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ABSTRACT

Deforestation has broad and significant impacts, becoming a major global environmental

threat. This problem endangers biodiversity, contributes to climate change, and compromises

the sustainability of natural ecosystems. Therefore, monitoring and detecting deforested areas

is a critical issue. Although deforestation affects many regions, the Amazon rainforest is one of

the most prominent and frequently discussed cases.

Optical satellites are extremely powerful and important tools in remote sensing, prevention,

and mitigation of deforestation. However, this type of sensor is not robust to climatic variations

and is sensitive to cloud occlusion. On the other hand, synthetic aperture radars (SARs) stand

out for their resilience to adverse weather conditions, as they are active sensors that operate in

microwave bands which penetrate water particles. Nonetheless, accurately recognizing defor-

ested areas in SAR images is challenging due to the amount of speckle noise and the variability

in the appearance of objects between different captures.

In this study, we conducted an online experiment with voluntary participants who iden-

tified deforested areas in SAR images. For this purpose, we developed software that allows

participants to annotate SAR images, delineating deforested areas. With the results of this

experiment, it was possible to analyze the relationship between the participants’ self-reported

experience level and the accuracy in detecting deforested areas.

We also compared human performance with the performance obtained from an automatic

model based on the UNet architecture. The results show that greater knowledge in remote

sensing or SAR does not guarantee quality annotations. Moreover, the UNet’s performance

surpasses human performance in the task.

To explore SAR image segmentation in greater depth, a second experiment was conducted

using state-of-the-art models for segmentation in fused SAR and optical data. This second

part of the study showed that the most modern models, despite having a smaller number of

trainable parameters, can outperform a heavier model. The study reinforces the potential of



deep learning in deforestation detection, emphasizing the need for continuous improvements in

architectures and specialist training.

Keywords: SAR, optical, data, fusion, convolutional, neural, network, transformer, unet, re-

mote, sensing



RESUMO

O desmatamento tem impactos amplos e significativos, tornando-se uma grande ameaça

ambiental global. Esse problema coloca em risco a biodiversidade, contribui para as mudanças

climáticas e compromete a sustentabilidade dos ecossistemas naturais. Portanto, monitorar e

detectar áreas desmatadas é uma questão crítica. Embora o desmatamento afete muitas regiões,

a floresta amazônica é um dos casos mais destacados e frequentemente discutidos.

Os satélite ópticos são ferramentas extremamente poderosas e importantes no sensoriamento

remoto, prevenção e mitigação de desmatamento. Entretanto, esse tipo de sensor não é robusto

a variações climáticas e é sensível a oclusão por nuvens, em contrapartida, os radares de abertura

sintética (SARs) destacam-se por sua resistência a condições climáticas adversas visto que são

sensores ativos que operam em faixas de microondas as quais atravessam particulas de água. No

entanto, o reconhecimento preciso de áreas desmatadas em imagens SAR é desafiador devido à

quantidade de ruído speckle e à variabilidade de aparência dos objetos entre capturas diferentes.

Neste trabalho, realizamos um experimento online com participantes voluntários que identi-

ficaram áreas desmatadas em imagens SAR. Para isso, desenvolvemos um software que permite

aos participantes anotarem as imagens SAR, delimitando áreas desmatadas. Com os resultados

desse experimento, foi possível analisar a relação entre o nível de experiência autodeclarado dos

participantes e a precisão na detecção de áreas desmatadas.

Também comparamos o desempenho humano com o desempenho obtido com um modelo

automático baseado na arquitetura UNet. Os resultados mostram que maior conhecimento em

sensoriamento remoto ou SAR não garante qualidade nas anotações. Além disso, o desempenho

do UNet supera o desempenho humano na tarefa.

Para explorar a segmentação de imagens SAR com mais profundidade, um segundo exper-

imento foi realizado utilizando modelos de última geração para segmentação em dados SAR e

ópticos fundidos. Essa segunda parte do estudo mostrou que os modelos mais modernos, apesar

de disporem de uma menor quantidade de parâmetros treináveis, pode sobrepujar um modelo



mais pesado. O estudo reforça o potencial do aprendizado profundo na detecção de desmata-

mento, enfatizando a necessidade de melhorias contínuas nas arquiteturas e no treinamento de

especialistas.

Palavras-chave: SAR, óptico, fusão, rede neural convolucional, transformer, unet, sensoria-

mento remoto
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CHAPTER 1

INTRODUCTION

Deforestation has multiple and comprehensive impacts, becoming an increasingly worrying

environmental issue throughout the world. In addition to posing a threat to biodiversity,

deforestation contributes significantly to climate change (NOBRE et al., 2007) and compromises

the sustainability of natural ecosystems(VIEIRA et al., 2014). Therefore, monitoring and

detecting deforested areas is one of the most urgent and relevant problems of today. Although

many regions of the world face deforestation issues (CLEMENT et al., 2015; FERNANDES et

al., 2023), the Amazon forest is one of the most debated and cited in this context.

Founded in 1961, the National Institute for Space Research (INPE)1 was created to tackle

these challenges within Brazil, amidst a worldwide growth in space research and the country’s

pursuit to enhance its own expertise in this field. INPE was established to achieve positive

impacts on ecology objectives, including the development of technology in the space sector, con-

ducting scientific research, monitoring the environment, forming specialized human resources,

and fostering international cooperation.

In addition to that, INPE plays a crucial role in collecting data that support the formulation

of public policies, especially on environmental and land use issues. Its contributions are vital

for understanding and addressing challenges such as deforestation, climate change, and natural

disasters. The institute’s advanced technologies and methodologies provide essential insight

and data for policymakers and researchers.

INPE stands out in Latin America for its technical capacity and innovations in satellites

and other observation technologies that allow detailed monitoring of vast areas such as the

Amazon. The institute’s efforts not only contribute to the global scientific community, but

also enhance Brazil’s capabilities in managing and protecting its natural resources, ensuring

sustainable development and national sovereignty.

1Official INPE website: <https://www.gov.br/inpe/pt-br>, visited in May 2024

https://www.gov.br/inpe/pt-br
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One of the main INPE initiatives in the context of remote sensing in the Amazon is the

Amazon Satellite Monitoring Program (PRODES)2, established in 1988. PRODES was specif-

ically developed to monitor the annual deforestation rate by clear-cutting in the Legal Amazon

using satellite images to detect changes in forest coverage in areas larger than 6.25 hectares.

Clear-cutting refers to a method of deforestation in which all trees in a designated area are

uniformly cut down, leaving the land completely devoid of forest cover. This practice is often

used for agriculture, logging, or other land development purposes, and results in significant

environmental impacts, such as loss of biodiversity, disrupting ecosystems, and changes in local

climate patterns (MARQUES et al., 2019).

The PRODES program is fundamental to the Brazilian government’s position in discussions

on climate change under the United Nations Framework Convention on Climate Change. The

numbers of annual deforestation, according to INPE, are shown in Figure 1.1.

Figure 1.1. Annual deforestation area of the Legal Amazon as measured in square meters. Data obtained
from PRODES (Brazilian Amazon Forest Satellite Monitoring Program), a program developed by the Brazilian
National Institute for Space Research (INPE) to track deforestation using satellite images.

PRODES is part of the Action Plan for the Prevention and Control of Deforestation in the

Legal Amazon (PPCDAM), coordinated by the Ministry of Environment and the Civil House

of the Presidency of the Republic. This plan includes a series of policies and strategic actions

2Official PRODES website: <http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes>

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
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aimed at reducing deforestation and promoting the sustainable use of natural resources in the

region.

In addition to producing annual deforestation rates, PRODES also provides images, vector

maps, and tables that detail these forest losses exclusively by clear-cutting, significantly con-

tributing to the actions of environmental monitoring and control, and serving as a valuable tool

for academic research and public awareness.

It should be noted that the discussion on the deforestation of the Amazon rain forest is

a highly politically charged topic. Recent governments, from 1999 to 2020, have had mixed

positions on this issue (FONSECA et al., 2022). There was a strengthening of regulatory

institutional capacities between 1999 and 2012, followed by active dismantling starting in 2013,

which dramatically intensified from 2019 onward. This latter period witnessed a significant

reduction in the density of forest conservation policies and an increase in deforestation rates.

From a technical point of view, PRODES uses a combination of several satellites to map

the Amazon rain forest. The primary satellite used is Landsat (NASA, 2023), operated by

NASA and the United States Geological Survey, which captures images of the Amazon every

16 days with a resolution of 30 meters. In addition to Landsat, PRODES also relies on images

from the CBERS satellites 3 (a partnership between Brazil and China) and Sentinel (from the

European Space Agency) to supplement information in areas where there is cloud cover that

Landsat cannot penetrate.

Figure 1.2 shows an image acquired with synthetic aperture radars (SARs) and an image

acquired with optical satellites. Optical satellites record spectral bands within the visible

spectrum and also have some capabilities beyond this range. Images that incorporate data from

three or more different spectral bands are known as multispectral images. The images obtained

by optical satellites are heavily affected by weather conditions, such as heavy rain, cloud cover,

and fog, which affect the visibility of areas in the acquired images. Unlike optical satellites,

SARs have active sensors that emit microwave pulses at a typical operating frequency that varies

from hundreds of megahertz (MHz) to several gigahertz (GHz) (GEUDTNER et al., 2014).

These microwave pulses are directed towards the Earth’s surface, and then the SAR records

the return of these pulses, reflected by objects on the surface. Based on the time difference

3<http://www.cbers.inpe.br/>

http://www.cbers.inpe.br/
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Figure 1.2. Comparison between a SAR image (on the right) and an optical image (on the left) of the same
area. Source: Very-High-Resolution SAR Imaging with DGPS-Supported Airborne X-Band Data(ZHOU et al.,
2020)

between when the pulses are emitted and when the reflected pulses return to the radar, SAR

creates images, using the synthetic aperture radar interferometry (InSAR) technique (YAGÜE-

MARTÍNEZ et al., 2016) to achieve high spatial resolution. The InSAR technique combines and

processes the various microwave pulses received at different radar positions along the satellite’s

movement. The waves emitted have the ability to penetrate most cloud covers, allowing the

radar to gather information even under adverse atmospheric conditions.

Therefore, SAR images are valuable for detecting deforested areas in tropical regions, such as

the Amazon, where the presence of clouds and fog is frequent. Despite the advantage of weather

independence, the accurate detection of deforested areas in SAR images is a challenging task due

to the high amount of speckle noise in the captured images and the variability in the appearance

of objects. The speckle noise is caused by the random interference of coherent returns from

multiple scatterers present on the Earth’s surface at the scale of the radar’s wavelength (SINGH;

SHREE, 2016). The speckle manifests as a grainy salt-and-pepper pattern in SAR images,

complicating accurate image interpretation.

Figure 1.3 shows a close-up of a deforested region seen in an optical image, Sentinel-2, and
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Figure 1.3. The same deforested region seen by an optical and a SAR sensor.

a SAR image, Sentinel-1. In the SAR image, it is possible to see a large amount of noise

represented as a granulation of very bright and dark pixels randomly distributed throughout

the image.

The manual process of identifying deforestation in satellite images by professionals from

INPE and CENSIPAM is laborious and intricate. The INPE PRODES project relies heavily

on the manual analysis of numerous Landsat TM images. Analysts face significant challenges

during this process, including variable scales of different scenes and the complexity of closing

polygons on interpretation maps due to intricate patterns of deforestation. These difficulties

require a considerable amount of manual effort to convert the original Landsat bands into

vegetation, soil, and shade fraction images, which are then segmented and classified manually

to generate the final deforestation maps (SHIMABUKURO et al., 2000).

