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Abstract: In reliability contexts, probabilities of the type R = P(X < Y), where X and Y are random
variables, have shown to be useful tools to compare the performance of these stochastic entities. By
considering that both X and Y follow a transmuted generalized extreme-value (TGEV) distribution,
new analytical relationships were derived for R in terms of special functions. The results hereby
obtained are more flexible when compared to similar results found in the literature. To highlight
the applicability and correctness of our results, we conducted a Monte-Carlo simulation study and
investigated the use of the reliability measure P(X < Y) to select among financial assets whose
returns were characterized by the random variables X and Y. Our results highlight that R is an
interesting alternative to modern portfolio theory, which usually relies on the contrast of involved
random variables by a simple comparison of their means and standard deviations.

Keywords: stress–strength reliability; extreme-value H-function; TGEV distribution; assets selection

MSC: 60E05; 62Exx; 62Fxx

1. Introduction

Consider a component with a strength Y and subjected to a stress X. The compo-
nent fails if the stress X exceeds the component strength Y; otherwise, it works properly.
For independent components, the stress–strength reliability (SSR) R, also referred to as
stress–strength probability, is given by:

R = P(X < Y) =
∫ +∞

−∞
FX(x) fY(x)dx, (1)

where FX and fY denote, respectively, the cumulative distribution function (CDF) of X and
the probability density function (PDF) of Y.

Although R was initially applied in the context of engineering, the interest in such
metric spreads to several areas, such as household financial fragility [1], stock marketmod-
eling [2], asset selection [3], among others. We refer the reader to [4] for further details on
stress–strength models.

The choice of an appropriate distribution to model both X and Y directly influences
the calculation and estimation of R. In Finance, we have strong evidence that asset returns
are better modeled by either α-stable processes (heavy-tailed alternative to Brownian mo-
tion [5]) or by heavy-tailed time series models [6,7]. The Extreme-Value Theory (EVT) made
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available a body of knowledge around heavy-tailed distributions, like the definition of the
extreme-value distributions [8] (and its variations), which can be used as a proxy of various
fat-tailed distributions. Several studies have successfully applied EVT to model financial
data [3,9–12], where it has been shown that EVT-based models may provide adequate risk
management strategies. Therefore, generalizations of extreme-value distributions may
enhance the quality of the models, and this is the general contribution of the present work.

In this paper, we are interested in further exploring R calculations in the context of
extreme-value distributions. The estimation of R, when X and Y are independent random
variables following extreme-value distributions, has been extensively studied. For example,
Ref. [13] derived the expression of R for the extreme distributions Gumbel, Fréchet, and
Weibull, Ref. [14] considered a Bayesian analysis of the Fréchet stress–strength model,
Ref. [15] discussed Bayesian estimation of P(Y < X) for the Weibull distribution with
arbitrary parameters and [16] improved the estimation for R by not using transformations
in the data and eliminating the constraints on the parameters in the case of the Weibull
models. Closed-form expressions for R when X and Y follow generalized extreme-value
(GEV) distributions were obtained in [3], who also proposed an estimation procedure for R
by not using transformations in the data and with as few parameter restrictions as possible.

Several generalizations of the extreme-value distribution have been proposed, but in
the present paper, the so-called transmuted generalized extreme-value (TGEV) distribution
shall be considered. The TGEV distribution, initially proposed by [17], has since been
extensively studied and applied in various modeling scenarios. Significant contributions
to its application and understanding have been made by [18,19]. Essentially, the TGEV
distribution is a modification of the generalized extreme-value distribution (GEV), whose
CDF is givenby:

G(x) =

 exp
(
−(1 + γ

x−µ
σ )−1/γ

)
, 1 + γ

(
x−µ

σ

)
> 0 and γ ̸= 0,

exp
(
− exp

(
− x−µ

σ

))
, x ∈ R and γ = 0,

(2)

where γ > 0 is the shape parameter, µ ∈ R is the location parameter and σ > 0 is the scale
parameter. Then, the TGEV distribution is obtained as follows: given the GEV distribution
G(x), the transmuted distribution function F is given by:

F(x) = (1 + λ)G(x)− λ[G(x)]2, |λ| < 1. (3)

Properties such as moments, quartiles, tail behavior, and order statistics, among others, were
studied in [19]. They also showed its applicability in modeling log-returns of stock prices.

In [19], the TGEV parameters (µ, σ, γ, λ) were estimated by a maximum likelihood
approach. In contrast, this work proposes a two-step estimation procedure. First, a GEV
model is estimated to yield (µ, σ, γ) parameters. Then, a refinement step is taken by
estimating the λ parameter in an attempt to improve the first step fit and to reduce the
overall computational effort to estimate the TGEV parameters.

In this paper, we consider the problem of estimating the stress–strength parameter R
when X and Y are independent TGEV random variables. In addition, our framework does
not require transformations in the data and, to the best of our knowledge, allows for the
fewest parameter restrictions.

Our main contributions are

• to derive R analytically in terms of special functions;
• to derive closed-form expressions for multicomponent system reliability;
• to propose an estimation procedure for R and validate such procedure via a simulation

study and
• to apply the theoretical results in asset selection problems in finance.

The paper is organized as follows: in Section 2, we define the extreme-value H-function
and the H-function, and we explicitly present the CDF and PDF of the TGEV distribution.
Section 3 deals with the derivation of R when X and Y are independent TGEV random
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variables. The maximum likelihood estimation for R is presented in Section 4. In Section 5,
we discuss a simulation study and a stock price modeling application for asset selection.
The last section presents the conclusions.

2. Preliminaries

In this section, we give some definitions and results which will be used subsequently.

2.1. Special Functions

Recently, the extreme-value H-function was introduced in [20]. This function is defined
as follows:

H(a1, a2, a3, a4, a5, a6) :=
∫ ∞

0
ya6 exp(−a1y − (a2ya3 + a4)

a5)dy, (4)

where ℜ(a1),ℜ(a2),ℜ(a4) ∈ R+, and a3, a5 ∈ C. It is important to note that both ℜ(a1)
and ℜ(a2) cannot be equal to zero simultaneously. Moreover, ℜ(a6) > −1 when a1 ̸= 0,
or when a1 = 0 and sign(a3) = sign(a5). Conversely, ℜ(a6) < −1 when a1 = 0 and
sign(a3) ̸= sign(a5). In this context, R, C, and ℜ, respectively, denote the set of real
numbers, complex numbers, and the real part of a complex number.

Another important special function is the H-function, which can be defined by:

Hm,n
p,q

[
z
∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]
=

1
2πi

∫
L

∏m
k=1 Γ(bj + Bjs)∏n

j=1 Γ(1 − aj − Ajs)

∏
q
k=m+1 Γ(1 − bj − Bjs)∏

p
j=n+1 Γ(aj + Ajs)

z−sds,

where 0 ≤ m ≤ q, 0 ≤ n ≤ p (not both m and n zeros simultaneously), Aj > 0 (j = 1, · · · , p),
Bk > 0 (k = 1, · · · , q), aj and bk are complex numbers such that no poles of Γ(bk + Bks)
(k = 1, · · · , m) coincide with poles of Γ(1 − aj − Ajs) (j = 1, · · · , n). L is a suitable contour
w − i∞ to w + i∞, w ∈ R, separating the poles of the two types mentioned above. For more
details, see [21]. As special cases, we have:

∫ ∞

0
exp{−ay − byc}dy =

1
b1/cc

H1,1
1,1

[
a

b1/c

∣∣∣ ( c−1
c , 1

c )
(0, 1)

]
(5)

for a > 0, b > 0 and c > 0 and∫ ∞

0
yd−1 exp{−ay − byc}dy =

1
ad H1,1

1,1

[
ba−c

∣∣∣ (1 − d, c)
(0, 1)

]
, (6)

where a > 0, b > 0, c > 0 and d > 0.

