
University of Brasília
Department of Mathematics

PhD Program

Regularizing Effect for a Class of
Maxwell-Schrödinger Systems

by

Ayana Pinheiro de Castro Santana

Brasilia

2024



UNIVERSIDADE DE BRASÍLIA

PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA

 

Ata Nº: 02

 

Aos vinte e dois dias do mês de março do ano de dois mil e vinte e quatro, instalou-se a banca examinadora de Tese de Doutorado do(a) aluno(a) Ayana
Pinheiro de Castro Santana, matrícula 20/0065645. A banca examinadora foi composta pelos professores Dr(a) Liliane de Almeida Maia (membro interno -
MAT/UnB), Dr(a) João Vitor da Silva (membro externo à ins�tuição - UNICAMP), Dr(a) Edcarlos Domingos da Silva (membro externo à ins�tuição - UFG),
Dr(a) Mayra Soares Costa Rodrigues (Suplente - membro interno -MAT/UnB) e Dr(a). Luís Henrique de Miranda (orientador/presidente - MAT/UnB). O(A)
discente apresentou o trabalho in�tulado Regularizing Effect for a Class of Maxwell – Schrödinger Systems.

Concluída a exposição, procedeu-se a arguição do(a) candidato(a), e após as considerações dos examinadores o resultado da avaliação do trabalho foi

( x ) Pela aprovação do trabalho;

( ) Pela aprovação do trabalho, com revisão de forma, indicando o prazo de até 30 dias para apresentação defini�va do trabalho revisado;

( ) Pela reformulação do trabalho, indicando o prazo de (Nº DE MESES) para nova versão;

( ) Pela reprovação do trabalho, conforme as normas vigentes na Universidade de Brasília.

Conforme os Ar�gos 34, 39 e 40 da Resolução 0080/2021 - CEPE, o(a) candidato(a) não terá o �tulo se não cumprir as exigências acima.

 

Dr. João Vitor da Silva , UNICAMP
Examinador Externo à Ins�tuição

 
Dr. Edcarlos Domingos da Silva, UFG

Examinador Externo à Ins�tuição
 

Dra. Liliane de Almeida Maia, UnB
Examinadora Interna

 
Dra. Mayra Soares Costa Rodrigues, UnB

Examinadora Interna (Suplente)
 

Dr. Luís Henrique de Miranda, UnB
Presidente

 
Ayana Pinheiro de Castro Santana

Doutoranda
 

Documento assinado eletronicamente por Edcarlos Domingos da Silva, Usuário Externo, em 26/03/2024, às 12:12, conforme horário oficial de Brasília, com
fundamento na Instrução da Reitoria 0003/2016 da Universidade de Brasília.

Documento assinado eletronicamente por Ayana Pinheiro de Castro Santana, Usuário Externo, em 26/03/2024, às 13:50, conforme horário oficial de
Brasília, com fundamento na Instrução da Reitoria 0003/2016 da Universidade de Brasília.

Documento assinado eletronicamente por Liliane de Almeida Maia, Professor(a) de Magistério Superior do Departamento de Matemá�ca do Ins�tuto de
Ciências Exatas, em 27/03/2024, às 14:06, conforme horário oficial de Brasília, com fundamento na Instrução da Reitoria 0003/2016 da Universidade de
Brasília.

Documento assinado eletronicamente por Luis Henrique de Miranda, Professor(a) de Magistério Superior do Departamento de Matemá�ca do Ins�tuto
de Ciências Exatas, em 04/04/2024, às 19:11, conforme horário oficial de Brasília, com fundamento na Instrução da Reitoria 0003/2016 da Universidade de
Brasília.

Documento assinado eletronicamente por João Vitor da Silva, Usuário Externo, em 12/04/2024, às 08:39, conforme horário oficial de Brasília, com
fundamento na Instrução da Reitoria 0003/2016 da Universidade de Brasília.

A auten�cidade deste documento pode ser conferida no site h�p://sei.unb.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 10775048 e o código CRC 3D9C263D.

Referência: Processo nº 23106.001684/2024-60 SEI nº 10775048

Processo:

23106.001684/2024-60
Documento:

10775048



“Sonner or later you’re going to realize just as I did that there’s a difference
between knowing the path and walking the path."

The Matrix



Acknowledgments

To my Grandparents, Adamor da Silva Santana and Maria de Fátima de Lima Santana
and my aunt Aldenora de Lima Santana, my foundation, those responsible for who I am
and for what I seek to be and achieve, because none of this would make sense without them
by my side. Thank you for everything, your support and love have made me get here and
keep moving forward.

To my partner Antonio Airton Freitas Filho, my eternal gratitude, your support was
very important in this journey. Thank you for being by my side always. Love you!

To the teachers, especially to my advisor, Luis Henrique de Miranda, for the patience
and dedication to me. To the members of the jury Liliane Almeida Maia, Edcarlos Domingos
da Silva and João Vitor da Silva. To the PhD professors Willian Cintra da Silva and Ma
To Fu, especially Professor Cátia Regina Gonçalves. Thank you very much for being part
of my academic training.

To my PhD colleagues: Maristela Barbosa Cardoso, Flávia Elisandra Magalhães Fur-
tado, Maria Edna Gomes da Silva, Ismael Oliveira, Mateus Figueiredo, Rodolfo Ferreira
de Oliveira, thank you for the moments of learning and fun. I’m sure you’ve helped this
journey to be more enjoyable.

*The author has financial support from CAPES and CNPq during the elaboration of this work.



Resumo

Efeito Regularizante para uma Classe de
Sistemas de Maxwell-Schrödinger

Neste trabalho provamos a existência e regularidade de soluções fracas para os seguintes
sistemas:

Maxwell-Schrödinger
−div(M(x)∇u) + g(x, u, v) = f em Ω;

−div(M(x)∇v) = h(x, u, v) em Ω;

u = v = 0 sobre ∂Ω.

Kirchhoff–Maxwell-Schrödinger
−div

(
(M(x) + ||∇u||σLσ)∇u

)
+ g(x, u, v) = f em Ω;

−div(M(x)∇v) = h(x, u, v) em Ω;

u = v = 0 sobre ∂Ω,

onde Ω é um subconjunto aberto limitado do RN , com N > 2, f ∈ Lm(Ω) onde m > 1 e
g, h são duas funções Carathéodory. Mostraremos que sob condições apropriadas em g e h,
que existem soluções cuja somabilidade escapam à regularidade prevista pela teoria clássica
de Stampacchia, dando origem ao chamado efeito regularizante.

Palavras-Chave: Regularidade; EDP Elíptica; Efeito Regularizante; Existência de Solução.



Abstract

In this work we prove the existence and regularity of weak solutions for the following systems:

Maxwell-Schrödinger
−div(M(x)∇u) + g(x, u, v) = f in Ω

−div(M(x)∇v) = h(x, u, v) in Ω;

u = v = 0 on ∂Ω.

Kirchhoff–Maxwell-Schrödinger
−div

(
(M(x) + ||∇u||σLσ)∇u

)
+ g(x, u, v) = f in Ω;

−div(M(x)∇v) = h(x, u, v) in Ω;

u = v = 0 on ∂Ω,

where Ω is an open bounded subset of RN , for N > 2, f ∈ Lm(Ω), where m > 1 and g,
h are two Carathéodory functions. We prove that under appropriate conditions on g and
h, there exist solutions which escape the predicted regularity by the classical Stampacchia
theory giving rise to the so-called regularizing effect.

Keywords: Regularity; Elliptic PDE; Regularizing Effect; Existence of Solution.
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Notations

• Ω . . . . . . . . . open bounded set of RN

• ∂Ω . . . . . . . . . boundary of Ω

• meas . . . . . . . . . Lebesgue measure in RN

• a.e. . . . . . . . . . almost everywhere with respect to the Lebesgue measure

• C∞
0 (Ω) . . . . . . . . . space of infinitely differentiable functions u : Ω → R with compact

support in Ω

• m′ . . . . . . . . . m
m−1

• m∗ . . . . . . . . . Nm
N−m

• (m∗)′ . . . . . . . . . Nm
N(m−1)+m

• m∗∗ . . . . . . . . . Nm
N−2m

• Lm(Ω) . . . . . . . . . space of functions f such that |f |m is Lebesgue integrable over Ω ⊂
RN

• W 1,m(Ω) . . . . . . . . . Sobolev space of functions u : Ω → R in Lm(Ω) such that ∇u
exists weak sense with |∇u| in Lm(Ω)

• W 1,m
0 (Ω) . . . . . . . . . the closure of C∞

0 (Ω) in W 1,m(Ω)

• W−1,m(Ω) . . . . . . . . .
(
W 1,m′

0 (Ω)
)′

• Tk(s) . . . . . . . . . max(−k,min(k, s))

• Gk(s) . . . . . . . . . s− Tk(s)

• sgn(u) . . . . . . . . .

{
u/|u|, if u ̸= 0

0, if u = 0

• XA(x) . . . . . . . . .

{
1, if x ∈ A, where A ⊂ RN

0, otherwise
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Introduction

In the present work, we investigate the existence and regularity of positive solutions a classe
of systems Maxwell-Schrodinger systems, considering at first a local version and later on
the nonlocal equivalent. More precisely, we have considered a local Maxwell-Schrödinger
system 

−div(M(x)∇u) + g(x, u, v) = f in Ω;

−div(M(x)∇v) = h(x, u, v) in Ω;

u = v = 0 on ∂Ω,

(P)

and a nonlocal Kirchhoff–Maxwell-Schrödinger system
−div

(
(M(x) + ||∇u||σLσ)∇u

)
+ g(x, u, v) = f in Ω;

−div(M(x)∇v) = h(x, u, v) in Ω;

u = v = 0 on ∂Ω.
(K)

For the sake of convenience, we will discuss these cases separately, below.

0.1 Local System

The general idea regarding these systems is that due to the strong coupling between both
equations, solutions have zones where they are more regular than expected from the classic
regularity theory. This phenomenon has been studied since the seminal work [4] followed
by several interesting contributions [2, 5, 7–9, 13] produced by Boccardo, Orsina, Arcoya,
Durastanti, among others. The basic idea is that the solutions to a certain class of problems
are more regular than what would be guaranteed by the standard regularity results for the
decoupled equations of its system. For instance, it happens that even when the data f is
very irregular, e.g., if f ∈ Lm(Ω) with m < (2∗)′, it is possible to guarantee the existence
of energy solutions in W 1,2

0 (Ω), see [4, 7].
In other to clarify the ideas and to present some of the background concerning Regu-

larizing Effects for Maxwell–Schrödinger equations, let us briefly discuss the papers which
have most inspired the present work, namely [4, 6, 7] and [13]. For instance, consider the
following Dirichlet problem{

−div(M(x)∇u) +Av|u|r−2 = f, u in W 1,2
0 (Ω);

−div(M(x)∇v) = |u|r, v in W 1,2
0 (Ω).

(1.1)

for f ∈ Lm(Ω), with f ⩾ 0, m ⩾ 1, A > 0, M(x) is a uniformly elliptic bounded measurable
symmetric matrix, and Ω ⊂ RN , N > 2, is an open bounded domain. In [4], for a more
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general class of equations, the author proved that if f ∈ Lm(Ω), with m ⩾ (2∗)
′ , then there

exists an energy solution (u, v) ∈ W 1,2
0 (Ω) ×W 1,2

0 (Ω), despite that the right-hand side of
the second equation does not belong to the dual space W−1,2(Ω). For this, the strategy is
to obtain keen a priori estimates by a clever choice of test functions to an approximated
variational PDE, then the proof is finished by means of standard compactness arguments.
Moreover, for the specific case of (1.1), the author found out additional regularizing zones
for the parameters. As a matter of fact, it was shown that for 2 ⩽ m < (r−1)N

2r , with r > 2∗

2 ,
then u ∈ Lrm(Ω). Remark that, in the light of the classic Stampacchia’s theory, see [17,18],
by regarding u solely as the solution of the first equation of (1.1), its expected regularity
would be Lm∗∗

(Ω). However, under the latter conditions rm > m∗∗, so that the coupling
in (1.1) gives u some extra regularity. Later on, in [7], the authors refined the latter result.
Indeed, they proved that:

(i) if r > 2∗ and f ∈ Lm(Ω), with r′ ⩽ m < (2∗)′, then (1.1) has a solution (u, v) ∈
W 1,2

0 (Ω)×W 1,2
0 (Ω) where u ∈ Lτ1(Ω) and τ1 = max(m(r − 1),m∗∗);

(ii) if 1 < r < 2∗ and max

(
Nr

N+2r , 1

)
< m < (2∗)′, then (1.1) has a solution (u, v) ∈

W 1,m∗

0 (Ω)×W 1,τ2
0 (Ω) where τ2 = min

(
Nm

Nr−2mr−m , 2
)
;

Succeeding, [4,7], in [13], the author proposes the study of the following quasilinear elliptic
system {

−div(|∇u|p−2∇u) +Avθ+1|u|r−2u = f, u in W 1,p
0 (Ω);

−div(|∇v|p−2∇v) = |u|rvθ, v in W 1,p
0 (Ω),

(1.2)

where 1 < p < N and 0 ⩽ θ < p− 1. Remark that although it is a p-Laplacian system, for
θ = 0 its zeroth order nonlinear term reduce to (1.1).

We stress that, for the case θ = 0, the author shows existence and Regularizing Effects
even if the source f does not belongW−1,p

0 (Ω). Actually, the author proves that if f ∈ Lm(Ω)

with (r+1)′ ⩽ m < (2∗)′ there exists a weak solution (u, v) ∈W 1,p
0 (Ω)×W 1,p

0 (Ω) of system
(1.2).

In [13] the author also shows existence in the dual case, that is, if f ∈ Lm(Ω) with
m ⩾ (p∗)′ there exists (u, v) ∈ W 1,p

0 (Ω) × W 1,p
0 (Ω) solution, with A > 0 , r > 1 and

0 ⩽ θ < p− 1.
Nevertheless, the method used to prove the results established in [13] were not sufficient

to guarantee a regularizing effect in the case where θ > 0.

In addition to the latter results, there have been other contributions to the investigation
of regularizing effects phenomena in general. For instance, without the ambition of being
complete, we refer the reader to [8], which is divided in two parts, where the first one
consists in a survey for the theory and in the second one some contributions for different
classes of Dirichlet systems are presented. Further, we mention [9], for regularizing effects of
positive solutions of a symmetric version of (1.1), or [2] where under an interesting growth
assumption for the source term f , the authors obtain extra regularity for the solutions.

Regarding the present paper, we have decided to address (P) and to revisit part of the
questions raised in the past theory adapted for our problem. If on one hand, sometimes our
results are valid for a different kind of differential operators, e.g. if we contrast to [13], on
the other hand, our contributions are valid for a different class of zero order nonlinearities,
e.g., if we compare to [9]. Yet, despite that we deal with a slightly different type of system,
we tried to investigate certain aspects of the theory which were not fully disclosed, at least
for (P), to the best of our knowledge. More precisely, in order to better explain our main
results, late us state our basic hypotheses.

11



0.1.1 Assumptions

Below, we describe the basic assumptions for our manuscript. Indeed, throughout the
entire text we will always assume that Ω ⊂ RN is an open bounded subset, where N > 2.
Remark that ask no smootheness on ∂Ω. We also consider the real paramethers r > 1 and
θ ∈ (0, 4

N−2), and we take f ∈ Lm(Ω), for m > 1.
Regarding the semilinear part of System (P), we consider that g, h : Ω×R×R → R are

both Carathéodory satisfying the properties below:

(a) there exist c1, c2 > 0 such that

c1|s|r−1|t|θ+1 ⩽ |g(x, s, t)| ⩽ c2|s|r−1|t|θ+1; (P1)

(b) g(x, s, t) is monotone is s, i.e.,

(g(x, s1, t)− g(x, s2, t))(s1 − s2) ⩾ 0 ∀ s1, s2, t ∈ R a.e. x in Ω; (P2)

(c) there exist d1, d2 > 0 such that

d1|s|r|t|θ ⩽ |h(x, s, t)| ⩽ d2|s|r|t|θ; (P3)

(d) h(., ., .) is non-negative

h(x, s, t) ⩾ 0 ∀ s, t ∈ R, a.e. x in Ω. (P4)

Remark that by (P1), g(x, 0, t) = 0 for all t ∈ R and a.e. x ∈ Ω, so that (P2), there holds
that

g(x, s, t)s ⩾ 0 ∀ s, t ∈ R a.e. x in Ω. (P′
2)

Regarding the differential operators in (P), we assume that M(x) is a symmetric measurable
matrix such that M ∈W 1,∞ and there exist α, β ∈ R+ satisfying

α|ξ|2 ⩽M(x)ξ · ξ , |M(x)| ⩽ β for every ξ ∈ RN . (P5)

Now we are in position to introduce our main contributions.

0.1.2 Main results for the local Maxwell- Schrödinger system

Our main contributions are twofold. First we considered nonlinearities which are more gen-
eral and second we addressed the regularizing effect in the case where there is the presence of
a second parameter of coupling on the nonlinearities, as it was conjectured in [13]. However,
as it turned out, we discovered the presence of a ramification on the gain of regularity de-
pending on the interplay between the data f and the coupling parameters, below the known
results for systems related to (P). We point out that, in order to do that, we considered the
Laplacian-like version of the Maxwell-Schrödinger system. We also introduce a definition
which, in our view, slightly simplifies the explanation of the concept of gain of regularity.

In the literature, we say that there exist regularizing effects in a solution of a problem
or a system, whenever its regularity escapes the predicted one according to the standard
Stampacchia or Calderón-Zygmund theories. In order to summarize this justification, we
introduce the following definition on "regularized solutions".

Definition 0.1. Let F ∈ Lm(Ω) where 1 ⩽ m < N
2 . Consider w a distributional solution

of

−div(M(x)∇w) = F (x). (1)

12



a) If w ∈ Ls(Ω) where s > m∗∗ we say w is Lebesgue regularized.

b) If w ∈W 1,t
0 (Ω) where t > m∗ we say that w is Sobolev regularized.

Despite that the justification of the latter definition is tacit, for the convenience of the
reader we explain it. Indeed, for instance, we know by Stamppachia’s classical regularity
theory that, if F ∈ Lm(Ω) with 1 ⩽ m < N

2 , then the distributional solution of problem
(1) belongs to Lm∗∗

(Ω), for instance see [6] Chapters 6 and 11. Thus, if w ∈ Ls(Ω) with
s > m∗∗, then Ls(Ω) ↪→ Lm∗∗

(Ω), properly. In this case, we have regularizing effect for the
Lebesgue summability of the solution w, or in short, w is Lebesgue regularized. Further,
regarding the regularity of the gradients, there are two basic scenarios. If 1 ⩽ m ⩽ (2∗)′

then once again from Stampacchia’s theory if w solves (1) then w ∈ W 1,m∗

0 (Ω). Further,
if (2∗)′ < m < N

2 and if ∂Ω and M(x) are sufficiently smooth, then by the Calderón-
Zygmund theory, see [12] Chapters 5 and 10, we have w ∈ W 1,m∗

0 (Ω). Finally, remark that
the restriction 1 ⩽ m < N

2 is considered in order to stay away from known issues concerning
the regularity of the gradients when m > N

2 , for instance see [3].
In our first theorem, we address the existence and higher regularity for positive solutions

of (P) in the case that the summability of the source is above the threshold (r + θ + 1)′.

Theorem 0.1. Let f ∈ Lm(Ω), where f ⩾ 0 a.e. in Ω, m ⩾ (r + θ + 1)′, r > 1, and 0 <
θ < 4

N−2 . Then there exists a weak solution (u, v) for (P), with u ∈ W 1,2
0 (Ω) ∩ Lr+θ+1(Ω),

u ⩾ 0 a.e. in Ω and v ∈W 1,2
0 (Ω), v ⩾ 0 a.e in Ω.

Now, in the spirit of Definition 0.1, we will detail the gain of regularity in Lebesgue or
Sobolev spaces for the solutions of (P) given by Theorem 0.1.

Corollary 0.1. Let (u, v) be the weak solution of (P), given by Theorem 0.1.

(A) If r + θ + 1 > 2∗ and (r + θ + 1)′ ⩽ m < (2∗)′, then u is Lebesgue and Sobolev
regularized.

(B) If r + θ + 1 > 2∗ and (2∗)′ ⩽ m < N(r+θ+1)
N+2(r+θ+1) then u is Lebesgue regularized.

(C) If 2∗ < r + θ + 1 ⩽ 2∗(θ+1)
θ then v is Sobolev regularized.

Regarding Theorem 0.1, we partially address a conjecture left in [13] by R. Durastanti,
where the case m ⩾ (r + θ + 1)′ was proposed. Indeed, we have proved that the Lebesgue
regularity indicated in [13] is achieved for a class of zeroth-order nonlinear terms dominated
by two variable polynomials depending on both unknowns, i.e., θ > 0. Remark that, if
on one hand we have considered linear differential operators with nonsmooth coefficients
instead of the p-Laplacian, on the other hand, our nonlinear coupling satisfies properties
(P1) - (P4) .

In addition, our approach allowed us to investigate another regime of regularity for the
source term. Our inquiry also considers existence and regularity of solutions for the case
where the summability of the source is below (r + θ + 1)′, i.e., we address problem (P), if

the source f is positive and belongs to Lm(Ω) with
(
r−θ+1
1−2θ

)′
< m < (r + θ + 1)′.

Theorem 0.2. Let f ∈ Lm(Ω), where f ⩾ 0 a.e. in Ω,
(
r−θ+1
1−2θ

)′
< m < (r+ θ+1)′, r > 1

and 0 < θ < δ, for δ = min{ N+2
3N−2 ,

4
N−2 ,

1
2}. Then there exists a solution (u, v) for (P),

with u ∈ W 1,p
0 (Ω) ∩ Lr−θ+1(Ω), u ⩾ 0 a.e. in Ω and v ∈ W 1,q

0 (Ω), v ⩾ 0 a.e. in Ω, where
p = 2(r−θ+1)

(r+θ+1) and q = 2N(1−θ)
N−2θ . Furthermore, if r ⩾ N+2

N−2 , then (u, v) ∈W 1,q
0 (Ω)×W 1,q

0 (Ω).
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Once again, in the guidelines of Definition 0.1, we now depict the regularizing effect
zones guaranteed by Theorem 0.2.

Corollary 0.2. Let (u, v) be the weak solution of (P), given by Theorem 0.2

(A) If r − θ + 1 > 2∗ suppose that

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
⩽ m < (2∗)′.

Then u is Lebesgue regularized.

(B) If r − θ + 1 > 2∗ suppose that(r − θ + 1

1− 2θ

)′
< m <

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
.

Then u is Sobolev and Lebesgue regularized.

(C) If 2∗ ⩾ r − θ + 1 > 2∗(1− θ) suppose that(r − θ + 1

1− 2θ

)′
< m <

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
.

Then u is Sobolev and Lebesgue regularized.

(D) If r − θ + 1 > 2∗(1− θ) then v is Sobolev regularized.

We will present proofs for Corollaries 0.1 and 0.2 in Section 5. For now, some remarks
are in order.

Remark 0.1. (i) The intervals established for m in Corollary 0.1 and 0.2 are not empty.
Indeed, for m in the first two items of the Corollary 0.2 there follows

(a) Since 2∗(1− 2θ) < 2∗ < r − θ + 1 there follows(r − θ + 1

1− 2θ

)′
< (2∗)′ ⇐⇒ 2∗(1− 2θ) < r − θ + 1.

(b) Analogously, 2∗(1− θ) < 2∗ < r − θ + 1 there follows(r − θ + 1

1− 2θ

)′
<

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
⇐⇒ 2∗(1− θ) < r − θ + 1.

In addition, the interval established for m in the third item of Corollary 0.2, is also
non-empty. Actually, if r+θ+1 ⩾ 2∗ ⩾ r−θ+1, then there holds that (r+θ+1)′ < (2∗)′

and

r − θ + 1 < 2∗ ⇐⇒ N(r − θ + 1)

N + 2(r − θ + 1)
< (2∗)′.

Further, if 2∗ ⩾ r + θ + 1 > r − θ + 1, then there holds that (r + θ + 1)′ ⩾ (2∗)′ and

r − θ + 1 < 2∗ ⇐⇒ N(r − θ + 1)

N + 2(r − θ + 1)
< (2∗)′.

(ii) We observe that for r − θ + 1 > 2∗, as r + θ + 1 > r − θ + 1 then r + θ + 1 > 2∗ ⇐⇒
(r + θ + 1)′ < (2∗)′, in this case, the hypothesis established in m by Theorem 0.2, allows us
to conclude that m < (r + θ + 1)′ < (2∗)′. This means that, if we take r − θ + 1 > 2∗, the
intervals determined for m in the first two items of the Corollary 0.2 are non-empty.
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Finally, let us stress that, being inspired by the classical approach of the school of G.
Stampacchia, L. Boccardo, among others, see [4, 5, 7, 17, 18] and the references therein, the
main ingredient for our results was based on a carefully choice of tailored test functions.
Indeed, by means of subtle modifications on the test functions we were able to address the
regimes of regularity described in Theorems 0.1 and 0.2, see Lemmas 2.4 and 2.5. After
that, we follow the standard approach of determining a priori estimates for solutions of an
approximate problem and then passing to the limit.

