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APRESENTAÇÃO GERAL 2 

O presente trabalho é composto por três capítulos em que cada um corresponde 3 

a um artigo. Apesar de cada artigo ser destinado para uma revista diferente, para fim de 4 

padronização da tese os três capítulos estão com as normas de citação e referência 5 

bibliográfica no formato do periódico Ecology (ISSN: 0012-9658). O primeiro capítulo é 6 

uma revisão sistemática da literatura em que buscamos descrever as lacunas de 7 

conhecimento de demografia e história de vida da família Thraupidae. No segundo 8 

capítulo desenvolvemos modelos de simulação para entender os efeitos da perda e 9 

fragmentação de hábitat sobre a área de vida, nossos modelos foram parametrizados 10 

utilizando dados provenientes do primeiro capítulo. Por fim, o capítulo 3 busca validar os 11 

resultados do capítulo 2, para isso realizarmos uma meta-análise sobre o efeito da perda 12 

e fragmentação de hábitat sobre a área de vida de aves. Os dados, scripts dos modelos e 13 

análises de todos os capítulos estão disponíveis em repositório público do GitHub. 14 

  15 
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INTRODUÇÃO GERAL 16 

Existe hoje uma grande demanda por alimento e matéria prima para a indústria, 17 

reflexo do crescimento da população humana e de crescentes níveis de consumo ao nível 18 

mundial. Como consequência, mais de um terço do ambiente terrestre é atualmente 19 

ocupado pela agricultura (FAOSTAT 2015). As atividades produtivas demandam mais 20 

espaço, gerando um conflito com a conservação da biodiversidade. A perda e 21 

fragmentação hábitat tem se destacado como o principal fator responsável pela perda da 22 

biodiversidade em todo o mundo (Foley et al. 2005). A perda de hábitat atua reduzindo 23 

os recursos e as áreas adequadas para a ocorrência das espécies (Fahrig 2003). Já a 24 

fragmentação transforma grandes áreas de habitat em fragmentos menores e isolados 25 

entre si, alterando suas condições ambientais por meio do efeito de borda e impedindo o 26 

fluxo gênico entre populações (Fahrig 2001, 2013). Desta maneira se torna importante 27 

entender como essas alterações na paisagem afetam a movimentação dos indivíduos de 28 

diferentes espécies, uma vez que a movimentação é importante para a sobrevivência dos 29 

indivíduos e para a persistência das populações. 30 

Os indivíduos podem apresentar diferentes tipos de movimentação (e.g. 31 

migração, dispersão e forrageamento), sendo que essas movimentações se diferem pela 32 

motivação e escala espaço-temporal em que ocorrem (Clobert et al. 2012, With 2019). 33 

Por exemplo, movimentos migratórios ocorrem em grandes escalas espaço-temporais e 34 

geralmente estão ligados a sazonalidade climática, onde, o objetivo dos indivíduos é 35 

encontrar ambientes com condições e recursos adequados para passar um determinado 36 

período do ano (Cumming et al. 2012). Já movimentações dentro da área de vida de um 37 

animal ocorrem diariamente, e em escalas espaciais menores, e tem como principais 38 

motivos a busca por alimento, fuga de predadores, reconhecimento de novas áreas 39 

(Doherty et al. 2019). Durante a sua movimentação diária os indivíduos interagem com 40 
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os elementos da paisagem podendo mudar o seu comportamento em função de sua 41 

estrutura (Hillaert et al. 2018). Por exemplo, indivíduos em paisagens com menor 42 

disponibilidade de recursos precisam se movimentar por uma área maior que indivíduos 43 

em paisagens com maior disponibilidade de recursos (Kleyheeg et al. 2017). Ao estudar 44 

movimentação de coalas (Phascolarctos cinereus) Rus et al. 2020 observaram que em 45 

paisagens menos conectadas os indivíduos se movimentavam por uma extensão maior 46 

que indivíduos em paisagens mais conectadas.  47 

O uso de modelos dinâmicos em ecologia tem se mostrado útil para auxiliar no 48 

entendimento dos mecanismos por trás dos padrões e processos ecológicos (Codling and 49 

Dumbrell 2012, Bocedi et al. 2014, Zurell et al. 2015). Os modelos são simplificações do 50 

mundo real que nos permitem particionar o sistema de estudo e criar cenários nos quais 51 

controlamos parâmetros como: tamanho populacional, dispersão e estrutura do hábitat 52 

(Epperson et al. 2010, Wallentin 2017). Esse maior controle nos garante que o sistema de 53 

estudo não sofrerá interferência de fatores que não são os de interesse, e que podem causar 54 

confusão na interpretação dos resultados. Além disso, é possível comparar os padrões de 55 

respostas gerados pelo modelo com os padrões apresentados no mundo real, essa 56 

abordagem tem sido chamada de “abordagem do ecólogo virtual” (Zurell et al. 2010). 57 

Essa abordagem geralmente é composta por quatro etapas: (i) modelo ecológico virtual; 58 

(ii) modelo virtual de coleta de dados; (iii) análise estatística dos dados e (iv) avaliação 59 

do modelo. A primeira etapa consiste em construir um modelo simulando o processo de 60 

interesse incluindo espécies, dinâmica populacional, estrutura espacial. Os passos 61 

seguintes consistem em criar um modelo que simule a coleta dos dados de acordo assim 62 

como ela é realizada em campo, e então são feitas a analises estatísticas. Por fim é feita a 63 

comparação entre o resultado encontrado pela coleta virtual e o conjunto total de dados 64 

modelo, isso permite testar se os métodos usados são eficientes em capturar o padrão de 65 



8 
 

interesse e então e feita a comparação dos resultados do modelo com os resultados 66 

encontrados a partir de dados empíricos. 67 

O objetivo desta tese é entender como a parda e fragmentação de hábitat afetam 68 

a movimentação das aves dentro de sua área de vida, e também, quantificar as lacunas de 69 

conhecimento Prestoniana e Raunkiæna. No capítulo 1 iremos avaliar o estado da arte e 70 

quantificar as lacunas de conhecimento para dados que são utilizados na parametrização 71 

das análises de viabilidade populacionais (AVP) que utilizam abordagem baseada em 72 

indivíduo. Além disso, a partir do levantamento de dados do capítulo 1 irei montar um 73 

banco de dados com parâmetros necessários para o desenvolvimento da capítulo 2. No 74 

capítulo 2 buscaremos entender os mecanismos envolvidos na relação entre a paisagem e 75 

movimentação das aves. Para isso iremos desenvolver modelos de simulação baseados 76 

em indivíduo para que possamos ter o controle sobre as variáveis que realmente temos 77 

interesse. E testaremos as hipóteses de que existe um efeito negativo da perda e 78 

fragmentação sobre o tamanho da área de vida, sobreposição da área de vida entre 79 

indivíduos e tempo que os indivíduos passam se movimentando na paisagem. Testaremos 80 

também se a capacidade de navegação dos indivíduos pode alterar a direção e magnitude 81 

dessa relação. Por fim, o capítulo 3 tentará validar parte dos resultados do capítulo 2 por 82 

meio de uma meta-análise. E será testado se a perda e fragmentação de hábitat afeta o 83 

tamanho da área de vida, o tempo que os indivíduos gastam se movimentando e se o 84 

impacto da perda de hábitat é maior do que o da fragmentação. 85 

  86 
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Capítulo I 132 

 133 

Describing our ignorance about the life history and demography of the 134 

Thraupidae family 135 

Abstract 136 

We probably are facing the sixth major mass extinction, and management of 137 

interventions for conservation is necessary. However, resources for conserving and 138 

managing populations in natural environments are scarce, and tools for assessing 139 

population risk extinction for each strategy are essential. The best-known technique for 140 

estimating extinction risk is the Populational Viability Analysis (PVA). However, these 141 

analyzes need a large amount of information about the biology and ecology of the species. 142 

We aimed to evaluate the life history (Raunkiæran) and demography (Prestonian) 143 

knowledge shortfall of Thraupidae birds. We reviewed 838 Web of Science and Scopus 144 

articles published between 1973 and 2020. Only 57 articles met our selection criteria after 145 

review, and were included in the present study. Our results showed that the Prestonian 146 

shortfall was more expressive than the Raunkiæran shortfall. The phylogeny and body 147 

mass could not explain any pattern in the publication. The ease of collecting life history 148 

data compared to demographic data was one of the reasons why the Prestonian shortfall 149 

was so much more significant than Raunkiæran. We concluded that publishing data in a 150 

public repository is essential for reducing the knowledge shortfall and making data 151 

available for PVA. 152 

Keywords: Systematic review, Reproductive Biology, Bird, Non-linear regression, 153 

PRISMA Protocol, Biodiversity. 154 

155 
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Introduction 156 

We are on the verge of a biodiversity crisis and facing the sixth major mass 157 

extinction (Singh 2002, Koh et al. 2004). Even with extinction being part of the earth's 158 

history, we can observe anthropic activities like habitat destruction, alien species 159 

introduction, and global environmental changes acting together to accelerate this 160 

extinction process (Doherty et al. 2015, Bonebrake et al. 2019). Given this scenario, 161 

management interventions toward biodiversity conservation are necessary, and species 162 

extinction risk species is an essential step in this process, assuring a better resource 163 

allocation (McDonald-Madden et al. 2008). These analyses aim to predict populations 164 

persistence over time and can therefore estimate the probability of population extinction 165 

for each management and conservation strategy (Possingham et al. 1993, Ellner and 166 

Fieberg 2003). After this, the extinction risk analysis also helps with population 167 

monitoring, guiding which moment to make interventions or changes in the management 168 

strategies (Manlik et al. 2018). 169 

The best-known technique for estimating extinction risk is the Populational 170 

Viability Analysis (PVA). PVA allows estimates about minimal viable population sizes 171 

(MVP) to keep positive growth rates (Reed et al. 2002). PVA techniques encompass a 172 

range of different model strategies, such as patch occupation models, matrix projection 173 

(Structured population models), and individual-based models (IBM) (Radchuk et al. 174 

2016). These models allow to create different environmental scenarios, like adding 175 

catastrophes and disturbances that might affect the individual's survival or reproduction; 176 

it also is possible to simulate environmental variations that affect available resources, for 177 

example, varying the support capacity (K) (Bradshaw et al. 2018, Machado et al. 2020). 178 

This approach to PVA is known as sensitivity analysis, and from there, it is possible to 179 