2.2. Transmuted GEV Distribution

The CDF and the PDF of the TGEV distribution are given, respectively, by:

F(x; µ, σ, γ, λ) =

{
exp(−w−1/γ)

[
(1 + λ)− λ exp(−w−1/γ)

]
, γ ̸= 0;

exp
(
− exp

(
−
(

w−1
γ

)))[
(1 + λ)− λ exp

(
−
(

w−1
γ

))]
, γ = 0,

and

f (x; µ, σ, γ, λ) =


[
(w)−1−1/γ exp(−w−1/γ)

σ

][
(1 + λ)− 2λ exp(−w−1/γ)

]
, γ ̸= 0;

exp(−
(

w−1
γ

)
) exp

(
− exp(−

(
w−1

γ

))
σ

[
(1 + λ)− 2λ exp

(
− exp

(
−
(

w−1
γ

)))]
, γ = 0,

(7)

where w = 1 + (γ(x − µ)/σ) and supp(F) = supp( f ) = {x; w > 0}.
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Let X ∼ TGEV(µx, σx, γx, λx) and Y ∼ TGEV(µy, σy, γy, λy) be independent random
variables. The stress–strength probability is given by:

R = P(X < Y) =
∫ +∞

−∞
FX(u; µx, σx, γx, λx) fY(u; µy, σy, γy, λy)du.

In Section 5, we will apply the density f to modeling log-return stock prices. Fur-
thermore, the support of f depends on the parameters. Thus, the maximum likelihood
estimation is not as straightforward as in the usual cases. Figure 1 shows the behavior of
the PDF of TGEV random variables for some choices of parameters. Proper parameter
selection can be explored to represent the extremal models as particular cases of TGEV
distribution, as shown in Table 1.

Figure 1. Plot for the TGEV PDF for some parameter choices.

Table 1. Particular cases of TGEV model.

Distribution CDF

GEV F(x; 0, 1, γ, 0)
Fréchet F((x − 1)/γ; 0, 1, γ, 0), γ > 0

Reversed Weibull F(−(1 + x)/γ; 0, 1, γ, 0), γ < 0
Gumbel F(x; 0, 1, 0, 0)

3. Main Results

In this section, the reliability of two independent TGEV random variables is derived in
terms of H-functions. In addition, with suitable parameter restrictions, simpler expressions
in terms of the H-function are also obtained. First, we consider the case of two independent
TGEV with sign(γx) = sign(γy) ̸= 0.

Theorem 1. Let X and Y be independent random variables, respectively, with distribution TGEV
(µx, σx, γx, λx) and TGEV(µy, σy, γy, λy), µj ∈ R, σj ∈ R+, γj ∈ R (γj ̸= 0), λj ∈ [−1, 1],
j ∈ {x, y}. Then

• When γj > 0, j ∈ {x, y}:
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R = P(X < Y) = (1 + λx)(1 + λy)H
(

1,
γxσy

γyσx
,−γy, 1 +

γx

σx

(
µy − µx −

σy

γy

)
,− 1

γx
, 0
)

−2λy(1 + λx)H
(

2,
γxσy

γyσx
,−γy, 1 +

γx

σx

(
µy − µx −

σy

γy

)
,− 1

γx
, 0
)

−λx(1 + λy)H
(

1, 2−γx
γxσy

γyσx
,−γy, 2−γx

[
1 +

γx

σx

(
µy − µx −

σy

γy

)]
,− 1

γx
, 0
)

+2λxλyH
(

2, 2−γx
γxσy

γyσx
,−γy, 2−γx

[
1 +

γx

σx

(
µy − µx −

σy

γy

)]
,− 1

γx
, 0
)

, (8)

provided that µy −
σy
γy

≥ µx − σx
γx

. When µy −
σy
γy

< µx − σx
γx

:

R = P(X < Y) = 1 − (1 + λy)(1 + λx)H
(

1,
γyσx

γxσy
,−γx, 1 +

γy

σy

(
µx − µy −

σx

γx

)
,− 1

γy
, 0
)

+2λx(1 + λy)H
(

2,
γyσx

γxσy
,−γx, 1 +

γy

σy

(
µx − µy −

σx

γx

)
,− 1

γy
, 0
)

+λy(1 + λx)H
(

1, 2−γy
γyσx

γxσy
,−γx, 2−γy

[
1 +

γy

σy

(
µx − µy −

σx

γx

)]
,− 1

γy
, 0
)

−2λyλxH
(

2, 2−γy
γyσx

γxσy
,−γx, 2−γy

[
1 +

γy

σy

(
µx − µy −

σx

γx

)]
,− 1

γy
, 0
)

. (9)

• When γj < 0, j ∈ {x, y}:

R = P(X < Y) = (1 + λx)(1 + λy)H
(

1,
γxσy

γyσx
,−γy, 1 +

γx

σx

(
µy − µx −

σy

γy

)
,− 1

γx
, 0
)

−2λy(1 + λx)H
(

2,
γxσy

γyσx
,−γy, 1 +

γx

σx

(
µy − µx −

σy

γy

)
,− 1

γx
, 0
)

−λx(1 + λy)H
(

1, 2−γx
γxσy

γyσx
,−γy, 2−γx

[
1 +

γx

σx

(
µy − µx −

σy

γy

)]
,− 1

γx
, 0
)

+2λxλyH
(

2, 2−γx
γxσy

γyσx
,−γy, 2−γx

[
1 +

γx

σx

(
µy − µx −

σy

γy

)]
,− 1

γx
, 0
)

, (10)

provided that µy −
σy
γy

< µx − σx
γx

. When µy −
σy
γy

≥ µx − σx
γx

:

R = P(X < Y) = 1 − (1 + λy)(1 + λx)H
(

1,
γyσx

γxσy
,−γx, 1 +

γy

σy

(
µx − µy −

σx

γx

)
,− 1

γy
, 0
)

+2λx(1 + λy)H
(

2,
γyσx

γxσy
,−γx, 1 +

γy

σy

(
µx − µy −

σx

γx

)
,− 1

γy
, 0
)

+λy(1 + λx)H
(

1, 2−γy
γyσx

γxσy
,−γx, 2−γy

[
1 +

γy

σy

(
µx − µy −

σx

γx

)]
,− 1

γy
, 0
)

−2λyλxH
(

2, 2−γy
γyσx

γxσy
,−γx, 2−γy

[
1 +

γy

σy

(
µx − µy −

σx

γx

)]
,− 1

γy
, 0
)

. (11)

Proof. Set S = supp FX ∩ supp fY. Then

S =


(M, ∞), if sign(γx) = sign(γy) = 1,
(−∞, m), if sign(γx) = sign(γy) = −1,

R, if sign(γx) = sign(γy) = 0,
(12)

where M = max{µx − σx/γx, µy − σy/γy} and m = min{µx − σx/γx, µy − σy/γy}.
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Note that

R = P(X < Y) =
∫ ∞

−∞
FX(u; µx, σx, γx, λx) fY(u; µy, σy, γy, λy)du (13)

=
∫

S

(
exp(−w−1/γx

x )
[
(1 + λx)− λx exp(−w−1/γx

x )
]

×

 (wy)
−1−1/γy exp(−w

−1/γy
y )

σy

[(1 + λy)− 2λy exp(−w
−1/γy
y )

]du,

where wi = 1 + γi
σi
(u − µi), i ∈ {x, y}. We have four cases to consider:

1. γx > 0 and γy > 0

(a) µy − σy/γy ≥ µx − σx/γx;
(b) µy − σy/γy < µx − σx/γx;

2. γx < 0 and γy < 0

(a) µy − σy/γy < µx − σx/γx;
(b) µy − σy/γy ≥ µx − σx/γx.