Semi-automatic and automatic methodologies have been developed to assist in this arduous

task. For example, Shimabukuro et al. (SHIMABUKURO et al., 2000) proposed an approach

to map and monitor deforested areas in the Amazon, automating PRODES’s manual inter-

pretation tasks and building a GIS database. This methodology combines digital analysis and

manual editing, which still requires significant manual intervention to ensure accuracy. The

combination of automated segmentation algorithms and manual adjustments demonstrates the

persistent need for human expertise to interpret complex deforestation patterns.

In addition, techniques such as fuzzy C-Means (FCM) have been used to segment forest
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land cover, highlighting the role of fuzzy soft computing techniques in distinguishing between

forested and deforested areas. However, these methods also require an extensive manual effort

to overcome the limitations of automatic classification, such as reducing computational time

and refining the results of the segmentation (PERUMAL et al., 2021).

Despite advances in technology, the manual interpretation of satellite imagery remains a

cornerstone of deforestation monitoring. (ADARME et al., 2020) evaluate deep learning-based

strategies for automatic deforestation detection but acknowledge that many approaches still

require some level of human intervention or are dependent on manually selected thresholds.

This highlights the continued reliance on labor-intensive processes to ensure the accuracy and

reliability of deforestation data.

In general, while automated methods are gradually being integrated into deforestation mon-

itoring, the laborious manual processes performed by INPE and CENSIPAM professionals are

crucial for managing and verifying the vast and complex data derived from satellite imagery.

The expertise and meticulous work of these analysts is indispensable in accurately mapping

and monitoring deforestation, ensuring that the data used for environmental policies and con-

servation efforts are precise and reliable.

More recently, there are some proposals for automatic systems for the detection of deforested

areas. For example, Pimenta et al.(PIMENTA et al., 2022) developed a deforestation detec-

tion system for tropical forests based on the neuroevolution technique (NEAT). This method

demonstrated significant efficacy in identifying recently deforested areas, outperforming tradi-

tional monitoring techniques. Zhu et al.(ZHU et al., 2018) and Zheng et al.(ZHENG et al.,

2019) proposed methods based on convolutional neural networks (CNNs) for target detection

in SAR images. Zhu et al. used transfer learning to deal with data scarcity, optimizing the

network for the target detection task, resulting in a faster detection speed and a lower number

of false positives. On the other hand, Zheng et al. introduced a method that uses both features

learned by a CNN and features manually extracted. These features are processed in parallel

subnetworks and later merged for the final classification, resulting in improved detection perfor-

mance. These approaches represent advances in target detection in SAR images, but applying

these methods to deforestation detection in SAR images, considering speckle noise and object

variability, remains a challenge.
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To study and develop techniques that can help specialists identify deforestation, as well

as raising the capabilities of specialists and ordinary people in the task of labeling in SAR

images, we propose three objectives. The first objective of this work is to estimate the capacity

of humans to identify deforested areas in SAR images, taking into account each individual’s

experience in the field. To this end, we conducted a subjective experiment in which volunteer

participants labeled deforested areas in a set of 50 SAR images of the Amazon region captured

with the Sentinel-1A satellite(ESA, 2023b). The experiment was carried out online using image

labeling software developed specifically for this purpose. Chapter 3 is dedicated to explaining

in more depth the setup of the experiment and the results obtained.

The second objective of our work is to evaluate the performance of an automatic model to

detect deforested areas, comparing this performance with that of humans. The model consid-

ered is based on the UNet architecture, as described in Section 2.7, proposed in 2015 by Olaf

et al. (RONNEBERGER et al., 2015). Although UNet was originally developed for medical

image segmentation, this architecture performs well in a wide range of segmentation tasks,

from detecting cracks (ALI et al., 2022) and defects in fabrics (JING et al., 2022), to detecting

deforestation in satellite images (JOHN; ZHANG, 2022).

The final objective of this work is to develop a robust deforestation segmentation technique

in satellite captures of the Amazon forest that uses the advantages of optical satellites and

synthetic aperture radars, to achieve this, we implement a data fusion strategy, described in

Chapter 4, using single-look complex SAR Sentinel-1 and optical Sentinel-2 data from the

same region, co-registered. In this last task, the models EfficientFormerV2 (LI et al., 2022b),

SegFormerB0 (XIE et al., 2021), PPLiteSeg (PENG et al., 2022) and UNet (RONNEBERGER

et al., 2015) were used, with modifications in the architecture to support five input channels

(R, G, B, VV and VH) instead of three (R, G, B).

These architectures were chosen for this work because of their ease of implementation and

adaptation, as they are available in the PaddleSeg framework (LIU et al., 2021), good perfor-

mance demonstrated in general segmentation tasks (LI et al., 2022b; XIE et al., 2021; PENG

et al., 2022) and, specifically, in satellite images (THAI et al., 2022; LI et al., 2023; LI et al.,

2022a), and low training and inference time. This last point is especially important because

the computational resources available for this work did not allow the training, refinement, and
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experiment cycles of models with a very high number of parameters in a timely manner.



CHAPTER 2

THEORETICAL FRAMEWORK

In this chapter, the relevant concepts for the more advanced chapters of this work will be

presented. In Section 2.1, a theoretical presentation on remote sensing, the operation of SARs

and optical satellites, and some examples of captures from various satellites will be given.

Then, in Section 2.3.1, a basic theoretical introduction to Convolutional Neural Networks and

Transformer Networks will be presented. Finally, the structure of the database used in this

study to train the models used in Chapters 3 and 4 will be described in Section 2.2

2.1 REMOTE SENSING

Remote sensing is a technique used to observe and measure the characteristics of an area

or object from a distance, commonly through the use of satellite or airborne sensor technolo-

gies. One of the foundational works in remote sensing is the development and planning of

airborne photogrammetry missions. Modern platforms and sensors, such as rotary and fixed-

wing aircraft, gliders, and unmanned aerial vehicles (UAVs), are essential in ensuring successful

data acquisition. (PEPE et al., 2018) provide a comprehensive overview of mission planning

techniques using passive optical sensors, discussing methods, procedures, and tools for various

airborne missions. Remote sensing satellites and airborne sensors play a crucial role in auto-

mated satellite image understanding systems. Various satellites such as Landsat, SPOT, IRS,

and Worldview, and airborne systems such as AVIRIS and DAIS 7915, provide essential data

for environmental monitoring and analysis. (UNSALAN; BOYER, 2011) discuss the properties,

historical development and applications of these remote sensing systems.

Recent advances in remote sensing technology have also significantly affected wildfire detec-

tion and monitoring. (ALLISON et al., 2016) review the state-of-the-art in fire detection using

hyperspectral cameras, thermal cameras, and unmanned aircraft, highlighting the operational
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constraints and opportunities provided by these sensor systems. These studies demonstrate

significant progress and diverse applications of remote sensing technologies. Using modern

platforms, sensor systems, and integrated data solutions, remote sensing continues to be a vital

tool for environmental monitoring, disaster management, and resource assessment. Subsequent

sections will provide further insights into the satellite technologies employed in this study.

2.1.1 Optical Satellites

Optical satellites are a type of Earth observation satellite that utilize optical sensors to

capture images of the Earth’s surface. These satellites play a crucial role in various applications,

including environmental monitoring, urban planning, agriculture, and disaster management

(LEYVA-MAYORGA et al., 2022; ZHANG; LIU, 2010). The use of optical satellites allows

for detailed observation and analysis of surface conditions, making them invaluable tools for

scientific research and practical applications.

Optical satellites function by capturing reflected sunlight from the Earth’s surface using

different types of sensors, including multispectral, hyperspectral, and panchromatic sensors.

These sensors can detect and record data across various wavelengths of the electromagnetic

spectrum, enabling the extraction of detailed information about the observed area.

One of the main advantages of optical satellites is their ability to provide images that are

easier and more interpretable than SAR images and, using RGB bands, a natural coloring

true to reality, essential for detailed analysis and monitoring. The resolution of these images

can vary, but some modern optical satellites are capable of capturing images with a spatial

resolution of less than one meter, allowing highly detailed observations (NIU et al., 2023).

2.1.1.1 Sentinel-2

The Sentinel-2 mission, part of the European Space Agency’s Copernicus program, involves

a constellation of two identical satellites, Sentinel-2A and Sentinel-2B, which were launched in

June 2015 and March 2017 respectively. These satellites operate in sun-synchronous orbit and

are crucial for monitoring variations in land surface conditions(ESA, 2023c). Figure 2.1 shows
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Figure 2.1. Graphical representation of the Sentinel-2 satellite. Source: Sentinel-2 Overview (ESA, 2023c).

a representation of this satellite made by ESA.

Equipped with the MultiSpectral Instrument (MSI), Sentinel-2 satellites capture images

across 13 spectral bands, as shown in Table 2.1 enabling detailed observations of vegetation,

soil, inland and coastal waters, and urban areas. With a swath width of 290 km and spatial

resolutions ranging from 10m to 60m, Sentinel-2 offers a five-day re-visit time on the equa-

tor, providing frequent and reliable data for various applications, including agriculture, forest

monitoring, and disaster management(ESA, 2023c).

The MSI operates by capturing sunlight reflected off the Earth, with a shutter mechanism

that prevents direct sunlight from contaminating the images and also serves as a calibration

device. This makes Sentinel-2 an invaluable tool for continuous and detailed observation of the

planet. Sentinel-2 data products are available at different processing levels. Level-1C deliv-

ers top-of-atmosphere reflectances in cartographic geometry, while Level-2A provides surface

reflectances corrected for atmospheric conditions, making them immediately useful for land

applications. For this study, the B2, B3, and B4 (B, G, R, respectively) bands of the signal

were used, as shown in Figure 2.2.
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Table 2.1. Sentinel-2 Multispectral Instrument (MSI) bands and their applications. These bands are designed
to provide data for various earth observation purposes such as vegetation, water bodies, and soil monitoring.

Band Wavelength (nm) Resolution (m) Application
B1 443 60 Coastal and aerosol monitoring
B2 490 10 Visible (blue)
B3 560 10 Visible (green)
B4 665 10 Visible (red)
B5 705 20 Vegetation red edge
B6 740 20 Vegetation red edge
B7 783 20 Vegetation red edge
B8 842 10 NIR for vegetation monitoring
B8a 865 20 Narrow NIR
B9 945 60 Water vapor
B10 1375 60 Cirrus cloud detection
B11 1610 20 SWIR for moisture content
B12 2190 20 SWIR for geological and vegetation applications

Figure 2.2. Examples of crops extracted from a Sentinel 2A capture in 07/27/2019 from the Amazon rainforest.
The B4, B3 and B2 bands were stacked to create a 3 channel RGB image.
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2.1.2 Synthetic Aperture Radar Satellites

Synthetic aperture radars (SAR) satellites have active sensors that emit waves in the mi-

crowave spectrum and receive the wave reflected from the Earth’s surface back. In addition

to that, SAR technology utilizes the coherent processing of radar signals to generate high-

resolution images of the Earth’s surface, which are invaluable for various applications including

environmental monitoring and management. Figure 2.3 shows an illustration of the principles

of SAR technology that allows one to capture an image of a surface. The azimuth refers to the

radar trajectory on the mobile platform, the slant range is the line of sight of the SAR, the

nadir track is the path directly below the radar, projected onto the surface of the Earth.

The coherent nature of SAR allows for the synthesis of a large antenna aperture electron-

ically, effectively enhancing spatial resolution beyond what the physical antenna size would

normally allow (MCCOY; TANENHAUS, 1992). This is achieved by combining signals re-

ceived at different times as the radar platform moves, allowing for a fine resolution that is

independent of the altitude of the sensor.

Figure 2.3. Illustration of SAR image geometry. The parameter r0 refers to the closest approach distance; θa
is the beamwidth, and v is the sensor speed. Source: A tutorial on synthetic aperture radar(MOREIRA et al.,
2013), adapted.

