N

Universidade de Brasilia
Instituto de Ciéncias Exatas

Departamento de Matematica

Some Caffarelli-Kohn-Nirenberg’s type problems in
RN

por

George Demetrios Fernandes Leitao Kiametis

Orientador

Prof. Dr. Giovany de Jesus Malcher Figueiredo

Brasilia

2024



Universidade de Brasilia
Instituto de Ciéncias Exatas
Departamento de Matematica

Some Caffarelli-Kohn-Nirenberg’s type
problems in RY

por
George Demetrios Fernandes Leitao Kiametis

Tese apresentada ao Departamento de Matemdtica da Universidade de Brasilia como parte
dos requisitos necessdrios para obtencao do grau de

DOUTOR EM MATEMATICA
23 de janeiro de 2024

Comissao Examinadora:

Prof. Dr. Giovany de Jesus Malcher Figueiredo - Orientador (MAT-UnB)

Prof. Dr. Rodrigo da Silva Rodrigues (DM-UFSCAR)

Profa. Dra. Suellen Cristina Queiroz Arruda (PPGME-UFPA)

Prof. Dr. Ricardo Ruviaro (MAT-UnB)

*O autor foi bolsista CAPES durante a elaboragao deste trabalho.



A minha familia.



Agradecimentos

Agradeco a Deus por ter me dado forgas para chegar até aqui.

Agradeco a minha familia pelo apoio pela compreensao quando eu nao estava presente
com eles por estar me dedicando aos estudos.

Agradego aos meus amigos da escola pela compreensao da minha auséncia durante o
doutorado e pela amizade deles.

Agradeco ao meu orientador Giovany Figueiredo pela paciéncia, dedicacao, motivagao e
por ser um exemplo de profissional para mim.

Agradeco aos professores Rodrigo Rodrigues, Suellen Arruda e Ricardo Ruviaro por
aceitarem o convite para comporem a banca de defesa desta tese e pelas sugestoes valiosas
que contribuiram para a melhoria deste trabalho.

Agradego aos professores do Departamento de Matemética da UnB que contribuiram
muito para a minha formagdo. Também quero agradecer & professora Sandra Imaculada
Moreira Neto pelas excelentes aulas de Anélise Funcional e ao professor Joao Pablo Pinheiro
da Silva pelas excelentes aulas de Métodos Variacionais.

Agradeco aos servidores do departamento de matematica da UnB pelos servicos
prestados.

Agradeco ao Segundo Manuel pela ajuda com o TeX na elaboracao desta tese.

Agradego aos amigos do Departamento pela ajuda e companheirismo nos estudos das
matérias e para os exames de qualificacio.

Agradego a CAPES pelo apoio financeiro.



Resumo

Titulo: Alguns problemas do tipo Caffarelli-Kohn-Nirenberg
em RY.

Nesse trabalho, provamos alguns resultados referentes a problemas do tipo Caffarelli-
Kohn-Nirenberg em RY.

No primeiro capitulo, provamos a existéncia de solucoes nao-triviais com nao-linearidades
do tipo Berestycki-Lions usando o Teorema do Passo da Montanha, o Principio Variacional
de Ekeland e um resultado de compacidade do tipo Strauss. Mais precisamente, estudaremos
a seguinte classe de problemas

—div (Jz| 7% |VulP72Vu) + |27 |ulP~2u = |2| " h(u), em RY, (PM)

—div (|z|"*|VulP">Vu) = 2|7 f(u), em RY, (ZM)

onde1<p<N,0§a<%,a<b§a+l,p*:p*(a,b):Npﬁlpedzl—ka—b.

No segundo capitulo, provamos a existéncia e concentracao de solugoes ground state
para uma classe de problemas subcritico, critico ou supercritico do tipo Caffarelli-Kohn-
Nirenberg usando o Teorema do Passo da Montanha e o método de Iteragao de Moser. Mais
precisamente, estudaremos a seguinte classe de problemas quasilineares

—div ([~ Vul’ V) + [a 7P [L+ gV (@)][ul? e = 27 [f (u) + olul” ], (Pugo)

em RV, onde1<p<N,0§a<%,a<b§a+1,p*:p*(a,b):pr%,d:1—|—a—b
e p>0.

No terceiro capitulo, provamos as existéncias de solugoes ground state positiva e nodal
minimizando o funcional na variedade de Nehari e em um subconjunto da variedade de
Nehari para a seguinte classe de problemas do tipo Caffarelli-Kohn-Nirenberg

—div (|z|~*|VulP~>Vu) + 2| 7"V (@) [ulP 2 = |2 K (2) f(u), em RN, (P)

onde1<p<N,0§a<%,a<b§a+1,p*:p*(a,b):Npi\;pedzl—i—a—b.

Palavras-chave: Problemas do tipo Caffarelli-Kohn-Nirenberg; Problema do tipo
Berestycki Lions; Existéncia e concentragao de solugoes ground state; Existéncia de solucoes
ground state positiva e nodal.



Abstract

Title: Some Caffarelli-Kohn-Nirenberg’s type problems in R”.
In this work we prove some results concerning to Caffarelli-Kohn-Nirenberg’s type
problems in RV.
In the first chapter we prove the existence of nontrivial solutions with Berestycki-Lions
type nonlinearities using the Mountain Pass Theorem, Ekeland’s Variational Principle and a
Strauss-type compactness result. More precisely, we study the following classes of problems

—div (|z| 7| Vu|P2Vu) + 2| 7" Ju|P 20 = |2| 7% h(u), in RY, (PM)
and
—div (]m|_ap|Vu\p_2Vu) = |x|_bp*f(u), in ]RN, (ZM)
Where1<p<N,O§a<%,a<b§a+1,p*:p*(a,b): Npi\;p andd=1+4+a—b.

In the second chapter we prove the existence and concentration of ground state solutions
for a class of subcritical, critical or supercritical Caffarelli-Kohn-Nirenberg type problems
using the Mountain Pass Theorem and the Moser Iteration method. More precisely, we are
going to study the following class of quasilinear problems

—div (Ja| =P [VuP"2Vu) + | 7L+ uV (@)]Jul e = o[ f(w) + olul” ), (Puge)

in RN, where 1l <p< N,0<a< %,a<b§a+1,p*:p*(a,b):pr]\gp,dzl—l—a—b
and p > 0.

In the third chapter we prove the existence of a positive and a nodal ground state
solutions minimizing the functional in the Nehari manifold and in a subset of the Nehari
manifold to the following class of Caffarelli-Kohn-Nirenberg type problems

—div (||~ |VuP"2Vu) + 2| V(@) u[P"2u = 2|7 K () f(u), inRY, (P)

Where1<p<N,0§a<%,a<b§a+1,p*:p*(a,b):Np]\;pandd:1+a—b.

Key words: Caffarelli-Kohn-Nirenberg’s type problems; Berestycki Lions’ type problems;
Existence and concentration of ground state solutions; Existence and concentration of
positive and nodal ground state solutions.
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Introduction

In this work we are going to study problems involving the operator div (|z|~|Vu[P~2Vu).
Problems involving this kind of operator are known as Caffarelli-Kohn-Nirenberg (CKN)
type problems because Caffarelli, Kohn and Nirenberg proved an important interpolation
inequality in 1984 [19], which allows to work on this class of problems using a variational
approach. Caffarelli-Kohn-Nirenberg type problems has some applications, for instance, in
fluid mechanics, in Newtonian fluids, in flow through porous media, in glaciology (see [25])
and in problems of existence of stationary waves for anisotropic Schrédinger equation
(see [48]).

Elliptic differential equations with singular terms, such as CKN type problems, are an
important topic in applied mathematics that arises in various contexts such as physics,
engineering, biology, and geology. These equations describe phenomena where solutions are
smooth in some regions and exhibit singularities in others.

Elliptic equations are known to have smooth, continuous, and well-behaved solutions.
However, when singular terms are introduced into these equations, the smoothness of
solutions can be compromised.

A classic example of an elliptic equation with singular terms is the Poisson’s equation
with a singularity at the origin given by

1

e

Au

In this equation, the term |z|* represents a singularity at = 0. The solution to this
equation will be smooth everywhere except at the origin where the singularity is located.

The Poisson’s equation is one of some examples of elliptic differential equations with
singular terms that are essential for modeling physical and natural phenomena that exhibit
singularities, such as the charge distribution in electrostatics (Coulomb’s law leads to a
singularity at ﬁ), wave propagation in media with discontinuities, behavior of fluids in
complex geometries, elasticity problems in materials with fractures, and more.

Solving these equations is challenging due to the singularities, and advanced techniques
such as regularization are needed to obtain valid solutions. Additionally, elliptic differential
equations with singular terms are fundamental in the theory of distributions and the study
of Sobolev spaces.

In summary, elliptic differential equations with singular terms play a crucial role in
modeling a wide range of complex phenomena and are an important research topic in applied
mathematics and theoretical physics. Understanding these equations and their solutions is
fundamental for solving practical problems in various fields of science and engineering. More
information on physical motivation for this class of problems can be seen in [29], [32], [41]
and [44].

CKN type problems are a kind of elliptic differential equations with singular term. Much
progress has been made for this class of problems. For example, in [46], in bounded domain,
the authors consider the existence of non-trivial solutions to semi-linear Brezis-Nirenberg



type problems with Hardy potential and singular coefficients. The study the eigenvalue
problem for this class of problems is in [47]. Results related to problems in the RV are
more frequent. The best embedding constants, the existence and nonexistence of extremal
functions, and their qualitative properties were studied in [19], [20] and [48]. Results of the
existence of a solution for problems in the RY require results of compactness. For example,
in [12] the authors put special conditions about the potentials in order to overcome the lack
of compactness and to show existence of solution for a problem with this class of problems.
A result of compactness involving radial functions was proved in [25] to show the existence
of radial solution for a problem with this class of operators.

In order to contribute to the advance of the understanding of the solutions of this class
of operators, we prove some results related to CKN type problems in RY. Before present
our results, we describe briefly what we do in each chapter of this thesis. In the first chapter
we prove the existence of nontrivial solutions for a class of Caffarelli-Kohn-Nirenberg type
problems adapting the ideas in [6] and [34]. Essentially, we obtain a (PS) sequence of radial
functions bounded in order to prove the existence of a solution and, in sequence, we prove
a Strauss-type estimate and a Strauss-type compactness result to show that the solution
obtained is nontrivial. Finally, we use the Principle Symmetric Criticality to show that
the critical point of the Euler-Langrange functional restricted to the subspace of the radial
functions is, in fact, a critical point of the Euler-Lagrange functional in the whole space.
The lemma 1.3.8 and the Principle Symmetric Criticality are proved in the Appendix A. In
the second chapter we prove the existence and concentration of ground state solutions for
subcritical, critical and supercritical problems, where we apply the Moser iteration method
for the supercritical problem. Also, we need to prove the existence of a ground-state solution
for an auxiliary problem in a bounded domain, which the proof is in Appendix B. In the
third chapter we prove the existence of a positive ground-state solution and a nodal ground-
state solution, which changes the sign exactly once. We prove some compactness results,
some properties of functions in the Nehari set, the existence of a positive ground-state
solution arguing by contradiction and the existence of a nodal ground-state solution for a
minimization argument.

In order to motivate the problem of the first chapter, let us consider a classical problem
in the literature. Using a constrained minimization method, Berestycki and Lions [15] show
existence of positive solution of C? class of problem

—Au=g(u) in RY (0.0.1)

with exponential decay and spherically symmetric, where g : R — R is a continuous function
such that g(0) = 0. The authors assume that g is odd and satisfies the following conditions.

g1) —oo < liminf g(s)/s < limsupg(s)/s = —m < 0;
s—0t s—0t

g2) —oo < limsupg(s)/s> 1 <0;

S—00

£
g3) There exists £ > 0 such that G(&) = / g(s)ds > 0.
0

The constraint cause a Lagrange multiplier to appear that can be removed using the special
homogeneity of the operator and a scale change in RY. They studied two cases: The Positive
mass, that is m > 0 and the Zero Mass case, that is m = 0.

Alves, Montenegro and Souto in [4] have studied the existence of ground state solution
for (0.0.1) with critical growth. By using the variational method, the authors in [4] give a
unified approach in order to deal with subcritical and critical case. However, we would like
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to point out that a result due to Jeanjean and Tanaka [37], which say that the Mountain-
Pass value gives the least energy level, was the main tool used. A similar study was made
for the critical case in Zhang and Zou [51].

After this pioneering papers, many researches worked in this subject, extending or
improving in several ways, see, for instance, [1], [2], [6], [8], [16], [22], [23], [24], [35] and
references therein.

Motivated by this subject, we study in the first chapter the existence of nontrivial
solutions for the following classes of problems

—div (Jz| "% |VulP72Vu) + |2 |ulP~2u = |z| %" h(u) in RY, (PM)
and
—div (|z|~%|VuP~2Vu) = |z|~%" f(u) in RV, (ZM)
where1<p<N,0§a<%,a<b§a+1,p*:p*(a,b): Npﬂp andd=1+a—b.

To present the main results of this chapter, it is necessary to put hypotheses about the
nonlinearities h and f. The hypotheses on the function h are the following:

hi) There exists g € (p,p*) such that

oy O )
=0 [t|971  jt| oo [EPTE

¢
he) There exists £ > 0 such that pH (&) — &P > 0, where H(t) = / h(r)dr.
0

Example 0.0.1. As example of function satisfying the previous hypothesis, we have:
Let o € (p,p*) and h(s) = |s|*2s with a > q.

For the Zero Mass case we use Dy (RYN) that is the completion of the CS°(RYN) with the
norm

= [ | lel oIV Pz,
RN
where C3°(RY) is the space of smooth functions with compact support.

For the Positive Mass case we use Ey = {u € Dg*(RV) : / 2| %" |u|Pdz < oo} with
RN

the norm

Hu”p:/ \at|aqu|pda:—|—/ \a:|7bp*|u]pdx.
RN RN
Let

L;(RN) = {u :RY 5 R: wis measurable and/ || 7% Ju)*dx < oo}
RN

with the norm defined as

jul$ = / 2]~ Ju*da.
]RN

The first main result is:

11



Theorem 0.0.2. Assume the conditions hy) and hy). Then, problem (PM) has a nontrivial
solution.

The first class of problems is called Positive Mass because g(t) = h(t) — t satisfies g1),
g2) and g3) for the case m > 0.