Let us consider case 1(a). Substituting v = w
−1/γy
y , it follows from (13) that

R = (1 + λx)(1 + λy)
∫ ∞

0
exp

(
−v −

[
γxσy

σxγy
v−γy + 1 +

γx

σx

(
µy − µx −

σy

γy

)]−1/γx
)

dv

−2(1 + λx)λy

∫ ∞

0
exp

(
−2v −

[
γxσy

σxγy
v−γy + 1 +

γx

σx

(
µy − µx −

σy

γy

)]−1/γx
)

dv

−λx(1 + λy)
∫ ∞

0
exp

(
−v − 2

[
γxσy

σxγy
v−γy + 1 +

γx

σx

(
µy − µx −

σy

γy

)]−1/γx
)

dv

+2λxλy

∫ ∞

0
exp

(
−2v − 2

[
γxσy

σxγy
v−γy + 1 +

γx

σx

(
µy − µx −

σy

γy

)]−1/γx
)

dv. (14)

Therefore, (8) follows from (4) and (14). For case 1(b), it suffices to notice that P(X < Y) =
1 − P(Y < X) and apply the result in (8) with interchanged sub-indices. For cases 2(a)
and 2(b), the same rationale can be applied, just noticing that in such cases, x mostly takes
negative values.

Remark 1. Note that if we take λx = λy = 0, X and Y are random variables with GEV distribu-
tions, then our Theorem 1 generalizes the Theorem 3.1 in [3].

Remark 2. In a practical scenario, the estimates (µ̂x, σ̂x, γ̂x, λ̂x, µ̂y, σ̂y, γ̂y, λ̂y) should be obtained.
Then, if sign(γ̂x) = sign(γ̂y) ̸= 0, the conditions µy −

σy
γy

≥ µx − σx
γx

or µy −
σy
γy

< µx − σx
γx

must be verified and the corresponding R expression should be used.

Remark 3. It follows from (5) that if µx − σx/γx = µy − σy/γy and sign(γx) = sign(γy) ̸= 0,
then (8) can be written in terms of H-function as:
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R = (1 + λx)(1 + λy)
γx

γy

(
σyγx

σxγy

)1/γy

H1,1
1,1

[(
γxσy

γyσx

)1/γy ∣∣∣ (1 − γx
γy

, γx
γy
)

(0, 1)

]

− 2λy(1 + λx)
γx

γy

(
σyγx

σxγy

)1/γy

H1,1
1,1

[
2
(

γxσy

γyσx

)1/γy ∣∣∣ (1 − γx
γy

, γx
γy
)

(0, 1)

]

− λx(1 + λy)
γx

γy
2−γx/γy

(
σyγx

σxγy

)1/γy

H1,1
1,1

[
2−γx/γy

(
γxσy

γyσx

)1/γy ∣∣∣ (1 − γx
γy

, γx
γy
)

(0, 1)

]

+ λxλy
γx

γy
21−γx/γy

(
σyγx

σxγy

)1/γy

H1,1
1,1

[
21−γx/γy

(
γxσy

γyσx

)1/γy ∣∣∣ (1 − γx
γy

, γx
γy
)

(0, 1)

]
. (15)

In particular, by using a special case of the H-function as seen in [21], if µx − σx
γx

= µy −
σy
γy

,
σy
σx

< 2−γx and γx = γy ̸= 0, we have:

R = (1 + λx)(1 + λy)

[
1 +

(
σy

σx

)−1/γx
]−1

− 2(1 + λx)λy

[
2 +

(
σy

σx

)−1/γx
]−1

−λx(1 + λy)

[
1 + 2

(
σy

σx

)−1/γx
]−1

+ λxλy

[
1 +

(
σy

σx

)−1/γx
]−1

. (16)

Lastly, we consider the cases of two independent TGEV distributions with γx = γy = 0.

Theorem 2. Let X ∼ TGEV(µx, σx, 0, λx) and Y ∼ TGEV(µy, σy, 0, λy) be independent random
variables with µj ∈ R, σj > 0, λj ∈ [−1, 1], j ∈ {x, y}. Then

R = (1 + λx)(1 + λy)H
(

1, exp
(

µx − µy

σx

)
,

σy

σx
, 0, 1, 0

)
− 2(1 + λx)λyH

(
2, exp

(
µx − µy

σx

)
,

σy

σx
, 0, 1, 0

)
− λx(1 + λy) exp

(
µx − µy

σx

)
H
(

1, exp
(

µx − µy

σx

)
,

σy

σx
, 0, 1,

σy

σx

)
+ 2λxλy exp

(
µx − µy

σx

)
H
(

2, exp
(

µx − µy

σx

)
,

σy

σx
, 0, 1,

σy

σx

)
. (17)

In particular, if we take σx = σy, we obtain the explicit form

R =
(1 + λx)(1 + λy)

1 + exp
(

µx−µy
σx

) −
2(1 + λx)λy

2 + exp
(

µx−µy
σx

) −
λx(1 + λy) exp

(
µx−µy

σx

)
(

1 + exp
(

µx−µy
σx

))2 +
2λxλy exp

(
µx−µy

σx

)
(

2 + exp
(

µx−µy
σx

))2 .

Proof. Denote FX and fY, respectively, the CDF and PDF function of X and Y. Then

R =
∫ +∞

−∞
FX(u; µx, σx, γx, λx) fY(u; µy, σy, γy, λy)du (18)

=
∫ +∞

−∞
exp

(
− exp

(
−u − µx

σx

))[
(1 + λx)− λx exp

(
−u − µx

σx

)]

×
exp

(
− u−µy

σy

)
exp

(
− exp

(
− u−µy

σy

))
σy

[
(1 + λy)− 2λy exp

(
− exp

(
−

u − µy

σy

))]
du.
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Substituting v = exp
(
− u−µy

σy

)
, we can rewrite (18) as

R = (1 + λx)(1 + λy)
∫ ∞

0
exp

(
−v − exp

(
µx − µy

σx

)
vσy/σx

)
dv

− 2(1 + λx)λy

∫ ∞

0
exp

(
−2v − exp

(
µx − µy

σx

)
vσy/σx

)
dv

− λx(1 + λy) exp
(

µx − µy

σx

) ∫ ∞

0
vσy/σx exp

(
−v − exp

(
µx − µy

σx

)
vσy/σx

)
dy

+ 2λxλy exp
(
−

µy − µx

σx

) ∫ ∞

0
vσy/σx exp

(
−2v − exp

(
µx − µy

σx

)
vσy/σx

)
dv. (19)

Hence, (17) follows from (4) and (19).