SARs operate in the radio wave spectrum and different radars can operate in different

frequency bands, as described in Table 2.2. The L-Band, due to its longer wavelengths, is

exceptionally effective in penetrating through the canopy cover, making it ideal for the esti-
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Table 2.2. Most commonly used SAR bands (MOREIRA et al., 2013). The L band is typically used for
biomass estimation due to its penetration into foliage; C, S, and X bands are used for monitoring oceans and
ice; X and K bands are used for snow monitoring.

Band Ka Ku X C S L
Frequency (GHz) 40-25 17.6-12 12-17.5 7.5-3.75 3.75-2 2-1
Wavelength (cm) 0.75-1.2 1.7-2.5 2.5-4 4-8 8-15 15-30

mation of biomass and the analysis of soil moisture content (MACEDO et al., 2021). It is

particularly beneficial in forest applications where it is necessary to assess vegetation and tree

density, even in dense forest regions. On the other hand, the C-Band is commonly used to

monitor environmental changes such as flood inundation beneath the forest canopy and wet-

land dynamics (TOWNSEND, 2002). It is a preferred choice for agricultural monitoring due to

its moderate penetration capabilities and sensitivity to surface roughness, making it suitable

for crop condition and type monitoring.

As described by Marzano et al. (MARZANO et al., 2009), the X-Band is known for its

high resolution and high effectiveness in monitoring ice and snow, including tracking changes

in glacier dynamics and snow cover. It is also beneficial in urban planning and infrastructure

monitoring due to its ability to detect small-scale features. The Ka-band offers the highest

resolution among the SAR bands and is particularly useful in detailed surface characterization

and target identification. This band is also utilized in high-precision topographic mapping and

complex urban area analysis because of its sensitivity to finer details.

Further advancements in SAR technology have introduced techniques like polarimetry and

interferometry, which provide additional data dimensions to improve the analysis of surface

characteristics and temporal changes. Polarimetric SAR (PolSAR) involves the use of var-

ious polarization states of microwave signals to extract detailed information about surface

textures and features (BOERNER, 2000). By analyzing how the polarized wave is scattered

upon hitting the surface, PolSAR can determine the geometric and dielectric properties of the

targets. This technique allows for the discrimination between different types of surface mate-

rials and can be crucial in applications such as vegetation mapping, soil moisture estimation,

and even the assessment of urban infrastructure. The enhanced textural information obtained

through polarimetric measurements considerably improves the interpretation of SAR images

over amplitude-only radar systems (MOREIRA et al., 2013).
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Interferometric SAR (InSAR) utilizes the phase differences between successive radar pulses

to create maps of surface topography and its temporal changes with high precision (CLOUDE;

PAPATHANASSIOU, 1998). By comparing the phase of the waves returned from successive

passes over the same area, InSAR can measure minute changes in distance, making it invaluable

for applications like earthquake and volcano monitoring, where shifts in the Earth’s surface need

to be tracked over time. The integration of these phase measurements can reveal sub-centimeter

changes in elevation, providing critical data for geological and environmental studies.

The ability of SAR to operate independently of lighting conditions and in all weather con-

ditions, including through cloud cover, makes it an indispensable tool in the remote sensing

arsenal, especially for monitoring regions like the Amazon rainforest, where cloud cover and

precipitation can obstruct optical sensors. (LEITE-FILHO et al., 2021).

2.1.2.1 Sentinel-1

The images used in the experiment were collected by the Sentinel-1A radar(ESA, 2023b),

Sentinel-1 is the first constellation of SARs from the Copernicus program (ESA, 2023a), con-

ducted by the European Space Agency starting in 2014. The constellation consists of Sentinel-

1A and Sentinel-1B radars, both operating on the C-band with frequency specifications shown

in Table 2.2. The primary goals of the Sentinel-1 mission include the surveillance of forests,

farmlands, seas, and the observation of glaciers to keep track of climatic variations. These

satellites have a recharge time of 12 days and operate at an altitude of 400 km. The figure 2.4

shows a graphical representation of this radar.

Sentinel-1 satellites provide products across three processing levels. Level 0 consists of

raw data. Level 1 includes Single Look Complex (SLC) and Ground Range Detected (GRD)

products. Lastly, Level 2 offers oceanic data. These levels cater to different applications, with

Level 1 providing more processed and interpretable data than Level 0, and Level 2 focusing

specifically on marine environments.

An SLC product is an image that represents a single radar capture at a specific time.

SLC images have pixels with complex values that represent the phase and amplitude values of

the signal in the region. These products are typically composed of two images with different
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Figure 2.4. Graphical representation of the Sentinel-1 radar. Source: Sentinel-1 Overview (ESA, 2023b).

polarizations, one vertical and the other horizontal.

GRD type products are obtained from multiple capture samples projected at ground level

from an ellipsoidal Earth model and considering the terrain altitude. In this type of product,

the image pixels represent only the magnitude of the signal while the phase is disregarded. In

Sentinel-1 radars, GRDs can have three different resolutions: full resolution, high resolution,

and medium resolution. For this project, preprocessed SLC products from CENSIPAM were

used.

2.2 GROUNDTRUTH DEFORESTATION DATA

The labels used as ground truth for the data were provided by CENSIPAM in the context of

a collaborative research project between UnB and the Ministry of Defense, a project in which

the author of this work participated. The deforestation labels were generated by CENSIPAM

specialists using the technique described by Paulo Tavares et al.(TAVARES et al., 2019) which

uses both the SAR data from Sentinel 1 and the optical data from Sentinel-2. The images

are organized in a coorbital arrangement, with revisits made at a maximum interval of 3 days.

These images were selected in the period preceding winter in the Amazon, with cloudiness rates

below 2%.
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In this technique, the Sentinel 1 and Sentinel 2 images are colocated and have a terrain

sampling of about 10m, being referenced in the WGS84 geographic coordinate system. To

generate the ground truth, between 5,000 to 10,000 vertices were collected, using the Random

Forest algorithm with the following parameters: N-try equal to 1,000, M-tree equal to 7, 5,000

random samples divided into 30% for validation and 70% for training (TAVARES et al., 2019).

According to the methodology of Inpe’s Prodes (ALMEIDA et al., 2021), four labeling classes

were defined: forest, deforestation, water and nonforest.

The method involves a sophisticated process to ensure an accurate detection of deforested

areas. Initially, SAR and optical images were collected from Sentinel-1 and Sentinel-2, re-

spectively. Sentinel-1 SAR data, which is capable of penetrating clouds and capturing data

regardless of weather conditions, is crucial in tropical regions such as the Amazon where cloud

cover is prevalent. Optical data from Sentinel-2 provides high-resolution imagery that is bene-

ficial for identifying vegetation types and changes.

The preprocessing steps for Sentinel-2 images involve atmospheric correction using the

Sen2Cor algorithm to derive surface reflectance values (JOSHI et al., 2016a; ZHANG et al.,

2018; CHATZIANTONIOU et al., 2017). All spectral bands of Sentinel-2 are resampled to

a uniform spatial resolution of 10 meters using bilinear upsampling. For Sentinel-1, the pre-

processing includes applying orbit files, radiometric calibration, thermal noise removal, and

debursting. A slice assembly technique is used to combine multiple scenes and a range Doppler

terrain correction is applied using the UTM WGS84 projection and 30-meter SRTM data,

resampled to 10 meters to match the Sentinel-2 resolution.

For Sentinel-1, texture characteristics are derived using the Grey-Level Co-occurrence Ma-

trix (GLCM) with a 5x5 sliding window to calculate the mean, variance, and correlation for

both VV and VH polarizations. This results in six texture products that enhance the classi-

fication process. For Sentinel-2, radiometric indices like the Normalized Difference Vegetation

Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation In-

dex (SAVI) are computed to enhance the identification of various land cover types.

Table 2.2 shows the equations to calculate this indexes, where NIR is the near infrared

band, 842 nm for S-2, for NDVI, NDWI, and SAVI; Red is 665 nm for S-2 for NDVI and SAVI;

MIR (Medium Infrared) is 2190 nm for S-2, for NDWI; P(i,j) is a normalized gray-tone spatial
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Table 2.3. S-2 Indexes and S-1 GLCM Textural Measures used to generate ground-truth, as described in
(TAVARES et al., 2019)

S-2 Indexes
Index Applied Equation
NDVI NIR−Red

NIR+Red
NDWI NIR−MIR

NIR+MIR
SAVI L× (NIR−Red)

NIR+Red+0.5

S-1 GLCM Textural Measures
Measure Equation
Mean

∑N−1
i,j=0 iPi,j

Variance
∑N−1

i,j=0 iPi,j(i− µ)2

Correlation
∑N−1

i,j=0 iPi,j−µxµy

σxσy

dependence matrix such that SUM(i,j = 0, N - 1) (P(i,j)) = 1; i and j represent the rows and

columns, respectively, for the measures of Mean, Variance and Correlation; µ is the mean, for

the Variance textural measure; and N is the number of distinct grey levels in the quantized

image; µx, µy, σx, and σy are the means and standard deviations of px and py, respectively, for

the correlation textural measure.

The processed images from Sentinel-1 and Sentinel-2 are then stacked using nearest neighbor

resampling, with Sentinel-1 as the master image. This integrated dataset undergoes a segmen-

tation process to aggregate pixels with similar values, employing a mutual best fitting region

merging criteria (BAATZ; SCHäPE, 2000; LASSALLE et al., 2015), resulting in approximately

82,246 segments.

The segmented data are classified using the Random Forest algorithm implemented in Ar-

cGIS 10.4. This algorithm requires specifying the number of trees (N) and the maximum depth

of each tree (n). The parameters are optimized on the basis of tests to ensure the best accu-

racy. The classification process uses various attributes of the segment, including color, mean,

standard deviation, count, compactness, and rectangularity.

The accuracy of the classification is assessed using metrics such as overall accuracy (OA)

and the Kappa coefficient. The overall accuracy is given by:

OA =

∑
TPi

N
, (2.1)

where
∑

TPi is the sum of true positives for all classes and N is the total number of pixels.

Analogously, the Kappa coefficient, a statistical measure that evaluates the agreement be-
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Data Combination Overall Accuracy (%) Kappa Coefficient

S-1 with S-2 91.07 0.8709
S-2 Only 89.53 0.8487
S-2 with Indexes 89.45 0.8476
All 87.09 0.8132
S-1 with Textures 61.61 0.4870
S-1 Only 56.01 0.4194

Table 2.4. Performance Table of Different Data Combinations

tween the observed classification and the reference data, taking into account the agreement

that could occur by chance. The equation for the Kappa coefficient is given by:

κ =
OA− Pe

1− Pe

, (2.2)

where Pe is the expected agreement by chance, which is calculated as follows

Pe =
k∑

i=1

(
(Ri × Ci)

N2

)
,

and Ri is the total number of pixels in row i of the confusion matrix, Ci is the total number of

pixels in column i of the confusion matrix, N is the total number of pixels, and k is the number

of classes.

The results of the automatic method were manually checked by CENSIPAM experts and

interns to assess the accuracy metrics and generate the results shown in Table 2.4. These metrics

are derived from cross-validation with high-resolution Planet1imagery and statistical approaches

such as Jeffries-Matusita and Transformed Divergence (SEN et al., 2019) for evaluating the

separability of classes.

