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Abstract
This work comprises three papers that explore the interplay of firm heterogeneity
and market-power-driven misallocation. The first paper develops a static Cournot
model that estimates market-power-driven misallocation using essentially standard
macroeconomic data. We utilize this model to revisit key facts of economic growth.
On the one hand, we evaluate the world income frontier as proxied by the US, finding
that changes in misallocation can significantly impact short-run growth. On the
other hand, we examine the economic performance around the world. We conclude
that misallocation enhances our understanding of cross-country income differences,
even though a substantial unexplained portion persists. We also find a lack of
convergence in allocative efficiency, suggesting market-power-driven misallocation is
linked, in the long run, to long-lasting country-specific factors such as institutions.
The second paper also uses the Cournot model developed in the first article, but
it focuses on understanding the role of misallocation in recent economic cycles in
Brazil. We find an upward trend in the allocative efficiency and that the cycles in
total factor productivity (TFP) are mainly due to misallocation, with the economic
boom in the mid-2000s being primarily attributed to efficiency gains. The technology
component of TFP grows much more steadily, around 0.8-0.9% per year, suggesting
it reflects the structural characteristics of the economy. Finally, the third paper
evaluates Zipf’s law for the distribution of firm size by the number of employees
in Brazil. We find that this “law” provides a very good, although not perfect,
approximation to data. However, a lognormal distribution also performs well and
even outperforms Zipf’s law in certain cases.

Keywords: TFP, misallocation, Cournot model, firm size distribution, Zipf’s law.





Resumo
Este trabalho é composto por três artigos que exploram a interação entre het-
erogeneidade de firmas e má alocação de recursos devido a poder de mercado.
O primeiro artigo desenvolve um modelo estático de Cournot que estima a má
alocação devido a poder de mercado utilizando essencialmente dados macroeconômi-
cos. Nós utilizamos esse modelo para reexaminar importantes fatos do crescimento
econômico. Por um lado, avaliamos o desempenho dos países mais ricos, medindo-o
nos Estados Unidos. Constatamos que mudanças na eficiência alocativa podem im-
pactar significativamente o crescimento de curto prazo. Por outro lado, examinamos
o desempenho econômico ao redor do mundo. Concluímos que a má alocação de-
sempenha um papel significativo na explicação das diferenças de renda entre países,
embora uma parte substancial permaneça inexplicada. Ademais, não encontramos
suporte à hipótese de convergência para a eficiência alocativa, sugerindo que a má
alocação devido a poder de mercado está relacionada, no longo prazo, a fatores
duradouros específicos de cada país como as instituições. O segundo artigo também
utiliza o modelo de Cournot desenvolvido no primeiro, mas visando entender o
papel da má alocação nos ciclos econômicos recentes do Brasil. Nós encontramos
uma tendência de melhora na eficiência alocativa e que os ciclos na produtivi-
dade total dos fatores (PTF) brasileira são principalmente devidos à eficiência
alocativa, com o boom econômico de meados dos anos 2000 sendo principalmente
atribuído aos ganhos de eficiência. O componente tecnológico da PTF cresce de
maneira muito mais estável, em torno de 0,8-0,9% ao ano, sugerindo que reflete as
características estruturais da economia. Por fim, o terceiro artigo avalia a lei de
Zipf para a distribuição do tamanho de empresas por pessoal ocupado no Brasil.
Nós constatamos que essa “lei” fornece uma aproximação muito boa, embora não
perfeita, para os dados. No entanto, a distribuição lognormal também apresenta
bom desempenho e até supera a lei de Zipf em certos casos.

Palavras-chaves: PTF, má alocação, modelo de Cournot, tamanho das empresas,
lei de Zipf.
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1 Introduction

This work comprises three papers that explore the interplay of firm hetero-
geneity and market-power-driven misallocation. The first paper develops a static
Cournot model that estimates market-power-driven misallocation using essentially
standard macroeconomic data. This model enables us to assess the role played
by misallocation in shaping total factor productivity (TFP), an analysis that has
been hindered by constraints in the availability of firm-level data. We apply this
framework to decompose aggregate TFP into technology and allocative efficiency
components from 1950 to 2019 for up to a hundred countries from the Penn World
Table 10.01. Utilizing this decomposition, we revisit key facts of economic growth.
On the one hand, we evaluate the world income frontier as proxied by the US,
finding that changes in misallocation can significantly impact short-run growth.
On the other hand, we examine the economic performance around the world. We
conclude that misallocation enhances our understanding of cross-country income
differences, even though a substantial unexplained portion persists. We also find a
lack of convergence in allocative efficiency, suggesting market-power-driven misal-
location is linked, in the long run, to long-lasting country-specific factors such as
institutions.

The second paper also uses the Cournot model developed in the first article,
but it focuses on understanding the role of misallocation in recent economic cycles
in Brazil. We find an upward trend in Brazilian allocative efficiency between
2000 and 2019, reflecting the observed increase in the labor income share and,
thus, the estimated decrease in the average markup, in sharp contrast with most
developed countries. Additionally, we find that the cycles in Brazilian TFP are
mainly due to allocative efficiency, with the economic boom in the mid-2000s being
primarily attributed to efficiency gains. The technology component of TFP grows
much more steadily, around 0.8-0.9% per year, suggesting it reflects the structural
characteristics of the economy.

Finally, the third paper addresses Zipf’s law, which states that the probability
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of a variable being larger than s is roughly inversely proportional to s. More precisely,
this paper evaluates if this “law” holds for the distribution of firm size by the
number of employees in Brazil. We use publicly available binned annual data from
the Central Register of Enterprises (CEMPRE), which is held by the Brazilian
Institute of Geography and Statistics (IBGE) and covers all formal organizations.
Remarkably, we find that Zipf’s law provides a very good, although not perfect,
approximation to data for each year between 1996 and 2020 at the economy-wide
level and also for agriculture, industry, and services alone. However, a lognormal
distribution also performs well and even outperforms Zipf’s law in certain cases.
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2 Revisiting the facts of economic growth:
insights from assessing misallocation
over 70 years for up to 100 countries

2.1 Introduction

Aggregate total factor productivity (TFP) stands out as a crucial determi-
nant of economic performance across countries and time (Klenow; Rodríguez-Clare,
1997; Caselli, 2005; Caselli, 2016; Jones, 2016; Bergeaud; Cette; Lecat, 2018; Crafts;
Woltjer, 2021). However, TFP is usually a residual, “a measure of our ignorance,”
capturing the unexplained portion of such economic outcomes. This fact has spurred
extensive research into the determinants of TFP, as illustrated in the title of a
paper by Prescott (1998): “Needed: A Theory of TFP.” Jones (2016, p.46) argues
that “[...] the literature on misallocation has emerged to provide the kind of theory
that Prescott was seeking.” Nevertheless, measuring misallocation typically requires
firm-level data available only for selected countries in specific years – and usually
restricted to manufacturing. This limitation has presented obstacles to including
misallocation estimates into standard growth and development accounting exer-
cises. In this paper, we undertake this task by decomposing aggregate TFP into
technology and allocative efficiency components from 1950 to 2019 for up to a
hundred countries.

We employ a static model in which firms engage in Cournot competition.
In our model, (i) a firm’s market share is strictly increasing in its productivity,
and (ii) a firm with greater market share faces lower price elasticity of demand,
charging a higher markup. Consequently, variations in productivity among firms
result in differences in markups, leading to inefficient allocation of resources as the
marginal products would not be equalized across firms. In this sense, our model
exclusively deals with market-power-driven misallocation. This aligns our study
more closely with Edmond, Midrigan and Xu (2022), which estimates the welfare
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costs of markups, rather than with Hsieh and Klenow (2009), which measures
generic allocative distortions through wedges. It is worth noting that this channel of
allocative inefficiency is typical of Cournot models (Atkeson; Burstein, 2008). The
novel aspect of our model lies in its primary reliance on standard macroeconomic
data for calibration, which is precisely what enables our comprehensive assessment
of misallocation across both time and space.

The minimal microdata requirement does not come without a cost. Our
model is less flexible than other related oligopoly models, such as Edmond, Midrigan
and Xu (2015) and Loecker, Eeckhout and Mongey (2021), in three important
aspects. First, instead of having firms producing distinct goods in each sector over
a continuum of sectors, we suppose there is only one sector where firms produce the
same good. Second, there are no fixed costs. However, as the goods are homogeneous,
a firm may still be inactive, and consequently, we also incorporate an entry stage to
determine the set of active firms in equilibrium. Third, we assume free entry among
low-productivity firms, supposing the number of inefficient firms is sufficiently large
to the extent that some will not be active. As a result, the profit of the marginal
active firm should be low, insignificant.

We show that allocative efficiency and other key model expressions do not
depend on parameters such as the price elasticity of demand and the number of
potential or active firms. They require only the empirical distribution of active
firms’ productivity, which is crucial for the empirical objective of decomposing
TFP using macroeconomic data. This feature stems from the model’s stronger
assumptions, notably free entry with no fixed costs – a situation feasible only if
goods are homogeneous. In such circumstances, the market share of the marginal
active firm should be negligible, regardless of parameters values. In contrast, when
goods are heterogeneous, firm selection occurs only with fixed costs, leading the
marginal firm to produce positive quantities in equilibrium, even with free entry. In
such cases, the output of the marginal firm is contingent upon model parameters
(e.g., elasticity of demand and fixed costs), as identified by the null-profit condition.

Therefore, to decompose the TFP, we only need to estimate the empirical
distribution of active firms’ productivity. Consistent with a large part of the
literature (Melitz; Redding, 2015; Edmond; Midrigan; Xu, 2015; Edmond; Midrigan;
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Xu, 2022), we assume this distribution is Pareto, truncated within the productivity
range. We test different values for the shape parameter and search the distributional
support by matching (i) the aggregate TFP and (ii) the cost-weighted average of firm-
level markups. To compute these moments using real-world data, we parameterized
the firms’ constant-returns-to-scale Cobb-Douglas production function, which has
both physical and human capital as inputs. We employ the standard physical capital
share parameter α = 1/3 in our baseline calibration. Once α is determined, the two
target moments are easily obtained from standard macroeconomic data. On the
one hand, the TFP is backed out as a residual in the aggregate production function.
On the other hand, the cost-weighted average markup equals 1 − α divided by the
labor share of national income, aligning with Hall (1988), which has recently gained
widespread adoption for assessing firm-level markups (Loecker; Warzynski, 2012;
Loecker; Eeckhout, 2018; Loecker; Eeckhout; Unger, 2020; Traina, 2018; Calligaris;
Criscuolo; Marcolin, 2018; Autor et al., 2020).

Our estimation of allocative efficiency relies exclusively on the average
markup, computed using the labor share of national income. Consequently, our
oligopoly model accommodates labor income share variability, interpreting it as
informative of misallocation.1 More precisely, our model associates a higher labor
share and, thus, a lower average markup with reduced misallocation. In particular,
the allocation becomes optimal when the markup converges to one. This is intuitive
as an average markup closer to the competitive unitary level suggests a less distorted
economy, indicating closer proximity to optimal allocation. Once allocative efficiency
is estimated from the average markup, we pin down the other element of productivity
– the technology component – using TFP data. Hence, in our model, the residual
of the production function is not the TFP itself but rather only its technology
component, which is cleaner as it is free of misallocation effects.

Employing this calibration strategy, we decompose the aggregate TFP for
various countries and years using data from the Penn World Table 10.01 (Feenstra;
Inklaar; Timmer, 2015). We use this decomposed TFP data to revisit key facts of
economic growth. On the one hand, we evaluate nations at the income frontier, using
1 In contrast, under perfect competition, this labor share would be identical everywhere, with

inputs always allocated optimally, if one continues to consider a universal Cobb-Douglas
production function.
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the United States as a proxy, as done in Jones (2016). We begin by demonstrating
that our market-power-driven misallocation estimates are consistent with those
obtained from the oligopoly model of Edmond, Midrigan and Xu (2022) for the US.
This serves as an important validation of our model, particularly considering that
their model is more flexible, general, requiring firm-level data for calibration. Our
empirical analysis, spanning from 1954 to 2019, reveals that changes in misallocation
can significantly impact short-run growth. For example, during 2000-2007, the
US witnessed notable technological improvement coupled with declining allocative
efficiency. This suggests that the dot-com boom and information technology (IT)
advancements led to productivity gains but concentrated in certain firms. On a
more general note, the technology component seems to grow more steadily than the
TFP itself, around 1% per year. Notable exceptions are the periods of 1954-1973
and 2000-2007 when technology contributed approximately 2% annually.

On the other hand, we examine the economic performance around the world.
Although the Penn World Table 10.01 provides data from 1950 to 2019, the sample
coverage varies across the years, encompassing more than a hundred countries
in recent years. Our findings underscore the significant role of misallocation in
explaining cross-country income differences. Despite its significance, a considerable
unexplained portion persists, still constituting the majority of observed variability in
most cases. Additionally, we obtain limited support for the convergence hypothesis
in income and either TFP component. Consequently, countries do not appear to
be converging over time to a common degree of allocative efficiency, indicating
that the level of efficiency is country-specific even in the long run. Interestingly,
this suggests that market-power-driven misallocation is linked, in the long run, to
long-lasting country-specific factors such as institutions.

Related literature. From a methodological perspective, our work is related to
several papers that embed oligopoly market structures in macroeconomic models. In
most models, firms’ decisions are static as in our own (Bernard et al., 2003; Atkeson;
Burstein, 2008; Edmond; Midrigan; Xu, 2015; Loecker; Eeckhout; Mongey, 2021),
but there are also models in which they are dynamic (Peters, 2020; Wang; Werning,
2022; Edmond; Midrigan; Xu, 2022).2 Besides their methodological similarities,
2 Berger, Herkenhoff and Mongey (2022) also include strategic behavior in a general equilibrium
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these papers have very different objectives. For instance, Atkeson and Burstein
(2008) seek to explain the observed deviations from relative purchasing power
parity, Edmond, Midrigan and Xu (2015) evaluate the impact of opening up to
trade on productivity through misallocation, and Wang and Werning (2022) study
how market concentration affects the potency of monetary policy. Among them,
Edmond, Midrigan and Xu (2022) is the closest to our paper in terms of purposes,
as they assess the welfare costs of markups using (also) a Cournot model with
free entry. However, their model is dynamic and involves a different form of free
entry. While in our model firms decide to enter the market only after knowing their
productivity, in their model firms should decide before knowing it. Furthermore,
Edmond, Midrigan and Xu (2022) estimate such costs just for the US, not on a
period-by-period basis, and considers markup costs associated with factors beyond
misallocation, such as inefficient entry. Furthermore, they need firm-level data to
calibrate their model. We contribute to this literature by estimating a model using
minimal microdata, allowing us to assess market-power-driven misallocation for a
broader set of countries and years.

Given our goal of revisiting key facts of economic growth, this study closely
aligns with the development economics literature, particularly that focused on
macroeconomic analyses and development accounting exercises (Klenow; Rodríguez-
Clare, 1997; Prescott, 1998; Caselli, 2005; Caselli, 2016; Jones, 2016). Jones (2016)
serves as our primary reference, offering a comprehensive overview of economic
growth facts, some of which we reexamine in this study. Our contribution to this
literature lies in providing a comprehensive assessment of misallocation across
both time and space. As a consequence, we address allocative efficiency issues
within development accounting frameworks for several different years. Furthermore,
we provide evidence on the impacts of misallocation on frontier growth, a topic
that has received considerably less attention than the study of misallocation and
development (Jones, 2016).

Our work also shares common ground with the growth-accounting literature
that decomposes TFP growth into technology and allocative efficiency components

framework, but they do that by considering an oligopsony model for the labor market.
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(Basu; Fernald, 2002; Petrin; Levinsohn, 2012; Baqaee; Farhi, 2020).3 It is most
closely related to Baqaee and Farhi (2020) since they, like us, measure allocative
efficiency as the distance from the optimal allocation.4 However, their model is
much more general as they do not impose any specific market structure and allow
for arbitrary elasticities of substitution, returns to scale, factor mobility, and input-
output network linkages. As a result, the quantification of their model requires
extensive microdata that are hardly available, while our model requires mainly
macroeconomic data.

Finally, our paper is also related to the literature on misallocation (Restuccia;
Rogerson, 2008; Hsieh; Klenow, 2009; Restuccia; Rogerson, 2013). However, in this
literature, misallocation is a result of exogenous wedges, whose estimation requires
extensive firm-level data, similar to growth-accounting methods, especially Baqaee
and Farhi (2020).5 In contrast, misallocation is endogenous in our model, emerging
as an equilibrium outcome. Furthermore, in this literature, the typical goal is to
gauge the importance of misallocation in explaining cross-country TFP differences,
usually within the manufacturing sector due to data availability, while we focus on
economy-wide outcomes, both across countries and over time.

The remainder of the paper proceeds as follows. Section 2.2 presents the
model, while the model quantification is explained in Section 2.3. Section 2.4
discusses data details and empirical results for the global frontier, proxied by the
US. Section 2.5 presents similar assessments but for the economic performance

3 Baqaee and Farhi (2020) present a review of such methods, showing that they also use
different definitions for the relevant aggregate productivity. For a broader review of the
growth-accounting literature, see Hulten (2010).

4 Measuring allocative efficiency as the distance from optimal allocation aligns with the prevailing
notion in the misallocation literature. However, alternative concepts exist, particularly in the
growth-accounting literature. As pointed out by Baqaee and Farhi (2020, p.107), “[...] the
growth-accounting notion of changes in allocative efficiency due to the reallocation of resources
to more or less distorted parts of the economy over time is very different from the misallocation
literature’s notion of allocative efficiency measured as the distance to the Pareto-efficient
frontier.”

5 Indeed, Baqaee and Farhi (2020, p.107) “[...] provide an analytical formula for the social cost
of distortions, generalizing misallocation formulas like those of Hsieh and Klenow (2009) to
economies with arbitrary input-output network linkages, numbers of factors, microeconomic
elasticities of substitution, and distributions of distorting wedges.”
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around the world. Section 2.6 briefly comments on two model extensions. Finally,
Section 2.7 concludes.

2.2 Model

We present two versions of the model. In the first version, as usual in
oligopoly models, we assume there is a discrete number of firms. A shortcoming
of this version is that some key results are only approximately valid as marginal
adjustments in the number of firms are not allowed. In the second version, we
consider a continuum of firms, when the standard practice is to assume these
null-measure firms ignore the impacts of their decisions on aggregate outcomes
even though they exist. We follow a different approach and suppose firms pay at
least some attention to them. Under this assumption, we get essentially the same
results as the discrete model but holding exactly.

In this section, we specifically emphasize the economic content of the model.
For step-by-step derivation and formal proofs, please refer to Appendix 2.A for the
discrete version and Appendix 2.B for the continuous version.

2.2.1 Discrete number of firms

We refrain from delving into households’ behavior, as it is essentially irrel-
evant to our results; all we need is to assume that more consumption is always
preferred to less. Consequently, the model focuses solely on the firms’ side, where
misallocation originates. Additionally, since firms’ decisions are static in our model,
we suppress the time subscript for notational simplicity.

Environment and technology. In a closed economy, N potential entrant firms
produce a single good. The price elasticity of demand for this good is strictly
negative, with its absolute value denoted by η, where 1 < η < ∞. One may
consider that there are several different goods, each produced within distinct
sectors, but which can be represented by a single-sector (or single-good) economy.
In this interpretation, explored in Appendix 2.C, our model would apply to this



32 Chapter 2. Revisiting the facts of economic growth

representative sector, with η being equal to the elasticity of substitution across
sectors’ goods.

Since firms’ goods are homogeneous, the aggregate output Y is

Y ≡
N∑

i=1
Yi (2.1)

being Yi the production of firm i, which is given by the Cobb-Douglas function

Yi =AiK
α
i H1−α

i (2.2)

where Ki ≥ 0 is the stock of physical capital, Hi ≥ 0 is the stock of human capital,
and Ai > 0 is a productivity parameter, all for firm i, while α ∈ (0, 1). In the
following, let A ≡ mini{Ai} and A ≡ maxi{Ai} be the technology frontier of this
economy, with 0 < A < A < +∞.

Market competition and optimal decision. Firms engage in Cournot competi-
tion, meaning each firm chooses its output taking as given the output chosen by
the other firms in the economy, as well as the wage w > 0 and the rental cost of
physical capital r > 0. There are no fixed costs. Formally, each firm i ∈ {1, 2, ..., N}
solves the profit maximization problem

max
Yi

pYi − wHi − rKi = (p − MCi) Yi

s.t. w > 0, r > 0, p = p(Y ), Yj ≥ 0 ∀j ∈ {1, 2, ..., N} \ {i}
(2.3)

where p is the price of the good and MCi =
(

r
α

)α (
w

1−α

)1−α 1
Ai

is the Cobb-Douglas
marginal cost of firm i. The price is given by the inverse demand function p(Y ),
with −

(
∂p
∂Y

Y
p

)−1
≡ η. Solving the First-Order Condition (FOC) of this optimization

problem,

p =MCi
ηi

ηi − 1 (2.4)

where ηi = η
si

> 1 is the price elasticity of demand faced by a firm with market
share si ≡ Yi/Y . Thus, the markup of firm i is µi ≡ ηi

ηi−1 =
(
1 − si

η

)−1
. Since the

Second-Order Condition (SOC) for profit maximization also holds under 1 < η < ∞,
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Equation (2.4) represents firm i optimal decision as long as µi ≥ 1 ↔ si ≥ 0, that
is, for every active firm i.

Equilibrium allocation. Using (2.4) for any active firms i and j, one can show
that

si − sj =
(

1 − MCi

MCj

)
(η − sj) =

(
1 − Aj

Ai

)
(η − sj) (2.5)

implying that a more productive firm will have a higher market share, since
Aj > Ai → sj > si as η > 1 ≥ sj . Moreover, for Ai sufficiently close to zero, si < 0,
implying that firms with very low productivity could not be active.6 Thus, even
though there are no fixed costs, we need to consider an entry stage to obtain the
set of active firms in equilibrium.

We seek an equilibrium in which (i) each active firm i has non-negative
profits (or, equivalently, µi ≥ 1) and (ii) non-active firms would make strictly
negative profits if they entered the market. However, this equilibrium is usually not
unique (Atkeson; Burstein, 2008; Edmond; Midrigan; Xu, 2015; Loecker; Eeckhout;
Mongey, 2021). To avoid multiple equilibria, we discard any equilibrium in which
a non-active firm has a strictly lower marginal cost than an active firm. As a
consequence, in the equilibrium, a firm with productivity A will serve as the cutoff
for active firms, such that firm i is active if and only if Ai ≥ A.7 To identify this
set of active firms, one can employ either of the two algorithms utilized by Atkeson
and Burstein (2008), Edmond, Midrigan and Xu (2015), and Loecker, Eeckhout
and Mongey (2021): (i) add firms one by one in descending order of productivity
or (ii) assume all firms are initially in the market and drop one by one the firm
with the lowest negative profit. In fact, any refinement device providing such a set

6 To see that, rewrite (2.5) as si = η − (η − sj) Aj

Ai
≤ η − (η − 1) Aj

Ai
as sj ≤ 1 and use the fact

that η > 1.
7 Strictly speaking, the statement should be that firm i is active if Ai > A and only if Ai ≥ A,

as it is possible to encounter situations where not all firms with productivity A are active.
However, for the sake of clarity and convenience, we opt to rule out such possibilities, which
results in just a low loss of generality. After all, in cases where such situations arise, we can
lower the productivity of the inactive firms with productivity A by an arbitrarily small value.
This adjustment leads to (essentially) the same model but with the advantage of satisfying
the stronger statement of the main text.



34 Chapter 2. Revisiting the facts of economic growth

of active firms should yield the same result, meaning that this refined equilibrium
is unique.8

The entry stage ensures free exit. We also ensure free entry among low-
productivity firms, supposing inefficient technologies are common knowledge as we
assume there are firms in any neighborhood of the null productivity (so, A → 0
and N → ∞). In such circumstances, (an infinite number of) sufficiently low-
productivity firms will not be active from what we have seen in (2.5). This implies
the profit of the marginal active firm, the firm with productivity A, should be
relatively low since, otherwise, the entry of new firms would become profitable. In
this context, we consider that the profit of this marginal firm is approximately null.
Formally, for A = Aj , [p − MCj] Yj = MCj (µj − 1) Yj ≈ 0, which holds if and only
if sj ≈ 0 as µj = (1 − sj/η)−1. Hence, our assumption of free entry implies that the
market share of the marginal active firm should remain close to zero, regardless of
parameters values. This characteristic will be crucial for our empirical strategy and
stems from the model’s stronger assumptions. Notably, the free entry condition
in an environment where firms are not subject to fixed costs – a situation made
feasible only due to the homogeneity of firms’ goods. In contrast, when goods are
heterogeneous, firm selection occurs only with fixed costs, leading the marginal
firm to produce positive quantities in equilibrium even with free entry. In such
cases, the output of the marginal firm is contingent upon model parameters (e.g.,
elasticity of demand and fixed costs), as identified by the near-zero-profit condition.

Evaluating Equation (2.5) for Aj = A and thus sj ≈ 0, it is easy to see that

s(Ai) ≡si ≈ η (1 − A/Ai) (2.6)

for Ai ≥ A, which clearly shows that si strictly increases with Ai. Moreover,
summing Equation (2.5) in j over all active firms and using s(A) ≈ 0 one more
time, one can show that

η ≈ 1
Na [1 − Ea (A/A)] (2.7)

8 To show that, assume by contradiction two refinement devices provide different such sets
of active firms. Thus, necessarily, one device (say, the first) should not include some of the
lowest-productivity active firms of the other (say, the second). Since the set of active firms
from the first device represents an equilibrium, including these missing firms would yield
negative profits for at least one active firm, contradicting the results from the second device.
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where Ea (h(A)) ≡ E (h(A)|A ≥ A) = ∑
A≥A h(A) g(A)

1−G(A) is the expected value of a
function h over active firms under the empirical distribution, g(A) is the empirical
probability of A, G(A) = ∑

a<A g(a) is the empirical cumulative distribution
function, and Na ≡ N (1 − G(A)) is the number of active firms.

Aggregate productivity and misallocation. From Equations (2.1) and (2.2),
note

Y =
N∑

i=1
AiK

α
i H1−α

i = AΩKαH1−α (2.8)

where K ≡ ∑N
i=1 Ki, H ≡ ∑N

i=1 Hi, and Ω ≡ ∑N
i=1 θα

Kiθ
1−α
Hi

(
Ai/A

)
, with θKi ≡ Ki

K

and θHi ≡ Hi

H
. As firms produce homogeneous goods, the optimal allocation entails

assigning all inputs to the most productive firm, when Ω = 1 and Y = AKαH1−α.
Hence, Ω ∈ (0, 1] gauges the distance of aggregate TFP AΩ from its optimal level,
A, being our measure of allocative efficiency.

Since each firm uses its inputs optimally, taking the same inputs’ rental
prices as given, every active firm i chooses the same physical-to-human capital
ratio, and thus θKi = θHi ≡ θi. As a result,

s(Ai) =Yi

Y
= AiK

α
i H1−α

i

AΩKαH1−α
= Aiθi

AΩ
→ θi = AΩs(Ai)

Ai

(2.9)

AΩ = 1∑N
i=1

s(Ai)
Ai

(2.10)

where we use (2.2) and (2.8) to get (2.9), while (2.10) is obtained by summing
(2.9) over all firms. Therefore, similarly to Edmond, Midrigan and Xu (2015) and
Edmond, Midrigan and Xu (2022), aggregate productivity is a quantity-weighted
harmonic mean of firms’ productivity.

Finally, by plugging Equations (2.6) and (2.7) into (2.10), we get

Ω ≈
Ea

[
(A/A)(1 − A/A)

]
Ea [(A/A)(1 − A/A)] (2.11)

which has some interesting properties. First, Ω improves when A increases due to the
exit of less productive active firms from the market (Appendix 2.A.4), suggesting
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that allocative efficiency is closely related to productivity dispersion among active
firms. Second, since with no productivity dispersion, any allocation of resources is
optimal, Ω → 1 when A → A.9 Note that, in this limit case, the market would be
in perfect competition since all active firms have unitary markups and null profits,
with Na → ∞. Interestingly, even though there are infinite potential entrant firms,
the number of active firms would be infinite only in this particular circumstance.
After all, from Equation (2.7), Na → ∞ if and only if Ea (A/A) → 1, which can
occur only if there is an infinite number of firms with productivity around A.

Average markup. Using this model, we can also compute the cost-weighted
average of firm-level markups µ ≡ ∑N

i=1

(
Hiw+Kir
Hw+Kr

)
µi = ∑N

i=1 θiµi through

µ ≈AΩ
A

(2.12)

As we discuss in Section 2.3, this expression is crucial for our empirical strategy.

2.2.2 Continuum of firms

With a discrete number of firms, some equations such as (2.11) are only
approximately valid. This happens because s(A) > 0 could occur in equilibrium even
with free entry since the fact that all active firms are making strictly positive profits
does not necessarily mean that it would be profitable for a non-active (discrete)
firm to enter the market. Thus, in the discrete case, one can only argue that the
profit of the least productive active firm is, in some sense, low — something we
incorporate when using s(A) ≈ 0. To get equations that are exactly valid, we
need to work with a continuum of firms. However, under such circumstances, the
standard practice is to assume these null-measure firms ignore the impacts of their
decisions on aggregate outcomes even though they exist. For instance, in models of
monopolistic competition, each intermediate firm ignores its impact on aggregate
output, but it exists as the optimal decision of final good producers relies on the
marginal effects on aggregate output of employing more intermediate goods.10

9 This result relies solely on the assumption of homogeneous goods, not depending on the
Cournot model. Please refer to Appendix 2.A.4 for formal proof.

10 For the standard CES aggregator Y =
(∫ 1

0 Y
σ−1

σ
j dj

) σ
σ−1

, ∂Y/∂Yi =
(∫ 1

0 Y
σ−1

σ
j dj

) 1
σ−1

Y
− 1

σ
i > 0,

with ∂Y/∂Yi = 1 for homogeneous goods (σ → +∞).
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Similarly, in oligopoly models based on Atkeson and Burstein (2008), intermediate
firms consider the impacts of their decisions in the outcomes of their sectors, in
which a discrete number of firms compete, but overlook the impacts on aggregate
variables over the continuum of sectors, which are considered only by final good
producers.

We follow a different approach, assuming each firm i ∈ [0, N ] considers
∂Y/∂Yi = q ∈ (0, 1]. Hence, firms pay at least some attention to their impacts on
aggregate outcomes. They may be fully aware of them (q = 1) but cannot simply
ignore them (q = 0). We essentially keep all other assumptions from the discrete
model, with only minor adjustments. For instance, we again consider the unique
equilibrium in which a firm i is active if and only if Ai ≥ A for some productivity
cutoff A.11 Moreover, to impose inefficient technologies are common knowledge,
we assume the mass of low-productivity firms is finite but sufficiently large to the
extent that not all firms can be active simultaneously. Finally, it is worth noting
that η > 1 no longer guarantees the SOC for firms’ profit maximization, but it
holds if η > 0 or if q ∈ (0, 1] is low.12 In the following, we simply assume that these
parameters satisfy that condition.

Under such conditions, all equations presented in Section 2.2.1 for the
discrete model would still be valid, with (2.6), (2.7), (2.11), and (2.12) holding
exactly, if one replaces (i) η by η/q and (ii) sums by integrals (e.g., Y ≡

∫N
0 Yidi

and Ea (h(A)) =
∫ A

A h(A) g(A)
1−G(A)dA, where g is now a density function). They are

exactly valid as now s(A) = 0 holds in equilibrium because marginal adjustments
in the number of active firms are allowed in this case.13 Since the two models have
essentially the same equations, they have similar properties. In particular, it is
easy to show that (i) Ω ∈ (0, 1], (ii) Ω strictly increases with A, and (iii) Ω → 1
when A → A.14 In short, the continuous model is essentially an exact version of
the discrete one.

11 A situation in which not all firms with productivity A are active could not occur with a
continuum of firms. As a consequence, in this case, we do not need to rule out such situations
to obtain this result.

12 For a discussion on this matter, please refer to Appendix 2.B.6.
13 In Appendix 2.B.3, we provide a formal proof for why s(A) = 0 holds in the continuous model

equilibrium.
14 See Appendix 2.B.4 for a proof of such properties.
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2.3 Quantification strategy and baseline parameters

In this section, we outline the calibration strategy. Our primary empirical
objective is to compute allocative efficiency Ω, which solely requires the distribution
of active firms’ productivity (Equation (2.11)). Thus, we aim to use real-world data
to pin down the distributional parameters. We propose a calibration procedure in
which, given a distributional shape, we seek A and A by matching (i) aggregate TFP
AΩ and (ii) cost-weighted average of firm-level markups µ. Owing to the simplicity
of our model, we establish necessary and sufficient conditions for this procedure to
work properly, achieving an exact match of both target moments. Furthermore, we
elucidate the close connection between Ω and µ. Before presenting this calibration
strategy, we discuss our distributional assumption and the computation of those
moments using real-world data. Afterward, we present our baseline choices for the
parameters, including the one that determines the shape of firms’ productivity
distribution.

2.3.1 Distributional assumption

We consider a continuous distribution of firm productivity, consistent with
the continuous model of Section 2.2.2.15 Consistent with much of the literature
(Melitz; Redding, 2015; Edmond; Midrigan; Xu, 2015; Edmond; Midrigan; Xu,
2022), we employ a Pareto distribution with shape parameter k ̸= 0, truncated
within the range A ∈

[
A, A

]
.16 It is easy to show that A ∈

[
A, A

]
is also truncated

Pareto distributed with shape parameter k ̸= 0, with density g̃(A) ≡ g(A)
1−G(A) =

k
(

AkA
k

A
k−Ak

)
A−k−1.17 Note this density is strictly increasing in A for k < −1, constant

for k = −1 (Uniform distribution), and strictly decreasing for k > −1, k ̸= 0.

15 Alternatively, one can interpret that we are using the discrete model of Section 2.2.1 but
approximating the expected values of functions of A included in key expressions (e.g., Equation
(2.11)) using a continuous distribution as we do not have firm-level data and thus do not know
the discrete support.

16 In the non-truncated Pareto distribution, k should be strictly greater than 0, but in its
truncated version k could also be strictly negative.

17 Consistently, Melitz and Redding (2015, p.24) argue that “a key feature of a Pareto distributed
random variable is that it retains the same distribution and shape parameter k whenever it is
truncated from below.”
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Under this density, we show in Proposition 2.D.5 that

Ea

(
(A/A)j

)
=


(

k
k+j

) (
Ãk+j−1

Ãk+j−Ãj

)
, if k + j ̸= 0(

kÃk

Ãk−1

)
ln Ã , if k + j = 0

(2.13)

for k ̸= 0, j ∈ N \ {0}, and Ã ≡ A/A > 1.

2.3.2 Computing the target moments using real-world data

We consider two target moments: (i) the aggregate TFP AΩ and (ii) the cost-
weighted average of firm-level markups µ. These moments can be easily obtained
using standard macroeconomic data and the parameter α. On the one hand, TFP is
backed out as a residual in the aggregate production function (2.8): AΩ = Y

KαH1−α .
On the other hand, µ = ∑N

i=1 θiµi = ∑N
i=1 θip

MP Hi

w
= ∑N

i=1 θi(1 − α) Yip
θiHw

= 1−α
LS

,
where MPHi is the marginal product of human capital, MCi = w

MP Hi
as firms

use inputs optimally, and LS ≡ Hw
Y p

is the labor share of national income. Note
µi = 1−α

LSi
, which is exactly Hall (1988) expression if one considers a Cobb-Douglas

production function and human capital as a variable input. Hence, our method to
gauge the average markup is closely related to the recent literature that uses Hall
(1988) results to estimate firm-level markups (Loecker; Warzynski, 2012; Loecker;
Eeckhout, 2018; Loecker; Eeckhout; Unger, 2020; Traina, 2018; Calligaris; Criscuolo;
Marcolin, 2018; Autor et al., 2020).18

2.3.3 Calibration algorithm

Given our distributional assumption and the computed data moments, we
calculate A and A by matching (i) aggregate TFP AΩ and (ii) cost-weighted
average markup µ, in each evaluated period. Hence, similarly to Loecker, Eeckhout
and Mongey (2021), even though the model is static, time-varying results can be
18 Edmond, Midrigan and Xu (2015) and Baqaee and Farhi (2020) use sales-weighted harmonic

average instead of cost-weighted arithmetic average. However, these two measures are equivalent
here, since µi = 1−α

LSi
→ si

µi
= Yi/Y

(1−α)/LSi
= Hiw/(Y p)

1−α and thus the harmonic average markup(∑N
i=1

si

µi

)−1
= 1−α

Hw/(Y p) = 1−α
LS = µ. Similar results apply to the model of Edmond, Midrigan

and Xu (2022), in which these two average markups are also equal, given by an equivalent
function of the aggregate labor share.
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obtained due to period-by-period estimation. Formally, given AΩ and µ, a solution
for A and A, if it exists, can be obtained from the following algorithm:

1. Given Equation (2.13), calculate Ã ≡ A/A by solving numerically

µ = 1 − Ea (A/A)
Ea [(A/A)(1 − A/A)] (2.14)

which is obtained from (2.11) and (2.12) holding exactly as in the continuous
model.