Remark 4. It follows from (5) and (6) that (17) can be rewritten in terms of H-function as

R = (1 + λx)(1 + λy)
σx

σy
exp

(
µy − µx

σy

)
H1,1

1,1

[
exp

(
µy − µx

σy

)∣∣∣ (
σy−σx

σy
, σx

σy
)

(0, 1)

]

− 2(1 + λx)λy
σx

σy
exp

(
µy − µx

σy

)
H1,1

1,1

[
2 exp

(
µy − µx

σy

)∣∣∣ (
σy−σx

σy
, σx

σy
)

(0, 1)

]

− λx(1 + λy) exp
(

µx − µy

σx

)
H1,1

1,1

[
exp

(
µx − µy

σx

)∣∣∣ (− σy
σx

, σy
σx
)

(0, 1)

]

+ λxλy exp
(

µx − µy

σx

)
2−

σy
σx H1,1

1,1

[
2−

σy
σx exp

(
µx − µy

σx

)∣∣∣ (− σy
σx

, σy
σx
)

(0, 1)

]
. (20)

Multicomponent System Reliability

Let X1, · · · , Xn be independent and identically distributed random variables with dis-
tribution TGEV(µx, σx, γx, λx) and Y be an independent random variable with distribution
TGEV(µy, σy, γy, λy). Set Mn = max{X1, · · · , Xn}. Then,

P(Mn ≤ u) = Fn(u; µx, σx, γx, λx)

and we have

P(X1 < Y, · · · , Xn < Y) = P(Mn ≤ Y) =
∫ ∞

−∞
Fn(u; µx, σx, γx, λx) f (u; µy, σy, γy, λy)du =: In. (21)

In a broader context, consider independent random variables Y, X1, · · · , Xk with

Y ∼ TGEV(µy, σy, γy, λy)andXj ∼ TGEV(µx, σx, γx, λx), j = 1, · · · , k.

The reliability in a multicomponent stress–strength model is given by

Rs,k = P(at least s of(X1, · · · , Xk)exceedY)

=
k

∑
j=s

(
k
j

) ∫ ∞

−∞
(1 − F(u; µx, σx, γx, λx))

j(F(u; µx, σx, γx, λx))
k−j f (u; µy, σy, γy, λy)du.

Using a binomial expansion, we obtain

Rs,k =
k

∑
j=s

j

∑
r=0

(
k
j

)(
j
r

)
(−1)j−r

∫ ∞

−∞
(F(u; µx, σx, γx, λx))

k−r f (u; µy, σy, γy, λy)du. (22)
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Note that the integral terms in (22) is the same as (21) when n = k − r. Therefore,

Rs,k =
k

∑
j=s

j

∑
r=0

(
k
j

)(
j
r

)
(−1)j−r Ik−r.

Closed expressions for (21) are presented below.

Theorem 3. Let X1, · · · , Xn be independent and identically distributed random variables with
distribution TGEV(µx, σx, γx, λx) and Y be an independent random variable with distribution
TGEV(µy, σy, γy, λy). Then

• When sign(γx) = sign(γy) = 1:

In =
n

∑
l=0

(
n
l

)
(−1)n−l(1 + λx)

lλn−l
x
[
(1 + λy) Ĩn,l − 2λy În,l

]
, (23)

where

Ĩn,l = H
(

1,
γxσy

γyσx
(2n − l)−γx ,−γy,

[
1 +

γx

σx

(
µy − µx −

σy

γy

)]
(2n − l)−γx ,− 1

γx
, 0
)

and

În,l = H
(

2, (2n − l)−γx
γxσy

γyσx
,−γy, (2n − l)−γx

[
1 +

γx

σx

(
µy − µx −

σy

γx

)]
,− 1

γx
, 0
)

,

provided that µx − σx
γx

≤ µy −
σy
γy

.

• When sign(γx) = sign(γy) = −1, (23) holds provided that µx − σx
γx

≥ µy −
σy
γy

.

• When γx = γy = 0:

In =
n

∑
l=0

(
n
l

)
(−1)n−l(1 + λx)

lλn−l
x exp

(
(n − l)(µx − µy)

σx

)[
(1 + λy) J̃n,l − 2λy Ĵn,l

]
, (24)

where

J̃n,l = H
(

1, n exp
(

µx − µy

σx

)
,

σy

σx
, 0, 1,

(n − l)σy

σx

)
and

Ĵn,l = H
(

2, n exp
(

µx − µy

σx

)
,

σy

σx
, 0, 1,

(n − l)σy

σx

)
.

Proof. For simplicity of notations, denote

Fx(u) = F(u; µx, σx, γx, λx),

Fy(u) = F
(
u; µy, σy, γy, λy

)
,

Gx(u) = G(u; µx, σx, γx, λx),

and
Gy(u) = G

(
u; µy, σy, γy, λy

)
.

It follows from (3) and (21) that

In =
∫ +∞

−∞
Fn

x (u) fy(u)du

=
∫ +∞

−∞

[
(1 + λx)Gx(u)− λxG2

x(u)
]n

fy(u)du.
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By binomial expansion

In =
n

∑
l=0

(
n
l

)
(−1)n−l(1 + λx)

lλn−l
x

∫ +∞

−∞
Gx(u)2n−l fy(u)du. (25)

Observe that fy(u) = F′
y(u), which implies

∫ +∞

−∞
Gx(u)2n−l fy(u)du =

∫ +∞

−∞
Gx(u)2n−l[(1 + λy

)
gy(u)− 2λyGy(u)gy(u)

]
du

=
(
1 + λy

) ∫ +∞

−∞
Gx(u)2n−l gy(u)du

−2λy

∫ +∞

−∞
Gx(u)2n−lGy(u)gy(u)du. (26)

If sign(γx) = sign
(
γy
)
= 1, it follows from (3.15) in [3] that∫ +∞

−∞
Gx(u)2n−l gy(u)du (27)

= H
(

1,
γxσy

γyσx
(2n − l)−γx ,−γy,

[
1 +

γx

σx
(µy − µx −

σy

γy
)

]
(2n − l)−γx ,− 1

γx
, 0
)

,

provided that µx − σx
γx

≤ µy −
σy
γy

. If sign(γx) = sign
(
γy
)
= −1, (3.17) in [3] implies (27)

since µx − σx
γx

≥ µy −
σy
γy

.
Observe that the integration range can be simplified using the results for the intersec-

tion of the supports of Gx and gy, such that:

S = supp Gx ∩ supp gy =


(M,+∞), γx > 0 and γy > 0,
(−∞, m), γx < 0 and γy < 0,
R, γx = γy = 0,

where M = max{µx − σx
γy

, µy −
σy
γy
} and m = min{µx − σx

γy
, µy −

σy
γy
}. Then, if γx > 0 and

γy > 0 (case γy < 0 and γy < 0 is analogous), we have that Ĩ :=
∫ +∞
−∞ Gx(u)2n−lGy(u)gy(u)du

is given by

Ĩ =
∫ +∞

M
exp

{
−(2n − l)[1 +

γx

σx
(u − µx)]

−1/γx − 2[1 +
γy

σy

(
u − µy

)
]−1/γy

}
×[1 +

γy

σy

(
u − µy

)
]−1/γy−1 du

σy
.

Substituting v =
[
1 + γy

σy

(
u − µy

)]−1/γy
, we obtain

−2λy

∫ +∞

−∞
Gx(u)2n−lGy(u)gy(u)du (28)

= −2λyH
(

2, (2n − l)−γx
γxσy

γyσx
,−γy, (2n − l)−γx

[
1 +

γx

σx

(
µy − µx −

σy

γx

)]
,− 1

γx
, 0
)

.