0.2 The nonlocal System

In addition, we decided to investigate the influence of nonlocal terms on the regularizing
zones to Maxwell-Schrödinger equations. Indeed, let us consider the following nonlocal
system 

−div
(
(M(x) + ||∇u||σLσ)∇u

)
+ g(x, u, v) = f in Ω;

−div(M(x)∇v) = h(x, u, v) in Ω;

u = v = 0 on ∂Ω,
(K)

which from now on will be called Kirchhoff-Maxwell-Schrödinger system.
We investigate existence and regularity of positive solutions, assuming that Ω is an

open bounded subset of RN , for N > 2, f ∈ Lm(Ω) with m ⩾ 1, r > 1. Moreover,
g and h : Ω × R × R → R are Carathéodory and satisfy hypotheses (P1) - (P′

2) and
M : Ω → RN × RN is a bounded measurable matrix satisfying (P5), see page 12.
From now on, we denote p = 2(r−θ+1)

r+θ+1 and suppose

σ =

{
2 if m ⩾ (r + θ + 1)′,

p if m < (r + θ + 1)′.
(2)

Our motivation to address (K) comes from [10]. In this work, the authors studied ex-
istence and certain properties of solutions for the following Kirchhoff–Maxwell–Schrödinger
system 

−div
((
a(x) + ||∇u||2L2

)
∇u
)
+ v|u|r−2u = f in Ω;

−div(M(x)∇v) = |u|r in Ω;

u = v = 0 on ∂Ω,

(K1)

where once again Ω ⊂ RN , is bounded open, N > 2, f ∈ Lm(Ω) with m ⩾ 1, M is a
bounded measurable matrix satisfying (P5) and, r > 1, a : Ω → R is a measurable function
such that there exist 0 < α < β for

0 < α ⩽ a(x) ⩽ β a.e. in Ω.

Following the standard strategy, in order to analyze (K1), the authors obtain approximate
solutions, and under certain conditions for r and m, ensure interesting a priori estimates
that combined with some compactness arguments, allow the passage to the limit on this
approximate version of (K1). As a consequence, they showed that solutions of the first
equation satisfy u ∈ Ls(Ω) where s = max{m∗∗, m(2r+1)

m+1 }. In particular, if (r+1)′ ⩽ m < N
2 ,

u is Lebesgue regularized, see Definition 0.1 page 12. Moreover, since u is bounded in Ls(Ω),
it is easy to see |u|r is bounded in L

s
r (Ω), which implies that v is Sobolev regularized since

s
r < (2∗)′. For small r, outside the regularizing zone of m, the existence of positive solution
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was shown. More specifically they show that if 1 < r < 2∗ − 1 and m ⩾ (2∗)′ there exists
(u, v) ∈W 1,2

0 (Ω)×W 1,2
0 (Ω) solutions of (K1).

Let us also mention that in [10], in the case of poor data, it is proved that an atypi-
cal phenomenon occurs for the nonlocal Maxwell-Schrödinger system. Indeed, due to the
presence of the nonlocal Kirchhoff-type term

−div
(
∥∇u∥2L2∇u

)
,

if f ∈ L1(Ω) \W−1,2(Ω) and 1 < r < 2∗ − 1, given (uk, vk) solutions for an approximate
version of (K1), then {uk} is unbounded in W 1,2

0 (Ω). Accordingly, for the case N = 6 the
authors prove that {uk} is bounded in W 1,q

0 (Ω), for 1 < q < 18
11 , whereas uk → 0 strongly

in W 1,q
0 (Ω). In addition, they proved that ||∇uk||2L2uk ⇀ w weakly in W 1,ρ

0 (Ω), where
1 < ρ < 6

5 and w is the entropy solution of{
−∆w = f in Ω

w = 0 on ∂Ω.

With regard to this chapter, we decided to investigate an associated version of problem (K1)
by introducing certain modifications. As a matter of fact, we replaced the semilinear parts
of the original system by g and h, both satisfying hypotheses (P1) - (P4). Moreover, we
have decided to consider the nonlocal effects in terms of the regularity of f , instead of fixing
an energy Kirchhoff-type term. For this, we employed some of the the results obtained
for the local version of our (K1), i.e., problem (P) which was addressed in the previous
chapter. This motivates the choice of a nonlocal Kirchhoff-type term given by ||∇u||σLσ with
σ satisfying (3.1). By doing so, we avoid the degeneracy of the regularity below (2∗)′ and
obtain the regularizing effect results for the nonlocal case which are compatible with the
local ones.

0.2.1 Main results for Kirchhoff–Maxwell–Schrödinger systems

In this case, our main contributions were to ensure the existence regularizing effects under
appropriate conditions r, θ and m. That is, if r + θ > 2∗ − 1 and (r + θ + 1)′ < m < (2∗)′,
then u is Lebesgue and Sobolev regularized. Recall that specifically for θ = 0 the coupling
term in (K) encompasses (K1), and in this case we obtain results similar to [10], proving
the existence of a weak solution (u, v) ∈W 1,2

0 (Ω). Regarding v, we have observed that since
u ∈ Lr+θ+1(Ω) and v ∈ L2∗(Ω), we obtain h(x, v, u) ∈ Ls(Ω) where s = 2∗(r+θ+1)

2∗r+θ(r+θ+1) which

implies that, if s < (2∗)′ then v is Sobolev regularized since r+θ+1 <
(

2∗

θ+1

)′
, see Theorem

0.3, below.

Theorem 0.3. Let f ∈ Lm(Ω), where f ⩾ 0 a.e in Ω, m ⩾ (r + θ + 1)′, r > 1 and 0 <
θ < 4

N−2 . Then there exists a weak solution (u, v) for (K), with u ∈ W 1,2
0 (Ω) ∩ Lr+θ+1(Ω),

u ⩾ 0 a.e in Ω and v ∈W 1,2
0 (Ω), v ⩾ 0 in Ω.

Furthermore, in the present work, as a byproduct of our modification in the nonlocal
term, we were able to address the case when the source summability’s is below (r+ θ+1)′.
Indeed, as it turned out, see Theorem 0.4, there exist regularizing effect zones for solutions
(u, v), under certain conditions for r, θ and m. Actually, we prove that if r − θ + 1 > 2∗,

then u is Lebesgue and Sobolev regularized since
(
r−θ+1
1−2θ

)′
< m < 2N(r−θ+1)

N(r+θ+1)+2(r−θ+1) and

Lebesgue regularized since 2N(r−θ+1)
N(r+θ+1)+2(r−θ+1) < m < (2∗)′. We also deduce that if 2∗ >
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r − θ + 1 > 2∗(1 − θ) then u is Lebesgue and Sobolev regularized since
(
r−θ+1
1−2θ

)′
< m <

2N(r−θ+1)
N(r+θ+1)+2(r−θ+1) . Regarding v, we have observed that since u ∈ Lr−θ+1(Ω) and v ∈ Lq∗(Ω)

we obtain h(x, u, v) ∈ Lt(Ω) with t = 2∗(r−θ+1)(1−θ)
2∗r(1−θ)+θ(r−θ+1) which implies that, if q > t∗ then v

is Sobolev regularized since r − θ + 1 > 2∗(1− θ).

Theorem 0.4. Let f ∈ Lm(Ω), where f ⩾ 0 a.e. in Ω,
(
r−θ+1
1−2θ

)′
< m < (r+ θ+1)′, r > 1

and 0 < θ < δ, for δ = min{ N+2
3N−2 ,

4
N−2 ,

1
2}. Then there exists a solution (u, v) for (K),

with u ∈ W 1,p
0 (Ω) ∩ Lr−θ+1(Ω), u ⩾ 0 a.e. in Ω and v ∈ W 1,q

0 (Ω), v ⩾ 0 a.e. in Ω, where
p = 2(r−θ+1)

(r+θ+1) and q = 2N(1−θ)
N−2θ . Furthermore, if r ⩾ N+2

N−2 , then (u, v) ∈W 1,q
0 (Ω)×W 1,q

0 (Ω).

We summarize the latter results in the following figures.

Figure 1: The summability results for (u, v) given by Theorems 0.3 and 0.4.

Remark 0.2. An important fact to note is that if v = 0 then (P) system reduces the
equation −div(M(x)∇u) = f with Dirichlet condition, which, according to Stampacchia’s
classical theory, has a solution u ∈ W 1,m∗

0 (Ω) ∩ Lm∗∗
(Ω) to f ∈ Lm(Ω) with m < (2∗)′,

that being the case, we couldn’t have to u ∈ W 1,2
0 (Ω) ∩ Lr+θ+1(Ω), whereas 2 > m∗ and

r + θ + 1 > m∗∗. Therefore v cannot be null under the tracks where u is Lebesgue and
Sobolev regularized.

0.3 Organization of the thesis

In the first chapter, we introduce the fundamental tools for the development and under-
standing of the present thesis. The Stampacchia theory is discussed in detail, what includes
certain truncations used to establish some classical regularity results for the solutions of
linear problems {

−div(M(x)∇w) = z in Ω

w = 0 on ∂Ω.

For the sake of convenience, we decided to include certain regularity results established for
weak and distributional solution of the linear problem. Although being classic, they play a
fundamental role in understanding the main results of the work.
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In the second chapter, we will start with the preliminary results of convergence that will
simplify the proofs of the main results of this chapter, see Theorems 0.2 and 0.1. Thereafter
we show existence of approximate solutions to an approximate problem. One of the key
points of our work is the careful choice of the test functions in order to, combined with the
coupling term of the system, generate "better a priori" estimates for the approximate solu-
tions, see Lemmas 2.4 and 2.5. Through the estimates we can conclude the main theorems
and their respective corollaries, whose purpose is to highlight the areas where the solutions
are more regular then expected.

In the third chapter, we dedicate our efforts to the study of the Kirchhoff – Maxwell
Schrödinger systems, where we circumvent the lack of regularizing effect caused by the
nonlocal term ||∇u||2L2 ver [10], adding the nonlocal term ||∇u||σLσ in the first equation of
(P), where the condition established under σ was motivated by the study done for the local
system. As the problem thus posed, we show the existence and regularity for solutions, see
Theorem 0.3 and 0.4.

We understand that for an initial reading of this work, it is necessary to have a knowledge
of prior functional analysis theories, measure and partial differential equations. However, we
address some key results used in the work, see Appendices A and B. We highlight the chain
rule version for Lipschitz and local Lipschitz functions, where we present our demonstration.
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Chapter 1
Stampacchia classical theory

The Stampacchia classical theory plays an important role in the development of this work.
We dedicate this chapter to present some of these regularity results for the solution of the
linear problem {

−div(M(x)∇w) = z in Ω

w = 0 on ∂Ω.

We will present our version of the proof of the existence of a distributional solution in the
case where source z does not belong to the dual of W 1,2

0 (Ω). Specifically, if z ∈ Lm(Ω) with
1 < m < (2∗)′, then w ∈ W 1,m∗

0 (Ω) and if z ∈ L1(Ω) then w ∈ W 1,q
0 (Ω) where q < N

N−1 .
In contrast, these results highlight the importance of the regularizing effect obtained in
this work, since we will show through the Theorems 0.3 and 0.4 the existence of an energy
solution for the systems (P) and (K), even when the source z ∈ Lm(Ω) with m < (2∗)′.

We consider some important notations for the development of this work. As well as
the use of the well-known Stampacchia truncation functions, whose definitions as well as
its graphs are given as there follows. For k > 0 we have Tk(s) = max(−k,min(k, s)) and
Gk(s) = s− Tk(s).

Furthermore, very often we will make use of the Sobolev critical exponent, which for
1 ⩽ m < N , we will denote by m∗ = Nm

N−m and m∗∗ = Nm
N−2m .

Lemma 1.1. Let u ∈W 1,p
0 (Ω) where 1 ⩽ p <∞ and k > 0. Then
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(i) Tk(u), Gk(u) are Lipschitz and Tk(0) = Gk(0) = 0;

(ii) Tk(u), Gk(u) ∈W 1,p
0 (Ω) and

∇Tk(u) =

{
∇u, |u| ≤ k

0, |u| > k.

∇Gk(u) =

{
0, |u| ≤ k

∇u, |u| > k.

Proof. (i) By definition of Tk and Gk it is clear that Tk(0) = Gk(0) = 0

(ii) Combining the earlier item with by Theorem(4.2) we have ∇Tk(u) = T ′
k(u)∇(u)

and ∇Gk(u) = G′
k(u)∇(u) where

T ′
k(u) =

{
1, |u| ≤ k

0, |u| > k.
and G′

k(u) =

{
0, |u| ≤ k

1, |u| > k.

However ∇u = 0 a.e. in {x ∈ Ω; |u(x)| = k}. Indeed, if v = u− k, then v = 0 ⇐⇒ u = k.
Since v+ = max{0, v}, v− = −min{0, v}, ∇v = ∇v+ −∇v−,

∇v+ =

{
∇v, v > 0

0, v ≤ 0.

∇v− =

{
−∇v, v < 0

0, v ≥ 0.

Hence ∇v = 0 a.e. in {x ∈ Ω; v(x) = 0} ⇐⇒ ∇u = 0 a.e. in {x ∈ Ω;u(x) = k}.
Analogously for v = u+ k we get ∇u = 0 a.e in {x ∈ Ω;u(x) = k}. Thus

∇Tk(u) = T ′
k(u)∇(u) =

{
∇u, |u| ≤ k

0, |u| > k.

Repeating the above argument for Gk we have completed the result.

The following Lemmas can be found in [6], as well as their respective proofs. Even so,
we chose to present our version for such demonstrations.

Lemma 1.2. Let f ∈ L1(Ω) and l(k) =
∫
Ω |Gk(f)|. Then l(k) is differentiable a.e and

l′(k) = −meas(Ak) where Ak = {x ∈ Ω, |f(x)| > k}.

Proof. Consider A+
k = {f − k > 0}, A−

k = {−(f + k) > 0} and

l+(k) =

∫
A+

k

(f − k) and l−(k) =
∫
A−

k

−(f + k).

To get the result, just show that l+ is differentiable with respect to k. Consequently the
general case followed, since l can be written as l(k) = l+(k) + l−(k), the result follows.

Note that l+(k) is differentiable a.e, since it is monotone. Thus to calculate its derivative,
take h ∈ R+, and so the difference quotient of l+ is

l+(k + h)− l+(k)

h
=

1

h

(∫
A+

k+h

(f − k − h)−
∫
A+

k

(f − k)

)

=
1

h

(∫
A+

k+h

(f − k)−
∫
A+

k+h

h−
∫
A+

k

(f − k)

)
. (1.1)
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As A+
k = A+

k+h ∪ {k < f ⩽ k + h} we have∫
A+

k+h

(f − k)−
∫
A+

k

(f − k) =

∫
A+

k+h

(f − k)−

[∫
A+

k+h

(f − k) +

∫
{k<w⩽k+h}

(f − k)

]

= −
∫
{k<f⩽k+h}

(f − k).

Thus, substituting the result obtained above in (1.1) there follows that

l+(k + h)− l+(k)

h
=

1

h

(
−
∫
A+

k+h

h−
∫
{k<f⩽k+h}

(f − k)

)

= −
∫
Ω
X{f>k+h} −

1

h

∫
{k<f⩽k+h}

(f − k)

Consequently, taking h→ 0 we get

l′+(k) = lim
h→0

l+(k + h)− l+(k)

h
= − lim

h→0

∫
Ω
X{f>k+h} = −meas({f > k}) = −meas(A+

k ),

since

0 ⩽
∫
{k<f⩽k+h}

(f − k) ⩽
∫
{k<f⩽k+h}

h ⇐⇒ 0 ⩽
1

h

∫
{k<f⩽k+h}

(f − k) ⩽
∫
Ω
X{k<f⩽k+h}

⇐⇒ 0 ⩾ −1

h

∫
{k<f<k+h}

(f − k) ⩾ −
∫
Ω
X{k<f⩽k+h},

which implies that

lim
h→0

−1

h

∫
{k<f<k+h}

(f − k) = 0.

Analogously l′−(k) = −meas(A+
k ), therefore the result follows.

The next lemma is a crucial tool used to reach regularity of the type L∞(Ω).

Lemma 1.3. Let f ∈ L1(Ω) such that l(k) ⩽ Cmeas(Ak)
α for every k, where α > 1 and

C > 0. Then f ∈ L∞(Ω) and there exists a constant γ = γ(α,Ω, ||f ||L1) such that

||f ||L∞ ⩽ Cγ.

Proof. Combining the result of the previous lemma with the hypothesis of this lemma, we
have

l(k) ⩽ Cmeas(Ak)
α = C(−l′(k))α

where it goes from

1 ⩽ −C
1
α
l′(k)

l(k)
1
α

⇐⇒ − 1

C
1
α

⩾
l′(k)

l(k)
1
α

.

Integrating the last inequality on (0, k) and by fundamental theorem of calculus we get

− k

C
1
α

= −
∫ k

0

1

C
1
α

dt ⩾ −
∫ k

0
l′(t)l(t)−

1
αdt =

1

(1− 1
α)

∫ k

0

d

dt
(l(t))1−

1
αdt

=
l(k)1−

1
α − l(0)1−

1
α

(1− 1
α)

.
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Now, note that

l(0) =

∫
Ω
|G0(f)| =

∫
Ω
|f − T0(f)| =

∫
Ω
|f |,

and combining the above equality with the previous inequality we obtain

−
(
1− 1

α

) k

C
1
α

⩾ l(k)1−
1
α − ||f ||1−

1
α

L1 ,

hence
−
(
1− 1

α

) k

C
1
α

+ ||f ||1−
1
α

L1 ⩾ l(k)1−
1
α ∀ k > 0.

In particular taking k̃ such that l(k̃) = 0, this is, k̃ =
C

1
α ||f ||1−

1
α

L1(
1− 1

α

) by defining the truncation

function we get

|f | ⩽ k̃ =
C

1
α ||f ||1−

1
α

L1(
1− 1

α

)
and by Hölder’s inequality we may conclude that

|f | ⩽ k̃ =
C

1
α ||f ||1−

1
α

L1 meas(Ω)(1− 1
α)(

1− 1
α

) .

Therefore ||f ||L∞ ⩽ Cγ where γ = ||f ||1−
1
α

L1 meas(Ω)1−
1
α

(
1− 1

α

)
.

We will begin our studies by showing the existence and unity of solution to the linear
problem. Thereafter, in the company of the results established earlier, we can present some
regularity results by Stampacchia, together with the existence of a distributional solution
in the case in which f ∈ Lm(Ω) with 1 ⩽ m < (2∗)′. These results, as well as others, can
be seen in [6].

The regularity results presented in this section clarify the regularizing effect we obtained
in the solutions of (P).

1.1 The linear problem

Consider the linear problem {
−div(M(x)∇w) = z in Ω

w = 0 on ∂Ω
(PL)

where Ω ⊂ RN is open and bounded, with N > 2, z ∈ Lm(Ω) with m ⩾ 1 and M(x) is a
symmetric measurable matrix satisfying (P5).

The existence results that we will present are based on Functional Analysis results by
Lax-Milgram and Stampacchia, as we shall see in the next section, see [6].

Theorem 1.1. Let z ∈ Lm(Ω) with m ⩾ (2∗)′. Then there exists a unique weak solution
w ∈W 1,2

0 (Ω) to problem (PL). In other words, there exists a unique w ∈W 1,2
0 (Ω) such that∫

Ω
M(x)∇w · ∇φ =

∫
Ω
zφ, ∀φ ∈ w ∈W 1,2

0 (Ω).
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Proof. Define B :W 1,2
0 (Ω)×W 1,2

0 (Ω) → R by B(w,φ) =
∫
ΩM(x)∇w · ∇φ. Note that:

(i) It is easily seen that B is bilinear.

(ii) B is continuous. Indeed, since M is bounded by hypothesis, the Cauchy - Schwarz
inequality gives

|B(w,φ)| =
∣∣∣ ∫

Ω
M(x)∇w · ∇φ

∣∣∣ ⩽ β||∇w||L2 ||∇φ||L2 ∀w,φ ∈W 1,2
0 (Ω).

(iii) B is coercive. Indeed, since M have the property of ellipticity, we get

|B(w,w)| =
∣∣∣ ∫

Ω
M(x)∇w · ∇w

∣∣∣ ⩾ α||∇w||L2 ||∇w||L2

Thus by the Theorem Lax - Milgram, give z ∈W−1,2(Ω) there exists a unique w ∈W 1,2
0 (Ω)

such that

B(w,φ) =< z, φ >
W−1,2,W 1,2

0
∀φ ∈W 1,2

0 (Ω).

Remark 1.1. We note that, if z belongs Lm(Ω) with m ⩾ (2∗)′, the linear problem(PL) can
be weakly formulated in the sense that for each φ ∈ W 1,2

0 (Ω) the application z 7−→
∫
Ω zφ

defines a functional in W 1,2
0 (Ω). As long as m > (2∗)′ ⇐⇒ m′ < (2∗), by Hölder and

Sobolev inequality, we get∣∣∣ ∫
Ω
zφ
∣∣∣ ⩽ ||z||Lm ||φ||Lm′ ⩽ ||z||Lm ||φ||L2∗ ⩽ C||z||Lm ||φ||

W 1,2
0

∀φ ∈W 1,2
0 (Ω).

1.2 Stampacchia’s classic regularity results of solutions to prob-
lem (PL)

In this section we will present some regularity results by Stampacchia for the problem (PL).
We will see that the regularity of the solution depends on the regularity of the source. Let us
assume that the source is a function z belonging to a Lebesgue space to show the following
results:

• If z ∈ Lm(Ω) with (2∗)′ ⩽ m < N
2 then w ∈ Lm∗∗

(Ω). Where this result is obtained
by taking the test function |Tk(w)|2λTk(w)

2λ+1 combined with the hypothesis ellipticity of
M , Sobolev’s embedding, Hölder’s inequality and Fatou’s Lemma.

• If z ∈ Lm(Ω) with m > N
2 , then w ∈ L∞(Ω). In this case, the result is obtained

by taking the test function Gk(w) in the formulation weakly of the problem (PL)
combined with the hypothesis ellipticity of M , Hölder’s inequality and Lemma 1.3.

Remark 1.2. We also emphasize that the legitimacy of the test functions taken follows from
Theorem 4.2, because the truncation functions are Lipschitz and w ∈W 1,2

0 (Ω). Moreover, if
we consider

φ(t) =
|t|2λt
2λ+ 1

=

{
t2λ+1

2λ+1 , t ⩾ 0;
−|t|2λ+1

2λ+1 , t < 0.
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Then |Tk(w)|2λTk(w)
2λ+1 is a valid test function. Indeed, note that

φ′(t) =

{
t2λ, t ⩾ 0;

|t|2λ, t < 0.

Where, for t < 0 we have

φ′(t) =
−(2λ+ 1)|t|2λ

2λ+ 1
· (−1)

and, since |t| = −t, when t < 0 which implies that d
dt |t| = −1. Moreover, we get

φ′(0) = lim
t→0

φ(t)− φ(0)

t− 0
= lim

t→0

φ(t)

t
= 0

because

φ′(0) = lim
t→0+

φ(t)

t
= lim

t→0+

t2λ+1

2λ+ 1
· 1
t
=

1

2λ+ 1
· lim
t→0+

t2λ = 0

and

φ′(0) = lim
t→0−

φ(t)

t
= lim

t→0−

−|t|2λ+1

2λ+ 1
· 1
t
=

1

2λ+ 1
· lim
t→0−

|t|2λ = 0,

thus φ is class C1. Since Tk(u) ∈W 1,2
0 (Ω) we conclude that φ = |Tk(w)|2λTk(w)

2λ+1 is a legitimate
test function.

The starting we will assume that the source is a function z ∈ Lm(Ω) with (2∗)′ ⩽ m < N
2 .

Theorem 1.2. Let z ∈ Lm(Ω) with (2∗)′ ⩽ m < N
2 . Then every solution w ∈ W 1,2

0 (Ω) to
problem (PL) belongs to Lm∗∗

(Ω). In addition, we have the following estimate

||w||Lm∗∗ ⩽ C||z||Lm

where C = C(N,m,α).

Proof. By considering φ = |Tk(w)|2λTk(w)
2λ+1 as a test function in the weak formulation of the

problem (PL) with λ > 0, there follows that∫
Ω
M(x)∇w · ∇Tk(w)|Tk(w)|2λ =

1

2λ+ 1

∫
Ω
z|Tk(w)|2λTk(w). (1.2)

Using the ellipticity hypothesis of M for the left - hand side, so that∫
Ω
M(x)∇w · ∇Tk(w)|Tk(w)|2λ ⩾

∫
|w|>k

M(x)∇w · ∇w|Tk(w)|2λ ⩾ α

∫
|w|>k

|∇w|2|Tk(w)|2λ

= α

∫
Ω
|∇Tk(w)|2|Tk(w)|2λ.

