr)q +

1√
c
sinh (

√
cr)N2(p)

)
=

(
cosh (

√
ct+

√
1− cr)γ(u) + sinh (

√
ct+

√
1− cr)n(u),

cosh (
√
1− ct−

√
cr)γ̃(v) + sinh (

√
1− ct−

√
cr)ñ(v)

)
.

(4.18)

Since the principal curvatures of Φr(M c
1,−1) are the same as M c

1,−1 (see Example 3.6
of [19]), it follows that the mean curvature of the parallel hypersurfaces to M c

1,−1 is also

given by h(r) =

√
1− c+

√
c

3
. Thus, the MCF with initial data M c

1,−1 is given by Φϵ(s),

where ϵ is the solution of the ODE (4.3):

ϵ′(s) =

√
1− c+

√
c

3
, (4.19)

that is, ϵ(s) =
(
√
1− c+

√
c)s

3
.

Now, let us analyze the case where M c
1,1 for c ∈ (0, 1), is the initial data, where M c

1,1 is
also parametrized by (4.16) and its unit normal vector �eld is also given by (4.17), where
in this case, ñ(v) is given by

ñ(v) =

(
− v2

2
,−v, 1− v2

2

)
,

see [19].
Moreover, the principal curvatures ofM c

1,1 are given by 0,
√
1− c and −

√
c (see example

3.7 of [19]), and hence, the mean curvature ofM c
1,−1 is given by hc =

√
1− c−

√
c

3
. Observe

that when c =
1

2
, we have that h 1

2
= 0, and therefore, the �ow is stationary. For c ̸= 1

2
, the

displacement of M c
1,1 in direction N at distance r is also given by (4.18).

As in the previous case, the principal curvatures of Φr(M c
1,1) are the same as M c

1,1 (see
Example 3.7 of [19]), which implies that the mean curvature of the parallel hypersurfaces

to M c
1,1 is also given by h(r) =

√
1− c−

√
c

3
. Therefore, the MCF with initial data M c

1,1 is

given by Φϵ(s), where ϵ is the solution of the ODE (4.3):

ϵ′(s) =

√
1− c−

√
c

3
, (4.20)
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that is, ϵ(s) =
(
√
1− c−

√
c)s

3
.

Finally, following the ideas of Urbano [41], we construct a class of isoparametric hyper-
surfaces with three distinct (constant) principal curvatures, which coincides with the family
of hypersurfaces Mτ (for τ < −1), obtained in [19], and we provide the ODE (4.3) of the
MCF whose such hypersurface is the initial data.

Let
M̃t = {(p, q) ∈ H2 ×H2 ↪→ L3 × L3 : ⟨p, q⟩L3 = −t},

for t > 1. In this subsection all products will be taken in L3. Then it is easy to check that
M̃t is a hypersurface of H2 ×H2 with normal vector �eld

N(p, q) =
1√

2(−1 + t2)
(q − tp, p− tq) .

Note that C = 0. Let (v1, v2) ∈ T(p,q)M̃t and γ(s) = (p(s), q(s)) : I → M̃t with γ(0) = (p, q)

and γ′(0) = (v1, v2) , thus L∇(v1,v2)N = d
dsN ◦ γ(s)|s=0, where L∇ stands as the connection

in the lorentzian space, and

L∇(v1,v2)N =
1√

2(−1 + t2)
((v2, v1)− t(v1, v2)) ,

as H2 is an umbilical hypersurface of L3 we have the following equation

L∇(v1,v2)N = H∇(v1,v2)N + α((v1, v2), N) = H∇(v1,v2)N +
1√

2(−1 + t2)
(⟨v1, q⟩p, ⟨v2, p⟩q),

where H∇ stands as the connection in the hyperbolic space, and it follows that

A(v1, v2) =
1√

2 (−1 + t2)
(t(v1, v2)− (v2, v1) + (⟨v1, q⟩p, ⟨v2, p⟩q)) .

We will need an orthonormal basis to calculate the mean curvature. Let w ∈ TH2 with
⟨w,w⟩L3 = 1

2 such that ⟨w, p⟩L3 = ⟨w, q⟩L3 = 0, thus ⟨(w,−w), N(p,q)⟩ = ⟨w, q⟩ − t⟨w, p⟩ −
⟨p, w⟩ + t⟨q, w⟩ = 0 and we have that (w,−w) ∈ TM̃t. Using the same argument, we have
that (w,w) ∈ TM̃t. A straightforward calculation shows that {(w,−w), (w,w), (q−tp,−p+
tq)} is an orthornormal basis of TM̃t. Observe that

A(w,−w) = 1√
2 (−1 + t2)

(t(w,−w) + (w,−w)) = 1√
2

√
t+ 1

t− 1
(w,−w),

A(w,w) =
1√
2

√
t− 1

t+ 1
(w,w),

A(q − tp,−p+ tq) =
1√

2(−1 + t2)

(
(p(1− t2), q(t2 − 1)) + ((t2 − 1)p, (1− t2)q)

)
= 0.

It follows that ht =
√
2t

3
√
−1+t2

. Observe that the displacement ofMt in direction N at distance
r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

((
cosh

r√
2

)
p+

(
sinh

r√
2

)
q − tp√
−1 + t2

,

(
cosh

r√
2

)
q +

(
sinh

r√
2

)
p− tq√
−1 + t2

)
= (Pr(p, q),Qr(p, q)) .

(4.21)
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Since ⟨Pr(p, q),Qr(p, q)⟩ = −t cosh
(√

2r
)
+
√
−1 + t2 sinh

(√
2r
)
, it follows that Φr(M̃t) =

M̃ϕ(r,t), where ϕ(r, t) = t cosh
(√

2r
)
−
√
−1 + t2 sinh

(√
2r
)
.