Hence, (23) follows from (25), (26), (27) and (28). On the other hand, when γx = γy = 0, the
proof follows the same rationale as in the case of the proof of Theorem 2, just considering
the binomial expansion in the process. This proof is omitted for simplicity.
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4. Estimation

This section deals with parameter estimation for R = P(X < Y) given two indepen-
dent TGEV random variables. The literature presents maximum likelihood estimators
(MLEs) for R considering explicit forms of R obtained after severe parameter restrictions on
extreme-value distributions (such as [14,15,22]). Those approaches require the estimation of
the parameters to be done jointly in the two samples and require a series of transformations
to be properly applied for TGEV components. For the TGEV distribution, we have two
cases to consider: sign(γx) = sign(γy) ̸= 0 and sign(γx) = sign(γy) = 0. The first case
requires µy − σy/γy ≥ µx − σx/γx or µy − σy/γy < µx − σx/γx (Theorem 1). On the other
hand, if γx = γy = 0, we release any restrictions on the parameters for the expressions, as a
single formula can be used to obtain R in terms of H functions (Theorem 2).

4.1. MLE for R

Let X ∼ TGEV(µx, σx, γx, λx) and Y ∼ TGEV(µy, σy, γy, λy) independent random
variables with sign(γx) = sign(γy) ̸= 0. Theorem 1 indicates that R = R(θ), where we
denote θ = (µx, σx, γx, λx, µy, σy, γy, λy). Thus, let x = (X1, · · · , Xn) be a random sample
of TGEV(µx, σx, γx, λx) and consider an independent random sample y = (Y1, · · · , Ym) of
TGEV(µy, σy, γy, λy), with sign(γx) = sign(γy) ̸= 0. Let θ̂ = (µ̂x, σ̂x, γ̂x, λ̂x, µ̂y, σ̂y, γ̂y, λ̂y)
be the estimates of θ. Since Theorem 1 describes R in terms of integrals (hence continuous
and measurable functions), we can estimate R simply as R̂ = R(θ̂) due to the invariance
property of MLE.

4.2. Parameters Estimation of TGEV Samples

Consider the PDF f (·; µ, σ, γ, λ) defined in (7). Take x = (X1, · · · , Xn) and
y = (Y1, · · · , Ym) independent random samples of sizes n and m, respectively. The likeli-
hood function is given by:

L(θ; x, y) =
n

∏
j=1

f (Xj; µx, σx, γx, λx)
m

∏
i=j

f (Yj; µy, σy, γy, λy). (29)

When γx = γy = 0, the support of f does not depend on unknown parameters and the
Theorem 2 does not require parameter restrictions. The log-likelihood function is given by

l(θ; x, y) = −nσx − mσy −
n

∑
j=1

xj − µx

σx
−

m

∑
k=1

yk − µy

σy
(30)

−
n

∑
j=1

exp
(
−

xj − µx

σx

)
+

n

∑
j=1

log
[
(1 + λx)− 2λx exp

(
− exp

(
−

xj − µx

σx

))]

−
m

∑
k=1

exp
(
−

yk − µy

σy

)
+

m

∑
k=1

log
[
(1 + λy)− 2λy exp

(
− exp

(
−

yk − µy

σy

))]
.

Then, the MLE can be obtained by the log-likelihood function (30), equating its gradient to
zero and finding its critical points.

When sign(γx) = sign(γy) ̸= 0, the support of f depends on the unknown parameter
(µ, σ, γ). Then, we are not able to obtain the MLE explicitly, so an additional numeric
procedure is required to perform the likelihood maximization. This is similar to what
happens with the GEV distribution (see [6] for a more detailed discussion). The likelihood
function becomes:
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L(θ; x, y) = σ−n
x σ−m

y exp

{
−

n

∑
j=1

w−1/γx
x,j

}
exp

{
−

m

∑
k=1

w
−1/γy
y,k

}

×
n

∏
j=1

[
(1 + λx)− 2λx exp

(
−w−1/γx

x,j

)]
w1+1/γx

x,j

1(0,∞)(wx,j)

×
m

∏
k=1

[
(1 + λy)− 2λy exp

(
−w

−1/γy
y,k

)]
w

1+1/γy
y,k

1(0,∞)(wy,k), (31)

where wx,j = 1+γx(xj −µx)/σx and wy,k = 1+γy(yk −µy)/σy. Note that ∏n
j=1 1(0,∞)(wx,j) >

0 if and only if wx,j ∈ (0, ∞) for all j = 1, · · · , n. A similar restriction should be observed for
wy,k. Numerical procedures must be applied to overcome the unavailability of an explicit
MLE expression.

4.3. A Two-Step Estimation and Confidence Intervals

We introduce an alternative method for estimating θ through a two-step process
outlined below:

Example 1. Given the samples x and y,

Step 1 We estimate (µ̂x, σ̂x, γ̂x) and (µ̂y, σ̂y, γ̂y) using MLE for the GEV (This estimation
can be carried out utilizing the extRemes package within the R software version 4.3.3 [23].)
distribution;
Step 2 The parameters (λx, λy) are estimated by determining

(λ̂x, λ̂y) = arg max
[−1,1]2

L(λx, λy; x, y),

where L(λx, λy; x, y) is derived from (29) using the estimated parameters from Step 1 as
initial guesses.

To choose between Theorems 1 and 2 to obtain R(θ̂), we need to verify if:

(a) γ̂x ≈ γ̂y ≈ 0;

or,

(b) µ̂y − σ̂y/γ̂y ≥ µ̂x − σ̂x/γ̂x or µ̂y − σ̂y/γ̂y < µ̂x − σ̂x/γ̂x.

Despite this additional verification, the computational time required for theExample 1
is expected to be less than that required for directly maximizing (29) and (30).

Example 2 describes the approach used in Section 5 to obtain confidence intervals (CIs)
for the estimates of R.

Example 2. Let (x, y) be a sample of size n and M be a positive integer denoting the number of
bootstrap repetitions.

Step 1 Generate bootstrap samples (x, y)i.
Step 2 Compute the estimates θ̂i = (µ̂x, σ̂x, γ̂x, λ̂x, µ̂y, σ̂y, γ̂y, λ̂y)i based on (x, y)i. In this
case, the parameters of each bootstrap sample are individually estimated using Example 1.
Step 3 Obtain R̂i = R(θ̂i) using Theorem 1 or 2.
Step 4 Repeat Steps 1 to 3 M times.
Step 5 The approximate 100(1 − α)% confidence interval of R̂ is given by [R̂M(α/2),
R̂M(1− α/2)], where R̂M(α) ≈ Ĝ−1(α) and Ĝ is the cumulative distribution function of R̂.

For the problem of asset selection using stress–strength reliability, only a single time
series of observed returns is available for each asset. Then, the maximum likelihood
estimation approach above is of utmost importance. To illustrate the suitability of the
analytical closed-form expressions hereby derived, a simulation study is carried out in the
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next section. In such a case, several samples of size n can be drawn from each random
variable, which is then used to estimate the value of R and can be repeated several times.

5. Applications

In this section, we provide a study involving Monte-Carlo simulations that analyze the
performance of estimator R̂ = R(θ̂). Additionally, we apply the stress–strength reliability
model discussed in the preceding sections to actual real-world data.