(1.3)

Now, note that

|∇Tk(w)|(λ+1)2

(λ+ 1)2
= |Tk(w)|2λ|∇Tk(w)|2. (1.4)

Thus, replacing equality (1.9) in (1.3) and using the Sobolev embedding we obtain∫
Ω
M(x)∇w · ∇Tk(w)|Tk(w)|2λ ⩾

αS2

(λ+ 1)2

(∫
Ω
|Tk(w)|(λ+1)2∗

) 2
2∗
. (1.5)
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By using Hölder inequality with exponent m in the right - hand side of (1.2), we get

1

2λ+ 1

∫
Ω
z|Tk(w)|2λTk(w) ⩽

1

2λ+ 1
||z||Lm

(∫
Ω
|Tk(w)|(2λ+1)m′

) 1
m′

(1.6)

Putting together estimates (1.5) and (1.6) we have

αS2

(λ+ 1)2

(∫
Ω
|Tk(w)|(λ+1)2∗

) 2
2∗

⩽
1

2λ+ 1
||z||Lm

(∫
Ω
|Tk(w)|(2λ+1)m′

) 1
m′
.

Choose λ such that (λ + 1)2∗ = (2λ + 1)m′, that is, λ = −mN+2N−2m
4m−2N and using that

2
2∗ − 1

m′ =
1

m∗∗ and (λ+ 1)2∗ = mN
N−2m we have(∫
Ω
|Tk(w)|m

∗∗
) 1

m∗∗
⩽ C||z||Lm

How the truncation function converges to identity when k → ∞, so by Fatou’s Lemma
conclude

||w||Lm∗∗ ⩽ C||z||Lm ,

where C = C(α, S,m,N).

We can now pass to the regularity of the solutions in the case where z ∈ Lm(Ω) with
m > N

2 .

Theorem 1.3. Let z ∈ Lm(Ω) with m > N
2 . Then every solution w ∈ W 1,2

0 (Ω) to problem
(PL) is bounded. Moreover the estimate

||w||L∞ ⩽ C||z||Lm

holds, where C = C(N,α,m).

Proof. By considering φ = Gk(w) as a test function in the weak formulation of problem
(PL). From the ellipticity hypothesis of M and Sobolev inequality we have

αS2
(∫

Ω
|Gk(w)|2

∗
) 2

2∗
⩽ α

∫
Ω
|∇Gk(w)|2 ⩽

∫
Ω
zGk(w). (1.7)

Applying the Hölder inequality in
∫
Ω zGk(w) with exponent 2∗ and (2∗)′, we get∫

Ω
zGk(w) ⩽

(∫
Ω
|Gk(w)|2

∗
) 2

2∗
(∫

Ak

|z|(2∗)′
) 1

(2∗)′

⩽
(∫

Ω
|Gk(w)|2

∗
) 2

2∗ ||z||Lmmeas(Ak)
[1− (2∗)′

m
] 1
(2∗)′ . (1.8)

Now combining the estimates (1.7) and (1.8) thus give

αS2
(∫

Ω
|Gk(w)|2

∗
) 2

2∗
⩽ ||z||Lm

(∫
Ω
|Gk(w)|2

∗
) 1

2∗
meas(Ak)

[1− (2∗)′
m

] 1
(2∗)′

that is, (∫
Ω
|Gk(w)|2

∗
) 1

2∗
⩽ ||z||Lmmeas(Ak)

[1− (2∗)′
m

] 1
(2∗)′ . (1.9)
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Again by Holder’s inequality with exponent 2∗ and (2∗)′ one has∫
Ω
|Gk(w)| ⩽

(∫
Ω
|Gk(w)|2

∗
) 1

2∗
meas(Ak)

1
(2∗)′

and so by (1.9) implies that∫
Ω
|Gk(w)| ⩽

1

αS2
||z||Lmmeas(Ak)

1+ 2
N
+ 1

m .

Therefore, by Lemma 1.3 with α = 1 + 2
N − 1

m and C = 1
αS2 ||z||Lm gives the result.

1.3 Distributional solutions

In this section, we study the existence of distributional solutions to problem (PL). The
initial step is to consider the approximate problem, which the solution is guaranteed by the
Theorem 1.1. Then we will show some a priori estimates, which made it possible to pass
the limit in the approximate problem.

For the case where the z source of problem (PL) does not belong to the dual of W 1,2
0 (Ω),

consider the following definition.

Definition 1.1. Let z ∈ Lm(Ω) with m < (2∗)′, we say that a function u ∈ W 1,1
0 (Ω) is

distributional solution to the problem (PL) if∫
Ω
M(x)∇w · ∇φ =

∫
Ω
zφ ∀φ ∈ C∞

0 (Ω).

For the case where z ∈ Lm(Ω) with 1 ⩽ m < (2∗)′, we will show the following results:

• If z ∈ Lm(Ω) with 1 < m < (2∗)′ then w ∈ W 1,m∗

0 (Ω). In this case, the result is
obtained by taking the test function

[(1 + |wk|)2γ−1 − 1] · Tϵ(wk)

ϵ
with γ >

1

2
.

• If z ∈ L1(Ω) then there exists a distributional solution w ∈ W 1,q
0 (Ω), for every q <

N
N−1 . Where this result is obtained by taking the test function

[(1 + |wk|)2γ−1 − 1] · Tϵ(wk)

ϵ
with γ <

1

2
.

In the following, we will make an observation, which will establish some important facts
about these test functions taken.

Remark 1.3. Let b(t) = [(1 + |t|)2γ−1 − 1].

(1) If γ < 1
2 , then b(t) < 0 and |b(t)| ⩽ 1. In fact, on one hand since 1 + |t| > 1 =⇒

(1+ |t|)2γ−1 < 1 ⇐⇒ (1+ |t|)2γ−1− 1 < 0, that is b(t) < 0. On the other hand, since
1 + |t| > 1 =⇒ 0 < 1

1+|t| < 1 =⇒ 0 < 1
(1+|t|)1−2γ < 1, hence

−1 < (1 + |t|)2γ−1 − 1 < 0 =⇒ |b(t)| ⩽ 1.
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(2) If γ > 1
2 , then b(t) > 0. Indeed, as 1 + |t| > 1 =⇒ (1 + |t|)2γ−1 > 1 ⇐⇒

(1 + |t|)2γ−1 − 1 > 0, that is, b(t) > 0.

(3) b is locally Lipschitz continuous. In fact, note that

b′(t) = (2γ − 1)sgn(t) = (2γ − 1)(1 + |t|)2γ−2 ∀t ̸= 0.

On one hand
b′(0) = lim

t→0
b′(t) = (2γ − 1) lim

t→0
(1 + |t|)2(γ−1),

on the other hand

b′(0) = lim
t→0+

(1 + |t|)2(γ−1) = 1 and b′(0) = lim
t→0−

−(1 + |t|)2(γ−1) = −1.

Thus b is not differentiable in t = 0.

However, b′ is continuous in intervals ]−∞, 0] and [0,+∞[. So that t > 0 we have:

For Similarly, taking b|[0,t] : [0, t] → R, by the Mean Value Theorem, there exists
ct ∈ (0, t) such that

|b(t)− b(0)| = |b′(ct)||t| ⩽M |t|

where M = supct∈(0,t) |b
′(ct)| which exists, therefore b|[0,t] : [0, t] → R is continuous.

Similarly, for t < 0 we have b|[t,0] : [t, 0] → R is continuous. Therefore b is locally
Lipschitz.

(4) Let us remember that, since the truncation function is Lipschitz, if u ∈W 1,2
0 (Ω), then

by Theorem 4.2 we have Tk(u) ∈ W 1,2
0 (Ω). Moreover, since b is locally lipschitz, by

Corollary 4.1 there follows that

∇
(
b(u)Tk(u)

)
= b′(u)

Tk(u)

ε
∇u+

T ′
k(u)

ε
b(u)∇u,

where

b′(uk) =

{
(2γ − 1)(1 + |uk|)2γ−2, u > 0

−(2γ − 1)(1 + |uk|)2γ−2, u < 0.

In other words, b′(uk)sgn(uk) = (2γ − 1)(1 + |uk|)2γ−2.

1.3.1 A priori estimates

Let z ∈ Lm(Ω) with 1 ⩽ m < (2∗)′. We consider the following approximate problem{
−div(M(x)∇wk) = zk in Ω

wk = 0 on ∂Ω.
(P ′

L)

where zk ∈ L∞(Ω) such that zk → z in Lm(Ω) and ||zk||Lm ⩽ ||z||Lm . The existence of
solution wk for every k, follows from Theorem 1.1. Moreover wk belongs toW 1,2

0 (Ω)∩L∞(Ω).

Lemma 1.4. Let z ∈ Lm(Ω) with 1 < m < (2∗)′. Then the sequence of the solutions wk to
problems (P ′

L) satisfies

||wk||Lm∗∗ + ||wk||W 1,m∗
0

⩽ C

where C = C(S, α,m, ||z||L1 , ||z||Lm).
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Proof. Initially we will prove that the sequence wk is bounded in Lm∗∗
(Ω).

By consider φ = b(wk)
Tϵ(wk)

ϵ as a test function in (P ′
L), where b(wk) = [(1+|wk|)2γ−1−1],

γ > 1
2 and ϵ > 0.∫

Ω
M(x)∇wk · ∇wkb

′(wk)
Tϵ(wk)

ϵ
+

∫
Ω
M(x)∇wk · ∇wk

T ′
ϵ(wk)

ϵ
b(wk) =

∫
Ω
zkb(wk)

Tϵ(wk)

ϵ
.

Note that, since γ > 1
2 there follows that b(wk) > 0. Thus, using the ellipticity hypothesis

of M we get

0 ⩽ α

∫
Ω
|∇wk|2b(wk)

T ′
ϵ(wk)

ϵ
⩽
∫
Ω
M(x)∇wk · ∇wkb(wk)

T ′
ϵ(wk)

ϵ
.

Hence, discarding the positive term and talking ϵ→ ∞ there follows that∫
Ω
M(x)∇wk · ∇wkb

′(wk)sgn(wk) ⩽
∫
Ω
zkb(wk)sgn(wk). (1.10)

Developing the term on the right - hand side, so that∫
Ω
zkb(wk)sgn(wk) ⩽

∫
Ω
|z|[(1 + |wk|)2γ−1 − 1] ⩽

∫
Ω
|z|[(1 + |wk|)2γ−1 + 1]

by Hölder’s inequality with exponent m we get∫
Ω
zkb(wk)sgn(wk) ⩽ ||f ||L1 + ||f ||Lm

(∫
Ω
(1 + |wk|)(2γ−1)m′

) 1
m′
. (1.11)

Now, using the ellipticity hypothesis of M and Sobolev Embedding in the left-hand side of
(1.10), we have

α

∫
Ω
|∇wk|2(2λ− 1)(1 + |wk|)2λ−2 ⩽

∫
Ω
M(x)∇wk · ∇wkb

′(wk)sgn(wk). (1.12)

Note that ∣∣∣∇(1 + |wk|)λ

λ

∣∣∣2 = (1 + |wk|)2λ−2 · |∇|wk||2,

hence

α(2λ− 1)

λ2

∫
Ω
|∇(1 + |wk|)λ|2 ⩽

∫
Ω
M(x)∇wk · ∇wkb

′(wk)sgn(wk)

and by the Sobolev Embedding we get

αS(2λ− 1)

λ2

(∫
Ω
[1 + |wk|)λ]2

∗
) 2

2∗
⩽
∫
Ω
M(x)∇wk · ∇wkb

′(wk)sgn(wk).

By (1.10) combining the above inequality with (1.11) we have

αS(2λ− 1)

λ2

(∫
Ω
(1 + |wk|)λ)2

∗
) 2

2∗
⩽ ||f ||L1 + ||f ||Lm

(∫
Ω
(1 + |wk|)(2γ−1)m′

) 1
m′
. (1.13)

It is natural to choose an adequate λ in order to guarantee that certain crucial exponents
coincide. Indeed, fixing λ such that λ2∗ = (2λ− 1)m′, that is, λ = m∗∗

2∗ there follows that

αS(2λ− 1)

λ2

(∫
Ω
(1 + |wk|)m

∗∗
) 2

2∗
⩽ ||f ||L1 + ||f ||Lm

(∫
Ω
(1 + |wk|)m

∗∗
) 1

m′
.
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Since 2
2∗ >

1
m′ we obtain ∫

Ω
|wk|m

∗∗
⩽
∫
Ω
|1 + wk|m

∗∗
⩽ C, (1.14)

where C = C(S, α,m, ||z||L1 , ||z||Lm).

Now we will prove that the sequence wk is bounded in W 1,m∗

0 (Ω). By combining (1.11)
and (1.12) we have

||f ||L1 + ||f ||Lm

(∫
Ω
(1 + |wk|)(2γ−1)m′

) 1
m′

⩾ α

∫
Ω
|∇wk|2(2λ− 1)(1 + |wk|)2λ−2

= α(2λ− 1)

∫
Ω

|∇wk|2

(1 + |wk|)2(1−λ)

by (1.14) there follows that ∫
Ω

|∇wk|2

(1 + |wk|)2(1−λ)
is bounded.

Suppose that λ < 1 and 1 < m < (2∗)′. Let 1 ⩽ q < 2, writing∫
Ω
|∇wk|q =

∫
Ω

|∇wk|q

(1 + |wk|)2(1−λ) q
2

(1 + |wk|)2(1−λ) q
2

by Hölder’s inequality with exponent 2
q we get∫

Ω
|∇wk|q ⩽

(∫
Ω

|∇wk|q

(1 + |wk|)2(1−λ) q
2

) q
2
(∫

Ω
(1 + |wk|)

(1−λ)2q
2−q

)1− q
2

taking m∗ = q and (1−λ)2q
2−q = m∗∗. Thus by estimates (1.14) we have

||wk||W 1,m∗
0

⩽ C.

Lemma 1.5. Let z ∈ L1(Ω). Then there exists a constant C > 0 such that

||wk||W 1,q
0 (Ω)

< C where q <
N

N − 1
.

Proof. By taking φ = b(wk)
Tϵ(wk)

ϵ as a test function in (P ′
L), where b(wk) = [(1+|wk|)2γ−1−

1], γ < 1
2 and ϵ > 0. There follows that∫

Ω
M(x)∇wk · ∇wkb

′(wk)
Tϵ(wk)

ϵ
+

∫
Ω
M(x)∇wk · ∇wk

T ′
ϵ(wk)

ϵ
b(wk) =

∫
Ω
zkb(wk)

Tϵ(wk)

ϵ
,

hence∫
Ω
M(x)∇wk · ∇wkb

′(wk)
Tϵ(wk)

ϵ
=

∫
Ω
zkb(wk)

Tϵ(wk)

ϵ
−
∫
Ω
M(x)∇wk · ∇wk

T ′
ϵ(wk)

ϵ
b(wk),

discarding the positive term and then taking ϵ→ ∞, we get∫
Ω
M(x)∇wk · ∇wkb

′(wk) sgn(wk) ⩾
∫
Ω
zkb(wk)sgn(wk)
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that is

(2γ − 1)

∫
Ω
M(x)∇wk · ∇wk(1 + |wk|)2γ−2 ⩾

∫
Ω
zkb(wk)sgn(wk).

Since (2γ − 1) < 0 and b(wk) < 0, implies that

1

2γ − 1

∫
Ω
zkb(wk)sgn(wk) > 0.

Thus, by the ellipticity hypothesis of M and |b(wk)| ⩽ 1, we have∫
Ω

|∇wk|2

(1 + |wk|)2(γ−1)
⩽ C||z||Lm . (1.15)

Now note that ∫
Ω
|∇wk|q =

∫
Ω

|∇wk|q

(1 + |wk|)2(1−γ)q/2
(1 + |wk|)2(1−γ)q/2.

By Hölder inequality with exponent 2
q on the right side of the equality above and Sobolev

embedding on the left - hand we obtain

Sq
(∫

Ω
|wk|q

∗
) q

q∗
⩽
∫
Ω
|∇wk|q ⩽

(∫
Ω

|∇wk|2

(1 + |wk|)2(1−γ)

) q
2
(∫

Ω
(1 + |wk|)

(1−γ)2q
2−q

)1− q
2

by inequality (1.15) implies that

Sq
(∫

Ω
|wk|q

∗
) q

q∗
⩽
∫
Ω
|∇wk|q ⩽ C

(∫
Ω
(1 + |wk|)

(1−γ)2q
2−q

)1− q
2

thence

Sq
(∫

Ω
|wk|q

∗
) q

q∗
⩽
∫
Ω
|∇wk|q ⩽ C + C

(∫
Ω
|wk|

(1−γ)2q
2−q

)1− q
2
. (1.16)

Specify γ such that (1−γ)2q
2−q = q∗, that is, γ = q(N−2)

2(N−q) . Since γ < 1
2 , that implies q < N

N−1 .
In this way

Sq
(∫

Ω
|wk|q

∗
) q

q∗
⩽ C + C

(∫
Ω
|wk|q

∗
)1− q

2

and so the sequence
∫
Ω |wk|q

∗ is bounded. Hence the right - hand side of (1.16) is uniformly
bounded and

∫
Ω |∇wk|q too.

1.3.2 Existence of distributional solutions

From the estimates obtained above, we can show the existence of distributional solutions
for cases in which z ∈ Lm(Ω) with 1 < m < (2∗)′, and z ∈ L1(Ω).

Theorem 1.4. Let z ∈ Lm(Ω) where 1 < m < (2∗)′. Then there exists a distributional
solution w ∈W 1,m∗

0 (Ω) for (PL).

Proof. According to Lemma (1.4), there exists a subsequence that we will denote {wk} and
w in W 1,m∗

0 (Ω) such that

wk ⇀ w weakly in W 1,m∗

0 (Ω) and ∇wk ⇀ ∇w weakly in
(
Lm∗

(Ω)
)N
.
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Thus, since M(x) is symmetric matrix and bounded, by taking the limit on the weak
formulation of problem (P ′

L), we obtain∫
Ω
M(x)∇w · ∇φ =

∫
Ω
zφ ∀φ ∈ C∞

0 (Ω).

Therefore, w is a distributional solution for (PL).

Theorem 1.5. Let z ∈ L1(Ω). Then there exists a distributional solution w ∈W 1,q
0 (Ω) for

(PL) where q < N
N−1 .

Proof. By Lemma 1.5, there exists a subsequence that we will denote {wk} and w ∈W 1,q
0 (Ω)

such that

wk ⇀ w weakly in W 1,q
0 (Ω) and ∇wk ⇀ ∇w weakly in

(
Lq(Ω)

)N
.

Thus, since M(x)∇φ ∈
(
Lq′(Ω)

)N , by taking the limit on the weak formulation of problem
(P ′

L), we obtain ∫
Ω
M(x)∇w · ∇φ =

∫
Ω
zφ ∀φ ∈ C∞

0 (Ω).

Therefore, w is a distributional solution for (PL).
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Chapter 2
Regularizing Effect for a Class of
Maxwell-Schrödinger Systems

2.1 Preliminaries

In this section we provide certain technical results that are used in the present chapter.
Despite that not all of them are new, for the convenience of the reader we decided to keep
some proofs. We begin by defining for τ > 0 the following truncations

gτ (x, t, s) =

{
g(x, t, s) if |g(x, t, s)| ⩽ τ ;

τ sgn(g(x, t, s)) if |g(x, t, s)| > τ

hτ (x, t, s) =

{
h(x, t, s) if |h(x, t, s)| ⩽ τ ;

τ sgn(h(x, t, s)) if |h(x, t, s)| > τ.

From the definitions, it is clear that{
|gτ (x, t, s)| = min{τ, |g(x, t, s)|};
|hτ (x, t, s)| = min{τ, |h(x, t, s)|}.

(2.1)

Moreover, it is clear that hτ and gτ satisfy the hypotheses (P2) and (P4) respectively.
Concerning problem (P), in our manuscript, we will consider the following definition of

solution:

Definition 2.1. We say that (u, v) in W 1,p
0 (Ω) ×W 1,p

0 (Ω), for p > 1, is a distributional
solution for problem (P) if and only if{ ∫

ΩM(x)∇u · ∇φ+
∫
Ω g(x, u, v)φ =

∫
Ω fφ ∀ φ ∈ C∞

c (Ω)∫
ΩM(x)∇v · ∇ψ =

∫
Ω h(x, u, v)ψ ∀ ψ ∈ C∞

c (Ω).
(PF )

where g(., u, v) ∈ L1
loc(Ω) and h(., u, v) ∈ L1

loc(Ω).

From now on, C > 0 will denote a general constant, which may vary from line to line,
and may depend only on the data, i.e., C = C

(
α, β, θ,Ω, c1, c2, d1, d2, r,N

)
> 0. Sometimes,

in order to simplify the notation, we will denote C = C(f) > 0 in order to stress that C
depends on ∥f∥Lm .
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As a fist step, we provide certain convergence results which will be employed in the
proofs of our main results. As it will be clear, by cropping certain technical details from
Theorem 0.2 and 0.1 we simplify their proofs. We just mention that the difference between
cases (ii) and (iii), comes from the fact that, naturally, when f is less regular, the estimates
on the mixed terms become also less regular, see Lemmas 2.4 and 2.5.

Lemma 2.1. Let f ∈ Lm(Ω) with m ⩾ 1, {uk} bounded in W 1,s
0 (Ω) and {vk} bounded in

W 1,t
0 (Ω), where s ⩾ t ⩾ N(θ+1)

N+θ+1 and h, g be two Carathéodory functions satisfying (P1) and
(P3). Then, there exist u and v in W 1,t

0 (Ω) such that, up to subsequences relabeled the same:

(i) If
∫
{|uk|>n} |uk|

r−1|vk|θ+1 ⩽ C
∫
{|uk|>n} |f |,

then g(x, uk, vk) → g(x, u, v) in L1(Ω).

(ii) If
∫
{|vk|>n} |uk|

r|vk|θ+1 ≤ C and {|uk|r} is uniformly integrable

then h(x, uk, vk) → h(x, u, v) in L1(Ω).

(iii) If
∫
{|vk|>n} |uk|

r|vk|1−θ ≤ C and {|uk|r} is uniformly integrable

then h(x, uk, vk) → h(x, u, v) in L1(Ω).

Proof. (i) Since N(θ+1)
N+θ+1 ⩽ t < s, then θ + 1 ⩽ t∗ < s∗, and also u, v ∈ W 1,t(Ω) such that,

up to subsequences 
uk ⇀ u weakly in W 1,s

0 (Ω)

vk ⇀ v weakly in W 1,t
0 (Ω),

uk → u in Lt∗(Ω), and a.e in Ω

vk → v in Lt∗(Ω), and a.e in Ω.

(2.2)

Of course, we also have g(x, uk, vk) → g(x, u, v) a.e in Ω. Further, from (P1) and (i), given
E ⊂ Ω, a measurable set, there follows that∫

E
|g(x, uk, vk)| ⩽ c2

∫
E
|uk|r−1|vk|θ+1

= c2

∫
E∩{|uk|⩽n}

|uk|r−1|vk|θ+1 + c2

∫
E∩{|uk|>n}

|uk|r−1|vk|θ+1

⩽ c2n
r−1

∫
E
|vk|θ+1 + c2

∫
{|uk|>n}

|uk|r−1|vk|θ+1

⩽ c2n
r−1

∫
E
|vk|θ+1 + C

∫
{|uk|>n}

|f |.

Claim 1. Given σ > 0, there exist n0 ∈ N and δ > 0 with meas(E) < δ, such that

C

∫
{|uk|>n}

|f | ⩽ σ

2
and nr−1

∫
E
|vk|θ+1 ⩽

σ

2
.

Note that, by Hölder’s inequality

C

∫
{|uk|>n}

|f | ⩽ C∥f∥Lm · meas({|uk| > n})
1
m′ .

Moreover, by considering C0 such that

C0 >

∫
Ω
|uk|t

∗
⩾
∫
{|uk|>n}

|uk|t
∗
>

∫
{|uk|>n}

nt
∗
= nt

∗
meas({|uk| > n})
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hence

meas({|uk| > n}) < C0

nt∗
→ 0, when n→ ∞.

That is, for all σ1 > 0, there exists n0 ∈ N such that for n > n0, we have

meas({|uk| > n}) ⩽ σ1, ∀ k ∈ N.

Thus, by taking σ1 = σ
2C(∥f∥Lm+1) , for n > n0 fixed we have that

C

∫
{|uk|>n0}

|f | ⩽ σ

2
.

On the other hand, as θ + 1 < t∗, there follows that

∥vk − v∥θ+1
Lθ+1 ⩽ C∥vk − v∥θ+1

Lt∗ → 0, when k → ∞.

In this way, by the Vitali Theorem, see 4.4, there exists δ > 0 such that meas(E) < δ implies
that ∫

E
|vk|θ+1 < nr−1

0 σ2, ∀ σ2.