13 
 

evaluate the importance of life-history parameters to extinction risk and population 180 

growth (Mills and Lindberg 2002). 181 

The most significant differences among those models are their population and 182 

environmental parameters. The choice among them is usually related to the degree of 183 

ecological knowledge about the group under evaluation (Radchuk et al. 2016, DeAngelis 184 

and Diaz 2019, García‐Díaz et al. 2019). For matrix models like Leslie and Lefkovitch 185 

matrices, life table data such as survivor probability for each life stage is necessary. Even 186 

for IBM, the individuals are explicitly considered within the populations and may vary in 187 

their attributes, such as fecundity, mortality, body size, and movement behavior (Grimm 188 

and Railsback 2005). This approach makes the model more realistic and improves the 189 

estimation of risk of extinction and MVP (García‐Díaz et al. 2019). Moreover, this 190 

approach is still effective under data shortage, usually using estimations of life history 191 

parameters based on phylogenetically related species data (Hernández-Camacho et al. 192 

2015, Schtickzelle et al. 2019). This general approach became specially relevant for risk 193 

assessment and analyzing management options for species conservation or control. An 194 

excellent example of the use of PVA to assess the cost-benefit of three management 195 

strategies (nests protection, fire management, and recovery of native vegetation) for the 196 

conservation of Neothraupis fasciata (Passeriformes: Thraupidae) is given by Duca et al. 197 

(2009). In the scenarios without considering costs, the nest's protection was the more 198 

effective strategy to reduce extinction risk, followed by fire management and natural 199 

vegetation recovery. Fire management presented the best cost-benefit in a scenario of 200 

limited financial resources, and natural vegetation recovery showed the worst result. 201 

Knowing and describing all biodiversity dimensions (e.g., genetic, interaction, 202 

morphology, among others) is virtually impossible due to factors like time, money, and 203 

specialized people (Mora et al. 2011). The conscience of our ignorance about biodiversity 204 
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is an essential step to advancing our knowledge. Seven large types of shortfall knowledge 205 

are usually described in Ecology and Evolution areas: Linnean, Wallacean, Darwinian, 206 

Hutchinsonian, Eltonian, Prestonian, and Raunkiæran (Hortal et al. 2015). Here we will 207 

focus on the last two shortfalls due to their great impact on the analysis of risk extinction 208 

through PVA. The Prestonian is defined as the lack of knowledge about species' 209 

abundance, demography, and space-time dynamics (Cardoso et al. 2011). The 210 

Raunkiæran shortfall represents the lack of knowledge about species traits and life history 211 

(Hortal et al. 2015). It is known that biodiversity data collection is geographically and 212 

taxonomically skewed, with some regions and taxa receiving greater attention from 213 

researchers and funders (Sastre and Lobo 2009, Mora et al. 2011). The taxonomic bias 214 

occurs because some species are better known, more conspicuous, or more detectable 215 

(Hortal et al. 2015). The species body size can affect this bias in two ways: large body 216 

size species are more studied because they are more visibly detectable; populations of 217 

small body size species are more abundant, and these species are more studied than less 218 

abundant species because they are detectable (Gaston and Blackburn 1996, Felizola 219 

Diniz-Filho and Tôrres 2002). The PVA suffers from this bias because good population 220 

dynamics and life history studies demand many individuals and a long monitoring period. 221 

In this study, we will work with the Thraupidae family, the second-largest family 222 

of Passeriformes, with 377 species (Billerman et al. 2020) being one of the main groups 223 

of neotropical birds. The spatial occurrence extends from northern Mexico to South 224 

America, passing through high-altitude areas and insular environments like the Andes, 225 

Pacific, and South Atlantic islands (Burns et al. 2014, Funk and Burns 2018). This family 226 

presents a great diversity of plumage color, vocalization, habitat use, and behavior (Burns 227 

et al. 2014). As for habitat use, they use from tropical rain forests to savanna and semiarid 228 

environments (Burns et al. 2014). The family also has a diversified use of food resources, 229 
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having frugivorous, insectivorous, nectarivorous, and granivorous species (Burns et al. 230 

2003, Cestari and Bernardi 2011, Messeder et al. 2020, Sherry et al. 2020). According to 231 

the International Union for Conservation of Nature – IUCN, there are 30 Vulnerable 232 

species, 13 Endangered, and four classified as Critically Endangered (IUCN 2023). The 233 

main threats are habitat loss and illegal trade due to the beautiful vocalization and 234 

plumage of the species. The four species classified as Critically Endangered Nemosia 235 

rourei, Geospiza heliobates, G. pauper, and Rowettia goughensis, share the characteristic 236 

of having a small area of occurrence. Besides, the last three are insular species and are 237 

threatened by invasive species and diseases (IUCN 2023). 238 

Here we aim to quantify the Prestonian and Raunkiæran shortfalls (life history 239 

and demographic data) essential to parameterize the models used in population viability 240 

analysis (PVA) in Thraupidae species. We use the number of studies as a surrogate of the 241 

knowledge, expecting to find an inverse relation between this variable and body size of 242 

the studied species, i.e., the larger is the body size, the fewer the number of publications 243 

(hypothesis 1). Furthermore, we test for a phylogenetic bias in the knowledge of life 244 

history and demographic data. Phylogenetic bias could result in an uneven distribution of 245 

knowledge regarding these parameters across the phylogenetic tree, limiting the use of 246 

closely related species in cases where data scarcity prevents a PVA for rare species 247 

(hypothesis 2). Finally, we hope our systematic review of such information helps to 248 

stimulate further studies on Thraupidae conservation. 249 

 250 

Material & Methods 251 

1 Collection and selection of studies 252 
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We performed a systematic review following the PRISMA (Moher et al. 2009). 253 

We used the Web of Science (WoS) and Scopus databases, where we searched for 254 

following terms: Thraupidae OR (Tanagers OR Flowerpiercers OR Tanager finches OR 255 

Bananaquit OR Saltators OR Seedeater) OR (Catamblyrhynchinae OR Charitospizinae 256 

OR Orchesticinae OR Nemosiinae OR Emberizoidinae OR Porphyrospizinae OR 257 

Hemithraupinae OR Dacninae OR Saltatorinae OR Coerebinae OR Tachyphoninae OR 258 

Sporophilinae OR Poospizinae OR Diglossinae). We searched these terms in the title, 259 

abstract, and keywords-plus and was made from the oldest WoS/Scopus year to 2020. We 260 

screened and included articles that presented Prestonian and Raunkiærian primary data.  261 

We collected 27 Prestonian parameters and 35 Raunkiærian parameters, 262 

selecting them after a carefull analysis of PVA variables used in Vortex (Lacy 1993). The 263 

list of parameters includes body mass, longevity, clutch size, hatch success (Table 1 e 2).  264 

The phylogeny data was obtained in birdsoftheworld.org, and then, we built a 265 

consensus tree with 100 random phylogenetic trees using Jetz et al. (2012) topology. The 266 

Consensus tree was performed using the "consensus.edges” function of phytools package 267 

(Paradis et al. 2004, Paradis and Schliep 2019), and species in the phylogeny that was not 268 

resentent in our database were removed with "drop.tip" function of the ape package 269 

(Revell 2012). 270 

2. Data analysis 271 

To test the relationship between body size and number of studies, we computed 272 

body mean mass and the number of studies for each genus. Then, we adjusted a non-linear 273 

regression model, where body mean mass was the predictor and the number of studies 274 

was the response variable. We used minpack.lm package (Elzhov et al. 2023) using R 275 

4.0.5 (R Core Team 2022) to adjust the regression model. We tested the correlation 276 
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between shortfalls parameters and birds’ phylogeny by using a Mantel test with Pearson 277 

correlation, where shortfalls parameters and birds’ phylogeny were input as Euclidean 278 

and cophenetic distance matrices respectively. We built the similarity matrix with the R 279 

software (R Core Team 2022). 280 

We performed descriptive analysis to evaluate Prestonian and Raunkiæran 281 

shortfalls. First, we evaluated the temporal publication pattern, calculated the ratio 282 

between studies that met the selection criteria and the total of Thraupidae publications for 283 

each year, and then performed a graphical analysis. We used graphical analysis to 284 

evaluate the number of studies of each parameter for each species. We built a histogram 285 

to evaluate the frequency of species that presented a different number of parameters. Also, 286 

we assessed the number of species that presented different numbers of studies for the 287 

following parameters: body size, body size variation, clutch size, and clutch size 288 

variation. We performed all analyses separately for each shortfall using the ggplot2 289 

package (Wickham 2016) in the software R core team.290 
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Table 1. Demographic parameters (Prestonian shortfall), it's unit measurement and description. 291 

Shortfall Parameters Unit Description 

Prestonian Adult Fem. Mortality % Mortality rate of adult female. 

Adult Male Mortality % Mortality rate of adult male. 

Adult Sex ratio (F) % Mean adult female sex ratio. 

Adult Sex ratio (SE) % Adult female sex ratio standard error. 

Adult Survival % Mean adult survival 

Adult Survival (SE) % Adult survival stadard error. 

Age Distribution n° Ind. Number of individuals by age group in the population. 

Alle Effect - Presence or absence of Alle effect 

Birth Sex ratio (F) % Mean birth female sex ratio. 

Birth Sex ratio (SE) % Birth female sex ratio standard error. 

Clutch Size n° Ind. Mean number of eggs by nest. 

Clutch Size (max) n° Ind. Maximum number of eggs by nest. 

Clutch Size (min) n° Ind. Minimum number of eggs by nest. 

Clutch Size (SE) n° Ind. Standard error number of eggs by nest. 

Eggs Success % Percentage of eggs laid and individuals survived until they left the nest 

Hatch Success % Percentage of eggs laid that hatched. 

Incubation Period n° Days Mean interval from hatching of the first egg until the last juvenile leaves the nest. 

Incubation Period (Max) n° Days Maximum interval from hatching of the first egg until the last juvenile leaves the nest. 

Incubation Period (Min) n° Days Minimum interval from hatching of the first egg until the last juvenile leaves the nest. 

Incubation Period (SE) n° Days Standard error of interval from hatching of the first egg until the last juvenile leaves the nest. 

Mortality Envirmen. Variation - Correlation between enviromental variation and mortality. 

 292 
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Continuation of table 1.  294 

Shortfall Parameters Unit Description 

Prestonian Nesttling Period - Mean permanence of the chicks from hatching to leaving the nest 

Nesttling Period (SE) - Standard error permanence of the chicks from hatching to leaving the nest 

Nesttling Success % Percentage of eggs that hatched and individuals survived until they left the nest. 