5.1. Simulation Study

To evaluate the performance of the estimator R̂ = R(θ̂), we fix several values of
the parameters µx,σx,γx, λx, µy,σy,γy, λy, and then we generate N ∈ {100; 1000; 10, 000}
Monte-Carlo samples, each of which of size n = 100, of the random variables X ∼
TGEV(µx, σx, γx, λx) and Y ∼ TGEV(µy, σy, γy, λy). We analyze the estimates R̂, bias,
and root mean squared error (RMSE).

As described by [19], random samples of TGEV distribution can be generated by the
inversion method using the quantiles

F−1(U) =


σ
γ

{
−1 +

[
− log

(
1+λ−

√
(1+λ)2−4λU
2λ

)]−γ
}

, γ ̸= 0,

µ + σ

{
− log

[
− log

(
1+λ−

√
(1+λ)2−4λU
2λ

)]}
γ = 0,

where U is a uniform random variable in [0, 1].
For the simulation, for each line in the Tables 2–6 the following procedure was car-

ried out:

(1) for each Monte-Carlo sample, the estimate R̂ = R(θ̂) is computed;
(2) R̂MC is evaluated by taking the sample mean of the Monte-Carlo samples R̂;
(3) the bias is computed as the difference between the theoretical R value and R̂MC. The

same applies to the root mean squared error, which also considers the true value as
the analytically obtained one.

The TGEV distribution with negative-shape parameters is treated in Tables 2, 4 and 6
(for N = 100, 1000 and 10,000, respectively), while Tables 3 and 5 deal with positive-shape
parameters. In both cases, the estimator shows good behavior with minimal bias and low
root mean squared error. Furthermore, it is clear that increasing the number of replications
N leads to the same conclusions.

Table 2. Negative-shape mean. bias and root mean squared error (RMSE) of R̂MC (N = 100 and n = 100).

µx σx γx λx µy σy γy λy R R̂MC Bias RMSE

0 0.7 −0.1 0.3 0 0.5 −0.2 0.1 0.50945 0.50151 −0.00793 0.00030
0 0.7 −0.1 0.3 0.5 0.5 −0.2 0.1 0.71367 0.70374 −0.00993 0.00034
0 0.7 −0.1 0.3 0 0.7 −0.2 0.1 0.52511 0.51976 −0.00534 0.00031
0 0.7 −0.1 0.3 0.5 0.7 −0.2 0.1 0.70569 0.70066 −0.00503 0.00026
0 0.7 −0.1 0.3 0 0.5 −0.4 0.1 0.49137 0.48478 −0.00659 0.00029
0 0.7 −0.1 0.3 0.5 0.5 −0.4 0.1 0.69977 0.69183 −0.00794 0.00030
0 0.7 −0.1 0.3 0 0.7 −0.4 0.1 0.50809 0.50191 −0.00618 0.00030
0 0.7 −0.1 0.3 0.5 0.7 −0.4 0.1 0.69163 0.68617 −0.00546 0.00033
0 0.7 −0.1 0.3 0 0.5 −0.2 0.2 0.49602 0.48709 −0.00893 0.00036
0 0.7 −0.1 0.3 0.5 0.5 −0.2 0.2 0.70372 0.69562 −0.00810 0.00034
0 0.7 −0.1 0.3 0 0.7 −0.2 0.2 0.50870 0.50454 −0.00416 0.00029
0 0.7 −0.1 0.3 0.5 0.7 −0.2 0.2 0.69299 0.68870 −0.00429 0.00031
0 0.7 −0.1 0.3 0 0.5 −0.4 0.2 0.47863 0.47081 −0.00782 0.00030
0 0.7 −0.1 0.3 0.5 0.5 −0.4 0.2 0.68979 0.68537 −0.00442 0.00027
0 0.7 −0.1 0.3 0 0.7 −0.4 0.2 0.49230 0.49000 −0.00230 0.00033
0 0.7 −0.1 0.3 0.5 0.7 −0.4 0.2 0.67876 0.67348 −0.00529 0.00030
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Table 3. Positive-shape mean. bias and root mean squared error (RMSE) of R̂MC (N = 100 and n = 100).

µx σx γx λx µy σy γy λy R R̂MC Bias RMSE

0 0.7 0.1 0.3 0 0.5 0.2 0.1 0.53183 0.52584 −0.00600 0.00030
0 0.7 0.1 0.3 0.5 0.5 0.2 0.1 0.71971 0.71210 −0.00761 0.00029
0 0.7 0.1 0.3 0 0.7 0.2 0.1 0.54076 0.53666 −0.00410 0.00030
0 0.7 0.1 0.3 0.5 0.7 0.2 0.1 0.71272 0.70832 −0.00440 0.00030
0 0.7 0.1 0.3 0 0.5 0.4 0.1 0.54736 0.54049 −0.00686 0.00029
0 0.7 0.1 0.3 0.5 0.5 0.4 0.1 0.73060 0.72135 −0.00926 0.00031
0 0.7 0.1 0.3 0 0.7 0.4 0.1 0.55478 0.55053 −0.00425 0.00023
0 0.7 0.1 0.3 0.5 0.7 0.4 0.1 0.72470 0.71852 −0.00618 0.00027
0 0.7 0.1 0.3 0 0.5 0.2 0.2 0.51767 0.51685 −0.00082 0.00028
0 0.7 0.1 0.3 0.5 0.5 0.2 0.2 0.71043 0.70462 −0.00581 0.00030
0 0.7 0.1 0.3 0 0.7 0.2 0.2 0.52393 0.52110 −0.00284 0.00028
0 0.7 0.1 0.3 0.5 0.7 0.2 0.2 0.70105 0.69495 −0.00610 0.00029
0 0.7 0.1 0.3 0 0.5 0.4 0.2 0.53280 0.52937 −0.00343 0.00031
0 0.7 0.1 0.3 0.5 0.5 0.4 0.2 0.72130 0.71108 −0.01021 0.00031
0 0.7 0.1 0.3 0 0.7 0.4 0.2 0.53775 0.53576 −0.00199 0.00027
0 0.7 0.1 0.3 0.5 0.7 0.4 0.2 0.71325 0.71132 −0.00193 0.00024

Table 4. Negative-shape mean, bias, and root mean squared error (RMSE) of R̂MC (N = 1000 and n = 100).

µx σx γx λx µy σy γy λy R R̂MC Bias RMSE

0 0.7 −0.1 0.3 0 0.5 −0.2 0.1 0.50945 0.50135 −0.00809 0.00031
0 0.7 −0.1 0.3 0.5 0.5 −0.2 0.1 0.71367 0.70749 −0.00618 0.00027
0 0.7 −0.1 0.3 0 0.7 −0.2 0.1 0.52511 0.51830 −0.00680 0.00032
0 0.7 −0.1 0.3 0.5 0.7 −0.2 0.1 0.70569 0.69953 −0.00616 0.00028
0 0.7 −0.1 0.3 0 0.5 −0.4 0.1 0.49137 0.48216 −0.00921 0.00033
0 0.7 −0.1 0.3 0.5 0.5 −0.4 0.1 0.69977 0.69122 −0.00855 0.00032
0 0.7 −0.1 0.3 0 0.7 −0.4 0.1 0.50809 0.50197 −0.00612 0.00028
0 0.7 −0.1 0.3 0.5 0.7 −0.4 0.1 0.69163 0.68582 −0.00581 0.00031
0 0.7 −0.1 0.3 0 0.5 −0.2 0.2 0.49602 0.48986 −0.00616 0.00030
0 0.7 −0.1 0.3 0.5 0.5 −0.2 0.2 0.70372 0.69768 −0.00604 0.00028
0 0.7 −0.1 0.3 0 0.7 −0.2 0.2 0.50870 0.50619 −0.00250 0.00027
0 0.7 −0.1 0.3 0.5 0.7 −0.2 0.2 0.69299 0.68945 −0.00354 0.00027
0 0.7 −0.1 0.3 0 0.5 −0.4 0.2 0.47863 0.47359 −0.00504 0.00030
0 0.7 −0.1 0.3 0.5 0.5 −0.4 0.2 0.68979 0.68290 −0.00689 0.00031
0 0.7 −0.1 0.3 0 0.7 −0.4 0.2 0.49230 0.48817 −0.00413 0.00031
0 0.7 −0.1 0.3 0.5 0.7 −0.4 0.2 0.67876 0.67517 −0.00359 0.00030

Table 5. Positive-shape mean, bias, and root mean squared error (RMSE) of R̂MC (N = 1000 and n = 100).