In the case (ZM), the hypotheses on the function f are the following:
f1)
ORI L0)

1m o = 1 " =
=0 [tP" 7L jtl oo [t[PT L

t
f2) There exists £ > 0 such that F'(§) > 0, where F(t) = / f(rydr.
0

Example 0.0.3. As example of function satisfying the previous hypothesis, we have:
Let p < qo < p* < q1 and

F(s) = {|srq12s, if |s] < 1.

| s|e2s, if |s| > 1.
The second main result is:

Theorem 0.0.4. Assume the conditions f1) and f2). Then, problem (ZM) has a nontrivial
solution.

The second class of problems is called Zero Mass because f satisfies ¢1), g2) and g3) for
the case m = 0.

In this chapter we adapt some arguments that can be found in [34], which was used for
the first time by [36]. More precisely, we find a Palais-Smale sequence satisfying a property
related to Pohozaev identity. The same approach was used in [6] for a problem involving
the Grushin operator.

Finally, we would like to finish this brief introduction about the chapter 1 listing below
what we believe to be the main contributions of our work.

(i) The proof of Theorems 0.0.2 and 0.0.4, we have found some difficulties to apply
variational methods. For example, for this class operator there is no a result like
Jeanjean and Tanaka [37], which say that the Mountain-Pass value gives the least
energy level of the Pohozaev manifold, which is crucial in order to use the arguments
due to Berestycki-Lions. We overcome this difficulty exploring the argument in [34].

(ii) The operator that we work is not well-behaved for translations. Thus, we have proved
a Strauss-type Lemma result for this class of problems (Lemma 1.3.3 and Lemma
1.3.4) in order to show that the critical points have found in the Theorems 0.0.2 and
0.0.4 are nontrivial inspired by the argument in [6].

In the second chapter, we are interested in a class of problems with the subcritical,
critical or supercritical growth on the nonlinearity. More precisely, we are going to study
the following class of quasilinear problems

—div (Je| =P [VulP "2 Va) + | 7L+ uV (@)]Jul e = a7 [f () + elul” ) (Puge)
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in RN, where 1 <p< N,0<a< %,a<b§a+1,p*:p*(a,b):pr]\ilp,dzl—i-a—b
and p > 0.

We are considering three cases. The first case is the subcritical growth on the
nonlinearity, i.e. when o = 0. In this case we have

—div (||| VulP V) + | TP+ pV (@) [ul e = [ f (), (Pro.0)

in RV,

The second case is the critical growth on the nonlinearity, i.e. when ¢ =1 and o = p*.

In this case we have
—div (|z|~*|VulP~2Vu) +|z| 71 4 pV ()] |ufP

* * * P ,1,p*
ol F(u) + o P, i RY. )

The last case is the supercritical growth on the nonlinearity, i.e. when ¢ =1 and o > p*.
In this case we have

—div (|x|_ap]Vu|p_2Vu) 1) P14 pV ()] [ulP 2

. . Py,
e[ f(u) + 2 a2, i RY. (Fiuto)

In order to state the main result, we need to introduce the hypotheses on the functions
V and f. The condition in V € C(RY R) are the following:

(V1) The potential V' is nonnegative, that is,

V(z) >0, for all z € RY;

(V2) Theset Q:=int{ z € R | V(z) =0} is a non-empty bounded open set with smooth
boundary 0€2;

(V3) There exists V* > 0, such that

meas ({z € RN : V(z) < V*}) < occ.

Potentials of type 1+ uV (z) satisfying (V1), (Va) and (V3) are called steep potential
well. Bartsch and Wang [11]| considered a problem with steep potential well and Laplacian
operator. They proved existence and concentration of positive ground state solution u,, for
plarge. In particular, in [3] the authors have studied the case exponential critical and in [50]
the authors have studied the case polinomial critical of [11]. The existence of sign-changing
solutions well was studied in [42]. In the literature, we find a lot of papers where the authors
have considered elliptic problems with steep potential as [3], [9], [10], [11], [13], |26], [27], [39]
and [50].

In our work, the hypotheses on the nonlinearity f € C'(R,R) are the following:

(f1)

lim f(s)l =0 and f(s)=0, forall s<0O0;
ls|=0 [s[P~

(f2) There exists p < r < p* such that




(f3) There exists 6 € (p,p*), such that

0<6OF(s) < f(s)s, for s#0,
where F(s) = /S f(t)dt;
0
f(s)

sp—1

(fa) s+

(f5) There exist 7 € (p,p*) and A* > 1 such that

is nondecreasing;;

f(s) > Xs|™"!, forall s >0,
for a fixed A > \* and A\* will be fixed latter.

Example 0.0.5. As example of functions satisfying the previous hypothesis, we have:

.« V(o) = 0, if |z < 1,
TP -1, il > 1.

. 55) = {0, if s <0,

AsTL, if s > 0.

We use Dg?(RY) that is the completion of the C§°(RN) with the norm
= [ el IV Pz,
RN
where C3°(RY) is the space of smooth functions with compact support.
We use E = {u € DeP(RYN) : / |2| 7" [1 4+ pV (@)]|ulPdz < oo} with the norm
RN
fully = [ el wulrae + [ Gl
RN RN

We also use Ey = {u € DyP(RN) : / |2| %" Ju|Pdz < 0o} with the norm
RN

Hu”p:/ \xyapvu|de+/ ([~ [u[Pd.
RN RN
Let us denote by

Li(RY) = {u :RY - R: wuis measurable and/ || 7% |u|*dz < oo} .
RN

Using an inequality established by Caffarelli, Kohn, and Nirenberg given by [19]

p/p*
</ ]w|bp*|u|p*da}> < Sa,b/ |x|~P|Vu|Pdx,
RN RN

we conclude that the embedding DyP(RN) < LI (RN) is continuous. Moreover, by
interpolation, we also conclude that E — L(RY) and E; < Lj(R™) are continuous,
for s € [p,p*].

Here is the main result of this chapter.

14



Theorem 0.0.6. Assume that (f1) — (fa) and (Vi) — (V3) are satisfied. Then,

(1) there exists p* > 0 such that problem (P, ) has a ground state solution u, € E for
all p > p*.

(ii) if the function f satisfies (f5) there exist positive numbers \* and p**, such that
problem (P, 1) or problem (Py1,,) has a ground state solution u, € E for all p > p**
and for all A > \*.

(iii) Moreover, as u — 400, the sequence (u,) converges in E to a ground state solution
Uso € E(Q) of the problem

—div (2|7 |VuP~2Vu) + |27 |uP~2u = |27 f(u) + |2| 7% |[u|""2u, in Q,
u =0, on Of.

where E(Q) is defined by E(Q2) = {u € Déjg(Q) : / 2| %" |u|Pdz < 0o} with the norm
Q
ullf o = / |z| | VuPdx +/ || 7 |u|Pd.
' Q Q

Our arguments were strongly influenced by [3], [9], [10], [11], [12], [13], [25], [26], [39]
and [50].

Finally, we would like to finish this brief introduction about the chapter 2 listing below
what we believe to be the main contributions of our work.

(i) The results that can be found in this chapter are complementary to the results of [12]
and [25]. Furthermore, as far as we know, this is the first result of concentration of
solutions for this class of problems.

(ii) Since we work with singularity not only in the nonlinearity but also in the operator,
some estimates are more refined. See for example Theorem 2.2.3, which is a version
of Lions’s Lemma for this class of problems.

(iii) Unlike the works [3], [9], [10], [11], [13], [26], [39] and [50], we are also considering the
supercritical case.

The third chapter deals mainly with the existence of a positive and a nodal solutions to
the following class of Caffarelli-Kohn-Nirenberg type problems give by

—div (|m|_ap\Vu|p_2Vu) + |x|_bp*V(z)|u|p_2u = |:E|_bp*K(:v)f(u) in RV, (P)

pN
N—dp

where1<p<N,0§a<%,a<b§a+1,p*:p*(a,b): andd=1+4a—b.

In order to find these solution we use Da”(RYN) that is the completion of the Cg°(RN)
with the norm

O
RN
where C5°(RY) is the space of smooth functions with compact support.

Let us denote by

L;(RN) = {u :RY - R: wis measurable and/ || %" |u|*dz < oo}
RN

15



and

LP(RN) = {u :RY - R: w is measurable and sup ess|z| %" |u| < oo} .
RN

On functions V, K : RY — R continuous on RY we assume the following general
conditions. We say that (V, K) € K if
(VKy) V(x),K(x) >0 for all z € RY and K € L{°(RN) N L>®(RY).

(VKy) If {Ay}, € RY is a sequence of Borel sets such that the Lebesgue measure meas(4,,) <
R, for all n € N and some R > 0, then

lim |z| 7" K(x) =0, uniformly in n € N.
T+ J 4,,nB&(0)

Furthermore, one of the below conditions occurs
(VK,) £ € L(RY) N L2 (RY)
or

(VK3) there exists m € (p,p*) such that

Moreover, we assume the following growth conditions in the origin and at infinity for the
C! function f: R — R:

(f1) .
o+ [(PT 0 if (VK3) holds

or

(f1)

f(t)

jt] 0+ [t|m1

with m € (p,p*) defined before in (VK3);

=0 if (VK3) holds

(f2) f has a “quasicritical growth” at infinity, namely,

f(t)

|t|—-+oo |E[P" 1

=0;
(f3) There exists 6 € (p, p*) so that

0 < OF(t) = e/ot F(s)ds < F(t)t, for all [t > 0:
(f4) The map

f(t)

t—
L2

is strictly increasing for all |t| > 0,
or, equivalently,
/ f(®)
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Example 0.0.7. As example of functions satisfying the previous hypothesis, we have:
Let

bp* <1
K(x) = {|x! 7‘$| -

e~ bp(jzl=1) lz| > 1,

V(z)=c¢>0 for all z € RY,

and
ft) = |t|q_1t, for all t € R and where q € (m,p*).

The main results of this chapter are stated in the following theorem.

Theorem 0.0.8. Suppose that (V,K) € K and f € CY(R,R) verifies (f1) or (f1) and
(f2) — (fa)- Then, problem (P) possesses a positive ground state weak solution. Moreover,
(P) admits a nodal ground state weak solution, which has precisely two nodal domains.

Our arguments were strongly influenced by [12].
Finally, we would like to finish this brief introduction about the chapter 3 listing below
what we believe to be the main contributions of our work.

(1) Comparing our results with [12], we observe that the singularities that appear in our
work are more general. Then, the estimates are more refined.

(ii) Furthermore, the positive solution was obtained by a technique different from the
technique used in [12] . Our results complete the result that can be found in [12],
because we also show a solution that sign-changes. Apparently, this is the first result
of a nodal solution for this class of problems.

We finish this introduction observing that the main results of this thesis as well as all
hypothesis from them will stated again in each chapter for a better comprehension of the
reader.
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Notation

In this work we use the following notation:

Cy° (RM) space of smooth functions with compact support;
Do (RN) completion of the C§°(R™) with the norm || - ||;
ulP = / || VulPda norm of the u in DAP(RN);

RN
Eog={ ueDy"(RN): / 2| 7" |ulPdz < oo subspace of Da?(RN);

RN

|lullb = / |z|”P|VulPdz + / || %" u|Pda norm of the u in Ep;

RN RN

LiRY)=qu:RN 5 R: / 2| 7% |ul*de < oo Lebesgue space with weight;

RN
lulf = / || 7" u|*da norm of the u in L§(RY);
RN
Ey(Bgr(0)) Ej restrict to Bgr(0);
Li(Bgr(0)) L (RN restrict to Br(0);
|ul$, B o) = / || % |ul*da norm of the u in Lj(Bgr(0));
Br(0)
Eo rad subspace of radial functions of Ep;
ff;ad(RN ) subspace of radial functions of C§°(R™);
Di:fad(RN) completion of Cgf;ad(RN) under the norm || - [|;



E = {u e DYP(RV) ; / 277" [1 4+ pV ()] [ulPdz < oo}

RN

ullfe = [lull” + / | TP L+ pV (2)] |ufPd

RN

L(RN) = {u ‘RN — R :supess|z| ™% |u| < oo}
RN

X = {u e DyP(RN) : Jan |27V (@) |ulP da < oo}

lully, = [ |=l~P|VulP doe + [ |2~V (z)]ul? dz
RN RN

Ly RY) ={u:RN 5 R: / || =" K () |u| dz < oo

RN
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subspace of De?(RN):;

norm of the v in F;

L space with weight;

subspace of Da?(RN);

norm of the v in X;

Lebesgue space with weight;

bounded domain;
open ball of radius R centered at 0;

measure of a measurable set A.



Chapter 1

Caffarelli-Kohn-Nirenberg type
problems with Berestycki-Lions type
nonlinearities

In this chapter, we use a Mountain Pass Theorem and an Ekeland’s Variational Principle
developed in [34] to find weak solutions in the subspace of radial functions once that there
is no a result like [37], which say that the Mountain-Pass value gives the least energy level
of the Pohozaev manifold, which is crucial in order to use the arguments due to Berestycki-
Lions. Next, we adapt an argument in [6] to show that the weak solutions are nontrivial
because the operator that we work is not well-behaved for translations, then the Critical
Symmetric Principle ensures that the weak solutions are solutions in the whole space.

1.1 Introduction

This chapter is focused to prove the existence of nontrivial solutions for the following classes
of problems

—div (][~ VulP~*Vu) + o7 [ulf"*u = 2] 7" h(u) n RY, (PM)

and
—div (|z|~*|VulP~?Vu) = || 7" f(u) in RV, (ZM)

where 1 <p< N,0<a <P a<b<a+1,p =p (ab) = Py andd=1+a—b.

Observe that the hypothesis that @ > 0 is important once that the estimate (1.3.6) fails
for a < 0.

To present the main results of this chapter, it is necessary to put hypotheses about the
nonlinearities h and f. The hypotheses on the function h in this case are the following:

hi) h is continuous and there exists g € (p, p*) such that

M) b

1m = =
=0 [t]971  Jt| oo [EPTE

t
ha) There exists £ > 0 such that pH (&) — &P > 0, where H(t) = / h(r)dr.
0
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The first main result is:

Theorem 1.1.1. Assume the conditions h1) and hg). Then, problem (PM) has a nontrivial
solution.

The first class of problems is called Positive Mass because g(t) = h(t) — t satisfies g1),
g2) and g3) for the case m > 0.