Reprod. Environ. Var. % Correlation between environmental variation and reproduction. 

Reproductive Period - Months in which the reproductive period occurs. 

Young Fem. Mortality % Mortality rate of young females. 

Young Male Mortality % Mortality rate of young males. 

 295 
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Table 2. Life history parameters (Raunkiæran shortfall), its unit measurement and description.  297 

Shortfall Parameter Unit Description 

Raunkiæran Age First Rep. - Age of first reproduction. 

Beak (mm) Mean beak length from tip to nostril. 

Beak (SE) (mm) Beak length from tip to nostril standard error. 

Beak Height (mm) Mean beak height. 

Beak Height (SE) (mm) Beak height standard error. 

Beak Vol. (mm³) Mean cone volume. 

Beak Vol. (SE) (mm³) Cone volume standard error. 

Beak Width (mm) Mean beak width. 

Beak Width (SE) (mm) Beak width standard error. 

Body Mass (g) Mean body mass. 

Body Mass (max) (g) Maximum body mass. 

Body Mass (min) (g) Minimum body mass. 

Body Mass (SE) (g) Body mass standard error. 

Culmen (mm) Mean length of the culmem. 

Culmen (SE) (mm) Length standard error of the culmem. 

Eating Habit - Type of food observed in the study. 

Habitat Use - Type habitat observed and indicated in the study. 

Home Range Size (m²) Mean home range size. 

Home Range Size (SE) (m²) Home range size standard error. 

Longevity Years Mean longevity 

Longevity(SE) Years Longevity standard error. 
  298 
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Continuation of table 2.  299 

Shortfall Parameter Unit Description 

Raunkiæran Mandible Width (mm) Mean mandibule width. 

Mandible Width (SE) (mm) Mandibule width standard error. 

Maxilla Width (mm) Mean maxila width. 

Maxilla Width (SE) (mm) Mandibule maxila standard error. 

Max. Rep. Age Years Maximum reproductive age. 

Mixed Flocks - If individuals are found foraging in mixed flocks. 

Reproduction System - Monogamous or poligamous. 

Resource (Sp) - Species used as food resources. 

Tail Size (mm) Mean tail size. 

Tail (SE) (mm) Tail size standard error. 

Tarsus Size (mm) Mean tarsus size. 

Tarsus (SE) (mm) Tarsus size standard error. 

Wing Size (mm) Mean wing size. 

Wing (SE) (mm) Wing size standard error. 
 300 
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Results 301 

A total of 57 studies were included in the shortfall knowledge review (Figure 1). 302 

The publication time interval comprised from 2003 to 2020, and we found no temporal 303 

pattern in the publication of studies. Publications from 2003 presented proportionately 304 

the largest number of articles, followed by 2013 and 2012, respectively (Figure 2). We 305 

found 49 parameters with at least one study, 31 Raunkiæran, and 18 Prestonian 306 

parameters. Of the total parameters previously determined, 14 and 39% did not record 307 

studies for Raunkiæran and Prestonian shortfall respectively. 308 

Figure 1: Infograph of PRISMA protocol presenting the number of studies ar each step 309 

of review process. 310 
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Raunkiæran shortfall presented 85 species and Prestonian 22 species, 311 

representing 63 more species, almost triple the number of species. For the Raunkiæran 312 

shortfall Dacnis cayana presented four studies but just two parameters (Figure 3), already 313 

for the Prestonian S. collaris, S. hypoxantha, and S. lineola showed two studies (Figure 314 

4). We found many species with few parameters to Raunkiæran shortfall, with 30 species 315 

presenting two parameters and 11 species presenting one parameter (Figure 5a). We found 316 

only one species with values equal to or greater than 12 parameters (Figure 5a). Species 317 

showed a maximum of nine parameters to Prestonian shortfall; the majority (nine species) 318 

presented two, and two species presented seven and eigth (Figure 5b). 319 

 320 

Figure 2. Publication temporal series, the y-axis represents the percentage of studies that 321 

passed the selection criteria in relation to the total of studies for each year. The red, blue, 322 

and black points and lines represent parameters related to Prestonian, Raunkiæran, and 323 

the sum of two shortfalls. 324 
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When we evaluate the number of studies each species presented for body size, 325 

31 species presented only one study, three and one species presented two and three 326 

studies, respectively (Figure 6a). Although the body mass variation followed the same 327 

pattern, three species did not present variation data (Figure 6a). Ten species presented one 328 

study related to the clutch size, three showed two, and only one did not present variation 329 

data (Figure 6b). 330 

We do not have evidence of a negative relationship between genus body mean 331 

mass and the number of studies. Our data presented an outlier due to the Sporophila genus 332 

having 21 studies (Figure 7). Also, we found no evidence of a correlation between 333 

shortfalls parameters and birds' phylogeny in our research (r= 0.005; p= 0.529). Relatively 334 

to the Raunkiæran shortfall, eating habits presented the largest data with 15 studies, 335 

followed by species resource and body mass with ten studies each. The parameters of 336 

Prestonian shortfall with the largest number of studies were Clutch size and Clutch size 337 

(SE) with 15 and 11 studies, respectively. 338 
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Figure 3. Distribution of the number of published studies that present Raunkiæran 339 

parameters among species of Thraupidae. Refer to table 1 and table 2 to the detailed 340 

information about parameters. 341 

  342 
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 343 
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 359 
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 361 

 362 

 363 

Figure 4. The graph presents within cells the number of studies for each species and 364 

Prestonian related parameters.  365 
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 366 

Figure 5. The number of species and number of species for Raunkiæran (a) and Prestonian 367 

shortfall (b). 368 

 369 

Figure 6. Description of the number of species and studies, red bars represent the body 370 

mean mass and mean clutch size, and blue bars represent their variation measure. 371 
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 372 

Figure 7. Non-linear regression between the number of studies in function to genus body 373 

mean mass. The graph presents the names of the two genera considered outliers, the 374 

values of t statistic, degree of freedom, p-value, and curve equation. 375 

 376 

Discussion 377 

In the present work, we assessed how much we know about the life story, 378 

functional traits, and demography of the Thraupidae family. We show that the Prestonian 379 

shortfall was more prevalent than the Raunkiæran shortfall, and there is no phylogeny or 380 

body mass effect on our current knowledge about these parameters. We found many 381 

studies for the Sporophila genus, and we believe it to be related to a sample effect since 382 

this is one of the most speciose genera in this family. We also noticed that even those 383 
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species with data for several parameters do not have more than three studies, and most 384 

have only one. 385 

The increase of data on Raunkiæran parameters after 2016 could be related to 386 

the growth of functional ecology approach, which has as its primary object of study the 387 

functional traits of the species (Blackburn et al. 2005, Etard et al. 2022, Gumede et al. 388 

2022). In functional ecology, the organisms are usually classified acording to food guild, 389 

how it obtains, and exploits resources and morphological measures that represent the 390 

performance of organisms (McGill et al. 2006, Violle et al. 2007). This biodiversity 391 

dimension can contribute to the reduction of Raunkiæran shortfall. The availability of 392 

data from these studies and proper presentation of this information, especially variability 393 

measures among populations, are important to better appropriation of the results. The 394 

increase of data papers on ecological parameters in recent years (e.g., Antunes et al. 2022; 395 

Beninde et al. 2022; Chavan and Penev 2011) is an example of best presentation and 396 

availability of information that could be followed here. Data related to the Raunkiæran 397 

shortfall, such as food habits, habitat use, and activity time, can be collected for several 398 

species simultaneously, often even in an automated way (Iezzi et al. 2018, Jezuíno et al. 399 

2021). Otherwise, the demographic data is hard to sample, especially for birds. 400 

Sometimes, it is necessary to find the nests and accompany them at least until the eggs 401 

hatch, and eventually monitor them until the chicks leave the nest (Ferreira and Lopes 402 

2017, Turbek et al. 2019). It means higher financial costs due to the need to increase 403 

sampling effort, including more time spent on fieldwork. These may discourage 404 

researchers from collecting this type of data. 405 

The genus Sporophila, known for its extensive species diversity (n= 41), 406 

exhibited the highest number of studies among all genera. This finding demonstrates a 407 

simple sampling effect, whereby taxa with a greater number of described species tend to 408 
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attract more research attention than táxon with fewer described species (Winkler et al. 409 

2020). The lack of knowledge about new species is know as Linnean shotfall, and is 410 

correlated with all other shortfalls because we do not collect empirical data for 411 

undescribed species (Hortal et al. 2015). The preference for previously described species 412 

when selecting a target organism generates a taxonomic bias in data collection (Hortal et 413 

al. 2015). Furthermore, species of the Sporophilla genus are very common foraging in 414 

grasslands, usually in conspecifics or congeners mixed flocks (Severo-Neto et al. 2015).  415 

Knowing the clutch size gives us information on the birth rate and the potential 416 

couple fecundity, an essential component of the population growth rate (CASWELL 417 

2000, Rockwood 2015). In the case of structured models and IBMs, the demographic 418 

data, at least stage-specific survival and reproduction, is necessary to build PVA models 419 

(Radchuk et al. 2016). For example, if we combine clutch size with the number of eggs 420 

hatched, we will have the survival rate of eggs to the nestling stage. We can apply the 421 

same logic to juvenile and adult survival. Individual data allows a more realistic analysis 422 

of population demography by including individual variation in the model (Grimm 1999, 423 

Scherer et al. 2016). Nevertheless, stage-specific data may represent a practical 424 

compromise where most parameters are unknown for most species. Since survival rates 425 

can vary between different life-stages (Oppel and Powell 2010, Kobayashi et al. 2017), a 426 

stage-specific approach is still helpful in creating realistic models. On the other hand, 427 

body mass (the most common surrogate for body size) is not explicitly used in PVA 428 

models. It is usually considered by ecologists to be a super-parameter, as it is a proxy to 429 

estimate parameters like life span, generation time, and incubation period (Sæther 1987, 430 

Sibly et al. 2012). However, we must be cautious when using generalizations or 431 

surrogates in PVA models. For understanding ecological mechanisms acting on 432 

populations, using of demography and life history parameters estimated from the 433 
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allometric relationships may not significantly affect on the model conclusions. For a 434 

model whose objective is to assess a local population's extinction risk, an effort should 435 

be made to collect primary data to make the best possible management decision 436 