µx σx γx λx µy σy γy λy R R̂MC Bias RMSE

0 0.7 0.1 0.3 0 0.5 0.2 0.1 0.53183 0.52561 −0.00623 0.00031
0 0.7 0.1 0.3 0.5 0.5 0.2 0.1 0.71971 0.71151 −0.00820 0.00031
0 0.7 0.1 0.3 0 0.7 0.2 0.1 0.54076 0.53576 −0.00500 0.00031
0 0.7 0.1 0.3 0.5 0.7 0.2 0.1 0.71272 0.70567 −0.00705 0.00029
0 0.7 0.1 0.3 0 0.5 0.4 0.1 0.54736 0.54108 −0.00628 0.00031
0 0.7 0.1 0.3 0.5 0.5 0.4 0.1 0.73060 0.72414 −0.00646 0.00027
0 0.7 0.1 0.3 0 0.7 0.4 0.1 0.55478 0.54712 −0.00765 0.00030
0 0.7 0.1 0.3 0.5 0.7 0.4 0.1 0.72470 0.71812 −0.00658 0.00032
0 0.7 0.1 0.3 0 0.5 0.2 0.2 0.51767 0.51462 −0.00305 0.00029
0 0.7 0.1 0.3 0.5 0.5 0.2 0.2 0.71043 0.70328 −0.00715 0.00030
0 0.7 0.1 0.3 0 0.7 0.2 0.2 0.52393 0.52199 −0.00194 0.00032
0 0.7 0.1 0.3 0.5 0.7 0.2 0.2 0.70105 0.69579 −0.00526 0.00031
0 0.7 0.1 0.3 0 0.5 0.4 0.2 0.53280 0.52864 −0.00416 0.00031
0 0.7 0.1 0.3 0.5 0.5 0.4 0.2 0.72130 0.71402 −0.00728 0.00029
0 0.7 0.1 0.3 0 0.7 0.4 0.2 0.53775 0.53627 −0.00148 0.00028
0 0.7 0.1 0.3 0.5 0.7 0.4 0.2 0.71325 0.70860 −0.00464 0.00030
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Table 6. Negative-shape mean, bias, and root mean squared error (RMSE) of R̂MC (N = 10,000 and n = 100).

µx σx γx λx µy σy γy λy R R̂MC Bias RMSE

0 0.7 −0.1 0.3 0 0.5 −0.2 0.1 0.5094 0.5021 −0.00737 0.00030
0 0.7 −0.1 0.3 0.5 0.5 −0.2 0.1 0.7137 0.7058 −0.00783 0.00030
0 0.7 −0.1 0.3 0 0.7 −0.2 0.1 0.5251 0.5198 −0.00529 0.00030
0 0.7 −0.1 0.3 0.5 0.7 −0.2 0.1 0.7057 0.6994 −0.00629 0.00030
0 0.7 −0.1 0.3 0 0.5 −0.4 0.1 0.4914 0.4841 −0.00731 0.00029
0 0.7 −0.1 0.3 0.5 0.5 −0.4 0.1 0.6998 0.6921 −0.00764 0.00029
0 0.7 −0.1 0.3 0 0.7 −0.4 0.1 0.5081 0.5022 −0.00594 0.00030
0 0.7 −0.1 0.3 0.5 0.7 −0.4 0.1 0.6916 0.6854 −0.00621 0.00029
0 0.7 −0.1 0.3 0 0.5 −0.2 0.2 0.4960 0.4908 −0.00521 0.00029
0 0.7 −0.1 0.3 0.5 0.5 −0.2 0.2 0.7037 0.6986 −0.00512 0.00028
0 0.7 −0.1 0.3 0 0.7 −0.2 0.2 0.5087 0.5059 −0.00282 0.00029
0 0.7 −0.1 0.3 0.5 0.7 −0.2 0.2 0.6930 0.6892 −0.00376 0.00028
0 0.7 −0.1 0.3 0 0.5 −0.4 0.2 0.4786 0.4728 −0.00588 0.00029
0 0.7 −0.1 0.3 0.5 0.5 −0.4 0.2 0.6898 0.6837 −0.00610 0.00029
0 0.7 −0.1 0.3 0 0.7 −0.4 0.2 0.4923 0.4885 −0.00379 0.00029
0 0.7 −0.1 0.3 0.5 0.7 −0.4 0.2 0.6788 0.6750 −0.00381 0.00028

5.2. Real Data Set Application

Asset selection is addressed to evaluate the proposed framework. To guide the selec-
tion of financial assets when managing a portfolio, we adopt metrics of the type P(X < Y).

We start by modeling stock price log-returns as TGEV distributions, and afterward,
we compare log-returns from tickers (companies) of different economic sectors and traded
on BOVESPA (São Paulo Stock Exchange): BBAS3.SA (banking: Banco do Brasil S.A.),
ITUB4.SA (banking: Itaú Unibanco Holding S.A.), VALE3.SA (mining: Vale S.A.) and
VIIA3.SA (retail: Via Varejo S.A). From now on, we will omit the “.SA” suffix present on
the tickers under analysis. The time series for each ticker represents the daily closing prices
in Brazilian currency (R$, BRL) covering the period from 1 January 2022 to 30 April 2023.
The analyzed data comprises a total of 331 daily prices.

Figure 2 presents the stock prices for each ticker, highlighting their distinct value
scales and volatility. Subsequently, we aim to compare the returns using the expression
P(X < Y).
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Figure 2. Daily closing values of stock prices for tickers BBAS3, ITUB4, VALE3, and VIIA3.

It is important to point out that these data sets were analyzed previously in the
literature [3], and here we show that TGEV distribution fits the log-returns better than GEV,
according to information criteria. The daily closing prices were imported directly through
the software R by the command:
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ticker = "BBAS3.SA"
quantmod::getSymbols(ticker, src = "yahoo", auto.assign = FALSE,
from = ’2022-01-01’, to = ’2023-04-30’, return.class = ’xts’).

We assume that the returns are independent. To meet independence requirements, we
measure log-returns correlations using Pearson, Kendal, and Spearman methods comparing
pairs of stocks that are not correlated. The pairs selected for comparison– VALE3-BBAS3,
VALE3-ITUB4, and VALE3-VIIA3–all exhibited correlation measures equal to or below
0.25, as detailed in the Appendix of [3]. Figure 3 displays the autocorrelation function of
log-returns, indicating an absence of discernible temporal correlations among the returns.