For the problem (ZM), the hypotheses on the function f in this case are the following:

f1) [ is continuous and
f@) o f@)

m = 1im g
1|0 [t[P"=1 jt] oo [E[PT 1

t
f2) There exists £ > 0 such that F'(§) > 0, where F(t) = / flr)dr.
0

The second main result is:

Theorem 1.1.2. Assume the conditions f1) and f2). Then, problem (ZM) has a nontrivial
solution.

The second class of problems is called Zero Mass because f satisfies ¢1), g2) and g3) for
the case m = 0.

We would like to point out that in the proof of Theorems 0.0.2 and 0.0.4, we have found
some difficulties to apply variational methods. For example, for this class operator there is
no a result like Jeanjean and Tanaka [37], which say that the Mountain-Pass value gives the
least energy level of the Pohozaev manifold, which is crucial in order to use the arguments
due to Berestycki-Lions. Furthermore, it was necessary to prove a Straus-type Lemma result
for this class of problems (Lemma 1.3.3 and Lemma 1.3.4).

Finally, it is very important to say that in the literature, we find many papers where
the authors study problems involving the operator div (|x|_“p|Vu\p_2Vu), see, for example,
Bastos, Miyagaki and Vieira [12], Catrina and Wang [20], Chen [25], Xuan [46] and references
therein. In Chen [25] we can find a Straus-type Lemma result for this class of problems.
However, the Chen’s result cannot be applied for our problem, because we have another
class of nonlinearities.

1.2 The variational framework

For the Zero Mass case we use Da?(RY) that is the completion of the Ce°(RYN) with the
norm

O R
RN
where Cgo(]RN ) is the space of smooth functions with compact support.

For the Positive Mass case we use Eg = {u € DyP(RN) : / 2| %" |u|Pdx < oo} with
RN

the norm

Jull? = / 2|~ VulPda + / 2|~ [ulPda.
RN RN
Let define
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L{(RY) = {u :RY 5 R: w is measurable and/ || 7% Ju)*dx < oo}
RN

with the norm defined as
uli = [ lol ™ fulda.
]RN

We also define Eq(Br(0)) = {u € Da?(Bg(0)) : / || %" ju|Pdz < oo} and

Br(0

L;(Br(0)) = {u : BR(0) > R: w is measurable and/

2| %" Ju|*dz < oo
Br(0)

with the norm defined as

[ul? ) = /B el i

Using an inequality established by Caffarelli, Kohn, and Nirenberg given by [19]

p/p”
</ \x]bp*]u]p*dx) < Sa’b/ |z|”P|VulPdz, (1.2.1)
RN RN

we conclude that the embedding DaP(RY) < LZ* (RN) is continuous. Moreover, by
interpolation, we also conclude that Ey < L$(RY) is continuous, for s € [p, p*].

1.3 The existence of solution for Positive Mass Case

Consider the functional I : £y — R associated given by
1 N
1) =l ~ [ Jel ™ H(u)da.
p RN

As a consequence of (hy), we obtain that I is well-defined and of C! class. Moreover, note
that

I'(u)p = /RN 2| 7P| Vu|P 2 VuV ¢pdz + /RN || %" [ulP2upds — /RN 2| 7% h(u)pd,

for all ¢ € Ey. Then, the critical points of I are weak solutions of (PM).

We will restrict the functional I to the space

Lp
EO,rad =D

a,rad(RN) N Lg,rad(RN)
under the norm || - ||o to overcome the loss of compactness of the space Ey, then we will use
the Principle of Symmetric Criticality to obtain the solutions in the whole space.

Observe that the restriction is necessary only for prove the Lemma 1.3.3 and the Lemma
1.3.4 so that the arguments in this section can be done for the whole space with exception
of these lemmas, which are important to show the nontriviality of the weak solutions.

In order to use critical point theory, we firstly derive results related to the Palais-Smale
compactness condition. We say that a sequence (u,) is a Palais-Smale sequence for the
functional I if

I(uy) — ¢
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and
[ (un)[l = 0 in (Eorad)’,

where

. = inf I(n(t) >0
¢ = Inf max (n(t))

and
= {n € C([0,1], Eo raa) : 1(0) =0, I(n(1)) <0}

If every Palais-Smale sequence of I has a strong convergent subsequence, then one says

that I satisfies the Palais-Smale condition ((PS) for short).

Lemma 1.3.1. The functional I satisfies the following conditions:
(i) There exist p1, pa > 0 such that:

I(u) > pa with ||ullo = p1;
(ii) There exists e € By (0) with I(e) <0 and |lello > p1-
Proof. 1) First of all, observe that

Statement 1.3.2.
C1C,

o €
/ || 7% H (u)d < =||ullf + [l |-
RN p

Proof. For hy), given € > 0, there exists C. > 0 such that
h(t) < et~ + Co|t|7 1, vt € R.

Thus, (1.3.2) implies that

.4NW\”7ﬂm®f€éN@|”Wwam

g/ (/ \xy—bp*(gytyp-l+ceytyq—1>dt> do
RN 0

* C *
= 6/ |:U|_bp |u|pdfc+€/ |:U|_bp ul?dx.
b JrN q JRN

The definition of the norm implies that

3

/ ||~ |ulPda + / ||~ [u|%dz < 5HuH’5+€/ ||~ |u|Yd,
b JrN q JrN b q JrN

Finally, the continuous embedding Ey — Li(RY) gives

C1C:

9
ultde < EHUHJS + lull5,

€ C x
Jullg + <= [ lal
p q JrN

where C is the constant of the embedding, which proves (1.3.1).
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Using (1.3.1) and taking € > 0 sufficiently small such that |jullo = p1, we obtain

1 e C1C;
I(u)> (=== |ullh - ulld.
(u) = <p p> lello = =~ llwllo

and the result follows because ¢ > p.
ii) From hy), there exists ¢ € C5°(RY) such that

/ || =" (H(¢) — W) dx > 0.
RN b

For t > 0, setting

and deriving ¢ (%), we have
o= [ D e [T (G - [ et

7 S Oy I G e L
doing the change of variables x — y = x/t, we get
p Jo T e () = [T (sttor - #E05) a
:/ |y]“ptp|V¢(y)|ptNdy—/ |y’7bp* (H(gb(y)) _ ‘ﬁb(y)‘p) N dy
RN RN p

_ 4N—p —ap ) 4N —bp* o |¢(y)|p
=t /RN ly[~PIVe(y)[Pdy —t /RN [yl (H(¢(y)) Y )dy,

therefore

[o(y)”
p

) =t [ lerwotray o [ (o) - P08 dy o .
RN RN

as t — oo. Then, there exists ¢ > 0 large such that e = wy satisfies I(e) < 0 and |le[|o > pa-

Note also ¢, > po. O

Next, we will prove the compactness result is crucial in our approach. We denote by

o d(]RN ) the collection of smooth radially symmetric functions with compact support, i.e,

C{ﬁad(RN) ={ue C(‘]’O(RN) cu(x) = u(lz|), z€ ]RN}.
Let Dizfad(RN) be the completion of C%.,4(R™) under the norm || - .
The next lemma is important to prove a compactness result, which will be used to show
the nontriviality of the critical point.

Lemma 1.3.3. [Radial Lemma in E yqq] Let w € Ep yqq4, then for almost every x € RM\ {0},
then there exists C = C(a,b,p) > 0 such that

o
()] < C—pape
x| e

U”o
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Proof. Up to a standard density argument, we only consider u € C5, ad(RN ). Denote by wy
the volume of the unit sphere in RY. We have

“u(T) = u(o0) — u(T) = / T (s)ds.

T
Thus,

1-N

00 00 N-—1 -
lu(1)] < / |u/(s)|ds = / s/ (s)]s P s%s P ds
T T
From Holder inequality, we get

00 1/p 00 . 1l (r—1)/p
mmyg(/ s_ap|u’(s)|psN_1ds> </ sp—’l.slp—ﬁvds> . (1.3.3)
T

T

Observe that

N—-—p N-1

a < < = ap+1—-N <O0.
p p
Thus,
& apti1-N sap;EIN‘H‘OO
/ s r1 ds| =
T (ap+p—N)
p—1
apt+p—N 0
= s T
(ap+pr>
p—1
p—1 (0 Tap+p—N)
_ _ =
ap+p—N
_ p— 1 |T|*(pr_pl*ap)
N—p—ap
B < p—1 > 1
N —p—ap ’T’(szi>1 =
If T = |z|, then
0 apt1-N -1 1
/ s ds| = ( P ) e (1.3.4)
T N=p—ap/ 1755

Proposition C.0.5 provides

00 1/p
</ S_“p|u'(s)|psN_1ds>
T

IA

o0 1/p
</ s_”p|u'(s)|psN_1ds>
0
_1 1/p
=wn’y </RN x|“p]Vu\pda;> (1.3.5)

It follows from (1.3.3), (1.3.4) and (1.3.5) that

T _71 p—1 Pp 1 PV ulPd 1/p
< [ — - - —a ]
)l <ef (2o o) e ([, taterivulras )
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Now we present a compactness result.
Lemma 1.3.4. The embedding Eo rqq — L;(RY) is compact for all s € (p,p*).

Proof. Let (u,) C Eo,md(RN) be a bounded sequence and let C > 0 be such that
lunllo <C, VneN.

By Lemma 1.3.3 it follows that, for all n € N,
1

(N—p)—ap’
x| e

lun (z)] < CC a.e. in RM\{0}.

Since s > 1, given € > 0, there exists R > 0 such that, for all n € N,

S 8 C
un(@)|* < 5oz lua(@)] Vo € Br(0)",

This implies that

—bp* s E/ e
x up|dz < — Uy |dr < _ <
/;R(U)C ‘ ‘ ‘ n‘ ~ 20CRY»” Br(0)e ’ n’ - QR(N—P)—w

p

, (1.3.6)

N ™

for all n € N. Moreover, since Eo(Bgr(0)) is compactly embedded into Lj(Br(0)), there
exists u € Lj(Bgr(0)) such that, up to a subsequence u, — u in Lj(Bg(0)), as n — oc.
Then there exists ng € N such that

/ [~y — uldr < =, Vn > g, (1.3.7)
BR(0) 2

Let us define @ : RY — R as to be equal to u in Br(0) and equal to 0 in Bg(0)¢. Then, by
(1.3.6) and (1.3.7), it follows that

/ 2| |y, — TP dr = / 2| 7% up, — 1| dx +/ 2| 7" Jup [*d < €.
RN Br(0) Bgr(0)°

Then it is clear that u, — @ in L;(RY), as n — oc. O

Following [34] and [36], we consider an auxiliary functional I € C1(R x Eg qq4) given by

0w = PP )/ 2~ Vuppdz + Z2 N0 )/ | 0P
p RN p RN

exp (N6) / 2| 7% H (u)dz.
RN

ulPdx (1.3.8)

This functional will be important to show the boundedness of a (PS) sequence that we
will find.

Statement 1.3.5. The following properties hold, for all (6,u) € R x Ep qd,

I1(0,u) = I(u),

1(9,u) = I(u(z/ exp(6))).
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Proof. A direct computation shows that I(0,u) = I(w).
We proceed to prove the second property. Doing a change of variables y — x := exp(0)y,

F(o.0) = “EEZDE) [y emgugpay + S [y Py

~exp <N:> [t H )y
*(eim)
! <ex§<e>>

_ exp((N = p)9) / —ap
RN
exp(—N0)dx
(o (2) e v

p
. exp;Na) /RN
_ exp (NO) /
Cancelling exp (N6) with exp(—N6), we get
exp(mz;_ = /RN ¢ <ex§<e>>
( ()|

-
N eprN 9) /R ) exp(—N6)dz
"y <u <eX§( 0)>> exp (—NO)dz

— exp (NO) /
exp(0) “(ex&e)) p N
| ()

RN
_ exp(—pb) / da
p RN
1 —br” x b
+ - U dx — /

p /]RN exp(6) (exp(9)> RN
Putting exp(—p#f) inside of the integral, we have
exp(—pb) / ( x )

wl 2
p RN exp(0)
1 / ( x > pdw / x

wl —— _

P Jry exp(f) r~ | exp(6)
1 1 x P
— Vu
Cp /IRN eXp(H) <exp(9)>
1
b

dx
o Lol v <ex§<e>> pd“’”‘/m

p

x
—N
oxp(0) exp(—N#6)dx

_bp*

exp(0)
exp(6)

p

—ap
exp(—NO)dz

X

exp(0)
—bp

*

exp(0)
exp(6)

exp(0)

P
dz

—a,
T P

exp(9)

()
S <“ (ex§<e>>> o

exp

exp(6
T

exp(0)

exp(6
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Finally, we use the chain rule to obtain

s lswl e (@) &

+3 Lo oo b (eo@)| = Lloom S (+())
= o @ _bi ¥ (#(ao@))| -

Shalmal @) o Llew 7 (am)®
— I(u(z/ exp(0)).

We equip a standard product norm

100, W[k 5,0 = 1O + l1ull

to R x Ep rqq. Now we prove that I satisfies the Mountain Pass geometry.

Lemma 1.3.6. The functional fsatisﬁes the following conditions:
(i) There exist p1, p2 > 0 such that:

1(0,u) = pa with [[(6,w)|[rx By raa = P15

(ii) There exists € € By (0) with I(e) <0 and ||e]|rxE, ,aq > P1-

Proof. The item 1) follows by using the same argument of Lemma 1.3.1 and for item ii) it
is sufficient to take € = (0, e). Indeed,

70, u) - p;w) (ruup [l
]RN

N _ *
= 2D+ S — ey (o) [ ol )
P p RN

J— 9 >k
u|pda:> + WHUHP — exp (NO) /RN ||~ H (u)da:

Using that eXp(p%pg)Hqu > 0, we have

No —pb .
D gy + D e — exp (80) [ ol ()
p p RY

exp(NO)

> Pl - exp (V) [ ol H(w)d
RN

By (1.3.1) and the continuous embedding Ey — L¥(RY),

SO - exp (o) [ 1ol ()i
p RY
exp(NO € GG

> S g — exp (80) S ullf — exp (70) 2l
exp(NO G1C.