(Hernández-Camacho et al. 2015). 437 

The variation within each parameter is very important for more complex PVA 438 

models such as IBM. Such models assume that individuals from the same population have 439 

morphological, life history, and behavioral differences (Grimm and Railsback 2005, 440 

Stillman et al. 2015). Two major sources of variability that need to be considered, 441 

especially in models aimed to discuss species distribution at larger scales (De Marco et 442 

al. 2008). The first one is the individual variation of those parameters within populations. 443 

The second is the geographic variation among populations. In both cases, our study found 444 

a lack of appropriate variability measures. Some parameters lack information on 445 

variability within the population (e.g. hatch success and nesting success), but usually, this 446 

information is provided in the studies. Otherwise, we could estimate geographic variation 447 

for measures such as clutch size, incubation period, body mass, and home range size. 448 

However, for most of the parameters, we found only a single piece of information due to 449 

the small availability of data representing a small portion of all the natural variations of 450 

the species and affecting the population viability models. 451 

However, the present results are just a small selection of the literature on the life 452 

history and demography of Thraupids. This misrepresentation is because we only 453 

searched Scopus and Web of Science, and one of the search terms used was the popular 454 

English names of the species. For this reason, although we have had basic biology of 455 

species studies in the Neotropics since the 20th century, much of this literature is written 456 

in Portuguese or Spanish, and the journals are not part of the above databases (Oniki 1972, 457 

Silva 1980, Martínez 2003). In addition, because these studies are often local, they are 458 
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accepted only in journals from the global south that are not part of the scientific 459 

mainstream (Soares et al. 2023). Or they usually end up being published in the so-called 460 

gray literature as theses, books, and conference abstracts (Soares et al. 2023). For future 461 

systematic reviews of Neotropical species, we recommend including the Scielo database 462 

in the literature search and using keywords in Portugues e Espanhol if necessary. 463 

From our results, there exists a relevant knowledge shortfall about the 464 

reproductive, life history, and functional traits information of the Thraupidae family. 465 

Thinking about improving PVA models, we encourage collecting demographic data on 466 

fecundity and mortality rates, which has a major effect on PVA analysis (PVA 467 

sensitivity). Considering mortality rates, they are especially relevant because they may 468 

also vary largely accordingly to environmental conditions and resources, thus more 469 

sensitive to environmental impacts and threat drivers. Prioritizing data for primary data 470 

gathering is complex, and we observe that different fieldwork aspects and financial 471 

resources determine the scarcity of essential information for PVA analysis. Under 472 

resources shortage, specially in biodiversity-richer countries (Meyer et al. 2015, 473 

Stephenson 2020), researchers appear to focus on variables more easy to collect, such as 474 

presence data for species distribution modeling (Lopes-Lima et al. 2021, Tessarolo et al. 475 

2021) than basic life-history and population abundance data. Unfortunately, despite its 476 

relevance to the general use of occurrence data for prioritization schemes (Guisan et al. 477 

2013, Frans et al. 2022), PVA analysis may provide estimations of minimum population 478 

sizes, which are most relevant to guarantee long-time persistence of species in fragmented 479 

and degraded landscapes (Schippers et al. 2015, Heinrichs et al. 2016). In addition, 480 

information gathering is only part of the problem since it is crucial to make them available 481 

through publication in articles, data papers, or other public repositories. We must 482 

remember that we are in the age of big data and that data is increasingly guiding decisions. 483 
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Thus primary data for PVA must be considered essential for bringing ecology and 484 

conservation, even more, a status of evidence-based science. 485 

Data availability 486 

The data and scripts of our analysis are available on GitHub: https://github.com/edgar-487 

lima/Thraupidae_Shortfall. DOI: 10.5281/zenodo.8039327. 488 
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Capítulo II 749 

Unraveling the patterns and mechanisms behind the effect of landscape 750 

on home range size 751 

 752 

Introduction 753 

Since resources are distributed unevenly in space, organisms must move around the 754 

landscape to find food, shelter, and reproductive partners (With 2019). Even sedentary 755 

organisms, such as plants and corals, have structures or life stages that allow them to 756 

move around and explore new environments and resources However, the intense 757 

exploitation of natural environments by activities such as agriculture, livestock, and 758 

mining alters the availability and distribution pattern of resources in the landscape, a 759 

process known as habitat loss and fragmentation (Estavillo et al. 2013, Villard and 760 

Metzger 2014). While habitat loss reduces the availability of resources in the landscape, 761 

fragmentation alters the quality of resources and makes them even more spatially 762 

structured (Crist and With 1995, Fahrig 2013, Lichtenberg et al. 2017). This lower 763 

availability of resources and greater spatial isolation affect the movement of individuals 764 

in the landscape, who spend more time moving around to meet their energy needs 765 

(Mäkeläinen et al. 2015, Poli et al. 2020). Therefore, to develop management and 766 

conservation strategies, it is necessary to understand how habitat loss and fragmentation 767 

affect the movement patterns of individuals in these landscapes. 768 

An individual's home range is the sum of all the areas it uses to find reproductive 769 

partners, food, refuge, and other movements to explore the landscape. (Börger et al. 770 

2008). During movements within their home range, individuals interact with the 771 

environment and are affected by the landscape context, such as the type of matrix, the 772 
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presence of corridors and stepping stones, which may or may not facilitate movement 773 

(Doherty et al. 2019, Poli et al. 2020). In addition, during movement, individuals interact 774 

with each other, competing directly for resources and being subject to predation 775 

(Buchmann et al. 2013). We can, therefore, consider that the larger an individual's home 776 

range area, the greater its energy expenditure and the more exposed to predators and 777 

inhospitable environments it will be (Charnov 1976, Malishev et al. 2018). Thus, to 778 

balance the conflict involved in movement, we expect individuals in landscapes with a 779 

greater availability of resources to move less, avoiding large energy expenditures and 780 

being less exposed to predation and inhospitable environments (Bautista et al. 2017). In 781 

landscapes with lower resource availability, the need to move to meet energy needs will 782 

be greater, thus offsetting the risk associated with movement (Vergara et al. 2015, Rus et 783 

al. 2020). In this way, we can expect an individual's home range to be larger in landscapes 784 

that have suffered habitat loss and fragmentation. 785 

In addition to landscape structure, another factor that can affect the movement of 786 

organisms is their navigation capacity (Hillaert et al. 2018). Navigation ability is defined 787 

by how individuals gather information and orient themselves to move through space 788 

(Nathan et al. 2008). This ability varies between organisms due to differences in their 789 

sensory and cognitive systems, affecting the reception of information about the 790 

environment and the decision-making process of which direction to move in (Nathan et 791 

al. 2008). On this basis, navigation ability can be classified into three main mechanisms: 792 

i) non-orientated, ii) orientated, and iii) memory-based (Mueller et al. 2011). For the first 793 

mechanism, it is assumed that the individual receives a stimulus to move from their 794 

current position; this stimulus could be, for example, the low quality of a resource. 795 

However, the decision as to which direction to move is random and does not take into 796 

account environmental information or previous experiences of movement (Börger et al. 797 
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2008, Doherty and Driscoll 2017). For the oriented mechanism, the individual receives a 798 

stimulus from a nearby location and then moves toward it (Doherty and Driscoll 2017). 799 

However, this mechanism suffers limitations due to its sensory system (e.g. sight, smell, 800 

acoustic) (Nathan et al. 2008). Finally, in the memory-based mechanism, the direction to 801 

move takes into account information from sources such as previous experiences of 802 

movement and communication with conspecifics (Fagan et al. 2013). 803 

The use of models in ecology is useful for understanding the mechanisms 804 

underlying ecological patterns and processes (Codling and Dumbrell 2012). Models are 805 

simplifications of the real world, which allow factors of interest, such as landscape 806 

structure and movement of individuals, to vary in a controlled manner. In contrast, other 807 

factors are constant, avoiding the interference of these factors in the analysis and 808 

interpretation of the results (Epperson et al. 2010). One type of simulation model widely 809 

used in ecology is the individual-based model (IBM). IBMs take individuals as discrete 810 

units within the system and allow morphological and behavioral characteristics to vary 811 

between individuals in the same population (Grimm and Railsback 2005). 812 

This study aims to understand how habitat loss and fragmentation alter the 813 

movement of individuals in the landscape and whether this effect varies according to the 814 

individuals' ability to navigate. To assess how movement is affected by these factors, we 815 

will test hypotheses related to the following movement parameters: home range size, 816 

home range overlap between individuals, and how much time individuals spend moving. 817 

These hypotheses will be evaluated in a controlled computational environment and within 818 

a simulation that seeks to represent most of the recognized factors of this system 819 

realistically. We tested the following hypothesis: h1): the home range size will be greater 820 

in landscapes with less habitat amount and fewer connected landscapes; h2): individuals 821 

with memory-based movement ability will use information from the surrounding 822 
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landscape to move, so they will make better decisions and will move less than non-823 

orientated individuals and have a smaller home range area. H3): the impact of habitat loss 824 

and fragmentation on home range will be less for individuals with memory-based 825 

navigation capacity. 826 

 827 

Material & Methods 828 

The model was developed using an adaptation of the ODD protocol (Overview, 829 

Design concepts, and Details) for individual-based models (Grimm et al., 2006, 2010). 830 

All stages of the model (e.g., dynamics and movement), including the creation of the 831 

landscapes, were developed using the Python 3 programming language. 832 

ODD protocol 833 

1. Biological model 834 

We chose the species Sporophila maximiliani and Sporophila cinnamomea as a 835 

biological model. The genus Sporophila, popularly known as the seedeaters are 836 

passeriformes of the Traupidae family endemic to the Neotropics (Burns et al. 2014). 837 

Individuals of the species S. maximiliani weigh approximately 2.5 g, inhabit open and 838 

grassy environments near flooded areas, are granivores, and feed mainly on grass seeds 839 

(Ubaid et al. 2018, Tobias et al. 2022). The individuals of S. cinnamomea are smaller, 840 

weighing approximately 7.5 g. They inhabit grassland environments where they feed on 841 

the seeds of grass species (Tobias et al. 2022). 842 

2. Model description 843 

In our model, individuals differ in body size and maximum movement capacity, with 844 

maximum capacity being dependent on body size. The model was run separately for each 845 

species, and the body size of individuals within the population follows a normal 846 
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distribution. As we aimed to test only hypotheses relating to movement, we opted to use 847 

a simplified model in which there are no population dynamics and the individuals were 848 

not classified as male or female. 849 

2.1. Individuals, state variables and scales 850 

The individuals of the two species were created using real body size data (mean 851 

and standard deviation) obtained from a previous literature review (Chapter I). For the 852 

non-oriented navigation capacity, the individuals have the following state variables: body 853 

mass, maximum daily movement capacity, and coordinates of where they are. As for the 854 

memory-based model, in addition to the previous characteristics, it also has a memory 855 

matrix and a radius of perception of the landscape, representing 50% of the maximum 856 

movement capacity. Each iteration (round) of the model will be considered a day, so 365 857 

days will be counted as one year. The landscape used in our model has an area of 200 x 858 