Using this automatic method, the CENSIPAM team generated labels for six Sentinel-1

image scenes. This classification was reviewed by 5 experts and 10 interns and scholars. Figure

2.5 represents two examples of images and their respective ground truth masks. Note that

even though the masks have been manually reviewed by the CENSIPAM team, there is still a

significant amount of noise and sparse pixels with deforestation. This amount of noise will be

a problem in training the model described in Chapter 3. This problem was addressed in the

second stage of this work, Chapter 4, using morphological operations.
1Planet is a company that operates a fleet of Earth-imaging satellites, providing high-resolution imagery

and data for various applications such as environmental monitoring, agriculture, and urban planning. More
information available at: <https://www.planet.com/>

https://www.planet.com/
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Figure 2.5. Crops from captures of the processed VV band Sentinel 1 next to the corresponding mask obtained
by the described process.
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2.3 SEMANTIC SEGMENTATION WITH ARTIFICIAL NEURAL NETWORKS

Semantic segmentation is a task in computer vision that involves partitioning an image into

distinct regions and assigning a class label to each pixel (ZHENG et al., 2021). This process al-

lows for the detailed understanding of the image content by distinguishing different objects and

their boundaries within the scene. Unlike traditional image classification, which only assigns a

single label to an entire image, semantic segmentation provides a pixel-level classification, mak-

ing it essential for applications that require precise localization and identification of various

elements.

The goal of semantic segmentation is to generate a mask that categorizes each pixel of

the input image into one of several predefined classes, such as roads, buildings, people, and

trees. This pixel-wise annotation enables detailed analysis and understanding of complex scenes,

facilitating tasks such as autonomous driving, medical imaging, and aerial imagery analysis

(WANG et al., 2022; AZIMI et al., 2019; YANG et al., 2020). In autonomous driving, for

example, semantic segmentation helps the vehicle understand its surroundings by identifying

and locating objects like pedestrians, vehicles, and traffic signs, ensuring safe navigation.

In this section, we briefly describe the artificial intelligence methods used in this work to

segment deforested areas. More specifically, we describe the basic concepts of artificial neural

networks, the architectures used in this work, and the performance metrics considered.

2.3.1 Fundamentals of Neural Networks

Artificial neural networks (ANN) are computational models inspired by the structure and

function of the human brain (GOODFELLOW et al., 2016). They consist of interconnected

layers of nodes or “neurons,” each performing a simple computation. These neurons are orga-

nized into an input layer, one or more hidden layers, and an output layer. Each connection

between neurons has an associated weight, which is adjusted during training to minimize the

error in the network’s predictions using optimization techniques and backpropagation for gradi-

ent calculation. ANNs have become the state-of-the-art in many tasks within computer vision

(WANG et al., 2023c). Their ability to automatically learn features from raw data without the
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need for manual feature extraction has significantly advanced the field. For example, convo-

lutional neural networks (CNNs) (GOODFELLOW et al., 2016), a type of ANN particularly

effective for image-related tasks, have been instrumental in achieving high performance in image

classification, object detection, and segmentation.

CNNs operate by applying convolution operations to input images, which involve sliding

filters (or kernels) across the image to detect various features. These features are then combined

in subsequent layers to form more complex representations (BROWNLEE, 2018). The main

components that distinguish convolutional neural networks from other types of ANNs are the

convolutional layers and the pooling layers. Convolutional layers apply convolution operations

to extract features from the input image. Each layer learns multiple filters that capture different

aspects of the data, such as edges, textures, and patterns (PAJANKAR; JOSHI, 2022; TEAM,

2020).

As a result of the convolution operations, a feature map is generated. Feature maps are

essentially grids of numbers representing the presence of detected features across the spatial

dimensions of the input (TEAM, 2020). Each point in the feature map corresponds to the

application of a filter at a specific location on the input image, indicating where certain features

are found and their intensity. These maps maintain spatial hierarchies and allow the network to

understand the positional context of features (BROWNLEE, 2018). As the network deepens,

subsequent layers use these feature maps to detect higher-level patterns and objects, leading

to a more refined and comprehensive understanding of the image content. This ability to

automatically learn and adapt filters through training makes CNNs highly effective for visual

tasks, allowing them to detect and analyze various elements within an image. Figure 2.6

illustrates how a convolution operation works in a neural network architecture. The input

image (left) is processed by a filter (center) to produce an output array (right). The example

shows the computation of a single output value (16) by performing element-wise multiplication

and summation of the overlapping regions of the input image and the filter.

The pooling layers play a crucial role in CNNs by performing down-sampling operations,

which reduce the spatial dimensions of the feature maps. This reduction helps to reduce compu-

tational load and minimizes the risk of overfitting (DIAMANTIS; IAKOVIDIS, 2020). Common

types of pooling, such as max pooling and average pooling, ensure that the most significant
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Figure 2.6. Illustration of a convolution operation in a neural network.

features are retained while the size of the data is reduced, maintaining essential information

for further processing (BROWNLEE, 2019). Following the convolutional and pooling layers,

the output is usually flattened and passed through one or more fully connected layers. These

layers are responsible for high-level reasoning and classification based on the features extracted

by the convolutional layers (MADHUGIRI, 2020). They combine the features in a way that

allows the network to make final predictions, categorizing the input images into predefined

classes with high accuracy. To enhance the learning capability of CNNs, non-linear activation

functions are applied after each convolutional and fully connected layer. Functions like ReLU

(Rectified Linear Unit)2 introduce non-linearity into the model, enabling it to learn complex

patterns and representations. This non-linearity is essential for the network to capture intri-

cate relationships within the data, making neural networks versatile and powerful for various

computer vision tasks (MCCULLUM, 2019).

More recently, transformer networks have revolutionized the field of natural language pro-

cessing (NLP) and are increasingly making significant impacts on computer vision. Transform-

ers are designed to handle sequential data, making them highly effective for tasks involving text,

such as translation, summarization, and sentiment analysis (VASWANI et al., 2017). Unlike

traditional recurrent neural networks (RNNs) and long short-term memory networks (LSTMs),

transformers rely on self-attention mechanisms to process entire sequences of data simultane-

ously, which allows for more efficient training and the capture of long-range dependencies. The

core innovation of Transformers lies in the self-attention mechanism, which enables the model

2The ReLU funciton is defined by f(x) = max(0, x).
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to weigh the importance of different words in a sentence when making predictions. This mech-

anism computes attention scores that highlight which parts of the input sequence are most

relevant for generating each part of the output sequence. This approach not only improves the

model’s ability to understand context, but also allows for parallelization, significantly speeding

up training times compared to RNNs and LSTMs.

Transformers have been adapted for computer vision tasks with notable success. Vision

Transformers (ViTs) apply the same self-attention principles to image patches, treating them

as sequences. This adaptation allows Transformers to excel in tasks such as image classification,

object detection, and segmentation. Studies have shown that ViTs can achieve state-of-the-art

performance on various benchmarks. For example, (DOSOVITSKIY et al., 2020) demonstrated

that ViTs could outperform traditional convolutional neural networks (CNNs) on image classi-

fication tasks when pretrained on large datasets.

For the purpose of semantic segmentation of deforested regions, four benchmark segmen-

tation architectures were evaluated. The initial model implemented was a modified UNet ar-

chitecture (RONNEBERGER et al., 2015), configured to process five input channels (R, G, B,

VV, VH) rather than the usual three (R, G, B). Next, three advanced segmentation techniques

from the PaddleSeg toolkit (LIU et al., 2021) were examined: EfficientFormerV2 (LI et al.,

2022b), SegFormerB0 (XIE et al., 2021), and PPLiteSeg (PENG et al., 2022). The following

subsections provide a brief examination of each architecture employed in this study.

2.3.2 UNet

The UNet architecture, proposed by (RONNEBERGER et al., 2015), as illustrated in Figure

2.7, employs a symmetrical encoder-decoder structure designed for precise segmentation tasks.

The encoder path, composed of repeated convolutional blocks, progressively reduces the spatial

dimensions while increasing the feature depth. Each convolutional block consists of sequences

of convolutional layers (Conv 3x3), followed by ReLU activations and batch normalization to

enhance feature extraction and normalization. Downsampling is achieved through max-pooling

layers, reducing the spatial resolution and capturing contextual information at various scales.

The decoder path mirrors the encoder structure but focuses on upsampling the feature
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maps to the original image resolution. This is achieved through bilinear upsampling, followed

by convolutional layers that refine the feature maps. A crucial aspect of the UNet architecture

is the inclusion of skip connections, which concatenate the feature maps from the encoder to

the corresponding decoder layers. These connections, indicated by the green arrows in Figure

2.7, allow the network to retain fine-grained spatial information lost during downsampling.

Figure 2.7. Representation of the UNet architecture. The network input is the processed 512x512 cut and the
output is a binary mask containing the deforestation marking pixel by pixel.

In addition, 1x1 convolutional layers are employed at various stages to adjust the dimen-

sion of the feature map and facilitate smooth information flow between different scales. The

concatenation operations (blue blocks) integrate high-resolution features from the encoder with

the upsampled features in the decoder, enhancing the network’s ability to perform precise and

context-aware segmentation. In general, the UNet architecture combines deep feature extrac-

tion with efficient spatial information preservation, making it highly effective for medical image

segmentation and other dense prediction tasks.

Although other more modern models are also used for image segmentation, such as the

InternImage framework proposed by Wang et al.(WANG et al., 2023a) which is based on trans-

former networks, we chose UNet due to its simplicity of implementation, rapid training, and

demonstrated efficacy on satellite images(MCGLINCHY et al., 2019). The choice is justified,



2.3 – Semantic Segmentation with Artificial Neural Networks 26

in particular, by the model’s ability to operate efficiently on limited hardware resources and its

proven suitability for images produced by SARs. This model will be used as a baseline in com-

parison with human performance in the labeling task in Chapter 3 and will also be expanded

to five channels in Chapter 4 for use in the segmentation task using fused data.

2.3.3 PPLite-Seg

PPLiteSeg (PENG et al., 2022), shown in Figure 2.8, is a lightweight and efficient architec-

ture, specifically designed for devices with limited computational capabilities. This is achieved

through a simple yet powerful network design that employs advanced convolutional strategies

such as depthwise separable convolutional layers and a pyramidal structure for efficient image

processing. In the context of fusing optical and radar data for deforestation segmentation,

PPLiteSeg is particularly appealing due to its efficiency in processing multiple input channels

without significantly increasing computational complexity.

Depthwise separable convolutions are a type of convolutional operation used in deep learning

to reduce computational cost and model size. They decompose the standard convolution into

two separate layers: depthwise convolution, which applies a single convolutional filter per input

channel, and pointwise convolution, which uses a 1x1 convolution to combine the outputs of

the depthwise layer. This separation significantly decreases the number of parameters and

calculations required, making them efficient for mobile and embedded applications.

Figure 2.8. Schematic representation of the encoder-decoder architecture for semantic segmentation, demon-
strating the flow from input through various stages to the output. Source: PP-LiteSeg: A Superior Real-Time
Semantic Segmentation Model (PENG et al., 2022)
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The PP-LiteSeg, which architecture is shown in Figure 2.8, adopts an encoder-decoder ar-

chitecture optimized for real-time processing. The encoder uses lightweight convolution layers

to efficiently extract multi-scale features from the input image. The decoder, known as the Flex-

ible and Lightweight Decoder (FLD), is crucial for up-sampling and combining these features

into a final segmentation map.

The encoder, represented in the upper block of Figure 2.8, consists of several stages that pro-

gressively downsample the input image, extracting hierarchical features with increasing depth.

This process balances computational efficiency by reducing spatial resolution while increasing

the number of feature channels at each stage. The Simple Pyramid Pooling Module, SPPM,

is strategically positioned between the encoder and decoder to aggregate global context infor-

mation with minimal computational overhead. It achieves this by applying pyramid pooling

with different bin sizes, followed by convolution and upsampling operations to refine the pooled

features.

The decoder in PP-LiteSeg, represented in the lower block of Figure 2.8, employs the FLD,

which gradually upsamples the features back to the original resolution. The FLD incorpo-

rates UAFM to enhance feature representation by applying both spatial and channel attention

mechanisms. These attention mechanisms generate weights that emphasize the most relevant

features, improving the fusion of multi-level features from the encoder. The UAFM ensures that

the combined features retain critical spatial and semantic information, leading to more accurate

segmentation results. The detailed working mechanism of UAFM and SPPM is described in

the following subsections.