In this fashion, by taking σ2 = σ
2nr−1

0

, we get∫
E
|vk|θ+1 <

σ

2
, proving our claim.

At this point, let us stress that by Claim 1, we have

∃ δ > 0; meas(E) < δ implies
∫
E
|g(x, uk, vk)| < σ, ∀ σ > 0,

so that, by the Vitali Theorem, we get g(x, uk, vk) → g(x, u, v) in L1(Ω).
(ii) Now, remark that by (2.2) we have h(x, uk, vk) → h(x, u, v) a.e in Ω, it up to

subsequences relabeled the same. Moreover, for σ > 0, given E ⊂ Ω, by hypothesis (P3)
combined with (i) we have that∫

E
|h(x, uk, vk)| ⩽ d2

∫
E
|uk|r|vk|θ

= d2

∫
E∩{|vk|⩽n}

|uk|r|vk|θ + d2

∫
E∩{|vk|>n}

|uk|r|vk|θ+1−1

⩽ d2n
θ

∫
E
|uk|r +

d2
n

∫
{|vk|>n}

|uk|r|vk|θ+1

⩽ d2n
θ

∫
E
|uk|r +

d2C

n
,

for all n ∈ N. In particular, by taking n0 such that C
n0
< σ

2d2
, we arrive at∫

E
|h(x, uk, vk)| ⩽ d2n

θ
0

∫
E
|uk|r +

σ

2
.

However, since {|uk|r} is by hypothesis uniformly integrable, there exist δ > 0 for which, if
meas(E) < δ, one has ∫

E
|uk|r <

σ

2d2nθ0
, ∀ k, n ∈ N,
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and then ∫
E
|h(x, uk, vk)| < σ,

so that h(x, uk, vk) → h(x, u, v) in L1(Ω), by the Vitali Theorem.
(iii) This proof is very similar to the last one, nevertheless, in the current case, the

argument for the second convergence, is more delicate since now we lost some regularity
of the estimates of the mixed terms. In any case, observe that for γ = 1 − 2θ, since∫
{|vk|>n} |uk|

r|vk|1−θ ≤ C one has that∫
E
|h(x, uk, vk)| ⩽ d2

∫
E
|uk|r|vk|θ

= d2

∫
E∩{|vk|⩽n}

|uk|r|vk|θ + d2

∫
E∩{|vk|>n}

|uk|r|vk|θ+γ−γ

⩽ d2n
θ

∫
E
|uk|r +

d2
nγ

∫
{|vk|>n}

|uk|r|vk|θ+γ

⩽ d2n
θ

∫
E
|uk|r +

d2C

nγ
, for all n ∈ N,

so that by repeating the same argument as in (ii) we prove that {h(x, uk, vk)} is uniformly
integrable and the result follows once more by the Vitali Theorem.

Lemma 2.2. Let u, v ∈ W 1,2
0 (Ω) ∩ L∞(Ω), u ⩾ 0 a.e. in Ω, and let φε(t) = (t + ε)γ − εγ

be a Lipschitz function for all t > 0, where ε > 0, 0 < γ < 1 and H : Ω× R× R → R be a
Carathéodory function satisfying

|H(x, t, s)| ⩽ C|t|σ1 |s|σ2 , for σi > 0, i = 1, 2.

Then

(a) γ
∫
Ω |∇u|2uγ−1 ⩽ limε→0+

∫
Ω∇u · ∇φε(u),

(b)
∫
ΩH(x, u, v)uγ = limε→0+

∫
ΩH(x, u, v)φε(u),

where φε = φε(u)

Proof. (a) Remark that u(x) > 0 a.e. in Ω+, so that by setting

ωu =

{
uγ−1 a.e. in Ω+;

+∞ a.e. in Ω\Ω+,

ωu is measurable and well–defined. Moreover, since |∇u| = 0 a.e. in Ω\Ω+, by using the
real extended line arithmetic rules, we have |∇u|2ωu = 0 a.e. in Ω\Ω+. Thus,∫

Ω
|∇u|2ωu =

∫
Ω+

|∇u|2uγ .

Now, observe that 0 ⩽ (u+ε)γ−1 < uγ−1 and (u+ε)γ−1 → ωu a.e. in Ω when ε→ 0+,
there follows from the Fatou Lemma that

γ

∫
Ω+

|∇u|2uγ−1 ⩽ lim inf
ε→0+

γ

∫
Ω
|∇u|2(u+ ε)γ−1

= lim inf
ε→0+

∫
Ω
∇u · ∇φε(u).
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(b) Note that

|H(x, u, v)[(u+ ε)γ − εγ ]| ⩽ |H(x, u, v)|[(u+ ε)γ + εγ ]

⩽ c1|u|σ1 |v|σ2 [(u+ ε)γ + εγ ].

Suppose 0 < ε ⩽ 1, we have

|H(x, u, v)[(u+ ε)γ − εγ ]| ⩽ C∥u∥σ1
L∞∥v∥σ2

L∞ [(∥u∥L∞ + 1) + 1].

Moreover,

H(x, u, v)[(u+ ε)γ − εγ ] → H(x, u, v)uγ , a.e. in Ω, when ε→ 0+.

Thus, by the Lebesgue Dominated Convergence Theorem∫
Ω
H(x, u, v)uγ = lim

ε→0+

∫
Ω
H(x, u, v)φε(u).

Remark 2.1. It is clear that by arguing in an analogous manner to the proof of Lemma,
since v > 0 a.e. in Ω we also have the validity of

(a) γ
∫
Ω |∇v|2vγ−1 ⩽ limε→0+

∫
Ω∇v · ∇φε(v),

(b)
∫
ΩH(x, u, v)vγ = limε→0+

∫
ΩH(x, u, v)φε(v).

Now, by using hipotheses (P1)-(P5), and a standard argument based on the Schauder
Fixed Point Theorem, we obtain existence of solutions to preliminary version of (P). We
emphasize that to construct a well-defined operator whose fixed points are weak solutions,
we use (P2).

Proposition 2.1. Let Φ ∈ L∞(Ω). Then there exists a weak solution (u, v) ∈ W 1,2
0 (Ω) ×

W 1,2
0 (Ω) of the system 

−div(M(x)∇u) + gτ (x, u, v) = Φ in Ω

−div(M(x)∇v) = hτ (x, u, v) +
1
τ in Ω

u = v = 0 on ∂Ω.

(PA)

Proof. Fix ζ ∈W 1,2
0 (Ω). We will show that there exists u = S(ζ) ∈W 1,2

0 (Ω) such that∫
Ω
M(x)∇u · ∇φ+

∫
Ω
gτ (x, u, ζ)φ =

∫
Ω
Φφ ∀ φ ∈W 1,2

0 (Ω). (I)

From the classical PDE theory the linear problem (PL) has a unique weak solution. That
is, there exists an unique w ∈W 1,2

0 (Ω) such that∫
Ω
M(x)∇w · ∇φ =

∫
Ω
zφ = ⟨z, φ⟩

W−1,2,W 1,2
0

∀ φ ∈W 1,2
0 (Ω).

Thus the solution operator G : W−1,2(Ω) → W 1,2
0 (Ω), given by G(z) = w, is linear and

continuous.
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Now consider the operator Fτ : L2(Ω) → L2(Ω) defined by Fτ (z) = Φ− gτ (·, z, ζ) ∀ z ∈
L2(Ω) where ζ ∈W 1,2

0 (Ω) is fixed. Note that, Fτ is well defined. Indeed,

|Fτ (z)| = |Φ− gτ (·, z, ζ)| ⩽ |Φ|+ |gτ (·, z, ζ)| ⩽ |Φ|+ τ, ∀ z ∈ L2(Ω),

there follows that

∥Fτ (z)∥2L2 ⩽
∫
Ω
[|Φ|+ τ ]2

⩽ ∥Φ∥2L∞meas(Ω) + 2τ∥Φ∥L∞meas(Ω) + τ2meas(Ω) < +∞.

Moreover, Fτ is continuous. In fact, let zj , z ∈ L2(Ω) such that ∥zj − z∥L2 → 0 when
j → ∞, we must that ∥Fτ (zj)− Fτ (z)∥L2 → 0 when j → ∞.

On one hand, since zj → z in L2(Ω), then up to a subsequence zj → z a.e. in Ω,
accordingly as gτ is continuous in z, we get gτ (x, zj , ζ) → gτ (x, z, ζ) a.e. in Ω. On the other
hand

|gτ (x, zj , ζ)| ⩽ τ, a.e. x ∈ Ω ∀ j ∈ N.

Hence, by the Lebesgue Dominated Convergence Theorem

∥gτ (x, zj , ζ)− gτ (x, z, ζ)∥L2 → 0, when j → ∞.

Thus

∥Fτ (zj)− Fτ (z)∥2L2 =

∫
Ω
|Φ− gτ (x, zj , ζ)− Φ+ gτ (x, z, ζ)|2

= ∥gτ (x, zj , ζ)− gτ (x, z, ζ)∥2L2 → 0, when j → ∞.

The idea now is to show that the operator

G ◦ Fτ : L2(Ω) → L2(Ω) ↪→W−1,2(Ω) →W 1,2
0 (Ω) ↪→↪→ L2(Ω)

is in the hypotheses of Schauder’s Fixed Point Theorem, in order to conclude that there is
u ∈ L2(Ω) such that u = G ◦ Fτ (u).

u = (ik ◦G ◦ ic ◦ Fτ )(u) = G(Fτ (u))

where

ic : L
2(Ω) ↪→W−1,2(Ω) continuous embedding and

ik :W 1,2
0 (Ω) ↪→↪→ L2(Ω) compact embedding (Rellich-Kondrachov).

Since u ∈ Im(G), then u ∈W 1,2
0 (Ω). Thus, given ũ ∈ L2(Ω) there exists w ∈W 1,2

0 (Ω) such
that w = G(Fτ (ũ)).∫

Ω
M(x)∇w · ∇φ =

∫
Ω
Φφ−

∫
Ω
gτ (x, ũ, ζ)φ ∀ φ ∈W 1,2

0 (Ω).

Taking φ = w in the weak formulation of the fisrt equation of (2.1) and using the hypothesis
(P5) and Hölder’s inequality, there follows that

α

∫
Ω
|∇w|2 ⩽

∫
Ω
|Φ||w|+

∫
Ω
|gτ (x, ũ, ζ)||w| ⩽ ∥Φ∥L∞

∫
Ω
|w|+ τ

∫
Ω
|w|

⩽ ∥Φ∥L∞∥w∥L2meas(Ω)1/2 + τ∥w∥L2meas(Ω)1/2 = [∥Φ∥L∞ + τ ] meas(Ω)1/2∥w∥L2 ,
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hence

∥∇w∥2L2 ⩽ [∥Φ∥L∞ + τ ] meas(Ω)1/2∥w∥L2 . (2.3)

In particular by Poincaré inequality we get

∥w∥
W 1,2

0
⩽ R1 and ∥w∥L2 ⩽ R1, (2.4)

where R1 = C [∥Φ∥L∞ + τ ] meas(Ω)1/2 and C is Poincaré constant.

Let B̃ = B̃(0, R1) = {w ∈ L2(Ω); ∥w∥L2 ⩽ R1}. Then of estimate in w ∈ L2(Ω), namely
(2.4), there follows that G(Fτ (B̃)) ⊂ B̃.

It is clean that G ◦ Fτ is continuous, because G and Fτ are continuous. It remains to
be shown that G ◦ Fτ (B̃) is relatively compact in L2(Ω), i.e., G(Fτ (B̃)) is compact in
L2(Ω). In fact, since Fτ is continuous and bounded, for each k ∈ N, we get

Fτ (B̃) is closed in L2(Ω) and Fτ (B̃) is bounded in L2(Ω),

by continuous embedding we have

ic(Fτ (B̃)) = Fτ (B̃) is closed in L2(Ω) and ic(Fτ (B̃)) = Fτ (B̃) is bounded in L2(Ω).

As G is linear and continuous, there follows that

G(Fτ (B̃)) is closed in W 1,2
0 (Ω) and G(Fτ (B̃)) is bounded in W 1,2

0 (Ω).

Thus by Rellich-Kondrachov we obtain G(Fτ (B̃)) is compact in L2(Ω).
Therefore, by Schauder’s Fixed Point Theorem, there exists u ∈W 1,2

0 (Ω) such that∫
Ω
M(x)∇u · ∇φ+

∫
Ω
gτ (x, u, ζ)φ =

∫
Ω
Φφ ∀ φ ∈W 1,2

0 (Ω).

Furthermore, by an analogous argument, given u ∈ W 1,2
0 (Ω) fixed, there exists η = T (u) ∈

W 1,2
0 (Ω) satisfying∫

Ω
M(x)∇η · ∇ψ =

∫
Ω

(
hτ (x, u, η

)
+

1

τ

)
ψ ∀ ψ ∈W 1,2

0 (Ω).

Taking ψ = η in the weak formulation of the second equation of (2.1) given above and using
the hypothesis (P5), Hölder’s and inequality we get

α

∫
Ω
|∇η|2 =

∫
Ω

(
hτ (x, u, η

)
+

1

τ

)
η ⩽ τ∥η∥L2meas(Ω)1/2 +

1

τ
∥η∥L2meas(Ω)1/2

=
(τ2 + 1

τ

)
∥η∥L2meas(Ω)1/2

thus

∥η∥
W 1,2

0
⩽ R2 and ∥η∥L2 ⩽ R2, (2.5)

where R2 = C
(
τ2+1
ατ

)
med(Ω)1/2 and C is Poincaré constant.

We are now going to prove that T ◦S satisfies the assumptions of Schauder’s fixed point
Theorem. By estimates (2.4) and (2.5) we consider

B = B(0, R) = {u ∈ L2(Ω); ∥u∥L2 ⩽ R}
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where R = max{R1, R2}. Note that, B is invariant by T ◦ B i.e. T (S(B)) ⊂ B. In fact,
given w ∈ B, we have that S(w) = u, solution of first equation of (PA), so by (2.4) we get
S(w) = u ∈ B, thus for this u we have η = T (u) = T (S(w)) ∈ B, because holds (2.5).

Besides, T ◦ S is continuous. In fact, let ζk → ζ in L2(Ω). Since uk is bounded in
W 1,2

0 (Ω) we have

uk ⇀ u in W 1,2
0 (Ω) up to a subsequence,

uk → u in L2(Ω) up to a subsequence.

As uk = S(ζk), there follows that∫
Ω
M(x)∇uk · ∇φ+

∫
Ω
gτ (x, uk, ζk)φ =

∫
Ω
Φφ ∀ φ ∈W 1,2

0 (Ω). (2.6)

Note that by weak convergence of uk ⇀ u in W 1,2
0 (Ω) we get∫

Ω
M(x)∇uk · ∇φ→

∫
Ω
M(x)∇u · ∇φ.

Since uk → u and ζk → ζ in L2(Ω), up to a subsequence we have

uk(x) → u(x) and ζk(x) → ζ(x) a.e in Ω.

As gτ is continuous, there follow that gτ (x, uk, ζk) → gτ (x, u, ζ) a.e in Ω. Moreover

|gτ (x, uk, ζk)| ⩽ τ a.e in Ω ∀k ∈ N,

and by Dominated Convergence Theorem ∥gτ (x, uk, ζk)− gτ (x, u, ζ)∥L2 → 0, when k → ∞.
Thus, passing the limit in (2.6) we get∫

Ω
M(x)∇u · ∇φ+

∫
Ω
gτ (x, u, ζ)φ =

∫
Ω
Φφ ∀ φ ∈W 1,2

0 (Ω).

That is, u = S(ζ) which implies that S is continuous.
Since ηk = T (uk), by estimates (2.5) we have

ηk ⇀ η in W 1,2
0 (Ω) up to a subsequence,

ηk → η in L2(Ω) up to a subsequence.

Thus passing the limit in∫
Ω
M(x)∇ηk · ∇ψ =

∫
Ω

(
hτ (x, u, η

)
+

1

τ

)
ψ ∀ ψ ∈W 1,2

0 (Ω),

we obtain ∫
Ω
M(x)∇η · ∇ψ =

∫
Ω

(
hτ (x, u, η

)
+

1

τ

)
ψ ∀ ψ ∈W 1,2

0 (Ω).

That is, η = T (u) = T (S(ζ)), thus T ◦ S is continuous.
And to finish we have T ◦S(B) is relatively compact in L2(Ω), i.e., T (S(B)) is compact

in L2(Ω). Indeed, as we saw earlier B is invariant by T ◦S which implies that given w̃k ∈ B
we get η̃k = T (ũk) = T (S(w̃k)) ∈ B. Since η̃k and ũk are limited in W 1,2

0 (Ω) there exist u
and η ∈W 1,2

0 (Ω) such that

ũk, η̃k ⇀ ũ, η̃ in W 1,2
0 (Ω) up to a subsequence,

ũk, η̃k → ũ, η̃ in L2(Ω) up to a subsequence.

Thus as T ◦S is continuous there follows that ||η̃k − η̃||L2 → 0 when k → ∞. Therefore, by
Schauder’s Fixed Point Theorem, there exists v ∈ B ⊂ W 1,2

0 (Ω) such that v = T (S(v)) =
T (u).
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2.2 Approximate Problem

This section comprehends the heart of the contributions on the present chapter. Indeed, we
explore the choice of tailored test functions for a favorable approximate version of (P) in
order to obtain certain key estimates, see Lemmas 2.4 and 2.5.

Nevertheless, we start by obtaining estimates for a first version of approximate problem,
i.e., that the solutions given by Proposition 2.1 are bounded in W 1,2

0 (Ω)∩L∞(Ω). We stress
that, surprisingly, in order to obtain L∞ estimates for v, we have to impose that θ < 4

N−2 .

Lemma 2.3. Let Φ ∈ Lm(Ω) with m ⩾ 1 and let (u, v) be the solution of system (PA) given
by Proposition 2.1. Then there exists a constant C > 0 such that

(i) if Φ ∈ Lm(Ω) for m ⩾ (2∗)′ then

∥u∥
W 1,2

0
+ ∥v∥

W 1,2
0

⩽ C∥Φ∥Lm ;

(ii) if Φ ∈ Lm(Ω) for m > N
2 and 0 < θ < 4

N−2 then

∥u∥L∞ + ∥v∥L∞ ⩽ C∥Φ∥Lm .

Proof. By taking φ = u in the weak formulation of the first equation of (PA), and by
combining the ellipticity of M with Hölder’s and Sobolev’s inequalities we end up with

∥u∥L2∗ ⩽ C∥Φ∥Lm ,

∥∇u∥2L2 ⩽ C∥Φ∥Lm and (2.7)∫
Ω
gτ (x, u, v)u ⩽ C∥Φ∥Lm .

Further, we claim that ∫
Ω
|u|r|v|θ+1 ⩽ C∥Φ∥Lm . (2.8)

In fact, by (P′
2) and the definition of gτ , see (2.1), it is clear that∫

Ω
gτ (x, u, v)u ⩾

∫
{|g|⩽τ}

g(x, u, v)u,

and thus, from (2.7), we get ∫
{|g|⩽τ}

g(x, u, v)u ⩽ C∥Φ∥Lm .

In this way, if we recall (P1), by taking τ → +∞ in the latter inequality, as a direct
application of Fatou’s lemma we arrive at∫

Ω
|u|r|v|θ+1 ⩽

∫
Ω
g(x, u, v)u ⩽ C∥Φ∥Lm ,

proving our claim.
Moreover, by taking ψ = v in the weak formulation of the second equation of (PA), by

combining (P3) and the ellipticity of M , we have

α

∫
Ω
|∇v|2 ⩽

∫
Ω

(
hτ (x, u, v) +

1

τ

)
v ⩽

∫
Ω
|hτ (x, u, v)||v|+

1

τ

∫
Ω
|v|

⩽ d1

∫
Ω
|u|r|v|θ+1 +

C

τ
||v||

W 1,2
0
.
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Thus, taking τ → 0 and by (2.8) there follows that
∫
Ω |∇v|2 ⩽ C∥Φ∥Lm and hence, by

combining (2.7) and the last inequality, we get∫
Ω
|∇u|2 +

∫
Ω
|∇v|2 ⩽ C∥Φ∥Lm ,

which proves (i).
Now we proceed to the L∞(Ω) estimates. For this, let us recall the definition of one the

standard Stampacchia’s truncation, Gk(s) = (|s|+ k)+sign(s). Then, we take φ = Gk(u) in
the weak formulation of the first equation of (PA), obtaining∫

Ω
M(x)∇u · ∇uG′

k(u) +

∫
Ω
gτ (x, u, v)Gk(u) =

∫
Ω
ΦGk(u). (2.9)

In addition, notice that clearly, there holds∫
Ω
gτ (x, u, v)Gk(u) =

∫
{|u|>k}

gτ (x, u, v)Gk(u)

=

∫
{u>k}

gτ (x, u, v)(u− k) +

∫
{u<−k}

gτ (x, u, v)(u+ k).

Moreover, as a straightforward consequence of (2.1) and the definition of Gk(.), we have∫
Ω
gτ (x, u, v)Gk(u) ⩾ 0.

Thus, from the latter inequality, by using the ellipticity of M and Hölder’s inequality on
the right-hand side of (2.9), we get

α

∫
Ω
|∇Gk(u)|2 ⩽

∫
Ω
ΦGk(u) ⩽

(∫
Au

K

|Φ|
2N
N+2

)N+2
2N
(∫

Ω
|Gk(u)|2

∗
) 1

2∗
,

where Au
k = {|u| > k}.

Additionally, recall that by Sobolev’s and Hölder’s inequalities there follows(∫
Ω
|Gk(u)|2

∗
) 2

2∗
⩽
(∫

Ω
|Gk(u)|2

∗
) 1

2∗ ∥Φ∥Lmmeas(Au
k)

[1− 2N
(N+2)m

]N+2
2N ,

so that by the latter inequalities we arrive at(∫
Ω
|Gk(u)|2

∗
) 2

2∗
⩽ C|Φ∥Lmmeas(Au

k)
[1− 2N

(N+2)m
]N+2

2N . (2.10)

Moreover, by Hölder’s inequality and (2.10), we have∫
Ω
|Gk(u)| =

∫
Au

k

|Gk(u)| ⩽ meas(Au
k)

N+2
2N

(∫
Ω
|Gk(u)|2

∗
) 1

2∗
⩽ C∥Φ∥Lmmeas(Au

k)
α.

Where α = 1 + 2
N − 1

m > 1, since m > N
2 . Hence, by Lemma 6.2 in [6] p. 49,

u ∈ L∞(Ω) and ∥u∥L∞ ⩽ C∥Φ∥Lm ,

where we stress that the restriction of θ was not used.
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Finally, we handle the L∞(Ω) estimates on v. Indeed, if we take ψ = Gk(v) in the
second equation of (PA), by combining (P3), the ellipticity of M and the L∞(Ω) estimate
for u, we obtain

α

∫
Ω
|∇Gk(v)|2 ⩽

∫
Ω

(
hτ (x, u, v) +

1

τ

)
Gk(v) ⩽

∫
Av

k

|u|r|v|θ|Gk(v)|+
1

τ

∫
Ω
|Gk(v)|

⩽ d1∥u∥rL∞

∫
Av

k

|v|θ|Gk(v)|+
2C

τ
||v||

W 1,2
0

meas(Ω), where Av
k = {|v| > k}.

Taking τ → +∞ we have

α

∫
Ω
|∇Gk(v)|2 ⩽ d1∥u∥rL∞

∫
Av

k

|v|θ|Gk(v)|.

Further, by a straightforward combination of Sobolev’s and Hölder’s inequalities we get

αS2

(∫
Ω
|Gk(v)|2

∗
) 2

2∗

⩽ d1∥u∥rL∞

(∫
Av

k

|v|(2∗)′θ
) 1

(2∗)′
(∫

Ω
|Gk(v)|2

∗
) 1

2∗

,

so that

S2

(∫
Ω
|Gk(v)|2

∗
) 1

2∗

⩽
(∫

Av
k

|v|(2∗)′θ
) 1

(2∗)′
,

and then, by applying once again the Hölder inequality on the right-hand side, with the
exponents 2∗

(2∗)′θ and 2∗

2∗−θ(2∗)′ , we arrive at

(∫
Ω
|Gk(v)|2

∗
) 1

2∗

⩽ Cmeas(Av
k)

[
2∗−θ(2∗)′

2∗

]
· 1
(2∗)′

(∫
Ω
|v|2∗

) θ
2∗

⩽ C∥v∥θ
W 1,2

0

meas(Av
k)

[
2∗−θ(2∗)′

2∗

]
· 1
(2∗)′ .

Nonetheless, recall that∫
Ω
|Gk(v)| =

∫
Av

k

|Gk(v)| ⩽ meas(Av
k)

1
(2∗)′

(∫
Ω
|Gk(v)|2

∗
) 1

2∗

.