2. From Equation (2.12) holding exactly, compute A = AΩ/µ.

3. Given Ã ≡ A/A and A from the previous steps, calculate A = Ã × A.

In Appendix 2.D, we establish necessary and sufficient conditions for this algorithm
to work properly, achieving an exact match of both target moments. The challenge
is to show that a unique solution exists for the first-step problem or, equivalently,
that (2.14) implicitly defines Ã ≡ A/A as a well-defined function of µ. Referring to
Proposition 2.D.8, it becomes evident that a unique solution exists if and only if
µ > 1 and k < 2/(µ − 1).19

Note computing Ã from (2.14) only requires data on average markup µ and
thus allocative efficiency Ω does not depend on TFP data either, since (2.11) is
just a function of Ã under (2.13). TFP data are used only to pin down A and
A. Therefore, to decompose the TFP, we first estimate Ω using data on µ = 1−α

LS
,

computing then A from the observed TFP AΩ. As a consequence, in this model,
the residual of the production function is not the TFP AΩ itself, but rather only
its technology component A, which is a cleaner residual as it is free of misallocation
effects.

Figure 2.1 plots the function Ω of µ for truncated Pareto distributions with
k = 3, 5, 9 and an Uniform distribution (k = −1). Several things are worth noting
about it. First, Ω is strictly decreasing in µ = 1−α

LS
and thus strictly increasing in

19 For an arbitrary continuous truncated distribution, a unique solution exists if and only if
µ ∈

(
1, limA→+∞ µ

)
(Proposition 2.D.4). By employing (2.14), it is possible to compute

limA→+∞ µ, albeit contingent upon the distributional assumption. For example, for the Pareto
case, this is done in Proposition 2.D.7.
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LS. In particular, Ω → 1− when µ → 1+. Essentially, this function converts one
measure of distance from the efficient equilibrium into another. While µ represents
the distance of average markup from the competitive, efficient, level µ = 1, allocative
efficiency Ω quantifies the deviation of aggregate TFP AΩ from its optimal level,
A. Building on that interpretation, it seems intuitive that a lower average markup
µ > 1, indicating a less distorted economy, would be associated with enhanced
allocative efficiency Ω. Second, given a time series of µ, a lower k would imply a
higher and less volatile estimated Ω.

Figure 2.1 – Allocative efficiency vs. average markup.

2.3.4 Baseline parameters

In our baseline calibration, we set k = −1, that is, we suppose firm produc-
tivity is uniformly distributed. Note, in this case, the calibration algorithm will
properly work if and only if µ > 1, since k < 2

µ−1 will always hold. This choice of k

is justified for two reasons.
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First, k = −1 yields the most conservative reasonable TFP decomposition
compared to standard accounting exercises, in which all TFP variation is attributed
to technology. To see that, note we obtain a TFP decomposition that is closer
to standard ones by choosing a lower k, as Ω would increase towards one and
become increasingly stable over time (Figure 2.1). Indeed, from Proposition 2.D.9,
Ω → 1 when k → −∞ and thus our model’s residual AΩ converges to the
standard accounting residual A in this limit case. Given that, it would be useful to
find a lower bound for k. Supposing high-productivity firms are relatively scarce,
this lower bound is exactly k = −1. After all, as discussed in Section 2.3.1, the
truncated Pareto density is downward sloping only for k > −1, k ̸= 0, being upward
sloping for k < −1 and constant for k = −1 (Uniform distribution). Besides being
economically reasonable, this assumption is commonly adopted, often by imposing
a non-truncated Pareto distribution for firms’ productivity.

Second, we show in Appendix 2.E that, under k = −1, the estimates of
allocative efficiency growth are highly robust to (i) the level of LS and (ii) the choice
of α, as soon as µ = 1−α

LS
> 1. These are interesting features since (i) estimating

α is not an easy task and (ii) gauging the level of LS is not straightforward,
particularly for developing countries, given the difficulty of identifying the labor
share of self-employment income (Gollin, 2002).

Naturally, this does not mean that the choice of α is irrelevant under k = −1.
Besides possibly changing the number of country-year observations that fulfill the
model’s necessary condition µ = 1−α

LS
> 1, α is required to pin down (i) the TFP

AΩ, (ii) the (level of the) allocative efficiency Ω, and (iii) the technology frontier A.
As a result, the choice of α is fundamental for decomposing the TFP AΩ growth as
it alters the TFP AΩ growth itself and consequently the growth of the residual A.
In short, even for k = −1, one should choose α. Our baseline calibration employs
the standard α = 1/3 for all countries and years.

2.4 Growth in nations at the frontier

In this section, we examine economic growth in the United States. Following
Jones (2016), we take it as a proxy for the performance of nations situated at the
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world income frontier.

2.4.1 Data and parameters

We use annual data from the Penn World Table 10.01 (Feenstra; Inklaar;
Timmer, 2015) to measure the US variables. Output Y is the real GDP at constant
national prices (rgdpna variable), and physical capital K is the capital services
at constant national prices (rkna variable). We measure labor L as the aggregate
amount of time worked, which is the product of two variables: (i) the number
of persons engaged (emp variable) and (ii) the average annual hours worked by
persons engaged (avh variable). Multiplying L by the human capital index (hc
variable), based on years of schooling and returns to education, we obtain the
stock of human capital H. Finally, LS is the share of labor compensation in GDP
at current national prices (labsh variable). For the US, it is always equal to the
preferred labor share measure of the Penn World Table 10.01, which assumes
self-employed workers use labor and physical capital in the same proportion as the
rest of the economy (Feenstra; Inklaar; Timmer, 2015). The data for these variables
span from 1950 to 2019, except for the physical capital stock, available only from
1954 onward.

As discussed in Section 2.3.4, we use the standard α = 1/3 in the baseline
calibration. Alternatively, we could calibrate it from data. Since firms use inputs
optimally, α equals the cost share of capital, that is, α = Kr

Kr+Hw
.20 Using factor

income data for the US nonfinancial corporate sector from Barkai (2020), we
estimate α = 0.31.21 As it is only slightly lower than the standard calibration, we
maintain α = 1/3 throughout the main body of the paper. In Appendix 2.G, we
discuss this alternative calibration procedure in detail, demonstrating that our
main conclusions are robust to this lower α.

Given the labor share LS and the parameter α, we compute the average
markup µ = 1−α

LS
. Figure 2.2 plots the results from 1950 to 2019, showing an increase

20 For a formal proof, please refer to Appendix 2.A.4.
21 Similarly, Loecker, Eeckhout and Unger (2020) and Edmond, Midrigan and Xu (2022) use

cost data to gauge sectoral elasticity of output with respect to labor, which is equivalent to
1 − α in our Cobb-Douglas case.
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in the average markup. This is consistent with evidence supporting higher firms’
markup power in the US (Loecker; Eeckhout; Unger, 2020; Baqaee; Farhi, 2020;
Loecker; Eeckhout, 2018).

Figure 2.2 – Average markup in the United States.

In the baseline calibration, we use k = −1 due to the desirable features
presented in Section 2.3.4. However, one may be interested in evaluating the
reasonableness of this assumption for the United States. Edmond, Midrigan and
Xu (2022) estimate misallocation using an oligopoly model calibrated for the US.
Rather than committing to a single average markup µ, they calibrate it for µ

equal to 1.05, 1.15, 1.25, or 1.35. Table 2.1 compares the value-added aggregate
productivity losses shown in their Table 6 with our own estimates for k = −1, 3, 5,
computed accordingly as −(AΩ−A)/A = (1−Ω). As can be seen, our estimates are
closer to theirs for k = −1, particularly for µ = 1.15 when the results are practically
the same. This is a very significant result considering that their model is primarily
calibrated using recent data, a timeframe during which µ = 1−α

LS
consistently hovers

around 1.15 (Figure 2.2). For instance, to gauge productivity dispersion, a crucial
factor in estimating misallocation, they target measures of concentration in 2012,
when we find µ = 1.12. This suggests k = −1 is indeed a reasonable assumption
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for the US, which serves as an important validation of our model, particularly
considering that the oligopoly model of Edmond, Midrigan and Xu (2022) is more
flexible, general, requiring firm-level data for calibration. In any case, as k = −1
is an economic lower bound for k in our model, we choose to test also the higher
values shown in Table 2.1.

Table 2.1 – Aggregate productivity losses, %

Average markup µ
1.05 1.15 1.25 1.35

Edmond, Midrigan and Xu (2022) estimates 5.55 6.85 8.89 12.52(Oligopoly model)

Own estimates
k = −1 2.41 6.75 10.54 13.90
k = 3 2.60 8.43 15.31 23.58
k = 5 2.70 9.62 19.87 38.77

2.4.2 Allocative efficiency

Figure 2.3 plots the estimated allocative efficiency Ω for each k. Several
things are worth noting about these estimates. First, since Ω is just a transformation
of µ, the estimated series are highly correlated with each other, showing similar
trends.22 In particular, all estimates suggest the allocative efficiency Ω is decreasing
over time, especially after 2000, reflecting the lower labor share LS and thus the
higher average markup µ = 1−α

LS
in recent years (Figure 2.2). This is consistent with

Baqaee and Farhi (2020) that finds an increase in the distance from the optimal
allocation between 1997 and 2015 in the US. Second, consistent with Figure 2.1,
Ω is higher and more stable for lower k. In any case, the estimates are relatively
similar, especially considering that k = 5 is probably very extreme given the results
of Table 2.1.
22 This is especially clear at the beginning of the sample, because the estimate of Ω is less

sensitive to k for a lower markup µ (Figure 2.1), as observed in sample’s initial years (Figure
2.2).
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Figure 2.3 – Allocative efficiency in the United States.

2.4.3 Growth accounting

To understand the sources of economic growth, one can use directly the
aggregate production function (2.8). However, in this case, there would be no clear
separation between the components since the accumulation of physical capital is
typically affected by productivity (e.g., consider a standard Solow model). A better
alternative followed by Jones (2016) is to use

Yt

Lt

=
(

Kt

Yt

)αβ (Ht

Lt

) (
AtΩt

)β
(2.15)

which can be easily obtained from (2.8) if one adds time subscripts and defines
β ≡ 1

1−α
. In this form, output per hour Yt/Lt grows due to the growth of (i) physical

capital-output ratio through (Kt/Yt)αβ, (ii) human capital per hour Ht/Lt, and (iii)
labor-augmenting TFP

(
AtΩt

)β
. Jones (2016) points out that the contributions

from productivity and physical capital are separated in (2.15) in a way that they
were not in (2.8). After all, as suggested by a neoclassical growth model, the
physical capital-output ratio does not depend on TFP, at least in the long run.
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Table 2.2 presents the growth accounting exercise based on (2.15). Essen-
tially, we repeat the exercise shown in Table 3 of Jones (2016), but bringing the
TFP decomposition to the analysis, finding qualitatively similar results.23 First
of all, most of the long-run growth in the output per hour comes from the TFP,
although Jones (2016) finds an even higher contribution from it. Human capital is
also relevant, while the physical capital-output ratio contributes little to output
growth. Moreover, we also find faster output and TFP growth until 1973, although
in our decomposition some of this output acceleration was caused by human capital.
According to Gordon (2000), this period of outstanding TFP growth can be dated
back to 1913, showcasing the impact of the great inventions of the late nineteenth
and early twentieth centuries. These innovations notably encompass electricity
and the internal combustion engine, but also include chemicals, movies, radio, and
indoor plumbing. This boom period is followed by slower economic growth between
1973 and 1995, mainly due to a productivity slowdown. Between 1995 and 2007,
economic growth accelerated again, driven by productivity growth, “[...] coinciding
with the dot-com boom and the rise in the importance of information technology”
(Jones, 2016, p.11). Finally, we also find lackluster economic growth from 2007
onward, in the wake of the Great Recession and among slower TFP growth. Fernald
(2015) presents compelling evidence that this productivity slowdown began before
the global financial crisis, tracing back to 2003, reflecting “[...] a retreat from the
exceptional, but temporary, information technology-fueled pace from the mid-1990s
to early in the twenty-first century” (Fernald, 2015, p.1). Similar results are found
in Byrne, Oliner and Sichel (2013).

All in all, TFP seems to be the key variable in explaining economic growth
in both the short and long run. The problem is that the TFP is usually a residual,
“a measure of our ignorance.” This is not true here, where the residual is not the
TFP AΩ itself but only the technology component A. Allocative efficiency Ω is
gauged from the average markup µ = 1−α

LS
. Looking at Table 2.2, we see that

long-run TFP growth is driven almost solely by its technology component. Indeed,
between 1954 and 2019, labor-augmenting TFP grew 1.1% per year, almost equal

23 This occurs despite the distinct data sources used. Jones (2016) uses 1948-2013 data for the
US private business sector from the Bureau of Labor Statistics, while we use 1954-2019 US
national data from the Penn World Table 10.01.
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Table 2.2 – Growth accounting for the United States

Period Y
L

Y/L components Labor-aug. TFP
(
AΩ

)β
components(

K
Y

)αβ H
L

(
AΩ

)β k = −1 k = 3 k = 5
A

β Ωβ A
β Ωβ A

β Ωβ

1954-2019 1.9 0.2 0.5 1.1 1.2 -0.1 1.2 -0.1 1.2 -0.1
1954-2013 1.9 0.2 0.6 1.2 1.2 -0.1 1.3 -0.1 1.3 -0.1

1954-1973 2.6 -0.0 1.0 1.7 1.7 0.0 1.7 0.0 1.7 0.0
1973-1990 1.3 0.3 0.5 0.5 0.7 -0.2 0.7 -0.2 0.8 -0.2
1990-1995 1.6 0.2 0.5 0.9 1.1 -0.2 1.2 -0.3 1.2 -0.3
1995-2000 2.2 0.2 0.3 1.7 1.0 0.7 0.8 0.9 0.7 1.0
2000-2007 2.2 0.4 0.3 1.5 2.0 -0.6 2.2 -0.7 2.3 -0.8
2007-2013 1.3 0.5 0.3 0.5 0.7 -0.2 0.8 -0.3 0.9 -0.4
2013-2019 1.0 -0.2 0.1 1.0 0.9 0.1 0.9 0.1 0.8 0.2

Note: Logarithmic approximation of average annual growth rates (in percent).

to the 1.2% annual growth in the technology component. Changes in allocative
efficiency represented just a small drag on growth (-0.1% per year).

However, misallocation can be much more relevant for shorter periods of
time. For instance, during 1995-2000 and 2000-2007, amid the IT boom, TFP grew
at similar high rates, but for very distinct reasons. TFP growth between 1995 and
2000 is attributable almost equally to both of its components, whereas from 2000 to
2007, it was solely driven by technology, with misallocation worsening throughout
the period. These findings appear to align with sector-level TFP estimates. Fernald
(2015) identifies substantial productivity gains in IT-producing industries during
1995-2000, while noting only modest improvements in IT-intensive sectors. Similarly,
Gordon (2000) demonstrates that productivity enhancements from 1995 to 1999
were primarily concentrated in computer and computer-related semiconductor
manufacturing. As a result, given that IT-producing sectors accounted for only
4.9% of private business value-added between 1988 and 2011 (Fernald, 2015), one
should not anticipate significant IT-induced aggregate productivity gains in the late
1990s. While the behavior of aggregate TFP does not align with this reasoning, our
decomposition analysis does. Specifically, technology improved during 1995-2000
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at essentially the same pace observed between 1973 and 1995. The TFP growth
from 1995 to 2000 appears to originate from elsewhere, reflecting better diffusion
of technology across firms and consequently improved resource allocation. We
find significant technology improvements only after 2000, which is consistent with
Fernald (2015) showing that TFP of the large IT-intensive industries surged in
the early twenty-first century.24 Nevertheless, the decline in allocative efficiency
during 2000-2007 suggests that these IT-induced technology improvements were
not effectively disseminated across all firms.

Another example is given by the comparison between 2007-2013 and 2013-
2019, when the TFP annual growth doubled, from 0.5% to 1%, but the technology
component grew much more similarly across the periods due to the behavior of
misallocation. Indeed, this fact seems to hold more generally, as the growth of the
technology component is more stable, around 1% per year. The main exceptions
are the periods of 1954-1973 and 2000-2007 when technology contributed around
2% per year. This is consistent with the argument of Fernald (2015) that the
exceptional growth during these periods is what appears unusual and warrants
investigation. The subsequent slowdowns are merely the flip side of these speedups,
representing the return to a normal growth pace. Additionally, among these unusual
periods, it is worth noting that we find more rapid technology improvements from
2000 to 2007 amidst developments in IT, even though TFP grew faster between
1954 and 1973.

2.5 Economic performance around the world

In Section 2.4, we examined the growth of nations situated at the global
income frontier, employing the United States as a proxy. Now, our focus shifts
to assessing economic performance around the world, which we approach from
two distinct perspectives. First, we conduct a development accounting exercise to
understand the differences in income across countries. Second, we reexamine the
diffusion of growth across nations, actively seeking evidence of convergence not only

24 According to Fernald (2015), during the 1988-2011 period, these IT-intensive sectors accounted
for 34.9% of private business value-added.
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in income but also in TFP. In addition to updating previous similar assessments,
our exercises yield fresh insights and discussions by incorporating misallocation
estimates.

2.5.1 Data and parameters

As for frontier growth, variables required by the model are taken from the
Penn World Table 10.01, which contains annual data between 1950 and 2019 for 183
countries. While development accounting solely requires variables’ levels, assessing
convergence involves examining the cross-country correlation between a variable’s
growth over a certain period and its level in the initial year. Consequently, it is
essential to choose appropriate measures for both level and growth analyses, which
may differ.

For level analyses, we consider two distinct data sets: one with the most
accurate proxies but fewer country-year observations and another with broader
coverage, albeit relying on worse measures of the variables of interest. In the data
set with the greatest sample coverage, Y is the output-side real GDP at current
PPPs (cgdpo variable), K is the capital stock at current PPPs (cn variable), L is
the number of persons engaged (emp variable), H is L multiplied by the human
capital index (hc variable), and LS is the share of labor compensation in GDP at
current national prices (labsh variable). In the data set that uses the best proxies,
Y is measured in the same way, while K is the capital services levels at current
PPPs (ck variable). To obtain L and H, we multiply the previous proxies by the
average annual hours worked by persons engaged (avh variable). Finally, LS is
the share of labor compensation in GDP at current national prices as computed
using their adjustment 2 method (lab_sh2 variable, available at the labor detail
database). This is the preferred labor share measure of the Penn World Table 10.01,
in which self-employed workers are assumed to use labor and physical capital in
the same proportion as the rest of the economy (Feenstra; Inklaar; Timmer, 2015).

For growth analyses, we measure Y as the real GDP at constant national
prices (rgdpna variable) and K as the capital stock at constant national prices
(rnna variable). L and H are measured in the same way as in the data set for
level analyses with the greatest sample coverage. To pin down allocative efficiency
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improvements, we need to measure the changes in labor share properly. However,
to ensure complete coverage over the years, Feenstra, Inklaar and Timmer (2015)
make some interpolations and extrapolations that distort the labor share growth
as they (i) assume labor shares remain constant or (ii) linearly interpolate if there
are missing years in the middle of the sample. To avoid such distortions, we choose
to discard any imputed data, which are identified in their labor detail database.
These imputations are done for each of the following labor share measures, which
differ in the way they treat the income of self-employed workers (also known as
mixed income):

1. Naïve share: LS = labor compensation
GDP at basic prices

2. Adjustment 1, mixed income: LS = labor compensation+mixed income
GDP at basic prices

3. Adjustment 2, part mixed income: LS = labor compensation
GDP at basic prices−mixed income

4. Adjustment 3, average wage: LS = ( labor compensation
# employees )(# employees and self-employed)

GDP at basic prices

5. Adjustment 4, agriculture: LS = labor compensation+value added in agriculture
GDP at basic prices

Subsequently, they apply a set of rules to select a measure for each country and year,
obtaining their final estimate (labsh variable). Hence, the selected measure may
vary from period to period, which could also distort the labor share growth. Given
that, we do not use the labsh variable for growth analyses but choose among the
above measures (without imputations). As argued for the development accounting
case, adjustment 2 share (lab_sh2 variable) is the best proxy available. However,
it requires mixed income data available for only 79 countries. Consequently, we
choose to measure LS using the naïve share (comp_sh variable, from the labor
detail database) since it is available for 139 countries and seems to serve as a good
proxy for the labor share growth.

This last fact is illustrated in Figure 2.4, which plots labor share annual
growth ∆ ln LS for adjustment 2 method against each of the other four measures
(all without imputations), considering only country-year observations in which all
five labor share growth measures are available. We also plot the 45-degree line
and the Ordinary Least Squares (OLS) linear trend, whose associated centered
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R2 is shown inside each plot. Since the adjustment 1 measure also requires mixed
income data, it cannot be a solution to the small sample problem of the preferred
adjustment 2 share. Among the other alternatives, the naïve share has the best
linear fit, with its linear trend being essentially equal to the 45-degree line. Hence,
the naïve share provides the best proxy for the growth in the preferred adjustment
2 measure, suggesting it can serve as a good proxy for the labor share growth.
However, the naïve share is known to underestimate the labor share as it does
not allocate any income from self-employed workers to labor (Gollin, 2002). As
a consequence, this labor share would overestimate the average markup µ = 1−α

LS
,

which can be relevant even for growth analyses. For instance, for k > 0, a country
may even be dropped from the sample since the necessary condition k < 2

µ−1 could
not hold. To address this issue, we multiply the naïve share (without imputation)
by a country-specific constant that aligns its average with the mean of the labsh
variable (with imputation), using the longest coincident period available. By doing
that, we maintain the naïve share growth but correct its level.

We constructed this data set for growth analyses focusing on maximizing
sample coverage. Additionally, we considered another data set that employs the
best proxies available for growth analyses.25 However, it is impractical to evaluate
convergence using the best proxies for both level and growth analyses due to the
significantly reduced sample size. As a result, we present convergence results only
for the largest data sets.

We finish the data description by commenting on two variables used in
both level and growth analyses. First, GDP per person, which is Y divided by the
population (pop variable from the Penn World Table 10.01). Second, our analyses
are focused on non-oil countries. We classify a country as an oil producer in a given
year if its oil rents account for more than 10% of GDP in that year. Oil rents as a
share of GDP are sourced from the World Development Indicators provided by the
World Bank.26

25 In this case, K is the capital services at constant national prices (rkna variable), L and H
are the best proxies for level analyses, and LS is the adjustment 2 share (lab_sh2 variable),
without imputations.

26 If oil rents are unavailable for a country at a given year, we utilize data from the most recent
non-missing year for that country. If such data is unavailable, we resort to data from the
subsequent non-missing year. If this is also unavailable, we assume oil rents to be null.
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Figure 2.4 – Comparing measures of labor share annual growth.

Regarding the parameters, we use the baseline values α = 1/3 and k = −1
discussed in Section 2.3.4. Since k = −1 is an economic lower bound for k, we also
test k = 3. It is worth mentioning that we could have used α = 0.31 as estimated in
Section 2.4.1 using US data from Barkai (2020). However, since it is not so different
from α = 1/3, we opt to keep to the standard practice employed in development
accounting exercises (Caselli, 2005; Caselli, 2016; Jones, 2016).

Figure 2.5 plots the number of non-oil countries for which we could decom-
pose the TFP for each data set, k, and year between 1950 and 2019. Several facts
of this graph stand out. First, as expected, the best proxies are available for fewer
countries. In particular, the sample coverage of the data set with the best proxies for
growth analyses is notably restricted, especially before the mid-1990s. Second, the
sample coverage is smaller for k = 3 than for k = −1, since the necessary condition
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k < 2
µ−1 always holds under µ > 1 for k < 0, but not necessarily for k > 0.27 Third,

the sample coverage typically increases over time. The main exception occurs in
growth analyses for 2019 when the labor share measures are available only for the
US. This does not happen in the data sets for level analyses due to the use of
extrapolated data. Fourth, this use of interpolated/extrapolated labor share data
in level analyses increases its sample coverage relative to growth analyses, which is
especially clear closer to the beginning of the sample.

Figure 2.5 – Number of non-oil countries whose TFP could be decomposed.

In the subsequent sections, we leverage these data, employing the TFP de-
composition to reexamine key aspects of economic growth. For an initial exploration
of the data sets for level analyses, please refer to Appendix 2.H. This appendix
features scatter plots depicting the labor-augmenting TFP and its components
against GDP per unit of labor for 1965, 1975, 1985, 1995, 2005, and 2015. Appendix
27 Indeed, for µ > 1 and k = 3 > 0, k < 2

µ−1 ↔ µ < 2+k
k ≈ 1.67.
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2.I provides a similar exploration of the data sets for growth analyses, but, in this
case, we plot each variable’s five-year annual average growth instead of their levels.

2.5.2 Development accounting

Growth accounting aims to identify the proximate determinants of economic
growth. It is commonly utilized to evaluate a country’s performance over time,
as we do for the US in Section 2.4.3. Development accounting applies the same
logic but to explain income differences across countries at a specific point in time,
typically a year. As Jones (2016) points out, the physical capital-output ratio is
remarkably stable across countries. Human capital varies more as poorer countries
usually present lower levels of educational attainment, but still modestly so in
light of the substantial cross-country income differences. A consequence of these
two facts is that wealthier nations exhibit significantly higher productivity, leading
to the usual conclusion that income differences are predominantly attributed to
TFP (Caselli, 2005; Caselli, 2016; Jones, 2016). Since TFP is typically a residual,
“a measure of our ignorance,” this suggests that most income variability remains
unexplained. However, as our model pins down allocative efficiency from the average
markup, the residual becomes only its technology component. This prompts the
question: can misallocation offer insights into cross-country income differences?
This is the inquiry that we aim to explore in this section.

Following the discussion of Section 2.4.3, our development accounting exer-
cise relies on production function (2.15) instead of (2.8), since, in that case, the
contributions from productivity and physical capital are better separated than in
this one.28 From (2.15),

Var(y) =Var(e) + Var(u) + 2Cov(e, u) (2.16)

where Var(·) and Cov(·) are, respectively, sample variance and covariance across
countries at a given year, while y ≡ ln (Y/L) is the natural logarithm of the
income per unit of labor, e represents the explained portion of y, and u denotes
the unexplained part of y. We initially consider the standard case where TFP is a
residual, such that e ≡ ln

[
(K/Y )

α
1−α (H/L)

]
and u ≡ ln

[(
AΩ

) 1
1−α

]
. Based on this

28 However, here one should interpret the subscript t in (2.15) as denoting country, not time.
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variance decomposition, we can identify how successful the factors of production are
in explaining cross-country income differences. We use two standard measures from
the development accounting literature (Klenow; Rodríguez-Clare, 1997; Caselli,
2005):

success1 ≡Var(e)
Var(y) (2.17)

success2 ≡Var(e) + Cov(e, u)
Var(y) = Cov(e, y)

Var(y) (2.18)

Undoubtedly, the variance term associated with the factors of production should be
incorporated into the numerator of such success measures. However, the appropriate
treatment of the covariance term is less clear and distinguishes these two metrics. In
the first measure, the entire covariance term is assigned to TFP, whereas the second
measure distributes this term equally between factors of production and TFP. Note
that this second measure can also be computed as the OLS slope coefficient from
regressing the factors term e on the output per unit of labor y. Analogous reasoning
applies to its complement, the TFP share. Hence, as Klenow and Rodríguez-Clare
(1997, p.80) point out, this variance decomposition amounts to asking: when we
see 1% higher output per labor in one country, how much higher we expect factors
and TFP terms to be?

Alternatively, we calculate these two success measures with allocative effi-
ciency included in the explained portion of y, consistent with our oligopoly model
in which the residual is just the technology component A rather than the entire
TFP AΩ. Formally, we again employ (2.17) and (2.18), but, in this case, using
e ≡ ln

[
(K/Y )

α
1−α (H/L) Ω

1
1−α

]
and u ≡ ln

[
A

1
1−α

]
. For both measures, high values

indicate that e successfully explains cross-country income differences, while low
values denote failure as u is the key variable behind the observed results. Conse-
quently, by computing these metrics both with and without allocative efficiency
Ω included in the explained portion e, we can check if misallocation enhances our
understanding of cross-country income differences. If the measures are higher when
Ω is included in e, we conclude that it enhances our understanding; if they are not,
we conclude that it does not.

The results are displayed in Figure 2.6. We use all non-oil countries available
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for each data set for level analyses, k, and year. Therefore, as previously seen in
Figure 2.5, the evaluated countries may change over time in a given plot and across
plots for a given year, requiring caution when performing such comparisons. Our
primary focus is comparing the measures within a given data set, k and year, when
the same sample of countries is used. As can be seen, both measures of success
increase when misallocation is included in the explained portion, across all the
evaluated years. This is evident in Figure 2.7, which plots the difference between
the metrics with and without misallocation. The gains are more pronounced for the
first measure. This means that the inclusion of misallocation elevates the variance of
the explained portion, thereby enhancing the first metric. However, the covariance
between explained and unexplained components diminishes, resulting in smaller
improvements in the second measure. Or, equivalently, both the variance of the
explained portion and its covariance with income per unit of labor increase, but
the former sees a greater rise. Note that this higher covariance implies a positive
relationship between allocative efficiency and income, which is illustrated in the
scatter plots of Appendix 2.H (Figures 2.H.9, 2.H.10, 2.H.11, and 2.H.12).

It is also noteworthy that the gains are more modest for k = −1, typically
below 10pp, but it becomes more relevant as k increases. Moreover, we find stronger
enhancements when using the best proxies available, with the gains typically
doubling in this smaller data set. However, this last result may be reflecting
differences in countries’ sample rather than the measures themselves, as these
increased gains essentially disappear when we consider the same sample of countries
in each data set (Figures 2.J.1 and 2.J.2 in Appendix 2.J).29 In contrast, the
higher gains for k = 3 are not attributable to sample issues; they instead reflect
the characteristics of the model shown in Figure 2.1, with a higher k leading to
allocative efficiency estimates that vary more across countries.

In summary, these metrics consistently indicate that misallocation plays
a significant role in explaining cross-country income differences, particularly for
higher values of k. Despite its significance, the measures of success remain relatively
low, typically below 50%, at least for the most recent two decades, which have
29 In Appendix 2.J, we also depict the success measures from 1990 onwards but under time-

invariant countries’ samples (Figures 2.J.3 and 2.J.4). Overall, the results exhibit consistency
with those presented here.
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Figure 2.6 – Measures of success, all non-oil countries available.

Figure 2.7 – Success gains due to misallocation, all non-oil countries available.



2.5. Economic performance around the world 59

broader sample coverage. In other words, the unexplained portion continues to be
substantial, still constituting the majority of observed variability in most cases.
Caselli (2005, p.681) states that a “sentence commonly used to summarize the
existing literature sounds something like ‘differences in efficiency account for at least
50% of differences in per capita income”’. Our results indicate that while market-
power-driven misallocation is essential to understanding cross-country income
differences, it does not fundamentally alter this statement.

2.5.3 Convergence assessment

In his Figure 26, Jones (2016) evaluates income convergence by comparing
the 1960-2011 economic growth rate with GDP per person in 1960 across countries.
As these variables do not exhibit a negative correlation, Jones (2016, p.36) concludes
“that a simplistic view of convergence does not hold for the world as a whole.” In
Figure 2.8, we conduct a similar exercise but for 1975-1995, 1975-2005, 1975-2015,
1985-2005, 1985-2015, and 1995-2015. GDP per person growth (level) is from the
data set for growth analyses (level analyses) with the greatest coverage. We consider
only countries whose TFP could be decomposed in both level and growth data sets
under k = −1. Note we distinguish between oil-producing and non-oil-producing
countries in the plot.30 For each period, we also show OLS linear trends for non-oil
countries and the complete set of countries, whose slope coefficients’ estimates and
statistical significance are displayed inside each plot. Consistent with Jones (2016),
we do not find strong support for income convergence. Indeed, the variables seem
to be negatively correlated only for 1995-2015.

In Section 2.5.2, we saw that TFP is key in understanding cross-country
output differences, suggesting that the above findings for income may reflect a
lack of convergence in TFP. We investigate it in Figures 2.9, 2.10, and 2.11, where
we perform convergence assessments for TFP AΩ, technology frontier A, and
allocative efficiency Ω, respectively. Similarly to the income case, the convergence
hypothesis does not seem to hold for the TFP and both its components except
perhaps for 1995-2015, when poorer countries grew faster among swifter technology
30 In this case, an oil country is defined by having oil rents that account for more than 10% of

its GDP in any year within the specified period.
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advancements and more pronounced gains in allocative efficiency.

A more comprehensive convergence assessment is presented in Figure 2.12,
which shows the same non-oil slope estimates displayed in the scatter plots but for
each 20-year period commencing in 1970. We additionally depict the 90% confidence
interval. All in all, this evidence reaffirms our earlier observations that convergence
appears elusive, except possibly in the most recent decades. It is noteworthy that
these conclusions remain valid for k = 3 (Figure 2.13).31

In short, the empirical evidence does not strongly support the convergence
hypothesis in either income or TFP, with the lack of convergence being evident in
both TFP components. Consequently, countries do not appear to be converging
over time to a common degree of allocative efficiency, indicating that the level
of efficiency is country-specific even in the long run. Interestingly, this suggests
that market-power-driven misallocation is linked, in the long run, to long-lasting
country-specific factors such as institutions.

2.6 Model extensions

We discuss two model extensions in Appendix 2.F. First, we go beyond the
Cobb-Douglas production function (2.2) and show that the model’s key equations
are still valid for an arbitrary well-behaved production function with M factors of
production, provided it exhibits (i) constant returns to scale and (ii) Hicks-neutral
productivity shifter. Consequently, given data on the TFP AΩ and the average
markup µ, we can quantify the model by following precisely the empirical strategy
of Section 2.3.3, relying on the same conditions for the existence of a solution for
the calibration algorithm. The differences between these models appear only in
the computation of the TFP AΩ and the average markup µ from data since (i)
the expressions used to compute these two data moments are different and (ii) the
calibration of the production function using cost share data may require more than
just the long-run average or median used in Section 2.4.1.

31 As mentioned in Section 2.5.1, we could not conduct such thorough investigations using our
best proxies due to their limited sample size, especially before the mid-1990s. Nonetheless, if
anything, more recent data appear to corroborate these findings.
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Figure 2.8 – Assessing convergence in income - data sets with greatest coverage,
k = −1. Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 2.9 – Assessing convergence in TFP - data sets with greatest coverage,
k = −1. Note: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Figure 2.10 – Assessing convergence in technology frontier - data sets with greatest
coverage, k = −1. Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 2.11 – Assessing convergence in allocative efficiency - data sets with greatest
coverage, k = −1. Note: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Figure 2.12 – Slope coefficient from regressing variable’s annual growth over the
next 20 years (in percent) on its level (in natural logarithm) - data
sets with greatest coverage, k = −1.

Figure 2.13 – Slope coefficient from regressing variable’s annual growth over the
next 20 years (in percent) on its level (in natural logarithm) - data
sets with greatest coverage, k = 3.
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Second, we add firm-specific wedges as a new source of firm heterogeneity,
which could be helpful, for instance, to study the impact of size-dependent policies
on misallocation. More precisely, we consider firm-specific tax rate over revenue
τi = τ(Ai). In this case, model equations change, and consequently, the conditions
for the existence of a solution for the calibration algorithm of Section 2.3.3 are no
longer valid. We do not obtain new such conditions but briefly comment on the
empirical implementation of this model when (i) the function τ is known and (ii)
the function τ is known except from a parameter, but the sales-weighted average
tax rate τ̃ ≡ ∑N

i=1 siτi is observed.

2.7 Conclusion

Using a Cournot model, this study decomposes TFP into technology and
allocative efficiency components from 1950 to 2019 for up to a hundred countries
from the Penn World Table 10.01. This decomposition enables a reexamination of
key facts of economic growth. Our evaluation of the world income frontier, proxied
by the US, reveals that changes in misallocation can significantly impact short-run
growth. For example, during 2000-2007, the US witnessed notable technological
improvement coupled with declining allocative efficiency, suggesting that the dot-
com boom and advancements in IT led to productivity gains but concentrated in
certain firms. On a more general note, the technology component seems to grow
more steadily than the TFP itself, around 1% per year. Notable exceptions are the
periods of 1954-1973 and 2000-2007 when technology contributed approximately
2% annually.

Turning to a global perspective, our analysis suggests that misallocation
plays a significant role in explaining cross-country income differences. Including
misallocation increases our first measure of success by raising the variance of the
explained portion. We also observe an increased covariance between the explained
portion and the income per unit of labor when allocative efficiency is considered.
This explains why our second measure of success increases as well, even though
the improvements are smaller in this case. Despite its significance, a considerable
unexplained portion persists, constituting the majority of observed variability in
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most cases. Finally, we obtain limited support for the convergence hypothesis
in income and either TFP component. Interestingly, the lack of convergence in
allocative efficiency suggests that market-power-driven misallocation is linked, in
the long run, to long-lasting country-specific factors such as institutions.



Appendix of Chapter 2

2.A Derivation of the discrete model

We refrain from delving into households’ behavior, as it is essentially irrel-
evant to our results; all we need is to assume that more consumption is always
preferred to less. Consequently, the model focuses solely on the firms’ side, where
misallocation originates. Additionally, since firms’ decisions are static in our model,
we suppress the time subscript for notational simplicity.

2.A.1 Environment and technology

In a closed economy, N potential entrant firms produce a single good. The
price elasticity of demand for this good is strictly negative, with its absolute value
denoted by η, where 1 < η < ∞. Since firms’ goods are homogeneous, the aggregate
output Y is

Y ≡
N∑

i=1
Yi (2.1)

being Yi the production of firm i, which is given by the Cobb-Douglas function

Yi =AiK
α
i H1−α

i (2.2)

where Ki ≥ 0 is the stock of physical capital, Hi ≥ 0 is the stock of human capital,
and Ai > 0 is a productivity parameter, all for firm i, while α ∈ (0, 1). In the
following, let A ≡ mini{Ai} and A ≡ maxi{Ai} be the technology frontier of this
economy, with 0 < A < A < +∞.