2.3.3.1 Unified Attention Fusion Module (UAFM)

The UAFM (PENG et al., 2022), represented in Figure 2.9, is a key component of the

decoder that improves feature maps by applying attention mechanisms. It integrates both

spatial and channel attention to dynamically prioritize relevant features dynamically throughout

the network. This module first computes attention weights, which are then used to scale the

feature maps, thus ensuring that salient features are enhanced while less important ones are

suppressed.
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Figure 2.9. Illustration of the Unified Attention Fusion Module. Source: PP-LiteSeg: A Superior Real-Time
Semantic Segmentation Model. (PENG et al., 2022)

Then, high-level features Fhigh are upsampled to Fup which, along with low-level features

Flow, are fed into the attention module. The output is modulated by a scaling factor α before

the addition operation that integrates the processed high and low-level features to produce the

final enhanced feature map. The attention module, represented by the orange box in Figure

2.9, can be used as a plug-in, where different attention techniques such as spatial attention or

channel attention can be applied, as described by the authors (PENG et al., 2022)

The spatial attention module exploits the inter-spatial relationship to produce a weight

that represents the importance of each pixel in the input features. It performs mean and

max operations along the channel axis to generate four features, which are then concatenated

and processed through convolution and sigmoid operations to produce the final attention map.

On the other hand, the channel attention module leverages the inter-channel relationship to

generate a weight indicating the importance of each channel in the input features. It uses

average-pooling and max-pooling operations to squeeze the spatial dimension, followed by con-

volution and sigmoid operations to produce the channel attention map. Both mechanisms

enhance feature representation by focusing on significant parts of the input data.

2.3.3.2 Simple Pyramid Pooling Module (SPPM)

PP-LiteSeg incorporates SPPM to aggregate contextual information from different regions

of the input image (PENG et al., 2022). The SPPM performs global average pooling at various

scales and uses these pooled features to augment the feature maps processed by the decoder.
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This module is designed to capture a comprehensive context without the computational com-

plexity typically associated with pyramid pooling architectures.

Pyramid pooling architectures, such as Spatial Pyramid Pooling (SPP) (HE et al., 2015)

and Pyramid Scene Parsing Network (PSPNet) (ZHAO et al., 2017), address the limitation

of fixed input size constraints in CNNs by performing pooling operations at multiple levels

or scales. This approach involves dividing the feature map into several sub-regions or bins,

performing pooling within each bin, and then concatenating these pooled features. By capturing

information at various scales, pyramid pooling allows the network to maintain important spatial

hierarchies and context, enhancing its ability to perform accurate recognition and segmentation

tasks. This multi-level pooling strategy enables the network to incorporate both fine-grained

and coarse contextual information, leading to more robust feature representations and improved

performance on tasks involving complex scenes and objects of varying sizes.

Figure 2.10 shows a diagram of the multi-scale feature processing pipeline used in SPPM.

In this module, features are pooled and then passed through parallel convolutional (Conv)

layers. Each branch is resized to match dimensions before being combined through an addition

operation. The aggregated feature map then undergoes a final convolutional transformation to

produce the output.

Figure 2.10. Illustration of SPPM. Source: PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model
(PENG et al., 2022)
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2.3.3.3 Overview of PP-LiteSeg

As highlighted by the authors (PENG et al., 2022), the architecture is balanced to pro-

vide high segmentation accuracy while operating efficiently on standard hardware. The use of

techniques such as depthwise separable convolutions and simplified pooling modules enables

PP-LiteSeg to achieve fast inference times, making it suitable for applications like mobile and

embedded systems where computational resources are constrained.

The combination of these features allows PP-LiteSeg to deliver robust performance in real-

time semantic segmentation tasks, providing a balance between speed and accuracy. This makes

it a reasonable choice for deployment in scenarios where both performance and computational

efficiency are critical. Based on these points, the architecture was chosen to be used in this

study, given the hardware constraints and training time available.

2.3.4 EfficientFormerV2

EfficientFormerV2 (LI et al., 2022b) is engineered to match the efficiency of lightweight

CNNs like MobileNet in terms of size and speed, while still delivering robust performance. It

rethinks Vision Transformers (ViTs) to create a supernet characterized by its low latency and

high parameter efficiency.

As shown in Figure 2.11, the network architecture evolves through four stages, increasing

incrementally in complexity and depth while spatial resolution decreases. Initially, it processes

features locally (a) using pooling and convolution layers. Then it transitions to a unified Feed

Forward Network (FFN) design (b) that integrates depth-wise convolutions. This is followed

by a Multi-Head Self-Attention (MHSA) block (c) that enhances locality and employs ’Talking

Head’ attention, thus refining feature interaction. The flow of the architecture (d) is defined

by subsampling stages that merge local and global processing. For handling higher-resolution

features, it utilizes a strategy (e) involving attention with downsampling. Lastly, the dual-path

attention downsampling technique (f) combines static and learnable local downsampling with

global attention, allowing for context-aware reduction in feature dimensionality.

Multi-head self-attention is a key component of transformer architectures, which enables the

model to focus on different parts of the input sequence simultaneously (LI et al., 2022b). The
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Figure 2.11. EfficientFormerV2 architecture with local and global processing blocks across four stages, unified
FFN design, MHSA enhancements, and dual-path attention downsampling. Source: Rethinking Vision Trans-
formers for MobileNet Size and Speed (LI et al., 2022b)

mechanism works by first computing self-attention scores, which determine the importance of

each element in the input relative to all other elements. This is achieved by projecting the input

sequence into three distinct vectors: queries, keys, and values. Attention scores are computed

as the dot product of queries and keys, scaled by the square root of the dimensionality of the

keys, and passed through a softmax function to obtain normalized weights.

These attention weights are then used to compute a weighted sum of the values, producing

the output for each head. In a multi-head setup, several self-attention mechanisms run in

parallel, each with its own set of learned projections for queries, keys, and values. This allows

the model to capture diverse patterns and relationships in the input data. The outputs of all

heads are concatenated and projected to form the final output.

In general, the design of EfficientFormerV2 involves a deliberate refinement of the network

search space (LI et al., 2022b), focusing on a configuration that is both deeper and narrower to

enhance precision while reducing the number and latency of parameters. The original article,

(LI et al., 2022b), introduces improvements to MHSA by integrating local information and

facilitating communication between heads, improving performance without additional cost.

Attention to higher resolution, a known challenge for mobile efficiency due to its complex-

ity, is adeptly handled through Stride Attention, reducing latency while preserving accuracy.
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Moreover, the dual-path attention downsampling approach outperforms conventional methods

by employing both static and dynamic strategies to downsample features in a way that is

cognizant of the context, ensuring efficient performance in mobile settings. Together, these

innovations establish EfficientFormerV2 as a transformer model that not only rivals but poten-

tially surpasses lightweight CNNs in mobile efficiency.

2.3.5 SegFormerB0

SegFormer (XIE et al., 2021), illustrated in Figure 2.12, introduces a transformative ap-

proach to semantic segmentation, merging Transformer efficiency with an All-MLP decoder.

This segmentation model stands out with its hierarchically structured Transformer encoder

that outputs multi-scale features without the need for positional encoding, which is particu-

larly beneficial when testing resolutions differ from training ones. Additionally, the model’s

MLP decoder eschews complex decoders in favor of a simple design that aggregates multi-layer

information, thereby integrating both local and global attention to produce powerful represen-

tations. This leads to an exceptionally lightweight and efficient model suitable for real-time

applications in high-resolution images, as detailed in the SegFormer paper (XIE et al., 2021).

The encoder employs overlap patch embeddings and progressive stages of transformer blocks,

each followed by merging for multi-scale feature extraction. The decoder fuses the multires-

olution features using MLP layers and upsamples to match the original image resolution for

pixel-wise classification. With a focus on model size, run-time, and accuracy, SegFormerB0

demonstrates superior performance on various datasets, offering a substantial improvement in

terms of both efficiency and accuracy compared to other models. It achieves this by leveraging

a series of Mix Transformer encoders, ranging from MiT-B0 for rapid inference to MiT-B5 for

peak performance.

The encoder consists of several transformer blocks. Each block includes an Efficient Self-

Attention mechanism and a Mix-FeedForward Network (Mix-FFN). The Efficient Self-Attention

mechanism reduces computational complexity by concentrating on the most significant regions

of the input features. The Mix-FFN incorporates a 3x3 convolution within the feed-forward

network, eliminating the need for positional encoding. This design choice enhances the model’s
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Figure 2.12. Architecture of SegFormerB0, featuring an encoder with hierarchically structured transformer
blocks and a simple MLP decoder. Source: SegFormer: Simple and Efficient Design for Semantic Segmentation
with Transformers(XIE et al., 2021)

ability to handle various input resolutions during both training and inference, thus improving

overall robustness and accuracy.

Between transformer blocks, the architecture utilizes Overlap Patch Merging. This module

merges overlapping patches to progressively reduce the spatial dimensions while increasing

the channel dimensions. This hierarchical reduction allows the network to efficiently manage

computational resources and learn more complex features at different levels of the hierarchy.

At the end of the encoder, feature maps are refined through an MLP layer before being up-

sampled. This refinement ensures that the high-dimensional features are appropriately scaled

and merged. The decoder then reconstructs the high-resolution segmentation map from these

refined features. Using a series of MLP layers and upsampling operations, the decoder incre-

mentally increases the spatial resolution of the feature maps. The final MLP layer maps these

high-resolution features to the desired number of classes, producing the segmentation output.

By combining self-attention mechanisms and MLP layers, the SegFormer architecture achieves

a balance between model complexity and segmentation accuracy. This makes it particularly

suitable for real-time applications such as autonomous driving and video surveillance.
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Algorithm 1 Calculation of TP, TN, FP, FN
Require: Predicted matrix P , Ground truth matrix G
1: Initialize TP ← 0, TN ← 0, FP ← 0, FN ← 0
2: for each pixel i in P do
3: if P [i] = 1 and G[i] = 1 then
4: TP ← TP + 1
5: else if P [i] = 0 and G[i] = 0 then
6: TN ← TN + 1
7: else if P [i] = 1 and G[i] = 0 then
8: FP ← FP + 1
9: else if P [i] = 0 and G[i] = 1 then

10: FN ← FN + 1
11: end if
12: end for
13: return TP , TN , FP , FN

2.4 METRICS USED TO EVALUATE THE MODELS

To verify the quality of the results obtained, the following metrics were chosen: jaccard

index, recall, precision, and F1 score, as they are reference metrics used in state-of-the-art

semantic segmentation tasks (WANG et al., 2023b; CHEN et al., 2023). Since both the model

output and the ground are binary matrices, the process described in algorithm 1 was used to

calculate the number of true positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN) for each pair predicted/ground truth mask.

The Jaccard index, also known as the Intersection over Union (IoU), is a significant metric

in semantic segmentation and is defined by the following equation:

Jaccard Index =
TP

TP + FP + FN
. (2.3)

The Jaccard index highlights the ratio of the intersection to the union of predicted and actual

segmentation areas. This metric is effective for evaluating segmentation because it provides

a straightforward measure of how closely the predicted segmentation aligns with the ground

truth, which makes it particularly suitable for tasks where the scale of objects varies greatly

(BEERS et al., 2019).

Recall in semantic segmentation is defined as the proportion of actual positive pixels that

were correctly identified. It is defined by the following equation:

Recall =
TP

TP + FN
. (2.4)
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It focuses on the model’s ability to capture all relevant cases in the image, which is crucial

in medical imaging and other applications where missing a positive case can have significant

consequences. This metric is highly valued in scenarios where the cost of false negatives is high,

such as not detecting a possible condition in a medical diagnosis (SHOAIB et al., 2022).