- ;)Ilull’é(l — ) = exp (NO) == ull,
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therefore

C1C;

~ exp(N6)
I1(0,u) > —

[ullg(1 =€) — exp (N6) [ull5,

which proves item i) if ||ul|o = & > 0 is sufficiently small because ¢ > p. Finally,

1(e) = 1(0,e) = I(e),

which is negative as we saw in the Lemma 1.3.1 and ||€|lrx£,,, = [l€llo > pa- O

In what follows, we define the Mountain Pass level ¢, for I by

N* = inf T t)) >0
& = inf max (n(t))

and

T = {n € C((0,1],R X Eyaq) : 9(0) =0, I(n(1)) < 0}.
Note that ¢, > pa.
Lemma 1.3.7. The Mountain Pass levels of I and I coincide, namely c, = ¢, > 0.

Proof. Note that I' = {0} x I C f, which implies ¢, < c.. On the other hand, consider
3 € I arbitrary. Then, for each ¢ € [0, 1], we have J(t) = (63, us). Define v(t) := u (wr)’”w).
From the Statement 1.3.5, we conclude I(%;) = I(0;,us) = I(us(z/ exp(6y))) = I(y(t)) for
each t € [0,1]. Hence v € T, where we derive ¢, > c,. O

Lemma 1.3.8. Let ¢ > 0. Suppose that i € r satisfies

(M) < €,
e (M) < ex+

then, there exists (6,u) € R X Eg yqq such that

o distrxg,,,.((0,),7([0,1])) < 2v¢;

o I(0,u) € [cx — e, ¢+ €]

o ||IDI(0, u)|lrxE;,,, < 2VE.
Proof. See Appendix A. O

The proof of the next lemma is a consequence of Lemma 1.3.8.

Lemma 1.3.9. There exists a sequence ((On,un)) C R X Ep rqq such that, as n — oo, we
get

0, — 0;

I(0n, un) = Cy;

agf(en, un) — 0,‘

Oul (O, un) — 0, strongly in Ej

rad*
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Proof. For any j € N, we can find a v; € I such that

1
max I(7v;(t)) < e+ =

t€[0,1] J

Since ¢, = ¢, and 7;(t) = (0,~,(t)) € I satisfies maxye(o,1] f(%)(t) <c+ %, we can find
a (0;,u;) by the Lemma 1.3.8 such that

o distr sz, (05, u7),7;([0,1])) < 2//7;
o 1(6;,u) € [ex —1/j, ¢ +1/7];

o [DI(6;, u))llrxsy,,, <2/Vi-

Since 7([0,1]) C {0} x Ep rqa, the first inequality implies |6;| < 2/1/j and, consequently,

6; — 0. The second item implies 1(#;,uj) — ¢, and the last item implies the last two items
of these lemma. O

1.3.1 Proof of Theorem 0.0.2

By Lemma 1.3.9, there exists a sequence ((6p,un)) C R x Ep 44 such that,

eXP((N_p)en)Huan + exp(NHn)/ |x|*bp*|un|pdaf
P N

— exp (Nﬁn)/ 2| 7% H (up)dz = ¢, +0n(1);  (1.3.9)
RN

- n N n —bp*
= py SR =P e PV [ Jal 7 s
P p RN

— Nexp(N6,) /RN || 7" H (u,,)dz = 0,(1)¢1.3.10)

exp((N — p)on)[lun|? + eXP(NQn)/ | Jup [P da
]RN
— exp (N9n)/ |x\_bp*h(un)und:13 = 0p(1)|lunllo. (1.3.11)
RN
From (1.3.9) and (1.3.10), we have

exp((N — p)bn)||un||P = Necx + on(1). (1.3.12)

Since 6, — 0 and p < N, we have that (uy,) is bounded in Di’fad(RN) and it is bounded
in LV (RN) by (1.2.1).
From hy), given € = %, there exist § > 0 and A > 1 such that

1
h(t)t < §]t|p, for all ¢t € (0,9),

1 1,
h(t)t < 57 < I, for all t € (4,00)

and the continuity of h over the compact interval [d, A] ensures that there exists C' > 0
such that

30



h(t)t < CJt]P", for all t €[5, A].

The last three inequalities ensures that

1 x
h(t)t < ilt]p + C|t|P, forall t€R.

Using the last inequality in (1.3.11), we get

exp((N — p)0,,)||un||P + exp(N6O,) /RN \x|*bp*|un|pdx

— exp (N6,) / 2 B Yunda + on(1)]unlo
RN

* 1 *
<exp(¥8,) [ 1ol (Glunl + Clual” ) do -+ 0,(1) funl
RN
1 >k >k *
— 5 ep(N,) [ 1ol funlPde 4 Cexp(N8,) [ 1l " de + 0 (1) o
RN RN

i.e.,

exp((N = p)n)||un” + exp(Nby) /RN | " un P

< —exp(Nb,) /N |2| 7% |up|Pdx + C exp(N6,,) /N 2|7 |un|P" dz + 0, (1) ||uno-
R R

N | =

Observe that exp((N — p)by)||un||P > 0, then

1 — hn* ok *
2exp(N9n)/ || bp |un[Pdx < Cexp (Nﬂn)/ || bp lun [P dx 4+ 0, (1)||un|o,
RN RN

Up|Pdz and (uy) is bounded in DP

bUt ||unHIO) = Huan + fRN |x‘—bp* a,rad

on(Dlunll§ = on(1)llunl? + 0n(1) fan 2|~

(RM), it follows that
up|Pdz and lim o, (1)[|u,|[P = 0, then
n—oo

1 * * *
(5 exp(N6,) — on(l))/ |x]_bp |un |Pdz < Cexp (NGn)/ |:c|_bp |un [P dx,
RN RN

then, up to a subsequence,

1 *
exp(NHn)/ ]x\*bp
2 ]RN

which implies that (uy) is bounded in FEy,qq. Hence, there exists u € Ep,qq such that,
up to a subsequence, u, — u in Ep,qq. From Lemma 1.3.9, for all v € Ejp,qq, we have

Oul (0, un)v = 0p,(1), that is,

up|Pdz < Cexp (NO,,) /RN || Jup |7 d,

exp((N—p)Hn)/ 2| =P |V, [P 2 Vu, Vodzr
RN
+ exp(N@n)/ || = |up [P 2up vda

RN

— exp(N6,) /RN 2| 7% h(uy )vdz = 0, (1). (1.3.13)
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Since 6, — 0 in R and from weak convergence, for all v € E, .4, Theorem D.0.6 provides
/ 2| =P | Vu P2 VuVude +/ || 7P |u P~ 2uvdx
RN RN

- / || =" h(u)vdz = 0,
RN

showing that I'(u)v = 0, for all v € E,,4, that is u is a critical point of I. We are going to
show that w is not trivial. Suppose that uw = 0. From hq) there exist € > 0 and C. > 0 such
that

/ || =" h(up )unda
RN

§5/ \x|bp*|un|pdx+05/ 2| 7Y || 9.
RN RN

Since (uy) is bounded in Ej ,qq and since Eg yqq < LZ(RN) is compact from Lemma 1.3.4,
there exist M > 0 such that

/ 2| %" |u, [Pdz < M, for all n € N
RN

and
/ ||~ Jun| I = 0n(1).
RN
Then
limsup/ || =" h(up )undz| < eM.
n—oo RN

For € > 0 small, we conclude that

/ 2| 7% h(up )undz = op(1).
RN

This limit combined together with the limit 0,1 (0, un)u, = o0,(1) allows to deduce

that u, — 0 in Fyqq. Hence, I(0,,u,) — 0 = c,, which is absurd. Thus, u is a nontrivial
critical point of I in Ey,qq. Finally, v is a nontrivial critical point of I in Ey using the
Principle of Symmetric Criticality (see Theorem A.2.2 in the Appendix A) if we consider
the antipodal action of G = Zs on Ej.

1.4 The existence of solution for Zero Mass Case
Consider the functional Iy : Da?(RN) — R associated given by
1 *
Bofu) = ol = [l Plu)da.
p RN
Note that Ij is well-defined and of C! class. Moreover, note that
s = [ |l 1Vup2VaVods ~ [ (o] fu)oda,
RN RN

for all ¢ € DyP(RN). Then, the critical points of Iy are weak solutions of (ZM) in Dy? (RY).
We will restrict the functional Iy to the space Di’f o(RY) under the norm ||-|| to overcome

the loss of compactness of the space DLP (RY), then we will use the Principle of Symmetric
Criticality to obtain the solutions in the whole space.
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Observe that the restriction is necessary only for prove the Lemma 1.3.3 and the Lemma
1.3.4 so that the arguments in this section can be done for the whole space with exception
of these lemmas, which are important to show the nontriviality of the weak solutions.

We say that a sequence (uy,) is a Palais-Smale sequence for the functional I if

Io(un) — Cp
and
16 (un) || = 0 in (D7, (RY)),
where
= inf Io(n(t 0
¢ = Inf max o(n(t)) >
and

Ty = {n € C((0,1], D%, ,(RY)) : n(0) = 0, Ip(n(1)) < 0}.

If every Palais-Smale sequence of Iy has a strong convergent subsequence, then one says
that Iy satisfies the Palais-Smale condition ((PS) for short).

Lemma 1.4.1. The functional Iy satisfies the following conditions:
(i) There exist p1, pa > 0 such that:

Io(u) = p2 with |[ull = p1;
(ii) There exists e € By (0) with Io(e) < 0 and |le| > p1.

Proof. 1) First of all, observe that
Statement 1.4.2.

* R
/ |~ F(w)de < S2ab
RN

Proof. For f1), given € > 0, there exists C; > 0 such that

v 20 (14.1)

Ft) <eltf '+ Ceft]rh, vt e R. (1.4.2)

Thus, (1.4.2) implies that

[ Jal ™ Fds < [l Pl
RN

</ (/ 2| 7" (et Y + CoJt]9” 1)dt> da
/ [ el e

then
2"
5/ ’xrbpwu’qu < € (Sa,b/ m|aplvu‘pdx> P
D JrN N p RN
C .
+6/ || %" |u|dx
q JrN

* C *
Nt
q JrRN
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by Caffarelli-Kohn-Nirenberg’s inequality.
Finally, the continuous embedding E < L¥(RY) gives

C2C;

€ B, Ce o1 € B 1t .
—Sapllull” + == a7 Julfde < =S5 [JullP + =[],
p q JrN p q

where Cy is the constant of the embedding, which proves (1.4.1). O

Using (1.4.1) and taking € > 0 sufficiently small such that ||u|lo = p1, we obtain

*
D
P

Savau

1 * CQC
To(u) = ~flul” = P =]l
p q

™

and the result follows because ¢ € (p, p*).
ii) From f»), there exists ¢ € C$°(RY) such that

/ 2| 7% F(¢)dx > 0.
RN

For t > 0, setting

and deriving ¢ ( ), we have

Io(wt)Z;/RN )%
3 Jul?

doing the change of variables x — y = x/t, we get

;/RN)”; | vo (f))pdx—/wm_bp* F(¢(x/t))dx

- / PP Vo (y) PN dy — / ™ F((y))N dy
RN RN

z
t

—ap

V(e = [ et

erlve (§) an= [ [T P/,

—ap

N / =P V() Pdy — N / ™ F(o(y))dy,
RN RN
therefore
_ 4N-p —ap P N —bp*
Io(wr) = ¢ / =PIV S(y)Pdy — t / |~ F((y))dy — —oo,
RN RN

as t — oco. Then, there exists ¢ > 0 large such that e = wy satisfies Iy(e) < 0 and ||e|| > pa.
Note also ¢, > po. O

As in the previous section, we consider an auxiliary functional 1:6 € CYR x
D' (RN) R) given by

a,rad

exp(N — p)d

10, u) = lull? = exp (N6) /RN 2" P (u)da. (1.4.3)

This functional will be important to show the boundedness of a (PS) sequence that we
will find.
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Statement 1.4.3. The following properties hold, for all (6,u) € R x phP (RM),

a,rad
1o(0,u) = Io(u),
Io(0,u) = Io(u(x/ exp(9)).
Proof. The proof is the same of the Statement 1.3.5. O
We equip a standard product norm

10,0018 gy = 1617+ [l

to R x D' (RY). Now we prove that Iy satisfies the Mountain Pass geometry.

a,rad

Lemma 1.4.4. The functional INO satisfies the following conditions:
(i) There exist p1, pa > 0 such that:

I~0(97 u) > pa with [|(0, u)HRXD}{fad(RN) = P15
(ii) There exists e € By (0) with I(2) <0 and HgHRXD;fad(RN) > pr1.

Proof. The item i) follows by using the same argument of Lemma 1.4.1 and for item ii) it
is sufficient to take € = (0, e). Indeed,

fo(0,0) = “HE =P e — exp (v0) [ fal 7 Fiu)da
R
By (1.4.1),
Muuup_exp (Ng)/ || %" F(u)da
p
> OOy o (50) s 2l — exp (50) 2 s
N N
:MHUHIJ_ M b| —exp(NH)CZC [[ull?,
p
therefore
- exp(NO exp(N0
In(0,u) > pi))HUHp_ L —eXP(NQ) || 14,

which proves item i) if ||ul|o = p1 > 0 is sufficiently small because ¢ € (p,p ). Finally,

Io(@) = Io(0,¢) = Io(e),

which is negative as we saw in the Lemma 1.4.1 and HgHRxD;fad(RN) = |le|| > p1. O

In what follows, we define the Mountain Pass level ¢g for I~0 by

Go = inf Io(n(t)) >0
¢ = inf max o(n(t))

and
[ = {n € C([0,1,R x DI* (RY)) : 5(0) = 0, Io(n(1)) < 0}.

Note that ¢y > pa.
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Lemma 1.4.5. The Mountain Pass levels of Iy and I~0 coincide, namely co = ¢g.
Proof. Note that I' & {0} x I C T, which implies &, < ¢,. On the other hand, consider

3 € T arbitrary. Then, for each ¢ € [0, 1], we have F(t) = (6;, u;). Define v(t) := uy (expr)'

From the Statement 1.4.3, we conclude I(7;) = I(0¢,us) = I(ui(x/exp(6y))) = I(y(¢)) for
each t € [0,1]. Hence v € T, where we derive ¢, > c,. O

Lemma 1.4.6. Let ¢ > 0. Suppose that n € fE satisfies

max Io(7) < co + ¢,
t€[0,1]

then, there exists (6,u) € R x DF

a,rad

(RN such that
o diStRxDi:fad(RN)((e’u>’ﬁ<[0’ 1])) < 2ve;

o Io(0,u) € [co — e, co +€l;

o 1DIo(0, W)l o gy < 2VE

Proof. The proof is the same proof of the Lemma 1.3.8. O

The proof of next lemma is the same proof of Lemma 1.3.9.