The MCF with initial data Ms is given by Φϵ(t), where ϵ is the solution of the ODE
(4.3):

ϵ′(t) = hϕ(ϵ(t),s)

=

√
2ϕ(ϵ(t), s)

3
√

−1 + ϕ(ϵ(t), s)2

=

√
2
(
s cosh

(√
2ϵ(t)

)
−

√
−1 + s2 sinh

(√
2ϵ(t)

))
3

√
−1 +

(
s cosh

(√
2ϵ(t)

)
−
√
−1 + s2 sinh

(√
2ϵ(t)

))2 .
(4.22)

4.2.2 On hypersurfaces of Q3
ε × R

In this subsection, we will study the evolution of isoparametric hypersurfaces by the
MCF in the ambient space Q3

ε × R, where Q3
ε denotes the unit sphere S3 if ε = 1, or the

hyperbolic space H3 if ε = −1.
By Corolary 3.7, if Σ is a hypersurface with constant principal curvatures in Q3

ε × R,
then Σ is isoparametric. Thus, by Theorem 3.6 and Theorem 6.1 of [8] (items (i) and (ii)), if
Σ is an isoparametric hypersurface in Q3

ε ×R with g constant distinct principal curvatures,
we have:

a) If g = 1, then Σ is an open part of a slice Q3
ε ×{t0}, for any t0 ∈ R or an open subset

of a Riemannian product Σ2 × R. In the latter case, if ε = 1, Σ2 is a totally geodesic
sphere in S3, and if ε = −1, Σ2 is a totally geodesic hyperplane in H3,

b) If g = 2, then ε = −1 and Σ is locally parametrized by f(p, s) = h̃s(p) + Bs∂t, for
some B ∈ R, B > 0, with Σ3 = Σ2 × I, where h̃s is a family of horospheres in H3, or
Σ3 is an open part of a Riemannian product Σ2 ×R. In the latter case, if ε = 1, Σ2 is
a non-totally geodesic sphere in S3, and if ε = −1, Σ2 is an equidistant hypersurface
to a totally geodesic H2, a horosphere, or a hypersphere in H3,

c) If g = 3, then Σ3 is an open part of the following hypersurfaces:

i) S1(c1)× S1(c2)× R, when ε = 1;

ii) S1(c1)×H1(c2)× R, when ε = −1,

where c1 ̸= c2,
1

c1
+

1

c2
= ε and the principal curvatures of Σ3 are given by 0,

c1√
c1 + c2

and
−c2√
c1 + c2

.

Let us analyze each case separately.
In item a), since Σ is totally geodesic, the principal curvatures are all zero, and hence

h = 0, which implies that the �ow is stationary, i.e., ϵ(t) = 0 for all t.
In item b) we have two cases. First, we will deal with the case where Σ is parametrized

by f(p, s) = h̃s(p)+Bs∂t, for some B ∈ R, B > 0. It follows from [8, Theorem 4.1] that one
principal curvature is 0, and the other two are both equal, depending on the orientation, to

B√
1 +B2

or − B√
1 +B2

. Without loss of generality, assume that the principal curvatures
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of Σ are 0,
B√

1 +B2
and

B√
1 +B2

, which implies that the mean curvature of Σ is given by

hB =
2B

3
√
1 +B2

.

In this case, since ε = −1 and the unit normal is N = (NQ, cos(θ)), where NQ is the
component of N in Q3

ε, the displacement of Σ in direction N at distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

(
cosh(||T ||r)p+ ||T ||−1 sinh(||T ||r)NQ, q + r cos(θ)(q)

)
,

where cos(θ) =
1√

1 +B2
and ||T || = ||NQ|| =

B√
1 +B2

, see [32].

Moreover, it follows from [8, Proposition 3.1] that the principal curvatures of the parallel

hypersurfaces to Σ at distance r are also given by 0,
B√

1 +B2
and

B√
1 +B2

, which implies

that its mean curvature is also given by h(r) =
2B

3
√
1 +B2

. Therefore the MCF with initial

data Σ is given by Φϵ(t), where ϵ is the solution of the ODE (4.3):

ϵ′(t) =
2B

3
√
1 +B2

,

that is, ϵ(t) =
2Bt

3
√
1 +B2

.

In what follows, we will simultaneously consider the remaining hypersurfaces in item
b) and the hypersurfaces in item c). Observe that in both cases, the hypersurface Σ is a
cylinder over an isoparametric surface of Q3

ε, i.e., Σ is of the form Σ2 × R, where Σ2 is an
isoparametric surface in Q3

ε.
Since ||T || = 1, from (4.5), the displacement of Σ2 × R in direction N = (NQ, 0) at

distance r is given by

Φr(p, q) = exp(p,q) (rN(p, q))

=

(
Cε(r)p+ Sε(r)NQ(p), q

)
,

where the functions Sε(r) and Cε(r) are given in (4.6). It follows that the evolution of Σ is
reduced to the evolution of Σ2 in Q3

ε, that is, to the evolution of an isoparametric surface in
space form. Therefore the MCF with initial data Σ2×R is given by Φϵ(t)(p, q) = (Φ̃ϵ(t)(p), q),

where Φ̃ is given according to each Σ2 ⊂ Q3
ε, at the following propositions of [37]:

1. Proposition 2.5, when Σ2 ⊂ H3 is a horosphere;

2. Proposition 2.6, when Σ2 ⊂ H3 is either a hypersphere or an equidistant hypersurface
to a totally geodesic H2;

3. Proposition 2.7, when Σ2 = S1(c1)×H1(c2) ⊂ H3;

4. Proposition 2.8, when Σ2 ⊂ S3 is a sphere (not totally geodesic);

5. Proposition 2.9, when Σ2 = S1(c1)× S1(c2) ⊂ S3.
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