2.A.2 Market competition and optimal decision

Firms engage in Cournot competition, meaning each firm chooses its output
taking as given the output chosen by the other firms in the economy, as well as
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the wage w > 0 and the rental cost of physical capital r > 0. Formally, each firm
i ∈ {1, 2, ..., N} solves the profit maximization problem

max
Yi

pYi − wHi − rKi = (p − MCi) Yi

s.t. w > 0, r > 0, p = p(Y ), Yj ≥ 0 ∀j ∈ {1, 2, ..., N} \ {i}
(2.3)

where p is the price of the good and MCi =
(

r
α

)α (
w

1−α

)1−α 1
Ai

is the Cobb-Douglas
marginal cost of firm i. The price is given by the inverse demand function p(Y ),
with −

(
∂p
∂Y

Y
p

)−1
≡ η.

The First-Order Condition (FOC) of this optimization problem is

0 =p

(
1 + ∂p

∂Yi

Yi

p

)
− MCi = p

(
1 − 1

ηi

)
− MCi

p =MCi
ηi

ηi − 1 (2.4)

where ηi ≡ −
(

∂p
∂Yi

Yi

p

)−1
is the absolute value of the price elasticity of demand faced

by firm i. Being si ≡ Yi

Y
the market share of firm i, note ηi =

(
− ∂p

∂Y
∂Y
∂Yi

Y
p

Yi

Y

)−1
=

η
si

> 1. As a result, the markup of firm i is µi ≡ ηi

ηi−1 =
(
1 − si

η

)−1
.

The Second-Order Condition (SOC) is

0 >
∂p

∂Y

∂Y

∂Yi

(
1 − si

η

)
− p

η

Y − Yi
∂Y
∂Yi

Y 2


0 > − p

ηY

(
1 − si

η

)
− p

ηY
(1 − si) = − p

η2Y
[η(2 − si) − si]

η >
si

2 − si

(2.A.1)

which is satisfied for η > 1 as si

2−si
is strictly increasing in si and equals 1 for si = 1.

Therefore, Equation (2.4) represents firm i optimal decision as long as
µi ≥ 1 ↔ si ≥ 0, that is, for every active firm i.

2.A.3 Equilibrium allocation

Using (2.4) for any active firms i and j, note

MCi(η − si)−1 =MCj(η − sj)−1



68 Chapter 2. Revisiting the facts of economic growth

si − sj =
(

1 − MCi

MCj

)
(η − sj) =

(
1 − Aj

Ai

)
(η − sj) (2.5)

As discussed in the main text, in the unique refined equilibrium, there exists a firm
with productivity A serving as the cutoff for active firms, such that firm i is active
if and only if Ai ≥ A. Given that, rewrite (2.5) as si

Aj
= η

Aj
− 1

Ai
(η − sj) and sum

it in j over all active firms to obtain

siEa(1/A) =ηEa(1/A) − 1
NaAi

(Naη − 1)

s(Ai) ≡si = 1
NaEa(Ai/A) + η

(
1 − 1

Ea(Ai/A)

)
(2.A.2)

where Ea (h(A)) ≡ E (h(A)|A ≥ A) = ∑
A≥A h(A) g(A)

1−G(A) is the expected value of a
function h over active firms under the empirical distribution, g(A) is the empirical
probability of A, G(A) = ∑

a<A g(a) is the empirical cumulative distribution
function, and Na ≡ N (1 − G(A)) is the number of active firms. As expected, these
shares add to one over all active firms.

Given the free-entry assumption, we use s(A) ≈ 0, implying that, for
Ai ≥ A,

s(Ai) ≈η (1 − A/Ai) (2.6)

η ≈ 1
Na [1 − Ea (A/A)] (2.7)

where we obtain (2.6) by plugging Aj = A and sj ≈ 0 into (2.5), while we use
s(A) ≈ 0 in (2.A.2) to get (2.7).

2.A.4 Aggregate productivity and misallocation

Given (2.1) and (2.2), note

Y =
N∑

i=1
AiK

α
i H1−α

i = AΩKαH1−α (2.8)

where K ≡ ∑N
i=1 Ki, H ≡ ∑N

i=1 Hi, and Ω ≡ ∑N
i=1 θα

Kiθ
1−α
Hi

(
Ai/A

)
, with θKi ≡ Ki

K

and θHi ≡ Hi

H
. Since (i) θα

Kiθ
1−α
Hi ∈ [0, 1] and (ii) ∑N

i=1 θα
Kiθ

1−α
Hi ≤ 1, we can conclude
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that 0 < Ω ≤ 1.32 Thus, to maximize Y given K and H, one should allocate all
the inputs to the most productive firm, when Ω = 1 and Y = AKαH1−α, which is
expected given our assumption of homogeneous goods. Hence, Ω ∈ (0, 1] gauges
the distance from the optimal allocation of inputs, being our measure of allocative
efficiency.

Firms use inputs optimally, taking the same inputs’ rental prices as given.
As a consequence, from the FOCs of active firm i cost minimization problem,

w

MPHi

= r

MPKi

↔ wHi

(1 − α)Yi

= rKi

αYi

↔ Ki

Hi

= w

r

α

1 − α
(2.A.3)

where MPHi and MPKi are the marginal products of human and physical capital
of active firm i, respectively. Thus, every active firm chooses the same physical-
to-human capital ratio. Consequently, from (2.A.3), Ki = Kj

Hj
Hi for any firm i and

active firm j, implying

θKj ≡ Kj

K
= Kj∑N

i=1 Ki

= Kj∑N
i=1

Kj

Hj
Hi

= Hj∑N
i=1 Hi

= Hj

L
≡ θHj (2.A.4)

which allows us to define θj ≡ θHj = θKj for every firm j. Given that, one can use
(2.A.3) to get

α = Kir

Kir + Hiw
= θiKr

θiKr + θiHw
= Kr

Kr + Hw
(2.A.5)

meaning α equals the cost share of physical capital.

Using θKi = θHi = θi, one can show that

s(Ai) =Yi

Y
= AiK

α
i H1−α

i

AΩKαH1−α
= Aiθi

AΩ
→ θi = AΩs(Ai)

Ai

(2.9)

AΩ = 1∑N
i=1

s(Ai)
Ai

(2.10)

where we use (2.2) and (2.8) to get (2.9), while (2.10) is obtained by summing (2.9)
over all firms.

32 To see that
∑N

i=1 θα
Kiθ

1−α
Hi ≤ 1, just use θα

Kiθ
1−α
Hi = exp (α ln(θKi) + (1 − α) ln(θHi)) ≤

exp [ln(αθKi + (1 − α)θHi)] = αθKi + (1 − α)θHi, since ln is concave and exp is increasing.
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Finally, plugging Equations (2.6) and (2.7) into (2.10),

Ω ≈
Ea

[
(A/A)(1 − A/A)

]
Ea [(A/A)(1 − A/A)] (2.11)

which shows three interesting properties. First, it is easy to see that Ω ∈ (0, 1], as
it should be given (2.8). Second, Ω → 1 when A → A, which is an expected result
since with no productivity dispersion, any allocation of resources is optimal. After
all, employing Equation (2.10),

1 =
N∑

i=1
s(Ai)(A/A) <

1
Ω =

N∑
i=1

s(Ai)(A/Ai) <
N∑

i=1
s(Ai)(A/A) = A/A (2.A.6)

implying 1 ≤ limA→A Ω−1 ≤ limA→A A/A = 1. Note this result relies solely on the
assumption of homogeneous goods, not depending on the Cournot model. Third,
the exit of less productive active firms leads to an improvement in Ω. To see that,
we first assess the impact on allocative efficiency Ω resulting from the exit of
only the least productive active firm from the market (say, because η increases).
Let A + δ, with δ > 0, be the second-lowest productivity among active firms in
the initial equilibrium. In this proof, we use the subscript 0 to denote the initial
equilibrium and 1 for the final one, implying Ea0 (h(A)) ≡ E (h(A)|A ≥ A) and
Ea1 (h(A)) ≡ E (h(A)|A ≥ A + δ). Moreover, from Equation (2.11),

Ω0 ≈
Ea0

[
(A/A)(1 − A/A)

]
Ea0 [(A/A)(1 − A/A)] =

E
[
(A/A)(1 − A/A)|A ≥ A

]
E [(A/A)(1 − A/A)|A ≥ A]

Ω0 ≈
E
[
(A/A)(1 − A/A)|A ≥ A + δ

]
E [(A/A)(1 − A/A)|A ≥ A + δ] =

Ea1

[
(A/A)(1 − A/A)

]
Ea1 [(A/A)(1 − A/A)] (2.A.7)

Ω1 ≈
Ea1

[(
(A + δ)/A

)
(1 − (A + δ)/A)

]
Ea1 [((A + δ)/A) (1 − (A + δ)/A)] (2.A.8)

where we use 1 − A/A = 0 in the second line. Therefore, ∆Ω ≡ Ω1 − Ω0 is

∆Ω ≈
Ea1

[(
(A + δ)/A

)
(1 − (A + δ)/A)

]
Ea1 [((A + δ)/A) (1 − (A + δ)/A)] −

Ea1

[
(A/A)(1 − A/A)

]
Ea1 [(A/A)(1 − A/A)]

∆Ω ≈
Ea1

[
(A + δ)

(
A−(A+δ)

AA

)]
Ea1

[
(A + δ)

(
A−(A+δ)

A2

)] −
Ea1

[
A
(

A−A

AA

)]
Ea1

[
A
(

A−A
A2

)] =
Ea1

(
A−A

AA
− δ

AA

)
Ea1

(
A−A
A2 − δ

A2

) −
Ea1

(
A−A

AA

)
Ea1

(
A−A
A2

)
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∆Ω ≈
Ea1

(
A−A

AA
− δ

AA

)
Ea1

(
A−A
A2

)
− Ea1

(
A−A

AA

)
Ea1

(
A−A
A2 − δ

A2

)
Ea1

(
A−A
A2 − δ

A2

)
Ea1

(
A−A
A2

)
∆Ω ≈

−Ea1

(
δ

AA

)
Ea1

(
A−A
A2

)
+ Ea1

(
A−A

AA

)
Ea1

(
δ

A2

)
Ea1

(
A−(A+δ)

A2

)
Ea1

(
A−A
A2

)
∆Ω ≈

Ea1

(
1 − A

A

)
Ea1

(
1

A2

)
− Ea1

(
1
A

)
Ea1

(
1
A

− A
A2

)
(A/δ)Ea1

(
A−(A+δ)

A2

)
Ea1

(
A−A
A2

)
∆Ω ≈

−Ea1

(
1
A

)2
+ AEa1

(
1
A

)
Ea1

(
1

A2

)
+ Ea1

(
1

A2

)
− AEa1

(
1
A

)
Ea1

(
1

A2

)
(A/δ)Ea1

(
A−(A+δ)

A2

)
Ea1

(
A−A
A2

)
∆Ω ≈

Vara1

(
1
A

)
(A/δ)Ea1

(
A−(A+δ)

A2

)
Ea1

(
A−A
A2

) (2.A.9)

where Vara1 (h(A)) ≡ Var (h(A)|A ≥ A + δ) = Ea1 (h(A)2) − [Ea1 (h(A))]2 is the
variance of h(A) over active firms under the empirical distribution in the final
equilibrium, for any function h. Note that our analysis implicitly assumes the
presence of productivity dispersion in the initial equilibrium. Within the initial
set of active firms, the second-lowest productivity level is A + δ, which is strictly
greater than the lowest level (A) as δ > 0. As a result, productivity dispersion
should also be present in the final equilibrium. After all, if this were not the case,
Ea1 (A/A) = 1, implying from (2.7) that either Na1 = +∞ or η1 = +∞. While
η1 = +∞ is ruled out by assumption, the scenario of Na1 = +∞ cannot hold since
there is productivity dispersion in the initial equilibrium. All in all, we can conclude
that Vara1 (1/A) > 0 and consequently ∆Ω > 0. Applying this result iteratively, we
would conclude that the exit of less productive active firms improves the allocative
efficiency Ω.

2.A.5 Average markup

Using this model, we can also compute the cost-weighted average of firm-level
markups µ ≡ ∑N

i=1

(
Hiw+Kir
Hw+Kr

)
µi = ∑N

i=1 θiµi through

µ =
N∑

i=1

[
AΩs(Ai)

Ai

] (
p

MCi

)
≈

N∑
i=1

[
AΩs(Ai)

Ai

] 
(

r
α

)α (
w

1−α

)1−α 1
A(

r
α

)α (
w

1−α

)1−α 1
Ai

 = AΩ
A

(2.12)
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where we use (2.9), (2.4), that the least productive active firm has markup approx-
imately equal to one, and the Cobb-Douglas marginal cost function.

2.B Derivation of the continuous model
Given the similarity to the discrete model, we refrain from presenting the

derivation in detail. Instead, our focus is on emphasizing the main differences from
the discrete case. To derive the model, the SOC of firms’ profit maximization must
hold. In the discrete case, one can easily see that this condition is satisfied for
η > 1. However, in the continuous model, such evaluation is less straightforward, as
it requires considering the equilibrium values of si. As a consequence, in deriving
the model, we simply assume this condition is met. We subsequently validate this
claim in Appendix 2.B.6 using the model solution for si, demonstrating that the
SOC holds if η > 0 or if q ∈ (0, 1] is low.

2.B.1 Environment and technology

The absolute value of the price elasticity of demand is η, with 0 < η < +∞.
Since now there is a continuum of firms i ∈ [0, N ], the aggregate output is given by
an integral instead of a sum:

Y ≡
∫ N

0
Yidi (2.1c)

where Yi is still given by (2.2).

2.B.2 Market competition and optimal decision

Firms’ problem continues to be (2.3). Consequently, the FOC is still given
by (2.4), but now ηi = η/q

si
since ∂Y/∂Yi = q ∈ (0, 1] instead of ∂Y/∂Yi = 1. This

means the markup of firm i becomes µi =
(
1 − si

η/q

)−1
= η/q

η/q−si
. Similarly, the SOC

is also different, given by

0 >
∂p

∂Y

∂Y

∂Yi

(
1 − si

η/q

)
− p

η/q

Y − Yi
∂Y
∂Yi

Y 2


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0 > − p

(η/q)Y

(
1 − si

η/q

)
− p

(η/q)Y (1 − siq) = − p

(η2/q)Y [2η − siq(1 + η)]

siq <
2η

1 + η
(2.A.1c)

For now, simply assume the SOC holds, implying (2.4) represents the optimal
decision for all active firms, that is, for every firm i such as si ≥ 0 or, equivalently,
µi ≥ 1.

2.B.3 Equilibrium allocation

Equation (2.5) is no longer valid. However, from (2.4) with ηi = η/q
si

, one
can easily show that

si − sj =
(

1 − Aj

Ai

)
(η/q − sj) (2.5c)

which defines si as a strictly increasing function of Ai, since η/q − sj > 0 as
µj = η/q

η/q−sj
> 1 for any active firm j. As before, if some firms may be inactive, we

seek the unique equilibrium in which a firm i is active if and only if Ai ≥ A for
some productivity cutoff A.

Given that, one can use (2.5c) to obtain, analogously to (2.A.2),

s(Ai) = 1
NaEa(Ai/A) + (η/q)

(
1 − 1

Ea(Ai/A)

)
(2.A.2c)

where Ea (h(A)) ≡ E (h(A)|A ≥ A) =
∫ A

A h(A) g(A)
1−G(A)dA is the expected value

of a function h over active firms under the empirical distribution, g(A) > 0 is
the empirical density of A, and G(A) =

∫ A
A g(a)da is the empirical cumulative

distribution function. As before, Na ≡ N (1 − G(A)) is the number of active firms.
Using (2.A.2c), let us show that not all firms can be active simultaneously if
N is sufficiently large. Assume, by contradiction, that all firms are active, with
Na = N → +∞. From (2.A.2c), it is easy to see that s(A) < 0 under such
circumstance unless Ea(A/A) → 1 and thus A → A, when you would get the
perfect competition case. However, this could not hold as all firms are active and
Ai ∈ [A, A], with A < A.



74 Chapter 2. Revisiting the facts of economic growth

Therefore, assuming that N is sufficiently large, some low-productivity firms
would be inactive. Consequently, s(A) = 0. To see this last result, it is sufficient to
show that such A exists. After all, on the one hand, if it exists, s(A) > 0 cannot
be an equilibrium given our assumption of free entry. On the other hand, s(A) < 0
is never an equilibrium due to free exit. A productivity level A such as s(A) = 0
exists because (i) s(A) < 0 when A → A, (ii) s(A) > 0 when A → A, and (iii) s(A)
is continuous in A. The first result holds because si is strictly increasing in Ai and,
by assumption, the mass N of firms is large, meaning that not all firms can be
active simultaneously. The last two results can be obtained from (2.A.2c). From
this expression, s(A) → 1/Na = 1/[N(1 − G(A))] → +∞ when A → A, yielding
the second result. The third result holds as both Na ≡ N(1 − G(A)) and Ea(1/A)
are continuous functions of A, since Ea(1/A) is differentiable in A (Proposition
2.D.1).

Finally, plugging s(A) = 0 respectively into (2.5c) and (2.A.2c), note

s(Ai) =(η/q) (1 − A/Ai) (2.6c)

η/q = 1
Na [1 − Ea (A/A)] (2.7c)

which are the continuous versions of (2.6) and (2.7), respectively.

2.B.4 Aggregate productivity and misallocation

Equation (2.8) remains valid with K ≡
∫N

0 Kidi, H ≡
∫N

0 Hidi, and Ω ≡∫N
0 θα

Kiθ
1−α
Hi

(
Ai/A

)
di. Equations (2.A.3), (2.A.4), (2.A.5), and (2.9) also remain

valid. Naturally, (2.10) should be replaced by

AΩ = 1∫N
0

s(Ai)
Ai

di
(2.10c)

Finally, allocative efficiency Ω continues to be given by (2.11), but now holding
exactly. Thus, it shows similar properties. First, as can be easily seen, Ω ∈ (0, 1].
Second, Ω → 1 when A → A, since, from (2.10c),

1 =
∫ N

0
s(Ai)(A/A)di <

1
Ω =

∫ N

0
s(Ai)(A/Ai)di <

∫ N

0
s(Ai)(A/A)di = A/A

(2.A.6c)
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Third, Ω is strictly increasing in A, since, from Equation (2.11) holding exactly,

∂Ω
∂A

=

[
−Ea(1/A) − A∂Ea(1/A)

∂A

]
[Ea(1/A) − AEa(1/A2)]

A [Ea(1/A) − AEa(1/A2)]2

−
[1 − AEa(1/A)]

[
∂Ea(1/A)

∂A
− E(1/A2) − A∂Ea(1/A2)

∂A

]
A [Ea(1/A) − AEa(1/A2)]2

∂Ω
∂A

=
∂Ea(1/A)

∂A

[
A2Ea(1/A2) − 1

]
+ A∂Ea(1/A2)

∂A
[1 − AEa(1/A)]

A [Ea(1/A) − AEa(1/A2)]2

− Ea(1/A) [Ea(1/A) − AEa(1/A2)] − [1 − AEa(1/A)] E(1/A2)
A [Ea(1/A) − AEa(1/A2)]2

∂Ω
∂A

=
∂Ea(1/A)

∂A
{Ea [(A/A)2] − 1} − A∂Ea(1/A2)

∂A
[Ea(A/A) − 1]

A [Ea(1/A) − AEa(1/A2)]2

+ Ea(1/A2) − [Ea(1/A)]2

A [Ea(1/A) − AEa(1/A2)]2

∂Ω
∂A

= g̃(A) [Ea (1/A) − (1/A)] {Ea [(A/A)2] − 1}
A [Ea(1/A) − AEa(1/A2)]2

+
−Ag̃(A)

[
Ea (1/A2) − (1/A2)

]
[Ea(A/A) − 1] + Vara(1/A)

A [Ea(1/A) − AEa(1/A2)]2

∂Ω
∂A

=

[
g̃(A)

A

]
[Ea (A/A) − 1] {Ea [(A/A)2] − 1}
A [Ea(1/A) − AEa(1/A2)]2

+
−
[

g̃(A)
A

]
{Ea [(A/A)2] − 1} [Ea(A/A) − 1] + Vara(A/A)

A {Ea(A/A) − Ea [(A/A)2]}2

∂Ω
∂A

= Vara(A/A)
A {Ea(A/A) − Ea [(A/A)2]}2

where Vara(h(A)) ≡ Ea (h(A)2) − [Ea(h(A))]2 and we use Proposition 2.D.1 to get
∂Ea(1/A)

∂A
and ∂Ea(1/A2)

∂A
in the fourth line. Hence, ∂Ω

∂A
> 0, since Vara (1/A) > 0 given

(2.7c) with 0 < η < +∞ and q ∈ (0, 1].
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2.B.5 Average markup

Equation (2.12) is now exactly valid.

2.B.6 Assessing the SOC for profit maximization

As our final task, we assess if the SOC for profit maximization (2.A.1c)
holds. Note η > 1 is not sufficient because, with a continuum of firms, si is a
density function, and consequently, it may be strictly greater than one. Since
si is an endogenous variable, let us evaluate this condition in the model, using
siq = η (1 − A/Ai) from Equation (2.6c).

Formally, we need to demonstrate that 2η
1+η

> siq = η (1 − A/Ai) for every
active firm i. We address this issue under two cases: (i) η ∈ (0, 1] and (ii) η > 1.
On the one hand, since η ∈ (0, 1] → 2η

1+η
≥ η and η > siq as µi = η

η−siq
> 1

for any active firm i, the SOC holds for any η, q ∈ (0, 1].33 On the other hand,
the SOC holds for η ≈ 1, η > 1, since it holds for η = 1 and we are just
dealing with continuous functions of η, but it is not fulfilled for high enough
η. To get this last result, use (2.7c) to see that, when η → +∞, A → A and
thus ηEa(1 − A/A) = q

Na
= q

N(1−G(A)) → +∞. As a consequence, given that
(1 − A/A) ≥ Ea(1 − A/A), η(1 − A/A) → +∞ when η → +∞. This implies the
SOC will not hold for the most productive firms under high η since the LHS of
(2.A.1c) is always lower than 2. Moreover, with η > 1, the SOC holds for low q > 0,
since siq = η (1 − A/Ai) → 0 when q → 0+ as, from (2.7c), A → A under such
condition.

In short, the SOC holds for low η > 0 or low q ∈ (0, 1]. Note that by
choosing both η and q, we can simultaneously fulfill such condition and choose the
adjusted elasticity of demand η/q (e.g., set η = 1 and choose q to get the desired
η/q). However, in empirical applications, calibrating η/q is not necessarily needed
as several key variables, such as allocative efficiency Ω, can be computed without
knowing it. In this context, one may only assume η > 0 and q ∈ (0, 1] are such that

2η
1+η

> siq for every active firm i. We adopt this approach in the main text.

33 Through analogous reasoning, it can be shown that η ∈ (0, 1] is also suitable for the discrete
model. Therefore, while η > 1 is a sufficient condition there, it is not necessary.
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2.C Microfoundation of the price elasticity of demand
To microfoundate the price elasticity of demand η, rather than relying on

a single-sector (or single-good) economy, we examine a multiple-sector economy
but that can be represented within a single-sector environment. Under this new
setup, our model would apply to that representative sector. However, in this case,
the price elasticity of demand is not an ad hoc parameter; instead, it is equal to
the elasticity of substitution across sectors.

Formally, suppose a representative perfectly competitive firm produces a
homogeneous final good Y using inputs Ys from a continuum of sectors through
the CES production function

Y =
(∫ 1

0
Y

σ−1
σ

s ds
) σ

σ−1
(2.C.1)

where σ is the elasticity of substitution across sectors s ∈ [0, 1]. Therefore, if the
final good is the numeraire, this representative firm solves the profit maximization
problem

max
{Ys}s∈[0,1]

(∫ 1

0
Y

σ−1
σ

s ds
) σ

σ−1
−
∫ 1

0
Yspsds

s.t. ps > 0, ∀s ∈ [0, 1]
(2.C.2)

with ps representing the price of goods within sector s, which are homogeneous
across all firms in that sector. The FOCs of this problem are

ps = Y 1/σY −1/σ
s , ∀s ∈ [0, 1] (2.C.3)

In each sector, intermediate firms make their decisions taking the price and
quantity of the final good as given.34 As a result, being ηs the absolute value of the
price elasticity of demand for the good of sector s, using (2.C.3), we can see that

ηs ≡ −
(

∂ps

∂Ys

Ys

ps

)−1

= σ

(
Y 1/σY −1/σ−1

s

Ys

Y 1/σY
−1/σ

s

)−1

= σ (2.C.4)

34 This assumption is also pivotal if one aims to specify and solve a full macroeconomic model
because it overcomes the technical problems associated with embedding oligopoly models
into general equilibrium frameworks (Neary, 2010). This represents another advantage of this
alternative interpretation of the model.
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Hence, the price elasticity of demand is the same for all sectors, given by the
elasticity of substitution σ. If we further assume that firms’ technology, the number
of firms, and the distribution of productivity are identical across sectors, each sector
would face the same problem, and consequently Ys = Ys̃ for any sectors s, s̃ ∈ [0, 1].
Plugging it into (2.C.1),

Y =
(∫ 1

0
Y

σ−1
σ

s̃ ds
) σ

σ−1
= Ys̃ (2.C.5)

implying that we can treat the economy as if there were a single sector, which we
analyze through the lens of a static Cournot model.

2.D Conditions for the calibration algorithm to work properly
Owing to the simplicity of our model, we can establish necessary and

sufficient conditions for the calibration algorithm of Section 2.3.3 to work properly,
achieving an exact match of both target moments. Basically, we need to show
that a unique solution exists for its first-step problem or, equivalently, that (2.14)
implicitly defines Ã ≡ A/A as a well-defined function of µ. Initially, we derive some
general results by examining an arbitrary continuous truncated distribution. The
only requirement is that its density can be expressed as a truncation of another one
from above. These general findings provide a framework for establishing conditions
applicable to any such distribution. In the latter part, we utilize this framework
to delineate the specific conditions pertaining to the Pareto case. Additionally, in
the final proposition of this section, we assess what happens with the estimated Ω
under the Pareto distribution when k → −∞.

In the following, consider µ as given in (2.14), that is,

µ = 1 − Ea (A/A)
Ea (A/A) − Ea [(A/A)2] = Ea (1 − A/A)

Ea (1 − A/A) − Ea [(1 − A/A)2] (2.14)

where Ea (h(A)) ≡ E
(
h(A)|A ≤ A ≤ A

)
for any function h.

2.D.1 Arbitrary distribution

Assume A ∈ [A, A] is a continuous variable, 0 < A < A < +∞, whose
density and cumulative distribution function are g and G, respectively. Let g̃(A) ≡
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g(A)
1−G(A) > 0, A ∈ (A, A), the density function of A ∈ [A, A], with cumulative
distribution G̃. Let ĝ be another density of A, but defined over the support
A ∈ [A, Ah], Ah > A, possibly with Ah → +∞. This density does not depend on
A and has cumulative distribution function Ĝ. Moreover, it satisfies g̃(A) = ĝ(A)

Ĝ(A) ,
meaning g̃ is a truncation of ĝ from above.

Proposition 2.D.1 Let h be a function of A for which Ea (h(A)) is well defined.
In this case,

1. If ∂h(A)
∂A

= 0, ∂Ea(h(A))
∂A

= g̃(A) [Ea (h(A)) − h(A)].

2. If ∂h(A)
∂A

= 0, ∂Ea(h(A))
∂A

= g̃(A)
[
h(A) − Ea (h(A))

]
.

Proof. Let h be a function of A for which Ea (h(A)) is well defined. If ∂h(A)
∂A

= 0,

∂Ea (h(A))
∂A

=
∂

∫ A

A
h(A)g(A)dA

1−G(A)


∂A

=

[∫ A
A h(A)g(A)dA

]
g(A) − h(A)g(A) (1 − G(A))
[1 − G(A)]2

∂Ea (h(A))
∂A

=g̃(A) [Ea (h(A)) − h(A)]

where we use ∂h(A)
∂A

= 0 to get
∂

[∫ A

A
h(A)g(A)dA

]
∂A

= −h(A)g(A). If ∂h(A)
∂A

= 0,

∂Ea (h(A))
∂A

=
∂

∫ A

A
h(A)ĝ(A)dA

Ĝ(A)


∂A

=
h(A)ĝ(A)Ĝ(A) −

[∫ A
A h(A)ĝ(A)dA

]
ĝ(A)

Ĝ(A)2

∂Ea (h(A))
∂A

=g̃(A)
[
h(A) − Ea (h(A))

]

where we use ∂h(A)
∂A

= 0 to get
∂

[∫ A

A
h(A)ĝ(A)dA

]
∂A

= h(A)ĝ(A).

Proposition 2.D.2 ∂µ

∂A
> 0.
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Proof. From Equation (2.14),

∂µ

∂A
=

∂Ea(1−A/A)
∂A

{Ea (1 − A/A) − Ea [(1 − A/A)2]}
{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

−
Ea (1 − A/A)

{
∂Ea(1−A/A)

∂A
− ∂Ea[(1−A/A)2]

∂A

}
{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

∂µ

∂A
=

Ea (1 − A/A) ∂Ea[(1−A/A)2]
∂A

− ∂Ea(1−A/A)
∂A

Ea [(1 − A/A)2]
{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

∂µ

∂A
=

Ea (1 − A/A) g̃(A)
{
(1 − A/A)2 − Ea [(1 − A/A)2]

}
{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

−
g̃(A)

[
(1 − A/A) − Ea (1 − A/A)

]
Ea [(1 − A/A)2]

{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

∂µ

∂A
= g̃(A)(1 − A/A)2Ea (1 − A/A) − g̃(A)(1 − A/A)Ea [(1 − A/A)2]

{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

∂µ

∂A
=

g̃(A)(1 − A/A)Ea

[
(1 − A/A) (A/A − A/A)

]
{Ea (1 − A/A) − Ea [(1 − A/A)2]}2

where we use Proposition 2.D.1 to get ∂Ea(1−A/A)
∂A

and ∂Ea[(1−A/A)2]
∂A

in the third line.
Therefore, ∂µ

∂A
> 0 as (1 − A/A) (A/A − A/A) > 0 for A ∈ (A, A).

Proposition 2.D.3 limA→A+ µ = 1.

Proof. From Equation (2.14),

1 = Ea (1 − A/A)
Ea [(1 − A/A)(A/A)] ≤µ ≤ Ea (1 − A/A)

Ea

[
(1 − A/A)(A/A)

] = A/A

Therefore, 1 ≤ µ ≤ A/A, implying limA→A+ µ = 1.
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Proposition 2.D.4 A, A > A, is a continuous, strictly increasing, and well-
defined function of µ if and only if µ ∈

(
1, limA→+∞ µ

)
.

Proof. First, µ is continuous and strictly increasing in A, A > A, as it is differ-
entiable with ∂µ

∂A
> 0 (Proposition 2.D.2), implying it is an one-to-one function.

Second, since limA→A+ µ = 1 (Proposition 2.D.3), the image of µ over A ∈ (A, +∞)
is
(
1, limA→+∞ µ

)
as µ is continuous and strictly increasing in A. As a consequence

of these two results, A, A > A, is a continuous, strictly increasing, and well-defined
function of µ if and only if µ ∈

(
1, limA→+∞ µ

)
.

2.D.2 Pareto distribution of firm productivity

If A ∈
[
A, A

]
∈ (0, +∞) is truncated Pareto distributed with shape param-

eter k ̸= 0, its density is g(A) = k

(
AkA

k

A
k−Ak

)
A−k−1 and its cumulative distribution

function is G(A) = A
k−AkA

k
A−k

A
k−Ak

. Note this density is well defined for any k ̸= 0

as g(A) > 0 ∀A ∈
[
A, A

]
and G(A) = 1. Moreover, it is easy to see A ∈

[
A, A

]
has also a truncated Pareto distribution with parameter k ̸= 0, since its density is
g̃(A) ≡ g(A)

1−G(A) = k
(

AkA
k

A
k−Ak

)
A−k−1. Consider in the following Ã ≡ A/A > 1.

Proposition 2.D.5 For k ̸= 0 and j ∈ N \ {0},

Ea

(
(A/A)j

)
=


(

k
k+j

) (
Ãk+j−1

Ãk+j−Ãj

)
, if k + j ̸= 0(

kÃk

Ãk−1

)
ln Ã , if k + j = 0

Proof. Let k ̸= 0 and j ∈ N \ {0}. From the truncated Pareto density, if k + j ̸= 0,

Ea

(
(A/A)j

)
=
∫ A

A
k

 Ak+jA
k

A
k − Ak

A−k−1−jdA = k

 Ak+jA
k

A
k − Ak

A
−k−j − A−k−j

−k − j


Ea

(
(A/A)j

)
=k

(
Ãk

Ãk − 1

)(
Ã−k−j − 1

−k − j

)
=
(

k

k + j

)(
Ãk+j − 1

Ãk+j − Ãj

)

while, if k + j = 0, Ea ((A/A)j) =
∫ A

A k
(

A
k

A
k−Ak

)
A−1dA =

(
kÃk

Ãk−1

)
ln Ã.
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Proposition 2.D.6 µ =



(
k+2

k

) Ã2(Ãk−1)−kÃ(Ã−1)
Ã(Ãk+1−1)−(k+1)(Ã−1) , if k ̸= 0, −1, −2

(Ã−1)−ln Ã

ln Ã−
(

Ã−1
Ã

) , if k = −1
(

1
2

)
(Ã−1)2

(Ã−1)−ln Ã
, if k = −2

Proof. If k = −1, using Proposition 2.D.5 in Equation (2.14),

µ =
1 − ln Ã

Ã−1
ln Ã
Ã−1 −

(
Ã−1

Ã2−Ã

) = (Ã − 1) − ln Ã

ln Ã −
(

Ã−1
Ã

)
If k = −2, from Proposition 2.D.5 and Equation (2.14),

µ =
1 − 2

(
Ã−1
Ã2−1

)
2
(

Ã−1
Ã2−1

)
− 2

(
ln Ã

Ã2−1

) =
(1

2

) (Ã2 − 1) − 2(Ã − 1)
(Ã − 1) − ln Ã

=
(1

2

) (Ã − 1)2

(Ã − 1) − ln Ã

Finally, if k ̸= 0, −1, −2,

µ =
(

k + 2
k

) (k + 1) − k
(

Ãk+1−1
Ãk+1−Ã

)
(k + 2)

(
Ãk+1−1
Ãk+1−Ã

)
− (k + 1)

(
Ãk+2−1

Ãk+2−Ã2

)
µ =

(
k + 2

k

) (k + 1)
(
Ãk+2 − Ã2

)
− k

(
Ãk+2 − Ã

)
(k + 2)

(
Ãk+2 − Ã

)
− (k + 1)

(
Ãk+2 − 1

)
µ =

(
k + 2

k

)
Ãk+2 + kÃ − (k + 1)Ã2

Ãk+2 + (k + 1) − (k + 2)Ã

µ =
(

k + 2
k

)
Ã2
(
Ãk − 1

)
− kÃ

(
Ã − 1

)
Ã
(
Ãk+1 − 1

)
− (k + 1)

(
Ã − 1

)
where we once again use Proposition 2.D.5 in Equation (2.14).

Proposition 2.D.7 limA→+∞ µ =


k+2

k
, if k > 0

+∞ , if k < 0

Proof. Note limA→+∞ µ = limÃ→+∞ µ as µ is only a function of Ã ≡ A/A (Propo-
sition 2.D.6). Given that, it is sufficient to compute limÃ→+∞ µ. If k > 0 and thus
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k + j ̸= 0 for j ∈ N \ {0}, from Proposition 2.D.5 one gets

lim
Ã→+∞

Ea

(
(A/A)j

)
=
(

k

k + j

)
lim

Ã→+∞

(
1 − Ã−k−j

1 − Ã−k

)
= k

k + j

which implies from Equation (2.14) that

lim
Ã→+∞

µ = lim
Ã→+∞

1 − Ea (A/A)
Ea (A/A) − Ea [(A/A)2] =

1 − k
k+1

k
k+1 − k

k+2
= k + 2

k

If k < 0, using Proposition 2.D.5 for k + j ̸= 0 and k + j = 0, respectively,

lim
Ã→+∞

Ea

(
(A/A)j

)
=
(

k

k + j

)
lim

Ã→+∞

(
Ãk − Ã−j

Ãk − 1

)
= 0

lim
Ã→+∞

Ea

(
(A/A)j

)
=
(

lim
Ã→+∞

k

Ãk − 1

)(
lim

Ã→+∞

ln Ã

Ã−k

)
= k

(
lim

Ã→+∞

1/Ã

kÃ−k−1

)
= 0

where we apply L’Hôpital’s rule in the last line, implying limÃ→+∞ µ = +∞ if
k < 0 from (2.14).

Proposition 2.D.8 For k ̸= 0, Ã ≡ A/A, Ã > 1, is a continuous, strictly
increasing, and well-defined function of µ if and only if µ > 1 and k < 2

µ−1 .

Proof. Let ĝ be the density of a truncated Pareto distribution with shape parameter
k ̸= 0 defined for A ∈ [A, Ah], Ah > A > A, with Ĝ being the respective cumulative
distribution function. It is easy to see g̃(A) = ĝ(A)/Ĝ(A) is the density of a trun-
cated Pareto distribution with the same parameter k ≠ 0 over the support

[
A, A

]
.