200 cells with a spatial resolution of 10 m².  859 

2.3. Overview of processes and stages 860 

The model begins with the colonization of the landscape by the individuals, 861 

based on the mean and standard deviation of body size created from a normal distribution. 862 

Once the landscape has been colonized, the model begins to run. First, the individual 863 

evaluates the cell it is in to see if it needs to move. The general movement logic was 864 

applied to both navigation capabilities. The individual receives a stimulus to move from 865 

the current position; this can occur because it is not in a suitable cell (matrix) or a habitat 866 

cell above half of the carrying capacity (K= 20). To simulate landscape exploration 867 

behavior, even if the individual was in a habitat cell below half of K, it had a 10% chance 868 

of moving.  869 

2.4. Inicialization 870 
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The model starts with 200 individuals arranged randomly in the landscape. After 871 

colonization, the model runs for two years (730 iterations), and the coordinates of the 872 

individuals are recorded daily. 873 

2.5. Sub-models 874 

2.5.1. Maximum movement capacity 875 

The maximum movement capacity (D.max) follows the allometric relationship 876 

described by (Eq.1), the equation was parameterized using data on body mass and home 877 

range size of herbivorous passerines that use grassland environments as habitat 878 

(Appendix). 879 

 880 

𝐷. 𝑚𝑎𝑥 = 3.252𝑀1.253       (Eq.1) 881 

 882 

2.5.3. Non-oriented movement 883 

When the individual decides to move, first, a turning angle (θ) is chosen at 884 

random, indicating the direction in which they will move (Eq. 2). Secondly, the distance 885 

that the individual will move (r) is randomly drawn from a uniform distribution and the 886 

maximum value that r can take is D.max (Eq. 3). 887 

𝜃 = 𝑈𝑛𝑖(1) ∗ 2 ∗ 𝜋         (Eq. 2) 888 

𝑟 = 𝑈𝑛𝑖(𝐷. 𝑚𝑎𝑥)         (Eq. 3) 889 

Based on these two parameters, the individual's location coordinates are updated 890 

according to Eq. 4 e 5.  891 

𝑥𝑖+1 =  𝑥𝑖 + 𝑟 ∗ cos 𝜃          (Eq.4) 892 
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𝑦𝑖+1 =  𝑦𝑖 + 𝑟 ∗ sen 𝜃        (Eq. 5) 893 

In which:  894 

xi, yi : coordinates at time i represent the coordinates at the current time. 895 

xi+1, yi+1 : coordinates at time i+1 represent the coordinates to which the individual 896 

has moved. 897 

2.5.4. Memory-based movement 898 

In memory-based movement, we used reinforcement-based learning to train the 899 

individuals; the algorithm we chose was Q learning. Firstly, the individual goes through 900 

the training stage in which it moves randomly, as described above, for 730 days. During 901 

training, it moves around and collects information from the cells it left and went to; its 902 

memory is created based on a vector of rewards R that updates a Q matrix (Figure 1) that 903 

will be used to make decisions after the training phase (Sutton and Barto 2018). The cell 904 

can assume three states, namely 0: matrix, 1; habitat >= K50%, and 2: habitat < K50%. 905 

As a result, our R vector has the following values for each state: R = (0: -2, 1: 7, 2: 10). 906 

 907 

 908 

 909 

 910 

 911 

Figure 1. Q table that represents an individual's memories and is used for decision-912 

making during memory-based movement. 913 
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At each learning iteration, the Q table is updated following equation Eq. 6 914 

proposed by Watkins 1989. 915 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) +  𝛼[𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎 𝑄(𝑆𝑡+1, 𝑎)  − 𝑄(𝑆𝑡, 𝐴𝑡)]  Eq. 6 916 

In which: 917 

maxa: a value of a at which 𝑓(𝑎) takes its maximum value. 918 

St, At: state and action in time t. 919 

Rt+1: reward in time t+1. 920 

a: an action. 921 

α: learning rate. 922 

γ: discount factor. 923 

After training, individuals use the Q-table to make decisions about movement. 924 

First, they evaluate the state of the cell they are in, then they evaluate the state of the cells 925 

within their radius of perception, and then, using the Q-table, they consider which is the 926 

best course of action for them. The best option may be to stay in the same place or to 927 

move; in the case of two or more cells being the best choice, then it chooses the closest 928 

cell. 929 

3. Model output 930 

At the end of the model, a table was generated with all the individuals, their 931 

navigation capacity, body size, and the coordinates of each iteration.  932 

4. Experimental simulation design 933 

In our experimental design, we simulated a temporal effect of habitat loss, so we 934 

generated 20 landscape structures, and for each one, we had 10%, 20%, 30%, 40%, 50%, 935 
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60%, 70%, 80%, and 90% of habitat, totaling 180 landscapes. The level of fragmentation 936 

was quantified as the average Euclidean distance to the nearest neighbor, and we used the 937 

landscapemetrics package (Hesselbarth et al. 2019) from the R Core Team software 938 

(2023). Comparisons between navigation capabilities were also made in a nested way; at 939 

the end of the simulation of a treatment (e.g., random navigation), we used the same 940 

population to run the next treatment. 941 

5. Data analysis 942 

The home range sizes were estimated through a 95% kernel, using the 943 

adehabitatHR package, and then the average home range size was calculated for use in 944 

our analyses. We used generalized linear mixed models (GLMM) to test our hypotheses. 945 

We used the average home range size, the percentage of habitat in the landscape, and the 946 

average Euclidean distance to the nearest neighbor as predictor variables. The model was 947 

built hierarchically with simulation as a random variable. To compare the home range 948 

size between the two navigation capacities, we also used a GLMM in which the 949 

simulation and the species were used as random effect variables. The way in which the 950 

models were constructed is shown below: 951 

HR mean size ~ Average dist. to nearest neighbor + habitat amount + (1| 952 

simulation) 953 

HR mean size ~ Navegation capacity - 1 + (1| simulation/SP) 954 

All the analyses were carried out using Bayesian inference, and the parameters 955 

were estimated using the Hamiltonian Monte Carlo algorithm with four Markov chains 956 

and 10.000 iterations. We analyzed data using R Core Team (2023) software and the 957 

rstanarm and bayestR packages. (Muth et al. 2018, Makowski et al. 2019). 958 

 959 
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Results 960 

Our results show the home range size is different between navigation capacities; 961 

the home range size of non-oriented individuals was greater than that of memory-based 962 

individuals (Table 1; Figure 2). 963 

Table 1: Results of the comparison of the size of the living area between the memory-964 

based and non-guided navigation capacity models. CI represents the 95% credibility 965 

interval. 966 

Navegation Median CI-min CI-max Prob. Direction 

Memory 75.021 55.267 93.862 1.0 

Non-orientated 805.478 786.573 825.548 1.0 

 967 

Figure 2: Probability density plot for the home range size of memory-based (red curve) 968 

and non-oriented (blue curve) navigation capacity. The squares inside the curves 969 

represent the median, and the horizontal bars represent the 95% credibility interval. 970 
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In general, we found a negative relationship between the amount of habitat in the 971 

landscape and the size of the home range, corroborating our hypothesis that increased 972 

habitat loss causes individuals to move over larger areas (Table 2). This relationship was 973 

not found only for the memory-based model of the species S. maximiliani (Figure 3).  974 

Habitat loss had a greater effect on non-oriented individuals, and for these, the 975 

uncertainty associated with this effect was lower than for memory-based individuals 976 

(Figure 3; 4). On the other hand, habitat fragmentation, represented by the landscape 977 

aggregation index, generally showed no relationship with home range size (Table 2), and 978 

the only model that showed any effect was for individuals with unguided navigation 979 

ability of the S. maximiliani species (Figure 3). Even so, there is a great deal of uncertainty 980 

associated with estimating this effect (CImin= -15335.4; CImax= -3183.4). 981 

Table 2: Re Results of the generalized linear mixed models adjusted separately for the 982 

two species. CI represents the 95% credibility interval and pd represents the probability 983 

of direction of the effect size. 984 

Specie Navigation Parameter Median IC-min IC-max pd 

S. cinnamomea Memory Intercept 78.93 71.24 86.43 1.0 

  Habitat % -0.03 -0.06 -0.01 1.0 

  Aggregation index -58.59 -190.54 71.23 0.8 

 non-oriented Intercept 1339.17 1235.34 1446.35 1.0 

  Habitat % -9.86 -11.05 -8.68 1.0 

  Aggregation index -5489.37 

-

11536.14 772.76 1.0 

       

S. maximiliani Memory Intercept 73.17 66.73 79.60 1.0 

  Habitat % -0.01 -0.03 0.02 0.7 

  Aggregation index 42.35 -86.64 174.75 0.7 

 non-oriented Intercept 1391.59 1287.92 1496.63 1.0 

  Habitat % -10.33 -11.52 -9.16 1.0 

    Aggregation index -9263.12 -15335.4 -3183.48 1.0 
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Figure 3: Probability density plot of Bayesian generalized linear mixed model for S. 985 

maximiliani. The curves represent the probability density of the slope values of the line 986 

for the percentage of habitat in the landscape (b1 Habitat%) and for the average Euclidean 987 

distance to the nearest neighbor (b1 Aggregation index). Yellow and blue curves represent 988 

non-oriented and memory-based navigation capacity. 989 
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 990 

Figure 4: Probability density plot of Bayesian generalized linear mixed model for S. 991 

cinnamomea. The curves represent the probability density of the slope values of the line 992 

for the percentage of habitat in the landscape (b1 Habitat%) and for the average Euclidean 993 

distance to the nearest neighbor (b1 Aggregation index). Yellow and blue curves represent 994 

non-oriented and memory-based navigation capacity. 995 

 996 

Discussão 997 

Our models' results showed that the home range's size is affected by navigation 998 

capacity, non-oriented individuals moving over a much larger area, resulting in a much 999 

larger home range than memory-based individuals. The hypothesis that the size of the 1000 

home range increases as habitat loss progresses was partially corroborated. Our results 1001 

show that for S. cinnamomea, the home range increases as the amount of habitat in the 1002 

landscape decreases, and this pattern was found for both models of navigational ability. 1003 
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S. maximiliani showed a relationship between habitat loss and home range size only for 1004 

non-oriented movement. Habitat fragmentation affected the home range only for S. 1005 

maximiliani non-oriented.  1006 

Our results show that individuals with memory-based navigation skills explore the 1007 

landscape less than non-oriented individuals. In our memory-based model, individuals 1008 

move around, making the best decision, which causes them to explore the landscape less. 1009 