Finally, precision measures the proportion of predicted positive pixels that are truly positive,

given by the following equation:

Precision =
TP

TP + FP
. (2.5)

It emphasizes the model’s ability to deliver accurate positive predictions without many false

positives. It is particularly important in contexts where the cost of a false positive is significant,

such as in automated surveillance systems (PATRIKAR; PARATE, 2022).

Finally, the F1 score is defined by the harmonic mean between precision and recall:

F1 Score = 2× Precision× Recall
Precision + Recall

. (2.6)

In practical terms, the F1 score provides a single metric that balances both precision (the

accuracy of positive predictions) and recall (the ability to capture all positive instances). This

is particularly useful in scenarios where the class distribution is imbalanced or where both false

positives and false negatives carry significant costs. Considering both precision and recall, the

F1 score ensures that a model does not overly favor one metric at the expense of the other,

thus offering a more comprehensive evaluation of the model’s performance in identifying the

target class (RIYANTO et al., 2023).

2.4.1 Cross-Entropy

In this study, the segmentation task was treated as a pixel-by-pixel classification problem,

thus, the model output will be a matrix where each pixel corresponds to the probability that

the pixel, in the same position in the original image, represents deforestation. Consequently,

each pixel in the prediction matrix and the ground-truth matrix can be seen as a probability

function, therefore, it is correct to take the minimization of cross-entropy as a goal to maximize

the models’ accuracy rate. This is a common practice present in academic literature in semantic

segmentation tasks using binary masks (WEI et al., 2016)
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The cross-entropy function measures the difference between two probability distribution

functions over the same set of events. This measure is often used to quantify the error in

classification problems. Cross entropy is defined as:

H(p, q) = −
∑
x

p(x) log q(x),

where p is the actual probability distribution of the data (ground-truth) and q is the probability

distribution estimated by the model (model predictions). In the context of image segmentation,

each pixel is treated as a separate event and p(x) and q(x) represent the probability of each

class for that pixel. Minimizing cross-entropy means adjusting the model in such a way that

the distribution q approaches p as closely as possible, thereby reducing the discrepancy between

the model’s predictions and the true values. This is crucial for enhancing the model’s accuracy

in correctly classifying whether a pixel belongs to a deforestation area or not.



CHAPTER 3

ONLINE SAR IMAGE LABELING EXPERIMENT

To compare the performance between automatic models and humans in the deforestation

detection task, an online experiment was proposed to create a benchmark based on human

performance in the task. The study was conducted online and promoted via email lists and

social media platforms. The study included 24 volunteers who had different levels of experi-

ence in remote sensing. The assessment gathered deforestation bounding box annotations for

50 segments of pre-treated SLC Sentinel-1 pictures, where only the Vertical Transmit-Vertical

Receive Polarisation (VV) band was used to produce a grayscale image. Besides the exper-

iment, an artificial intelligence automatic model was used as the baseline. This model was

based on a UNet architecture (RONNEBERGER et al., 2015) due to its ease of training and

proven effectiveness in satellite image segmentation(MCGLINCHY et al., 2019; SHIRVANI et

al., 2023).

This chapter of the work was published in the XLI Brazilian Symposium on Telecommu-

nications and Signal Processing, presented on October 10, 2023, at the São José dos Campos

Technology Park (CORREIA et al., 2023).

3.1 DEVELOPED PLATFORM

Although there are good annotation applications, such as CVAT(AL., 2020), we chose to

develop a custom annotation system, which is simpler and has a more agile interface. Figure 3.1

shows a screenshot of the developed system. The system is based on Streamlit1, an open source

platform that allows the quick and efficient creation of web applications. The programming

language used in this project was Python version 3.7. We adapted the code from Stream-

lit, implementing functions to collect annotations and save the results in a SQLite relational

database. The platform was served online with the NGINX reverse proxy in a domain belonging
1Available on https://streamlit.io/ Accessed on May 2024

https://streamlit.io/
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Figure 3.1. Screenshot showing the interface of the developed system. The volunteer must mark the bounding
boxes using click’ and drag with the mouse’. To finish, the user must click on the ‘Save Result’ button. Software
originally available at sar.igorbispo99.com, currently offline.

to the author of this work. Using this online platform, participants viewed and annotated the

deforested areas in SAR images.

3.2 VOLUNTEER PREPARATION

Participants were invited through email lists and social media. The invitation contained a

link to a form, which contained a video2 with an introduction to the problem of deforestation

detection, a description of the image labeling process, and a demonstration of the developed

software. In this video, examples of ground truth and desirable boxes shown in Figure 3.2

were also presented. These areas marked in green are the regions that contain deforestation

according to the database used. Participants were instructed to mark the deforested regions

using the smallest rectangle possible for each non-contiguous deforested area. On the left is the

original image that the volunteers would see during the marking process, in the center is the

same image with the ground-truth masks superimposed, and further to the right, the desired

bounding boxes. These images were shown to volunteers as a reference for optimal labeling.

2Video available on https://www.youtube.com/watch?v=ijZRCheIXro
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Figure 3.2. Composition of cuts from a Sentinel-1 scene with visible deforestation.

After viewing the video, volunteers were asked to complete a form on Google Forms 3 with

five demographic statistical questions: Name, Gender, Age, Occupation, Level of Education;

and two questions to gauge self-reported experience: What is your level of experience with

the topic of remote sensing? (0 to 4) and What is your level of experience with the

topic of synthetic aperture radar? (0 to 4). The last two questions were later correlated

with the results obtained in the box-checking stage for each of the participants, as shown in

Table 3.1.

3.3 DATA PREPROCESSING

In total, 50 images were made available to each participant. The images correspond to

512×512 cuts extracted from an SLC capture already processed with radiometric calibra-

tion(PONZONI et al., 2015), orbit correction, multilook (YAGÜE-MARTÍNEZ et al., 2016),

and anti-speckle filter(CHOI; JEONG, 2019) of the Sentinel-1A radar. The capture was made

on 07/27/2021 and can be obtained through the Open Access Hub of the European Space

Agency4. For the experiment, only the VV band of the signal was used, both for neural net-

3Available on https://forms.gle/3Lc3w7WY6VuPThUW6
4https://scihub.copernicus.eu

https://forms.gle/3Lc3w7WY6VuPThUW6
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work classification and for the experiment with volunteers.

3.4 SUBJECTIVE EXPERIMENT RESULTS

In total, 24 individuals participated in the experiment. The participants had different levels

of experience. At the beginning of the experiment, participants reported their level of experience

in remote sensing and synthetic aperture radars using a scale from 0 to 4, where 4 indicates

that the participant is an expert and 0 indicates that they have no experience with the subject.

Figures 3.3 (a) and (b) show graphs that illustrate the distribution of participants’ experience

in remote sensing and synthetic aperture radars, respectively. From these graphs, it can be

observed that the experience of the participants in the field of remote sensing varied greatly,

with 34% having no experience, 21% having little experience, 29.8% having some experience,

12.8% having a good level of experience, and 2.1% being experts on the subject. In synthetic

aperture radars, about half (51.1%) of the participants had no experience, 17% had little

experience, 21.3% had some experience, and 10.6% had a good level of experience.

(a) (b)

Figure 3.3. Distribution of participants’ self-declared experience in the field of: (a) remote sensing and (b)
SAR.

To analyze the results of the subjective experiment, we grouped the demarcation annotations

given by different volunteers for the same image. For each deforestation demarcation given by

each participant for a specific image, the value 1 is added to the deforestation mask. Then,

each pixel of the mask is divided by the number of participants who annotated that image, in

order to normalize the mask values between 0 and 1. Finally, a threshold of 0.5 is applied to

the image, so that values below 0.5 are considered negative and values above 0.5 are considered
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Algorithm 2 Aggregate Predictions in Image M
Require: N images
Require: P people
Require: B bounding boxes
1: M512,512 matrix
2: for i = 1 to N do
3: M512,512 ← 0
4: for j = 1 to P do
5: for all b ∈ Bj do
6: Add 1 to M512,512 beneath b
7: end for
8: end for
9: M512,512 ←M512,512/P

10: for k,l in M512,512 do
11: if Mk,l < 0.5 then
12: Mk,l ← 0
13: else if Mk,l > 0.5 then
14: Mk,l ← 1
15: end if
16: end for
17: end for

positive. An overview of the process is described in Algorithm 2.

Figure 3.4 shows all the rectangles marked by the participants for two of the test images

and the corresponding mask generated with the proposed strategy. Boxes of the same color

were marked by the same participant. This composition consists of four Sentinel-1 image crops

submitted for evaluation. On the left, the VV polarization band of each crop is displayed,

annotated with bounding boxes. Each box, color-coded to represent a different evaluator, is

overlaid on the imagery. In the center, the mask created through the consolidation process is

presented, as outlined in Algorithm 2 On the right, the corresponding ground truth mask is

depicted.

Using the ground-truth markings of the images that show confirmed deforestation areas as

a reference, we analyzed the performance of the participants and the model by calculating the

following metrics: precision, F1 (the harmonic mean between precision and recall), intersection

over union (IOU), and area under the curve (AUC). These performance metrics are considered

standard in the literature for evaluating detection and segmentation models (SHIRVANI et al.,

2023; TOVAR et al., 2021). It is worth noting that the AUC calculation is done on the non-

binarized mask, i.e., without the application of the threshold. Table 3.1 presents the results
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obtained.

Figure 3.4. Composition with: Sentinel-1 crops, bounding boxes marked by the evaluators, the respective
predicted mask and ground-truth.

3.5 AUTOMATIC BASELINE UNET-MODEL

The automatic model for deforestation detection is based on the UNet architecture (RON-

NEBERGER et al., 2015). In the experiments conducted, UNet not only achieved performances

close to those obtained by state-of-the-art models, but also surpassed human labelers in accu-

racy and processing time in the detection of deforestation in SAR images. This demonstrated

superiority makes UNet a practical and efficient choice for the task at hand.

The UNet network implementation was done in Python 3.7 with PyTorch version 1.3. The

model was trained in a database containing 1,279 512x512 cuts extracted from 4 SLC Sentinel-
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Table 3.1. F1, IOU, AUC, and Precision metrics, grouped according to the participant’s self-declared experi-
ence in Remote Sensing and SAR.

Self-Declared F1% IOU% AUC% Precision%
Experience

Remote
Sensing

0 5.5 3.2 51.0 8.3
1 11.0 6.3 51.4 14.8
2 6.4 3.8 52.0 10.0
3 0.9 0.5 49.7 2.4
4 15.1 9.1 52.5 21.5

SAR
0 6.6 3.8 51.1 10.7
1 10.9 6.2 51.6 13.4
2 2.4 1.5 52.3 3.5
3 7.9 4.6 51.8 11.8

Table 3.2. F1, IOU, ROC, and Precision metric values for the UNet-based deforestation detection model.
F1% IOU% AUC% Precision%

9.5 27.5 67.0 37.8

1A scenes from the Amazon forest, captured on 07/27/2019, 08/04/2020, 08/13/2020, and

08/30/2021. The images were pre-processed following the same operation chain used to gen-

erate the images submitted to the online labeling system. It should be noted that there is no

intersection between the areas of the scenes used in neural network training and those used for

comparative tests. The model was trained for 5 epochs, with a batch size of 16 and a regressive

dynamic learning rate, starting with a value of 0.00001. RMSProp was used as the gradient

optimizer. The model training was done on a Windows 11 machine with an i7-11700K processor

and an RTX 3080 GPU.