Thence, the combination between the latter inequalities implies∫
Ω
|Gk(v)| =

∫
Av

k

|Gk(v)| ⩽ meas(Av
k)

α,

where α = 1
(2∗)′

[
1 + 2∗−θ(2∗)′

2∗

]
> 1, since 4

N−2 > θ. Therefore, once again by invoking
Lemma 1.3, we have v ∈ L∞(Ω) and

∥v∥L∞ ⩽ C∥Φ∥Lm .

With these tools at hand, we are able to prove existence of suitable solutions for a more
favorable approximate version of our problem which will be explored in our investigation of
(P).
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Proposition 2.2. Let {fk} be a sequence of L∞(Ω) functions strongly convergent to f in
Lm(Ω), m ⩾ 1, for which |fk| ⩽ |f | a.e. in Ω. Then, there exists (uk, vk) ∈ W 1,2

0 (Ω) ∩
L∞(Ω)×W 1,2

0 (Ω) ∩ L∞(Ω), solution to
−div(M(x)∇uk) + g(x, uk, vk) = fk

−div(M(x)∇vk) = h(x, uk, vk) +
1
τk
,

uk = vk = 0 on ∂Ω,

(AP)

where τk > 0 and τk → +∞ if k → +∞. Moreover, if f ≥ 0 a.e. in Ω then uk ⩾ 0 a.e. in
Ω and vk > 0 a.e. in Ω.

Proof. Given k > 0 consider τ > (c1 + d1)C
r+θkr+θ, where C is given in Lemma 2.3 and

c1, d1 in (P1), (P3). Let us recall the standard truncation Tk(s) = max(−k,min(s, k)) and
then take fk = Tk(f). Thus, for Φ = fk, by combining Proposition 2.1 and Lemma 2.3, we
obtain a couple (uk, vk) ∈W 1,2

0 (Ω) ∩ L∞(Ω)×W 1,2
0 (Ω) ∩ L∞(Ω) solution for (PA).

Observe that gτ (., uk, vk) = g(., uk, vk) and hτ (., uk, vk) = h(., uk, vk) a.e. in Ω. As a
matter of fact, from P1, Lemma 2.3 item (ii) and the choice of fk, we have

|g(x, uk, vk)| ⩽ c1|u|r−1|v|θ+1

⩽ c1C
r+θ∥fk∥r+θ

L∞

⩽ c1C
r+θkr+θ.

Thence, since by the choice of τ > c1C
r+θkr+θ, from (2.1) we have that gτ coincides with

g. Analogously using the hypothesis P3 we conclude that hτ = h.
Finally, remark that if f ⩾ 0 a.e. in Ω then fk ⩾ 0 a.e. in Ω. Thus taking φ = u−k =

−max(−uk, 0) in the first equation of (AP), we have that∫
Ω
M(x)∇[u+k − u−k ] · ∇u

−
k +

∫
Ω
g(x, uk, vk)u

−
k =

∫
Ω
fu−k ,

by using the hypothesis (P5) we get

−α
∫
Ω
|∇u−k |

2 +

∫
Ω
g(x, uk, vk)u

−
k ⩾

∫
Ω
fu−k ,

Now, note that∫
Ω
g(x, uk, vk)u

−
k =

∫
{uk<0}

g(x, uk, vk)u
−
k = −

∫
{uk<0}

g(x, uk, vk)uk ⩽ 0

where the last integral is negative, by hypothesis (P′
2). Which implies that

0 ⩾ −α
∫
Ω
|∇u−k |

2 ⩾
∫
Ω
fu−k ⩾ 0.

Thus

0 ⩽
∫
Ω
|∇u−k |

2 ⩽ 0,

thence

∥u−k ∥
2
W 1,2

0

= ∥∇u−k ∥
2
L2 = 0 =⇒ u−k = 0.

Consequently we get uk ≥ 0 a.e. in Ω.

43



Now we prove that vk > 0 a.e. in Ω. In fact, consider wk ∈ C1,α(Ω), with 0 ⩽ α < 1,
the solution of {

−div(M(x)∇wk) =
1
τk

in Ω,

wk = 0 on ∂Ω.
(2.11)

Remark that, since M ∈ W 1,∞(Ω) the existence of this wk is standard, for instance see
Corollary 8.36 in [15]. Then, by a straightforward application of the Strong Maximum
Principle of Vasquez in (2.11), see Theorem 4 in [20], we obtain that wk > 0 in Ω. After
that, let us stress that

−div(M(x)∇vk) = h(x, uk, vk) +
1

τk
⩾ −div(M(x)∇wk)

then by the Comparison Principle vk ⩾ wk a.e. in Ω so that vk > 0 a.e. in Ω.

2.3 Estimates

At this point, we are finally ready to obtain a set of delicate uniform a priori estimates
which play a key role in our results. First, we adress the “energectic case"

m ⩾ (r + θ + 1)′.

Let us stress that we strongly use the fact that one of our approximate solutions of the
decoupled system is strictly positive, i.e., vk satisfies vk > 0 a.e. in Ω.

Lemma 2.4. Let f ∈ Lm(Ω) where m ⩾ (r + θ + 1)′, and f ⩾ 0 a.e in Ω, r > 1 and
0 < θ < 1. Then

∥uk∥2W 1,2
0

+ ∥vk∥2W 1,2
0

+

∫
Ω
ur+θ+1
k +

∫
Ω
urkv

θ+1
k ⩽ C

(
∥f∥

r+θ+1
r+θ

Lm +
1

τ2k

)
, (2.12)

where C > 0 and τk → ∞ if k → ∞.

Proof. Let us take ε > 0 and by considering ψ = uθ+1
k (vk + ε)−θ as a test function in the

second equation of (AP), after dropping the positive term, we get∫
Ω
h(x, uk, vk)u

θ+1
k (vk + ε)−θ ⩽ (θ + 1)

∫
Ω
M(x)∇vk · ∇ukuθk(vk + ε)−θ

− θ

∫
Ω
M(x)∇vk · ∇vkuθ+1

k (vk + ε)−(θ+1).

Then by (P3), (P4) and (P5), it is clear that

∫
Ω
ur+θ+1
k vθk(vk + ε)−θ + αθ

∫
Ω
|∇vk|2uθ+1

k (vk + ε)−(θ+1)

⩽ (θ + 1)β

∫
Ω
|∇vk||∇uk|uθk(vk + ε)−θ. (2.13)

Before letting ϵ→ 0, let us consider Ω1 = {x ∈ Ω; uk
vk+ε ⩽ 1} and Ω2 = {x ∈ Ω; uk

vk+ε > 1},
so that Ω = Ω1 ∪ Ω2. In this way, by Young’s inequality

(θ + 1)β

∫
Ω
|∇vk||∇uk|uθk(vk + ε)−θ ⩽ Cη(θ + 1)β

∫
Ω
|∇uk|2 + η(θ + 1)β

∫
Ω
|∇vk|2

u2θk
(vk + ε)2θ
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Now, remark that since uk
vk+ε > 1 in Ω2 and 2θ < θ + 1 , there follows that

(θ + 1)β

∫
Ω
|∇vk||∇uk|uθk(vk + ε)−θ ⩽ Cη(θ + 1)β

∫
Ω
|∇uk|2 + η(θ + 1)β

∫
Ω1

|∇vk|2

+ η(θ + 1)β

∫
Ω2

|∇vk|2
uθ+1
k

(vk + ε)θ+1

and hence, by combining the above estimate with (2.13), we have∫
Ω
ur+θ+1
k vθk(vk + ε)−θ + αθ

∫
Ω
|∇vk|2uθ+1

k (vk + ε)−(θ+1) ⩽ Cη(θ + 1)β

∫
Ω
|∇uk|2

+ η(θ + 1)β

∫
Ω
|∇vk|2 + η(θ + 1)β

∫
Ω
|∇vk|2

uθ+1
k

(vk + ε)θ+1
.

Thus, by taking η = θα
(θ+1)β , and C = max {Cη(θ + 1)β, θα} and by the Fatou Lemma, we

arrive at∫
Ω
ur+θ+1
k ⩽ lim inf

ε→0

∫
Ω
ur+θ+1
k vθk(vk + ε)−θ ⩽ C

[∫
Ω
|∇vk|2 +

∫
Ω
|∇uk|2

]
. (2.14)

Now, let us proceed to the other estimates. Indeed, by choosing φ = uk in the first equation
of (AP), it is clear that

α

∫
Ω
|∇uk|2 +

∫
Ω
g(x, uk, vk)uk ⩽

∫
Ω
fkuk. (2.15)

In particular, by combining Hölder’s inequality with

c1

∫
Ω
urkv

θ+1
k ⩽

∫
Ω
g(x, uk, vk)uk ⩽

∫
Ω
fuk.

then ∫
Ω
urkv

θ+1
k ⩽ C∥f∥Lm∥uk∥Lr+θ+1 , (2.16)

where we strongly used that f ∈ Lm(Ω) for m ≥ (r + θ + 1)′.
Further, by taking ψ = vk in the second equation of (AP), from(P3) and (P4), it is clear

that

α

∫
Ω
|∇vk|2 ⩽

∫
Ω
h(x, uk, vk)vk ⩽ d2

∫
Ω
urkv

θ+1
k +

1

τk

∫
Ω
vk ⩽ C∥f∥Lm∥uk∥Lr+θ+1+

C

τk
∥∇vk∥L2 .

However, it is clear that
C

τk
∥∇vk∥L2 ≤ Cα

τ2k
+
α

2
∥∇vk∥2L2

whereas, by combining with (2.15), give us∫
Ω
|∇uk|2 +

∫
Ω
|∇vk|2 ⩽ C

(
∥f∥Lm∥uk∥Lr+θ+1 +

1

τ2k

)
. (2.17)

In particular, by (2.14) and Young’s inequality, we obtain

∥uk∥r+θ+1
Lr+θ+1 ⩽ C

(
∥f∥

r+θ+1
r+θ

Lm +
1

τ2k

)
. (2.18)

Therefore, gathering (2.16), (2.18) with (2.17), we finally have

∥uk∥2W 1,2
0

+ ∥vk∥2W 1,2
0

+

∫
Ω
urkv

θ+1
k ⩽ C

(
∥f∥

r+θ+1
r+θ

Lm +
1

τ2k

)
,

where we stress that τk → ∞ if k → ∞.
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Lemma 2.5. Let f ∈ Lm(Ω) with f ⩾ 0,
(
r−θ+1
1−2θ

)′
⩽ m < (r + θ + 1)′ and 0 < θ < 1

2 .
Then

∥uk∥pW 1,p
0

+

∫
Ω
ur−θ+1
k +

∫
Ω
urkv

1−θ
k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
and

∥vk∥qW 1,q
0

⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

) N
N−2θ

(2.19)

where τk → ∞ if k → ∞, p = 2(r−θ+1)
r+θ+1 , q = 2N(1−θ)

N−2θ , and C > 0. Moreover, if r ⩾ N+2
N−2 ,

then {uk} and {vk} are bounded in W 1,q
0 (Ω).

Proof. Let us consider φε = (uk + ε)γ − εγ , 0 < ϵ ≤ 1, 0 < γ < 1, as a test function in the
first equation of (AP), so that

αγ

∫
Ω
|∇uk|2(uk + ε)γ−1 +

∫
Ω
g(x, uk, vk) [(uk + ε)γ − εγ ] ⩽

∫
Ω
fk [(uk + ε)γ − εγ ] . (2.20)

Then, by using that uk ∈ L∞(Ω) and the Dominated Convergence Theorem, it is clear that

lim
ε→0

∫
Ω
fk[(uk + ε)γ − εγ ] =

∫
Ω
fku

γ
k .

Thus, by taking ε→ 0 in (2.20), by recalling Lemma 2.2 and (P1), we end up with

αγ

∫
Ωk

+

|∇uk|2uγ−1
k + c1

∫
Ω
ur−1+γ
k vθ+1

k ⩽
∫
Ω
fuγk <∞, (2.21)

which is finite for every fixed k ∈ N, where Ωk
+ = {uk > 0}. Now, we address the set of

estimates arising as a byproduct of the coupling between both equations of our system.
We must stress that for us, the fact that vk > 0 a.e. in Ω will be crucial. As a matter of
fact, by considering ψ = (vk + ε)γ − εγ in the second equation of (AP) it is clear that

αγ

∫
Ω
|∇vk|2(vk + ε)γ−1 ⩽

∫
Ω
h(x, uk, vk)[(vk + ε)γ − εγ ] +

1

τk

∫
Ω
(vk + ε)γ − εγ . (2.22)

Then, once more, by taking ε→ 0 and by recalling (P3), from Lemma 2.2, we obtain

αγ

∫
Ω
|∇vk|2vγ−1

k ⩽
∫
Ω
h(x, uk, vk)v

γ
k ⩽ d2

∫
Ω
urkv

γ+θ
k +

1

τk

∫
Ω
vγk (2.23)

Further, take ψ = (uk + ε)γ+θ(vk + ε)−θ in the second equation of (AP). By dropping the
positive term, one has that∫

Ω
h(x, uk, vk)(uk + ε)γ+θ(vk + ε)−θ ⩽ (γ + θ)

∫
Ω
M(x)∇vk · ∇uk (uk + ε)γ+θ−1(vk + ε)−θ

− θ

∫
Ω
M(x)∇vk · ∇vk(uk + ε)γ+θ(vk + ε)−(θ+1)

Then, by (P3) and (P4) it is clear that

c1

∫
Ω
urkv

θ
k(uk + ε)γ+θ(vk + ε)−θ + αθ

∫
Ω
|∇vk|2(uk + ε)γ+θ(vk + ε)−(θ+1)

⩽ β(γ + θ)

∫
Ω
|∇vk||∇uk|(uk + ε)γ+θ−1(vk + ε)−θ

= β(γ + θ)

∫
Ωk

+

|∇vk||∇uk|(uk + ε)γ+θ−1(vk + ε)−θ,

(2.24)
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since ∇uk = 0 a.e. in the set uk = 0, where Ωk
+ = {uk > 0}.

Given η > 0, by Young’s inequality, we have that∫
Ωk

+

|∇vk||∇uk|(uk + ε)γ+θ−1(vk + ε)−θ ⩽
∫
Ωk

+

|∇vk||∇uk|(uk + ε)γ+θ−1|vk|−θ

⩽ η

∫
Ω
|∇vk|2v−2θ

k + Cη

∫
Ωk

+

|∇uk|2(uk + ε)2(γ+θ−1).

By combining the above inequality and (2.24) we get

c1

∫
Ω
urkv

θ
k(uk + ε)γ+θ(vk + ε)−θ + αθ

∫
Ω
|∇vk|2(uk + ε)γ+θ(vk + ε)−(θ+1)

⩽ β(γ + θ)η

∫
Ω
|∇vk|2v−2θ

k + β(γ + θ)Cη

∫
Ωk

+

|∇uk|2(uk + ε)2(γ+θ−1).

At this point, it is natural to choose an adequate γ in order to guarantee that certain crucial
exponents coincide, what allows us to explore the coupling between the equations. Indeed,
by fixing γ = 1− 2θ so that 2(γ + θ − 1) = γ − 1 = −2θ, after dropping the positive term
there follows that

c1

∫
Ω
urkv

θ
k(uk + ε)1−θ(vk + ε)−θ ⩽ β(1− θ)η

∫
Ω
|∇vk|2v−2θ

k

+ β(1− θ)Cη

∫
Ωk

+

|∇uk|2(uk + ε)−2θ. (2.25)

However, remark that by (2.21), for every k fixed, we have |∇uk|2u−2θ
k ∈ L1(Ωk

+). Thus
by taking ε → 0 in (2.25), employing the Fatou Lemma combined with the Dominated
Convergence Theorem, we arrive at

c1

∫
Ω
ur−θ+1
k ⩽ β(1− θ)η

∫
Ω
|∇vk|2v−2θ

k + β(1− θ)Cη

∫
Ωk

+

|∇uk|2u−2θ
k . (2.26)

Now, it is clear that∫
{uk⩽vk}

urkv
1−θ
k ⩽

∫
{uk⩽vk}

urku
−2θ
k vθ+1

k ⩽
∫
Ω
ur−2θ
k vθ+1

k and
∫
{uk⩾vk}

urkv
1−θ
k ⩽

∫
Ω
ur−θ+1
k .

The latter estimates clearly guarantee that∫
Ω
urkv

1−θ
k ⩽

∫
Ω
ur−θ+1
k +

∫
Ω
ur−2θ
k vθ+1

k . (2.27)

Thus, by gathering (2.23), (2.26) and (2.27), and by using (2.21) twice, since γ + θ = 1− θ,
there follows

α(1− 2θ)

d2

∫
Ω
|∇vk|2v−2θ

k ⩽
∫
Ω
ur−θ+1
k +

∫
Ω
ur−1+γ
k vθ+1

k +
1

τk

∫
Ω
v1−2θ
k

⩽
β(1− θ)η

c1

∫
Ω
|∇vk|2v−2θ

k + C

∫
Ω
fu1−2θ

k +
1

τk

∫
Ω
v1−2θ
k ,

where we combined (2.21) and (2.26) in the right-hand side. If we consider η = α(1−2θ)c1
2β(1−θ)d2

,
it is clear that ∫

Ω
|∇vk|2v−2θ

k ⩽ C

∫
Ω
fu1−2θ

k +
1

τk

∫
Ω
v1−2θ
k <∞, (2.28)
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which is finite for every k fixed.
At this point, for the sake of simplicity, observe that, given ε > 0, by the locally Lipschitz

Chain Rule, |∇vk|2(vk + ε)−2θ = 1
(1−θ)2

|∇(vk + ε)1−θ|2. Thence, by combining the Sobolev
Embedding, the Fatou Lemma and the Dominated Convergence Theorem, we have(∫

Ω
v
(1−θ)2∗

k

) 2
2∗

⩽ lim inf
ε→0+

(∫
Ω
(vk + ε)(1−θ)2∗

) 2
2∗

⩽ lim inf
ε→0+

C

(∫
Ω
|∇(vk + ε)1−θ|2

) 2
2∗

=

∫
Ω
|∇vk|2v−2θ

k , (2.29)

where in the latter estimates we used that |∇vk|2v−2θ
k ∈ L1(Ω) for every k ∈ N, fixed.

Moreover, observe that (1−θ)2∗

1−2θ > 1 and thus, by combining Hölder’s inequality for (1−θ)2∗

1−2θ

and (1−θ)2N
N+2−4θ , with the last estimate, we arrive at∫

Ω
v1−2θ
k ≤ C

(∫
Ω
v
(1−θ)2∗

k

) 1−2θ
(1−θ)2∗

≤ C

(∫
Ω
|∇vk|2v−2θ

k

) 1−2θ
2−2θ

. (2.30)

Further, from (2.28) and (2.30) with Young’s inequality for 2−2θ
1−2θ and 2− 2θ, we obtain∫

Ω
|∇vk|2v−2θ

k ⩽ C

∫
Ω
fu1−2θ

k +
1

τk
C

(∫
Ω
|∇vk|2v−2θ

k

) 1−2θ
2−2θ

⩽ C

(∫
Ω
fu1−2θ

k +
1

τk

)
+

1

2τk

∫
Ω
|∇vk|2v−2θ

k

which clearly guarantees that∫
Ω
|∇vk|2v−2θ

k ⩽ C

(∫
Ω
fu1−2θ

k +
1

τk

)
. (2.31)

Now, by (2.26), (2.23) and (2.31), we get∫
Ω
ur−θ+1
k ⩽ C

(∫
Ω
fu1−2θ

k +
1

τk

)
⩽ C

(
∥f∥Lm ||uk||1−2θ

L(1−2θ)m′ +
1

τk

)
⩽ C

(
∥f∥Lm ||uk||1−2θ

Lr−θ+1 +
1

τk

)
,

where we used that (1 − 2θ)m′ = γm′ ⩽ r − θ + 1, for m′ ⩽ r−θ+1
1−2θ . Further, by means

of another application of the Young inequality, for r−θ+1
1−2θ and r−θ+1

r+θ , after straightforward
compensations, we end up with∫

Ω
ur−θ+1
k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
. (2.32)

In particular, by (2.31), we have∫
Ω
|∇vk|2v−2θ

k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
. (2.33)
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Further, by gathering (2.21), (2.27), with an analogous argument used to prove (2.33) we
obtain ∫

Ω
urkv

1−θ
k ≤ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
.

As a final step, we will handle the coupling estimates for the gradients. Indeed, on one
hand, observe that for 1 ⩽ p < 2, by Hölder’s inequality with exponents 2

p and 2
2−p , we get

∫
Ω
|∇uk|p =

∫
Ω

|∇uk|p

(uk + ε)θp
(uk + ε)θp ⩽

(∫
Ω
|∇uk|2(uk + ε)−2θ

) p
2

·
(∫

Ω
(uk + ε)

2θp
2−p

) 2−p
2

=

(∫
Ωk

+

|∇uk|2(uk + ε)−2θ

) p
2

·
(∫

Ω
(uk + ε)

2θp
2−p

) 2−p
2

.

Then, since by (2.21), |∇uk|2u−2θ
k ∈ L1(Ωk

+), from the Lebesgue Convergence Theorem, we
can take ε→ 0 so that∫

Ω
|∇uk|p ⩽

(∫
Ωk

+

|∇uk|2u−2θ
k

) p
2

·
(∫

Ω
u

2θp
2−p

k

) 2−p
2

.

By choosing 2θp
2−p = r − θ + 1, i.e., p = 2(r−θ+1)

r+θ+1 , from (2.21) and (2.32), there follows that∫
Ω
|∇uk|p ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
.

Finally, by combining (3.26) and (2.33), we already know that

(∫
Ω
v
(1−θ)2∗

k

) 2
2∗

⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
. (2.34)

Moreover, recalling that vk > 0 a.e. in Ω, and then for 1 ⩽ q < 2 by Hölder’s inequality
with exponent 2

q , we get

∫
Ω
|∇vk|q ⩽

(∫
Ω
|∇vk|2v−2θ

k

) q
2

·
(∫

Ω
v

2θq
2−q

k

) 2−q
2

.

Hence, so that it is enough to choose (1− θ)2∗ = 2θq
2−q , i.e., q = 2N(1−θ)

N−2θ , and by (2.33) and
(2.34), after straightforward computations, one arrives at∫

Ω
|∇vk|q ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

) N
N−2θ

, where C > 0.

In addition, remark that by the choice of q, if r ⩾ N+2
N−2 , then q < p. Thus, by the gradient

estimates obtained above, its clear that both {uk} and {vk} are bounded in W 1,q
0 (Ω).

2.4 Proof of Theorems 0.1 and 0.2

Theorem 0.1. Let f ∈ Lm(Ω), where f ⩾ 0 a.e. in Ω, m ⩾ (r + θ + 1)′, r > 1, and 0 <
θ < 4

N−2 . Then there exists a weak solution (u, v) for (P), with u ∈ W 1,2
0 (Ω) ∩ Lr+θ+1(Ω),

u ⩾ 0 a.e. in Ω and v ∈W 1,2
0 (Ω), v ⩾ 0 a.e in Ω.
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Proof. By Lemma 2.4, there exist {uk}, {vk} ⊂ W 1,2
0 (Ω), and u, v in W 1,2

0 (Ω) such that,
up to subsequences relabeled the same,

uk ⇀ u weakly in W 1,2
0 (Ω), uk → u in Ls1(Ω), and a.e. in Ω;

vk ⇀ v weakly in W 1,2
0 (Ω), vk → v in Ls2(Ω), and a.e. in Ω,

where u ⩾ 0, v ⩾ 0 a.e. in Ω, and

∥u∥2
W 1,2

0

+ ∥v∥2
W 1,2

0

+

∫
Ω
ur+θ+1 +

∫
Ω
urvθ+1 ⩽ C∥f∥

r+θ+1
r+θ

Lm ,

and s1 < max{2∗, r + θ + 1} and s2 < 2∗.
In order to prove that the couple satisfies (PF ) it is enough to show that

g(x, uk, vk) → g(x, u, v) in L1(Ω) and h(x, uk, vk) → h(x, u, v) in L1(Ω).

For this, take λ > 0, and consider φ = Tλ(Gn(uk))
λ as a test function in the first equation of

(AP) so that∫
Ω
M(x)∇uk · ∇ukG′

n(uk)
T ′
λ(Gn(uk))

λ
+

∫
Ω
g(x, uk, vk)

Tλ(Gn(uk))

λ
≤
∫
uk>n

fk. (2.35)

However, since Tk and Gn are both monotone, by using (P5) it is clear that∫
Ω
M(x)∇uk · ∇ukG′

n(uk)
T ′
λ(Gn(uk))

λ
⩾ α

∫
Ω
|∇uk|2G′

n(uk)
T ′
λ(Gn(uk))

λ
⩾ 0.

Further, by (P′
2) and by the very definition of Tλ and Gn∫

Ω
g(x, uk, vk)

Tλ(Gn(uk))

λ
⩾
∫
{uk>n+λ}

g(x, uk, vk),

Hence, by combining the latter estimates with (2.35), we get∫
{uk>n+λ}

g(x, uk, vk) ⩽
∫
{uk>n}

f,

and then, by letting λ→ 0, from (P1), we have∫
{uk>n}

ur−1
k vθ+1

k ⩽ C

∫
{uk>n}

f.