Lemma 1.4.7. There exists a sequence (0, un)) C R x D2 (RN) such that, as n — oo,

a,rad
we get
e 0, —0;
° I~0(9n,un) — co;
o 9plo(On,up) — 0;

° auINO(On,un) — 0, strongly in (Dizfad(RN))*'

1.4.1 Proof of Theorem 0.0.4

By Lemma 1.4.7, there exists a sequence ((0,,,u,)) C R x D2 (RN) such that,

a,rad
(exp(Np_ 2007 — exp (N6, /RN o~ F(un)de = co +on(1);  (14.4)
(V= p) PN = D)0y e N exp (NG,) / (2|~ F(up)da = op(1);  (1.4.5)
p RN
exp((N = p)0)[un” — exp (NO,) /R 2] f(un)undz = on(D)un]l.  (146)

From (1.4.4) and (1.4.5) and since N > p, we have
(exp(N — p)On)||unllP = Neo + on(1). (1.4.7)

Since 6, — 0, we have that (u,) is bounded in Di’fad

(RN and LY (RM).
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1,
a,fad v
Di”fad(RN). From Lemma 1.4.7, for all v € D}lf}ad(RN)7 we have 0,1o(0n, un)v = op(1),

that is,

Hence, there exists u € D (RN ) such that, up to a subsequence, u, — u in

exp((N —p)br) / 2| 7P|V, [P~ 2Vuyvdz — exp (N6,) / || =% f (un)vda = 0,(1)(1.4.8)
RN RN

Since 6, — 0 in R and from weak convergence, for all v € Di’f o(RY), Theorem D.0.7
provides

/ || P | Vu P2 VuVods — / || =% f (u)vdz = 0,
RN RN

showing that I)(u)v = 0, for all v € D}l’fad(RN), that is w is a critical point of Iy. We are

going to show that u is not trivial. Suppose that v = 0. From f;) there exist € > 0 and
C. > 0 such that

‘/RN |x‘_bp* f(up)updz

§£/ |x\_bp*\un]pdx—|—05/ || =8P u,, |9z,
RN RN

Since (uy) is bounded in LY (RN) and since D"

P J(RY) < LI(RY) is compact from Lemma
1.3.4, there exist M > 0 such that

/ ‘$|_bp*|un\p*d:r <M, forallneN
]RN

and
/ [~ Jun |?da = on(1).
RN
Then
limsup/ |2 78" f (up ) undz| < eM.
n—o00 RN

For € > 0 small, we conclude that
/ ]w|7bp*f(un)unda; = o,(1).
RN

This limit combined together with the limit 8uﬂ)(9n,un)un = o,(1) allows to deduce

that u, — 0 in D}l’f&d(RN). Hence, fo(en,un) — 0 = ¢p, which is absurd. Thus, u is a
Lp

a,rad
D}L’p(RN) using the Principle of Symmetric Criticality (see Theorem A.2.2 in the Appendix
A) if we consider the antipodal action of G = Zy on Dy* (RY).

nontrivial critical point of Iy in D, (RM). Finally, u is a nontrivial critical point of Iy in
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Chapter 2

Existence and concentration of
ground state solutions for a class of
subcritical, critical or supercritical
Caffarelli-Kohn-Nirenberg type
problems

In this chapter, we use the Mountain Pass Theorem to prove the existence of ground state
solutions for a class of problems with subcritical, critical and supercritical growth. In
the critical case, we use an auxiliary problem and the hypothesis (f5) to show that the
mountain pass level is below to a specific constant, which allow us to prove the existence
of ground state solution. In the supercritical case, we define a truncation function and we
prove the existence of a ground state solution for an auxiliary problem defined with respect
to this truncation, then we use Moser’s Iteration Method to show that the norm of the
solution of the auxiliary problem is below to 1, then this solution will be a solution for
the problem with supercritical growth. Also, we prove a result about concentration. This
chapter is based on [27]. The contributions of this chapter are the proof of a concentration
result, the existence of a ground state solution for the supercritical problem for a class of
Caffarelli-Kohn-Nirenberg type problems and the proof of some estimates more refined than
the estimates in the work that we based on (see Theorem 2.2.3).

2.1 Introduction

This chapter is focused to prove existence and concentration of ground state solutions for a
class of subcritical, critical or supercritical Caffarelli-Kohn-Nirenberg type problems. More
precisely, we are going to study the following class of quasilinear problems

—div (Ja| =P [VulP72Vu) + o] T [+ uV (@)]Jul e = ] T f () + elul” ), (Puge)

in]RN,Wherel<p<N,0§a<%,a<b§a+1,p*:p*(a,b):pr]\;p,d:1+a—b

and p > 0. We are considering three cases. The first case is the subcritical growth on the
nonlinearity, i.e. when o = 0. In this case we have
= div (|27 |VuP 72 Vu) + | 7P+ uV (@) ufP e = |27 (), (Pro.0)

in RV,
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The second case is the critical growth on the nonlinearity, i.e. when o =1 and o = p*.
In this case we have

—div (|x]_ap|Vu|p_2Vu) +|z| 71 4wV ()] |ufP

* * * P 71, *
=|z| " f(u) + || |ulP" 2u, in RV (Fiunpr)

u

The last case is the supercritical growth on the nonlinearity, i.e. when o =1 and o > p*.
In this case we have

—div (2|7 |VulP V) |71+ pV ()] ulP 2

X X Pya,
e f(w) + e Jul7 2, in RY. (Fiaro)

In order to state the main result, we need to introduce the hypotheses on the functions
V and f. The condition in V € C(R™,R) are the following:

(V1) The potential V' is nonnegative, that is,

V(x) >0, for all z € RY;

(V2) Theset Q:=int{ z € R | V(z) = 0} is a non-empty bounded open set with smooth
boundary 0€2;

(V3) There exists V* > 0, such that

meas ({z € RN : V(z) < V*}) < oc.

The hypotheses on the nonlinearity f € C(R,R) are the following:.

(f1)
f(s)

|s|lgl(] |3’p*1

=0 and f(s)=0, forall s<O0;

(f2) There exists p < r < p* such that

lim 1(s)

S|7'71 - 0;

|s]—o0 |
(f3) There exists 6 € (p, p*), such that

0<0F(s) < f(s)s, for s#0,
where F(s) = /Sf(t)dt;
0
f(s)

sp—1

(fa) s—

is increasing;
(f5) There exist 7 € (p,p*) and A* > 1 such that
f(s) > As|""t, forall s >0,

for a fixed A > A* and \* will be fixed latter.
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We use Dg?(RY) that is the completion of the C§°(RN) with the norm
O R
RN

where C§° (RY) is the space of smooth functions with compact support.

We use E = {u € DyP(RV) : / || %" [1 + puV (x)]|ulPdz < oo} with the norm
RN
[l :/ |$’_ap|vu|pd@"+/ | 7" L+ uV (2)]ufPd.
RN RN
We also use By = {u € DyP(RN) : / || 7" |uPdz < oo} with the norm
RN

||u||p:/ |x|aqu|pd$+/ || =% |u[Pda.
RN RN
Let us denote by

Li(RN) = {u :RY - R: wis measurable and/ || 7% |u|*dz < oo} .
RN

Using an inequality established by Caffarelli, Kohn, and Nirenberg given by [19]

__hn*
([ e

we conclude that the embedding DaP(RN) < Lg* (RYN) is continuous. Moreover, by
interpolation, we also conclude that E — L{(RY) and Ey < L{(RY) are continuous,
for s € [p,p*].

X p/p”*
p dx) < Sa,b/ |z| " |VulPdz,
RN

Here is the main result of this chapter.
Theorem 2.1.1. Assume that (f1) — (f4) and (V1) — (V3) are satisfied. Then,

(i) there exists p1* > 0 such that problem (P, o) has a ground state solution u, € E for
all p > p*.

(ii) if the function f satisfies (f5) there exist positive numbers \* and p**, such that
problem (P, 1 ) or problem (P,1,,) has a ground state solution u, € E for all p > p**
and for all X > \*.

i4i) Moreover, as p — +00, the sequence (u,) converges in E to a ground state solution
191) M ; I , the seq " ges in E to a g d state soluti
Uso € E(Q) of the problem

—div (|| |VulP V) + o] ulP?u = 2] f(u) + |27 ] P, i Q,
u =0, on 0N
(Po,1,0)

where E(Q) is defined by E(Q) = {u € Dé’g(Q) : / 2| 7% |ulPdz < co} with the norm
’ Q

_ —bp*
||u|]g’Q:/Q|x\ “p|Vu]pd:E-|—/Q]x| P lulPde.
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2.2 Variational framework and some preliminary results for
the subcritical (¢ = 0) and for the critical case (¢p = 1) and
(0 =p")

In this section, we are considering the cases o = 0 or ¢ = 1 with ¢ = p*. More specifically,

{ —div (2|~ [VulP7>Va) A7+ pV (@)]fulP e = |7 f () + ol |ulP P,

u€E k.

(P, mg,p*)
Since the approach is variational, let us consider the energy functional associated I, , : £ —
R given by

1 1 -
I0(u) ::p/|x\_“p|Vupd1:—|—p/|J:]_bp (14 pV (2)]|uPde (2.2.1)

RN RN
— | 2 Fu)yde — £ [ |27l da.
p*
RN RN

By standard arguments, it is possible to prove that I, , € C1(E,R) and each critical point
of I, , is a weak solution of our problem.

Note that (f1) and (f2) imply that for any given £ > 0, there is a constant C¢ > 0, such
that
|f(s)] < &Js|PH 4 Cels|"!, for all s €R. (2.2.2)

Moreover, by (f3), for s > 1 there exists a positive constant D; such that
F(s) > Dy|s|, forall s> 1. (2.2.3)

To use the Mountain Pass Theorem [7]|, we define the Palais-Smale compactness condition.
We say that a sequence (uy,) C E is a Palais-Smale sequence at level ¢, , for the functional
Lo(tn) = Cpp

and
1}, o (un) | = 0, in (EY',
where
e = Inf, max To(n(t)) > 0 (2.2.4)
and

I:={ne (0,1, E) : n(0) = 0, L,(n(1)) < 0}.

If every Palais-Smale sequence of I, , has a strong convergent subsequence, then one
says that I, , satisfies the Palais-Smale condition ((PS) for short). Now let us show that
the functional I, , has the mountain pass geometry.

We say that a solution u,, € E \ {0} of (P,,,) is a ground solution if
Io(up,) = iﬁf I,,.0(u), where N, , is the Nehari manifold associated to I, , given by

n

Nyo={u€eE:u#0:1,, (u)u=0}.

Lemma 2.2.1. The functional 1,, : E — R and the constant c, , satisfy the following
conditions:
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(i) There are positive numbers « and p, such that
Luo(u) 2 a if lull, = p;
(11) For any positive function w € C§°(2), we have

lim [ = —00;
Jim 1y, o (tw) = —o0;

(1it) There exists a positive constant Y1 which does not depend of p, such that ¢, , < Y.

Proof. Using (2.2.2), we have
1 é. _b * C _b * Q _b * *
Lo() > S [ufr, - & / 2| fufPdz — 5 / 2~ fufrde — 2 [ (] e
p p r p
RN RN RN

Therefore, using the Sobolev embeddings and taking £ and ||u||,, sufficiently small, there are
constants Cq, Cy > 0 such that

Lio(u) = Chllully = Callully, — Csellullk

and the item (7) is proved.

Now we are going to show that the item (ii) holds. Since for all x € €, we have
pV(z) = 0, for a positive function w € C§°(2) with ||w|lec > 1 and ¢t > 0, we can use (2.2.3)
to obtain

tP 0 —bp* |, 10
Tnoltw) <l = Dut® [ [a] 7 fu'da,
p v
Since p < 6, this completes the proof of the item (ii). The proof of the item (iii) follows by
the last inequality and the item (i) because

0 < ¢y < max ﬁHw”p —Dit? | |z|7? w|?dx| =T,
H,0 — >0 p P )
RN

where Dy was defined in (2.2.3). O

From [49, Lemma 1.15] and Lemma 2.2.1 ensures that there exists a sequence (PS)
for the functional I,, ,, where ¢, , is set in (2.2.4).

Cu,o

Lemma 2.2.2. Let (uy,) be a (PS)
statements hold.

sequence of the functional 1, ,. Then the following

Cu,o

(1) The sequence (uy) is bounded in E.

(ii) There exists a positive constant Yo, which does not depend on u, such that

lim sup [|uy ||, < To.
U—>00

tly, lim inf .
Consequently, ﬁr_rgirgo Cupo >0
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Proof. Since (uy) is a (PS)., , sequence of the functional I, ,, then, by (f3),

Cp,o
1 !

on(1) + cpo + 0n(V)|lunlly =Iy,o(un) — §Iu7g(un)un

1 1

(5= ) Teallp [ 1o L) ) ~ OF ()] i

RN
11 -
+@(—) 17
9 *
P o
1 1
> (3 5) ol

Then, we can concluded that (u,) is bounded in E.

P dx

(2.2.5)

Let us show that the item (i7) holds.  Using the item (i) we can consider
Ry, = limsup ||u,|,. We suppose, by contradiction, that R, , — +o0o when u — 4oo0.
n—oo

Hence for p large enough we can guarantee that there exists m, , € N such that

RH7Q

gl > — 400, when p — 4o00.