Figure 3. Log-returns autocorrelation function of log-returns (ACFs) for the assets BBAS3, ITUB4,
VIIA3, and VALE3. The blue horizontal lines on the plots are the bounds ± 1.96sqrt(n).

Descriptive statistics for the four data sets are presented in Table 7, showing certain
symmetry of log-returns around zero and greater variability for VIIA3. The sample size was
n = 330 and each sample informs the daily closing stock price log-return. Across all data
sets, the existence of extreme values is a consistent characteristic, which is in accordance
with the nature of financial data.

Table 7. Summary statistics for the stock prices log-returns.

Data Set Min. 1st Qu Median Mean 3rd Qu. Max. Std. dv. Skewness Kurtosis

BBAS3 −0.1057 −0.0097 0.0019 0.0012 0.0136 0.0736 0.0204 −0.3452 5.7413
ITUB4 −0.0492 −0.0105 0.0004 0.0006 0.0109 0.0794 0.0172 0.3809 4.4864
VALE3 −0.0689 −0.0140 0.0001 −0.0002 0.0128 0.0989 0.0231 0.4092 4.5967
VIIA3 −0.1075 −0.0344 −0.0059 −0.0030 0.0231 0.1504 0.0447 0.6144 3.6044

Quintino et al. [3] showed that the GEV distribution adequately fits the data. Our
interest lies in determining if the addition of the λ parameter provided by the TGEV distri-
bution will improve the model fit. To accomplish this, we employed the two-step estimation
method, described in theExample 1. Considering the different number of parameters of
the GEV and TGEV models, to conduct a comparative analysis between these models, we
utilized the information criteria Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and Efficient Determination Criterion (EDC). Parameter estimates for the
stock prices log-returns are presented in Table 8, while Table 9 shows that all criteria indi-
cate that there was an improvement in the fit when using the TGEV distribution, compared
to GEV.
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The adequacy of the fitted TGEV distributions can be assessed through graphical eval-
uation methods. This includes plotting the theoretical PDF over the histogram (Figure 4),
comparing the theoretical CDF against the empirical CDF (ECDF) (Figure 5), and ex-
amining the Normal Quantile-Quantile plots of the residuals (Figure 6). Although the
Kolmogorov–Smirnov test rejects the TGEV adjustment for BBAS3 data, a visual examina-
tion of the histogram and ECDF might not discredit the suitability of the TGEV distribution.
Furthermore, the Kolmogorov–Smirnov test tends to be overly sensitive, particularly for
medium to large sample sizes, leading to its responsiveness even to minor deviations,
which might account for this discrepancy.

Table 8. Parameter estimates for the stock prices log-returns: BBAS4, ITUB4, VIIA3 and VALE3.

Data Set λ̂ µ̂ σ̂ γ̂

BBAS3 0.0103 −0.0063 0.0219 −0.2535
ITUB4 −0.0373 −0.0064 0.0165 −0.1545
VALE3 −0.0088 −0.0095 0.0222 −0.1631
VIIA3 −0.0058 −0.0217 0.0396 −0.1170

Table 9. Information criteria and Kolmogorov–Smirnov (KS) p-values for GEV and TGEV models.

Data Set Distribution AIC BIC EDC KS p-Value

BBAS3 TGEV −1615.84 −1654.23 −1621.90 0.0155
GEV −1613.83 −1642.63 −1618.38 0.0133

ITUB4 TGEV −1749.33 −1787.72 −1755.39 0.3303
GEV −1747.28 −1776.07 −1751.82 0.4422

VALE3 TGEV −1556.20 −1594.59 −1562.26 0.2388
GEV −1554.18 −1582.97 −1558.73 0.2313

VIIA3 TGEV −1143.34 −1181.73 −1149.40 0.6851
GEV −1141.40 −1170.19 −1145.94 0.7091

Figure 4. Histograms and fitted TGEV densities for the stock price log-returns.
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Figure 5. Fitted empirical CDF (ECDF) for TGEV models stock price log-returns.

Figure 6. Normal Quantile-Quantile plot displaying residuals from fitted TGEV models.

Reliability measures, denoted as R = P(X < Y), play a pivotal role in an investor’s
decision-making process. To simplify, when X and Y symbolize profit from log-returns
and R < 1/2, the investor tends to favor selecting the financial asset corresponding to X.
Conversely, if R > 1/2, the investor leans toward the opposite choice. However, when
R = 1/2, the decision becomes inconclusive. In this sense, Table 10 presents the estimates
of P(X < Y) and the 95% Bootstrap confidence intervals, obtained by R̂ and Example 2.

Table 10. Stress–strength probability estimates and Bootstrap confidence interval (CI) for log-returns
following TGEV distribution.

X Y R̂ 95% CI

VALE3 BBAS3 0.53 (0.40; 0.59)
VALE3 ITUB4 0.52 (0.40; 0.59)
VALE3 VIIA3 0.45 (0.38; 0.52)

Utilizing the GEV distribution, reliability estimates R̂GEV of 0.54, 0.54, and 0.43 for the
VALE3-BBAS3, VALE3-ITUB4, and VALE3-VIIA3 pairs were obtained in [3], respectively.
These values closely resembled those outlined in Table 10 for TGEV distribution. Regarding
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confidence intervals, there was a reduction in the interval size for the last pair, while the
sizes remained consistent for the others.

Point estimates can also be compared with an empirical estimator that does not depend
on the estimation of parameters or the choice of a probabilistic model. Let one consider
the estimator:

R̂NP =
1
n

n

∑
j=1

1{xj≤yj},

where 1A denotes the indicator function on the set A and n is the sample size. The estimates
obtained are, respectively, 0.55, 0.55, and 0.43 for the pairs presented in Table 10, showing
the proximity of parametric and nonparametric estimates.

In Table 10, all the confidence intervals crossed the 0.5 edge; however, reliability
measurement for the pair VALE3xVIIA3 brings some evidence that VALE3 should be the
asset to be selected.

6. Conclusions

In this paper, we studied the stress–strength reliability R = P(X < Y) when both X
and Y follow independent TGEV distributions. Thus, exact expressions for R have been
obtained in terms of the extreme-value H-function with minimal parameter restrictions.
With additional restrictions, it was shown that R can be calculated in terms of H-functions.

The present work evaluated the advantages yielded by adding a λ parameter to the
GEV distribution and modelling data sets with the TGEV distribution. The added parameter
brought a more complex analytical derivation of R = P(X < Y) and an expected increase
in the computational effort to estimate it. To avoid the computational burden of an added
parameter, we proposed a two-step estimation where we first fit a GEV model and then
estimate the TGEV parameter λ. Notwithstanding the complexities of an added parameter,
information criteria demonstrated the superiority of TGEV models when compared to GEV
ones. This advantage is also perceived when estimating probabilities R = P(X < Y) by
obtaining better estimates.

Monte-Carlo simulations attested to the performance of the analytical closed-form
expressions hereby derived. By applying our methodology to real-world financial data,
we could orient a stock selection procedure by calculating P(X < Y) when both X and Y
represent stock returns. In summary, when X and Y represent the return of the stock prices
and R < 1/2, the investor should choose the variable X. If R > 1/2, the opposite occurs.
The case R = 1/2 is inconclusive.

The framework we explored in this work can be a starting point to study probabilities
R = P(X < Y) for recently proposed extreme-value distributions like bimodal Gumbell,
bimodal Weibull, bimodal GEV, and extreme-value bivariate models.
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