In this way, as a direct consequence of Lemma 2.1, for s = t = 2 there follows that
g(x, uk, vk) → g(x, u, v) in L1(Ω), where clearly 2 > N(θ+1)

N+θ+1 , for all 0 < θ < 1.
It remains to prove that h(x, uk, vk) → h(x, u, v) in L1(Ω). First observe that we can

consider up to subsequences relabeled the same, that 1
τk

< 1. Indeed, remark that by
estimate (3.11) and Hölder’s inequality,∫

E
|uk|r ⩽

(∫
E
|uk|r+θ+1

) r
r+θ+1

·meas(E)
θ+1

r+θ+1

⩽ C

(
∥f∥

r+θ+1
r+θ

Lm + 1

) r
r+θ+1 (

meas(E)
) θ+1

r+θ+1 ,
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and then urk is clearly uniformly integrable. Moreover, by (3.11) it is clear that∫
{vk>n}

urkv
θ+1
k ≤ C

(
∥f∥

r+θ+1
r+θ

Lm + 1

)
,

clearly uniform with respect to k. Thence, once again by Lemma 2.1 for s = t = 2 we have

h(x, uk, vk) → h(x, u, v) in L1(Ω).

And also, it is trivial that ∫
Ω

1

τk
ψ → 0.

Therefore, by letting k → +∞ in (AP), we arrive at∫
Ω
M(x)∇u · ∇φ+

∫
Ω
g(x, u, v)φ =

∫
Ω
fφ ∀ φ ∈ C∞

c (Ω)∫
Ω
M(x)∇v · ∇ψ =

∫
Ω
h(x, u, v)ψ ∀ ψ ∈ C∞

c (Ω),

where g(x, u, v), h(x, u, v) ∈ L1(Ω) and the result follows.

Theorem 0.2. Let f ∈ Lm(Ω), where f ⩾ 0 a.e. in Ω,
(
r−θ+1
1−2θ

)′
< m < (r+ θ+1)′, r > 1

and 0 < θ < δ, for δ = min{ N+2
3N−2 ,

4
N−2 ,

1
2}. Then there exists a solution (u, v) for (P),

with u ∈ W 1,p
0 (Ω) ∩ Lr−θ+1(Ω), u ⩾ 0 a.e. in Ω and v ∈ W 1,q

0 (Ω), v ⩾ 0 a.e. in Ω, where
p = 2(r−θ+1)

(r+θ+1) and q = 2N(1−θ)
N−2θ . Furthermore, if r ⩾ N+2

N−2 , then (u, v) ∈W 1,q
0 (Ω)×W 1,q

0 (Ω).

Proof. Since this proof is analogous to the last one, we will omit certain details. In this
fashion, from Lemma 2.5, there exist {uk} ⊂ W 1,p

0 (Ω), {vk} ⊂ W 1,q
0 (Ω), and u ∈ W 1,p

0 (Ω),
v ∈W 1,q

0 (Ω) such that, up to subsequences relabeled the same,

uk ⇀ u weakly in W 1,p
0 (Ω), uk → u in Ls1(Ω), and a.e. in Ω;

vk ⇀ v weakly in W 1,q
0 (Ω), vk → v in Ls2(Ω), and a.e. in Ω,

where p = 2(r−θ−1)
r+θ+1 , q = 2N(1−θ)

N−2θ , u ⩾ 0, v ⩾ 0 a.e. in Ω, and

∥u∥p
W 1,p

0

+

∫
Ω
ur−θ+1 +

∫
Ω
urv1−θ ⩽ C∥f∥

r−θ+1
r+θ

Lm and ∥v∥q
W 1,q

0

≤ C∥f∥
N(r−θ+1)

(N−2θ)(r+θ)

Lm , (2.36)

and s1 < max{p∗, r − θ + 1} and s2 < q∗.
Once more, we still have to prove that g(x, uk, vk) → g(x, u, v) and h(x, uk, vk) →

h(x, u, v) strongly in L1(Ω), whereas the proof of the first convergence is the same, i.e., we
take φ = Tλ(Gn(uk)

λ in the first equation of (AP), and after the same computations analogous
to the last case, we get ∫

{|uk|>n}
|uk|r−1|vk|θ+1 ⩽ C

∫
{|uk|>n}

|f |.

and then, by (3.37) and Lemma 2.1 we obtain that g(x, uk, vk) → g(x, u, v) in L1(Ω).
Finally, once again by (3.37) we know that {|uk|r} is uniformly integrable. Indeed, note

that by Lemma 2.5, since θ < min{ N+2
3N−2 ,

4
N−2 ,

1
2},∫

E
urk ⩽

(∫
E
ur−θ+1
k

) r
r−θ+1

· meas(E)
1−θ

r−θ+1

⩽ C

(
∥f∥

r−θ+1
r+θ

Lm + 1

) r
r−θ+1

(
meas(E)

) 1−θ
r−θ+1

,
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and then, {|uk|r} is uniformly integrable. Further, by (3.17), we also have that∫
{vk>n}

urkv
1−θ
k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm + 1

)
so that, once again by Lemma 2.1 there follows that h(u, uk, vk) → h(x, u, v) a.e in L1(Ω).

Therefore, by passing to the limit as k → +∞ in the first and second equations of (AP),
we obtain that (u, v) is a solution of (P).

2.5 Regularizing Effects

In this section there are presented the proofs of Corollaries 0.1 and 0.2, where we inspect
the conditions on the data determining the presence or absence of regularizing effects of
the solutions of (P), i.e., in the light of Definition 0.1, we show whether the solutions are
Lebesgue or Sobolev regularized. Despite being direct, for the convenience of the reader we
give the details .

Corollary 0.1. Let (u, v) be the weak solution of (P), given by Theorem 0.1.

(A) If r + θ + 1 > 2∗ and (r + θ + 1)′ ⩽ m < (2∗)′, then u is Lebesgue and Sobolev
regularized.

(B) If r + θ + 1 > 2∗ and (2∗)′ ⩽ m < N(r+θ+1)
N+2(r+θ+1) then u is Lebesgue regularized.

(C) If 2∗ < r + θ + 1 ⩽ 2∗(θ+1)
θ then v is Sobolev regularized.

Proof. (A) It is easy to see that r + θ + 1 > 2∗ ⇐⇒ (r + θ + 1)′ < (2∗)′.

Thus, if (r + θ + 1)′ < m < (2∗)′, by Theorem 0.1 we have to u ∈ W 1,2
0 (Ω) ∩

Lr+θ+1(Ω). Moreover, since r + θ + 1 > 2∗ we obtain the following continuous
immersion Lr+θ+1(Ω) ⊂ L2∗(Ω). As m < (2∗)′ ⇐⇒ 2∗ > m∗∗, implies that
L2∗(Ω) ⊂ Lm∗∗

(Ω) is the continuous immersion. Therefore, we have also a regularizing
effect for the Lebesgue summability of the solution u.

(B) Knowing that r + θ + 1 > 2∗ ⇐⇒ (r + θ + 1)′ < (2∗)′ and m ⩾ (2∗)′, there follows
m > (r + θ + 1)′, then by Theorem 0.1 we get u ∈ W 1,2

0 (Ω) ∩ Lr+θ+1(Ω). Moreover,
it is easy to see that

r + θ + 1 > m∗∗ ⇐⇒ m <
N(r + θ + 1)

N + 2(r + θ + 1)
.

Therefore, we have a regularizing effect for the Lebesgue summability of the solution
u.

(C) By the Theorem 0.1 we know that u ∈ Lr+θ+1(Ω) and v ∈ L2∗(Ω), so it is easy to see
that ur ∈ L

r+θ+1
r (Ω) and |v|θ ∈ L

2∗
θ (Ω). Thus, by interpolation inequality, we get

||h(x, u, v)||Ls =
(∫

Ω
|h(x, u, v)|s

) 1
s
⩽
(
ds1

∫
Ω
||u|r|v|θ|s

) 1
s

⩽ d2||ur||
L

r+θ+1
r

||vθ||
L

2∗
θ
<∞,

where for s ⩾ 1

1

s
=

r

r + θ + 1
+

θ

2∗
=⇒ s =

2∗(r + θ + 1)

2∗r + θ(r + θ + 1)
.
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It is enough to prove that 1 ⩽ s < (2∗)′, or equivalently,

2∗

2∗ − θ
⩽
r + θ + 1

r
<

2∗

2∗ − (θ + 1)

and thus v is going to be Sobolev regularized. For this, remark that, since(
r+θ+1

r

)′
= r+θ+1

θ+1 ,
(

2∗

2∗−θ

)′
= 2∗

θ and
(

2∗

2∗−(θ+1)

)′
= 2∗

θ+1 , and by hypotheses, we
have

2∗ < r + θ + 1 ⩽
2∗(θ + 1)

θ
,

we prove that v is Sobolev regularized.

Corollary 0.2. Let (u, v) be the weak solution of (P), given by Theorem 0.2

(A) If r − θ + 1 > 2∗ suppose that

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
⩽ m < (2∗)′.

Then u is Lebesgue regularized.

(B) If r − θ + 1 > 2∗ suppose that(r − θ + 1

1− 2θ

)′
< m <

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
.

Then u is Sobolev and Lebesgue regularized.

(C) If 2∗ ⩾ r − θ + 1 > 2∗(1− θ) suppose that(r − θ + 1

1− 2θ

)′
< m <

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
.

Then u is Sobolev and Lebesgue regularized.

(D) If r − θ + 1 > 2∗(1− θ) then v is Sobolev regularized.

Proof. (A) First, remark that u ∈W 1,p
0 (Ω), by the Sobolev embedding we get u ∈ Lp∗(Ω).

Thus, since r − θ + 1 > 2∗ > 2∗(1− θ), there follows

p∗ < r − θ + 1 ⇐⇒ 2∗(1− θ) < r − θ + 1.

Thus, in order to prove that u is Lebesgue regularized, it is enough to contrast r−θ+1
with m∗∗. Indeed, observe that m < (2∗)′ ⇐⇒ m∗∗ < 2∗. However, by hypothesis we
know that r − θ + 1 > 2∗ which implies that r − θ + 1 > m∗∗, that is, Lr−θ+1(Ω) ⊂
Lm∗∗

(Ω), strictly, and thence, u is Lebesgue regularized.

(B) In order to show that u is Sobolev regularized, remark that it is enough prove that
p > m∗. Indeed, it is clear that

p > m∗ ⇐⇒ m <
2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
.

Thus, since u ∈ W 1,p(Ω) we obtain that u is Sobolev regularized. Moreover, once
again to prove that u is Lebesgue regularized we shall concentrate in Lr−θ+1(Ω), since
p∗ < r − θ + 1. In this fashion, remark that by straightforward computations,

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
< (2∗)′ and 2∗ > m∗∗,

that last one being a direct consequence of m < (2∗)′. Hence, as r− θ+1 > 2∗, there
follows that r − θ + 1 > m∗∗, and therefore, u is Lebesgue regularized.
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(C) It is easy to see that r − θ + 1 > 2∗(1− θ) is equivalent to

N(r − θ + 1)

N + 2(r − θ + 1)
>

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
.

However, by hypothesis

2N(r − θ + 1)

N(r + θ + 1) + 2(r − θ + 1)
> m,

what in particular guarantees that p > m∗, i.e., since u ∈ W 1,p
0 (Ω), it is Sobolev

regularized. Finally, as a consequence of the latter inequalities, we have

N(r − θ + 1)

N + 2(r − θ + 1)
> m, so that r − θ + 1 > m∗∗,

and consequently, u is also Lebesgue regularized.

(D) Notice that q∗ = 2∗(1−θ), where q = 2N(1−θ)
N−2θ . Moreover, for p = 2(r−θ+1)

r+θ+1 , by Theorem
0.2 we know that u ∈ Lr−θ+1(Ω) ∩W 1,p

0 (Ω) and v ∈ Lq∗(Ω), or equivalently, ur ∈
L

r−θ+1
r (Ω) and vθ ∈ L

q∗
θ (Ω). Now, by combining (P3) with the standard interpolation

inequality for Lebesgue Spaces, it is obvious that

h(x, u, v) ∈ Ls(Ω) where s =
2∗(r − θ + 1)(1− θ)

2∗r(1− θ) + θ(r − θ + 1)
.

In order to show that v is Sobolev regularized, remark that it is enough prove that
q > s∗ or equivalently q∗ > s where q∗ =

2N(1−θ)
N+2(1−2θ) . In fact, it is clear that r−θ+1 >

2∗(1− θ) ⇐⇒ q∗ > s and the result follows.

To conclude this chapter, a natural example of satisfying non-linearities (P1)-(P4) we
may consider g(x, s, t) = |s|r−2st+ and h(x, s, t) = |s|r, the classical Maxwell-Schrödinger
case, or g(x, s, t) = |s|r−2|t|θst+ and h(x, s, t) = |s|r|t|θ. For another interesting example,
consider η > 0, Vi(x), bounded and measurable, such that Vi(x) ⩾ ei > 0 a.e. in Ω, i = 1, 2,
and then set

g(x, s, t) =
V1(x)|s|r−2|t|θ(s2(η + 1) + ηt2)st+

s2 + t2
and h(x, s, t) =

V2(x)|s|r|t|θ(s2 + t2(η + 1))

s2 + t2
.
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Chapter 3
Regularizing Effect for a Class of
Kirchhoff-Maxwell-Schrödinger Systems

In this chapter we analyze existence and regularity of solutions to the nonlocal counterpart
of the system from Chapter 2. Indeed, we consider


−div

(
(M(x) + ||∇u||σLσ)∇u

)
+ g(x, u, v) = f in Ω;

−div(M(x)∇v) = h(x, u, v) in Ω;

u = v = 0 on ∂Ω,
(K)

where p = 2(r−θ+1)
r+θ+1 and

σ =

{
2 if m ⩾ (r + θ + 1)′,

p if m < (r + θ + 1)′.
(3.1)

For the sake of completeness, let us recall that Ω is an open bounded subset of RN ,
for N > 2, f ∈ Lm(Ω) with m ⩾ 1, r > 1, and once again g, h : Ω × R × R → R are
Carathéodory and satisfy hypotheses (P1) - (P′

2) and M : Ω → RN × RN is a bounded
measurable matrix satisfying (P5), see page 12.

3.1 Approximate Problem

Once again, our approach is based on showing the existence of a solution to problem (K) in
the case f ∈ L∞(Ω). In order to do that, we will employ the Minty-Browder Theorem, see
Appendix B, Theorem 4.6.

Our starting point is the following continuity result.

Lemma 3.1. Let f ∈ L∞(Ω) and uk ∈W 1,2
0 (Ω) such that

a) uk ⇀ u in W 1,2
0 (Ω).

b) uk satisfies∫
Ω

(
M(x) + ||∇uk||2L2(Ω)

)
∇uk · ∇φ+

∫
Ω
gτ (x, uk, ζk)φ =

∫
Ω
fφ ∀ φ ∈W 1,2

0 (Ω).
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wehere ζk is fixed for each k. Then uk → u in W 1,2
0 (Ω).

Proof. Talking φ = (uk − u) we get∫
Ω

(
M(x) + ||∇uk||2L2(Ω)

)
∇uk · ∇(uk − u) +

∫
Ω
gτ (x, uk, ζk)(uk − u) =

∫
Ω
f(uk − u).

Adding and subtracting the term∫
Ω

(
M(x) + ||∇uk||2

)
∇u · ∇(uk − u),

by (P5) and discarding the positive term we have

α

∫
Ω
|∇(uk − u)|2 +

∫
Ω
gτ (x, uk, ζk)(uk − u) ⩽

∫
Ω
|f ||uk − u| (3.2)

+

∫
Ω

(
M(x) + ||∇uk||2L2

)
∇u · ∇(uk − u).

As f ∈ L∞(Ω) and uk → u in L1(Ω) up to subsequence, there follows that

lim
n→∞

∫
Ω
f(uk − u) = 0.

On one hand, since M(x)∇u ∈
(
L2(Ω)

)N , (∇uk − u) ⇀ 0 weakly in
(
L2(Ω)

)N and{
||∇uk||2L2

}∞
k=1

is bounded, we get

lim
k→∞

∫
Ω

(
M(x) + ||∇uk||2L2

)
∇u · ∇(uk − u) = lim

k→∞

∫
Ω
M(x)∇u · ∇(uk − u)

+ lim
k→∞

||∇uk||2L2

∫
Ω
∇u · ∇(uk − u) = 0.

On the one hand, as |gτ (x, uk, ζk)| < τ and uk → u ∈ L1(Ω) up to subsequences, we have

lim
k→∞

∫
Ω
gτ (x, uk, ζk)(uk − u) = 0.

Thus, taking limit on (3.2), we obtain

α lim
k→∞

∫
Ω
|∇(uk − u)|2 = 0.

Which proves the result.

Now we will focus on obtaining the existence of solutions for the first equation in (K).
Indeed, we will proceed as follows. For fixed ζ ∈ L2(Ω) we will use the Minty - Browder
Theorem, see 4.6, to ensure that there exists weak solution u = S(ζ) ∈ W 1,2

0 (Ω). Further,
by considering u ∈ W 1,2

0 (Ω) fixed, we will show that there exists η = T (u) solution of the
second equation of (K), and then, finally, in order to conclude that there exists a weak
solution (u, v) ∈ W 1,2

0 (Ω) ×W 1,2
0 (Ω), we will use Schauder´s fixed point Theorem, see 4.5.

By doing so, we will ensure that there exists v ∈ W 1,2
0 (Ω) such that v = T (S(v)) = T (u).

We also emphasize that the use of hypothesis (P4) is crucial for proof that the operator
T ◦ S it is well-defined.
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Proposition 3.1. Let Ψ ∈ L∞(Ω). There exists a weak solution (u, v) ∈W 1,2
0 (Ω)×W 1,2

0 (Ω)
of the system 

−div
(
(M(x) + ||∇u||2L2)∇u

)
+ gτ (x, u, v) = Ψ in Ω;

−div(M(x)∇v) = hτ (x, u, v) +
1
τ in Ω;

u = v = 0 on ∂Ω.

(K ′)

Moreover, there exists a constant C > 0 such that

(i) if Ψ ∈ Lm(Ω) for m ⩾ (2∗)′ then

∥u∥
W 1,2

0
+ ∥v∥

W 1,2
0

⩽ C∥Ψ∥Lm ;

(ii) if Ψ ∈ Lm(Ω) for m > N
2 and 0 < θ < 4

N−2 then

∥u∥L∞ + ∥v∥L∞ ⩽ C∥Ψ∥Lm .

Proof. Fixing ζ in L2(Ω). We will show that there exists u = S(ζ) ∈W 1,2
0 (Ω) such that∫

Ω
(M(x) + ||∇u||2L2(Ω))∇u · ∇φ+

∫
Ω
gτ (x, u, ζ)φ =

∫
Ω
Ψφ ∀ φ ∈W 1,2

0 (Ω). (3.3)

Consider the operator A :W 1,2
0 (Ω) →W−1,2(Ω) defined by

(A(u), φ) =

∫
Ω

(
M(x) + ||∇u||2L2(Ω)

)
∇u · ∇φ+

∫
Ω
gτ (x, u, ζ)φ−

∫
Ω
Ψφ.

We will prove that A satisfies the hypotheses of Minty-Browder theorem, i.e. A be a pseu-
domonotone coercive operator.

Note that, A is coercive. In fact, by (P5), (P′
2), Hölder’s and Poincaré’s inequality we

have

(A(u), u) =

∫
Ω

(
M(x) + ||∇u||2L2(Ω)

)
∇u · ∇u+

∫
Ω
gτ (x, u, ζ)u−

∫
Ω
Ψu

⩾ α||u||2
W 1,2

0

+ ||u||4
W 1,2

0

− C||Ψ||L∞ ||u||
W 1,2

0
.

Thus

(A(u), u)

||u||
W 1,2

0

→ +∞ as ||u||
W 1,2

0
→ +∞.

Moreover, by (P5), Hölder’s, Poincaré’s and Young’s inequality we get

|(A(u), w)| =
∣∣∣ ∫

Ω

(
M(x) + ||∇u||2L2(Ω)

)
∇u · ∇w +

∫
Ω
gτ (x, u, ζ)w −

∫
Ω
Ψw
∣∣∣

⩽
(β + ||∇u||2L2

2

)[
||w||2

W 1,2
0

+ ||w||2
W 1,2

0

]
+ τC||w||2

W 1,2
0

+ C||Ψ||L∞ ||w||
W 1,2

0

and so ||A(u)||W−1,2 is bounded if ||u||
W 1,2

0
is bounded.

Now, assume that uk ⇀ u weakly in W 1,2
0 (Ω) and 0 ⩾ lim sup

k→∞

(
A(uk), uk − u

)
. We will

prove that for every w ∈W 1,2
0 (Ω) we have

lim inf
k→∞

(
A(uk), uk − w

)
⩾
(
A(u), u− w

)
.
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We remark that

(A(uk), uk − u) =

∫
Ω

(
M(x) + ||∇uk||2L2

)
∇uk · ∇(uk − u) +

∫
Ω
gτ (x, uk, ζ)(uk − u)

−
∫
Ω
Ψ(uk − u).

Adding and Subtracting the term∫
Ω

(
M(x) + ||∇uk||2L2(Ω)

)
∇u · ∇(uk − u),

so by (P5) and discarding the positive term, we have

(A(uk), uk − u) ⩾ α

∫
Ω
|∇(uk − u)|2 +

∫
Ω
gτ (x, uk, ζ)(uk − u)−

∫
Ω
Ψ(uk − u)

+

∫
Ω

(
M(x) + ||∇uk||2L2(Ω)

)
∇u · ∇(uk − u).

As Ψ ∈ L∞(Ω) and uk → u in L1(Ω) there follows that

lim
k→∞

∫
Ω
Ψ(uk − u) = 0.

Moreover, on one hand since M(x)∇u ∈
(
L2(Ω)

)N , ∇(uk − u) ⇀ 0 weakly in
(
L2(Ω)

)N
and

{
||∇uk||2L2

}∞
k=1

is bounded, we get

lim
k→∞

∫
Ω

(
M(x) + ||∇uk||2L2(Ω)

)
∇u · ∇(uk − u) = lim

k→∞

∫
Ω
M(x)∇u · ∇(uk − u)

+ lim
k→∞

||∇uk||2L2

∫
Ω
∇u · ∇(uk − u) = 0.

On the one hand, as |gτ (x, uk, ζk)| < τ and uk → u ∈ L1(Ω) up to subsequences, we have

lim
k→∞

∫
Ω
gτ (x, uk, ζk)(uk − u) = 0.

Thus

0 ⩾ lim sup
k→∞

(
A(uk), uk − u) ⩾ lim sup

k→∞
α

∫
Ω
|∇(uk − u)|2 ⩾ lim inf

k→∞
α

∫
Ω
|∇(uk − u)|2 ⩾ 0,

hence ||uk − u||
W 1,2

0
→ 0 in W 1,2

0 (Ω), which implies that

lim inf
k→∞

(
A(uk), uk − w

)
= (A(u), u− w).

Therefore A is pseudomonotone, by Minty-Browder Theorem, see 4.6, there exists u ∈
W 1,2

0 (Ω) satisfying (3.3).
From an analogous argument used in the Proposition 2.1, given u ∈W 1,2(Ω) fixed there

exist η = T (u) ∈W 1,2
0 (Ω) such that∫
Ω
M(x)∇η · ∇ψ =

∫
Ω
hτ (x, u, η)ψ ∀ ψ ∈W 1,2

0 (Ω). (3.4)
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Now, taking φ = u in (3.3), and discarding the positive term, using the hypothesis (P5),
(P′

2) and by Hölder’s and Poincaré inequality, we have

α

∫
Ω
|∇u|2 ⩽ C||Ψ||L∞ ||∇u||L2 . (3.5)

In addition, taking ψ = η in (3.4), by Hölder’s and Poincaré inequality

α

∫
Ω
|∇η|2 ⩽ Cτ meas(Ω)

1
2 ||∇η||L2 .

Choosing R = max{C||Ψ||L∞ , Cτmeas(Ω)
1
2 } by (3.5) and the above inequality, we get

||∇u||L2 ⩽ R and ||∇η||L2 ⩽ R. (3.6)

In particular, by Poincaré inequality ||u||L2 ⩽ R and ||η||L2 ⩽ R.
Let B = B(0, R) = {u ∈ L2(Ω); ||u||L2 ⩽ R}. We will prove that the operator T ◦ S

defined in B satisfies the hypothesis of Schauder´s fixed point Theorem. By estimates (3.6),
it is easy to see that B is inariant from T ◦ S. However continuity and compactness are
more delicate to check, so we will give a little more detail in your verification.