Therefore, using (2.2.5) and the item (iii) of Proposition 2.2.1, we conclude that

Ty

Humu,gHH

11 »
0,02 (3= 5 ) i 7

This absurd shows the first part of item (iz). To conclude the item (#) let us suppose by
contradiction that limJirnf cuo = 0. Then using the inequality (2.2.5), we see that
J—+-00

1 1
o)+ on(Dllwnl = (5= 5 ) el =

Taking limsup,,_, | o,

' 11\ .
on(1) 4+ on (1) limsup ||uy||, > ( — ) lim sup [Juy|[};, + lim sup(—cy,p),
p——+o00 D 0 p——+o0 p—+o00
then
(1) + (1) i sup ], > (5 = 5 ) timsup s ;= i
0 o) imsup ||u = — =) limsup ||u,||? — liminf ¢, ,.
" " u—>+o£) = p 0 u—>+o£) M S e P
By hypothesis,
. 1 1), »
0n (1) + 0, (1) limsup [Jup||, > | = — - | imsup [lun|f, — 0u(1).
p—>+00 p 6 —>+00

limsup [un ||, < To provides
p—>00

1 1
0n(1) + 04(1)T3 > ( - ) lim sup a2, — 0, (1),
p 0 p—>—00
ie.,

[unllp = 0n(1) + 0u(1). (2.2.6)
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Since I’} o(un)un = 0p(1), we get

el = [ 117 Fanyunda + o [ 1217l diz + o0,
RN RN

Using Sobolev embedding and (2.2.2) there exists a constant C' > 0 which is independent
of u such that

on(1) + (1 = £C) [Junl[}; < CsC/ [ un|" d + @/ |~ fun " dx < Olfunlly, + ollunll ]

RN RN
Hence
(1=£C) + on(1) < C [junlli? + ollunllf 7]
which is a contradiction with (2.2.6). Then, we conclude that limJirnf Cuo > 0. O
u—>+00

The next result is important in order to show that the solutions of our problem is not
trivial.

Theorem 2.2.3. [Lions’ Lemma in Dé’p(RN)] Suppose there exist R > 0, p < q < p* and
a bounded sequence (uy) in E such that

sup / 2| 7" Ju, [%dz — 0,  as n — oco. (2.2.7)
yeRN J Br(y)

Then u, — 0 in L{(RYN) for all s € (p,p*).

Proof. Let ¢ < r < p* and (u,) C E that (2.2.7) holds. As ¢ < r < p*, it remains that
1% <1< %, therefore there exists 6 € (0,1) such that 1 = 9% +(1- 9)}% by the convexity
of the interval (I%, %) Thus,

0 1-4 0 (1—46 1

l—f‘( *)T_T<+( *)>—T'_1

q p q p T

This allows us to use Holder’s inequality to get

* _pf Or * _ (1-06)r *
[ = [ T P e (P

Or (1-6)r

*

q p
(gl mtie) (] o)
Br(y) Br(y)

(2.2.8)
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Caffarelli-Kohn-Nirenberg’s inequality implies that

or a-or

q p*
[t e ([ e ) ([ e e
Br(y) Br(y) Br(y

or
(1-0)r

< S, / ||~ |y, |7 de lunll$0, (2.2.9)
7 Br(y)

—~
~

Q=

where
1-6 1
0, 00 1
q b r
Observe that
0 (1—9):1 ez(p*—r)g
q p* T (p*—q)r
Defining

(2.2.9) reduces to

/ |2 |up | da

Br(y)

1y (1=-N)r

%
Ar . .
< S0 / | " fuy | d / |z~ |VulPdz + / ||~ ju[Pq2.4.10)
r(Y)

Br(y) Br(y)

Cover R by balls of radius R such that each point of RV is contained in at most N + 1
balls and consider a partition (P,,) of RY such that P, N Bg(yx) = Py or PN Br(yx) = 0

for every m,k € N and for each m € N, P, is contained in at most N + 1 balls of the
covering. Then (2.2.10) provides

N+1

ERTACEED O AR T
RN k=1 Br(yk)

1\ (I=N)r
Ar . 1
<y s 3 ([l s

yERN Br(y)
N+1 =
S elrupdes [ el s
=1 \YBr(yr) Br(yk)

1\ (I-X)r
Ar

A . s
=gy s ([l
yeRN Br(y)

N+1 /N+1
(S S [ )
k=1 m=1 R(Yk)NPm

BR(yk)um

ok
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1\ (I=M)r

Ar . a
< Saf’b sup / |x|_bp |t |1dx
yeRN Br(y)

N+1 %
b0 (X [ T [l
m=1 P, P
1\ (I=N)r
Ar N q
=550 1 sup ([ a1
yeRN Br(y)
Ar
* p
</ |x|ap\vunpdx+/ ||~ un]pdzzr>
RN RN
1\ (I=N)r
Ar » q
<S5+ sup [ el s s
yeRN Br(y)

Then u, — 0 in LZ(RN ) by the hypothesis (2.2.7) and the boundedness of the sequence
(up) C E. Now, we consider s € (p,r) and s € (r,p*). Suppose s € (p,r) (the other
case is analogous). Arguing analogously to the way that we derive the (2.2.8), we have an
interpolation inequality for the weighted Sobolev space

s (1—v)s
[t e < ([t
RN RN

wrie)” ([ el )
RN
where 0 < vy < 1.

E — L{(RN) for t € [p, p*] and boundedness of (uy,) in E imply that

s (A—=v)s

[t e ([ oas)* ([ e ras)
R R R

(1—v)s

< CyllunlF ( / \:c|—""*|un|'“dx>
RN

(1—v)s

< Csllun ( / \:c|—""*|un|'“dx>
RN
(A—-v)s
< 04 </ m—bp*
RN

un]rdx) ' )
then u, — 0 in L{(RY) for p < s < r.
The same argument shows that u, — 0 in L;(RY) for r < s < p*.
Now, applying again interpolation inequality on the Lebesgue spaces, we conclude that
un, — 0 in L (RYN) for all s € (p,p*). O
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2.3 The proof of the item (i) of Theorem 2.1.1 for the
subcritical case (o = 0)

From Lemma 2.2.1 and Lemma 2.2.2 there exists a bounded (PS), 0 sequence (u,) for I, .
Then, by Sobolev embedding, there exists u, € E such that, up to a subsequence, we have

Up — Uy, In B
Up — Uy, i Laloc(Q), 1 <s<p*; (2.3.1)
Up —> Uy, a.€in RN,

Moreover, we can conclude from Theorem D.0.8 that w, is a critical point of I, .

Now we prove that w, is a critical point of I, o at Mountain Pass level ¢, o, for p large
enough. First of all, some technical lemmas.

Lemma 2.3.1. Consider u, € I, then there exists a positive constant Y3 which does not
depend on p such that

liminf/ 2|7 Juy, |"da > Y.

p——+00
RN

Proof. Let us suppose, by contradiction, that limJirnf/ |:Jc|_bp*|uuy’"dgg =0 Aswu,isa
p—>+00

RN
critical point for 1,9,

0= Tuolw = lualls = | 1l f ()

Using Sobolev embeddings and (2.2.2), we obtain

—[lwnll}, = —/ |7 f (up ) upde > —€£C |y |lf, - Cé/ | =" | d.
RN RN

Thus,

0> (1= €0l = Ce [ Jal ™ u "

Taking the lim sup in the inequality above with & sufficiently small such that 1—£Cy > 0,

H——+00
we have

0> (1 —£&Ch) limsup |u,|[f, + limsup {—Cg/ || ’uurdac}
p——+o0 RN

pu——+00

. .. —bp* r
=(1- ECl)lLEigg upllh, — Ce lﬁgigf{/ﬂw || P | d:U} .

By hypothesis, liminf/ |:U|_bp*|uu|7"dx =0, then limsup |Ju,|l, = 0. Thus,
p—ro0 p—r+00

RN
Jupllf < 0u(1). (2.3.2)

Then, u, = 0, which implies that u, — 0in E. By (2.3.1),

sup / || =% up |9dz — 0,  as n — oo.
yeRN J Br(y)
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From Theorem 2.2.3, we conclude that u, — 0 in Lj(R") for all s € (p,p*). Now using
(2.2.2), we obtain

/ |x\_bp*f(un)undx — 0,
RN

which implies that u, — 0 in E and I, o(u,) — 0. Hence, lim ¢, = 0 which contradicts
U—>00
the item (ii) of Lemma 2.2.2. O

Proposition 2.3.2. There ewists u* > 0 such that 1,0 has a critical point v, € E at
mountain pass level ¢, o, for p > p*.

Proof. By (2.3.1), there exists a critical point for I, 9. By Lemma 2.3.1 there exists pu* > 0
such that the critical point is nontrivial, for © > p*. On the other hand, the hypothesis (f4)
implies that

1
t— —f(t)t — F(t), is increasing for ¢t € (0, +00).
p

Therefore, by (2.3.1) and Fatou’s Lemma, we obtain

1
Lio(uw) = o (uy) — *IL,O (up) uy

o (1

= [l pf(uu)uu—F(uu)> da
]RN
< liminf /|x\—bp* Lt )t — F () ) da
- n—+oo P
N

= ngrfoo L0 (un) = cpo.

Hence, using the characterization (2.2.4) of the mountain pass level ¢, o, we conclude

O

2.4 The proof of the item (ii) of Theorem 2.1.1 for the critical
case (0 =1 and o = p¥)

To find a nontrivial solution for the case critical of the problem (P, 1 ,+) it is necessary to
control the level critical ¢, 1. For this, we need to consider an auxiliary problem given by

ul|T"2u, in Q,

{ _div (’x‘fap’vu‘prVu) + ‘x’fbp*’u‘pf%c = ’x‘*bp* (PQ)

u € E(Q),
where 7 is the constant that appeared in the hypothesis (f5) and €2 is the bounded domain
that appeared in the hypothesis (V2). The Euler-Lagrange functional associated to (Pg) is
given by

1[0 L[y 1 [ et o
Do(u) = = [ |z|7P|\VulPde + = [ 2|77 |ulPde — = [ 2|7 |u|"dz
p p T
Q Q Q
and the Nehari manifold

No, = {ue€ E(Q): u#0and &y(u)u = 0}.
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Then, from Appendix B, there exists w, € E(f2) such that

B (wy) = ¢, Py(wy) =0

%2<“”>/ﬂwmwwm (2.4.1)
D
Q

Lemma 2.4.1. There exists a positive number \* such that the level ¢, 1 satisfies

and

1 1
cu1 < (p - ) Sgl{pd, for all 4w >0 and for all X > \*.

*

Proof. Since V(x) = 0 for x € Q, and the hypothesis (f4) holds, there exists ¢ > 0, such

that

I (tywr) = sup I, 1 (tw).

t>0

Therefore, using (f5) and that ®((w,)w,; = 0, we obtain

tp tp . t’T ;
on < Bualuwr) < 2 [ al oV Pde 2 a2 pde < 3% [ ol e
p p T
Q Q Q

tp tT * P T *
< [“ — )\”] /|:Jc|_bp |w,|"dz < max [S - )\S} /’$|_bp |w|"dzx.
P T 520 | p T

o %)

Then, using (2.4.1) and some straight forward algebric manipulations, we get

< sP 8| copr | TP P _ _ %
w1 = TEX p T (r—p)  [pN/TP | (1 —p)  A/(T-P)

T—P
p

Hence, choosing A > \* := %N in (f5), the result follows. O

(p* —p)Seh

Let us introduce the notation which we are going to use in the next results. From Lemma
2.2.1 and Lemma 2.2.2 there exists a bounded (PS).,1 sequence (u,) for I, 1. Then, by
Sobolev embedding, there exists u, € E such that, up to a subsequence, we have

Up — Uy, in B
Un = Uy, 0 Ly, (), 1< s <p (2.4.2)
Up — Uy, a.ein RN,

Moreover, we can conclude from Theorem D.0.10 that wu, is a critical point of I, ;.

First of all, using the notation above, we are going to prove some technical result.

Lemma 2.4.2. Let u, € E be the weak limit of the sequence defined in (2.4.2). For A > \*,
there exists o positive constant Y4, which does not depend on p, such that

lim inf / || ="
p——+00
RN

uu\Td:z: Z T4.
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Proof. Let us suppose, by contradiction, that limJirnf/ |x]*bp*]uM]de =0. As u, is a
pu——+00

RN
critical point for 1,1, it follows from Lemma 2.2.1 (i4i) that

1 1 1 1 1 .
T12cup = Iu7p(uu)_§I;/L,p(Uu)“u > <p - 0) upllh, > <p - 6) / |z] b uy,[Pdz for all 4 > 0.
RN

By (2.2.2), we obtain

j—y

Pk  hm* r e T
/m W F () upda —Cg/w o, | d:zs&/m b |uu|pdxs5( !

1 .
RN RN RN 5 - 9)

Taking the limsup followed by the limit as &€ — 0,

pH——+00

p——+00

timsup | [ a7 f (1) uyde| < 0,(1),
RN

hence

/ ] =" f (up) wpda = 0,(1). (2.4.3)
RN
Since I, ; (uu)uy, = 0, then

/ 2]~V [Pz + / 2] 1+ uV (@) Pdz = / 2] P i + 0, (1),
RN RN RN

Setting
. / 2] fu, [P dz + 0, (1),
RN
we have that [ > 0, from Lemma 2.2.2 we have ¢, 1 > 0, for all 4 > 0. By definition of the
best constant S in the embedding from Dg”(RN) into LY (RN), we get

T ap Vu pd.’E
‘ ’ a4
RN

Sap < T < PN (2.4.4)
[l " ds
RN
. : I 1 Nipd .- :
Using (2.2.5) and (2.4.4), we obtain ¢, 1 > [ -~ — — | S /P which contradicts the Lemma
p p
2.4.1. O

Proposition 2.4.3. There exist positive numbers p** and \*, which are independent each
other, such that I,,1 has a nontrivial critical point v, € E at mountain pass level ¢, 1, for
w > oand for A > A

Proof. The proof follows using the same reasoning that can be found in Proposition
2.3.2. O
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2.5 Concentration Results

We are going to investigate the behavior of a sequence of ground solution (uy,) of (P o p+)
when 1, — oo. For simplicity of notation such sequence will be denoted just by (u,). For
this goal, let us consider the limit problem

—div (|2~ |VulP2Vu) + 27 fulr2u = || f(u) + o] [ufP 2w i,
u=0 on Of).

(Po,o.+)
The functional associated to (FPp ) is

1 1 * * * *
Jo(u) = = | |z|7®|VulPdx + = [ |z| 7% |uPdz — [ |z|7%" F(u)dx — L 2| 7" ulP” d,
) p P p*
Q Q Q Q

which is differentiable on E(2), and let N, be the Nehari manifold associated to J, given
by
No = {u e E(Q)\{0}: J)(u)u=0}.

Proposition 2.5.1. Let (u,) C E(Q2) \ {0} be a sequence of ground states solutions for
(P#me,p*)pnx' Then, up to a subsequence, there erists U € E such that u, — us n E.
Furthermore,

(i) Uso = 0 in RN\ Q, uso () >0, uso(z) # 0.