As a consequence, we can use Proposition 2.D.4 and thus A, A > A, is continuous,
strictly increasing, and well defined in µ if and only if µ ∈ (1, limA→+∞ µ). From
Proposition 2.D.6, µ is only a function of Ã ≡ A/A (given k), implying that these
features of A also hold for Ã. Moreover, given Proposition 2.D.7, one can rewrite
the condition µ ∈ (1, limA→+∞ µ) as (i) µ > 1 and k < 0 or (ii) 1 < µ < k+2

k
and

k > 0. Note 1 < µ < k+2
k

→ k < 2
µ−1 , which is always fulfilled for k < 0 given

µ > 1. Therefore, for any k ̸= 0, µ ∈ (1, limA→+∞ µ) holds if and only if µ > 1 and
k < 2

µ−1 .
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Figure 2.D.1 – Technology dispersion vs. average markup.

Figure 2.D.1 illustrates the results of Proposition 2.D.8, plotting Ã against
µ for truncated Pareto distributions with k = 3, 5, 9 and an Uniform distribution
(k = −1).

From Proposition 2.D.8, given µ > 1, a solution for the calibration algorithm
exists for any strictly negative shape parameter k. Hence, it is feasible even for highly
negative values of k. However, an important inquiry arises regarding the behavior
of the estimated Ω under such extreme conditions. This question is addressed in
the concluding proposition of this section:

Proposition 2.D.9 limk→−∞ Ω = 1.

Proof. Initially, use Proposition 2.D.5 to get that, for j ∈ N \ {0},

lim
k→−∞

Ea

(
(A/A)j

)
=
[

lim
k→−∞

(
k

k + j

)] [
lim

k→−∞

(
Ãk+j − 1

Ãk+j − Ãj

)]
= 0 − 1

0 − Ãj
= Ã−j
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As a result, from Equation (2.11) holding exactly,

lim
k→−∞

Ω = lim
k→−∞

Ã−1 [1 − Ea (A/A)]
Ea (A/A) − Ea [(A/A)2] =

Ã−1
(
1 − Ã−1

)
Ã−1 − Ã−2

= Ã − 1
Ã − 1

= 1

where we use limk→−∞ Ea ((A/A)j) = Ã−j for j = 1, 2.

2.E Robustness of misallocation estimates to markup level
We want to prove that, for k = −1 and µ > 1, estimates of allocative

efficiency growth are highly robust to (i) the level of LS and (ii) the choice of α.
More precisely, let us show that ∆ ln Ω is highly robust to the level of µ = 1−α

LS
.

Initially, use Equation (2.12) to get

Ω =µ/Ã → ∆ ln Ω = ∆ ln µ − ∆ ln Ã (2.E.1)

implying ∆ ln Ω is independent of the level of µ if ln Ã = γ0 + γ1 ln µ, when (2.E.1)
becomes ∆ ln Ω = (1 − γ1)∆ ln µ. We use this idea to seek the k that yields a nearly
independent ∆ ln Ω with respect to the level of µ by finding the k that yields the
best fit for the regression ln Ã(µ; k) = γ0 + γ1 ln µ + ε, where Ã(µ; k) is implicitly
defined in (2.14). We consider 100 observations for µ between 1 and µh, for µh equal
to 1.05, 1.15, 1.3, 1.5, 3, 5 or 10.35 For each µh and thus each set of observations of
µ, choosing a k, we obtain the respective 100 observations of Ã numerically from
(2.14), estimating γ0 and γ1 using Ordinary Least Squares (OLS). Hence, for each
µh, we can obtain the sum of squared residuals (SSR) associated with any k < 2

µh−1 ,
k ̸= 0, allowing the numerical search of the robust k that minimizes the SSR.

The robust k, denoted by k∗, and the associated (centered) R2 for each µh

are shown respectively in the second and third columns of Table 2.E.1. As can be
seen, the R2 is always very high, with k∗ being close to −1, particularly for smaller
µh. In any case, even when k∗ is not so close to −1, the R2 associated with k = −1
35 Empirical evidence from firm-level data suggests µ = 10 is high enough (Loecker; Eeckhout;

Unger, 2020; Traina, 2018; Baqaee; Farhi, 2020; Loecker; Eeckhout, 2018). For instance, Loecker
and Eeckhout (2018) find that global cost-weighted average markups are always below 1.6. The
sales-weighted average, which is typically a higher measure (Loecker; Eeckhout; Unger, 2020),
remains below 2 for global regions (Europe, North America, South America, Asia, Oceania,
and Africa) and under 4 for a selection of 40 countries shown in their Appendix A.
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is still very high (fourth column of Table 2.E.1), indicating the estimate of ∆ ln Ω
under k = −1 is also highly robust to the level of µ.

Another way to see that is evaluating ∂ ln Ã(µ;−1)
∂ ln µ

. Given µh and the correspon-
dent set of observations {µi}, it is possible to show ∂ ln Ã(µi;−1)

∂ ln µ
∈
[

∂ ln Ã(µh;−1)
∂ ln µ

, 1.5
)

⊂
(1, 1.5). These derivative ranges for each considered µh are shown in the last col-
umn of Table 2.E.1.36 The ranges are always very narrow, especially for low µh,
confirming that the estimate of ∆ ln Ω under k = −1 is highly robust to the choice
of α and the level of LS.37

Table 2.E.1 – Robustness evaluation for different µh

µh

k = k∗ k = −1

k∗ R2 R2 ∂ ln Ã
∂ ln µ

range

1.05 -0.9949 1.000000 1.000000 [1.4999,1.5)
1.15 -0.9860 1.000000 1.000000 [1.4993,1.5)
1.3 -0.9738 1.000000 1.000000 [1.4974,1.5)
1.5 -0.9596 1.000000 1.000000 [1.4939,1.5)
3 -0.8931 1.000000 0.999986 [1.4590,1.5)
5 -0.8480 0.999998 0.999944 [1.4205,1.5)
10 -0.7940 0.999994 0.999817 [1.3632,1.5)

This derivative assessment relied on some results. We prove them now.
To start, note µ is a function of Ã from Equation (2.14), which for the Uniform
distribution is equivalent to

µ
(
Ã; −1

)
=

(
Ã − 1

)
− ln Ã

ln Ã −
(

Ã−1
Ã

) (2.E.2)

36 To get ∂ ln Ã(µh;−1)
∂ ln µ , we first obtain Ã(µh; −1) numerically from (2.E.2) and then compute

(2.E.3) to get ∂ ln µ(Ã(µh;−1);−1)
∂ ln Ã

. Finally, we use Proposition 2.E.4 shown below and compute
∂ ln Ã(µh;−1)

∂ ln µ =
[

∂ ln µ(Ã(µh;−1);−1)
∂ ln Ã

]−1
.

37 Up to a first-order Taylor approximation around µ∗ > 1, ln Ã(µ; −1) ≈ ln Ã(µ∗; −1) +
∂ ln Ã(µ∗;−1)

∂ ln µ (ln µ − ln µ∗). However, for µ∗ → 1+, Ã(µ; −1) → 1 (Propositions 2.D.3 and 2.D.4)
and ∂ ln Ã(µ∗;−1)

∂ ln µ → 1.5 (Proposition 2.E.4 shown below). Consequently, for low average markup,
ln Ã(µ; −1) ≈ 1.5 ln µ → Ã(µ; −1) ≈ µ1.5 and thus, from (2.E.1), ∆ ln Ω ≈ −0.5∆ ln µ =
0.5∆ ln LS.
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due to Proposition 2.D.6. As a consequence,

∂ ln µ
(
Ã; −1

)
∂ ln Ã

= Ã − 1(
Ã − 1

)
− ln Ã

−
1 − Ã

Ã2

ln Ã −
(

Ã−1
Ã

)
∂ ln µ

(
Ã; −1

)
∂ ln Ã

= Ã − 1(
Ã − 1

)
− ln Ã

− Ã − 1
Ã ln Ã −

(
Ã − 1

)
∂ ln µ

(
Ã; −1

)
∂ ln Ã

=

(
Ã − 1

) [(
Ã + 1

)
ln Ã − 2

(
Ã − 1

)]
[(

Ã − 1
)

− ln Ã
] [

Ã ln Ã −
(
Ã − 1

)] (2.E.3)

∂2 ln µ
(
Ã; −1

)
∂2 ln Ã

=
Ã
[(

Ã − 1
)

− ln Ã
]

−
(
Ã − 1

)2

[(
Ã − 1

)
− ln Ã

]2
−

Ã
[
Ã ln Ã −

(
Ã − 1

)]
−
(
Ã − 1

)
Ã ln Ã[

Ã ln Ã −
(
Ã − 1

)]2
∂2 ln µ

(
Ã; −1

)
∂2 ln Ã

=

(
Ã − 1

)
− Ã ln Ã[(

Ã − 1
)

− ln Ã
]2 −

Ã
[
ln Ã −

(
Ã − 1

)]
[
Ã ln Ã −

(
Ã − 1

)]2
∂2 ln µ

(
Ã; −1

)
∂2 ln Ã

=
Ã
[(

Ã − 1
)

− ln Ã
]3

−
[
Ã ln Ã −

(
Ã − 1

)]3
[(

Ã − 1
)

− ln Ã
]2 [

Ã ln Ã −
(
Ã − 1

)]2 (2.E.4)

Proposition 2.E.1 For Ã > 1, ∂2 ln µ(Ã;−1)
∂2 ln Ã

> 0.

Proof. Let Ã > 1. In this case, (i) for g(Ã) ≡
(
Ã − 1

)
− ln Ã, g′(Ã) = Ã−1

Ã
>

0 g(1)=0−−−−→ g(Ã) > 0, and (ii) for h(Ã) ≡ Ã ln Ã −
(
Ã − 1

)
, h′(Ã) = ln Ã > 0 h(1)=0−−−−→

h(Ã) > 0. Consequently, the denominator of (2.E.4) is strictly positive. Hence, it
is sufficient to show f(Ã) ≡ 3√

Ã
[
(Ã − 1) − ln Ã

]
−
[
Ã ln Ã − (Ã − 1)

]
> 0. Note

f(1) = 0 and

f ′(Ã) =
3√

Ã

3Ã

[
(Ã − 1) − ln Ã

]
+ 3
√

Ã

(
Ã − 1

Ã

)
− ln Ã

f ′(Ã) =
3√

Ã

3Ã

[
4(Ã − 1) − ln Ã

]
− ln Ã → f ′(1) = 0
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f ′′(Ã) = − 2
3√

Ã

9Ã2

[
4(Ã − 1) − ln Ã

]
+

3√
Ã

3Ã

(
4Ã − 1

Ã

)
− 1

Ã

f ′′(Ã) =
3√

Ã

9Ã2

[
−8(Ã − 1) + 2 ln Ã + 12Ã − 3 − 9Ã2/3

]
f ′′(Ã) =

3√
Ã

9Ã2

[
4Ã + 5 + 2 ln Ã − 9Ã2/3

]

f̃(Ã) ≡4Ã + 5 + 2 ln Ã − 9Ã2/3 → f̃(1) = 0

f̃ ′(Ã) =4 + 2
Ã

− 6
3√

Ã
→ f̃ ′(1) = 0

f̃ ′′(Ã) = − 2
Ã2

+ 2
Ã

3√
Ã

= 2
Ã2

(
Ã2/3 − 1

)
→ f̃ ′′(Ã) > 0 for Ã > 1

Therefore, for Ã > 1, f̃ ′′(Ã) > 0 f̃ ′(1)=0−−−−→ f̃ ′(Ã) > 0 f̃(1)=0−−−−→ f̃(Ã) > 0 → f ′′(Ã) >

0 f ′(1)=0−−−−→ f ′(Ã) > 0 f(1)=0−−−−→ f(Ã) > 0.

Proposition 2.E.2 limÃ→+∞
∂ ln µ(Ã;−1)

∂ ln Ã
= 1.

Proof. From Equation (2.E.3),

lim
Ã→+∞

∂ ln µ
(
Ã; −1

)
∂ ln Ã

= 1
1 − limÃ→+∞

ln Ã
Ã−1

− 1
limÃ→+∞

Ã ln Ã
Ã−1 − 1

lim
Ã→+∞

∂ ln µ
(
Ã; −1

)
∂ ln Ã

= 1
1 − limÃ→+∞

1
Ã

− 1
limÃ→+∞

(
ln Ã + 1

)
− 1

= 1 − 0 = 1

where we apply L’Hôpital’s rule in the second line.

Proposition 2.E.3 limÃ→1+
∂ ln µ(Ã;−1)

∂ ln Ã
= 2

3 .

Proof. From Equation (2.E.3),

lim
Ã→1+

∂ ln µ
(
Ã; −1

)
∂ ln Ã

= lim
Ã→1+

(
Ã + 1

)
ln Ã − 2

(
Ã − 1

)
+
(
Ã − 1

) (
ln Ã + Ã+1

Ã
− 2

)
(

Ã−1
Ã

) [
Ã ln Ã −

(
Ã − 1

)]
+
[(

Ã − 1
)

− ln Ã
]

ln Ã
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lim
Ã→1+

∂ ln µ
(
Ã; −1

)
∂ ln Ã

= lim
Ã→1+

Ã
2
(
ln Ã + Ã+1

Ã
− 2

)
+
(

Ã−1
Ã

)2

ln Ã − Ã−1
Ã

+ 2
(
Ã − 1

)
ln Ã +

(
Ã − 1

)
− ln Ã

lim
Ã→1+

∂ ln µ
(
Ã; −1

)
∂ ln Ã

= lim
Ã→1+

2
(

1
Ã

− 1
Ã2

)
+ 2

(
Ã−1

Ã

) (
1

Ã2

)
− 1

Ã2 + 2 ln Ã + 2
(

Ã−1
Ã

)
+ 1

lim
Ã→1+

∂ ln µ
(
Ã; −1

)
∂ ln Ã

=2 lim
Ã→1+

(
Ã−1
Ã2

) (
Ã+1

Ã

)
2 ln Ã + 3 − 2

Ã
− 1

Ã2

lim
Ã→1+

∂ ln µ
(
Ã; −1

)
∂ ln Ã

=2 lim
Ã→1+

Ã2 − 1
2Ã3 ln Ã + 3Ã3 − 2Ã2 − Ã

lim
Ã→1+

∂ ln µ
(
Ã; −1

)
∂ ln Ã

=2 lim
Ã→1+

2Ã

6Ã2 ln Ã + 2Ã2 + 9Ã2 − 4Ã − 1
= 2

(2
6

)
= 2

3
where we apply L’Hôpital’s rule in the first, second, third, and sixth lines.

Proposition 2.E.4 ∂ ln Ã(µ;−1)
∂ ln µ

=
[

∂ ln µ(Ã(µ;−1);−1)
∂ ln Ã

]−1
is continuous and strictly

decreasing in µ > 1, with limµ→+∞
∂ ln Ã(µ;−1)

∂ ln µ
= 1 and limµ→1+

∂ ln Ã(µ;−1)
∂ ln µ

= 1.5.

Proof. From Proposition 2.D.8, Ã(µ; −1), which is implicitly defined in (2.E.2), is
continuous, strictly increasing, and well defined for µ > 1. Moreover,

1 = ∂ ln Ã

∂ ln Ã
= ∂ ln Ã(µ; −1)

∂ ln µ

∂ ln µ
(
Ã; −1

)
∂ ln Ã

∴
∂ ln Ã(µ; −1)

∂ ln µ
=
∂ ln µ

(
Ã(µ; −1); −1

)
∂ ln Ã

−1

Hence, since ∂ ln µ(Ã;−1)
∂ ln Ã

is continuous and strictly increasing in Ã > 1 (Proposition
2.E.1), ∂ ln Ã(µ;−1)

∂ ln µ
is continuous and strictly decreasing in µ > 1. Furthermore, using

Propositions 2.E.2 and 2.E.3,

lim
µ→+∞

∂ ln Ã(µ; −1)
∂ ln µ

= lim
Ã→+∞

1
∂ ln µ(Ã;−1)

∂ ln Ã

= 1

lim
µ→1+

∂ ln Ã(µ; −1)
∂ ln µ

= lim
Ã→1+

1
∂ ln µ(Ã;−1)

∂ ln Ã

= 1.5

since (i) Ã(µ; −1) → +∞ if and only if µ → +∞ (Propositions 2.D.7 and 2.D.8)
and (ii) Ã(µ; −1) → 1+ if and only if µ → 1+ (Propositions 2.D.3 and 2.D.4).
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2.F Model extensions
We develop two model extensions. In both cases, we consider a discrete

number of firms as in Section 2.2.1, but they can easily be adapted to a continuum
of firms following the approach of Section 2.2.2.

2.F.1 Beyond Cobb-Douglas production functions

In this section, we generalize the model by considering an arbitrary well-
behaved production function with M factors of production, provided it exhibits (i)
constant returns to scale and (ii) Hicks-neutral productivity shifter. Formally, the
production of each firm i ∈ {1, 2, ..., N} is now given by

Yi =Aif(F1i, ..., FMi) (2.2’)

where Ai > 0 and Fji ≥ 0 is the quantity of factor j used by firm i. The function
f is (i) homogeneous of degree 1, (ii) differentiable, and (iii) well-behaved in the
sense that the firm’s cost minimization problem has a unique interior solution for
strictly greater than zero rental prices.

Before discussing the derivation of the model, note that if each firm i uses
its inputs optimally, taking the same inputs’ rental prices as given, the FOC of its
cost minimization problem implies that, for any inputs r and k,

wr

MPFri

= wk

MPFki

↔ wr

wk

= Aifr(F1i, ..., FMi)
Aifk(F1i, ..., FMi)

= fr(1, F2i/F1i, ..., FMi/F1i)
fk(1, F2i/F1i, ..., FMi/F1i)

(2.A.3’)

where wr > 0 is the rental price of factor r, MPFri is firm i marginal product
of factor r, fr(F1i, ..., FMi) ≡ ∂f(F1i,...,FMi)

∂Fri
, and in the last part we use that fr is

homogeneous of degree 0 as f is homogeneous of degree 1. Setting r = 1, 2, ..., k −
1, k + 1, ..., M on (2.A.3’), we would get a system of M − 1 equations in the
M − 1 unknowns F2i/F1i, ..., FMi/F1i. Since the cost minimization problem has
a unique interior solution by assumption, the FOCs are satisfied in the optimal,
and thus, there is a unique solution for this system. Hence, since all firms face
the same problem, they choose the same relative quantities of factors, that is,
Fri/Fki = Frj/Fkj for any firms i and j and factors r and k.
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2.F.1.1 Derivation of the model

Given its similarity to the baseline model, we do not discuss the derivation
in detail, emphasizing solely the main differences from the Cobb-Douglas case.

Environment and technology. The only difference is the firms’ production function,
which is now represented by (2.2’) instead of (2.2). Aggregate output Y continues
to be given by (2.1).

Market competition and optimal decision. As the marginal cost remains invariant
to output, Equations (2.3) and (2.4) of the Cobb-Douglas case persist, albeit with
a distinct marginal cost function. The SOC is the same (2.A.1) and thus holds.

Equilibrium allocation. Since firms use inputs optimally, Fri/Fki = Frj/Fkj and
MCi = wk

MP Fki
= wk

Aifk(1,F2i/F1i,...,FMi/F1i) for any firms i and j and factors r and k.
As a consequence, MCi

MCj
= Aj

Ai
as before, implying Equations (2.5), (2.A.2), (2.6),

and (2.7) are still valid.

Aggregate productivity and misallocation. Naturally, the aggregate production func-
tion is not (2.8) anymore. However, using (2.1) and (2.2’), one easily obtains the
new expression:

Y =
N∑

i=1
Aif(F1i, ..., FMi) = AΩf(F1, ..., FM) (2.8’)

where Fj ≡ ∑N
i=1 Fji, and Ω ≡ ∑N

i=1
f(F1i,...,FMi)
f(F1,...,FM )

(
Ai/A

)
.

Since each firm uses its inputs optimally, taking the same inputs’ rental
prices as given, every active firm chooses the same relative quantities of factors,
implying

θrj ≡ Frj∑N
i=1 Fri

=
Fkj

Frj

Fkj∑N
i=1 Fki

Fri

Fki

=
Fkj

Frj

Fkj∑N
i=1 Fki

Frj

Fkj

= Fkj∑N
i=1 Fki

≡ θkj (2.A.4’)
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which allows us to define θj ≡ θ1j = θ2j = ... = θMj for each firm j and factors r

and k. As a result, from Equations (2.2’) and (2.8’),

s(Ai) =Yi

Y
= Aif(F1i, ..., FMi)

AΩf(F1, ..., FM)
= Aif(θiF1, ..., θiFM)

AΩf(F1, ..., FM)
= Aiθi

AΩ
→ θi = AΩs(Ai)

Ai

(2.9’)

which is exactly equal to (2.9). Consequently, the aggregate TFP AΩ continue to
be the quantity-weighted harmonic mean of firms’ productivity shown in (2.10),
with allocative efficiency Ω still given by Equation (2.11) and thus showing the
same properties as before.

Average markup. Given that the main results from the baseline model continue
to be valid, it is easy to see that cost-weighted average of firm-level markups
µ ≡ ∑N

i=1

(∑M

k=1 Fkiwk∑M

k=1 Fkwk

)
µi = ∑N

i=1 θiµi is still given by Equation (2.12).

2.F.1.2 Quantification strategy

The target moments AΩ and µ can be computed in the model using the
same expressions of the Cobb-Douglas case. Consequently, given data on such
moments, we can empirically implement this generalized model following exactly
the strategy described in Section 2.3.3. The difference between models appears only
when computing those target moments from data.

Analogously to the baseline case, we get AΩ and µ using standard macroe-
conomic data and the parameters of the production function. On the one hand,
TFP continues to be backed out as a residual in the aggregate output func-
tion, which is now given by Equation (2.8’): AΩ = Y

f(F1,...,FM ) . On the other
hand, note for any firm i, µi = Yip

Hiw
HiMP Hi

Yi
= αH

LSi
, where αH ≡ HiMP Hi

Yi
=

Hif1(F1i,F2i,...,FMi)
f(F1i,F2i,...,FMi) = f1(1,F2i/Hi,...,FMi/Hi)

f(1,F2i/Hi,...,FMi/Hi) = f1(1,F2/H,...,FM /H)
f(1,F2/H,...,FM /H) is the elasticity of the

production function to human capital, which we assume is factor 1. As a re-
sult, µ = ∑N

i=1 θiµi = ∑N
i=1

(
Hi

H

) [
αH

Yip
Hiw

]
= αH

p
∑N

i=1 Yi

Hw
= αH

LS
. Note computing

αH = f1(1,F2/H,...,FM /H)
f(1,F2/H,...,FM /H) requires, in general, the relative aggregate quantities of fac-

tors, while in the special Cobb-Douglas case it does not as αH would be simply the
share parameter associated with human capital. Indeed, for the baseline model, in
which f(H, K) = KαH1−α, αH = f1(1,K/H)

f(1,K/H) = (1−α)(K/H)α(H/H)−α

(H/H)α(H/H)1−α = 1 − α, implying
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µ = 1−α
LS

, which is exactly the result shown in Section 2.3.2. Thus, differently from
the Cobb-Douglas case, αH is not generally time invariant even if the production
function parameters are kept constant, meaning the average markup µ growth may
differ from the labor share growth.

2.F.1.3 Calibration of the production function

In Section 2.4.1, we calibrate the baseline Cobb-Douglas production function
for the US using cost share data. A similar approach can be employed here, since

Hw∑M
k=1 Fkwk

= θiHw∑M
k=1 θiFkwk

= Hi∑M
k=1 Fki

wk

w

= Hi∑M
k=1 Fki

fk(1,F2i/Hi,...,FMi/Hi)
f1(1,F2i/Hi,...,FMi/Hi)

Hw∑M
k=1 Fkwk

= f1(1, F2i/Hi, ..., FMi/Hi)∑M
k=1

Fki

Hi
fk(1, F2i/Hi, ..., FMi/Hi)

= f1(1, F2/H, ..., FM/H)
f(1, F2/H, ..., FM/H) = αH

(2.A.5’)

where we use, in the first line, (2.A.3’) with F1i = Hi and, in the last line, the Euler’s
Theorem for Homogeneous Functions and that, in the optimal, Fki/Hi = Fk/H for
any factor k.38 As a result, one can calibrate the production function by finding the
parameters of f that make αH = f1(1,F2/H,...,FM /H)

f(1,F2/H,...,FM /H) closest (in some sense) to labor
cost share data. This calibration could also include cost share data for other factors
of production as αr = fr(F1/Fr,...,FM /Fr)

f(F1/Fr,...,FM /Fr) = Frwr∑M

k=1 Fkwk

for any factor r. However, one
may use at most M − 1 factors’ cost share data in the calibration since share data
from the remaining factor would not be informative given that ∑M

r=1 αr = 1.

To illustrate this calibration procedure, let us consider the CES production
function

Yi =Ai

[
αK

σ−1
σ

i + (1 − α) H
σ−1

σ
i

] σ
σ−1

(2.F.1)

where σ > 0 is the elasticity of substitution and α ∈ (0, 1). In this case,

αH =f1(1, K/H)
f(1, K/H) = f1(H, K)

f(1, K/H) =

[
αK

σ−1
σ + (1 − α) H

σ−1
σ

] 1
σ−1 (1 − α) H

−(σ−1)/σ
σ−1[

α(K/H)σ−1
σ + (1 − α)

] σ
σ−1

38 As expected, Equation (2.A.5’) is consistent with (2.A.5), since in the baseline case 1 − α =
αH = Hw

Kr+Hw .
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αH =
(1 − α)

[
α(K/H)σ−1

σ + (1 − α)
] 1

σ−1[
α(K/H)σ−1

σ + (1 − α)
] σ

σ−1
= 1 − α

α(K/H)σ−1
σ + (1 − α)

(2.F.2)

with αH → 1 − α when σ → 1, which is expected as the CES function (2.F.1)
converges to the baseline Cobb-Douglas function (2.2) in this limit case. Hence,
given data on K and H and the parameters α and σ, we can compute αH from
(2.F.2), allowing us to gauge α and σ by matching αH to labor cost share data.

2.F.2 Firm-specific wedges

We consider the same setup of the baseline model but add one wedge
for each potential entrant firm, including a firm-specific tax rate over revenue
τi = τ(Ai) ∈ (−∞, 1)

2.F.2.1 Derivation of the model

As in Appendix 2.F.1.1, we do not provide a complete derivation. Instead,
we just highlight the key differences from the baseline model.

Environment and technology. The environment and technology remain unchanged,
with Equations (2.1) and (2.2) still holding.

Market competition and optimal decision. Since now there is a revenue tax, each
firm i ∈ {1, 2, ..., N} solves a slightly different profit maximization problem:

max
Yi

p (1 − τ(Ai)) Yi − wHi − rKi = [p (1 − τ(Ai)) − MCi] Yi

s.t. w > 0, r > 0, p = p(Y ), Yj ≥ 0 ∀j ∈ {1, 2, ..., N} \ {i}
(2.3”)

The FOC of this optimization problem is

p (1 − τ(Ai)) =MCi
ηi

ηi − 1 (2.4”)

while the SOC is still (2.A.1).

Equilibrium allocation. Equation (2.5) is not valid anymore, but one can obtain an
analogous expression using (2.4”) for any active firms i and j:

MCi

1 − τ(Ai)
(η − si)−1 = MCj

1 − τ(Aj)
(η − sj)−1
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si − sj =
[
1 − MCi/(1 − τ(Ai))

MCj/(1 − τ(Aj))

]
(η − sj) =

(
1 − Bj

Bi

)
(η − sj)

(2.5”)

where Bi ≡ Ai (1 − τ(Ai)). In the following, let B ≡ mini{Bi} and B ≡ maxi{Bi},
with 0 < B < B < +∞. We again discard any equilibrium in which a non-active
firm has a lower marginal cost than an active firm, considering here the adjusted
marginal cost MCi

1−τ(Ai) =
(

r
α

)α (
w

1−α

)1−α 1
Bi

. Hence, analogously to the baseline model,
in the unique refined equilibrium, there exists a firm with adjusted productivity
B serving as the cutoff for active firms, such that firm i is active if and only if
Bi ≥ B.39

In this context, following the same steps of the baseline model but using
(2.5”) instead of (2.5), one can easily show that

s(Bi) = 1
NaEa (Bi/B) + η

(
1 − 1

Ea (Bi/B)

)
(2.A.2”)

where now Ea (h(A)) ≡ E (h(A)|B ≥ B).

We suppose again inefficient technologies are common knowledge, with
A → 0 and N → ∞. Furthermore, although firms may receive subsidies (τi < 0),
we assume these subsidies do not vanish the dispersion in B in the sense that
(Ai → 0) → (Bi → 0). As a result, low-productivity firms will not be active, and
thus, the market share s(B) should be relatively low. Assuming it is approximately
null and using (2.5”) and (2.A.2”), one can see that

s(Bi) ≈η (1 − B/Bi) (2.6”)

η ≈ 1
Na [1 − Ea (B/B)] (2.7”)

Aggregate productivity and misallocation. Equations (2.8), (2.A.3), (2.A.4), (2.A.5),
(2.9), and (2.10) remain valid, with s(Ai) replaced by s(Bi). However, allocative
39 Similarly to the baseline discrete model, for the sake of clarity and convenience, we rule out

situations where not all firms with productivity B are active. As before, this results in just a
low loss of generality.
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efficiency Ω is not given anymore by (2.11). To obtain the new expression, just
plug (2.6”) and (2.7”) into (2.10):

1
AΩ

≈Ea(1/A) − Ea [B/(A × B)]
1 − Ea (B/B) = Ea(A/A) − Ea [(A × B)/(A × B)]

A [1 − Ea (B/B)]

Ω ≈ (A/A) [1 − Ea (B/B)]
Ea(A/A) − Ea [(A × B)/(A × B)] =

Ea

[
(A/A)(1 − B/B)

]
Ea [(A/A)(1 − B/B)] (2.11”)

Average markup. The cost-weighted average markup µ no longer follows Equation
(2.12). However, given (i) (2.9) with s(Ai) replaced by s(Bi), (ii) (2.4”), (iii) that
the active firm with adjusted productivity B has markup approximately equal to
one, and (iv) the Cobb-Douglas marginal cost function, it is easy to show that

µ =
N∑

i=1
θiµi ≈

N∑
i=1

[
AΩs(Bi)

Ai

] 
(

r
α

)α (
w

1−α

)1−α 1
B(

r
α

)α (
w

1−α

)1−α 1
Bi

 = AΩ
B

(1 − τ̃) (2.12”)

where τ̃ ≡ ∑N
i=1 s(Bi)τ(Ai) is the sales-weighted average tax rate.

Average tax rate. We have already derived all equations analogous to the baseline
model.40 However, this model has an additional equation, for the sales-weighted
average tax rate τ̃ :

τ̃ ≈Ea [τ(A)(1 − B/B)]
Ea (1 − B/B) (2.F.3)

which can be easily obtained by plugging (2.6”) and (2.7”) into τ̃ ≡ ∑N
i=1 s(Bi)τ(Ai).

2.F.2.2 Remarks on the quantification strategy

We briefly discuss the quantification of this model under two scenarios.
First, assuming the function τ is known, one can essentially follow the strategy
of Section 2.3, but using (2.11”) and (2.12”) instead of (2.11) and (2.12). Second,
suppose the function τ is known except from a parameter, but the average tax
rate τ̃ is observed. In this case, we would need to change the calibration algorithm,
40 As expected, these equations reduce to the baseline equations when τi = 0 for every firm i.
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since we now should obtain the unknown parameter of the function τ , A, and A by
matching Equations (2.11”), (2.12”), and also (2.F.3) to data.

Regarding these empirical strategies, three final comments are due. First,
in Appendix 2.D, we discuss necessary and sufficient conditions for the existence of
a solution for the calibration algorithm. We do not make an analogous evaluation
here, and thus, a solution for the new calibration problems may not exist, at
least for some functions τ . Second, µ = 1−α

LS
is still valid here, but now LS ≡

Hw

p
∑N

i=1(1−τi)Yi
= Hw

Y p(1−τ̃) is the labor share of national income net of revenue tax.
So, in matching (2.12”) to 1−α

LS
, one can ignore the average tax rate τ̃ and match

AΩ
B

to 1−α
LSg

, where LSg ≡ Hw
Y p

is the labor share of national gross income. Third,
we use here the baseline Cobb-Douglas production function (2.2). However, in the
spirit of Appendix 2.F.1, one can employ an arbitrary well-behaved production
function with M factors of production, constant returns to scale, and Hicks-neutral
productivity shifter. As before, the only difference would be in the computation of
TFP AΩ and average markup µ from data.

2.G Calibrating the capital share parameter for the US using
factor income data
In this section, we calibrate α for the US using real-world data. As shown

in Appendix 2.A.4, in our model α equals the cost share of capital, that is, α =
Kr

Kr+Hw
.41 Thus, to calibrate it, we require factor income data, which is not fully

available in National Accounts. As pure profit may not be null in our model, capital
expenses cannot be calculated as the residual between national and labor income.
In other words, we should distinguish capital expenses from pure profit. Barkai
(2020) estimates such factor incomes in the US nonfinancial corporate sector for
each year between 1984 and 2014. He takes compensation of employees Hw from
the National Income and Productivity Accounts (NIPA), but capital expenses Kr

are not obtained as a residual. Instead, they are the product of the nominal value
41 Setting α as the cost share of capital is conceptually equivalent to calibrating the average

markup µ to match the pure profit share of national income, defined as PS ≡ 1 − Kr+Hw
Y p .

Formally, if α = Kr
Kr+Hw , µ = 1−α

LS =
Hw

Kr+Hw
Hw
Y p

= 1
Kr+Hw

Y p

= 1
1−P S ↔ PS = µ−1

µ .
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of the physical capital stock and a required rate of return, which approximates
the leasing cost of one dollar’s worth of capital. This required rate is computed
in the spirit of Hall and Jorgenson (1967), depending on the cost of borrowing in
financial markets, depreciation rates, expected price inflation of capital, and the
tax treatment of both capital and debt. Figure 2.G.1 plots the annual estimates
for the cost share of capital Kr

Kr+Hw
. Since the optimal use of factors is probably a

better approximation over the long run, we compute its (i) mean, (ii) median, and
(iii) steady-state level from an estimated autoregressive process of order one. We
find α = 0.31 in all three cases, just slightly lower than the standard calibration.

Figure 2.G.1 – Cost share of physical capital in the US nonfinancial corporate
sector. Source: computations based on data from Barkai (2020).

Using this alternative value for α, we recalculate the average markup
µ = 1−α

LS
. The results are presented in Figure 2.G.2. As expected, the over-time

pattern does not change, but these markup estimates are higher than the baseline
results of Figure 2.2, by approximately 0.04. For example, in 2012, µ = 1.12 for
α = 1/3 and µ = 1.16 for α = 0.31. Figure 2.G.3 plots the estimates for allocative
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efficiency Ω based on α = 0.31, which are lower and more volatile compared to the
baseline results (Figure 2.3). These outcomes align with the observations depicted
in Figure 2.1, where a higher markup level points to lower and more volatile Ω.

Figure 2.G.2 – Average markup in the United States for α = 0.31.

In any case, at least for growth analysis, the differences are not particularly
relevant. In Table 2.G.1, we repeat the growth accounting exercise of Table 2.2,
but considering α = 0.31. The results are practically the same. You can uncover
slightly more visible quantitative differences in the TFP decomposition for k = 5
(e.g., for 1995-2000 and 2000-2007). However, even in these cases, the fundamental
qualitative assessments remain unchanged.
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Figure 2.G.3 – Allocative efficiency in the United States for α = 0.31.

Table 2.G.1 – Growth accounting for the United States using α = 0.31

Period Y
L

Y/L components Labor-aug. TFP
(
AΩ

)β
components(

K
Y

)αβ H
L

(
AΩ

)β k = −1 k = 3 k = 5
A

β Ωβ A
β Ωβ A

β Ωβ

1954-2019 1.9 0.2 0.5 1.2 1.2 -0.1 1.3 -0.1 1.3 -0.1
1954-2013 1.9 0.2 0.6 1.2 1.3 -0.1 1.3 -0.1 1.3 -0.2

1954-1973 2.6 -0.0 1.0 1.7 1.7 0.0 1.7 0.0 1.7 0.0
1973-1990 1.3 0.3 0.5 0.5 0.7 -0.2 0.8 -0.2 0.8 -0.3
1990-1995 1.6 0.2 0.5 0.9 1.1 -0.2 1.2 -0.3 1.3 -0.3
1995-2000 2.2 0.2 0.3 1.7 1.0 0.7 0.8 1.0 0.6 1.2
2000-2007 2.2 0.3 0.3 1.5 2.1 -0.6 2.3 -0.8 2.5 -0.9
2007-2013 1.3 0.4 0.3 0.6 0.8 -0.2 0.9 -0.4 1.0 -0.5
2013-2019 1.0 -0.1 0.1 1.0 0.9 0.1 0.8 0.1 0.8 0.2

Note: Logarithmic approximation of average annual growth rates (in percent).
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2.H Exploring the data sets for level analyses

Figure 2.H.1 – Labor-aug. TFP vs. GDP per worker - level data set with greatest
coverage, k = −1.

Figure 2.H.2 – Labor-aug. TFP vs. GDP per worker - level data set with greatest
coverage, k = 3.



102 Chapter 2. Revisiting the facts of economic growth

Figure 2.H.3 – Labor-aug. TFP vs. GDP per hour worked - best proxies for level
analyses, k = −1.

Figure 2.H.4 – Labor-aug. TFP vs. GDP per hour worked - best proxies for level
analyses, k = 3.
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Figure 2.H.5 – Labor-aug. technology frontier vs. GDP per worker - level data set
with greatest coverage, k = −1.