Within our model, there are two scenarios in which this individual assumes an exploration 1010 

behavior; the first is a stochastic factor, in which even if the individual is in an ideal cell, 1011 

he has a 10% chance of leaving it, but during the choice of where to move it makes an 1012 

optimal choice. Another scenario is that the individual is in the matrix, and the cell options 1013 

within the radius of perception are matrix cells, in which case they choose randomly from 1014 

the available cells. But even with these two exploration scenarios, memory-based choices 1015 

override exploratory behavior. On the other hand, non-oriented individuals move without 1016 

using any information about the surrounding landscape and end up moving more simply 1017 

because they have no control over their direction. This lack of information generates a 1018 

movement pattern that resembles an individual with an exploratory profile. This 1019 

difference in the size of the living area between models of memory-based and non-1020 

oriented individuals can also be found in other simulation models (Van Moorter et al. 1021 

2009, Fagan et al. 2013, Sakiyama and Gunji 2016). 1022 

Although we found evidence corroborating our hypothesis that habitat loss 1023 

increases home range, this effect varied between the navigation capacity models and 1024 

between the two model species. For memory-based individuals, S. cinnamomea showed 1025 

a positive relationship between the amount of habitat and the home range size. In contrast, 1026 

S. maximiliani showed no evidence of this effect. For non-oriented individuals, both 1027 

species were affected by habitat loss. When we analyzed the two navigation capacities, 1028 
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we found that habitat loss affects the home ranges of non-oriented individuals much more 1029 

strongly, regardless of the species, and the uncertainty associated (credibility interval) 1030 

with this effect is smaller. This gives us a clue that information about the surrounding 1031 

landscape during movement may affect the relationship between habitat loss and home 1032 

range size. For non-oriented individuals, as habitat loss progresses, it becomes more 1033 

difficult for them to move to a habitat cell, which increases the number of times they need 1034 

to move until they find a habitat cell. This reasoning may also explain why S. cinnamomea 1035 

was affected by habitat loss and S. maximiliani was not. During the movement process, 1036 

the individuals evaluated the cells around them according to the radius of perception, 1037 

which is half the maximum movement capacity. Because S. cinnamomea has a smaller 1038 

body size, individuals obtain less information from the landscape to move. A model 1039 

developed by Hillaert et al., (2018), in which the perception radius was also dependent 1040 

on body size, showed that the increase in habitat loss altered body size distribution within 1041 

populations. In landscapes with less habitat, the average size of individuals increased, 1042 

indicating that larger individuals are less affected. 1043 

During movement, individuals make decisions based on the experiences they were 1044 

exposed to during training. Although we had a simple landscape, in which we only had 1045 

three states and nine possible actions, we can consider that there is a small difference in 1046 

learning between individuals. This small difference may cause individuals to behave 1047 

differently, which may explain the greater uncertainty associated with memory-based 1048 

estimates of individuals' effect sizes. 1049 

One challenge encountered in landscape ecology is assessing the effect of habitat 1050 

fragmentation per se (Fahrig 2017), which is not so easy to test with data collected in the 1051 

field. In our study, it was possible to assess fragmentation independently of habitat loss 1052 

since, during the landscape creation, we simulated a history of habitat loss, making it 1053 



60 
 

possible to generate landscapes with different configurations but with the same amount 1054 

of habitat. However, in our model, we don't have enough evidence to corroborate that 1055 

habitat fragmentation affects home range size because the uncertainties associated with 1056 

estimating the effect are too great. We believe that one of the factors behind this result is 1057 

the low variability of the aggregation index between landscapes (mean: 0.007, standard 1058 

deviation: 0.005). 1059 

Another component that our model allowed to be controlled was the population. 1060 

The same individuals were used for the same history of habitat loss, thus preserving the 1061 

same initial coordinates, maximum movement capacity, radius of perception of the 1062 

landscape, and Q matrix. This level of control in our study shows how simulation models 1063 

can be a powerful tool for "experimentation" in ecology. MBIs are highly flexible models 1064 

that can be developed using different mathematical and statistical techniques and applied 1065 

to different theoretical and applied ecology problems (Dalleau et al. 2019, Djouda et al. 1066 

2021, Vasbinder et al. 2023). 1067 

Our model has some limitations. We used a simplified landscape where the cells 1068 

are binary, so the individuals received information on whether they were in a suitable call 1069 

or a cell above the carrying capacity. One way of increasing the complexity of the 1070 

landscape and making it more realistic would be to have cells with continuous values 1071 

instead of binary values. For habitat cells, the values can represent the availability or 1072 

quality of the resource. In contrast, for cells expressing the matrix, these values can 1073 

represent resistance to movement or probability of death (Simpkins and Perry 2017). 1074 

However, the models presented a trade-off between complexity and generalization. More 1075 

complex models tend to be more realistic but are more specific and have less 1076 

generalization power (Evans et al. 2013). The complexity and simplifications present in 1077 

our model were enough to test our hypotheses; increasing details such as sex 1078 
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differentiation and population dynamics would not add any new insights to our work and 1079 

would most likely not alter our results. 1080 

Despite its limitations, our model provided valuable conclusions, highlighting the 1081 

importance of navigation capacity for movement in altered landscapes and underscoring 1082 

the usefulness of IBMs as experimental tools in ecological studies. Our study 1083 

demonstrated how memory and getting information from the landscape affects home 1084 

range size, causing individuals to move shorter distances in the landscape. We showed 1085 

that the home range size of memory-based individuals is less altered than that of non-1086 

oriented individuals, thus demonstrating that decisions based on landscape information 1087 

optimize the movement of individuals. This result is reinforced by the different responses 1088 

between species, with the smaller species obtaining less information from the landscape 1089 

and ending up being affected by habitat loss, while the other species' home range is not. 1090 

 1091 

Data availability 1092 

All the scripts used to create the model and analyze the data are 1093 

available in the following Github directory: https://github.com/edgar-1094 

lima/IBM_Movement 1095 
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Supporting information 1238 

 To obtain the parameters of the allometric equations between body size and daily 1239 

movement capacity, we fitted a non-linear regression model between the body mass of 1240 

herbivorous passerine species that use grassland as habitats. The data used to adjust the 1241 

models was obtained from the literature. The regression was fitted using the minpack.lm 1242 

package in the R software. 1243 

S1: Non-linear regression between body mass and daily movement capacity of 1244 

herbivorous passerines that use grassland habitats.  1245 
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Capítulo III 1246 

 1247 

The effect of landscape characteristics on bird home range movements: a 1248 

comprehensive global meta-analysis. 1249 

 1250 

Abstract 1251 

The intense expansion of human activities in natural areas is recognized as a major 1252 

threat to biodiversity. Habitat loss diminishes landscape resources, impacting food 1253 

availability, nesting sites, and shelters against predators. Habitat loss also leads to 1254 

fragmentation, altering the distribution of habitats in the landscape, resulting in resource 1255 

isolation, reduced genetic flow, and compromising individual movement capacity. 1256 

Individuals adjust their movement behavior to landscape characteristics influenced by 1257 

habitat loss and fragmentation. In environments with abundant and predictable resources, 1258 

individuals move within a smaller area, conserving energy by following a sinuous step at 1259 

a slower speed, reducing mortality risk. Conversely, individuals cover a larger area in 1260 

resource-scarce environments, moving with less meandering and fast movements. This 1261 

study assesses the impact of habitat loss and fragmentation on bird movements within 1262 

their home ranges. Employing a meta-analytic approach, we tested hypotheses about 1263 

changes in movement within the home range, expecting that individuals will have i) a 1264 

larger home range size, ii) individuals will move faster and over longer distances in 1265 

landscapes with less habitat and more fragmented, iii) the effect of habitat loss on 1266 

individual movement will be greater than the effect of fragmentation. We did not find 1267 

evidence of landscape effects on bird movement within the home range without 1268 

considering any moderator. Despite a trend suggesting a positive impact of habitat 1269 
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disturbance, substantial uncertainty implies the outcome could be neutral or negative. 1270 

Birds were observed to move faster in landscapes with scarce and fragmented habitats, 1271 

indicating a preference for speed in degraded environments. However, we did not find a 1272 

significant impact of the landscape context on home range size, core size, and movement 1273 

distance. The complex interaction of landscape elements and individual decision-making 1274 

suggests diverse responses in movement distances and home range size, highlighting the 1275 

intricate nature of this relationship. 1276 

Keywords: Movement ecology, Landscape ecology, Marginal Value Theorem, 1277 

Movement cost, Movement behavior. 1278 

 1279 

Introduction 1280 

The strong expansion of human activities towards the natural areas has been 1281 

considered one of the main threats to biodiversity and ecosystems functioning (Wilcove 1282 

et al. 1986, Estavillo et al. 2013). In this context, habitat loss reduces resources in the 1283 

landscape, mainly food availability, nesting sites, and shelters against predators (Fahrig 1284 

2001). As a consequence of habitat loss, fragmentation alters the distribution of habitat 1285 

patches on the landscape, causing the isolation of resources and reducing the genetic flux 1286 

and compromising the individual movement capacity (With and King 1999, Grande et al. 1287 

2020). The population consequences of this involve an increase in local intra- and 1288 

interspecific competition, an increased risk of local population extinction, and the 1289 

possibility of losing dispersing individuals crossing a matrix occupied by human activities 1290 

(Estavillo et al. 2013, Fahrig 2013). Given such impacts, assessing how habitat loss and 1291 

fragmentation affect individuals during their daily movements within their home range is 1292 

necessary. 1293 
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Even those species that do not have their means of locomotion, individuals need 1294 

to move at least at one stage of their life. However, movement can be a broad term 1295 

encompassing distinct ecological processes. For example, movement to occupy new areas 1296 

is generally defined as dispersal and has a different demographic meaning than movement 1297 

within the home range (Clobert et al. 2012, With 2019). In an approach proposed by 1298 