1) Setting d = inf [ u), then
Hn,0 Hn,0
uEN,

ngriloo d,un,g - nggloo I,un,g(un) - Jg(uoo)

Moreover, uy, = us in E and Jy(ux) = d, := ij{l/f Jo-
4

Proof. Using Lemma 2.2.1 (4ii), we conclude that (||un||p,) is bounded in R and (u,) is
bounded in E. Indeed,

1 1 1
Y1 > cpp=Iup(un) — @I;t,p(u“)“” > <p - 9> |un ||, for all n € N.

So, up to a subsequence, there exists uo, € F such that

Uy — Uso 0 E and u, () = us(z) for ae. z € RY. (2.5.1)

1
Now, for each m € N, we define C,,, = {1: eRN; V(x) > } Thus
m

/ 2|
Cm

Taking n — oo, we have by Fatou’s lemma,

/ \x|7bp*|uoo|p dr =0,

m

n

up [P dz < an/c 2|7 (1 V () + 1) |up [P do < g (2.5.2)

implying that us = 0 in C},, and consequence, s = 0 in RN \ 0, which implies us € E(Q)
(see [14, Proposition 9.18]).

ol



Next we claim that the limit u is a nontrivial solution for (P ,,+). To prove this let
us consider the following sets

Ap = {z e RM\BR(0): V(z) > V*} and Ap = {z € RM\Bg(0): V(z) < V*}.

Using Lemma 2.2.1 (4i7) and (V3) we can ensure, by Holder’s inequality and Sovolev
embedding, that there exists T5 > 0 such that

/ R
Ar

1 -
U,n’p dx < W / |$|*bp [1 +NnV(iU)] ‘un‘p dx

RN
1
| — 7
< gl
< Y5
1+ p,V*

and

Px —

P dx R~ meas(Ar) » < Tsop(1).

/ ||~ fup [P da < / |7 Ju,
AR AR

Hence, by the interpolation argument there exists Tg > 0 such that
limsup/ 2| 7% |up|” dz =0 and limsup / |2 7" Ju, |” d < Teor(1). (2.5.3)
n—-4o0o n—+4o0o
Ag AR

Observe that, from Lemma 2.2.1 (¢i7), the constants Y5 and Tg are independent on the
parameter p. Since, up to a subsequence, u, — Uy In LfOC(RN) and (2.5.3) holds, we
obtain that

liminf/ 2| 7" |up|" da < limsup/\x]_bp*]unV dx
n—>+00 n—-+oo

RN RN
< limsup / 2| 7" Ju, " da + / 2| 7% |, |” da + / |2 7% Ju, " da
n—oo
BA(0) fn Ar
< / 12~ [uas | d + Tgor(1). (2.5.4)

BRr(0)

Hence, by Lemma 2.3.1 (for o = 0) or Lemma 2.4.2 (for ¢ = 1) the claim follows, for R large
enough. Moreover, using (f1) and u_, a test function, we get us > 0 and uq, # 0.
We now prove the second item (i7). Observe that since V' = 0 in 2, we obtain
/ || 77"V (@) |ul|Pdx = / yx\bp*V(x)\u|de+/ |z| 7%V (x)|u|Pdz = 0, for allu € E(Q),
RN RN \Q Q
which implies
L o(u) = Jo(u) and I, ,(u)u = Jy(u)u, for all u € E(Q). (2.5.5)

Then, from (2.5.5), we have that u € N, ,, for all u € N,. Hence,

dyy o < dy. (2.5.6)
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On the other hand, since u, — us in E we have, by Fatou’s Lemma,

1 1 1 1 *
0< (——= / |z| " |Vueo [Pdx + | — — = / || 7P |t |Pda
p 0 p 0
RN RN

11 11 . (25.7)
< (1) frsaris () oo
RN RN
Therefore, using the fact that us, € N,, we obtain, by (2.5.5), (2.5.6) and (2.5.7),
1
Ao < do < Jo(Uoo) = Iy 0(tics) — gl;lln,g(uoo)uoo
o 1 2.5.8
< hnrggf I:[lian (up) — GIL"’Q(un)un] (2.5.8)
= Iun,0(un) +0n(1) = dy, o + on(1),
which implies
nll}r_{loo dyo = nll)al_loo L o(tn) = Jo(too)- (2.5.9)
Assume, by contradiction, that
Up = Uso in E, (2.5.10)

does not hold. Then, the inequality (2.5.7) is strict and hence, arguing as (2.5.8), there

exists ng € N
d

Ze
2 Y
This contradicts (2.5.9). O

de < dy, o+ n > ng.

2.6 Theorem 2.1.1 (subcritical case)

Proof of Theorem 2.1.1(subcritical case). From Proposition 2.3.2, we can guarantee that
there exists pu* > 0 such that (P,0,,) has a positive ground state solution u, € E, for
p > p*. Then, using Proposition 2.5.1, we obtain, up to a subsequence, u, — U in E
when p — 400, where u is a ground state solution to problem

{ —div (|x’—ap‘vu|p—2vu) + ’w‘—bp* u|p—2u = ‘x’—bp*f(u), n Q; (PO,O)

u =0, on 0.

O]

2.7 Theorem 2.1.1 (critical case)

Proof of Theorem 2.1.1(critical case). From Proposition 2.4.3, we can guarantee that there
exist p** > 0 and A* > 0 such that (P, 1,+) has a positive ground state solution u, € E,
for all p > p** and A > A*. Then, using Proposition 2.5.1, we obtain, up to a subsequence,
Uy — Uso in B when pp — 400, where uy is a ground state solution to problem

—div (ja] ¥ VulP V) + o ful 20 = || f(w) + e a2, i
u=20 ,on Of.
(PO,l,p*)
O
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2.8 Case supercritical

In this section we are going to study the supercritical case of the problem (P, 1), that is,
when ¢ = 1 and o > p*, observe that in this case / || %" |u| da is not well defined in
RN

E. Then, inspired by |21] and [30], we are going to consider in this section the function
¥ : R — R given by
0 i s <0,
P(s) =14 771 Jif 0<s<1,
sl it s > 1.

It follows immediately that
Y(s) < |s|P" 7, for all s € R, (2.8.1)

and

;/yxbp* (b (w)u — 00 (u)] da
RN

1 1 x « x

(G-5) | [ e [ s 0. @2
p

{lul<1} {lul>1}

S
where U(s) := / ¥ (t)dt. We also consider the auxiliary problem
0

—div (|2l PV ulP V) + 2 (L pV (@) a2 = o f () + 2, g(e) i RY,
u€e k.
(Puo)

Remark 1. If u, is a nonnegative solution of (P, ,) with |uullec < 1, then uy, is also a
nonnegative solution of (P, 1.4).

2.8.1 Existence of positive solution for problem (P, )

The nonnegative weak solutions for the problem (P, ,) are the critical points of the
functional I, , : £ — R given by

1 1 «
Luo(v) = / \wl““’lvvlpdﬂ/ 2|71+ pV ()] o]Pda
P JrN P JrN

- /RN || =" F(v)dx — /RN || =" W (v)de,

S
where ¥(s) := / ¥ (t)dt. Now we are going to find a nontrivial and nonnegative solution

for (Py.q)-
Using the same arguments of Lemma 2.4.2 and Proposition 2.4.3 with short modifications
we can prove the following results.

Proposition 2.8.1. There exist p** > 0 and \* > 0 such that the functional 1, , has a
nontrivial critical point u, € E at the mountain pass level ¢, -, for all p > ™ and X > \*.

The next result relates the critical points of the functional I,, with solutions to
the problem (P, 1,), the arguments used here are inspired by [5, Lemma 5.5| and
[33, Theorem 3.
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Lemma 2.8.2. Let u, € E be a nonnegative solution for problem (P, ). Then,
vl ooy < 1, for all A > A*.
Moreover, the function u, is a solution of (Py1,0).

Proof. For each L > 0, let

_ J up(®@), uule) < L,
ur(z) = { L () > L. (2.8.3)
and
zr = ui(w_l)u“

with v > 1 will be determined later.
Taking 27, as a test function, we obtain that Il’w(u“)zL = 0. That is,

[ e+ = 1) [l 2, T
RN RN

b [l W V@l e = [ ol )V
RN RN
+/ \x|7bp*w(uu)uuui(7_1)d:c.

RN

Using (f1), (f2) and (2.8.1) we obtain that given £ > 0 there exists C¢ > 0, such that

/ 2|~V |V, |Pda + p(y — 1) / 2|~V |V Pda + / BT e

RN RN RN
_ * —1 _ * —1 *
<¢ / 2]~ 20D P + (Ce + 1) / 2|~ 20D P e
RN RN

Let us now consider the function wy, := uuuz_l. Hence, by inequality above,

/\:UF’”’]VwL]pdx §2p/\:U|_“pu1£(7_1)\VuH|pdx

RN RN
+2°(y = 1)P / ]w\*apui(v_l)]VuL\pdw
“ (2.8.4)
<4PA"¢ / o~y P
RN
—bp* -1 *
+ 4P (Ce + 1) / 2P b0 g, | da,
RN
Therefore, since ur, < u,,
0Ll oy <Ses [ Tol 7 VP
b RN
§4p7p5“’b5/ T (2.8.5)
RN
S+ 1) [l PP,
RN
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where S, is the best Sobolev constant of the embedding Dy?(RY) — Lg* (RM).
Also, observe that

/ || 7" |y POV |, [P d = / |~ fwr [P |, | P dr.
RN BN
This and (2.8.5) ensure that

Ll oy <Ses [ Tol 7V P
RN
—bp*
§4p7p5”’b5/ 27 [ d (2.8.6)
RN

442425, (Ce + 1) / 2" o P

RN

*__
P Py,

®*?

The next step is to show that u, € L, * (RY).

(»*)?

Statement 2.8.3. u, € L, * (RV).

*

Proof. We choose v = P (2.8.6) then, by Holder’s inequality,
p

4p* p « 4p*
p p
HwLHLg*(RN) S ( D ) Sa,bé.Hu,UlHLg*(RN) + ( P

Using (2.8.2) and Lemma 2.4.1 and that the function w,, is a critical point of I, ,, we have
that

p
p*—p P
) Sap(Ce + 1)[|ul Lg*(RN)”wLHLg*(RN)'

/\fi;p > Cuo = polup) — %Iﬁ,a(uu)uu
> (5= 5) luallh (2.8.7)
1 1) g1
> p 0 Sa,bHuMHip (RN)

Remember that v = %. From the definition of u;, and wy,

ur () Lo u,(z) ae z € RY

and
wr,(z) o (uu(2))?" " ae. x € RY. (2.8.8)

Observe that

py

Py —bp* * P
O I

= ([, bt (a7 a )

= ”UZ”LI;’* (RN)*

S
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This, (2.8.8) and Fatou’s lemma ensure that

Py — Y|P

= ([l

< liminf ( / | 1" (wL)p*dx> ’
L—oo RN

p

P
P*

uﬂ|7)p*d$>

= liminf |jw |
L—oo

LY (RN)
< Nlwz|? - .
< 0nl e g,
From this and (2.8.5), it follows that
L*
@*)? !
—bp* _ Py
[ w5 | e
RN
<[Jwr|]? .
<Nzl gy
§Sa,b/]w\ap|VwL|pda:
RN
<97Sus6, [ Jol 7 0l
RN
+978,4(Ce +1) [ Jal P P
RN
By Hélder with exponents % and pfip,
2 P*:P
(P*>2 ! * * g
J A O e O R P I O R T
RN N N
Thus,
%
®*)? :
—bp* _ )2
/m Pl T de| =l )
RN
<||wr|?
<l
<Sup / 2| Vg Pda
RN
§4p’yp5a’b§/\a:|bp*|uu|mda:
RN
+4pfypSa,b(Cg+1)/|x]_bp* | P uy [P Pdx

RN
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<4P~PS, b€ / |x]7bp* ]uu\p*dx

RN
p*;p
P
7b * *
* p
+ 4PAPS, 5 (Ce + 1) /\m|_bp lu,| 7 dx N
N
By (2.8.7),
p*
- S ’
/mbp |V da < a,—bcop
<1 _ l) \7>p
RN P 0
Let Ay := 15‘;% Then
G
L*
P *
7bp* (p*)2 p.p p?
|z uyl P dx <4PAPS, hEA)
RN
D *
p* ¥ P _—p
b ®*)? AN
+4P7P5’a7b(C§ +1) / |x| =P |Uu| » dx A/\p ’
N
hence
* P
P i PF .
2\ ¥ . (»*)>2 i
1 —4P4PS,4(Ce + 1) (Af) / |z| 7% |u,| P dx < APAPS, B EAY
RN
(*)?
Observe that /\lim Ay = 0. This and the last estimate shows that u, € L, ¥ (RY) for
—400
A large. O

Note that from (2.8.4) and previous arguments there exists a positive constant K, such
that

L7 vy < 4777 Sas (K +1) / ||~ [P [P P d. (2.8.9)
b RN
(41 *)2
We are now going to consider v = g := p—( ) in (2.8.9), where ¢ := (]:7) > 1.
p t p(p* —p)

Then, use Holder inequality with exponents ¢ and ﬁ in the integral in (2.8.9) and Fatou’s
Lemma,

pPY0 < . . P
lull o gy < Hminfllozlpye g
< P < AP~P p*—p op .
< lwrllpr gy <4 ’YOSa,b(K—I-l)HuuHL(p;)g (RN)”u“'L’J =)
b
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Hence,

1

Y0

1 1 p*—p 1
Il o vy < [4S2(K + D llwall 2, 0 el e gy (2:810)
b L, 7 (RN)

Considering v = 73, Hélder’s inequality with exponents ¢ and ﬁ in the integral in
(2.8.5) ensures that

—b
O e T O I e

L, " (RN)
Repeat previous arguments to see that
p'Y() _ '7(2) P
el = e
L*
* * P
= ([, bl (i)
RN
L*
* >k P
< lim inf </ || =% (wp,)P da:)
L—o0 RN
_ 1. . f p .
ol )
< Nwgll? .
< 0l e e,
< PRS0y (K +1)
RN
The last two estimates provides that
P
G ,uH g S 4p(70)psab(K+1)”“#”73}770@1\, [ P
b (R ) Lb P (RN)
i.e.,
L% 4 .. Eop
ol YoP P,
||u/»t||Lp*'y§(RN) S 4’\/0 ’YOO S 7% (K + 1)’\/0;7 Hu/—LHLll;J*'YO(RN)Hu/J«H (1?*)2
b L, " (RN
By (2.8.10),
22: 1
£ 2
p*— =0 Z %
ol g g, < |15+ Dl G 9l gy
b Lb P (RN)
Repeating the arguments above for v3, 73, --- we can concluded that
0> 70
z T Kt (2.8.11)
o gy < (126K + D ] ] Wl oy 2
b L, ? (RN)
Once that
BERTIDIE
Z—. and
=1 ,7 =1 70
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are convergent series it follows from (2.8.11) that

5

1
L O NP S
ey < | 482K + Dl T A e y (2812)
L7 (BRV)
(p _p) z:l 'YO 1 zizo; % io: %
=l e = a2+ 02 T oy
L7 (RN

Finally there exists A* > 1 such that, by Statement 2.8.3 and (2.8.12), we can conclude that

luplloo <1, forall X > A%

Hence, 9(uy) = |uu| 2w, which implies that the function u,, is a solution of the problem

(PM,LG)' O

2.9 Theorem 2.1.1 (supercritical case)

Proof of Theorem 2.1.1(supercritical case). From Proposition 2.8.1, we can guarantee that
there exists u** > 0 such that (P, 1) has a positive ground state solution w, € E, for all
w > and A > A*. Then, using Proposition 2.5.1 with short modifications, we obtain, up
to a subsequence, u, — U in E when p — 400, where uy, is a ground state solution to
problem (P 1,4). O
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Chapter 3

Existence of least energy positive and
nodal solutions for a class of
Caffarelli-Kohn-Nirenberg type
problems

In this chapter, we look for positive and nodal ground state solutions minimizing the Euler-
Lagrange functional over the Nehari manifold and over its subset. This chapter is based
on [12]. Tt is important to observe that the method used here to find positive ground state
solution is different from [12], we work with more general singularities so that some estimates
are more refined and we prove the existence of nodal solution.