Figure 2.H.6 – Labor-aug. technology frontier vs. GDP per worker - level data set
with greatest coverage, k = 3.
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Figure 2.H.7 – Labor-aug. technology frontier vs. GDP per hour worked - best
proxies for level analyses, k = −1.

Figure 2.H.8 – Labor-aug. technology frontier vs. GDP per hour worked - best
proxies for level analyses, k = 3.
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Figure 2.H.9 – Labor-aug. allocative efficiency vs. GDP per worker - level data set
with greatest coverage, k = −1.

Figure 2.H.10 – Labor-aug. allocative efficiency vs. GDP per worker - level data
set with greatest coverage, k = 3.
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Figure 2.H.11 – Labor-aug. allocative efficiency vs. GDP per hour worked - best
proxies for level analyses, k = −1.

Figure 2.H.12 – Labor-aug. allocative efficiency vs. GDP per hour worked - best
proxies for level analyses, k = 3.
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2.I Exploring the data sets for growth analyses

Figure 2.I.1 – Labor-aug. TFP growth vs. GDP per worker growth - growth data
set with greatest coverage, k = −1.

Figure 2.I.2 – Labor-aug. TFP growth vs. GDP per worker growth - growth data
set with greatest coverage, k = 3.
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Figure 2.I.3 – Labor-aug. TFP growth vs. GDP per hour worked growth - best
proxies for growth analyses, k = −1.

Figure 2.I.4 – Labor-aug. TFP growth vs. GDP per hour worked growth - best
proxies for growth analyses, k = 3.
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Figure 2.I.5 – Labor-aug. technology frontier growth vs. GDP per worker growth -
growth data set with greatest coverage, k = −1.

Figure 2.I.6 – Labor-aug. technology frontier growth vs. GDP per worker growth -
growth data set with greatest coverage, k = 3.
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Figure 2.I.7 – Labor-aug. technology frontier growth vs. GDP per hour worked
growth - best proxies for growth analyses, k = −1.

Figure 2.I.8 – Labor-aug. technology frontier growth vs. GDP per hour worked
growth - best proxies for growth analyses, k = 3.
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Figure 2.I.9 – Labor-aug. allocative efficiency growth vs. GDP per worker growth -
growth data set with greatest coverage, k = −1.

Figure 2.I.10 – Labor-aug. allocative efficiency growth vs. GDP per worker growth
- growth data set with greatest coverage, k = 3.
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Figure 2.I.11 – Labor-aug. allocative efficiency growth vs. GDP per hour worked
growth - best proxies for growth analyses, k = −1.

Figure 2.I.12 – Labor-aug. allocative efficiency growth vs. GDP per hour worked
growth - best proxies for growth analyses, k = 3.



2.J. Measures of success for different samples 113

2.J Measures of success for different samples

Figure 2.J.1 – Measures of success, same non-oil countries’ sample across plots in
each given year.

Figure 2.J.2 – Success gains due to misallocation, same non-oil countries’ sample
across plots in each given year.
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Figure 2.J.3 – Measures of success, time-invariant non-oil countries’ sample.

Figure 2.J.4 – Success gains due to misallocation, time-invariant non-oil countries’
sample.
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3 Disentangling Brazilian TFP: the role of
misallocation in recent economic cycles

3.1 Introduction

Aggregate total factor productivity (TFP) is crucial in explaining economic
performance both across countries and over time (Klenow; Rodríguez-Clare, 1997;
Caselli, 2005; Caselli, 2016; Jones, 2016; Bergeaud; Cette; Lecat, 2018; Crafts;
Woltjer, 2021). However, TFP is usually a residual, “a measure of our ignorance,”
capturing the unexplained portion of such economic outcomes. As an aggregate
measure, a natural approach to disentangle the TFP growth is to decompose it into
increases in firms’ productivity (technology component) and composition effects
(allocative efficiency component). This decomposition of the aggregate productivity
is not unique, as one can find different methods in the growth-accounting literature
(Basu; Fernald, 2002; Petrin; Levinsohn, 2012; Baqaee; Farhi, 2020). Besides their
differences, all these methods rely on highly general models that do not impose
any specific market structure but require microdata that are hardly available for
all firms in the economy. The standard solution is to use (i) sectoral data that
span the economy (Basu; Fernald, 2002), (ii) firm-level data that do not span
the economy (Petrin; Levinsohn, 2012), or (iii) both (Baqaee; Farhi, 2020). We
follow an alternative, complementary, approach that requires minimal microdata
by relying on stronger model assumptions.

More precisely, we employ the static Cournot model of Chapter 2, where
firms have distinct productivity and consequently charge different markups, leading
to inefficient allocation of resources as the marginal products would not be equalized
across firms. Interestingly, this model primarily relies on macroeconomic data for
calibration, which is only possible because of its stronger assumptions. On the one
hand, the model exclusively assesses market-power-driven misallocation. On the
other hand, the model is less flexible than other related oligopoly models such as
Edmond, Midrigan and Xu (2015) and Loecker, Eeckhout and Mongey (2021), in
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three important aspects. First, instead of having firms producing distinct goods in
each sector over a continuum of sectors, we suppose there is only one sector where
firms produce the same good. Second, there are no fixed costs. Third, we assume
free entry among low-productivity firms, supposing the number of inefficient firms
is sufficiently large to the extent that some will not be active.

As a result of these stronger assumptions, allocative efficiency and other
key model expressions do not depend on parameters such as the price elasticity
of demand and the number of potential or active firms. They require only the
empirical distribution of firms’ productivity, which we assume is truncated Pareto.
In Chapter 2, we used the same density, testing different values for the Pareto shape
parameter and searching the distributional support by matching the aggregate TFP
and the cost-weighted average of firm-level markups. We follow a similar strategy
here, but we also estimate the shape parameter, using the number of active firms
multiplied by the Herfindahl–Hirschman concentration index (HHI) of the labor
market as our third target moment.

To compute the target moments using real-world data, we first parameterized
the firms’ production function, which is Cobb-Douglas with constant returns to
scale, utilizing both capital and labor as inputs. The capital share parameter α is
calibrated at 0.39 based on cost share data. Labor expenses are readily obtained
from National Accounts, while capital expenses are computed as outlined in Barkai
(2020), estimating a required rate of return in the spirit of Hall and Jorgenson
(1967). With α determined, the first two moments are easily obtained from standard
macroeconomic data. On the one hand, the cost-weighted average markup equals
1 − α divided by the labor share of national income, which is consistent with Hall
(1988) and the recent literature that uses his results to gauge firm-level markups
(Loecker; Warzynski, 2012; Loecker; Eeckhout, 2018; Loecker; Eeckhout; Unger,
2020; Traina, 2018; Calligaris; Criscuolo; Marcolin, 2018; Autor et al., 2020). On the
other hand, the TFP is backed out as a residual in the aggregate production function,
given labor and capital stock data, both adjusted by varying utilization. Rather than
merely multiplying the capital stock by a capacity utilization indicator, we consider
a “Cobb-Douglas capacity utilization share parameter.” The underlying assumption
is that capital and labor utilization is simply a rescaling of an observable measure
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of intensity in input usage, in line with the methodology of Basu, Fernald and
Kimball (2006) and Basu et al. (2013). We estimate this parameter by employing,
for a time series, the simplified model of the dynamic panel literature on production
function estimation (Blundell; Bond, 2000) presented in Ackerberg, Caves and
Frazer (2015).

However, obtaining a representative third moment for the entire economy
proves challenging even with comprehensive firm-level data, as it requires pursuing
the difficult task of defining the relevant market for each firm in the economy
(Berry; Gaynor; Morton, 2019; Syverson, 2019; Benkard; Yurukoglu; Zhang, 2021).
Given that scenario, we seek a weaker moment match in this case, trying only to
approximate the shape of its time series by focusing on the normalized moment. By
doing that, we do not need to estimate it precisely as both its mean and variance
are irrelevant, allowing us to employ relatively aggregate employment data and
simple assumptions regarding the relevant markets (e.g., there is only one national
market) to compute it.

Employing this empirical strategy, we decompose aggregate TFP. We esti-
mate the allocative efficiency, measured by the distance from optimal allocation,
using solely the average markup and the concentration measure of the labor market.
TFP data is used only to pin down the technology component of TFP. Hence,
as in Chapter 2, the residual of the production function is not the TFP itself
but rather only its technology component, which is a cleaner residual as it is free
of misallocation effects. Interestingly, as demonstrated in Chapter 2, allocative
efficiency is a strictly decreasing function of the average markup and, thus, strictly
increases with the labor share of national income. In particular, the allocation
becomes optimal when the markup converges to one. This is intuitive as an average
markup closer to the competitive unitary level suggests a less distorted economy,
indicating closer proximity to optimal allocation.

We apply this methodology to Brazil between 2000 and 2019. Overall, alloca-
tive efficiency improved, reflecting the observed increase in the labor income share
and, thus, the estimated decrease in the average markup. This is a sharp contrast
with most developed countries, which over the last decades experienced decreasing
labor share and increasing average markup (Calligaris; Criscuolo; Marcolin, 2018;
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Loecker; Eeckhout, 2018; Autor et al., 2020). Accordingly, studying the US, Baqaee
and Farhi (2020) find that allocative efficiency, as measured by the distance from
optimal allocation, deteriorated in 2015 relative to 1997. Additionally, we find
that the cycles in Brazilian TFP are mainly due to allocative efficiency, with the
economic boom in the mid-2000s being primarily attributed to efficiency gains. The
technology component of TFP grows much more steadily, around 0.8-0.9% per year,
suggesting it reflects the structural characteristics of the economy. Since allocative
efficiency could not increase or decrease indefinitely, this annual technology growth
of 0.8-0.9% can be seen as the current structural, long-run, growth level of Brazilian
TFP.

We argued in Chapter 2 that a lower Pareto shape parameter yields more
conservative results compared to standard growth-accounting exercises, as the
estimated allocative efficiency becomes less volatile. Thus, in a robustness exercise,
instead of calibrating it, we follow the baseline approach of Chapter 2, setting the
shape parameter to the lowest level that remains consistent with the reasonable
and usual assumption that high-productivity firms are relatively scarce. Given
this shape parameter, we estimate the model again, using only macroeconomic
data as the third moment is not required in this case, making it robust to possible
measurement errors in labor market concentration data.1 We find qualitatively
similar results.

In another robustness exercise, we set the capital share parameter α to
the standard value of 1/3 or 0.41 instead of our baseline calibration (α = 0.39).
Additionally, we experiment with a higher labor income share by allocating all
self-employment income (mixed income) to labor. In the baseline case, we allocate
mixed income to labor and non-labor in the same proportions as the rest of the
economy, following the preferred method of the Penn World Table 10.01 (Feenstra;
Inklaar; Timmer, 2015). In both scenarios, we again find qualitatively similar

1 Our primary quantification strategy just requires sound estimates of the overall trends in
labor market concentration. However, even this weaker requirement may not be fulfilled. For
instance, Benkard, Yurukoglu and Zhang (2021) compute product market concentration in the
US between 1994 and 2019 for (i) “[...] narrowly defined product markets as would be defined
in an antitrust setting” (Benkard; Yurukoglu; Zhang, 2021, p.1) and (ii) broader sector levels
(closer to what we do), finding concentration is decreasing in the first case and increasing in
the second.
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results.

In a final robustness exercise, we propose a different strategy, making an
assumption about the distribution of firms’ market share instead of choosing a
productivity density. Consistent with the empirical evidence supporting Zipf’s
law for firm size (Okuyama; Takayasu; Takayasu, 1999; Axtell, 2001; Fujiwara et
al., 2004; Luttmer, 2007; Gabaix; Landier, 2008; Giovanni; Levchenko; Ranciere,
2011; Giovanni; Levchenko, 2013; Silva et al., 2018), we assume the market share
distribution is truncated Lomax, which is a particular case of the truncated Pareto
distribution type II, setting its shape parameter close to one. As before, we search
the remaining parameters, including the Lomax scale parameter, by matching the
model predictions to the same three data moments used in the baseline case. We
find practically identical results.

Related literature. We employ the static Cournot model of Chapter 2, which
relates to several papers that embed oligopoly market structures in macroeconomic
models (Bernard et al., 2003; Atkeson; Burstein, 2008; Edmond; Midrigan; Xu, 2015;
Peters, 2020; Loecker; Eeckhout; Mongey, 2021; Wang; Werning, 2022; Edmond;
Midrigan; Xu, 2022). That model is notable for its requirement of minimal microdata
for calibration, achieved through reliance on stronger assumptions. This chapter
contributes to the previous chapter’s work in several dimensions. First, we derive
the model’s expressions for (i) the HHI of the labor market and (ii) the HHI of the
product market. Second, using that expression for the labor market concentration,
we estimate the Pareto shape parameter from the data. In contrast, in Chapter 2,
we explored some scenarios by assigning different values to the shape parameter.
Third, in a robustness exercise, we extend the analysis beyond a Pareto productivity
distribution and assume that firms’ market share follows a Lomax distribution. In
Chapter 2, we established necessary and sufficient conditions for achieving an exact
match of the first two target moments, namely, aggregate TFP and average markup.
We first derived general results by examining an arbitrary truncated distribution,
which we subsequently applied to delineate the specific conditions for the Pareto
case. We adopt a similar strategy here, utilizing those general results to derive
analogous conditions for the Lomax case. Finally, we account for the potential
underutilization of inputs and adjust capital and labor using a capacity utilization



120 Chapter 3. Disentangling Brazilian TFP

index, in the spirit of Basu, Fernald and Kimball (2006) and Basu et al. (2013).

Given our goal of disentangling TFP growth, this paper is closely related to
the growth-accounting literature that decomposes it into technology and allocative
efficiency components (Basu; Fernald, 2002; Petrin; Levinsohn, 2012; Baqaee; Farhi,
2020). Nevertheless, this literature usually relies on highly flexible models, whose
quantification requires extensive microdata that are hardly available. Additionally,
this literature typically adopts a different concept of allocative efficiency. As pointed
out by Baqaee and Farhi (2020, p.107), “[...] the growth-accounting notion of changes
in allocative efficiency due to the reallocation of resources to more or less distorted
parts of the economy over time is very different from the misallocation literature’s
notion of allocative efficiency measured as the distance to the Pareto-efficient
frontier.” Conversely, we employ the model of Chapter 2, which relies on stronger
assumptions and, consequently, requires mainly macroeconomic data to gauge
allocative efficiency, as measured by the distance from optimal allocation.

Finally, our work shares common ground with the literature on misallocation
(Restuccia; Rogerson, 2008; Hsieh; Klenow, 2009; Restuccia; Rogerson, 2013).2

However, in this literature, misallocation is a result of exogenous wedges, whose
estimation requires extensive firm-level data, similar to growth-accounting methods.
In contrast, misallocation is endogenous in the model of Chapter 2, emerging as
an equilibrium outcome. Furthermore, in this literature, the typical goal is to
gauge the importance of misallocation in explaining cross-country TFP differences,
usually within the manufacturing sector due to data availability, while we focus on
economy-wide TFP evolution over time in a given country.

The remainder of the paper proceeds as follows. Section 3.2 briefly reviews
the model of Chapter 2. Section 3.3 presents our quantification strategy, which
requires data and parameters obtained for Brazil in Section 3.4. Section 3.5 discusses
the baseline empirical results for Brazil, while Section 3.6 conducts some robustness
checks. Finally, Section 3.7 concludes.

2 For papers on misallocation in Brazil, refer to Busso, Madrigal and Pagés (2013) and Vascon-
celos (2017) for the manufacturing industries and Vries (2014) for the retail sector.
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3.2 Model
We use the static Cournot model of Chapter 2, where firms have different

productivity levels and consequently charge distinct markups, generating misal-
location of resources. Formally, in a closed economy, N potential entrant firms
produce a single good. The price elasticity of demand for this good is strictly
negative, with its absolute value denoted by η, where 1 < η < ∞. The output of
firm i ∈ {1, 2, ..., N} is given by the Cobb-Douglas function

Yi =AiK
α
i L1−α

i (3.1)

where Ki ≥ 0 is the capital stock, Li ≥ 0 is the labor employed, and Ai > 0 is
a productivity parameter, all for firm i, while α ∈ (0, 1). Let A ≡ mini{Ai} and
A ≡ maxi{Ai} be the technology frontier of this economy, with 0 < A < A < +∞.

These firms compete a la Cournot, all taking the wage w > 0 and the rental
cost of capital r > 0 as given. There are no fixed costs, but some firms may not be
active due to the assumption of homogeneous goods. As a consequence, we need to
employ an entry stage to obtain the set of active firms in equilibrium, when (i) each
active firm has non-negative profits and (ii) non-active firms would make strictly
negative profits if they entered the market. However, this equilibrium is usually not
unique (Atkeson; Burstein, 2008; Edmond; Midrigan; Xu, 2015; Loecker; Eeckhout;
Mongey, 2021). To avoid multiple equilibria, we discard any equilibrium where a
non-active firm has a lower marginal cost than an active firm. As a consequence, in
the (unique) refined equilibrium, there exists a firm with productivity A serving as
the cutoff for active firms, such that firm i is active if and only if Ai ≥ A. Finally,
we consider free entry among low-productivity firms, supposing the number of such
firms is sufficiently large to the extent that some should be inactive. This implies
the profit of the firm with productivity A should be, in some sense, low. We assume
it is approximately null.

Given that setup, from Chapter 2,

s(Ai) ≈η (1 − A/Ai) (3.2)

η ≈ 1
Na [1 − Ea (A/A)] (3.3)
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Y =AΩKαL1−α (3.4)

Ω ≈
Ea

[
(A/A)(1 − A/A)

]
Ea [(A/A)(1 − A/A)] (3.5)

µ ≈AΩ
A

(3.6)

where s(Ai) is the market share of a firm with productivity Ai, Ai ≥ A, which
is clearly a strictly increasing function of Ai. Ea (h(A)) ≡ E (h(A)|A ≥ A) =∑

A≥A h(A) g(A)
1−G(A) is the expected value of a function h over active firms under the

empirical distribution and Na ≡ N (1 − G(A)) is the number of active firms, with
g(A) being the empirical probability of A and G(A) = ∑

a<A g(a) the empirical
cumulative distribution function. Moreover, Y ≡ ∑N

i=1 Yi is the aggregate output,
K ≡ ∑N

i=1 Ki is the aggregate capital stock, L ≡ ∑N
i=1 Li is the aggregate amount

of labor employed, and AΩ is the aggregate TFP. Note Ω ∈ (0, 1], which is intuitive
as Ω measures allocative efficiency by the distance of aggregate TFP AΩ from
its optimal level, A. After all, as firms produce homogeneous goods, the optimal
allocation entails assigning all inputs to the most productive firm, when Ω = 1 and
Y = AKαL1−α. Finally, being µi the markup of firm i, µ ≡ ∑N

i=1

(
Liw+Kir
Lw+Kr

)
µi is

the cost-weighted average of firm-level markups.

Interestingly, we showed in Chapter 2 that Ω improves when A increases
due to the exit of less productive active firms from the market, suggesting that
allocative efficiency is closely related to productivity dispersion among active firms.
Moreover, since any allocation of resources is optimal when there is no productivity
dispersion, Ω → 1 as A → A, which corresponds to a market in perfect competition,
where all active firms have unitary markups and null profits, with Na → ∞.

Relying on the previous chapter’s results, we derive expressions for two
measures of concentration: (i) the Herfindahl–Hirschman index (HHI) of the labor
market HHIL ≡ ∑N

i=1(Li/L)2 and (ii) the HHI of the product market HHIs ≡∑N
i=1 s(Ai)2. As shown in Appendix 3.A,

NaHHIL ≈
Ea

[
(A/A)2 (1 − A/A)2

]
{Ea [(A/A)(1 − A/A)]}2 (3.7)

NaHHIs ≈
Ea

[
(1 − A/A)2

]
[Ea (1 − A/A)]2

≈ 1 − 1/µ

1 − Ea (A/A) (3.8)
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In Chapter 2, we also presented a version of the model with a continuum
of firms of mass N . In such circumstances, the standard practice would be to
assume these null-measure firms ignore the impacts of their decisions on aggregate
outcomes even though they exist (e.g., macroeconomic models of monopolistic
competition). Formally, firms would consider ∂Y/∂Yi = 0 even though ∂Y/∂Yi > 0,
with ∂Y/∂Yi = 1 for homogeneous goods. However, we followed a different approach,
supposing firms pay at least some attention to them, with ∂Y/∂Yi = q ∈ (0, 1]
for each firm i ∈ [0, N ]. In this case, all the above equations, including (3.7) and
(3.8), would hold exactly if (i) η is replaced by η/q and (ii) integrals are used
instead of sums (e.g., Y ≡

∫N
0 Yidi and Ea (h(A)) =

∫ A
A h(A) g(A)

1−G(A)dA, where g is
now a density function).3 They hold exactly because now the profit of the least
productive active firm is precisely zero under the free-entry assumption, since
marginal adjustments in the number of active firms are allowed in this case. Since
the two models have essentially the same equations, they have similar properties:
(i) Ω ∈ (0, 1], (ii) Ω strictly increases with A, and (iii) Ω → 1 as A → A.

3.3 Quantification strategy

In this section, we outline the calibration strategy. Our primary empirical
objective is to compute allocative efficiency Ω, which requires solely the distribution
of firms’ productivity (Equation (3.5)). Thus, we aim to utilize real-world data
to pin down the distributional parameters. We propose a two-stage procedure. In
the first stage, we employ the calibration algorithm of Chapter 2, finding, for a
given distributional shape, A and A by matching aggregate TFP AΩ and average
markup µ to data. In the second stage, relying on this first-stage algorithm, we
recover the distributional shape from the labor concentration measure NaHHIL.
We present this two-stage calibration procedure in the following. However, first, we
discuss our distributional assumption and the computation of those moments using
real-world data.

3 In the discrete model, η > 1 is sufficient for the Second-Order Condition (SOC) for firms’
profit maximization to hold. In the continuous case, η > 0 or q ∈ (0, 1] should be low.
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3.3.1 Distributional assumption

As in Chapter 2, we assume firm productivity is truncated Pareto distributed
with shape parameter k ̸= 0, consistent with the continuous version of the model.
Under this distribution, we demonstrated in the previous chapter that

Ea

(
(A/A)j

)
=


(

k
k+j

) (
Ãk+j−1

Ãk+j−Ãj

)
, if k + j ̸= 0(

kÃk

Ãk−1

)
ln Ã , if k + j = 0

(3.9)

for k ̸= 0, j ∈ N \ {0}, and Ã ≡ A/A > 1.

3.3.2 Computing the target moments using real-world data

We consider three target moments: (i) the aggregate TFP AΩ, (ii) the
cost-weighted average of firm-level markups µ, and (iii) the labor concentration
measure NaHHIL. As discussed in Chapter 2, the first two moments can be
easily obtained using standard macroeconomic data and the parameter α. On the
one hand, TFP is backed out as a residual in the aggregate production function
(3.4): AΩ = Y

KαL1−α . On the other hand, µ = 1−α
LS

, with LS being the labor
share of national income. However, obtaining a representative NaHHIL for the
entire economy proves challenging even with comprehensive firm-level data, as
it requires pursuing the difficult task of defining the relevant market for each
firm in the economy (Berry; Gaynor; Morton, 2019; Syverson, 2019; Benkard;
Yurukoglu; Zhang, 2021). This is why we will pursue a weaker moment match
for NaHHIL, trying only to approximate the shape of its time series by focusing
on the normalized NaHHIL. After all, in this case, we do not need to estimate
NaHHIL precisely as both its mean and variance are irrelevant, allowing us to
employ relatively aggregate employment data and simple assumptions regarding
the relevant markets to compute it. We discuss the details of this computation in
Section 3.4.4, which involves plugging estimates of firm-level employment data into
NaHHIL = Na

∑N
i=1(Li/L)2.
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3.3.3 Two-stage calibration procedure

Given our distributional assumption and the computed data moments, we
quantify the model using a two-stage procedure. In this process, we parsimoniously
assume that k is time-invariant.

First stage. For a given shape parameter k ̸= 0, we compute A and A by matching
aggregate TFP AΩ and cost-weighted average markup µ to data, in a period-by-
period basis. In Chapter 2, we showed that a unique solution for this calibration
problem exists if and only if µ > 1 and k < 2/(µ − 1). Under such conditions, given
data on AΩ and µ, one can find the unique solution for A and A from the following
algorithm:

1. Given Equation (3.9), calculate Ã ≡ A/A by solving numerically

µ = 1 − Ea (A/A)
Ea [(A/A)(1 − A/A)] (3.10)

which is obtained from (3.5) and (3.6) holding exactly as in the continuous
model.

2. From Equation (3.6) holding exactly, compute A = AΩ/µ.

3. Given Ã ≡ A/A and A from the previous steps, calculate A = Ã × A.

Note computing Ã from (3.10) only requires data on average markup µ. As a
consequence, for a given k ̸= 0, allocative efficiency Ω is just a function of µ, since,
under (3.9), the calculation of Ω uses only Ã. Figure 3.1 plots this function Ω of
µ for truncated Pareto distributions with k = 3, 5, 9 and an Uniform distribution
(k = −1). Several things are worth noting about it. First, Ω is strictly decreasing
in µ = 1−α

LS
and thus strictly increasing in LS. In particular, Ω → 1− when µ → 1+.

Intuitively, a lower average markup µ > 1 indicates a less distorted economy, being
associated with enhanced allocative efficiency Ω. Second, given a time series of µ, a
lower k would imply a higher and less volatile estimated Ω.

Second stage. Given time series of AΩ > 0 and µ > 1, from the first-stage
algorithm one can obtain A and A in all periods under any k < 2/(max{µ} − 1),
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Figure 3.1 – Allocative efficiency vs. average markup.

k ̸= 0, where max{µ} denotes the maximum µ in its time series. And given A and
A, we can compute several variables in the model such as NaHHIL from Equation
(3.7). Under such conditions, we find the time-invariant k ̸= 0 by searching the one
that minimizes the Euclidean distance between the time series of NaHHIL in the
model and in the data when both series are normalized to have zero mean and unit
variance.4 Naturally, we limit the search to k < 2/(max{µ} − 1). By analogous
reasoning to previously employed for Ω, computing NaHHIL requires only data
on average markup µ for a given k ̸= 0. As a result, the estimation of k is also
independent of TFP data, implying that these data are not used to estimate Ω, not
even through k. They are used only to pin down A and A. Therefore, to decompose
the TFP, we first estimate Ω using data on NaHHIL and µ = 1−α

LS
, computing then

A from the observed TFP AΩ. As a consequence, in this model, the residual of
the production function is not the TFP AΩ itself, but rather only its technology
4 This is equivalent to search the k that minimizes the sum of the squared residuals of the

normalized NaHHIL.
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component A, which is a cleaner residual as it is free of misallocation effects.

3.4 Data and parameters

3.4.1 Main data

We use an annual database, in which Y is the real GDP in 2010 prices, LS is
the labor share of national income, and L̃ is the number of persons engaged, all from
the Table of Resources and Uses of National Accounts produced by the Brazilian
Institute of Geography and Statistics (IBGE). The labor share LS is calculated as
the share of wages and social contributions in wages, social contributions, and gross
operating surplus. Hence, self-employment income (mixed income) is allocated to
labor and non-labor in the same proportions as the rest of the economy, following
the preferred method of the Penn World Table 10.01 (Feenstra; Inklaar; Timmer,
2015). In Section 3.6.3, we evaluate the impact of using alternative labor share
measures. Average annual hours worked by persons engaged h is from the Penn
World Table 10.01, while we use Júnior and Cornelio (2020) for capital stock in
2010 prices K̃. To get K and L, we adjust respectively K̃ and hL̃ using the capacity
utilization of manufacturing γ from the Getulio Vargas Foundation (FGV). This
is accomplished through a flexible approach, considering the following empirical
version of production function (3.4) for the year t:

Yt =AtΩtK̃
α
t (htL̃t)1−αγβ

t (3.11)

The underlying assumption is that capital and labor utilization is simply a rescaling
of an observable measure of intensity in input usage, in line with the methodology
of Basu, Fernald and Kimball (2006) and Basu et al. (2013). As argued in Basu et
al. (2013, p.43), “[...] a cost-minimizing firm operates on all margins simultaneously,
both observed and unobserved. As a result, changes in observed margins can proxy
for unobserved utilization changes.” Basu, Fernald and Kimball (2006) derive this
result from a dynamic cost-optimizing firm problem, in which the firm is subject
to adjustment costs and seeks to minimize the present discount value of its costs.

Note Equation (3.11) has two unknown parameters, α and β. In principle,
both parameters could be estimated, but we find that (i) these estimates are highly
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dependent on the specific empirical strategy and estimator applied and (ii) α

estimates are often implausibly high (or implausibly low if no capacity utilization
adjustment is considered, i.e., if β is set to 0). As a result, we opt to initially
calibrate the share parameter α before estimating β and, consequently, the TFP
AtΩt. This sequential approach mirrors the methodology employed by Basu, Fernald
and Kimball (2006) and Basu et al. (2013).

3.4.2 Calibration of the share parameter

Since firms use inputs optimally, it is easy to show that α equals the cost
share of capital, i.e., α = Kr

Kr+Lw
. Thus, we can calibrate α using cost share data,

as we did in Chapter 2 for the US. Labor expenses Lw can be easily obtained
from National Accounts. The main issue is to properly calculate capital expenses,
distinguishing them from pure profit. To overcome this challenge, we follow Barkai
(2020) and compute a required rate of return in the spirit of Hall and Jorgenson
(1967), obtaining capital expenses by multiplying it by the nominal value of the
capital stock. We do this for each type of capital disclosed by Júnior and Cornelio
(2020): (i) residential structures, (ii) infrastructure, (iii) other structures, (iv)
machinery and equipment, and (v) others.

Ignoring any tax treatment, the required rate of type s capital is the nominal
weighted average cost of capital (WACC) minus the expected inflation of capital
s plus the depreciation rate of capital s. Depreciation rates are from Júnior and
Cornelio (2020). Expected inflations are the realized inflations of the capital goods
computed using the Table of Resources and Uses of National Accounts. WACC
data come from Santos (2020), in which Brazilian firms are supposed to finance
investment using only (i) equity or (ii) debt with the Brazilian Development Bank
(BNDES). The debt weight is given by BNDES lending for capital goods as a share
of private sector gross capital formation. The debt cost is the BNDES lending rate
for capital goods, while the equity cost is the Pre-DI swap 360 days plus the Equity
Risk Premium (ERP) computed by Carvalho and Santos (2020).5

5 “The Pre-DI swap contract traded at the BM&FBovespa, the Brazilian Stock Exchange, is
an interest rate swap where one of the parties agrees to make pre-fixed interest payments in
exchange for receiving floating interest payments based on the DI rate, whereas the other
assumes a reverse position” (Carvalho; Santos, 2020, p.12).
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These data allow us to compute the share of capital expenses on total
expenses from 2002 to 2017 shown in Figure 3.2. Using this time series, we estimate
an autoregressive process of order one and use its steady state to calibrate α.
The idea behind this procedure is that the optimal use of factors is a better
approximation over the long run, since actual factors use may significantly deviate
from optimal static levels in the short run, especially for capital. We find α = 0.39,
higher than the standard calibration α = 1/3. This result is robust to some changes
in the calculation of the required rate of return. First, computing the equity cost
using the Pre-DI swap 1800 days yields again α = 0.39. Second, using the expected
12-month consumer inflation from the Focus survey instead of realized capital
inflation does not change the estimate either. Third, giving null weight to debt
cost and thus making the WACC equal to the equity cost increases the estimate
only slightly to α = 0.40. Fourth, we add corporate income tax following Barkai
(2020). We find α = 0.38 when we use 34% for the corporate (IRPJ/CSLL) tax
rate and 100% for the capital cost recovery rate, which is the net present value
of depreciation allowances for capital. Maintaining the same tax rate but setting
this recovery rate to 70.71%, the OECD average level in 2021 according to the Tax
Foundation, the estimate increases, but not by much, to α = 0.41.

3.4.3 Estimation of the TFP

Assume ∆ ln(AtΩt) = c + ξt, where ∆ is the first difference operator,
E(ξt|It−1) = 0, and It−1 is the information set at t − 1. Thus, from Equation (3.11),

∆ ln Yt = c + α∆ ln K̃t + (1 − α)∆ ln(htL̃t) + β∆ ln γt + ξt (3.12)

Setting α = 0.39, we obtain the TFP by estimating c and β using Equation (3.12)
and the moment conditions E (Xt−1 · ξt) = 0, where Xt−1 is a vector of instrumental
variables such as Xt−1 ∈ It−1. Essentially, this is an application, for a time series,
of the simplified model of the dynamic panel literature (Blundell; Bond, 2000)
presented in Ackerberg, Caves and Frazer (2015). Alternatively, we could have used
the method of Olley and Pakes (1996) or its extensions Levinsohn and Petrin (2003)
and Ackerberg, Caves and Frazer (2015). However, given ∆ ln(AtΩt) = c + ξt, these
methods are equivalent to our own if all productivity shocks in (3.12) affect input
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Figure 3.2 – Cost share of capital.

decisions since their first stage can be ignored in this case. And this assumption
seems plausible here, as the inputs used in the production can be quickly adjusted
by changing the utilization rates. Empirical evidence also seems to support it, as
we do not find evidence of serial correlation in the error term.6 Moreover, such
methods require estimating a sufficiently flexible nonparametric function in their
first stage (e.g., high-order polynomial), which would be highly problematic here
due to the low sample size (in our current data set, we have 24 observations at
most).

Our instruments X are a constant, ln K̃t, ln K̃t−1, ln(ht−1L̃t−1), ln(ht−2L̃t−2),
ln γt−1, ln γt−2, ln Yt−1 and ln Yt−2. Under the assumption that all productivity
shocks affect input decisions, these are the instruments suggested by Ackerberg,

6 If ln(AtΩt) = ωt + ϵt, where ∆ωt = c + ξt and ϵt denotes white-noise productivity shocks not
considered by firms in input decisions, the error term in (3.12) would become ξt+∆ϵt ∼ MA(1).
Similar result apply under the more general assumption that ωt = c + ρωt−1 + ξt, when one
should “ρ-differentiate” (3.11) to get the expression analogous to (3.12), whose error term is
ξt + (ϵt − ρϵt−1) ∼ MA(1) (Blundell; Bond, 2000).
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Caves and Frazer (2015), expanded to include one additional lag of each to better
account for the first differences included in (3.12). The instrumental variables esti-
mator applied is the Two-Stage Least Squares (2SLS). For the sake of completeness,
we also estimate (3.12) using Ordinary Least Squares (OLS).

Table 3.1 shows the estimates obtained using annual data between 1998
and 2019.7 8 They reject the no adjustment case (β = 0) and the usual practice of
applying γ only over K̃ (β = 0.39 = α). Indeed, the β estimates are much higher
than α = 0.39, which is consistent with labor hoarding. The impact of a higher β

on the estimated TFP can be seen in Figure 3.3, which shows the TFP considering
(i) no adjustment (β = 0), (ii) standard adjustment (β = α = 0.39), (iii) OLS
estimate (β = 0.66), and (iv) 2SLS estimate (β = 0.74). As can be seen, a higher β

yields a smoother TFP, especially around the economic crisis of 2008 and 2015-2016.
As seen in Section 3.3.3, the allocative efficiency Ω does not depend on TFP data
in the Pareto case, implying a smoother TFP results in a smoother technology
frontier A, with no impact on Ω.

Table 3.1 – Estimates of production function (3.12) parameters for α = 0.39

Parameter OLS 2SLS
c 0.01*** 0.01***

(0.002) (0.003)
β 0.656*** 0.744***

(0.089) (0.095)
Parenthesis: Heteroskedasticity-robust standard error.
Significance: * (10%), ** (5%), *** (1%).
Sample (adjusted): 1998-2019 (22 observations) .

In what follows, we use the 2SLS β estimate as it is consistent under the
assumptions considered here. In any case, this choice is not crucial for our empirical
results since the TFPs computed using 2SLS and OLS β estimates are very similar,
as can be seen in Figure 3.3.
7 We have data from 1996 to 2019, but we lose the first two observations due to the existence of

lagged variables.
8 We also tested two generalized methods of moments (GMM) estimators described in (Hansen,

2020) that are efficient under heteroskedasticity: (i) two-step GMM, using 2SLS in the first step,
and (ii) iterated GMM. The β estimates are only slightly higher (0.838 and 0.846, respectively),
resulting in almost equivalent TFPs.
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Figure 3.3 – TFP estimates for different values of β (2000=100).

3.4.4 Labor market data

We estimate NaHHIL without any firm-level data, using two tables from the
Central Register of Enterprises (CEMPRE) made available by the IBGE. The first
one shows the total number of firms, total employment, and the number of firms
and employment by nine size bins based on the number of employees.9 The second
one discloses the total number of firms, total employment, and employment share of
the 4, 8, and 12 largest firms (in number of employees). Although CEMPRE covers
all formal organizations, this second table is only available for formal corporate
entities. Given that, we do not include data from other formal organizations, namely
public administration and non-profit organizations, in the first table. This choice
also aligns with the model utilized in this paper, where firms are profit-maximizing.

These two tables are available from 2006 to 2020 for all sectors (up to 3-digit
level) from the National Classification of Economic Activities (CNAE) 2.0, which
9 The bins are 0 to 4, 5 to 9, 10 to 19, 20 to 29, 30 to 49, 50 to 99, 100 to 249, 250 to 499, and

500 or more.
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is a Brazilian classification derived from the ISIC Rev.4. Using this database, we
follow five steps to compute NaHHIL.