Let ζk → ζ in L2(Ω) such that uk = S(ζk) i.e. uk satisfies∫
Ω

(
M(x) + ||∇uk||2L2

)
∇uk · ∇φ+

∫
Ω
gτ (x, uk, ζk)φ =

∫
Ω
Ψφ. (3.7)

Since uk is bounded in W 1,2
0 (Ω), up to a subsequence, we have{
uk ⇀ u weakly in W 1,2

0 (Ω)

uk → u in L2(Ω), and a.e in Ω.

Thus, by making k → ∞ in (3.7), by Lemma 3.1, and fact that hτ is a Carathéodory
function, we have u = S(ζ).

By estimates (3.6) up to a subsequence we get{
ηk ⇀ η weakly in W 1,2

0 (Ω)

ηk → η in L2(Ω), and a.e in Ω.
(3.8)

Since ηk = T (uk), that is,∫
Ω
M(x)∇ηk · ∇ψ =

∫
Ω

(
hτ (x, uk, ηk) +

1

τ

)
ψ ∀ ψ ∈W 1,2

0 (Ω).

Thus by (3.8) and fact that gτ is a Carathéodory function, making k → ∞ in equality
above we obtain η = T (u).

Moreover, it is clear that T ◦ S(B) is relatively compact in L2(Ω), i.e., T (S(B)) is
compact in L2(Ω). Once, as we saw earlier B is invariant by T ◦ S and T ◦ S is continuous.
Therefore, by Schauder’s Fixed Point Theorem, there exists v ∈ B ⊂ W 1,2

0 (Ω) such that
v = T (S(v)) = T (u).

Now, we will prove that if Ψ ∈ Lm(Ω) with m ⩾ (2∗)′ there exists a constant C > 0
such that

||u||
W 1,2

0
+ ||v||

W 1,2
0

⩽ C||Ψ||Lm .
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In fact, taking φ = u in the weak formulation of the first equation of (K ′), and discarding
the positive term, using the hypothesis (P5),(P′

2), (P2) and since m ⩾ (2∗)′ by Hölder’s and
Sobolev’s inequality , we have

α

∫
Ω
|∇u|2 + c2

∫
|u|r|v|θ+1 ⩽ C||Ψ||Lm ||u||L2∗ ⩽ C||Ψ||Lm ||∇u||L2

hence

||u||
W 1,2

0
⩽ C||Ψ||Lm and

∫
|u|r|v|θ+1 ⩽ C||Ψ||2Lm

In addition, taking ψ = v in the weak formulation of the second equation of (K ′), by
hypothesis (P5) ,(P3) and the above estimate we get

||v||
W 1,2

0
⩽ C||Ψ||Lm .

Finally, let is show that if Ψ ∈ Lm(Ω) for m > N
2 and 0 < θ < 4

N−2 .

||u||L∞ + ||v||L∞ < C.

For this, we take φ = Gk(u) in the weak formulation of the first equation of (K ′) obtaining∫
Ω

(
M(x) + ||∇u||σσ

)
∇u · ∇uG′

k(u) +

∫
Ω
gτ (x, u, v)Gk(u) =

∫
Ω
ΨGk(u)

by definition of Gk, we have∫
Ω
gτ (x, u, v)Gk(u) ⩾ 0 and ||∇u||σLσ

∫
Ω
|∇u|2G′

k(u) ⩾ 0.

Thus, discarding the positive term using the ellipticity of M and Hölder’s inequelity with
exponent 2N

N+2 , we get

α

∫
Ω
|∇Gk(u)|2 ⩽

∫
Ω
ΨGk(u) ⩽

(∫
Au

k

|Ψ|
2N
N+2

)N+2
2N
(∫

Ω
|Gk(u)|2

∗
) 1

2∗

where Au
k = {|u| > k}. Firthermore, recall that by Sobolev’s and Hölder’s with exponent

(N+2)m
2N there follows(∫

Ω
|Gk(u)|2

∗
) 2

2∗
⩽
(∫

Ω
|Gk(u)|2

∗
) 1

2∗ ||Ψ||Lmmeas(Au
k)

(1− 2N
(N+2)m

)
N+2
2N

so that, (∫
Ω
|Gk(u)|2

∗
) 1

2∗
⩽ C||Ψ||Lmmeas(Au

k)
(1− 2N

(N+2)m
)
N+2
2N (3.9)

hence by Hölder’s inequality and (3.9) we have∫
Ω
|Gk(u)| =

∫
Au

k

|Gk(u)| ⩽ meas(Au
k)

N+2
2N

(∫
Ω
|Gk(u)|2

∗
) 1

2∗
⩽ C||Ψ||Lmmeas(Au

k)
α

where α = 1 + 1
2 − 1

m > 1, since m > N
2 . Therefore, by Lemma 1.3 we obtain ||u||L∞ <

C||Ψ||Lm . Analogous to Lemma 2.3 item (ii), we obtain the estimate L∞(Ω) for v.
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Since gτ (., uk, vk) = g(., uk, vk) and hτ (., uk, vk) = h(., uk, vk) a.e. in Ω, for simplicity,
we consider the following approximate problem.

Proposition 3.2. Let {fk} be a sequence of L∞(Ω) functions strongly convergent to f in
Lm(Ω), m ⩾ 1, for which |fk| ⩽ |f | a.e. in Ω. Then, there exists (uk, vk) ∈ W 1,2

0 (Ω) ∩
L∞(Ω)×W 1,2

0 (Ω) ∩ L∞(Ω), solution to{
−div

(
(M(x) + ||∇uk||2L2)∇uk

)
+ g(x, uk, vk) = fk

−div(M(x)∇vk) = h(x, uk, vk) +
1
τk
.

(KA)

where τk > 0 and τk → +∞ if k → +∞. Moreover, if f ≥ 0 a.e. in Ω then uk ⩾ 0 a.e. in
Ω and vk > 0 a.e. in Ω.

Proof. Given k > 0 consider τ > (c1 + d1)C
r+θkr+θ, where C is given in Lemma 2.3 and

c1, d1 in (P1), (P3). Let us recall the standard truncation Tk(s) = max(−k,min(s, k))
and then take fk = Tk(f). Thus, for Ψ = fk, by combining Proposition 3.1, we obtain
a couple (uk, vk) ∈ W 1,2

0 (Ω) ∩ L∞(Ω) ×W 1,2
0 (Ω) ∩ L∞(Ω) solution of (K ′). Observe that

gτ (., uk, vk) = g(., uk, vk) and hτ (., uk, vk) = h(., uk, vk) a.e. in Ω. As a matter of fact, from
P1, Proposition 3.1 item (ii) and the choice of fk, we have

|g(x, uk, vk)| ⩽ c1|u|r−1|v|θ+1

⩽ c1C
r+θ∥fk∥r+θ

L∞

⩽ c1C
r+θkr+θ.

Thence, since by the choice of τ > c1C
r+θkr+θ, from (2.1) we have that gτ coincides with

g. Analogously using the hypothesis P3 we conclude that hτ = h.
Finally, remark that if f ⩾ 0 a.e. in Ω then fk ⩾ 0 a.e. in Ω. Thus taking φ = u−k =

−max(−uk, 0) in the first equation of (AP), we have that∫
Ω

(
M(x) + ||∇uk||2L2

)
∇[u+k − u−k ] · ∇u

−
k +

∫
Ω
g(x, uk, vk)u

−
k =

∫
Ω
fu−k ,

by using the hypothesis (P5) we get

−(α+ ||∇uk||2L2)

∫
Ω
|∇u−k |

2 +

∫
Ω
g(x, uk, vk)u

−
k ⩾

∫
Ω
fu−k ,

Now, note that∫
Ω
g(x, uk, vk)u

−
k =

∫
{uk<0}

g(x, uk, vk)u
−
k = −

∫
{uk<0}

g(x, uk, vk)uk ⩽ 0

where the last integral is negative, by hypothesis (P′
2). Which implies that

0 ⩾ −(α+ ||∇uk||2L2)

∫
Ω
|∇u−k |

2 ⩾
∫
Ω
fu−k ⩾ 0.

Thus

0 ⩽
∫
Ω
|∇u−k |

2 ⩽ 0,

thence ∥u−k ∥
2
W 1,2

0

= ∥∇u−k ∥
2
L2 = 0 which implies that u−k = 0. Consequently we get uk ≥ 0

a.e. in Ω.
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Now we prove that vk > 0 a.e. in Ω. In fact, consider wk ∈ C1,α(Ω), with 0 ⩽ α < 1,
the solution of {

−div(M(x)∇wk) =
1
τk

in Ω,

wk = 0 on ∂Ω.
(3.10)

Remark that, since M ∈ W 1,∞(Ω) the existence of this wk is standard, for instance see
Corollary 8.36 in [15]. Then, by a straightforward application of the Strong Maximum
Principle of Vasquez in (3.10), see Theorem 4 in [20], we obtain that wk > 0 in Ω.After
that, let us stress that

−div(M(x)∇vk) = h(x, uk, vk) +
1

τk
⩾ −div(M(x)∇wk)

then by the Comparison Principle vk ⩾ wk a.e. in Ω so that vk > 0 a.e. in Ω.

3.2 Estimates

Initially we will get uniform a priori estimates that play a key role in our results. First, we
adress the “energy case"

m ⩾ (r + θ + 1)′.

In this case, the non-local term in the second is ||∇u||2L2 .

Lemma 3.2. Let f ∈ Lm(Ω) where m ⩾ (r + θ + 1)′, and f ⩾ 0 a.e in Ω, r > 1 and
0 < θ < 1. Then

∥uk∥2W 1,2
0

+ ∥vk∥2W 1,2
0

+

∫
Ω
ur+θ+1
k +

∫
Ω
urkv

θ+1
k ⩽ C

(
∥f∥

r+θ+1
r+θ

Lm +
1

τ2k

)
(3.11)

where C > 0 and τk → ∞ if k → ∞.

Proof. By taking φ = uθ+1
k (vk + ϵ)−θ in the second equation of (KA), after dropping the

positive term, from analogous manner to Lemma 2.4 we obtain∫
Ω
ur+θ+1
k ⩽ C

(∫
Ω
|∇uk|2 +

∫
Ω
|∇vk|2

)
(3.12)

Now let us proceed to the other estimates. Indeed by choosing φ = uk in the first equation
of (KA) we get∫

Ω
M(x)∇uk · ∇uk + ||∇uk||2L2

∫
Ω
∇uk · ∇uk +

∫
Ω
g(x, uk, vk)uk =

∫
Ω
fkuk

discarding the term positive and using the hypothesis (P5) we have

α

∫
Ω
|∇uk|2 +

∫
Ω
g(x, uk, vk)uk ⩽

∫
Ω
fkuk. (3.13)

Hence, since f ∈ Lm(Ω) with m ⩾ (r + θ + 1)′ by Hölder’s inequality on the right - hand
side of the above inequality and by (P1) we get∫

Ω
urkv

θ+1
k ⩽ C||f ||Lm ||uk||Lr+θ+1 . (3.14)
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By talking ψ = vk in the second equation of (KA) and using the hypothesis (P3),(P4), (P5)
and (3.14) we have

α

∫
Ω
|∇vk|2 ⩽

∫
Ω

(
h(x, uk, vk) +

1

τk

)
vk ⩽ d2

∫
Ω
urkv

θ+1
k +

1

τk

∫
Ω
vk

⩽ C∥f∥Lm∥uk∥Lr+θ+1 +
C

τk
∥∇vk∥L2 .

However, it is clear that
C

τk
∥∇vk∥L2 ≤ Cα

τ2k
+
α

2
∥∇vk∥2L2

then by (3.13) we get∫
Ω
|∇uk|2 +

∫
Ω
|∇vk|2 ⩽ C

(
∥f∥Lm∥uk∥Lr+θ+1 +

1

τ2k

)
. (3.15)

In particular, by combining (3.12) with (3.15) and Young’s inequality, we obtain

∥uk∥r+θ+1
Lr+θ+1 ⩽ C

(
∥f∥

r+θ+1
r+θ

Lm +
1

τ2k

)
. (3.16)

Therefore, by combining (3.14), (3.16) with (3.15), we finally have get

∥uk∥2W 1,2
0

+ ∥vk∥2W 1,2
0

+

∫
Ω
urkv

θ+1
k ⩽ C

(
∥f∥

r+θ+1
r+θ

Lm +
1

τ2k

)
,

where we stress that τk → ∞ if k → ∞.

The next lemma will establish estimates under a weaker regime for source, specifically
for f ∈ Lm(Ω) where (r − θ + 1

1− 2θ

)′
< m < (r + θ + 1)′.

In contrast to Lemma 3.2, we consider another set of test functions to compensate for
the additional uniqueness in our system. In this case, the non-local term in the second is
||∇u||pLp .

Lemma 3.3. Let f be a positive function in Lm(Ω) with
(
r−θ+1
1−2θ

)′
< m < (r + θ + 1)′ and

0 < θ < 1
2 . Then

∥uk∥pW 1,p
0

+

∫
Ω
ur−θ+1
k +

∫
Ω
urkv

1−θ
k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
and

∥vk∥qW 1,q
0

⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

) N
N−2θ

(3.17)

where p = 2(r−θ+1)
r+θ+1 , q = 2N(1−θ)

N−2θ and C > 0, where τk → ∞ if k → ∞. Moreover, if
r ⩾ N+2

N−2 , then {uk} and {vk} are bounded in W 1,q
0 (Ω).

Proof. Consider φε = (u+ ε)γ − εγ where 0 < ϵ ⩽ 1, as a test function in the first equation
of (KA), we get∫

Ω
(M(x) + ||∇uk||pLp)∇uk · ∇uk(uk + ε)γ +

∫
Ω
g(x, uk, vk)[(uk + ϵ)γ − εγ ]

=

∫
Ω
fk[(uk + ε)γ − ϵγ ]. (3.18)
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Note that

γ

∫
Ω
(M(x) + ||∇uk||pLp)∇uk · ∇uk(uk + ε)γ−1 = γ

∫
Ω
M(x)∇uk · ∇uk(uk + ε)γ−1

+ γ||∇uk||pLp

∫
Ω
|∇uk|2(uk + ε)γ−1

discarding the positive term and using the ellipcity hypothesis of M we have

γ

∫
Ω
(M(x) + ||∇uk||pLp)∇uk · ∇uk(uk + ε)γ−1 ⩾ αγ

∫
Ω
|∇uk|2(uk + ε)γ−1.

Combining the above inequality with (3.18) we have

αγ

∫
Ω
|∇uk|2(uk + ε)γ−1 +

∫
Ω
g(x, uk, vk)[(uk + ε)γ − ϵγ ] ⩽

∫
Ω
fk[(uk + ε)γ − εγ ].

Since uk ∈ L∞(Ω) and 0 < ε ⩽ 1 for the right hand side we have |fk|[(uk + ε)γ − εγ ]| ⩽
|f | · [(∥uk∥L∞ + ε)γ + εγ ] and fk[(uk + ε)γ − εγ ] → fku

γ
k a.e. in Ω when ε → 0. Thus, by

the Dominated Convergence Theorem∫
Ω
fku

γ
k = lim

ε→0+

∫
Ω
fk[(uk + ε)γ − εγ ].

Thus, by taking ε→ 0 in (2.20), by recalling Lemma 2.2 and (P1), we end up with

αγ

∫
Ωk

+

|∇uk|2uγ−1
k + c2

∫
Ω
ur−1+γ
k vθ+1

k ⩽
∫
Ω
|f |uγk <∞, (3.19)

which is finite for every fixed k ∈ N, where Ωk
+ = {uk > 0}.

Using the coupling terms of the two equations together with the appropriate choice
of test function, we will obtain fundamental estimates to conclude our result. Indeed, by
considering ψε = (vk + ε)γ − εγ in the second equation of (KA) it is clear that

αγ

∫
Ω
|∇vk|2(vk + ε)γ−1 ⩽

∫
Ω

(
h(x, uk, vk) +

1

τk

)
[(vk + ε)γ − εγ ].

Then, once more, since vk > 0 a.e. in Ω, by taking ε → 0 and by recalling (P3), from
Lemma 2.2, we obtain

αγ

∫
Ω
|∇vk|2vγ−1

k ⩽
∫
Ω

(
h(x, uk, vk) +

1

τk

)
vγk ⩽ d2

∫
Ω
urkv

γ+θ
k +

1

τk

∫
Ω
vγk . (3.20)

Further, take ψ = (uk + ε)γ+θ(vk + ε)−θ in the second equation of (KA) and discarding the
positive term, one has that∫

Ω
h(x, uk, vk)(uk + ε)γ+θ(vk + ε)−θ ⩽ (γ + θ)

∫
Ω
M(x)∇vk · ∇uk (uk + ε)γ+θ−1(vk + ε)−θ

− θ

∫
Ω
M(x)∇vk · ∇vk(uk + ε)γ+θ(vk + ε)−(θ+1)

Then, by (P3), (P4) and (P5) it is clear that

c1

∫
Ω
urkv

θ
k(uk + ε)γ+θ(vk + ε)−θ + αθ

∫
Ω
|∇vk|2(uk + ε)γ+θ(vk + ε)−(θ+1)

⩽ β(γ + θ)

∫
Ω
|∇vk||∇uk|(uk + ε)γ+θ−1(vk + ε)−θ

= β(γ + θ)

∫
Ωk

+

|∇vk||∇uk|(uk + ε)γ+θ−1(vk + ε)−θ,

(3.21)
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since ∇uk = 0 a.e. in the set uk = 0, where Ωk
+ = {uk > 0}.

Given η > 0, from Young’s inequality, we have that∫
Ωk

+

|∇vk||∇uk|(uk + ε)γ+θ−1(vk + ε)−θ ⩽
∫
Ωk

+

|∇vk||∇uk|(uk + ε)γ+θ−1v−θ
k

⩽ η

∫
Ω
|∇vk|2v−2θ

k + Cη

∫
Ωk

+

|∇uk|2(uk + ε)2(γ+θ−1).

By combining the above inequality and (3.21) we get

c1

∫
Ω
urkv

θ
k(uk + ε)γ+θ(vk + ε)−θ + αθ

∫
Ω
|∇vk|2(uk + ε)γ+θ(vk + ε)−(θ+1)

⩽ β(γ + θ)η

∫
Ω
|∇vk|2v−2θ

k + β(γ + θ)Cη

∫
Ωk

+

|∇uk|2(uk + ε)2(γ+θ−1).

At this point, it is natural to choose an adequate γ in order to guarantee that certain crucial
exponents coincide, what allows us to explore the coupling between the equations. Indeed,
by fixing γ = 1− 2θ so that 2(γ + θ − 1) = γ − 1 = −2θ, after dropping the positive term
there follows that

c1

∫
Ω
urkv

θ
k(uk + ε)1−θ(vk + ε)−θ ⩽ β(1− θ)η

∫
Ω
|∇vk|2v−2θ

k

+ β(1− θ)Cη

∫
Ωk

+

|∇uk|2(uk + ε)−2θ. (3.22)

However, remark that by (3.19) for every k fixed, we have |∇uk|2u−2θ
k ∈ L1(Ωk

+). Thus
by taking ε → 0 in (3.22), employing the Fatou Lemma combined with the Dominated
Convergence Theorem, we arrive at

c1

∫
Ω
ur−θ+1
k ⩽ β(1− θ)η

∫
Ω
|∇vk|2v−2θ

k + β(1− θ)Cη

∫
Ωk

+

|∇uk|2u−2θ
k . (3.23)

Now observe that∫
Ω
ur−1+γ
k vθ+1

k =

∫
Ω
ur−2θ
k vθ+1

k ⩾
∫
{uk⩽vk}

urku
−2θ
k vθ+1

k ⩾
∫
{uk⩽vk}

urkv
1−θ
k

and ∫
Ω
ur+1−θ
k =

∫
Ω
urku

1−θ
k ⩾

∫
{uk⩾vk}

urkv
1−θ
k =

∫
{uk⩾vk}

urkv
1−θ
k ,

The latter estimates clearly guarantee that∫
Ω
urkv

1−θ
k ⩽

∫
Ω
ur−θ+1
k +

∫
Ω
ur−2θ
k vθ+1

k . (3.24)

Thus, by gathering (3.20), (3.23) and (3.24), and by using (3.19) twice, since γ + θ = 1− θ,
there follows

α(1− 2θ)

d2

∫
Ω
|∇vk|2v−2θ

k ⩽
∫
Ω
ur−θ+1
k +

∫
Ω
ur−1+γ
k vθ+1

k +
1

τk

∫
Ω
v1−2θ
k

⩽
β(1− θ)η

c1

∫
Ω
|∇vk|2v−2θ

k + C

∫
Ω
fu1−2θ

k +
1

τk

∫
Ω
v1−2θ
k ,
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where we combined (3.19) and (3.23) in the right-hand side. If we consider η = α(1−2θ)c1
2β(1−θ)d2

,
it is easy to see that ∫

Ω
|∇vk|2v−2θ

k ⩽ C

∫
Ω
fu1−2θ

k +
1

τk

∫
Ω
v1−2θ
k <∞, (3.25)

which is finite for every k fixed.
At this point, for the sake of simplicity, observe that, given ε > 0, by the locally Lipschitz

Chain Rule, |∇vk|2(vk + ε)−2θ = 1
(1−θ)2

|∇(vk + ε)1−θ|2. Thence, by combining the Sobolev
Embedding, the Fatou Lemma and the Dominated Convergence Theorem, we have(∫

Ω
v
(1−θ)2∗

k

) 2
2∗

⩽ lim inf
ε→0+

(∫
Ω
(vk + ε)(1−θ)2∗

) 2
2∗

⩽ lim inf
ε→0+

C

(∫
Ω
|∇(vk + ε)1−θ|2

) 2
2∗

=

∫
Ω
|∇vk|2v−2θ

k , (3.26)

where in the latter estimates we used that |∇vk|2v−2θ
k ∈ L1(Ω) for every k ∈ N, fixed.

Moreover, observe that (1−θ)2∗

1−2θ > 1 and thus, by combining Hölder’s inequality for (1−θ)2∗

1−2θ

and (1−θ)2N
N+2−4θ , with the last estimate, we arrive at∫

Ω
v1−2θ
k ≤ C

(∫
Ω
v
(1−θ)2∗

k

) 1−2θ
(1−θ)2∗

≤ C

(∫
Ω
|∇vk|2v−2θ

k

) 1−2θ
2−2θ

. (3.27)

Further, from (3.25) and (3.27) with Young’s inequality for 2−2θ
1−2θ and 2− 2θ, we obtain∫

Ω
|∇vk|2v−2θ

k ⩽ C

∫
Ω
fu1−2θ

k +
1

τk
C

(∫
Ω
|∇vk|2v−2θ

k

) 1−2θ
2−2θ

⩽ C

(∫
Ω
fu1−2θ

k +
1

τk

)
+

1

2τk

∫
Ω
|∇vk|2v−2θ

k ,

which clearly guarantees that∫
Ω
|∇vk|2v−2θ

k ⩽ C

(∫
Ω
fu1−2θ

k +
1

τk

)
. (3.28)

Now, by (3.23), (3.19) and (3.28), we get∫
Ω
ur−θ+1
k ⩽ C

(∫
Ω
fu1−2θ

k +
1

τk

)
⩽ C

(
∥f∥Lm ||uk||1−2θ

L(1−2θ)m′ +
1

τk

)
⩽ C

(
∥f∥Lm ||uk||1−2θ

Lr−θ+1 +
1

τk

)
,

where we used that (1 − 2θ)m′ = γm′ ⩽ r − θ + 1, for m′ ⩽ r−θ+1
1−2θ . Further, by means

of another application of the Young inequality, for r−θ+1
1−2θ and r−θ+1

r+θ , after straightforward
compensations, we end up with∫

Ω
ur−θ+1
k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
. (3.29)
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In particular, by combining the above estimate with (3.28) we get∫
Ω
|∇vk|2v−2θ

k ⩽ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
. (3.30)

Further, by gathering (3.24), (3.19), with an analogous argument used to prove (3.30) we
obtain ∫

Ω
urkv

1−θ
k ≤ C

(
∥f∥

r−θ+1
r+θ

Lm +
1

τk

)
.

Accordingly, remark that by the choice of q, if r ⩾ N+2
N−2 , then q < p. Therefore, by

the gradient estimates obtained above, its clear that both {uk} and {vk} are bounded in
W 1,q

0 (Ω).

Incorporating estimates obtained by the Lemmas 3.2 and 3.3, we are able to prove
Theorems 0.3 and 0.4.

3.3 Proof of Theorem 0.3

Proof. By Lemma 3.2, there exist subsequences still indexed by uk and vk and functions u
and v in W 1,2

0 (Ω) such that{
uk ⇀ u weakly in W 1,2

0 (Ω), uk → u in Lσ1(Ω), and a.e. in Ω;

vk ⇀ v weakly in W 1,2
0 (Ω), vk → v in Lσ2(Ω), and a.e. in Ω,

(3.31)

where u ⩾ 0, v ⩾ 0 a.e. in Ω, and

∥u∥2
W 1,2

0

+ ∥v∥2
W 1,2

0

+

∫
Ω
ur+θ+1 +

∫
Ω
urvθ+1 ⩽ C∥f∥

r+θ+1
r+θ

Lm ,

and σ1 < max{2∗, r + θ + 1} and σ2 < 2∗. Analogous to the proof of the Theorem 0.1 we
get

g(x, uk, vk) → g(x, u, v) in L1(Ω) and h(x, uk, vk) → h(x, u, v) in L1(Ω). (3.32)

By setting Γk = ||∇uk||2L2 , since {uk} is bounded in W 1,2
0 (Ω), we have that {Γk}∞k is a

bounded sequence of real numbers, which we may suppose converging to a certain real
number Γ. It is clear that∫

Ω
M(x)∇uk · ∇φ→

∫
Ω
M(x)∇u · ∇φ.