Table 3.2 presents the F1, IOU, AUC, and Precision values for the results obtained with

UNet. When comparing these values with those of Tables 3.1, a clear difference in performance

is observed. More specifically, the UNet-based detection model showed better performance than

that obtained by the participants in the experiment. It should be noted that the participants’

performance on this task was low, as demonstrated by the AUC. In this metric, a result of 50%

corresponds to the performance of a random model. On the other hand, the UNet-based model

showed an AUC of 67%, indicating moderate performance in the detection of deforestation.
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Figure 3.5. Composition of four Sentinel-1 image crops submitted for evaluation. On the left, the VV
polarization band of each crop is displayed. In the center, the mask predicted by the UNet-based model is
presented. On the right, the corresponding ground truth mask is depicted.

Finally, the qualitative visual results shown in Figure 3.5 confirm the metrics seen in Table

3.2 and show a greater match with groundtruth in the UNet-based model.

3.6 CONCLUSIONS

In this chapter, we investigated the relationship between the level of self-declared experience

of individuals and the quality of annotations produced for deforested areas in SAR images, as

well as the ability of an automatic system to detect these areas. The results suggest a low

correlation between self-declared experience and the quality of annotations, indicating that
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greater declared knowledge in remote sensing and SAR does not necessarily lead to higher

quality annotations.

Furthermore, the study showed that the accuracy of an automatic model, based on UNet, to

detect deforested areas exceeded that obtained with participants. These findings demonstrate

the potential for the use of deep learning in deforestation detection. However, this should be

verified in future work, given the low number of expert participants and the limitations of the

box annotation tool.

It is crucial to emphasize that the method chosen for collecting bounding box annotations

was designed to optimize practicality and speed during the collection process, thereby enhancing

participation rates in the experiment. It is reasonable to assume that this annotation method

may not provide a fair comparison to the pixel-precise assessments performed by UNet. A more

suitable alternative to enhance the accuracy of human annotators would involve the adoption

of polygon-based annotations or even the use of a variable-sized brush tool, which would allow

for pixel-precise annotations. In the next chapters, the task of detecting deforestation in SAR

images will be expanded with the introduction of data fusion and state-of-the-art segmentation

models.



CHAPTER 4

DEFORESTATION DETECTION USING DATA FUSION

This chapter outlines the methodologies for data processing and the development of machine

learning models. The methods use a data fusion technique of optical and SAR data sourced from

Sentinel-1 (see Section 2.1.2.1) and Sentinel-2 (see Section 2.1.1.1) satellites. In this scenario,

data fusion refers to the combination of two distinct datasets to produce a more comprehensive

and detailed informational aggregate.

4.1 DATA FUSION

The data fusion process consists of synchronizing and combining different types of data,

allowing the complementary information of each sensor to be maximized (DOBLAS et al.,

2020). The RGB images from Sentinel-2 provide details about the color and texture of the land

cover, while the SAR images from Sentinel-1 offer relevant information about the structure and

moisture of the soil, regardless of atmospheric conditions or light levels.

Integrating these two types of data results in a series of benefits for machine learning appli-

cations, especially in the context of deforestation detection. Firstly, the combination of optical

and radar data contributes to the robustness and reliability of the model, overcoming the in-

dividual limitations of each type of sensor(JOSHI et al., 2016b). Furthermore, the resulting

dataset is enriched with a greater diversity of features, allowing a more complete profile of the

terrain.

In addition, the fusion of optical and SAR data can significantly improve the accuracy

and sensitivity of the model in identifying deforested areas (DOBLAS et al., 2020), which

is particularly valuable in regions where deforestation may be subtle or obscured by cloud

cover. This approach also offers flexibility to be applied in different scenarios and geographic

conditions, making the model adaptable to a variety of landscapes. Therefore, the strategy
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of fusing optical and SAR data establishes itself as an effective approach in the automatic

detection of deforestation, taking advantage of the unique capabilities of each type of sensor to

create a more efficient and accurate monitoring system.

Figure 4.1. Composition with 3 Sentinel-1 and Sentinel-2 captures of the same scene.

In this study, the optical and SAR captures were fused using the scene coregistration, more

detailed in Section 4.2.1, technique followed by stacking the images in the channel dimension.

In this way, a Sentinel-2 RGB image containing three channels and a Sentinel-1 SAR capture

containing two channels are composed into a resulting five-channel image that was used in the

training and inference of the AI models. Figure 4.1 shows examples of cut-outs from scenes S1

and S2 before they were stacked and used for training1. The images on the left corresponds to

the RGB bands of the Sentinel-2 stacked, the middle image is the Sentinel-1A band in vertical

polarization (VV) and, further to the right, the Sentinel-1A band in horizontal polarization

(VH)

1The stacking order chosen was: R, G, B, VV and VH
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4.2 DATA ACQUISITION AND PRE-PROCESSING

The acquisition of optical data from Sentinel-2, carried out through the public access portal

of the European Space Agency (ESA), was manually coordinated to match the dates and times

of the Sentinel-1 SLC images, as described in previous chapters. This temporal alignment is

crucial for the data fusion process and for the effectiveness of automatic deforestation detection

techniques in satellite images. A screenshot showing the interface of the Copernicus system can

be seen in Figure 4.2.

The process of selecting Sentinel-2 optical images on the ESA portal involved searching for

specific dates and times that matched exactly, or as closely as possible, the moments of the

Sentinel-1 SLC image captures used as reference. This correspondence is essential to ensure

the synchrony between the data sets, enabling a more accurate and detailed analysis of defor-

estation areas since, if there is a large temporal mismatch between SAR and optical capture,

the deforestation labels may not be completely trustworthy.

After downloading, Sentinel-2 images were processed and aligned with Sentinel-1 radar data

through the co-registration process, using the SNAP software, as shown in Figure 4.3. This

process initially involved the preprocessing of the images, including atmospheric corrections on

the optical images and the calibration of backscatter data on the SAR images.

Figure 4.2. Interface of the Copernicus Browser, the portal where Sentinel-2 optical images were acquired.
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4.2.1 Coregistration

The co-registration process is essential when dealing with captures from different sensors or

at different times (ZITOVá; FLUSSER, 2003). In this process a reference image is first selected

based on its clarity and comprehensive coverage of the area of interest, then ground control

points (GCPs), which are specific, easily identifiable geographic landmarks, are pinpointed in

both the reference and the secondary images. These GCPs are crucial as they anchor the

alignment process, ensuring that each point corresponds accurately across both datasets.

Using these GCPs, the SNAP tool calculates a geometric transformation that mathemat-

ically adjusts the pixel coordinates of the secondary image to match those of the reference

image. This adjustment is performed through algorithms that minimize spatial discrepancies,

effectively overlaying the images with high precision.

Figure 4.3. SNAP software interface displaying the application of the coregistration function to align Sentinel-
1 and Sentinel-2 images.

After mapping, the secondary image undergoes a resampling procedure, where its pixels are

interpolated or extrapolated to fit the geometric framework of the reference image. This step

is vital to ensure that the corresponding pixels in both images align perfectly, thus maintaining

the integrity of geographic information when the images are integrated for analysis. The quality

of coregistration is visually evaluated to ensure that the alignment is precise and free of any

spatial or dimensional distortions.
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From the accurately aligned optical and radar data, scenes with five channels are generated.

The first three channels correspond to the red, green, and blue bands (bands 4, 5, and 6) of

Sentinel-2, while the last two channels are dedicated to the VV and VH bands of Sentinel-1,

as shown in Figure 4.1. This multiband alignment allows for comprehensive analysis across

different spectral signatures and radar responses, enabling detailed assessments of the observed

areas.

4.3 DATA PROCESSING FOR TRAINING

Considering that each of the compositions generated in the previous step has vertical and

horizontal resolutions in the order of tens of thousands of pixels, training with the entire image

at once is not feasible or effective due to memory and convergence constraints. Because of this,

a strategy was developed to generate samples for training.

The pre-processing process is done as follows: for each instance of deforestation, 10 regions

of size 512x512 are extracted from the fused images, each with slight random offsets. The same

respective region is then cropped from the binary mask containing deforestation to generate

the sample’s ground-truth. A graphical representation of the process and pseudocode of the

algorithm can be seen in Figure 4.4.

samples = {}
samples_per_region = 10

for each image I:
for each deforested region R in I:

for each i in [0, samples_per_region):
crop := random_region_containing(R,

size=(512, 512))
deforestations := deforestations_in(crop)
samples.add((deforestations, deforestations))

Figure 4.4. On the left: visual representation of sample extraction from an instance, where three samples were
extracted per deforestation. On the right: the pseudo-algorithm used for cropping to create training batches.

Next, statistical processing was applied to remove outliers and normalize the input channels

since the SAR (VV and VH) and optical (R, G, B) bands are in different magnitude ranges.

After processing, all bands were scaled to fall within the range of 0 and 1. Specifically, outliers
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were managed by calculating the 2nd and 98th percentiles of each band, and values outside

this range were clipped to the respective percentile values. This step effectively mitigated the

impact of extreme values that could distort the analysis.

Subsequently, each band was normalized by subtracting the minimum and dividing by the

range (maximum minus minimum) of the clipped data, ensuring a standardized scale. Finally,

to facilitate visual inspection and potential further processing, the normalized data were scaled

to the 8-bit range (0-255) by multiplying by 255 and converting to an unsigned 8-bit integer

format. This transformation maintains the relative differences within the data while making

them suitable for conventional image processing techniques and visualization tools.

After this process, 10000 deforestation samples were obtained, of which 80% was reserved

for training and 20% for testing. It was certified that none of the training samples intersected

with the test samples, even in cases where both came from the same Sentinel capture. As many

of the samples had small regions of deforestation with a few square pixels and discontinuous

regions caused by the automatic process used to generate labels, morphological opening and

closing operations were applied. In Figure 4.5, is shown a composition with three examples

of labels used to train the four segmentation architectures. On the left is the original noisy

mask generated by the automatic process described in the 3.3 section, in the center is the same

image after the opening process has been applied and on the right is the image after the closing

process

The masks initially contained pixels with a binary grayscale value of 0 or 255, where 0

corresponds to no deforestation and 255 corresponds to deforestation. To be used in training,

the masks were converted to 512x512 matrices in one-hot encoding 2 where each pixel corre-

sponded to a two-dimensional vector with binary values. In all trainings, the task was treated

as a pixel-by-pixel classification or semantic segmentation problem with cross-entropy loss.

In an initial test, the training and testing process was carried out with samples from the

same capture. However, it was identified that this process, even if the disjunction between the

training and testing regions is ensured, generated bias in the result. As a result, a new training

process was carried out in which captures from different days and regions were used for training

and testing.

2[1,0] for non-deforestation and [0,1] for deforestation
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Figure 4.5. Composition with three examples of labels used to train the four segmentation architectures.

4.4 TRAINING

Each model was trained with the hyperparameters displayed in Table 4.1. The objective task

was pixel-by-pixel classification using cross-entropy. The training phase of each model followed

a rigorous approach, as indicated in Table 4.1, we chose a batch size of 16 for SegFormer

and PP-LiteSeg to take advantage of the benefits of large batch training, which include stable

gradients and efficient GPU utilization. For EfficientFormer, a smaller batch of 8 was necessary

to accommodate its architectural complexity within the GPU memory constraints.