Step 1 – addressing missing data. The IBGE does not disclose some employment
information to avoid identifying the firms. To address it, for each 2-digit and 3-digit
CNAE 2.0 sector and year, we do three imputations:

1. Use total employment from one table (if available) in the other (if missing).

2. Estimate missing employment data for a certain bin of firm size as the simple
average of employment bin bounds multiplied by the number of firms.10 11

3. If no missing data is left, we multiply all imputed employment in bins of firms’
size by a scalar, ensuring that employment by bins adds to total employment.
If only one missing data is left, it is backed out as a residual. If there is more
than one missing data left, data from this sector in that year are discarded.

Naturally, the second imputation is not done for the last bin (500 or more
employees) since we do not know its upper bound. Regarding the first bin (0 to 4
employees), even though it can be applied, the results may be distorted due to firms
with no employees (for instance, if the number of such firms is disproportionately
high). So, we consider two possibilities for the first bin, using or not using this
second imputation procedure.

Step 2 – estimating the number of employees per firm. Denote the set of
the lower bounds of firms’ size bins from the first table by b = {500, 250, 100, ..., 0},
the k-th greatest element of b by bk, and the number of firms with j or more
employees by Nj. Given that, from the two tables already addressed for (some)
missing data in step 1, we can get, for all available 2-digit and 3-digit CNAE
2.0 sectors in each year, the employment for the i largest formal enterprises, for
i ∈ I = {4, 8, 12, Nb1 , Nb2 , ..., Nb9}. Denote the j-th lowest element of I as ij, with
10 Thus, we are assuming that the average number of employees per firm in a given bin equals

the simple average of employment bin bounds.
11 For instance, if in a given sector and year there are 10 enterprises with 5 to 9 employees, we

estimate its employment as 5+9
2 × 10 = 70.
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j ∈ {1, 2, ..., 12}. Then, for a given sector and year, we obtain the number of
employees per firm by assuming that, for each j ∈ {1, 2, ..., 12}, the (ij−1 + 1)-th to
(ij)-th largest firms have the same size, where i0 = 0. In doing so, note that firms’
size would be necessarily consistent with the bins’ bounds of the first table.

Since the first bin (0 to 4 employees) includes firms with no employees,
we also use two alternative methods that adjust the data by firms’ size before
applying the procedure just described. First, we exclude all first-bin data, such
that j ∈ {1, 2, ..., 11}. Second, we maintain j ∈ {1, 2, ..., 12}, but replace Nb9 = N0

by N1, i.e., We exclude firms with no employees from the first bin. Since the IBGE
does not disclose the number of such firms, we estimate it by assuming that firms
with 1 to 4 employees have, on average, 1+4

2 = 2.5 employees. So, the new number
of firms in the first bin is its total employment divided by 2.5.

Step 3 – computing desired results for each sector. Using the number
of employees per firm from step 2, we compute, for all available 2-digit and 3-
digit CNAE 2.0 sectors in each year, the number of active firms Na and the
Herfindahl–Hirschman concentration index HHIL.

Step 4 – selecting sectors. We now select the sectors to be used in computing
aggregate results, which should be representative of the entire economy and suitable
for model calibration. We begin with all 3-digit CNAE 2.0 sectors since they are
comprehensive, define the narrowest possible markets in data, and use the most
granular information available in estimating the number of employees per firm,
making it more precise.12 Alternatively, we begin with only the 3-digit sectors that
do not belong to a 2-digit sector that has a high share of non-enterprises formal
organizations and/or we consider to be unsuitable to the model of Chapter 2 (e.g.,
utilities).13

12 After all, this estimation relies on supposing that some firms are of the same size, and this
restriction becomes weaker when using more granular data because, in this case, the number
of firms assumed to have exactly the same size decreases.

13 The 19 excluded 2-digit sectors are: 35 - Electricity, gas and other utilities, 36 - Water
collection, treatment and distribution, 37 - Sewage and related activities, 38 - Collection,
treatment and disposal of waste, and material recovery, 39 - Decontamination and other waste
management services, 68 - Real estate activities, 72 - Scientific research and development,
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We then adjust the initial sets of sectors to ensure the same sectoral coverage
over time, avoiding distortions in the shape of the times series of the aggregate
NaHHIL due to changes in the sectors included each year. We use two different
adjustments. First, if a selected 3-digit sector is missing in step 3 for at least one
year, we exclude all selected 3-digit sectors belonging to the corresponding 2-digit
sector and, if its data are available for all years, add this 2-digit sector. Second, we
simply exclude all selected 3-digit sectors with missing data in step 3.

Step 5 – aggregating desired results. Given the results obtained in step 3 for
all the sectors selected in step 4, we follow three methods to obtain the aggregate
results for each year. First, we assume there is only one national market, computing
the aggregate number of active firms as the sum of the number of firms in each
selected sector and the aggregate concentration index by plugging the number of
employees of each firm in the economy directly into HHIL = ∑N

i=1

(
Li

L

)2
. Second,

we compute NaHHIL for each selected sector and take their average. Third, we
compute NaHHIL for each selected sector and take their median.

Table 3.2 summarizes all the methods to compute the desired results that we
have discussed in the presentation of the five steps. We use all possible combinations
of such methods, obtaining 2 × 3 × 2 × 2 × 3 = 72 different time series of NaHHIL.

3.5 Results

Using the method discussed in Section 3.3 and the data and parameters of
Section 3.4, we can obtain k, A, and A for Brazil. We follow two steps. First, for a
given time series of NaHHIL, we estimate the model from 2006 to 2019, finding

81 - Services for buildings and landscape activities, 84 - Public administration, defense and
social security, 85 - Education, 86 - Human health care activities, 87 - Human health care
activities integrated with social assistance, provided in collective and private residences, 88 -
Social assistance services without accommodation, 90 - Artistic, creative and entertainment
activities, 91 - Activities related to cultural and environmental heritage, 92 - Gambling and
betting exploration activities, 93 - Sports, recreation and leisure activities, 94 - Activities
of associative organizations, and 99 - International organizations and other extraterritorial
institutions.
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Table 3.2 – Alternative methods for computing NaHHIL

Step Method Method
1 Imputation in the first bin (i) Average bin bounds × number of firms

(0 to 4 employees) (ii) Backed out as a residual (if it is possible)*
2 Data from the first bin (i) Included

(0 to 4 employees) (ii) Included only for firms with employees*
(iii) Excluded

4 Initial set of sectors (i) All 3-digit sectors*
(ii) Only selected 3-digit sectors

4 Sectors with missing data (i) Replaced by the corresponding 2-digit sectors*
(ii) Excluded

5 Aggregation method (i) National market
(ii) Sectors’ average
(iii) Sectors’ median*

*Baseline methods.

the time-invariant k. Second, setting this k, we estimate all model parameters from
2000 to 2019 using the first-stage algorithm of the quantification method.

Figure 3.4 shows the NaHHIL computed using the baseline methods high-
lighted in Table 3.2, when k = 3.19. In any case, choosing any other of the 72 time
series of NaHHIL would yield very similar results as all estimates of k are very
close, between 3 and 3.3. It is worth mentioning that the results shown in Figures
3.4a, 3.4b, 3.4c, and 3.4d do not depend on TFP data. So, they are robust to other
measures of labor and capital, including due to other adjustments by utilization.
Only Figure 3.4e relies on TFP data.

Consistent with our quantification strategy, the model reproduces perfectly
AΩ and µ, but not NaHHIL as we only seek to minimize the distance to this
moment normalized. This can be seen in Figure 3.4a, in which the actual NaHHIL

is normalized to have the same average and standard deviation of the model time
series between 2006 and 2019. In any case, the model fits the normalized data quite
well, showing a correlation of 0.67 and capturing the upward trend seen in the data.
It is also worth mentioning that the model series varies very little, always between
1.332 and 1.335.

Another way to gauge the model fit is to evaluate the number of active firms
Na. To compute the actual number of firms, we use data from Section 3.4.4 and the
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baseline methods highlighted in Table 3.2, but now for Na.14 To compute Na in the
model, we use Equation (3.3), with η replaced by η/q as in its continuous version,
assuming η/q is time invariant. Analogously to NaHHIL, properly identifying the
level of the actual Na would require knowing the relevant market for each firm in the
economy. Thus, we should evaluate the model fit only after normalizing the series.
For instance, in Figure 3.4b, both series are divided by their 2006-2019 averages,
which allows us to choose any feasible time-invariant adjusted elasticity η/q (e.g.,
η/q = 1) since changing it would simply multiply the model series by a constant.
As can be seen, even though it is not a target moment, the model has a good fit as
these series are highly correlated (coefficient of 0.85), with the model capturing the
overall upward trend observed in data. The errors are concentrated around periods
of economic crisis (2009 and 2015-2016) when the our static model is expected to
behave poorly because, for instance, firms’ use of the labor input is probably far
from optimal and thus 1−α

LS
would not properly measure the cost-weighted average

of firm-level markups µ.

We could also assess the concentration in the product market from NaHHIs.
Unfortunately, we do not have data to compute it, but we can get it in the model
from Equation (3.8). Figure 3.4c shows these model estimates, which point to an
increase in product market concentration until 2004, a downward trend between
2005 and 2015, and a slight increase from 2016 to 2019. Note also that NaHHIs

and NaHHIL behave very differently, being negatively correlated (-0.92) and with
NaHHIs changing much more intensely.

Figure 3.4d presents the estimated allocative efficiency Ω. It shows an
upward trend, reflecting the observed increase in the labor income share and,
thus, the estimated decrease in the average markup. This is a sharp contrast
with most developed countries, which over the last decades experienced decreasing
labor share and increasing average markup (Calligaris; Criscuolo; Marcolin, 2018;
Loecker; Eeckhout, 2018; Autor et al., 2020). Accordingly, studying the US, Baqaee
and Farhi (2020) find that allocative efficiency, as measured by the distance from
optimal allocation, deteriorated in 2015 relative to 1997. Moreover, Ω has essentially

14 Hence, for each year, we get Na for all selected sector and then take their median to obtain
the aggregate value.
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the same trends of NaHHIs, but with inverted signs (correlation of -0.9998): it
decreases until 2004, increases from 2005 to 2015, and slightly decreases from 2016
onwards. Hence, NaHHIs seems to be a good proxy for Ω, with higher (lower) in
NaHHIs suggesting lower (higher) Ω. Furthermore, Ω proved procyclical, with a
0.88 correlation with GDP.

Thus, similarly to the TFP AΩ, the allocative efficiency Ω increases during
booms and decreases during busts, suggesting the TFP net of allocative efficiency
effects, which is the technology frontier A, should have more stable growth than
the TFP.15 This can be seen in Figure 3.4e, which plots AΩ and A when both
are adjusted to equal 100 in 2000. Indeed, using these adjusted series, we find a
standard deviation of 8.39 for AΩ and 6.01 for A. Similarly, detrending both series
using linear trends, we find a higher standard deviation for TFP (1.93 versus 1.54).

These results are easier to see in Table 3.3, which shows GDP Y , TFP AΩ,
technology frontier A, and allocative efficiency Ω average annual growth for the
full sample (2000-2019) and some subperiods. We obtain the subperiods 2000-2003,
2003-2013, 2013-2016, and 2016-2019 by regressing the GDP growth rate from
1997 to 2019 on a constant, considering Newey-West robust standard errors and
finding structural breaks using Bai-Perron tests. The results for these subperiods
generally show that the TFP AΩ is more volatile than the technology frontier A.
This becomes especially clear if one aggregates the two middle subperiods into one,
when A has essentially the same growth in each remaining subperiod (0.89%, 0.9%,
and 0.81% for 2000-2003, 2003-2016, and 2016-2019, respectively).

These results suggest that TFP growth cycles are mainly an allocative
efficiency phenomenon. Indeed, the rapid productivity gains during 2003-2016 are
essentially due to Ω, which grows 0.5% per year in the period versus -0.4% in
2000-2003 and 2016-2019. Focusing on the economic boom period of 2003-2013
would yield a similar conclusion when compared to 2000-2003 and 2016-2019 since,
in this boom period, the technology frontier growth accelerated only slightly relative
to these two subperiods. The conclusion changes only when this boom period is
compared to 2013-2016 because, in this case, the higher TFP growth is mainly
explained by faster technology improvements. However, this comparison is probably
15 The correlation between TFP and GDP is 0.97.
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not the most recommended one since Brazil experienced an intense economic crisis
during 2013-2016, with GDP falling 7% between 2014 and 2016 (3.4% per year on
average), when the static model employed here seems to behave poorly as suggested
by the results of Figure 3.4b for Na.

In short, the technology frontier grows much more steadily than the allocative
efficiency, suggesting A is the most structural component of TFP. Therefore, since
Ω could not increase or decrease indefinitely, the annual technology growth of
0.8-0.9% can be seen as the current structural, long-run, growth level of Brazilian
TFP.

Table 3.3 – GDP, TFP AΩ, A, and Ω annual growth for the baseline model, %

Variable 2000-2019 2000-2003 2003-2016 2016-20192003-2016 2003-2013 2013-2016
GDP Y 2.28 1.86 2.57 4.02 -2.12 1.44
TFP AΩ 1.1 0.48 1.4 1.7 0.39 0.43

A 0.89 0.89 0.9 1.16 0.04 0.81
Ω 0.21 -0.41 0.49 0.54 0.35 -0.37

3.6 Robustness

3.6.1 Shape parameter of the truncated Pareto distribution

From what we have seen in Section 3.3.3 from Figure 3.1, changes in LS seem
to have a smaller impact on Ω for lower k. This fact suggests lowering k would yield a
less volatile allocative efficiency Ω and thus a more volatile technology frontier A. In
other words, a lower k would yield more conservative results compared to standard
growth-accounting exercises, in which all TFP growth is attributed to technology
improvement. Indeed, we showed in Chapter 2 that Ω → 1 when k → −∞ and
thus the model’s residual AΩ converges to the standard growth-accounting residual
A in this limit case.

Given that, it would be useful to find a lower bound for k. As argued
in Chapter 2, under the assumption that high-productivity firms are relatively
scarce, this lower bound is k = −1. After all, the truncated Pareto density is
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(a) NaHHIL (b) Na

(c) NaHHIs (d) Allocative efficiency Ω

(e) TFP AΩ and technology frontier A

Figure 3.4 – Estimates for the baseline model.
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downward sloping only for k > −1, k ̸= 0, being upward sloping for k < −1, and
constant for k = −1 (Uniform distribution). Besides being economically reasonable,
this assumption is commonly adopted, often by imposing a non-truncated Pareto
distribution for firms’ productivity. In short, the most conservative reasonable TFP
decomposition is obtained when the productivity is uniformly distributed.

Table 3.4 shows the new TFP decomposition. It is computed using the first-
stage algorithm of the quantification method, which requires only macroeconomic
data: µ = 1−α

LS
is used to estimate Ω and then A is backed out as a residual in the

TFP AΩ. The results show expected differences, particularly regarding the slightly
higher variability of growth in A across the subperiods under k = −1. However,
they are qualitatively similar, both supporting that TFP cycles are mainly due to
allocative efficiency Ω. All in all, the main results seem to be robust to choosing
conservatively k = −1.

3.6.2 Share parameter of the Cobb-Douglas production function

In Section 3.4.2, we use cost share data to get α = 0.39. Here, we evaluate
the robustness of our results to this choice. More precisely, we re-estimate the model
parameters (including β) for (i) the lower standard α = 1/3 and (ii) α = 0.41, the
highest calibration from Section 3.4.2 obtained by adding corporate income tax
and setting the capital cost recovery rate to 2021 OECD average level. The new
TFP growth decompositions are qualitatively similar, as shown in Table 3.4.

3.6.3 Labor share of national income

One major challenge in computing the labor income share is to gauge the
labor income of self-employed workers since National Accounts typically disclose
only the total income earned by such workers, known as mixed income. This issue
is especially important in developing countries like Brazil, where a non-negligible
portion of workers is self-employed.16 Gollin (2002) proposes different ways to deal
with that. One such way is to allocate mixed income to labor and non-labor in the
16 In Brazil, about a quarter of employed people are self-employed according to 2012-2022

quarterly data from the National Household Sample Survey (PNAD) conducted by the IBGE.
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same proportions as the rest of the economy. As discussed in Section 3.4.1, this is
our baseline methodology and the preferred method of the Penn World Table 10.01.
Alternatively, Gollin (2002) proposes allocating all mixed income to labor, which
gives an upper bound for the labor income share LS. A lower bound for the labor
income share can be obtained by not allocating any mixed income to labor, which
is the naïve approach criticized by Gollin (2002). These three LS series can be seen
in Figure 3.5. They are highly correlated but have different levels, as expected.

Figure 3.5 – Measures of labor income share.

As robustness exercises, we also apply our methodology using these two
alternative labor income share data. For each new series, we initially recalculate the
capital cost share, which would be higher for lower labor income, and re-calibrate
α following the procedure of Section 3.4.2. Using the upper-bound (lower-bound)
LS series, we find α equal to 0.37 (0.41). In any case, the average markup µ = 1−α

LS

strictly decreases with the labor income share LS, which is not unexpected.17

17 After all, α = Kr
Kr+Lw = KS

KS+LS , where KS is the capital share of national income. Conse-

quently, µ = 1−α
LS = 1− KS

KS+LS

LS = 1
KS+LS .
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Finally, for each alternative, we use the new α and the new LS series to re-estimate
the other parameters (including β).

The results shown in Table 3.4 for the upper-bound LS series continue
to support that TFP AΩ cycles are mainly due to allocative efficiency Ω, but A

growth becomes more volatile across the subperiods. This result is expected as this
higher LS yields a smaller µ and, under such condition, the impact of changes of µ

on allocative efficiency Ω seems to be smaller for k > −1, k ̸= 0, as can be seen in
Figure 3.1.

By analogous reasoning and given that labor share is highly correlated with
GDP (coefficient of 0.88), one should expect a more cyclical allocative efficiency Ω
for the lower-bound LS series. The results shown in Table 3.4 are consistent with
this prediction. Indeed, in this case, Ω is so cyclical that the residual A becomes
much more volatile and, more importantly, countercyclical in some periods. For
instance, between 2000-2003 and 2003-2016, the growth of the technology frontier A

decreased while the GDP and TFP accelerated, which does not seem to be intuitive.
This suggests this naïve way of computing the labor income share is inappropriate
for a developing economy like Brazil, as advocated by Gollin (2002).

In short, the results change qualitatively only under the unreasonable
assumption that no mixed income is due to labor.

3.6.4 Zipf’s law calibration

Until now, we have always quantified the model assuming firm productivity
A is Pareto distributed. Although it is relatively standard in the literature, it
is hard to evaluate the reasonably of this choice as firm productivity is hardly
observable. What can be easily observed is the distribution of firm size, which
usually follows a distributional power law known as Zipf’s law.18 Formally, under
this “law”, P (S ≥ s) = (s/s)k for some measure of firm size S ≥ s > 0, with
k ≈ 1. Empirical evidence supporting this claim has been found for several different
countries with firm size measured by the number of employees, sales, income, total

18 Power laws emerge in various domains within economics and finance. See Gabaix (2009),
Gabaix (2016) for a review.
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assets, and equity plus debt (Okuyama; Takayasu; Takayasu, 1999; Axtell, 2001;
Fujiwara et al., 2004; Luttmer, 2007; Gabaix; Landier, 2008; Giovanni; Levchenko;
Ranciere, 2011; Giovanni; Levchenko, 2013). Specifically to Brazil, Silva et al. (2018)
find support for Zipf’s law among the 1,000 largest firms by net revenue in 2015.
Moreover, in Chapter 4, we evaluate the distribution of firm size by the number of
employees using CEMPRE data. Remarkably, we find Zipf’s law provides a very
good, although not perfect, approximation to data for each year between 1996 and
2020 at the economy-wide level and also for agriculture, industry, and services
alone.

Given that scenario, instead of choosing a density for A, we now impose the
distribution of firms’ market share s(A).19 As before, we choose to use a continuous
distribution, consistent with the continuous model of Chapter 2. However, we cannot
assume the market share is non-truncated Pareto distributed with shape parameter
k ≈ 1, when Zipf’s law would hold over the entire support. On the one hand, we
should use a truncated distribution since the market share is bounded. On the other
hand, since s(A) = 0, the support of the market share distribution is not strictly
greater than 0. Under such circumstances, we assume the market share s(A) follows
a truncated Lomax distribution, a special case of the truncated Pareto distribution
type II. More precisely, we assume s̃(A) ≡ 1−A/A = s(A)

η/q
∈
[
0, s̃(A)

]
=
[
0, 1 − Ã−1

]
is truncated Lomax distributed with shape parameter k ̸= 0 and scale parameter
λ > 0 or, equivalently, (s̃(A) + λ) ∈ [λ, s̃(A) + λ] is truncated Pareto distributed
with shape parameter k ̸= 0. Therefore, when λ ≈ 0, the firm market share is
approximately truncated Pareto distributed. If we further consider k ≈ 1, the
distribution aligns to Zipf’s law predictions, particularly away from support’s
bounds (see Appendix 3.C.1 for a discussion).

We left the details to Appendix 3.C, but we essentially follow the same two
stages presented in Section 3.3.3 to quantify the model. In the first stage, given k

and λ, we gauge A and A by matching aggregate TFP AΩ and average markup
µ to data. In the second stage, we set k ≈ 1 and search the time-invariant λ that
minimizes the distance to the normalized NaHHIL. Similarly to the baseline Pareto
19 In monopolistic competition models like Melitz (2003), supposing firm productivity is Pareto

distributed delivers a distributional power law in firm size (Giovanni; Levchenko; Ranciere,
2011). This does not hold for the Cournot model of Chapter 2.
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case, TFP data are not required to estimate Ω, not even through λ. They are used
only to pin down A and A. Hence, as before, the residual of this model is not the
TFP AΩ itself, but rather only its technology component A.

Table 3.4 shows the TFP decomposition under this new distribution for
k = 0.5, 1, 1.5. The results are practically identical to the baseline model for all
these three shape parameters. The estimated scale parameter λ is 0.55, 0.76, and
0.97 for k equal to 0.5, 1, and 1.5, respectively. Thus, the choice of k does not seem
crucial since changing the assigned k alters the calibrated λ in the second stage,
leaving the main model results basically unchanged.20

3.7 Conclusion
This paper employs the Cournot model of Chapter 2 to decompose the

Brazilian TFP between 2000 and 2019. We find an overall improvement in allocative
efficiency, reflecting the observed increase in the labor income share and, thus,
the estimated decrease in the average markup. We also find that TFP cycles are
essentially due to allocative efficiency, with the economic boom in the mid-2000s
being primarily attributed to efficiency gains. The technology frontier grows much
more steadily, suggesting this reflects the structural characteristics of the economy.
Therefore, since allocative improvements could not occur indefinitely, the annual
technology growth found, around 0.8-0.9%, can be seen as the current structural,
long-run, growth level of Brazilian TFP.

The main conclusions are robust to using conservatively a Uniform distribu-
tion, when the model quantification requires only macroeconomic data. They are
also robust to considering the standard α = 1/3 or α = 0.41 instead of our baseline
calibration of α = 0.39. Using a higher labor income share, in which all mixed
income is allocated to labor, does not alter our main conclusions either. Finally,
the results remain unchanged when we follow a different strategy, assuming the
distribution of firm market share is consistent with Zipf’s law instead of imposing
a firm productivity distribution.
20 When seeking both k ̸= 0 and λ > 0 in the second stage, we find very high k ≈ 212 and

λ ≈ 90, but the TFP decomposition is, once more, practically identical to the baseline model,
confirming this intuition.
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Table 3.4 – TFP AΩ, A, and Ω annual growth, %

Variable 2000-2019 2000-2003 2003-2016 2016-20192003-2016 2003-2013 2013-2016
Baseline model
TFP AΩ 1.1 0.48 1.4 1.7 0.39 0.43

A 0.89 0.89 0.9 1.16 0.04 0.81
Ω 0.21 -0.41 0.49 0.54 0.35 -0.37

Robustness #1: Uniform distribution (k = −1)
TFP AΩ 1.1 0.48 1.4 1.7 0.39 0.43

A 0.95 0.74 1.04 1.33 0.1 0.74
Ω 0.15 -0.26 0.35 0.37 0.29 -0.3

Robustness #2: α = 1/3
TFP AΩ 1.13 0.49 1.45 1.75 0.47 0.36

A 0.81 1.14 0.71 0.93 -0.04 0.9
Ω 0.32 -0.64 0.74 0.81 0.5 -0.53

Robustness #3: α = 0.41
TFP AΩ 1.09 0.47 1.37 1.68 0.35 0.46

A 0.9 0.83 0.95 1.22 0.05 0.79
Ω 0.18 -0.35 0.42 0.46 0.3 -0.32

Robustness #4: upper-bound LS series
TFP AΩ 1.11 0.48 1.42 1.72 0.41 0.41

A 1.07 0.79 1.23 1.54 0.2 0.68
Ω 0.03 -0.3 0.18 0.18 0.21 -0.27

Robustness #5: lower-bound LS series
TFP AΩ 1.09 0.47 1.37 1.68 0.35 0.46

A 0.47 0.92 0.27 0.41 -0.2 0.94
Ω 0.61 -0.44 1.11 1.27 0.56 -0.47

Robustness #6: Zipf’s law calibration (k = 0.5)
TFP AΩ 1.1 0.48 1.4 1.7 0.39 0.43

A 0.89 0.87 0.91 1.18 0.04 0.81
Ω 0.21 -0.39 0.48 0.52 0.35 -0.37

Robustness #7: Zipf’s law calibration (k = 1)
TFP AΩ 1.1 0.48 1.4 1.7 0.39 0.43

A 0.89 0.87 0.91 1.18 0.04 0.81
Ω 0.21 -0.39 0.48 0.52 0.35 -0.37

Robustness #8: Zipf’s law calibration (k = 1.5)
TFP AΩ 1.1 0.48 1.4 1.7 0.39 0.43

A 0.89 0.88 0.91 1.18 0.04 0.81
Ω 0.21 -0.39 0.48 0.52 0.35 -0.37
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Appendix of Chapter 3

3.A Derivation of two concentration measures

Relying on the results of Chapter 2, we derive expressions for two concen-
tration measures. First, the Herfindahl–Hirschman index (HHI) of the labor market
HHIL ≡ ∑N

i=1(Li/L)2, where Li is the labor employed by firm i ∈ {1, 2, ..., N} and
L ≡ ∑N

i=1 Li. Second, the HHI of the product market HHIs ≡ ∑N
i=1 s(Ai)2, with

s(Ai) being the market share of an active firm with productivity Ai. We start with
the baseline model, which we employ in the main text, but we also consider the
two model extensions presented in the previous chapter.

3.A.1 Baseline model

In Chapter 2, we derived the following results for the discrete model:

θi ≡ θLi = θKi =AΩs(Ai)
Ai

(3.A.1)

s(Ai) ≈η (1 − A/Ai) (3.2)

η ≈ 1
Na [1 − Ea (A/A)] (3.3)

Ω ≈
Ea

[
(A/A)(1 − A/A)

]
Ea [(A/A)(1 − A/A)] (3.5)

µ ≈AΩ
A

(3.6)

where θLi ≡ Li/L and θKi ≡ Ki/K, with Ki being the capital stock of firm i

and K ≡ ∑N
i=1 Ki. Aggregate TFP is denoted by AΩ, with Ω being a measure of

allocative efficiency and A the productivity of the most efficient firm. Moreover, A

is the lowest productivity level among active firms, η is the absolute value of the
price elasticity of demand, Na is the number of active firms, and Ea (h(A)) is the
expected value of a function h over active firms under the empirical distribution.



148 Chapter 3. Disentangling Brazilian TFP

Finally, being µi the markup of firm i, w the wage, and r the rental cost of capital,
µ ≡ ∑N

i=1

(
Liw+Kir
Lw+Kr

)
µi is the cost-weighted average of firm-level markups.

Using these results, let us derive expressions for the two measures of con-
centration presented earlier. First, the HHI of the labor market HHIL ≡ ∑N

i=1 θ2
Li.

Plugging (3.A.1) into this definition and using (3.2) and (3.3),

HHIL =
N∑

i=1

[
AΩs(Ai)

Ai

]2

≈
[

Ω(A/A)
1 − Ea (A/A)

]2 Ea

[
(A/A)2 (1 − A/A)2

]
Na

NaHHIL ≈Ω2 Ea

[
(A/A)2 (1 − A/A)2

]
{
Ea

[
(A/A) (1 − A/A)

]}2

NaHHIL ≈
Ea

[
(A/A)2 (1 − A/A)2

]
{Ea [(A/A)(1 − A/A)]}2 (3.7)

where in the last line we use (3.5). Second, the HHI of the product market HHIs ≡∑N
i=1 s(Ai)2. Plugging (3.2) and (3.3) into it, one gets

NaHHIs ≈
Ea

[
(1 − A/A)2

]
[Ea (1 − A/A)]2

≈ 1 − 1/µ

1 − Ea (A/A) (3.8)

where, in the last part, we use (3.5) and (3.6) since, from these equations, it is easy
to see that

1 − 1
µ

≈1 − A

AΩ
≈ 1 − Ea [(A/A)(1 − A/A)]

1 − Ea (A/A)

1 − 1
µ

≈1 − 2Ea (A/A) + Ea [(A/A)2]
1 − Ea (A/A) = Ea [(1 − A/A)2]

1 − Ea (A/A) (3.A.2)

In another version of the model, we considered a continuum of firms indexed
by i ∈ [0, N ]. In this case, the results shown at the beginning of this section
would still be valid, but now holding exactly, if one replaces (i) sums by integrals
(e.g., K ≡

∫N
0 Kidi) and (ii) η by η/q, with q ∈ (0, 1] being the marginal effect of

increasing a firm’s output on aggregate output considered by each firm. Given that,
it is easy to see that Equations (3.7) and (3.8) are also valid for the continuous
model, but in this case holding exactly. Naturally, the measures of concentration
should defined accordingly, with HHIL ≡

∫N
0 θ2

Lidi and HHIs ≡
∫N

0 s(Ai)2di.
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3.A.2 Model extensions

In Chapter 2, we discussed two model extensions. The first extension goes be-
yond the Cobb-Douglas production function, considering an arbitrary well-behaved
production function with constant returns to scale, Hicks-neutral productivity
shifter, and M factors of production. In this case, the baseline Equations (3.A.1),
(3.2), (3.3), (3.5), and (3.6) are still valid, implying (3.7) and (3.8) continue to
hold (exactly for a continuum of firms).21 The second extension adds firm-specific
wedges as a new source of firm heterogeneity, considering firm-specific tax rate over
revenue τi = τ(Ai). In this case, for a discrete number of firms,

θi ≡ θLi = θKi =AΩs(Bi)
Ai

(3.A.1”)

s(Bi) ≈η (1 − B/Bi) (3.2”)

η ≈ 1
Na [1 − Ea (B/B)] (3.3”)

Ω ≈
Ea

[
(A/A)(1 − B/B)

]
Ea [(A/A)(1 − B/B)] (3.5”)

µ ≈AΩ
B

(1 − τ̃) (3.6”)

where s(Bi) is the market share of a firm with adjusted productivity Bi ≡
Ai (1 − τ(Ai)), B is the lowest level of the adjusted productivity Bi among active
firms, and τ̃ ≡ ∑N

i=1 s(Bi)τ(Ai) is the sales-weighted average tax rate. As a result,
plugging (3.A.1”) into HHIL ≡ ∑N

i=1 θ2
Li and using (3.2”) and (3.3”),

NaHHIL ≈(AΩ)2 Ea

[
((1/A) − B/(A × B))2

]
[1 − Ea (B/B)]2

=
(

AΩ
A

)2
Ea [(A/A)2(1 − B/B)2]

[1 − Ea (B/B)]2

NaHHIL ≈ Ea [(A/A)2(1 − B/B)2]
{Ea [(A/A)(1 − B/B)]}2 (3.7”)

where in the last line we use (3.5”). Finally, plugging (3.2”) and (3.3”) into HHIs ≡∑N
i=1 s2

i ,

NaHHIs ≈
Ea

[
(1 − B/B)2

]
[Ea (1 − B/B)]2

(3.8”)

21 Naturally, for HHIL to make sense, labor should be one of the factors of production.
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By analogous reasoning to that employed previously for the baseline model, Equa-
tions (3.7”) and (3.8”) would be exactly valid with a continuum of firms. As before,
in this case, one should define HHIL ≡

∫N
0 θ2

Lidi and HHIs ≡
∫N

0 s(Ai)2di.

3.B Conditions for the first-stage algorithm to work properly
In Chapter 2, we established necessary and sufficient conditions for the

first-stage algorithm to work properly, achieving an exact match of both target
moments. Initially, we derived some general results by examining an arbitrary
truncated distribution. The only requirement is that this distribution can be
expressed as a truncation of another density from above. These general findings
provide a framework for establishing conditions applicable to any such distribution.
In the previous chapter, we used this framework to evaluate the case in which firms’
productivity is truncated Pareto distributed. Here, we apply it for a truncated
Lomax distribution of firms’ market share, showing in which conditions (3.10)
implicitly defines Ã ≡ A/A as a well-defined function of µ.

In the following, consider µ as given in (3.10) or, equivalently,

µ = Ea (1 − A/A)
Ea (1 − A/A) − Ea [(1 − A/A)2] (3.10)

where Ea (h(A)) ≡ E
(
h(A)|A ≤ A ≤ A

)
for any function h.

3.B.1 Arbitrary distribution

Assume A ∈ [A, A] is a continuous variable, 0 < A < A < +∞, whose
density and cumulative distribution function are g and G, respectively. Let g̃(A) ≡

g(A)
1−G(A) > 0, A ∈ (A, A), the density function of A ∈ [A, A], with cumulative
distribution G̃. Let ĝ be another density of A, but defined over the support
A ∈ [A, Ah], Ah > A, possibly with Ah → +∞. This density does not depend on
A and has cumulative distribution function Ĝ. Moreover, it satisfies g̃(A) = ĝ(A)

Ĝ(A) ,
meaning g̃ is a truncation of ĝ from above.
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Proposition 3.B.1 A, A > A, is a continuous, strictly increasing, and well-
defined function of µ if and only if µ ∈

(
1, limA→+∞ µ

)
.

Proof. See Chapter 2.

3.B.2 Lomax distribution of firm market share

Let s̃(A) ≡ 1 − A/A for A ∈ [A, A] ∈ (0, +∞), with Ã ≡ A/A > 1. Assume
s̃(A) ∈ [0, s̃(A)] = [0, 1−Ã−1] is truncated Lomax distributed with shape parameter
k ̸= 0 and scale parameter λ > 0 or, equivalently, (s̃(A) + λ) ∈ [λ, s̃(A) + λ] is
truncated Pareto distributed with the same parameter k ̸= 0. Hence, the density of
s̃(A) is g̃s(s̃(A)) = k

[
λk(s̃(A)+λ)k

(s̃(A)+λ)k−λk

]
(s̃(A)+λ)−k−1 = k

(
λkSk

Sk−1

)
(s̃(A)+λ)−k−1, where

S ≡ s̃(A)
λ

+ 1 is a function of Ã and λ. Denote by G̃s the cumulative distribution
function of s̃(A). In the following, let µ ≡ limA→+∞ µ.

Proposition 3.B.2 For k ̸= 0, λ > 0, and j ∈ N \ {0},

Ea

[
(s̃(A) + λ)j

]
=


kλj

j−k

(
Sj−Sk

Sk−1

)
, if j ̸= k

kλk
(

Sk ln S
Sk−1

)
, if j = k

Proof. Let k ̸= 0, λ > 0, and j ∈ N \ {0}. From the truncated Lomax density, if
j ̸= k,

Ea

[
(s̃(A) + λ)j

]
=k

(
λkSk

Sk − 1

)∫ s̃(A)

0
(s + λ)j−k−1ds

Ea

[
(s̃(A) + λ)j

]
=k

(
λkSk

Sk − 1

)[
(s̃(A) + λ)j−k − λj−k

j − k

]

Ea

[
(s̃(A) + λ)j

]
=k

(
λkSk

Sk − 1

)[
Sj−k − 1

(j − k)λk−j

]
= kλj

j − k

(
Sj − Sk

Sk − 1

)

If j = k, Ea [(s̃(A) + λ)j] = k
(

λkSk

Sk−1

) [
ln(s̃(A) + λ) − ln(λ)

]
= kλk

(
Sk ln S
Sk−1

)
.
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Proposition 3.B.3 For λ > 0,

µ =



k(S−1)−(Sk−1)
(1+ 2λ

2−k )[k(S−1)−(Sk−1)]− λk(1−k)
2−k

(S−1)2 , if k ̸= 0, 1, 2
S ln S−(S−1)

(1+2λ)[S ln S−(S−1)]−λ(S−1)2 , if k = 1
(S−1)2

2(1+2λ)S(S−1)−2λS2 ln S−(1+λ)(S2−1) , if k = 2

Proof. Let λ > 0. Initially, note Equation (3.10) can be rewritten as

µ = Ea (1 − A/A)
Ea (1 − A/A) − Ea [(1 − A/A)2] = Ea (s̃(A))

Ea (s̃(A)) − Ea [s̃(A)2]

µ = Ea (s̃(A) + λ) − λ

Ea (s̃(A)) − Ea

[
(s̃(A) + λ)2

]
+ λ2 + 2λEa [s̃(A)]

µ = Ea (s̃(A) + λ) − λ

(1 + 2λ)Ea (s̃(A) + λ) − λ(1 + 2λ) − Ea

[
(s̃(A) + λ)2

]
+ λ2

µ = Ea (s̃(A) + λ) − λ

(1 + 2λ)Ea (s̃(A) + λ) − Ea

[
(s̃(A) + λ)2

]
− λ(1 + λ)

since s̃(A) ≡ 1 − A/A, where Ea [h(s̃(A))] =
∫ s̃(A)

s̃(A) h(s)g̃s(s)ds for a function h.