Nathan et al. (2008) to study movement in ecology, the authors suggest categorizing 1299 

explanations for "why individuals move?" into internal state and external factors. The 1300 

internal state refers to physiological needs that drive movement, such as searching for 1301 

food to meet their energy requirements or seeking reproductive partners (Nathan et al. 1302 

2008). On the other hand, external factors are primarily related to environmental 1303 

components that cause and affect an individual's movement, such as resource availability 1304 

in the landscape and climatic seasonality (Nathan et al. 2008). 1305 

This study focuses exclusively on movement within an individual’s home range 1306 

and the processes that can affect it. The home range of an individual is characterized by 1307 

the sum of areas in which individuals move to feed, reproduce, escape predators, and 1308 

explore new areas (Börger et al. 2008, With 2019). The external factors related to 1309 

movement within the home range are typically associated with landscape characteristics 1310 

because, during their daily movements, individuals interact with the various elements of 1311 

the environment while exploring it (Kleyheeg et al. 2017, Doherty et al. 2019). 1312 

Individuals can alter their movement behavior within the home range in response 1313 

to landscape characteristics, including changes observed due to habitat loss and 1314 

fragmentation (Fahrig 2007, Mäkeläinen et al. 2015). For example, individuals in 1315 

landscapes with abundant and predictable resources tend to move within a smaller area, 1316 

following a more sinuous path and slower speed (Bautista et al. 2017, Ramos et al. 2020). 1317 

Therefore, they avoid high energy expenditure and reduce mortality risk (Charnov 1976, 1318 
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Malishev et al. 2018). On the other hand, individuals in landscapes with lower resource 1319 

availability tend to move over a larger spatial extent in a less meandering manner and at 1320 

a higher velocity (Vergara et al. 2015). In a study with koalas, Rus et al. (2020) tracked 1321 

36 individuals for four months. Their results revealed that individuals in landscapes with 1322 

lower connectivity walked across an area three times larger than individuals in more 1323 

connected areas. The authors also found a positive relationship between connectivity and 1324 

the tortuosity of individuals' movements, indicating that in more fragmented landscapes, 1325 

individuals use faster movements to access suitable habitats. 1326 

Therefore, this study aims to conduct a systematic literature review to assess the 1327 

effect of habitat loss and fragmentation on movement within birds' home ranges. We 1328 

chose the group because it is well studied, and several species are habitat specialists, 1329 

which means habitat loss and fragmentation might affect their movements or dispersal 1330 

capacity. We employed a meta-analytical approach and tested the following hypotheses: 1331 

i) habitat loss and fragmentation will reduce and structure the resource on the landscape 1332 

and affect the daily movement behavior; ii) habitat loss will affect movement more than 1333 

fragmentation. Therefore, we predict that: i) home range size will be larger in landscapes 1334 

with lower habitat quantity and higher fragmentation; ii) individuals will exhibit faster 1335 

movements and move over longer distances in landscapes with lower habitat quantity and 1336 

higher fragmentation; iii) the effect of habitat loss on individual movement will be greater 1337 

than the effect of fragmentation. 1338 

 1339 

Material & methods 1340 

1. Data sampling and selection criteria 1341 
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We conducted a systematic review using the PRISMA protocol (Moher et al. 1342 

2009), focusing on studies investigating the relationship between landscape effects and 1343 

movement within the home range of birds. We searched on Web of Science and Scopus 1344 

databases, by using the following terms: ((Landscape OR "Landscape ecology") AND 1345 

("Space use" OR "Home range")) AND (Bird* OR Aves). We conducted the search on 1346 

November 10, 2022, and the search terms were applied to the title, abstract, keywords, 1347 

and keywords plus fields of the articles. We removed any duplicated articles, and two 1348 

reviewers revised the database for abstract screening. 1349 

The meta-analysis included studies that met the following criteria: i) the study's 1350 

purpose should examine the relationship between landscape components and movement 1351 

within bird home ranges; ii) the study should report effect size, a goodness-of-fit measure 1352 

(e.g., r²), a test statistic (e.g., t, F), or provided data that allowed for the calculation of 1353 

effect size; iii) the study should specify the method used for monitoring movement (e.g., 1354 

telemetry, GPS); iv) the study should indicate the method used for determining home 1355 

range (e.g., minimum convex polygon); v) for studies should involve multiple species, 1356 

reporting measures separated for each species. 1357 

 1358 

2. Landscape variables 1359 

To compare the effects of habitat loss and fragmentation, we created a moderator 1360 

(explanatory variable) based on landscape metrics and treatments employed in the studies. 1361 

Variables that represented patch distribution patterns, shape index, aggregation index, and 1362 

amount of edge were classified as indicators of habitat fragmentation (Smith et al. 2009, 1363 

Didham et al. 2012). On the other hand, variables such as habitat amount, habitat 1364 
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diversity, and total nuclear area were considered as measures of habitat loss (Mcgarigal 1365 

and Cushman 2002, Cushman et al. 2012). 1366 

 1367 

3. Functional classification of species 1368 

We developed two moderators to represent functional groups. The first 1369 

moderator represents the food resource, while the second represents the primary habitat 1370 

use. The classification of species was based on the AVONET database (Tobias et al. 1371 

2022). We combined information on the trophic level and trophic niche for the food 1372 

resource moderator. Regarding the habitat use moderator, we utilized the habitat 1373 

information and grouped woodland and forest types into the forest category. For more 1374 

detailed information on trophic classifications, please refer to the AVONET metadata 1375 

(https://figshare.com/s/b990722d72a26b5bfead). 1376 

 1377 

4. Phylogeny data 1378 

An essential assumption of statistical analysis is the independence of the 1379 

residuals, as in our study, there are different species, we used the birds' phylogeny to 1380 

control the correlation between them (Adams 2008, Koricheva et al. 2013, Gurevitch et 1381 

al. 2018). We used a consensus phylogeny with 1000 random phylogenetic trees with 1382 

Hackett constraint from Jetz et al. (2012) topology. 1383 

 1384 

5. Data analysis 1385 

To test our hypothesis, we utilized the coefficient of correlation (R) as the 1386 

standard effect size. We selected this effect size measure because it has a defined range 1387 

https://figshare.com/s/b990722d72a26b5bfead
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with minimum and maximum values and is easily interpretable by people. In this study, 1388 

the effect size was estimated for habitat loss and fragmentation, with positive values 1389 

indicating a positive relationship between movement and the extent of habitat loss and 1390 

fragmentation (Ellis 2010). 1391 

We employed a Multilevel Linear Mixed Models approach, which considers the 1392 

variation between studies, to estimate the "true" effect size. This method also assigns more weight 1393 

to studies with larger sample sizes (Borenstein et al. 2009). To account for the phylogenetic 1394 

correlation between species in our study, we controlled for it by utilizing a phylogenetic 1395 

variance-covariance matrix. For this purpose, we used the vcv function from the ape 1396 

package (Paradis and Schliep 2019).  1397 

Initially, we employed a general model with wing length as a moderator. 1398 

However, the purpose of this moderator was solely to control for the correlation between 1399 

body size and motion capacity. The study ID, monitoring method, and species were 1400 

treated as random effects, while the intercept value served as the accumulated effect size. 1401 

After this, we fitted four models each with one moderator: i) landscape model: habitat 1402 

loss and habitat fragmentation; ii) movement model: home range size, home range core 1403 

size, movement distance, movement speed; iii) food resource: Carnivore/Generalist, 1404 

Carnivore/ Invertivore, Carnivore/Vertivore, Herbivore/Generalist, Herbivore/ Specialist, 1405 

Omnivore; iv) habitat use: Forest, Grassland, Human modified, and Shrubland. We also 1406 

controlled the wing length and the same variables for all these models on random effects. 1407 

The models were fitted using rma.mv from metafor package (Viechtbauer 2010). 1408 

We also estimated the T² statistics, which reflect the proportion of variation 1409 

between studies, and I² statistics, which indicate the amount of variation that can be 1410 

attributed to the moderators (Borenstein et al. 2009). We employed the method developed 1411 
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to estimate the mentioned statistics to account for phylogenetic correlation, (Nakagawa 1412 

and Santos 2012). In models with categorical moderators, we computed the marginal R² 1413 

and utilized the orchaRd package (Shinichi Nakagawa et al 2023). 1414 

 1415 

3. Publication bias 1416 

We used the funnel plot associated with Trim and Fill to evaluate the publication 1417 

bias. The funnel plot was built with effect size on the x-axis and the standard error on y, 1418 

and each point on the plot represents a study; without publication bias, the plot presents 1419 

a symmetric distribution of points (Borenstein et al. 2009). In association with the funnel 1420 

plot, the Trim and Fill method indicates how many studies it would take to generate a 1421 

symmetric plot (Duval and Tweedie 2000). We also used the Orwin Fail-safe number to 1422 

evaluate how many studies are needed to reduce the effect size by a predefined percentage 1423 

by the research (Borenstein et al. 2009). We used an effect size reduction of 50 and 75% 1424 

in these studies. All analyses were performed on R Core Team (2023) using metafor 1425 

package (Viechtbauer 2010). 1426 

 1427 

Results 1428 

Our search yielded a total of 814 studies, out of which 41 studies met our criteria 1429 

and were included in the analyses (Fig. 1). These studies were conducted in 23 countries 1430 

across four continents, including regions such as Scandinavia and Hawaii (Fig. 2). The 1431 

dataset comprised 58 bird species, including 36 carnivores, 11 herbivores, and 1432 

omnivorous species. For the general model, movement metrics, and landscape analysis, 1433 

all 41 studies were utilized. However, guild models were based on 36 studies for home 1434 

range size and nine studies for home range core size. 1435 
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In general, without considering any moderator, our study did not find evidence 1436 

of landscape effects on bird movement within the home range (Fig. 3, Table 1). Although 1437 

a trend indicated a positive effect of habitat disturbance, the associated uncertainty was 1438 

substantial, suggesting that the effect could be zero or negative (R = 0.221; CIlw = -0.055; 1439 

CIup = 0.496). The total heterogeneity (I²t) observed in our study was 80%, with 43.6% 1440 

heterogeneity between studies (I²bs) and less than 5% phylogenetic effects (I²phy). 1441 