By the latter arguments, in particular, we alredy have that{
−div

((
M(x) + Γ

)
∇u
)
+ g(x, u, v) = f a.e. in Ω.

−div
(
M(x)∇v

)
= h(x, u, v) a.e. in Ω.

(3.33)

So to prove the theorem, we have to show that∫
Ω

(
M(x) + Γk

)
∇uk · ∇φ→

∫
Ω

(
M(x) + ||∇u||2L2

)
∇u · ∇φ.

We claim that Γ ̸= 0. Indeed, otherwise we would have u = 0, which by (3.33) implies that
f ∈ L∞(Ω), which creates a contradiction, because f ∈ Lm(Ω) with m < (2∗)′. Thus, since
Γk is a nonnegative sequence and Γ ̸= 0, there follows that Γ > 0.
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Now we prove that Γ = ∥∇u∥2L2 . First of all, let us remark that by (P5)

∫
Ω

(
M(x) + Γk

)
∇uk · ∇

(
uk − Tn(u)

)
=

∫
Ω

(
M(x) + Γk

)
∇
(
uk − Tn(u)

)
· ∇
(
uk − Tn(u)

)
+

∫
Ω

(
M(x) + Γk

)
∇Tn(u) · ∇

(
uk − Tn(u)

)
⩾ (α+ Γk)

∫
Ω

∣∣∇(uk − Tn(u)
)
|2

+

∫
Ω

(
M(x) + Γk

)
∇Tn(u) · ∇

(
uk − Tn(u)

)
.

Further, by taking φ = uk − Tn(u) as test function in the first equation of (KA) we get∫
Ω

(
M(x) + Γk

)
∇uk · ∇(uk − Tn(u)) +

∫
Ω
g(x, uk, vk)(uk − Tn(u)) =

∫
Ω
fk(uk − Tn(u)).

In this fashion, by combining the last identity and the latter inequality we end up with

α

∫
Ω
|∇(uk − Tn(u))|2 +

∫
Ω
g(x, uk, vk)(uk − Tn(u)) ⩽

∫
Ω
fk(uk − Tn(u))

−
∫
Ω

(
M(x) + Γk

)
∇Tn(u) · ∇(uk − Tn(u))

(3.34)

Now, note that by the Fatou Lemma, (3.32) and (P′
2) we have

0 ⩽
∫
{|u|>n}

g(x, u, v)u ⩽
∫
Ω
g(x, u, v)Gn(u) ⩽ lim inf

k→∞

∫
Ω
g(x, uk, vk)(uk − Tn(u)).

Moreover, remark that, up to subsequences, fk(uk−Tn(u)) → fGn(u) in L1(Ω). As a matter
of fact, by using that m ⩾ (r + θ + 1)′ and that {uk − Tn(u)} is bounded in Lr+θ+1(Ω),
given E ⊂ Ω, measurable, Hölder’s inequality guarantees that∫

E
|fk||uk − Tn(u)| ⩽ C

(∫
E
|fk|m

) 1
m
.

However, by the very choice of fk we have that fk → f in Lm(Ω), so that, {|fk|m} in uni-
formly integrable, and, by the latter inequality we have that {fk

(
uk−Tn(u)

)
}, in uniformly

integrable. Since it clear that fk(uk − Tn(u)) a.e. in Ω, hence, by the Vitali Convergence
theorem, our claim holds true. In particular, there follows that

lim
k→∞

∫
Ω
fk(uk − Tn(u)) =

∫
Ω
fGn(u).

Now, recall that ∇Tn(u) · ∇Gn(u) = |∇u|2T ′
n(u)G

′
n(u) = 0 a.e. in Ω, since T ′

n(s)G
′
n(s) = 0

for a.e. s ∈ R. Then, by (3.31),

lim
k→∞

∫
Ω

(
M(x) + Γk

)
∇Tn(u)∇(uk − Tn(u)) =

∫
Ω

(
M(x) + Γ

)
∇Tn(u)∇Gn(u) = 0.

Thus, by plugging the latter convergences in (3.40) we obtain

lim
k→∞

α

∫
Ω
|∇(uk − Tn(u))|2 ⩽

∫
Ω
fGn(u). (3.35)
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However, we realise that we can write u = Tn(u) +Gn(u), so that∫
Ω
|∇(uk − u)|2 =

∫
Ω
|∇(uk − Tn(u) +Gn(u))|2 ⩽ 2

∫
Ω
|∇(uk − Tn(u))|2 + 2

∫
Ω
|∇Gn(u)|2

taking the limit when k → ∞ on the above inequality and by (3.35) we get

lim
k→∞

∫
Ω
|∇(uk − u)|2 ⩽ lim

k→∞
2

∫
Ω
|∇(uk − Tn(u))|2 + 2

∫
Ω
|∇Gn(u)|2

⩽
2

α

∫
Ω
fGn(u) + 2

∫
Ω
|∇Gn(u)|2

⩽
4

α

∫
|u|>n

fu+ 2

∫
|u|>n

|∇u|2 (3.36)

Nevertheless, since meas({|u| > n}) → 0 as n → ∞, then given ϵ > 0, there exists nϵ > 0,
such that for n > nϵ we have

2

α

∫
Ω
fGn(u) + 2

∫
Ω
|∇Gn(u)|2 < ϵ.

Consequently, since ϵ is arbitrary by (3.36) there follows that limk→∞
∫
Ω |∇(uk − u)|2 = 0,

which means uk → u in W 1,2
0 (Ω).

Therefore by (3.33) we can pass the limit on the approximate problem (KA) and get
that (u, v) are solutions of the problem (K).

3.4 Proof of Theorem 0.4

Proof. By Lemma 3.3, there exist {uk} ⊂ W 1,p
0 (Ω), {vk} ⊂ W 1,q

0 (Ω), and u ∈ W 1,p
0 (Ω),

v ∈W 1,q
0 (Ω) such that, up to subsequences relabeled the same,

uk ⇀ u weakly in W 1,p
0 (Ω), uk → u in Ls1(Ω), and a.e. in Ω;

vk ⇀ v weakly in W 1,q
0 (Ω), vk → v in Ls2(Ω), and a.e. in Ω,

where p = 2(r−θ−1)
r+θ+1 , q = 2N(1−θ)

N−2θ , u ⩾ 0, v ⩾ 0 a.e. in Ω, and

∥u∥p
W 1,p

0

+

∫
Ω
ur−θ+1 +

∫
Ω
urv1−θ ⩽ C∥f∥

r−θ+1
r+θ

Lm and ∥v∥q
W 1,q

0

≤ C∥f∥
N(r−θ+1)

(N−2θ)(r+θ)

Lm , (3.37)

and s1 < max{p∗, r − θ + 1} and s2 < q∗. Similar to the proof of the Theorem 0.1 we get

g(x, uk, vk) → g(x, u, v) in L1(Ω) and h(x, uk, vk) → h(x, u, v) in L1(Ω). (3.38)

Although the argument for obtaining the convergence of the term local ||∇uk||pLp in the
case m < (r+ θ+ 1)′, be equal to the one used in the Theorem 0.3, some subtle difficulties
arise because we are in a regime of weaker regularity for f . Thus, we chose to present the
details.

Setting Λk = ||∇uk||pLp , since {uk} is bounded inW 1,p
0 (Ω), we have {Λk}∞k=1 is a sequence

of real numbers, which we way suppose converges to some real number Λ. In this case, we
also observed that Λ ̸= 0. Actually, otherwise we would have u = 0, which by (3.33) implies
that f ∈ L∞(Ω), which creates a contradiction, because f ∈ Lm(Ω) with m < (r + θ + 1)′.
Thus, since Λk is a nonnegative sequence and Λ ̸= 0, there follows that Λ > 0.

To finalise the proof we show Λ = ∥∇u∥pLp . First of all, let us remark that by (P5)
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∫
Ω

(
M(x) + Λk

)
∇uk · ∇

(
uk − Tn(u)

)
⩾ (α+ Λk)

∫
Ω

∣∣∇(uk − Tn(u)
)
|2

+

∫
Ω

(
M(x) + Λk

)
∇Tn(u) · ∇

(
uk − Tn(u)

)
. (3.39)

Now for n > 0 taking φ = uk − Tk(u) as test function in the first equation (KA) we get∫
Ω

(
M(x) + Λk

)
∇uk · ∇(uk − Tn(u)) +

∫
Ω
g(x, uk, vk)(uk − Tn(u)) =

∫
Ω
fk(uk − Tn(u)).

In this way, by combining the last identity with (3.39) we get

α

∫
Ω
|∇(uk − Tn(u))|2 +

∫
Ω
g(x, uk, vk)(uk − Tn(u)) ⩽

∫
Ω
fk(uk − Tn(u))

−
∫
Ω

(
M(x) + Λk

)
∇Tn(u) · ∇(uk − Tn(u)).

(3.40)

On one hand by the Fatou Lemma, (3.38) and (P′
2) we have

0 ⩽
∫
{|u|>n}

g(x, u, v)u ⩽
∫
Ω
g(x, u, v)Gn(u) ⩽ lim inf

k→∞

∫
Ω
g(x, uk, vk)(uk − Tn(u)),

on the other hand, since m′ < r − θ + 1, as {uk} is uniformly bounded in Lr−θ+1(Ω)
there follows that {uk − Tn(u)} is bounded in Lm′

(Ω). Consequently up to subsequence
uk − Tn(u)⇀ Gn(u) weakly in Lm′

(Ω). Thus, as fk → f in Lm(Ω) we have

lim
k→∞

∫
Ω
fk(uk − Tn(u)) =

∫
Ω
fGn(u).

Moreover, since {uk} is bounded in W 1,p
0 (Ω) there follows that ∇(uk − Tn(u))⇀ ∇(Gn(u))

in (Lp(Ω))N , so

lim
k→∞

∫
Ω
(M(x) + Λk)∇Tn(u) · ∇(uk − Tn(u)) =

∫
Ω
(M(x) + Λ)∇Tn(u) · ∇(u− Tn(u)) = 0

for the reason that ∇Tn(u)·∇Gn(u) = |∇u|2T ′
n(u)G

′
n(u) = 0 a.e. in Ω, since T ′

n(s)G
′
n(s) = 0

for a.e. s ∈ R. Thus, using that p < 2 by (3.40) we obtain

C lim
k→∞

α

∫
Ω
|∇(uk − Tn(u))|p ⩽ lim

k→∞
α

∫
Ω
|∇(uk − Tn(u))|2 ⩽

∫
Ω
fGn(u). (3.41)

However, we realise that we can write u = Tn(u) +Gn(u), so that∫
Ω
|∇(uk−u)|p =

∫
Ω
|∇(uk− (Tn(u)+Gn(u))|p ⩽ 2p

∫
Ω
|∇(uk−Tn(u))|p+2p

∫
Ω
|∇Gn(u)|p.

Hence, by taking the limit and then from (3.41) there follows that

lim
k→∞

∫
Ω
|∇(uk − u)|p ⩽ 2p lim

k→∞

∫
Ω
|∇(uk − Tn(u))|p + 2p

∫
Ω
|∇Gn(u)|p

⩽
2p

α

∫
Ω
fGn(u) + 2p

∫
Ω
|∇Gn(u)|p

=
2p+1

α

∫
|u|>n

fu+ 2p
∫
|u|>n

|∇u|p. (3.42)
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Nevertheless, since meas({|u| > n}) → 0 as n → ∞, then given ϵ > 0, there exists nϵ > 0,
such that for n > nϵ we have

2p+1

α

∫
|u|>n

fu+ 2p
∫
|u|>n

|∇u|p < ϵ.

Consequently, since ϵ is arbitrary by (3.42) we conclude that limk→∞
∫
Ω |∇(uk − u)|p = 0.

Therefore, we can take the limit on the approximate problem (KA) and get that (u, v) are
solutions of the problem (K).
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Chapter 4
Appendix A

The following lemma is a fundamental instrument to obtain the chain rule of function in
Sobolev space.

Definition 4.1. A function u : [a, b] → R is said to be absolutely continuous if for every
ϵ > 0 there exist δ > 0 such that if a = x1 < y1 ⩽ x2 < y2 ⩽ ... ⩽ xm < ym = b is a
partition of [a, b] with

l∑
k=1

|bk − ak| ⩽ δ.

Then
l∑

k=1

|u(bk)− u(ak)| ⩽ ϵ.

Moreover, if u : Ω → R where Ω be an open set in RN we say that is s absolutely continuous
on almost all line segments in Ω parallel to the coordinate axes if u(a1, ..., ai−1, ·, ai+1, ..., aN ) :
I → R is absolutely continuous for each i = 1, . . . , N , e.g. in the case where N = 2, u re-
stricted to the remains r1 and r2 is absolutely continuous.

Lemma 4.1. Let u ∈ Lp(Ω). Then u ∈ W 1,p
0 (Ω) where p ⩾ 1. If, and only if, u has a

representative u that is absolutely continuous on almost all line segments in Ω parallel to
the coordinate axes and whose (classical) partial derivatives belong to Lp(Ω).

Proof. The reader is referred to [11, p. 293] or [19, p. 44].

Theorem 4.1. (Rademacher) Let Φ be locally Lipschitz continuous in Ω. Then Φ is
differentiable almost everywhere in Ω. See [14, p. 296].
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The proof of the next result where Φ ∈ C1(R) can be easily found at [11, 14] and [19].
However the proof is subtly omitted when Φ is a Lipschitz continuous function of R into
itself. That being the case, we have chosen to present our demonstration for such a result.

Theorem 4.2. (Chain Rule Sobolev). Let Φ : R → R be a Lipschitz continuous function
such that Φ(0) = 0 and u ∈W 1,p(Ω) where 1 < p <∞. Then Φ ◦ u ∈W 1,p

0 (Ω) and

∂(Φ ◦ u)(x)
∂xi

= Φ′(u(x))
∂u(x)

∂xi
.

Proof. As the space W 1,p
0 (Ω) is the closure of C∞

c (Ω) in W 1,p(Ω), given u ∈W 1,p
0 (Ω) there

exists uk ∈ C∞
c (Ω) such that uk → u in W 1,p(Ω). Consider vk = Φ ◦ uk. Since uk has

compact support and Φ(0) = 0, there follows that vk has compact support. In addition, as
Φ is Lipschitz continuous and uk is a smooth function with compact support, we get

|vk(x)− vk(y)| = |Φ(uk(x))− Φ(uk(y))| ⩽ L|uk(x)− uk(y)| ⩽ Lk|x− y|

which implies that vk is Lipschitz continuous and consequently absolutely continuous on
almost all line segments in Ω parallel to the coordinate axes. Hence taking x+ tei where ei
is the ith coordinate vector for i = 1, . . . , N , we have∣∣∣∣∂vk∂xi

(x)

∣∣∣∣ = lim
t→∞

|vk(x+ tei)− vk(x)|
|t|

⩽ lim
t→∞

L|uk(x+ tei)− uk(x)|
|t|

= L

∣∣∣∣∂uk∂xi
(x)

∣∣∣∣ ,
consequently

∂vk
∂xi

(x) ∈ Lp(Ω). Thus, by Lemma 4.1 we obtain vk ∈W 1,p
0 (Ω).

Now, note that

|vk(x)− Φ(u(x))| = |Φ(uk(x))− Φ(u(x))| ⩽ L|uk(x)− u(x)|

it follows that vk → Φ ◦ u in Lp(Ω) when k → ∞. Since
{
∂vk
∂xi

}
is bounded for each

1 ⩽ k ⩽ n, hence
∂vk
∂xi

(x)⇀ ωi weakly in Lp(Ω) up to subsequence. Thus give ψ ∈ C∞
c (Ω),

there follows that∫
Ω
ψ · ωi = lim

k→∞

∫
Ω
ψ
∂vk
∂xi

= − lim
k→∞

∫
Ω
vk
∂ψ

∂xi
= −

∫
Ω
v
∂ψ

∂xi

by definition of a weak derivative we have ωi =
∂v
∂xi

, and so Φ ◦ u ∈W 1,p
0 (Ω).

Finally, as Φ is Lipschitz by Theorem 4.1 we may conclude that∫
Ω
(Φ ◦ u) ∂ψ

∂xi
= lim

j→∞

∫
Ω
(Φ ◦ uj)

∂ψ

∂xi

= − lim
j→∞

∫
Ω

∂(Φ ◦ uj)
∂xi

ψ

= − lim
j→∞

∫
Ω
(Φ′ ◦ uj)

∂uj
∂xi

ψ

= −
∫
Ω
(Φ′ ◦ u) ∂u

∂xi
ψ ∀ ψ ∈ C∞

0 .

Therefore by definition of a weak derivative we get

∂(Φ ◦ u)(x)
∂xi

= Φ′(u(x))
∂u(x)

∂xi
.
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In order to ensure the legitimacy of the test functions taken to obtain the priori estimates,
we established a stronger version of the Chain Rule.

Corollary 4.1. Let Φ : R → R be a locally Lipschitz continuous function such that Φ(0) = 0
and u ∈W 1,p(Ω) ∩ L∞(Ω) such that ||u||L∞ < C where 1 < p <∞. Then Φ ◦ u ∈W 1,p

0 (Ω)
and

∂(Φ ◦ u)(x)
∂xi

= Φ′(u(x))
∂u(x)

∂xi
a.e. in Ω

Proof. Consider Ψ = Φ ◦ Tk where Tk is Stampacchia truncation function defined at the
beginning of Chapter 1. Note that Ψ is a locally continuous function, Indeed, give x ∈ R,
let V be a neighborhood, such that Tk(x) ∈ V . As Φ by hypothesis is locally Lipschitz and
Tk is Lipschitz, there follows that

|Ψ(x)−Ψ(y)| = |Φ(Tk(x))− Φ(Tk(y))| ⩽ L|Tk(x)− Tk(y)| ⩽ L|x− y| ∀y ∈ R.

Moreover, since ||u||L∞ and meas(Ω) <∞ we get

|Ψ(u)| = |Ψ(u)−Ψ(0)| = |Φ(Tk(u))− Φ(Tk(0))| ⩽ L|Tk(x)− 0| = L|u| ⩽ C

where we conclude Ψ ◦ u ∈ L∞(Ω). Thus, by Theorem 4.2 we have Ψ(u) ∈W 1,p(Ω) and

∂Ψ

∂xi
(u(x)) = Ψ′(u(x))

∂u

∂xi
a.e. in Ω.

Taking ||u||L∞ < k, since T ′(u) = 1 in {x ∈ Ω; |u(x)| < k} we obtain

Ψ′(u(x)) = Φ′(Tk(u(x)))T
′
k(u(x)) = Φ′(u(x)).

In this way, as Ψ′ ◦ u = Φ′ ◦ u a.e. in Ω, there follows that

∂(Φ ◦ u)(x)
∂xi

= Φ′(u(x))
∂u(x)

∂xi
a.e. in Ω.

Let us look at some results of the Measure Theory that were important for the develop-
ment of the work.

Definition 4.2. Let (Ω,Σ, µ) be a measure spaces and uk, u functions in Ω from R, Σ -
measurable.

(i) uk → u a.e. in Ω if there exists a set Ω0 in Ω with µ(Ω0) = 0 such that for each ε > 0
and x ∈ Ω\Ω0 there exists a natural number N(ε, x) such that if k ⩾ N(ε, x), then
|uk(x)− u(x)| < ε.

(ii) Let Lp(Ω) = Lp(Ω,Σ, µ) with 1 ⩽ p < ∞. A sequence uk → u in Lp(Ω) if for every
ε > 0 there exists N(ε) ∈ N such that if k ⩾ N(ε), then

||uk − u||Lp =
(∫

Ω
|uk − u|p

) 1
p
< ε.

By Egoroff Theorem establishes a condition for achieving near-uniform convergences,
based on the hypothesis that the sequence converges almost everywhere. Even though it is
a classic result of the measure theory, we chose to state and present its demonstration.
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Theorem 4.3 (Egoroff). Let µ(Ω) < ∞ and uk → u a.e. in Ω. Then uk converges almost
uniformly to u and in measure.

Proof. If uk → u a.e. x ∈ Ω then there exists M ⊂ Ω with µ(M) = 0 such that ∀ε > 0 and
∀x ∈ Ω\M there exists N(ε, x) ∈ N such that k > N(ε, x) there is

|uk(x)− u(x)| < ε.

Given m,n ∈ N, define

Ek(m) =

∞⋃
j=k

{x ∈ Ω; |uj(x)− u(x)| > m−1}.

Note that, for fixed m

Ek(m) = {x ∈ Ω; |uk(x)− u(x)| > m−1}
⋃ ∞⋃

k=n+1

{x ∈ Ω; |uk(x)− u(x)| > m−1.}

So Ek+1(m) ⊂ Ek(m), moreover clearly Ek(m) ∈ Σ. As by hypothesis uk → u a.e. we have
that

∞⋂
k=1

Ek(m) = ∅.

Thus since µ(Ω) < +∞ and Ek+1(m) ⊂ Ek(m) we obtain

0 = lim
n→∞

µ

( ∞⋂
k=1

Ek(m)

)
= lim

k→∞
µ(Ek(m)).

Now given δ > 0, let kn such that µ(Ejk(m)) < δ
2k

and Eδ =
⋃∞

k=1Ejk(m). Note that Eδ ∈ σ
and

µ(Eδ) = µ

( ∞⋂
k=1

Ejk(m)

)
=

∞∑
k=1

µ(Ejk(m)) < δ.

Then if x /∈ Eδ follows that x ∈ Ejk(m), so for j > jk we get

|uk(x)− u(x)| < 1

m
∀x ∈ Ω\Eδ.

The next result is a consequence of the Egoroff Theorem and quite useful for proving
convergence of nonlinear terms.

Theorem 4.4 (Vitali). Let {uk}, u ∈ Lp(Ω) where 1 ⩽ p <∞. Suppose that

(i) uk → u a.e. in Ω

(ii) limµ(E)→0

∫
Ω |uk|p = 0 uniformly in k, where E ⊂ Ω is a mensurable subset.

Then uk → u in Lp(Ω).
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Proof. Consider E ⊂ Ω a mensurable subset, so that∫
Ω
|uk − u|p =

∫
Ω\E

|uk − u|p +
∫
E
|uk − u|p

⩽
∫
Ω\E

|uk − u|p + 2p−1

∫
E
(|uk|p − |u|p).

Given ε > 0, by hypothesis (ii) there exist δ1(ε) > 0 such that µ(E) < δ1(ε) implies that∫
E
|uk|p <

ε

2p+1
∀ k.

Moreover, as f ∈ Lp(Ω) there exists δ2(ε) > 0 such that µ(E) < δ2(ε) implies that∫
E
|u|p < ε

2p+1
.

Taking δ = min{δ1(ε), δ2(ε)} by hypothesis (i) and Theorem 4.3 exists N(ε) ∈ N such that
k > N(ε) we have ∫

Ω\E
|uk − u|p ε

2
where meas(Ω) < δ.

Therefore since k > N(ε) we obtain ∫
Ω
|uk − u|p < ε

that is uk → u in Lp(Ω).

Now we will introduce a fixed-point result for operators over Banach spaces. Schauder’s
well-known Theorem. See [16].

Before starting Schauder’s theorem, we need the following definition:

Definition 4.3. Let E a Banach space. A map T : E → E is completely continuous if it is
continuous and if, for every bounded subset B ⊂ E, T (B) is compact.

Theorem 4.5. Let T : K ⊂ E → E be a completely continuous map, where K is a convex,
bounded, closed and invariant subset of E. Then T has a fixed point in K.

The main tool used in the proof Proposition 3.1 is an important result, a kind of Minty-
Browder Theorem. Below, we recall the definition of pseudomonotone operators

Definition 4.4. Let E be a Banach space, E′ dual space and A : E → E′ an operator. We
say that A is pseudomonotone if uk → u in E and

lim sup
k→+∞

< Auk, uk − u > ⩽ 0,

then, lim infk→+∞ < Auk, uk − v > ⩾ < Au, u− v > ∀v ∈ E.

Theorem 4.6. (Minty - Browder). Let E be a reflexive and separable Banach space and
A : E → E′ an operator satisfying

(ii) A is coercive, i.e.,
< Au, u >

||u||E
→ ∞ as ||u||E → ∞;

(ii) A is bounded and continuous;

(iii) A is pseudomotone.

Then, A is surjective, that is , A(E) = E′.

Proof. For a detailed proof of this result, we recommend that the reader see [6, p. 38].
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