Therefore, if k = 1, using Proposition 3.B.2 one can see that

µ =
λ
(

S ln S
S−1

)
− λ

(1 + 2λ)λ
(

S ln S
S−1

)
− λ2

(
S2−S
S−1

)
− λ(1 + λ)

µ = S ln S − (S − 1)
(1 + 2λ)S ln S − λS(S − 1) − (1 + 2λ − λ)(S − 1)

µ = S ln S − (S − 1)
(1 + 2λ) [S ln S − (S − 1)] − λ(S − 1)2

If k = 2, from Proposition 3.B.2,

µ =
2λ
(

S2−S
S2−1

)
− λ

(1 + 2λ)2λ
(

S2−S
S2−1

)
− 2λ2

(
S2 ln S
S2−1

)
− λ(1 + λ)

µ = 2S(S − 1) − (S2 − 1)
2(1 + 2λ)S(S − 1) − 2λS2 ln S − (1 + λ)(S2 − 1)

µ = (S − 1)2

2(1 + 2λ)S(S − 1) − 2λS2 ln S − (1 + λ)(S2 − 1)
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Finally, if k ̸= 0, 1, 2,

µ =
kλ

1−k

(
S−Sk

Sk−1

)
− λ

(1 + 2λ) kλ
1−k

(
S−Sk

Sk−1

)
− kλ2

2−k

(
S2−Sk

Sk−1

)
− λ(1 + λ)

µ =
k

1−k
(S − Sk) − (Sk − 1)

(1 + 2λ) k
1−k

(S − Sk) − λ k
2−k

(S2 − Sk) − (1 + 2λ − λ)(Sk − 1)

µ =
k

1−k
(S − Sk) − (Sk − 1)

(1 + 2λ)
[

k
1−k

(S − Sk) − (Sk − 1)
]

− λ
[

k
2−k

(S2 − Sk) − (Sk − 1)
]

µ =
k(S−1)−(Sk−1)

1−k

(1 + 2λ)
[

k(S−1)−(Sk−1)
1−k

]
− λ

2−k
[k(S2 − 1) − 2(Sk − 1)]

µ = k(S − 1) − (Sk − 1)
(1 + 2λ) [k(S − 1) − (Sk − 1)] − λ(1−k)

2−k
[2k(S − 1) − 2(Sk − 1) + k(S − 1)2]

µ = k(S − 1) − (Sk − 1)[
(1 + 2λ) − 2λ(1−k)

2−k

]
[k(S − 1) − (Sk − 1)] − λ(1−k)

2−k
[k(S − 1)2]

µ = k(S − 1) − (Sk − 1)(
1 + 2λ

2−k

)
[k(S − 1) − (Sk − 1)] − λk(1−k)

2−k
(S − 1)2

where we once again use Proposition 3.B.2.

Proposition 3.B.4 For λ > 0, µ =



1
(1+ 2λ

2−k )− k(1−k)/(2−k)

k−λ

[
(λ+1

λ )k
−1
] , if k ̸= 0, 1, 2

1
(1+2λ)−[(λ+1) ln(λ+1

λ )−1]−1 , if k = 1

1
(1+2λ)(λ+1)−2λ(λ+1)2 ln(λ+1

λ ) , if k = 2

Proof. Let λ > 0. Since S ≡ s̃(A)
λ

+ 1 and s̃(A) ≡ 1 − A/Ai, S = 1−Ã−1

λ
+ 1. Hence,

S → λ+1
λ

when A → +∞, implying µ ≡ limA→+∞ µ = limS→ λ+1
λ

µ. As a result, if
k = 1, from Proposition 3.B.3,

lim
A→+∞

µ = lim
S→ λ+1

λ

S ln S − (S − 1)
(1 + 2λ) [S ln S − (S − 1)] − λ(S − 1)2

lim
A→+∞

µ =
(λ + 1) ln

(
λ+1

λ

)
− 1

(1 + 2λ)
[
(λ + 1) ln

(
λ+1

λ

)
− 1

]
− 1

= 1
(1 + 2λ) − 1

(λ+1) ln(λ+1
λ )−1
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If k = 2, using Proposition 3.B.3,

lim
A→+∞

µ = lim
S→ λ+1

λ

(S − 1)2

2(1 + 2λ)S(S − 1) − 2λS2 ln S − (1 + λ)(S2 − 1)

lim
A→+∞

µ =
1

λ2

2(1 + 2λ)
(

λ+1
λ

) (
1
λ

)
− 2λ

(
λ+1

λ

)2
ln
(

λ+1
λ

)
− (1 + λ)

(
1+2λ

λ

) (
1
λ

)
lim

A→+∞
µ = 1

(1 + 2λ) (λ + 1) − 2λ (λ + 1)2 ln
(

λ+1
λ

)
Finally, if k ̸= 0, 1, 2,

lim
A→+∞

µ = lim
S→ λ+1

λ

k(S − 1) − (Sk − 1)(
1 + 2λ

2−k

)
[k(S − 1) − (Sk − 1)] − λk(1−k)

2−k
(S − 1)2

lim
A→+∞

µ = 1(
1 + 2λ

2−k

)
− [ λk(1−k)

2−k ] 1
λ2

k
λ

−
[
(λ+1

λ )k
−1
] = 1(

1 + 2λ
2−k

)
− k(1−k)/(2−k)

k−λ

[
(λ+1

λ )k
−1
]

where we again use Proposition 3.B.3.

Proposition 3.B.5 For λ > 0 and k ∈ (0, 2], ∂µ
∂λ

> 0.

Proof. Let λ > 0. It is sufficient to show that ∂(1/µ)
∂λ

< 0 for k ∈ (0, 2]. If k = 1,
from Proposition 3.B.4,

∂(1/µ)
∂λ

=
∂
[
(1 + 2λ) −

[
(λ + 1) ln

(
λ+1

λ

)
− 1

]−1
]

∂λ

∂(1/µ)
∂λ

=2 +
ln
(

λ+1
λ

)
+ λ

(
− 1

λ2

)
[
(λ + 1) ln

(
λ+1

λ

)
− 1

]2 =
2
[(

λ+1
λ

)
ln
(

λ+1
λ

)
− 1

λ

]2
+ 1

λ2 ln
(

λ+1
λ

)
− 1

λ3

λ−2
[
(λ + 1) ln

(
λ+1

λ

)
− 1

]2
Being y ≡ λ+1

λ
→ λ = 1

y−1 ,

f(y) ≡2
[(

λ + 1
λ

)
ln
(

λ + 1
λ

)
− 1

λ

]2

+ 1
λ2 ln

(
λ + 1

λ

)
− 1

λ3

f(y) =2 [y ln y − (y − 1)]2 + (y − 1)2 ln y − (y − 1)3 → f(1) = 0
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f ′(y) =4 [y ln y − (y − 1)] ln y + 2(y − 1) ln y + (y − 1)2

y
− 3(y − 1)2

f ′(y) =2 [2y ln y − (y − 1)] ln y + (y − 1)2
(

1
y

− 3
)

→ f ′(1) = 0

f ′′(y) =2
[
2 ln y −

(
y − 1

y

)]
+ 2 (2 ln y + 1) ln y + 2(y − 1)

(
1
y

− 3
)

+ (y − 1)2
(

− 1
y2

)

f ′′(y) = ln y (4 ln y + 6) −
(

y − 1
y

)2

− 6(y − 1) → f ′′(1) = 0

f ′′′(y) =
(

4 ln y + 6
y

)
+ 4ln y

y
− 2

(
y − 1

y

)(
1
y2

)
− 6

f ′′′(y) =2y−3
[
4y2 ln y − (y − 1) + 3y2 − 3y3

]

g(y) ≡4y2 ln y − (y − 1) + 3y2 − 3y3 → g(1) = 0

g′(y) =8y ln y + 4y − 1 + 6y − 9y2 = 8y ln y + 10y − 9y2 − 1 → g′(1) = 0

g′′(y) =8 ln y + 8 + 10 − 18y = 8 ln y − 18y + 18 → g′′(1) = 0

g′′′(y) =8y−1 − 18

Since λ > 0 → y > 1, g′′′(y) < 0 g′′(1)=0−−−−→ g′′(y) < 0 g′(1)=0−−−−→ g′(y) < 0 g(1)=0−−−−→
g(y) < 0 → f ′′′(y) < 0 f ′′(1)=0−−−−→ f ′′(y) < 0 f ′(1)=0−−−−→ f ′(y) < 0 f(1)=0−−−−→ f(y) < 0. Thus,
∂(1/µ)

∂λ
< 0 for k = 1.

If k = 2, using Proposition 3.B.4,

∂(1/µ)
∂λ

=
∂
[
(1 + 2λ) (λ + 1) − 2λ (λ + 1)2 ln

(
λ+1

λ

)]
∂λ

∂(1/µ)
∂λ

=(1 + 4λ + 2) − 2
[
(λ + 1)2 + 2λ(λ + 1)

]
ln
(

λ + 1
λ

)
− 2λ2(λ + 1)

(
−λ−2

)
∂(1/µ)

∂λ
=(6λ + 5) − 2(λ + 1)(3λ + 1) ln

(
λ + 1

λ

)
∂(1/µ)

∂λ
=λ2

[
5
(

λ + 1
λ

)(1
λ

)
+
(1

λ

)
− 2

(
λ + 1

λ

)(
λ + 1

λ
+ 2

)
ln
(

λ + 1
λ

)]
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Again, let y ≡ λ+1
λ

→ λ = 1
y−1 . However, in this case let f(y) ≡ 5

(
λ+1

λ

) (
1
λ

)
+
(

1
λ

)
−

2
(

λ+1
λ

) (
λ+1

λ
+ 2

)
ln
(

λ+1
λ

)
= 5y(y − 1) + (y − 1) − 2y(y + 2) ln y → f(1) = 0. As a

result, f ′(y) = 10y−5+1−2(2y+2) ln y−2(y+2) = 8(y−1)−4(y+1) ln y → f ′(1) =
0, f ′′(y) = 8 − 4 ln y − 4

(
y+1

y

)
→ f ′′(1) = 0, and f ′′′(y) = − 4

y
+ 4

y2 = 4
(

1−y
y2

)
. Since

λ > 0 → y > 1, f ′′′(y) < 0 f ′′(1)=0−−−−→ f ′′(y) < 0 f ′(1)=0−−−−→ f ′(y) < 0 f(1)=0−−−−→ f(y) < 0,
implying ∂(1/µ)

∂λ
< 0 for k = 2.

If k ̸= 0, 1, 2, using again Proposition 3.B.4,

∂(1/µ)
∂λ

=
∂

(1 + 2λ
2−k

)
− k(1−k)/(2−k)

k−λ

[
(λ+1

λ )k
−1
]

∂λ

∂(1/µ)
∂λ

= 2
2 − k

+
[

k(1 − k)
2 − k

] −
[(

λ+1
λ

)k
− 1

]
− λ

[
k
(

λ+1
λ

)k−1 (
− 1

λ2

)]
{

k − λ
[(

λ+1
λ

)k
− 1

]}2

∂(1/µ)
∂λ

= 2
2 − k

+
[

k(1 − k)
2 − k

] k
λ

(
λ+1

λ

)k−1
−
[(

λ+1
λ

)k
− 1

]
{

k − λ
[(

λ+1
λ

)k
− 1

]}2

∂(1/µ)
∂λ

=
2

2−k

{
k − λ

[(
λ+1

λ

)k
− 1

]}2
+ k(1−k)

2−k

{
k
λ

(
λ+1

λ

)k−1
−
[(

λ+1
λ

)k
− 1

]}
{

k − λ
[(

λ+1
λ

)k
− 1

]}2

Consider now that k ∈ (0, 2) \ {1}, when 2 − k > 0. Let y ≡ λ+1
λ

again and

f(y) ≡2

k − λ

(λ + 1
λ

)k

− 1


2

− k(k − 1)

k

λ

(
λ + 1

λ

)k−1

−

(λ + 1
λ

)k

− 1


f(y) =2
[
k −

(
yk − 1
y − 1

)]2

− k(k − 1)
[
k(y − 1)yk−1 −

(
yk − 1

)]
→ lim

y→1+
f(y) = 0

f ′(y) = − 4
[
k −

(
yk − 1
y − 1

)] [
kyk−1(y − 1) − (yk − 1)

(y − 1)2

]
− k(k − 1)

[
k2yk−1 − k(k − 1)yk−2 − kyk−1

]
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f ′(y) = −4
y − 1

[
k −

(
yk − 1
y − 1

)] [
k −

(
yk − 1
y − 1

)
+ k(yk−1 − 1)

]
− k2(k − 1)2(y − 1)yk−2

f ′(y) =
4
[
k −

(
yk−1
y−1

)]2
+ 4

[
k −

(
yk−1
y−1

)]
k(yk−1 − 1) + k2(k − 1)2(y − 1)2yk−2

−(y − 1)

f ′(y) =

[
2
(
1 − yk−1

k(y−1)

)
+ (yk−1 − 1)

]2
+
[
(k − 1)2(y − 1)2yk−2 − (yk−1 − 1)2

]
−k−2(y − 1)

g(y) ≡(k − 1)2(y − 1)2yk−2 − (yk−1 − 1)2 → g(1) = 0

g′(y) =2(k − 1)2(y − 1)yk−2 + (k − 1)2(y − 1)2(k − 2)yk−3

− 2(yk−1 − 1)(k − 1)yk−2

h(y) ≡g(y)
yk−3 = 2(k − 1)2(y2 − y) + (k − 1)2(k − 2)(y − 1)2 − 2(k − 1)(yk − y)

h′(y) =2(k − 1)2(2y − 1) + 2(k − 1)2(k − 2)(y − 1) − 2(k − 1)(kyk−1 − 1)

h′′(y) =4(k − 1)2 + 2(k − 1)2(k − 2) − 2k(k − 1)2yk−2

∴ h(1) =h′(1) = h′′(1) = 0

h′′′(y) = − 2k(k − 1)2(k − 2)yk−3 = 2(k − 1)2yk−3k(2 − k)

Since λ > 0 → y > 1 and k ∈ (0, 2) \ {1} → k(2 − k) > 0, h′′′(y) > 0 h′′(1)=0−−−−→
h′′(y) > 0 h′(1)=0−−−−→ h′(y) > 0 h(1)=0−−−−→ h(y) > 0 → g′(y) > 0 g(1)=0−−−−→ g(y) > 0 →

f ′(y) < 0
limy→1+ f(y)=0
−−−−−−−−−→ f(y) < 0. Hence, ∂(1/µ)

∂λ
< 0 for k ∈ (0, 2) \ {1}.

In short, ∂(1/µ)
∂λ

< 0 for k ∈ (0, 2].

Proposition 3.B.6 For k ̸= 0 and λ > 0, limλ→0+ µ = max{2 − k, 1}.

Proof. Let λ > 0. It is sufficient to show that limλ→0+(1/µ) = (2 − k)−1 if k < 1,
k ̸= 0, and limλ→0+(1/µ) = 1 if k ≥ 1. If k = 1, from Proposition 3.B.4,

lim
λ→0+

(1/µ) =1 + 1
1 − limλ→0+ ln

(
λ+1

λ

) = 1
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If k = 2, using Proposition 3.B.4,

lim
λ→0+

(1/µ) =1 − 2 lim
λ→0+

 ln
(

λ+1
λ

)
λ−1

 = 1 − 2 lim
λ→0+


(

λ
λ+1

)
(−λ−2)

−λ−2

 = 1 − 0 = 1

where we apply L’Hôpital’s rule to get the second equality.

Lastly, if k ̸= 0, 1, 2, using again Proposition 3.B.4,

lim
λ→0+

(1/µ) =1 − k(1 − k)/(2 − k)

k − limλ→0+

[
(λ+1

λ )k

λ−1

]

lim
λ→0+

(1/µ) =



1 − k(1−k)
k(2−k) = 1

2−k
, if k < 0

1 − k(1−k)/(2−k)

k−limλ→0+

[
k(λ+1

λ )k−1
(−λ−2)

−λ−2

] = 1 − k(1−k)
k(2−k) = 1

2−k
, if k ∈ (0, 1)

1 − k(1−k)/(2−k)

k−limλ→0+

[
k(λ+1

λ )k−1
(−λ−2)

−λ−2

] = 1 − 0 = 1 , if k > 1, k ̸= 2

where we use L’Hôpital’s rule for k ∈ (0, 1) and k > 1, k ̸= 2.

Proposition 3.B.7 For k ̸= 0 and λ > 0, limλ→+∞ µ = 3.

Proof. Let λ > 0. It is sufficient to show that limλ→+∞(1/µ) = 1/3 for k ̸= 0. If
k = 1, from Proposition 3.B.4,

lim
λ→+∞

(1/µ) = lim
λ→+∞

1 +
2λ (λ + 1) ln

(
λ+1

λ

)
− 2λ − 1

(λ + 1) ln
(

λ+1
λ

)
− 1


lim

λ→+∞
(1/µ) =1 + lim

λ→+∞

 2 ln
(

λ+1
λ

)
− 2λ+1

λ(λ+1)
1
λ

ln
(

λ+1
λ

)
− 1

λ(λ+1)



lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

 2
(

λ
λ+1

) (
− 1

λ2

)
− 2λ(λ+1)−(2λ+1)(2λ+1)

λ2(λ+1)2

− 1
λ2 ln

(
λ+1

λ

)
+ 1

λ

(
λ

λ+1

) (
− 1

λ2

)
+ 2λ+1

λ2(λ+1)2


lim

λ→+∞
(1/µ) =1 + lim

λ→+∞

 − 2λ
λ+1 − 2λ

λ+1 +
(

2λ+1
λ+1

)2

− ln
(

λ+1
λ

)
− λ+1

(λ+1)2 + 2λ+1
(λ+1)2


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lim
λ→+∞

(1/µ) =1 + lim
λ→+∞


(

2λ+1
λ+1

)2
− 4λ

λ+1
λ

(λ+1)2 − ln
(

λ+1
λ

)


lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

2
(

2λ+1
λ+1

) (
2(λ+1)−(2λ+1)

(λ+1)2

)
− 4(λ+1)−4λ

(λ+1)2

(λ+1)2−2λ(λ+1)
(λ+1)4 −

(
λ

λ+1

) (
− 1

λ2

)


lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

2
(

2λ+1
λ+1

)
− 4

λ+1
λ

− λ−1
λ+1

 = 1 + lim
λ→+∞

 2
(

2(λ+1)−(2λ+1)
(λ+1)2

)
− 1

λ2 − (λ+1)−(λ−1)
(λ+1)2



lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

 2
(λ+1)2

− 1
λ2 − 2

(λ+1)2

 = 1 − lim
λ→+∞

 2(
λ+1

λ

)2
+ 2

 = 1 − 2
3 = 1

3

where we apply L’Hôpital’s rule in the second, fourth, and fifth lines.

If k = 2, using Proposition 3.B.4,

lim
λ→+∞

(1/µ) = lim
λ→+∞

 1+2λ
λ(λ+1) − 2 ln

(
λ+1

λ

)
λ−1(λ + 1)−2


lim

λ→+∞
(1/µ) = lim

λ→+∞

 2λ(λ+1)−(2λ+1)(2λ+1)
λ2(λ+1)2 − 2

(
λ

λ+1

) (
− 1

λ2

)
−λ−2(λ + 1)−2 − 2λ−1(λ + 1)−3


lim

λ→+∞
(1/µ) = lim

λ→+∞

[
2λ(λ + 1) − (2λ + 1)(λ + λ + 1) + 2λ(λ + 1)

−1 − 2λ
λ+1

]

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
4λ(λ + 1) − 2λ2 − 2λ(λ + 1) − (2λ + 1)

−1 − 2λ
λ+1

]

lim
λ→+∞

(1/µ) = lim
λ→+∞

[
2λ(λ + 1) − 2λ2 − (2λ + 1)

−1 − 2λ
λ+1

]
= lim

λ→+∞

[
1

1 + 2λ
λ+1

]
= 1

3

where we apply L’Hôpital’s rule in the first line.

Finally, If k ̸= 0, 1, 2, using again Proposition 3.B.4,

lim
λ→+∞

(1/µ) = lim
λ→+∞

1 +
( 1

2 − k

) 2k
λ

− 2
[(

λ+1
λ

)k
− 1

]
− k(1−k)

λ2

k
λ2 − 1

λ

[(
λ+1

λ

)k
− 1

]


lim
λ→+∞

(1/µ) =1 +
( 1

2 − k

)
lim

λ→+∞

 − 2k
λ2 − 2k

(
λ+1

λ

)k−1 (
− 1

λ2

)
+ 2k(1−k)

λ3

−2 k
λ3 + 1

λ2

[(
λ+1

λ

)k
− 1

]
− 1

λ
k
(

λ+1
λ

)k−1 (
− 1

λ2

)

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lim
λ→+∞

(1/µ) =1 +
(

2k

2 − k

)
lim

λ→+∞


(

λ+1
λ

)k−1
− 1 + (1−k)

λ(
λ+1

λ

)k
− 1 + k

λ

[(
λ+1

λ

)k−1
− 2

]


lim
λ→+∞

(1/µ) =1 +
(

2k

2 − k

)
lim

λ→+∞

 −(k − 1)
(

λ+1
λ

)k−2
− (1 − k)

−2k
[(

λ+1
λ

)k−1
− 1

]
− k

λ
(k − 1)

(
λ+1

λ

)k−2



lim
λ→+∞

(1/µ) =1 +
[

2k(1 − k)
2 − k

]
lim

λ→+∞


(

λ+1
λ

)k−2
− 1

−2k
[(

λ+1
λ

)k−1
− 1

]
− k

λ
(k − 1)

(
λ+1

λ

)k−2



lim
λ→+∞

(1/µ) =1 + lim
λ→+∞

 2k(1 − k)
(

λ+1
λ

)k−3

3k(k − 1)
(

λ+1
λ

)k−2
+ k

λ
(k − 1)(k − 2)

(
λ+1

λ

)k−3


lim

λ→+∞
(1/µ) =1 + 2k(1 − k)

3k(k − 1) = 1 − 2
3 = 1

3

where we apply L’Hôpital’s rule in the second, fourth, and sixth lines.

Proposition 3.B.8 For k ∈ (0, 2] and λ > 0, Ã ≡ A/A, Ã > 1, is a continuous,
strictly increasing, and well-defined function of µ if and only if µ ∈ (1, 3) and
λ > λ∗(µ), where λ∗(µ) ≡ arg minx∈[0,+∞] limλ→x |µ − µ|.

Proof. Let ĝs be the density of a truncated Lomax distribution with shape parame-
ter k ∈ (0, 2] and scale parameter λ > 0 defined over s̃(A) ∈ [0, s̃(Ah)], Ah > A > A,
with Ĝs being the respective cumulative distribution function. It is easy to see
g̃s(s̃(A)) = ĝs(s̃(A))/Ĝs(s̃(A)) is the density of a truncated Lomax distribution
with the same parameters k ∈ (0, 2] and λ > 0 over the support [0, s̃(A)].22 Given
the density g̃s (ĝs), one gets the respective density for A ∈

[
A, A

]
(A ∈ [A, Ah]),

which we denote by g̃ (ĝ), with cumulative distribution function G̃ (Ĝ). To get
these distributions, note for any A∗ ∈ [A, A]

P (A < A∗) =P (A/A∗ < A/A) = P (1 − A/A < 1 − A/A∗) = P (s̃(A) < s̃(A∗))

22 After all, the Lomax density is the density of a Pareto with the support shifted by λ > 0.
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implying G̃(A) = G̃s(s̃(A)) → g̃(A) = g̃s(s̃(A))A/A2 and Ĝ(A) = Ĝs(s̃(A)) →
ĝ(A) = ĝs(s̃(A))A/A2. Given these distributions and since g̃s(s̃(A)) = ĝs(s̃(A))

Ĝs(s̃(A)) ,

ĝ(A)
Ĝ(A)

=
[

ĝs(s̃(A))
Ĝs(s̃(A))

]
A/A2 = g̃s(s̃(A))A/A2 = g̃(A)

which allows us to use Proposition 3.B.1. Thus, A, A > A is continuous, strictly
increasing, and well defined in µ if and only if µ ∈ (1, µ), where µ is given in
Proposition 3.B.4. Since µ is only a function of Ã ≡ A/A (given k and λ) due to
Proposition 3.B.3 and the fact that S ≡ s̃(A)

λ
+ 1 = 1−Ã−1

λ
+ 1, these features of A

also hold for Ã.

From Propositions 3.B.5, 3.B.6, and 3.B.7, the image of µ over λ ∈ (0, +∞)
is (max{2 − k, 1}, 3) for k ∈ (0, 2]. Hence, any k ∈ (0, 2] is viable in the sense
that there is always λ > 0 such as µ ∈ (1, µ) if and only if µ ∈ (1, 3). Un-
der such condition, from Proposition 3.B.5, any λ > λ∗(µ) is viable, where
λ∗(µ) ≡ arg minx∈[0,+∞] limλ→x |µ − µ| for k ∈ (0, 2], which is well defined as µ

is a continuous and monotonic function of λ (Proposition 3.B.5).23 Therefore, for
k ∈ (0, 2] and λ > 0, µ ∈ (1, µ) holds if and only if µ ∈ (1, 3) and λ > λ∗(µ).

Figure 3.B.1 illustrates the results of Proposition 3.B.8, plotting Ã against
µ for truncated Lomax distributions with k = 1 and λ = 10, 1, 0.1, 0.01.

We finish this section with a comment about the generalization of Proposi-
tions 3.B.5 and 3.B.8 for any k ̸= 0. In Proposition 3.B.5, we show

∂(1/µ)
∂λ

= 2
2 − k

+
[

k(1 − k)
2 − k

] k
λ

(
λ+1

λ

)k−1
−
[(

λ+1
λ

)k
− 1

]
{

k − λ
[(

λ+1
λ

)k
− 1

]}2

for any k ̸= 0, 1, 2. Consequently, if k = −1,

∂(1/µ)
∂λ

=2
3

1 −
− 1

λ

(
λ

λ+1

)2
−
(

λ
λ+1

)
+ 1[

−1 − λ
(

λ
λ+1

)
+ λ

]2
 = 2

3

1 −
1

λ+1

[
(λ + 1) − λ −

(
λ

λ+1

)]
[
(λ − 1) − λ2

λ+1

]2


23 Note µ = µ under λ = λ∗(µ) ∈ (0, +∞) except for k ∈ (0, 1) and µ ∈ (1, 2−k], when λ∗(µ) = 0
as µ is strictly increasing in λ > 0 with µ ∈ (2 − k, 3).
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Figure 3.B.1 – Technology dispersion vs. average markup - Zipf’s law calibration,
k = 1.
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(
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 = 2
3(1 − 1) = 0

Moreover, numerical results using this expression, such as those shown in Figure
3.B.2, suggest ∂(1/µ)

∂λ
> 0 for k < −1 and ∂(1/µ)

∂λ
< 0 for k ∈ (−1, 0) ∪ (2, +∞).

Assuming these results indeed hold, one can generalize Proposition 3.B.5 for any
k ̸= 0: for λ > 0, ∂µ

∂λ
> 0 if k > −1, k ̸= 0, ∂µ

∂λ
= 0 if k = −1, and ∂µ

∂λ
< 0 if k < −1.

Given this (possible) new Proposition 3.B.5, one can also generalize Proposi-
tion 3.B.8: for k ̸= 0 and λ > 0, Ã ≡ A/A, Ã > 1, is continuous, strictly increasing,
and well defined in µ if and only if (i) µ ∈ (1, 3), (ii) µ = 3 and k ≤ −1, or (iii)
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Figure 3.B.2 – ∂(1/µ)
∂λ

vs. k, k ̸= 0, 1, 2.

µ > 3 and k < 2 − µ < −1, with any viable λ, that is, with

λ ∈


(0, λ∗(µ)) , if k < −1

(0, +∞) , if k = −1

(λ∗(µ), +∞) , if k > −1, k ̸= 0

where λ∗(µ) ≡ arg minx∈[0,+∞] limλ→x |µ − µ| is now defined for any k /∈ {−1, 0}.24

After all, in this case, from this (possible) new Proposition 3.B.5 and Propositions
3.B.6 and 3.B.7, the image of µ over λ ∈ (0, +∞) is

(3, 2 − k) , if k < −1

[3, 3] , if k = −1

(max{2 − k, 1}, 3) , if k > −1, k ̸= 0
24 Here, given this (possible) new Proposition 3.B.5, µ = µ under λ∗(µ) ∈ (0, +∞) except in two

cases. The first exception would be k < −1 and µ ∈ (1, 3], when λ∗(µ) = +∞ as µ is strictly
decreasing in λ > 0 with µ ∈ (3, 2 − k). The second exception would be k ∈ (−1, 1) \ {0} and
µ ∈ (1, 2 − k], when λ∗ = 0 as µ is strictly increasing in λ > 0 with µ ∈ (2 − k, 3).
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implying any k ̸= 0 is viable if µ ∈ (1, 3); if µ = 3, k ≤ −1; if µ > 3, µ < 2 − k →
k < 2 − µ < −1. And, given a viable k, from this (possible) generalization of
Proposition 3.B.5, one easily gets the viable λs shown in the statement of the
(possible) new Proposition 3.B.8.

3.C Zipf’s law calibration

3.C.1 Distributional assumption and the Zipf’s law

Suppose s̃(A) ≡ 1 − A/A = s(A)
η/q

∈
[
0, s̃(A)

]
=
[
0, 1 − Ã−1

]
is truncated

Lomax distributed with shape parameter k ̸= 0 and scale parameter λ > 0 or,
equivalently, (s̃(A) + λ) ∈ [λ, s̃(A) + λ] is truncated Pareto distributed with shape
parameter k ̸= 0. Thus, the density of s̃(A) is g̃s(s̃(A)) = k

[
λk(s̃(A)+λ)k

(s̃(A)+λ)k−λk

]
(s̃(A) +

λ)−k−1, which is shown in Figure 3.C.1 for k = 1 and λ = 0.2, 0.4, 1, with s̃(A) =
1/3.25

For k ≈ 1 and λ ≈ 0, firm market share is approximately truncated Pareto
distributed with shape parameter k ≈ 1, consistent with Zipf’s law, particularly
away from support’s bounds. After all,

P (s̃(A) ≥ x) =
∫ s̃(A)

x
g̃s(y)dy = (x + λ)−k − (s̃(A) + λ)−k

λ−k − (s̃(A) + λ)−k
(3.C.1)

∂ ln P (s̃(A) ≥ x)
∂ ln x

= −k(x + λ)−k−1x

(x + λ)−k − (s̃(A) + λ)−k
= −k


x

x+λ

1 −
(

x+λ
s̃(A)+λ

)k

 (3.C.2)

where we use in the last line ∂x
∂ ln x

= ∂eln x

∂ ln x
= eln x = x.26 As a result, (i) ∂ ln P (s̃(A)≥x)

∂ ln x
→

0 when x → 0+, (ii) ∂ ln P (s̃(A)≥x)
∂ ln x

→ −∞ when x → s̃(A)−, and (iii) ∂ ln P (s̃(A)≥x)
∂ ln x

≈
25 Alternatively, we could have imposed the distribution of θi = Li/L = Ki/K, when firm size

would be measured by number of employees (or capital stock) instead of sales. Since we need
Ea

[
(A/A)j

]
for j ∈ N \ {0} to compute the target moments, we should recover A/Ai from θi.

Given Equation (3.2) for the continuous model and (3.A.1), θi = AΩ
A (η/q)

[
(A/Ai) − (A/Ai)2]

and thus θi uniquely identifies A/Ai if and only if Ã ≡ A/A ≤ 2. Thus, under this alternative
strategy, one must impose Ã ≤ 2, which may not hold empirically.

26 From (3.C.1), P (s(A) ≥ x) = P
(

s̃(A) ≥ x
η/q

)
= (x+λ̃)−k−(s(A)+λ̃)−k

λ̃−k−(s(A)+λ̃)−k
for λ̃ ≡ λ (η/q), meaning

s(A) ∈ [0, s(A)] is truncated Lomax distributed with shape parameter k ̸= 0 and scale
parameter λ̃ > 0.
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Figure 3.C.1 – Truncated Lomax density for k = 1 over the support [0, 1/3].

−k
(

x
x+λ

)
near the beginning of the support, when x+λ

s̃(A)+λ
≈ 0. As a consequence,

if k ≈ 1 and λ ≈ 0, ∂ ln P (s̃(A)≥x)
∂ ln x

≈ −1 for x near the beginning of the support, as
in Zipf’s law.

It is worth mentioning that these deviations from Zipf’s law near support
bounds are not a shortcoming of the Lomax distribution. It would occur for
any continuous truncated distribution. On the one hand, there is no distribution
satisfying Zipf’s law at x = 0 since P (s ≥ x) = cx−k with k ≈ 1 is only well
defined for x ̸= 0, implying ∂ ln P (s̃(A)≥x)

∂ ln x
should deviate from -1 sufficiently close to

x = 0 as P (s̃(A) ≥ x) is a continuous function. On the other hand, to evaluate the
behavior near the end of the support, assume, by contradiction, P (s ≥ x) = cx−k

for s ∈ [s, s] ∈ (0, +∞) and k ≈ 1, with c > 0 as P (s ≥ x) > 0 at least for x = s.
In this case, P (s ≥ s) = cs−k > 0, which is absurd as s ∈ [s, s] ∈ (0, +∞) and thus
P (s ≥ s) = 0. Therefore, no truncated continuous distribution satisfies Zipf’s law
over a strictly positive support. A corollary of this result is that any distribution
should deviate from Zipf’s law near the end of its positive support. After all, if
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that were not true, by truncating this distribution from below, we would obtain
a truncated continuous distribution over a narrow strictly positive support that
satisfies Zipf’s law, contradicting the previous result.

Under this distributional assumption, we show in Proposition 3.B.2 that

Ea

[
(s̃(A) + λ)j

]
=


kλj

j−k

(
Sj−Sk

Sk−1

)
, if j ̸= k

kλk
(

Sk ln S
Sk−1

)
, if j = k

(3.C.3)

for k ̸= 0, λ > 0, and j ∈ N \ {0}, where S ≡ s̃(A)
λ

+ 1.

3.C.2 Two-stage calibration procedure

We follow essentially the same two stages presented in Section 3.3.3 to
quantify the model, but using (3.C.3) and the fact that s̃(A) ≡ 1 − A/A →
Ea ((A/A)j) = Ea ((1 − s̃(A))j) instead of Equation (3.9). In the first stage, we find
A and A by matching aggregate TFP AΩ and average markup µ to data. From
Proposition 3.B.8, given k ∈ (0, 2], a unique solution to this problem exists if and
only if µ ∈ (1, 3) and λ > λ∗(µ), where λ∗(µ) ≡ arg minx∈[0,+∞] limλ→x |µ − µ| and
µ ≡ limA→+∞ µ is computed from (3.10) in Proposition 3.B.4. Analogously to the
baseline Pareto case, for a given distributional shape, allocative efficiency Ω is
only a function of µ. Figure 3.C.2 plots this function Ω of µ for truncated Lomax
distributions with k = 1 and λ = 10, 1, 0.1, 0.01, showing several noteworthy results.
First, as before, Ω is strictly decreasing in µ = 1−α

LS
, with Ω → 1− when µ → 1+.

Second, given a time series of µ, a higher λ would imply a higher and less volatile
estimated Ω.

In the second stage, we set k ∈ (0, 2], k ≈ 1, which is viable as µ ∈ (1, 3) in
Brazil, and search a time-invariant λ that minimizes the distance to normalized
NaHHIL.27 We limit the search to λ > λ∗(max{µ}), where max{µ} is the maximum
µ in its time series.28 Analogously to the baseline Pareto case, it is easy to see
27 We also try to seek k ̸= 0 and λ > 0 jointly in the second stage. Since, in this case, k ∈ (0, 2]

may not hold, we rely on a (possible) generalization of Proposition 3.B.8 to any k ̸= 0 discussed
at the end of Appendix 3.B.2.

28 Given µ ∈ (1, 3) and k ∈ (0, 2], there is a solution for the first-stage algorithm if and only if
λ > λ∗(µ). As a result, λ > max{λ∗(µ)} ensure there is a solution for this algorithm in each
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Figure 3.C.2 – Allocative efficiency vs. average markup - Zipf’s law calibration,
k = 1.

that TFP data are not required to estimate Ω, not even through λ. They are used
only to pin down A and A. Therefore, once more, the residual of the production
function is not the TFP AΩ itself, but rather only its technology component A.

period, with max{λ∗(µ)} being the maximum λ∗(µ) in its time series. However, since µ is
strictly increasing in λ for k ∈ (0, 2] (Proposition 3.B.5), max{λ∗(µ)} = λ∗(max{µ}).
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4 Zipf’s law in the distribution of Brazilian
firm size

4.1 Introduction

A power or scaling law holds for variables X and Y if Y = cXk, where k

is known as the power law exponent and c is typically an unremarkable constant.
As Gabaix (2009), Gabaix (2016) points out, these power laws emerge in different
domains, from natural phenomena (e.g., earthquakes, forest fires, and rivers),
biology (e.g., Kleiber’s law), and popularity of websites to economics, both in
theory (e.g., the quantity theory of money) and empirically (e.g., Kaldor’s stylized
facts on economic growth). A power law may also apply to a distribution, with

P (S ≥ s) = (s/s)k (4.1)

for a random variable S, S ≥ s > 0, where k > 0. Generally, this distribution is
known as Pareto (type I), but it is called Zipf’s law when k ≈ 1. In such cases, the
probability of S being greater or equal to s is roughly proportional to 1/s. This
“law” was named after the linguist George Kingsley Zipf, who found analogous
empirical regularity for the usage frequency of words in different languages and
countries (Zipf, 1949), but it shows up in several other contexts. One illustrative
example is the distribution of city size by population, especially among larger cities
(Gabaix, 1999; Gabaix; Ioannides, 2004).1

In this paper, we evaluate Zipf’s law for the distribution of firm size by the
number of employees in Brazil. We use publicly available binned annual data from
the Central Register of Enterprises (CEMPRE), which is held by the Brazilian
Institute of Geography and Statistics (IBGE) and covers all formal organizations.
1 For analogous evidence for Brazil, see Jr and Ribeiro (2006) and Justo (2014). On a related

matter, Comitti, Shikida and Figueiredo (2022) estimate daily power law exponent k for
the distribution of Brazilian municipalities by the number of infected people by COVID-19.
Interestingly, they find it converges over time to 0.87, which is exactly the k they estimate for
the distribution of municipality size by population.
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Following the methodology proposed by Virkar and Clauset (2014), we find Zipf’s
law provides a very good, although not perfect, approximation to data for each
year between 1996 and 2020 at the economy-wide level and also for agriculture,
industry, and services alone. However, a lognormal distribution also performs well
and even outperforms Zipf’s law in certain cases.