 1442 

Figure 1: A flowchart illustrating the PRISMA protocol for a systematic review is 1443 

presented, depicting each stage of study selection, exclusion, and the number of studies 1444 

included in the meta-analysis. 1445 



78 
 

When we analyzed the effects of habitat loss and fragmentation separately, we 1446 

found no evidence supporting a positive or negative effect (Fig. 3, Table 1). Therefore, 1447 

we can conclude that these factors do not explain movement variation within birds’ home 1448 

ranges in response to habitat amount and configuration, as indicated by marginal R²= 1449 

0.055. 1450 

Figure 2: Global distribution and number of studies per country included in the meta-1451 

analysis. 1452 

We found that birds move faster in landscapes where habitat is less abundant and 1453 

fragmented (R = 0.504; CIlw = 0.088; CIup = 0.920; Fig. 3). This indicates that birds tend 1454 

to move faster in more deteriorated landscapes, spending less time on the anthropic 1455 

matrix. However, we did not find any significant impact of the landscape context on home 1456 

range size, home range core size, and movement distance. The movement moderator 1457 

accounted for only 0.19% of the variation in effect sizes (Fig. 3, Table 1). 1458 

All functional groups tended to respond positively to the landscape. However, 1459 

we did not find statistical support for the notion that landscape significantly influences 1460 

the movement of food resource and habitat use functional groups (Fig. 4 and 5; Table 2). 1461 
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The funnel plot and trim-and-fill methods indicated that only five studies were 1462 

required to achieve a symmetrical funnel plot; these findings suggest no substantial 1463 

publication bias in our dataset (Fig. S1). Additionally, the Orwin fail-safe number 1464 

revealed that an additional 39 and 139 independent studies would be necessary to reduce 1465 

our effect size by 50% and 75%, indicating a low test power.  1466 

Table 1: Results of general models, landscape processes and movement metrics. 1467 

  R SE t-val df ci.lb ci.ub R²m I²t I²bs I²phy 

General model:            

Accumulated size 0.221 0.140 1.582 179 -0.055 0.496 - 
80.0 43.6 

5.0 

Wing lenght  -0.001 0.001 -1.313 179 -0.002 0.000     

           

Landscape:           

Habitat fragmentation 0.302 0.189 1.602 178 -0.070 0.674 0.055    

Habitat loss 0.213 0.145 1.465 178 -0.074 0.500 -    

Wing lenght  -0.001 0.001 -1.370 178 -0.002 0.000     

           

Movement metric:           

Home range size 0.094 0.145 0.652 176 -0.192 0.381 0.193    

Home range core size 0.296 0.198 1.497 176 -0.095 0.687 -    

Movement distance 0.279 0.212 1.316 176 -0.139 0.697 -    

Movement speed 0.504 0.211 2.389 176 0.088 0.920 -    

Wing lenght  -0.001 0.001 -1.054 176 -0.002 0.001         
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 1468 

Figure 3: The forest plot presents three models: the movement model is represented by 1469 

red bars and squares, the landscape model is represented by blue, and the accumulated 1470 

effect size of the general model is represented by black. The squares represent the effect 1471 

sizes, and the bars indicate the 95% confidence interval. The numbers on the right side 1472 

show the number of samples and studies, respectively. 1473 

 1474 

Table 2: Results of meta-analysis models for functional groups of feeding and habitat 1475 

use. 1476 

  R SE t-val df ci.lb ci.ub R²m 

Functional feeding:        

Carnivore/Generaslist 0.108 0.406 0.266 174 -0.692 0.908 0.079 

Carnivore/Invertivore 0.289 0.192 1.508 174 -0.089 0.668  

Carnivore/Vertivore 0.254 0.332 0.765 174 -0.401 0.909  

Herbivore/Generalist 0.129 0.306 0.421 174 -0.475 0.732  

Herbivore/Specialist 0.046 0.267 0.170 174 -0.482 0.573  

Omnivore 0.297 0.265 1.120 174 -0.227 0.821  

Wing lenght  -0.001 0.001 -0.931 174 -0.002 0.001  
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Functional habitat:        

Forest 0.303 0.168 1.807 168 -0.028 0.633 0.080 

Grassland -0.046 0.275 -0.167 168 -0.589 0.497  

Human Modified 0.147 0.230 0.640 168 -0.307 0.602  

Shrubland 0.324 0.232 1.398 168 -0.134 0.783  

Wing lenght -0.001 0.001 -0.993 168 -0.002 0.001   

 1477 

 1478 

Figure 4: Forest plot reporting the food resource functional group response, square 1479 

represents effect size, and bar represents confidence interval (95%). The numbers on the 1480 

right side indicate the number of samples and studies, respectively. 1481 
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 1482 

Figure 5: Forest plot reporting the response of habitat use functional group, square 1483 

represents effect size, and bar represents confidence interval (95%). The numbers on the 1484 

right side indicate the number of samples and studies, respectively. 1485 

 1486 

Discussion 1487 

Here, we present a global overview of the relationship between movement 1488 

patterns of birds and landscape characteristics (habitat amount and fragmentation). Birds 1489 

move faster in altered landscapes without increasing their home range sizes and distance 1490 

traveled. Moreover, home range sizes of birds adopting different resource use strategies 1491 

(food and habitat use) also remain the same-altered landscapes. We found evidence that 1492 

bird movement speed increases as landscape degradation increases, revealing that 1493 

changes in the landscape can alter bird movement behavior (Ramos et al. 2020), even 1494 

though we cannot assert different responses to habitat loss and habitat fragmentation. 1495 

In our study, the birds presented higher movement speed in landscapes with more 1496 

significant habitat loss and fragmentation (hereafter HLF), agreeing with movement 1497 
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ecology theory, which predicts that individuals alter their behavior due to external factors 1498 

like land cover (Nathan et al. 2008). In landscapes with reduced and more structured 1499 

spatial resource arrangement, the individual's movement patterns tend to be more linear, 1500 

with fewer stops to explore the environment (Doherty and Driscoll 2017). This behavior 1501 

reduces the exposure to inhospitable environments and predators, counterbalancing the 1502 

cost of faster movements and death risk. The selection of habitat use within the home 1503 

range is well documented in ecological literature, and individual preference can vary 1504 

according to available habitats in the landscape, season, sex, and individual's goal 1505 

(Weaving et al. 2014, Barbaro et al. 2016). The necessary resources to survive, grow, and 1506 

reproduce can be distributed in different habitats, and the time an individual stays in a 1507 

habitat depends on rewards and the risk they are willing to take (Charnov 1976, Kacelnik 1508 

and Todd 1992). All studies in this meta-analysis that evaluated any movement speed 1509 

metric found a positive relationship between habitat degradation (habitat loss and 1510 

fragmentation) and fast movements (Hansbauer et al. 2008, Campioni et al. 2013, Powell 1511 

et al. 2016, Evens et al. 2018, Habel et al. 2019). This same pattern is also found in 1512 

mammals and frogs (Vásquez et al. 2002, Gehring and Swihart 2004), reinforcing the 1513 

evidence that individuals change their movement behavior to adapt to habitat degradation.  1514 

However, in addition to high energy costs, fast movements also present a 1515 

biomechanical price, affecting an individual's maneuverability and reducing perception 1516 

of the surrounding environment (Chittka et al. 2009; Wilson et al. 2015). However, these 1517 

costs can be compensated if fast movements increase survival chances or reproductive 1518 

success (Hirsch 2010). Assuming that individuals make optimal decisions, we can 1519 

interpret this increase in movement speed in light of the Marginal Value Theorem (MVT) 1520 

(Charnov 1976). In the classic MVT, the food is found in patches, and the individual 1521 

spends time moving between them; the individual must decide which patch to visit and 1522 
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when to leave it. The theorem predicts that individuals will choose to maximize the gain 1523 

in relation to costs (Charnov 1976). Therefore, the decision to move faster instead of 1524 

moving more can be interpreted as the best movement strategy in a degraded landscape 1525 

according to studies presented in our meta-analysis, with the gains compensating the 1526 

risks. 1527 

In landscape and movement ecology literature, we found two hypotheses and 1528 

examples of the effect of landscape on the movement of organisms. On the one hand, 1529 

some hypothesis studies predict that the advancement of HLF makes the individual's 1530 

movement difficult, so individuals will move small distances, resulting in a small home 1531 

range size (Doherty et al. 2019). Otherwise, individuals must increase their movements 1532 

in landscape with higher HLF to meet their energy needs (Hillaert et al. 2018, Marcolin 1533 

et al. 2021). According to the results found here, we do not have evidence for either of 1534 

the two hypotheses for birds. In our review, we found studies that agree with two 1535 

hypotheses and do not agree with any one (Bayne and Hobson 2001, Hinam and Clair 1536 

2008, Godet et al. 2015). For now, what we can assume for movement distances and home 1537 

range size is that the relationship between the landscape and bird movement depends on 1538 

a complex interaction between landscape elements and individual decision-making, 1539 

which can generate different responses (Fahrig 2007). 1540 

However, these results in movement distance and home range size for general 1541 

model and functional groups should be interpreted cautiously. Our models presented a 1542 

low-power test, and for any moderator treatments, we found few studies; this increased 1543 

the uncertainty and generated very large confidence intervals (Ellis 2010). We highlight 1544 

this caution mainly for omnivores, carnivores/generalists (functional food resource), 1545 

forest, and shrubland habitat use. Finally, it was not possible to include matrix effects 1546 

because most studies need to mention or even measure matrix composition. The matrix 1547 
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type can limit or facilitate the movement of individuals, and considering this in the 1548 

analysis could change our results, especially for the home range size (Cosgrove et al. 1549 

2017). 1550 

In conclusion, our study reveals a complex dynamic in the relationship between 1551 

bird movement patterns and landscape characteristics, highlighting the notable 1552 

acceleration in HLF landscapes. The fast movements interpreted considering the 1553 

Marginal Value Theorem, suggest a strategic optimization where the benefits outweigh 1554 

the costs, and individuals prefer this strategy to move long distances. Our study gives a 1555 

good overview of how bird movement responds to the landscape. Still, more studies on 1556 

the topic are needed, especially for the tropical region. Also, future studies must consider 1557 

the impact of the matrix on the movement of individuals in the animal groups. However, 1558 

we recommend that authors be more careful in presenting results, for performing a meta-1559 

analysis, the studies must present some effect size (R, R², F, Slope), measure of variation, 1560 

and number of samples. In addition to allowing meta-analysis study, the adequate 1561 

presentation of results brings more transparency and facilitates understanding by readers.  1562 

 1563 

Data availability 1564 

The data and scripts of our analysis are available on GitHub: https://github.com/edgar-1565 

lima/MetaAnalise_HomeRange 1566 
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