The number of iterations was chosen using as a reference the original articles of each of the

models (XIE et al., 2021; LI et al., 2022b; PENG et al., 2022) and using the early stopping

method (CAWLEY; TALBOT, 2010). SegFormer and UNet underwent 160,000 and 40,000

iterations, respectively, allowing SegFormer’s deeper architecture more time to learn intricate

features. PP-LiteSeg required only 10,000 iterations, reflecting its efficiency in quickly reaching
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Table 4.1. Hyperparameters for Segformer, Efficientformer, PP-LiteSeg, and UNet models

SegFormer EfficientFormer PP-LiteSeg UNet

Batch Size 16 8 16 16
Iterations 160,000 40,000 10,000 40,000

Optimizer
Type AdamW AdamW SGD Adam
Beta1 0.9 - - 0.9
Beta2 0.999 - - 0.999
Momentum - - 0.9 -
Weight Decay 0.01 0.0001 0.00004 0

Learning Rate Scheduler
Type Polynomial Decay Polynomial Decay Polynomial Decay Polynomial Decay
Learning Rate 0.00006 0.0006 0.01 0.001
End LR - 0.000001 0 0
Power 1 0.9 0.9 0.9

Loss
Types CrossEntropyLoss CrossEntropyLoss CrossEntropyLoss CrossEntropyLoss

performance saturation.

The AdamW optimizer was chosen for training the SegFormer and EfficientFormer models

using the original works of these architectures as reference (XIE et al., 2021; LI et al., 2022b).

According to the original authors, AdamW aligns with the need to scale the weight decay inde-

pendently of the learning rate, which is critical for transformer models that are sensitive to the

scale of updates (LOSHCHILOV; HUTTER, 2019). PP-LiteSeg used a different optimizer, fol-

lowing the original article’s authors (PENG et al., 2022) who employed SGD for its momentum

component, aiding convergence in regions with subtle gradient changes.

The learning rate scheduler was uniformly set to Polynomial Decay across models, ensuring

a controlled learning rate reduction and helping in fine-tuning the models towards the end of

the training (MISHRA; SARAWADEKAR, 2019). The learning rate was selected following the

authors’ directives, with SegFormer starting at a conservative rate to prevent divergence given

its complexity, while PP-LiteSeg’s aggressive rate to capitalize on its swift learning capabilities

(XIE et al., 2021; PENG et al., 2022).

Each model was optimized against the pixel-by-pixel classification task using cross-entropy

loss, a standard choice for such segmentation tasks, which directly aligns with maximizing

pixel-classification accuracy.
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Table 4.2. Number of Parameters for Segformer, Efficientformer, PP-LiteSeg, and UNet models

SegFormer EfficientFormer PP-LiteSeg UNet

Number of Parameters 3.7M 7.9M 8.1M 13.4M

Table 4.2 shows the number of trainable weights for each of the architectures used in this

work. Although a greater number of parameters, given a similar architecture, generally show

a positive correlation with performance in computer vision tasks, as observed by (LIU et al.,

2015) and (TZELEPIS et al., 2019), the results obtained in this study suggest that a more

modern architecture, with fewer parameters, can overcome a heavier model.

4.5 EXPERIMENTAL RESULTS

During the evaluation of training and inference on the models, it was noted that when the

training and testing datasets are disjoint subsets of the same capture session, specifically, from

the same date and geographical region, but involving nonoverlapping crops, the performance

of all evaluated architectures significantly improved. In contrast, when the training data are

sourced from a capture on one specific day and the testing data is derived from a capture on a

different day, there is a noticeable deterioration in performance metrics.

This performance disparity can be attributed to potential changes in lighting at different

times of the day, which particularly affects Sentinel-2 optical images, and variations in the image

acquisition angle and calibration, which can create shadows impacting Sentinel-1 captures.

Therefore, the outcomes of this analysis will be detailed in two distinct scenarios to reflect these

variations in data handling: training and inference in the same image and training and inference

on different images. Note that even in cases where training and inference were conducted on

the same image, there was no overlap of areas in these two sets.

As indicated in Table 4.3, the SegFormerB0 architecture demonstrates superior average

performance across all metrics evaluated for tasks involving training and inference within the

same scene. Conversely, in scenarios where training and inference occur across different tempo-

ral captures, the transformer-based model PP-LiteSeg outperforms other models in all metrics

except for average Recall, where SegFormerB0 maintains a higher score. We attribute this to

its optimized Transformer design, which excels in capturing complex patterns. UNet’s per-
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Table 4.3. Metric results for models trained and tested on the same and different images. The highest values
for each metric are highlighted in bold.

Model

Metric UNet PPLiteSeg EfficientFormerV2 SegFormerB0

Trained and inference in the same image
Average Jaccard 0.94 0.9519 0.9704 0.9788
Average F1 0.96 0.9753 0.9850 0.9893
Average Precision 0.95 0.9756 0.9851 0.9894
Average Recall 0.97 0.9752 0.9849 0.9892

Training and inference on different images
Average Jaccard 0.46 0.6596 0.6571 0.6500
Average F1 0.63 0.7789 0.7776 0.7726
Average Precision 0.52 0.7485 0.7454 0.7393
Average Recall 0.81 0.8352 0.8430 0.8513

formance drop on different images may be result of its architecture’s limited generalizability,

which could be improved by integrating more robust feature extraction methods that are used

in more modern architectures.

The Transformer-based models, namely PPLiteSeg and EfficientFormerV2, showcased their

strong suit in generalization, which may be related to the Transformer’s self-attention mecha-

nism that captures long-range dependencies effectively. The close scores of EfficientFormerV2

and SegFormerB0, despite the difference in complexity, suggests that efficiency does not neces-

sarily compromise accuracy.

In Figure 4.6, it can be seen that all models showed good performance, even in cases where

the ground truth contained a reasonable amount of noise. This noise occurs because ground-

truth labels were generated using an automatic random forest-based process, as described in

Section 2.2, which, although supervised, is not ideal and may have been harmed in some cases

by the morphological operation process.

Furthermore, in Figure 4.7 it is possible to see that the SegFormer-based model was able

to better adjust the deforested area seen in the image, including being able to capture details

and small deforestation, such as those seen in the capture of the third row. In contrast, Figure

4.8 shows some cases in which the models confused the clouds visible in the optical layers with

false positives for deforestation, indicating that the models may not be robust to occlusion of

the optical bands, even if the corresponding SAR bands are visible. This may suggest that the
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trained models are relying excessively on the RGB bands to make the prediction.

In general, the results, as shown by the objective metrics Tables 4.3 and visual inspection of

the predictions, show that the models were able to predict the deforested region satisfactorily.

In some cases, the groundtruth did not appear to visually correspond exactly to the deforested

region visible in the RGB bands. In these cases of label noise, the models tended to adjust

more faithfully to the visible area than the groundtruth. One last factor that may contribute to

the mismatching of labels is the fact that Sentinel-1 and Sentinel-2 images were matched using

the closest possible time. However, in some cases, it was not possible to achieve this temporal

matching perfectly and there was a lag of up to a week between the two captures.

Lastly, the disparity in results between scenarios where training and inference are performed

on the same image versus different images suggests that the models’ generalization capability

might be limited. It is recommended to train the models on a more diverse database in various

weather conditions, times of day, and regions. The model with fewer parameters and the

best performance in the first test scenario, SegFormerB0, experienced a significant drop in

performance when the task changed to different images. This may indicate that the lighter

model adjusted more closely to the specific characteristics of the training image, such as weather

conditions (visible in the optical bands) and shadows caused by the SAR acquisition angle,

rather than learning more generic patterns. In this latter scenario, the transformer network

model with more parameters, PP-LiteSeg, displays the best metrics, possibly because it is

a heavier model in terms of parameters, more modern, and may have a better capacity for

generalization.
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Figure 4.6. Composition with the prediction results obtained with the trained models, PPLiteSeg, Seg-
FormerB0 and EfficientFormerV2 along with ground truth (last column). Green means forest and blue means
deforestation.
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Figure 4.7. Composition with the prediction results obtained with the trained models, PPLiteSeg, Seg-
FormerB0 and EfficientFormerV2 along with ground truth (last column). Green means forest and blue means
deforestation.
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Figure 4.8. Composition with the prediction results obtained with the trained models, PPLiteSeg, Seg-
FormerB0 and EfficientFormerV2 along with ground truth (last column) Green means forest and blue means
deforestation.



CHAPTER 5

CONCLUSIONS

Throughout this study, a comprehensive examination of manual (Chapter 3) and automatic

(Chapter 4) deforestation detection methods was carried out, revealing insights into the efficacy

and practicality of each approach. The investigation of the relationship between the levels of

self-declared experience of individuals and the quality of their annotations of deforested areas in

the SAR images indicated a weak correlation, as in Section 3.1. This finding may challenge the

assumption that higher self-proclaimed expertise in remote sensing and SAR leads to superior

annotation quality, however, future studies should be conducted, using a larger number of

participants and more precise annotation techniques, such as pixel-by-pixel, to investigate this

fact.

In contrast, the performance of an automated model based on the UNet architecture sur-

passed the accuracy of human-generated annotations, Section 3.2. This success underscores the

advantage and potential of deep learning models in the recognition of deforested areas, par-

ticularly when human expertise does not guarantee improved detection. This result, although

interesting and enlightening, should be approached with a degree of skepticism because, for

practical reasons, the human annotators did not have access to all the tools necessary to per-

form pixel-precise annotation.

Furthermore, the comparative analysis of segmentation models, including transformer-based

SegFormerB0 (Section 2.3.5), EfficientFormerV2 (Section 2.3.4), and PP-LiteSeg (Section 2.3.3),

along with conventional UNet, showcased the remarkable ability of transformer models to gen-

eralize. The superior performance of SegFormerB0, attributed to its optimized Transformer

design, highlights the critical role of advanced architectural features, such as self-attention, in

handling complex patterns and achieving high accuracy. These results were particularly inter-

esting because this model had the fewest trainable parameters despite being the most modern

architecture. This improved performance might be attributed to potential detriment to gener-
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alization ability in the scenario where training and inference were performed on the same image

but in different regions. In the task where training and testing were performed on different

images, the heavier transformer-based model exhibited better performance.

The results of the tests on different images revealed that, when models are trained and

tested on the same images, we likely have a very optimistic and unrealistic performance, given

that, in a real-world context, training would be done on a historical database and inference

would be made on future data, so that, almost always, the training and inference scenes would

be from very different climatic moments and situations.

In addition, it was identified that the ground truth generation method, using random forest

and semi-human supervision, contained extremely small deforestation markings which hindered

the training of the models. To mitigate this, we propose that a complete review of the ground

truth database be carried out with manual editing of all masks used, if possible, by experts in

remote sensing and comparing with other data sources beyond Sentinel-1. Furthermore, ad-

vanced data augmentation techniques such as CutMix (YUN et al., 2019) and MixUp (ZHANG

et al., 2017) can be implemented to regularize the models and reduce overfitting. Lastly, con-

sidering that ground truth labels may not be completely accurate, it would be advisable to use

a label smoothing technique (MÜLLER et al., 2019) to reduce overconfident predictions.

This study sets the stage for future exploration in the detection of deforestation by advocat-

ing for the fusion of data and cutting-edge segmentation models. The advances in automatic

deforestation detection showcased here promise a significant step forward in environmental

monitoring and the preservation of our forests.

Regarding the labeling experiment part of this work, future studies should be conducted

with a larger number of participants, especially with the participation of more experts in SAR

image analysis, to verify the apparent lack of correlation between the quality of annotations

and experience self-declared. Furthermore, it is important to provide labelers with more precise

annotation methods for a finer delimitation of the deforested area.

Regarding detection with fused data, it is worth carrying out a more detailed study, in

future work, of different deforestation segmentation scenarios, such as: segmentation using

only optical data, only SAR data and both fused data, maintaining the same architectures and

base of data to assess whether the merger is, in fact, beneficial, and identify possible situations
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of low performance in each of the scenarios.

Finally, it is interesting to investigate the use of simpler segmentation techniques using color

thresholds, random forest and more modest classifiers to verify whether the use of complex

architectures, such as transformers, is justified, as simple methods also show good performance

in this task as observed in the literature (FU et al., 2018; HOLLOWAY et al., 2019).
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