Related literature. Empirical evidence supporting Zipf’s law for firm size distri-
bution has been found for several different countries with firm size measured by the
number of employees, sales, income, total assets, and equity plus debt (Okuyama;
Takayasu; Takayasu, 1999; Axtell, 2001; Fujiwara et al., 2004; Luttmer, 2007;
Gabaix; Landier, 2008; Giovanni; Levchenko; Ranciere, 2011; Giovanni; Levchenko,
2013).2 In particular, Giovanni and Levchenko (2013) use the ORBIS database
to evaluate firm size distribution by total sales for a sample of 44 countries. In
Giovanni and Levchenko (2013, p.295) own words,

[...] the country sample is diverse: it includes major European economies
(France, Germany, Netherlands), smaller E.U. accession countries (Czech
Republic, Estonia), major middle income countries (Brazil, Argentina),
as well as the two largest emerging markets (India and China). All in
all, in this sample of 44 countries with very different characteristics, the
distributions of firm size are remarkably consistent with Zipf’s Law.

Specifically to Brazil, Silva et al. (2018) studies the distribution of firm size by net
revenue, finding support for Zipf’s law among the 1,000 largest firms in 2015.

The literature also shows contradictory evidence. For instance, there is some
support for lognormality for firm size distribution (Stanley et al., 1995; Kondo;
Lewis; Stella, 2023). Moreover, applying Lagrange multiplier tests, Resende and
Cardoso (2022) find support to the more general Pareto type II and Pareto type IV
against the Pareto type I and Zipf’s law for firm size distribution by net revenue in
Brazil.
2 Fujiwara (2004) finds Zipf’s law also holds for the distribution of total liabilities of bankrupted

firms in Japan. For a survey of the empirical findings about Zipf’s law for firm size, see Section
3 of Bottazzi, Pirino and Tamagni (2015).
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The remainder of the paper proceeds as follows. Section 4.2 presents the
data and methodology. Section 4.3 presents the empirical results. Finally, Section
4.4 concludes.

4.2 Data and methodology
We use publicly available annual data from CEMPRE, which is held by the

IBGE and covers all formal organizations (corporate entities, public administration,
and non-profit organizations). We split the analysis into two distinct periods due to
a methodological break in the database, which (i) altered the criteria for identifying
active firms and (ii) updated the industry classification. First, between 1996 and
2006, when the industries are classified according to the National Classification of
Economic Activities (CNAE), a Brazilian classification derived from the ISIC Rev.3.
Second, from 2006 to 2020, using CNAE 2.0, which follows the ISIC Rev.4. For
both periods, we have the number of firms across all industries (up to 3-digit level)
by nine size bins based on the number of employees: 0 to 4, 5 to 9, 10 to 19, 20 to
29, 30 to 49, 50 to 99, 100 to 249, 250 to 499, and 500 or more. All our analyses
are done at the economy-wide level and also for agriculture, industry, and services
alone.3 Table 4.1 presents the data for these industries in selected years, showing
the new criteria for identifying active firms substantially lowered the number of
firms in 2006, notably for firms with up to four employees.

Virkar and Clauset (2014) suggest three steps to evaluate the prevalence
of a distributional power law in binned data: (i) fit the power law, (ii) test the
power law’s plausibility, and (iii) compare against alternative distributions.4 We
follow similar steps. Our alternative distributions are (i) a strong Zipf’s law or
simply a Zipf distribution, that is, a Pareto density with k = 1, and (ii) a lognormal
density. The choice of the lognormal is due to two reasons. First, the “[..] lognormal
provides a strong test because for a wide range of sample sizes it produces bin
counts that are reasonably power-law-like when plotted on log–log axes [...]” (Virkar;
Clauset, 2014, p.103). Second, there is also evidence supporting lognormality for
3 For the CNAE, we classified sections A and B as agriculture, C to F as industry, and G to Q

as services. For the CNAE 2.0, A is agriculture, B to F is industry, and G to U is services.
4 For an analogous approach for non-binned data, see Clauset, Shalizi and Newman (2009).
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Table 4.1 – Number of firms by firm size

Number of 1996-2006 database 2006-2020 database
employees 1996 2001 2006 2006 2013 2020
All industries

0 to 4 2,616,788 3,903,486 4,730,580 3,324,519 3,985,367 4,090,186
5 to 9 327,372 432,626 542,426 531,612 755,609 739,242
10 to 19 141,337 193,133 265,581 261,271 379,902 358,736
20 to 29 40,693 55,032 69,486 69,433 102,152 93,372
30 to 49 31,260 39,498 50,276 50,222 73,368 65,053
50 to 99 23,133 27,102 33,294 33,269 47,651 43,294
100 to 249 15,244 16,732 19,683 19,664 27,132 24,341
250 to 499 5,713 6,283 7,807 7,801 10,429 9,739
500 or more 5,181 5,933 7,793 7,787 10,624 10,128
Total 3,206,721 4,679,825 5,726,926 4,305,578 5,392,234 5,434,091

Agriculture
0 to 4 16,419 23,666 38,961 21,850 93,237 89,402
5 to 9 3,436 3,737 4,681 4,249 5,870 6,638
10 to 19 1,909 2,160 2,948 2,740 3,686 3,657
20 to 29 735 814 980 977 1,105 1,136
30 to 49 583 717 778 760 863 811
50 to 99 447 538 585 599 637 681
100 to 249 247 310 404 402 398 407
250 to 499 103 132 121 125 157 160
500 or more 88 124 127 127 127 130
Total 23,967 32,198 49,585 31,829 106,080 103,022

Industry
0 to 4 315,907 413,192 474,964 314,128 433,166 472,907
5 to 9 61,262 73,224 83,092 82,158 118,577 107,997
10 to 19 36,803 48,727 59,429 59,166 79,931 69,686
20 to 29 13,656 18,474 21,407 21,664 29,726 24,498
30 to 49 11,487 14,795 17,571 17,588 23,142 17,941
50 to 99 9,045 10,906 13,200 13,231 17,366 13,127
100 to 249 5,759 6,160 7,308 7,295 9,836 7,399
250 to 499 2,089 1,942 2,438 2,423 3,228 2,596
500 or more 1,726 1,622 2,034 2,038 2,902 2,283
Total 457,734 589,042 681,443 519,691 717,874 718,434

Services
0 to 4 2,284,462 3,466,628 4,216,655 2,988,541 3,458,964 3,527,877
5 to 9 262,674 355,665 454,653 445,205 631,162 624,607
10 to 19 102,625 142,246 203,204 199,365 296,285 285,393
20 to 29 26,302 35,744 47,099 46,792 71,321 67,738
30 to 49 19,190 23,986 31,927 31,874 49,363 46,301
50 to 99 13,641 15,658 19,509 19,439 29,648 29,486
100 to 249 9,238 10,262 11,971 11,967 16,898 16,535
250 to 499 3,521 4,209 5,248 5,253 7,044 6,983
500 or more 3,367 4,187 5,632 5,622 7,595 7,715
Total 2,725,020 4,058,585 4,995,898 3,754,058 4,568,280 4,612,635

Source: publicly available CEMPRE database.
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firm size distribution (Stanley et al., 1995; Kondo; Lewis; Stella, 2023). Given these
alternative distributions, we consider the following three steps to evaluate power
and strong Zipf’s law:

1. Fit Pareto and lognormal distributions.

2. Test Pareto, lognormal, and strong Zipf’s law plausibility.

3. Compare Pareto, Zipf, and lognormal distributions.

In the following, we present the methodology used in each of these three steps.

4.2.1 Step 1: fitting the distributions

Before discussing the estimators, three comments are in order. First, in some
empirical applications, a distributional power law may hold but only in the upper
tail, meaning one must also gauge the support’s lower bound s > 0. For instance,
one can visually identify the point beyond which the empirical survival function
becomes roughly straight on a log-log plot, although more objective methods
also exist (Clauset; Shalizi; Newman, 2009; Virkar; Clauset, 2014; Schluter, 2021).
However, since we have just a few bins, we choose to test all possible s instead of
choosing a specific one, setting s = 5, 10, 20, 30, 50 for both Pareto and lognormal
distributions.5 Second, since lognormal’s support begins at zero and we need it
to start at s > 0, we shift its density to the right by s, supposing S − s > 0 is
lognormally distributed. Third, our measure of firm size, the number of employees, is
discrete, whereas both Pareto and lognormal distributions have continuous supports.
We address this issue by discretizing each distribution, defining the probability
mass function as P (S = s) ≡ P (S ≥ s) − P (S ≥ s + 1) for s ∈ {s ∈ N|s ≥ s},
where P (S ≥ s) is computed from the respective continuous distribution.6 This
discretization is adopted by Kondo, Lewis and Stella (2023) and advocated, for the
Pareto case, by Buddana and Kozubowski (2014). Differently, Clauset, Shalizi and
5 We do not set s = 0 because the Pareto support is strictly positive, while s = 100, 250, 500 are

discarded as we need at least four bins to ensure some degree of freedom in the lognormal
estimation.

6 Consequently, the probabilities add up to one by construction as
∑∞

s=s P (S = s) = P (S ≥
s) = 1.
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Newman (2009) consider a power law for the probability mass function assuming
P (S = s) ≡ ζ(k, s)S−k−1, where ζ is a generalized zeta function, “which is rather
inconvenient to work within an applied setting” (Buddana; Kozubowski, 2014,
p.144).

We use two estimators for the Pareto distribution. First, we apply Ordinary
Least Squares (OLS) to Equation (4.1), when we replace the survival function
P (S ≥ s) by its empirical counterpart P̂ (S ≥ s), computed as the ratio between
the number of firms with size S ≥ s and the number of firms with size S ≥ s.7

Formally, given exp(ϵ) ≡ P̂ (S≥s)
P (S≥s) , the regression equation is

ln P̂ (S ≥ s) =k ln(s/s) + ϵ (4.2)

where k is the only unknown parameter. Therefore, we do not follow the usual
practice in the literature of freely estimating an intercept. By doing that, we address
the concerns of Clauset, Shalizi and Newman (2009) that regression lines are not
valid distributions since, in our approach, P (S ≥ s) = 1, which is not generally
valid if an intercept is freely estimated.8 Besides this intercept restriction, this
method is essentially a standard rank-size regression with binned data, as the
number of firms with size S ≥ s equals the rank size of a firm with exactly s

employees.9

Second, we use a maximum likelihood (ML) estimator. Virkar and Clauset
(2014) show that an analytical solution for this ML estimator (MLE) can be
obtained when the binning scheme is logarithmic. For arbitrary bins such as those
of Table 4.1, however, a closed-form expression for this MLE does not exist, and
thus, we obtain it numerically. Since it is computationally faster, we choose to solve

7 Alternatively, we could apply OLS to a log-transformed histogram, gauging the power law
exponent k from the empirical probability function instead of the empirical survival function.
We choose not to follow this strategy because this estimator performed very poorly in Monte
Carlo simulations (Clauset; Shalizi; Newman, 2009; Virkar; Clauset, 2014; Bottazzi; Pirino;
Tamagni, 2015).

8 Urzúa (2011, p.254) expresses similar concerns, arguing “the intercept is not a nuisance
parameter in the regression.”

9 After all, if the j-th largest firm has size s, there must be j firms with size S ≥ s if we assign
the highest possible rank to firms with the same size (e.g., if the two largest firms are the
same size, we assign rank 2 for both).
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the associated First-Order Condition (FOC), derived in Appendix 4.A.1, instead of
directly maximizing the log-likelihood function as in Virkar and Clauset (2014).

If the correct s is chosen, it is known that OLS regression (4.2) consistently
estimates k, since P̂ (S ≥ s) is a consistent estimator of P (S ≥ s) by the law of large
numbers. It is also possible to show that MLEs for both binned and non-binned
data are consistent and asymptotically efficient (Virkar; Clauset, 2014; Clauset;
Shalizi; Newman, 2009).10 But what about their small-sample performance? Clauset,
Shalizi and Newman (2009), Virkar and Clauset (2014), and Bottazzi, Pirino and
Tamagni (2015) study it through Monte Carlo exercises. They find OLS regression
(4.2), but without the intercept constraint, is biased in small samples, although this
bias is not typically very high.11 MLEs have the best performance in binned data
(Virkar; Clauset, 2014) and also in non-binned data (Clauset; Shalizi; Newman,
2009; Bottazzi; Pirino; Tamagni, 2015), accurately estimating k, with negligible
bias.12 These results are not unexpected as Aban and Meerschaert (2004) show that
the MLE for non-binned data (with a small sample correction) is the best linear
unbiased estimator (BLUE) and also the minimum variance unbiased estimator
(MVUE).

Finally, regarding the lognormal distribution, we follow Virkar and Clauset
(2014) and estimate its parameters µ and σ > 0 using only the MLE for binned
data. As in the Pareto case, there is no analytic expression for this estimator, and
thus, we obtain it by numerically solving the FOCs for the likelihood maximization.
See Appendix 4.A.2 for the derivation of these FOCs.

4.2.2 Step 2: goodness-of-fit tests

Virkar and Clauset (2014) use a goodness-of-fit test to verify if a random
variable follows an estimated distribution. This test requires a measure of the
distance between empirical and estimated distributions. They suggest the Kol-
mogorov–Smirnov (KS) goodness-of-fit statistic, which can be formally defined
10 The MLE for non-binned data is the known Hill (1975) estimator.
11 With the (correct) intercept constraint, one should expect a more efficient estimation of k. See

Schluter (2018) for proof of the rank-size regression case in large samples.
12 For non-binned data, Bottazzi, Pirino and Tamagni (2015) also find very good performance

for the OLS rank-size estimator with Gabaix and Ibragimov (2011) correction.
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as

D = max
s∈{s,...,500}

∣∣∣P̂ (S < s) − P (S < s|β̂)
∣∣∣ = max

s∈{s,...,500}

∣∣∣P̂ (S ≥ s) − P (S ≥ s|β̂)
∣∣∣

(4.3)

where P̂ (·) is the empirical probability and P (·|β̂) is the probability under an
evaluated distribution with the estimated vector of parameters β̂. Given the distance
measure (4.3), an estimated distribution, and being n the number of firms with at
least s employees, the p-value of the test can be computed following five steps:

1. Compute the distance D∗ between estimated and empirical distributions
using (4.3).

2. Generate a synthetic binned data set with n values that follows the same
estimated distribution above s.

3. Fit the model to this synthetic data set, obtaining a new estimated distribu-
tion.

4. From (4.3), compute the distance D between this new model and the synthetic
data set.

5. Repeat steps 2–4 many times and report the fraction of the distances D that
are at least as large as D∗.

Some comments are due. First, in the second step of this algorithm, Virkar and
Clauset (2014) suggest the use of a semi-parametric bootstrap to generate a
distribution that follows the estimated distribution above s and the empirical
distribution below s, which is necessary to them as they are also estimating s. Since
we are exogenously setting s, we only need the distribution above s. Second, they
generate synthetic data above s by sampling from a non-binned distribution and
then computing the synthetic bin counts. We choose to sample directly from a
multinomial distribution whose events’ probabilities are given by the probabilities
of the bins, which can be easily computed from the estimated survival functions
(see Appendix 4.A). Third, we generate 10,000 synthetic data sets for each test,
which is probably high enough as Virkar and Clauset (2014) show that with 2,500
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simulations, one can gauge the p-value to within 0.01 of the true value. Fourth,
we compute the test for Pareto and lognormal distributions, for each considered
estimator. We also test a strong Zipf’s law, when no estimation is required as it is
a Pareto distribution with k = 1.

4.2.3 Step 3: comparing the distributions

Virkar and Clauset (2014) suggest the use of the likelihood ratio test
proposed by Vuong (1989) to compare non-nested distributions in binned data.
Suppose one wants to compare distribution A against distribution B, which are not
nested. Let Ld = ∏m

i=j(pd,i)hi be the likelihood of distribution d = A, B, where pd,i

is the probability that some observation falls within the i-th bin under distribution
d and hi is the number of raw observations in the i-th bin. Note that there are
m bins, but the distributions hold only from the j-th bin, meaning s is the lower
bound of the j-th bin. Given that, the log-likelihood ratio of comparing A against
B is R ≡ ln LA − ln LB. Let us also define the normalized log-likelihood ratio as
Rn ≡ R/

√
2nσ̂2

R, where σ̂2
R is the estimated variance on the log-likelihood ratio R,

that is,

σ̂2
R ≡ 1

n

m∑
i=j

hi [(ln pA,i − ln pB,i) − R/n]2 (4.4)

n ≡ ∑m
i=j hi is the number of firms with at least s employees or, equivalently, the

number of firms at the j-th bin or above. Vuong (1989) shows that under the null
that the two distributions are equivalent,

√
2Rn

D−→ N(0, 1); under the alterna-
tive that distribution A is better,

√
2Rn

a.s.−−→ +∞; finally, under the alternative
that distribution B is better,

√
2Rn

a.s.−−→ −∞. As a consequence, under the null
hypothesis, in large samples,

P (|R| ≥ |R∗|) =P
(√

2|Rn| ≥
√

2|R∗
n|
)

= 2 × P
(√

2Rn ≥
√

2|R∗
n|
)

P (|R| ≥ |R∗|) =2
{
1 − (1/2)

[
1 + erf

(√
2|R∗

n|/
√

2
)]}

= 1 − erf (|R∗
n|) (4.5)

where erf(z) ≡ 2√
π

∫ z
0 e−t2

dt is the Gaussian error function. Hence, setting a signifi-
cance level p∗, one can get T > 0 that solves p∗ = 1−erf(T ). If Rn ≥ T (Rn ≤ −T ),
the null is rejected in favor of A being better (worse) than B, while the null is not
rejected if −T < Rn < T .
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We apply this test to compare (i) Pareto against lognormal and (ii) strong
Zipf’s law against lognormal, using Pareto and lognormal densities as estimated
by ML. Testing strong Zipf’s law against the Pareto distribution is equivalent
to verifying if k = 1. However, standard OLS t-tests would not be reliable here
since they have a strong tendency to over-reject the null k = 1, as Gabaix and
Ibragimov (2011) and Bottazzi, Pirino and Tamagni (2015) show through Monte
Carlo exercises. Indeed, when sampling from a Zipf distribution, Bottazzi, Pirino
and Tamagni (2015) could reject the null k = 1 at 5% confidence level 60 – 70%
of the time! Given that, we follow Virkar and Clauset (2014) and verify it using
the ML estimates and a standard likelihood ratio test. Under the null k = 1, it
is known that 2|R| is asymptotically chi-squared distributed with one degree of
freedom, where R is the log-likelihood ratio between Pareto and Zipf distributions.

4.3 Results

4.3.1 Step 1: fitting the distributions

Figures 4.1 and 4.2 plot empirical and estimated survival functions in 1996
and 2020, respectively, our sample’s initial and final years. In both cases, we present
the results at economy-wide and industry levels, with s = 5, 20, 50. The axes of
each plot are in logarithmic scale, with P (S ≥ s) in the vertical axis and s in the
horizontal axis, implying estimated survival functions are straight lines in Pareto
cases. Inside each plot, we show the OLS/ML estimates of k, k̂, and the (centered)
R2 for each estimator/distribution computed from these plotted data. As can be
seen, both distributions fit the data well. For s = 5, the Pareto distribution does
a better job, especially closer to the upper tail, while for s = 20 and mainly for
s = 50, both distributions fit similarly well. Focusing on the Pareto case, note
estimates of k are relatively robust to the choice of estimator, particularly for higher
s. Additionally, all estimates of k are around one and typically become closer to
this level as s increases.

These results are not specific to 1996 and 2020 or s = 5, 20, 50. In Figures
4.3 and 4.4, we plot the (centered) R2 for each year, industry, lower bound s, and
estimator/distribution for 1996-2006 and 2006-2020, respectively. The fit of each
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model is very good for s = 20, 30, 50, while for s = 5, the lognormal fit is usually
worse. Moreover, especially for s = 10, 20, the ML Pareto estimate has the worst
fit for the services sector. The power law exponent k estimates for 1996-2006 and
2006-2020 are shown in Figures 4.5 and 4.6, respectively. Several things are worth
noting about these estimates. First, they are around one, typically between 0.8
and 1.2, and approach the unitary value for higher values of s. Second, they are
also surprisingly stable over time. Fujiwara et al. (2004) find similar stability for
the UK, France, Italy, and Spain between 1993 and 2001, with firm size measured
by total assets, number of employees, and sales (except for the UK). Resende and
Cardoso (2022), using net revenue to measure firm size, also estimate a relatively
stable power law exponent for Brazil between 1999 and 2019. Third, estimates by
OLS vary much less than those by ML when a different s is chosen, similar to what
Aban and Meerschaert (2004) find for the daily trading volume of Amazon, Inc.
stock.

4.3.2 Step 2: goodness-of-fit tests

The computed p-values for the goodness-of-fit tests are shown in Figures
4.7 and 4.8 for 1996-2006 and 2006-2020, respectively, which are essentially the
same for ML and OLS estimators of the Pareto density. Besides the very good
fit of the estimated distributions shown previously, these tests reject both Pareto
and lognormal distributions in most cases. Consistent with these findings, Resende
(2004) does not find strong evidence supporting a lognormal distribution of firm
size by the number of employees in Brazil either. Similarly, the Zipf distribution
is also usually rejected. For Pareto and Zipf distributions, the main exception to
these conclusions is agriculture, particularly for s = 20, 30, 50 when the Pareto
distribution is not rejected in almost all years, and the strong Zipf’s law cannot
be rejected for several years between 2006 and 2020. In the lognormal case, the
main exception is s = 50, when the distribution is typically not rejected (except
for industry between 2006 and 2020).
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Figure 4.1 – Models fit in 1996 (axes in logarithmic scale).

Figure 4.2 – Models fit in 2020 (axes in logarithmic scale).
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Figure 4.3 – Centered R2, 1996-2006.

Figure 4.4 – Centered R2, 2006-2020.
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Figure 4.5 – k estimates, 1996-2006.

Figure 4.6 – k estimates, 2006-2020.
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Figure 4.7 – p-value of the goodness-of-fit test, 1996-2006.

Figure 4.8 – p-value of the goodness-of-fit test, 2006-2020.
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4.3.3 Step 3: comparing the distributions

In Figures 4.9 and 4.10, we plot the normalized log-likelihood ratio Rn and
the thresholds at 10% level for 1996-2006 and 2006-2020, respectively. To make it
easier to visualize the results, we plot Rn = 2 (Rn = −2) when Rn ≥ 2 (Rn ≤ −2).
The results confirm that the lognormal provides a strong test for the Pareto
distribution since there is no single winner between them in all cases. Typically, the
Pareto distribution beats the lognormal for lower s, while the lognormal wins for
higher s, particularly for s = 50, which is consistent with the goodness-of-fit tests
results seen in the last section. Furthermore, it is worth mentioning that several of
these results are consistent with the R2 shown in Figures 4.3 and 4.4. For instance,
both likelihood and R2 of the Pareto distribution are mostly higher for s = 5 but
lower in the services sector for s = 10, 20, 30, 50. Finally, when comparing strong
Zipf’s law and lognormal, the latter rarely loses. The main exception is industry
under s = 10.

The p-values of testing strong Zipf’s law against the Pareto distribution for
1996-2006 and 2006-2020 are shown in Figures 4.11 and 4.12, respectively. In almost
all industries and years, we can reject k = 1. The main exception is 2006-2020
agriculture under s = 20, 30, 50. Therefore, although the estimates of the power
law exponent k are around one, especially for higher s, they are not exactly one in
most cases.

4.3.4 Discussion

Let us summarize and discuss our findings from all three steps. Although a
Zipf distribution can be ruled out, we estimate power exponent k ≈ 1 with good
data fit, especially for higher s, consistent with Zipf’s law. However, a lognormal
density also performs well and even outperforms the Pareto distribution in certain
cases. The main issue is that the goodness-of-fit tests ruled out that the firm
size distribution in Brazil is exactly Pareto, Zipf, or lognormal in most cases.
Nevertheless, as Gabaix (2009, p.285) points out,

With an infinitely large empirical data set, one can reject any nontau-
tological theory. Hence, the main question of empirical work should be
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Figure 4.9 – Normalized log-likelihood ratio, 1996-2006.

Figure 4.10 – Normalized log-likelihood ratio, 2006-2020.
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Figure 4.11 – p-value of the standard likelihood ratio test, 1996-2006.

Figure 4.12 – p-value of the standard likelihood ratio test, 2006-2020.
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how well a theory fits, rather than whether it fits perfectly (i.e., within
the standard errors). [...] Consistent with these suggestions, some of
the debate on Zipf’s law should be cast in terms of how well, or poorly,
it fits, rather than whether it can be rejected.

From that point of view, Pareto and lognormal distributions are still useful bench-
marks as they provide very good, although not perfect, approximation to data. This
can be seen more clearly in Table 4.2, which shows empirical and estimated bins’
probabilities over the support S ≥ 20 for ML Pareto and lognormal distributions
in 1996 and 2020. These good fits hold at the economy-wide level and also for
agriculture, industry, and services alone, for each year between 1996 and 2020. As
it is well known, Brazil experienced an economic boom in the 2000s and a bust
with huge volatility in the 2010s, which possibly explains why the total number of
firms varied so much over time (Figure 4.13), but firm size distribution remained
basically unchanged throughout the entire period, always close to Zipf’s law. This
is a rather remarkable result even if this “law” is not exactly valid, since, as Gabaix
(2009, p.256) points out for the distribution of city size, “there is no tautology
causing the data to automatically generate this shape.”

4.4 Conclusion
In this paper, we evaluate Zipf’s law for the distribution of firm size by the

number of employees in Brazil. Remarkably, we find that Zipf’s law provides a
very good, although not perfect, approximation to data for each year between 1996
and 2020 at the economy-wide level and also for agriculture, industry, and services
alone. However, a lognormal distribution also performs well and even outperforms
Zipf’s law in certain cases.

Our analyses are based on publicly available data from CEMPRE, which fa-
cilitates other researchers’ reproduction and exploration of our results. Nevertheless,
this choice also has relevant shortcomings due to binning, suggesting working with
CEMPRE firm-level data may be an interesting avenue for future research. First,
binning leads to a loss of information, such that a higher number of sampled firms
is required to achieve the same accuracy in estimating and testing the distributions
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Table 4.2 – Empirical and ML estimated bins’ probabilities over S ≥ 20

Number of 1996 2020
employees Empirical Pareto Lognormal Empirical Pareto Lognormal
All industries
20 to 29 33.6 32.6 34.1 38.0 35.2 38.9
30 to 49 25.8 26.4 24.2 26.5 27.3 23.8
50 to 99 19.1 20.1 19.4 17.6 19.7 17.9
100 to 249 12.6 12.3 13.6 9.9 11.2 12.0
250 to 499 4.7 4.2 4.9 4.0 3.5 4.2
500 or more 4.3 4.4 3.8 4.1 3.2 3.2
Agriculture
20 to 29 33.4 33.2 34.0 34.2 32.9 34.3
30 to 49 26.5 26.6 24.9 24.4 26.5 24.4
50 to 99 20.3 20.0 19.7 20.5 20.1 19.4
100 to 249 11.2 12.1 13.4 12.2 12.2 13.4
250 to 499 4.7 4.0 4.7 4.8 4.1 4.8
500 or more 4.0 4.1 3.4 3.9 4.2 3.7
Industry
20 to 29 31.2 32.1 31.6 36.1 35.1 36.6
30 to 49 26.2 26.2 25.2 26.4 27.3 25.1
50 to 99 20.7 20.2 20.6 19.3 19.7 19.1
100 to 249 13.2 12.5 14.2 10.9 11.2 12.3
250 to 499 4.8 4.3 4.9 3.8 3.5 4.1
500 or more 3.9 4.6 3.5 3.4 3.2 2.8
Services
20 to 29 34.9 32.8 35.5 38.8 35.3 39.8
30 to 49 25.5 26.5 23.6 26.5 27.3 23.2
50 to 99 18.1 20.1 18.8 16.9 19.6 17.5
100 to 249 12.3 12.2 13.2 9.5 11.1 11.8
250 to 499 4.7 4.1 4.9 4.0 3.5 4.3
500 or more 4.5 4.2 4.0 4.4 3.2 3.4

when data is binned (Virkar; Clauset, 2014). One may argue that this informa-
tion loss could be especially harsh in the CEMPRE database since there is little
information on the upper tail. After all, the last bin available contains firms with
500 or more employees, which is probably too wide since the biggest firms would
typically have a much larger number of employees. In any case, since our samples
are large, this may not be such a severe problem here. Second, one can easily
explore more flexible distributions when working with non-binned data. Kondo,
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Figure 4.13 – Total number of firms.

Lewis and Stella (2023) estimate statistical mixtures and convolutions of Pareto
and lognormal distributions in the US, finding these combinations significantly
beat each distribution alone. Alternatively, one can apply Lagrange multiplier tests,
verifying the null of power or Zipf’s law against a distribution that nests the Pareto
density. One advantage of these tests is that they do not require the estimation of
the more general density, which may be challenging in some cases. In principle, such
tests could be applied to binned data; however, to the best of our knowledge, so far,
they have been developed only for non-binned data (Urzúa, 2000; Goerlich, 2013;
Urzúa, 2020). Resende and Cardoso (2022) apply these tests to the distribution of
firm size by net revenue in Brazil. They consider the 1,000, 500, and 100 largest
firms between 1999 and 2019, finding strong support for power or Zipf’s law only (i)
against the Pareto type II distribution and (ii) among the 100 largest firms. This
suggests investigating distributions that nest the Pareto density using CEMPRE
firm-level data can be fruitful.
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Following a notation similar to Virkar and Clauset (2014), let B = {b1, ..., bm}
be a set of bin boundaries, b1 = 0, bi > 0 for i ∈ {2, ..., m}, and bj > bi for j > i

and i, j ∈ {1, 2, ..., m}. With these boundaries, we define m bins, with [bi, bi+1)
being the i-th bin, i ∈ {1, 2, ..., m − 1}, and [bm, +∞) being the m-th bin. Denote
by H ∈ {h1, h2, ..., hm} the set of bin counts, such that hi is the number of raw
observations in the i-th bin, i = 1, 2, ..., m. Lastly, let n ≡ ∑m

i=j hi be the number
of firms with at least bj = s > 0 employees.

4.A Maximum likelihood estimator for binned data
Suppose S, S ≥ s = bj > 0, follows a certain distribution. Given that, the

log-likelihood function for the binned data over this support is

L = ln
P (S ≥ bm)hmP (s ≤ S < bj+1)hj

m−1∏
i=j+1

P (bi ≤ S < bi+1)hi


L =hm ln P (S ≥ bm) + hj ln [1 − P (S ≥ bj+1)] +

m−1∑
i=j+1

hi ln P (bi ≤ S < bi+1)

(4.A.1)

which allows us to get the maximum likelihood estimator (MLE) of the distributional
parameters. One possibility is to numerically maximize the log-likelihood function
(4.A.1). Nevertheless, a computationally faster way is to derive and numerically solve
the associated First-Order Conditions (FOCs), derived for Pareto and lognormal
distributions in the following.

4.A.1 Pareto distribution

If S, S ≥ s = bj > 0, is Pareto distributed with shape parameter k > 0,

P (S ≥ bi) = (s/bi)k , i = j, j + 1, ..., m

P (bi ≤ S < bi+1) =P (S ≥ bi) − P (S ≥ bi+1) = sk
(
b−k

i − b−k
i+1

)
, i = j, ..., m − 1
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Plugging these probabilities into the log-likelihood function (4.A.1),

L =hmk ln s − hmk ln bm +
m−1∑
i=j

[
hik ln s + hi ln

(
b−k

i − b−k
i+1

)]

L =nk ln s − hmk ln bm +
m−1∑
i=j

hi ln
(
b−k

i − b−k
i+1

)
(4.A.2)

From (4.A.2), which is equivalent to equation (3.1) of Virkar and Clauset (2014),
one can obtain the desired FOC:

∂L
∂k

=n ln s − hm ln bm −
m−1∑
i=j

hi

[
b−k

i ln bi − b−k
i+1 ln bi+1

b−k
i − b−k

i+1

]
= 0 (4.A.3)

4.A.2 Lognormal distribution

If S − s = S − bj , S − bj > 0, is lognormally distributed with parameters µ

and σ > 0,

P (S ≥ bi) =1 − erf (zi)
2 , i = j + 1, j + 2, ..., m

P (bi ≤ S < bi+1) =erf (zi+1) − erf (zi)
2 , i = j + 1, ..., m − 1

where zi ≡ ln(bi−s)−µ

σ
√

2 and erf(z) ≡ 2√
π

∫ z
0 e−t2

dt is the Gaussian error function.
Plugging these probabilities into the log-likelihood function (4.A.1),

L =hm ln
[

1 − erf (zm)
2

]
+ hj ln

[
1 + erf (zj+1)

2

]
+

m−1∑
i=j+1

hi ln
[

erf (zi+1) − erf (zi)
2

]
(4.A.4)

The FOCs for the maximization of the log-likelihood function (4.A.4) are

∂L
∂µ

=hm
erf ′(zm)

P (S ≥ bm)2σ
√

2
− hj

erf ′(zj+1)
P (S < bj+1)2σ

√
2

+
m−1∑

i=j+1
hi

erf ′(zi) − erf ′(zi+1)
P (bi ≤ S < bi+1)2σ

√
2

∴ 0 =hm
e−z2

m

P (S ≥ bm) − hj
e−z2

j+1

P (S < bj+1)
+

m−1∑
i=j+1

hi
e−z2

i − e−z2
i+1

P (bi ≤ S < bi+1)
(4.A.5)

∂L
∂σ

=hm
erf ′(zm)zm

P (S ≥ bm)2σ
− hj

erf ′(zj+1)zj+1

P (S < bj+1)2σ
+

m−1∑
i=j+1

hi
erf ′(zi)zi − erf ′(zi+1)zi+1

P (bi ≤ S < bi+1)2σ
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∴ 0 =hm
zme−z2

m

P (S ≥ bm) − hj
zj+1e

−z2
j+1

P (S < bj+1)
+

m−1∑
i=j+1

hi
zie

−z2
i − zi+1e

−z2
i+1

P (bi ≤ S < bi+1)
(4.A.6)

where we use erf ′(z) = 2√
π
e−z2 to get each condition.
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5 Conclusions

In the first paper, using a Cournot model, we decompose TFP into technology
and allocative efficiency components from 1950 to 2019 for up to a hundred countries
from the Penn World Table 10.01. This decomposition enables a reexamination of
key facts of economic growth. Our evaluation of the world income frontier, proxied
by the US, reveals that changes in misallocation can significantly impact short-run
growth. For example, during 2000-2007, the US witnessed notable technological
improvement coupled with declining allocative efficiency, suggesting that the dot-
com boom and advancements in IT led to productivity gains but concentrated in
certain firms. On a more general note, the technology component seems to grow
more steadily than the TFP itself, around 1% per year. Notable exceptions are the
periods of 1954-1973 and 2000-2007 when technology contributed approximately 2%
annually. Turning to a global perspective, our analysis suggests that misallocation
plays a significant role in explaining cross-country income differences, even though
a considerable unexplained portion persists. We also find a lack of convergence in
allocative efficiency, suggesting market-power-driven misallocation is linked, in the
long run, to long-lasting country-specific factors such as institutions.

The second paper uses the Cournot model developed in the first article to
decompose the Brazilian TFP between 2000 and 2019. We find an overall improve-
ment in allocative efficiency, reflecting the observed increase in the labor income
share and, thus, the estimated decrease in the average markup. We also find that
TFP cycles are essentially due to allocative efficiency, with the economic boom in
the mid-2000s being primarily attributed to efficiency gains. The technology frontier
grows much more steadily, suggesting this reflects the structural characteristics of
the economy. Therefore, since allocative improvements could not occur indefinitely,
the annual technology growth found, around 0.8-0.9%, can be seen as the current
structural, long-run, growth level of Brazilian TFP.

Finally, the third paper evaluates Zipf’s law for the distribution of firm size
by the number of employees in Brazil, using publicly available binned annual data
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from CEMPRE, which covers all formal organizations. Remarkably, we find that
this “law” provides a very good, although not perfect, approximation to data for
each year between 1996 and 2020 at the economy-wide level and also for agriculture,
industry, and services alone. However, a lognormal distribution also performs well
and even outperforms Zipf’s law in certain cases.
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