3.1 Introduction

This chapter is focused to prove the existence of a positive and a nodal solutions to the
following class of Caffarelli-Kohn-Nirenberg type problems give by

—div (\x]*“p\Vu]pqu) + ]w\*bp*V(x)\u]p*QU = |a:]*bp*K(a;)f(u) in RV, (P)

where1<p<N,0§a<%,a<b§a+1,p*:p*(a,b):N”i\;panddzl—l—a—b.

In order to find these solutions we use Dy (RN) that is the completion of the Ce°(RY)
with the norm

O
RN
where CSO(RN ) is the space of smooth functions with compact support.

Let us denote by
L;(RN) = {u :RY - R: wis measurable and/ || 7% Ju)*dx < oo}
RN
and

LP(RN) = {u :RY - R: w is measurable and sup ess|z| %" |u| < oo} .
RN

On functions V, K : RY — R continuous on RY we assume the following general
conditions. Indeed, we say that (V,K) € K if
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(VKy) V(z),K(x) >0 for all z € RY and K € L{°(RN) N L>®(RY).
(VKy) If {A,}, € RY is a sequence of Borel sets such that the Lebesgue measure meas(4,,) <
R, for all n € N and some R > 0, then

lim |z| %" K (x) = 0, uniformly in n € N.
T+ J A,,NBE(0)

Furthermore, one of the below conditions occurs
(VK,) £ € L(RY) N Lo (RY)

or
(VK3) there exists m € (p,p*) such that

p*—m

——— —0, as|z|] > +oo.
Vix) v =r

Moreover, we assume the following growth conditions in the origin and at infinity for the
C! function f: R — R:

(f1) »
|t 0+ [t[P—1 =0, if (VKs) holds
(f1)
f(t)

=0, if (VK3) holds

jt]—0+ [t

with m € (p,p*) defined before in (V K3);

(f2) f has a “quasicritical growth” at infinity, namely,

ft)

p*—1

[t|—+oo |t

(f3) There exists 6 € (p, p*) so that
t
0<OF(t) = 0/ f(s)ds < f(t)t, for all [t| > 0;
0

(f4) The map
f(t)

jtfp=

is strictly increasing for all |t| > 0,

or, equivalently,

f(t)

') > (p— 1)T’ for all ¢ # 0.

The main results of this chapter are stated in the following theorem.

Theorem 3.1.1. Suppose that (V,K) € K and f € CY(R,R) verifies (f1) or (f1) and
(f2) — (fa). Then, problem (P) possesses a positive ground state weak solution. Moreover,
(P) admits a nodal ground state weak solution, which has precisely two nodal domains.
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3.2 Variational framework and Compactness results

In order to prove that problem (P) has a variational structure, let us consider the space
X = {u e DLP(RY) - /RN 2| 77"V () [ulP dz < —l—oo}

endowed with the norm
fally = [ tel =" 9up dat [ (ol V@)l da.

Let X’ the dual space of X endowed with the norm || - || xs. Recall that a weak solution of
problem (P) is a function v € X such that

/ w|_ap|Vu|p_2Vu-Vvdx—|—/ 2| 7"V (2) |ulP~ 2uv da
RN RN
—/ 2| %" K () f(u)vdz = 0, for all v € X
RN

Note that the weak solutions of (P) are the critical points of the energy functional J
defined on X by
]. ]. * *
() = / || Vul? de + / R V(x)\u\pdx—/ " K (2) () d.
D JrN b JrN RN

More precisely, J € C'(X,R) and its differential J' : X — X’ is defined as
(J'(u),v) = / 2| 7P| Vu|P?Vu - Vo da
RN

+ / |xbp*V(x)\u|p2uvd:v—/ 2| 7" K () f (u)v dz,
RN RN

for every u,v € X.

In order to prove the compactness result, first assume that (V K2) holds. By (f1) and
(f2) and then, by integration, it follows that, fixing any € > 0 there exists a positive constant
C: > 0 such that

[f(t)] < eltfP™ + Ot

* C *
LR < S 4 =2 [¢T, for all £ € R, (3.2.1)
p p

Instead if (V K3) holds, by (f1) and (f2) and then by integration for any £ > 0 a positive
constant C. > 0 exists such that

* C *
IF(O)] < elt|™ 1 + CtP' =Y, |F@)] < S g™+ —|t]", forall t € R, (3.2.2)
m p

with m € (p,p*).

At this point, in order to recover compactness, we prove the following Hardy-type inequality.
First, for every ( € R, ¢ > 1, let us define the Lebesgue space

LgK(]RN) = {u :RY - R: wis measurable and / 2| 7" K () |u| dz < —l—oo} .
: RN

Proposition 3.2.1. Assume (V,K) € K. Then, if (VK3) holds, X is compactly embedded
in LgK(RN) for every ¢ € (p,p*). If (VK3) holds, X is compactly embedded in LQK(RN).
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Proof. First, assume that (V K2) holds.Let ¢ € (p,p*). Observe that (VKj) implies that

K () [t

im —

itl—o V(z) [t|P

Fixed £ > 0, there exists tg > 0 such that

=0ae. onzcRY.

K(z)|t|° < eV (x)[t|P for all |t| < to and a.e. on z € RV, (3.2.3)

(V K3) implies that

¢
lim K(x)‘ ‘* =0ae. onxzecRY
tlorboo T [HP
Then there exists t1 > 0 such that
K(2)|t|° < elt|P” for all |t| > ¢; and a.e. on z € RY. (3.2.4)

Continuity of the function [t|"P" over the compact interval [to, ;] implies the existence
of C > 0 such that
|t|S < CJt|P” for all t € [to, t1]. (3.2.5)

Thus,
K@)t <eC(V(@)tP + [t") + C K (@) Xty ([ED L, for all ¢ € R.
Fix u € X and let r; > 0, the last estimate provides

/lw“%umwmﬁw</lwwW@mWMf/Iwwmw>
B¢ B¢ B¢

1 1 1

0 [ K@l
T

<eCQu)+C |z| 7" K (x)dz, (3.2.6)
AnBg,

where

P dx

mmzj mbmmmwm+/ 2] Ju
B, B¢

1

and A = {z € RNty < |u(z)| < t1}.
Since v, = v in X, (v,) is bounded in X. By (1.2.1), there exists ¢; > 0 such that

Q(vn) < 1. (3.2.7)

From (V K3), choose r9 > ry such that
/ 2| %" K (x)dx < e. (3.2.8)
ANBg,
From (3.2.6), (3.2.7) and (3.2.8),

| el K @lotds <= 3.29)
B

c
2
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Consider v, = v for all n. We see that (3.2.9) allow us to choose r3 > 79 such that

/ |~ K (2)|v|%dz < e. (3.2.10)
B

c
3

From (3.2.9) and (3.2.10),

/ m\_bp*K(x)\vn\qu%/ 2| K (2)v]1da. (3.2.11)
C Bﬁs

3

Observe that X(B,) < Da¥(Byy) < L§(Byy) < L 1 (By,y) from Theorem C.0.7 and
the hypothesis (V Kp), then

intp, 2]~ K (2)[vn|tdz — / [~ K () 0] 9z (3.2.12)
By,

It follows that

/ $|_bp*K(x)|vn\qda:—>/ [~ K () 0]z (3.2.13)
RN RN

If instead (V K3) holds, we consider, for every = € RY fixed, the function

g(t) =V(x)th—™ + "™ for every t > 0.
p—m

* _m « p*—p
Since its minimum value is CmV(x)T;*—P with C, = (p _p> <m_p> , it is

p*—m p*—m

*

CmV(x)z;*iz < V(@)tP™™ 47" for every z € RY and ¢t > 0.

Combining this inequality with (V K3), for any ¢ > 0 there exists a positive radius r > 0
sufficiently large such that

K(x)[t|™ <eC (V(x)[t]P + |t|P"), for every t € R and |z| > r

where C!, = C;.}, from which it follows
/ || 7% K (2)|u|™ do < EC',’n/ 2| 7" (V (2)|ulP + |u|P")dz, for all u € X.
B:(0) B:(0)
If {up}n is a sequence such that u, — w in X, there exists C’ > 0 such that
/ 2| %"V (2)|u, [P < O and / || =" |up [P dae < €', for all n € N,
RN RN

and then

/ ]x\fbp*K(x)\un]m dv <2C'Cle, VneN. (3.2.14)
0)

T

Since m € (p,p*) and K is a continuous function, from Sobolev imbeddings on bounded
domains it is

r

lim 2| 7" K () |, |™ die —/
0)

n—-+oo Br(

|| 7" K () |u|™ dax. (3.2.15)
)

65



Then, from for & > 0 small enough such that

lim \x|—bP*K(x)|un|mdx=/ |~ K ()| ™ dee
RN RN

n—-+00

and this implies
Up — u, in LI (RY).

Therefore, we can prove the following compactness result related to the nonlinear term.
Lemma 3.2.2. Suppose that | satisfies (f1) — (f2) or (f1) — (f2) and (V,K) € K. If {un}n

18 a sequence such that u, — u in X, then

lim 2| =" K (2) F(uy,) do = / 2| 7" K (2) F(u) da

n—4o00 RN RN
and
im [ (2 K (@) f (un)un dr = / " K () f (u)u da.
RN RN

n—-+00

Proof. We are going to prove only the second limit because the proof of the first limit is
similar to the proof of the second one. Assume that (V K3) holds. From (f1) — (f2), fixing
¢ € (p,p*) and taking £ > 0, there exists C' > 0 such that

K (2) f(£)t] < eC(V(@)|tP + [tP) + K(2)|t)S, for all t € R. (3.2.16)

From Proposition 3.2.1 since

lim a:|_bp*K(1:)|un\<d:z::/ | " K () uf€ d,
RN RN

n—-+0o00

there exists a positive radius r > 0 such that

/ |z| 7" K () |u,|* dz < e, for all n € N. (3.2.17)
c 0)

r

Since {uy }n is bounded in X, there exists a positive constant C’ such that
/ 2| %"V (2)|u, P < O and / || =" |up [P da < €', for all n e N.
RN RN

From this inequality together with (3.2.16) and (3.2.17) it is

< (20C" +1)e, for allm € N.

Bz (0)

Now assume (V K3) and following the same arguments in the second part of proof of
Proposition 3.2.1, given ¢ > 0 sufficiently small, there exists r > 0 large enough such
that

K(z) < eC! (V(@)[tP~™ + [t|P" ™), for every |t| > 0 and |z| > 7.

Consequently, for all [¢| > 0 and |z| > r

p*—m).

K(@)|f(0)t] < e Cr (V@) f O™ + £ ()]t
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From (]?1) and (f2), there exist C,tg,t; > 0 satisfying
K(@)|ft)t| < eC(V(2)|t|P +|t|P"), for every t € I and |z| > r

where I = {t e R: [t| <ty or [t| > t1}. Therefore, for every u € X the following estimate
holds

/ 2| K(z)f(w)ude < eCQu)+C 2| 7% K () da
Be(0) ANB(0)

with
Qu) = / 12|~ V(@) uf? da + / 2|~ Juf?” de
RN RN

and
A={zeRN 1t < |u(x)| <t}.

Since {uy, }, is bounded in X, there exists C’ > 0 such that
/ 2| %"V (2)|u,|P < C" and / || =% |up [P da < €', for all n e N.
RN RN
Therefore,

/ |2 7" K (2) f (un)un dz < C"e + C/ 2|~ K (z) da,
B (0) An,NBg(0)

where
Ay ={z e RN 1ty < |up(z)| < t1} .

Following the same arguments in the proof of Proposition 3.2.1 and by (VK;) we deduce
that

/ lz| %" K (x)dx — 0, asr — +o0,
AnNBE(0)

uniformly in n € N and, for € > 0 small enough

< (C"+1)e.

/ |x|_bp*K(x)f(un)un dr
B(0)

In order to complete the proof, we have to prove that

lim \x]_bp*K(x)f(un)undx:/ 2| %" K (2) f (u)u de.
e JBe(0) r(0)

Since {un}n is bounded in X, {un}, is bounded in DyP(RY), then it is bounded in
LY (RM) by (1.2.1). Furthermore, there exists u € L} (RY) such that

wp — win LY (RY),

then

Un(x) = u(zx) a.e. in RY.

Let P(x,s) = |2|7% K(z)f(s)s and Q(z,s) = |z|~%" K (x)|s|P".
If (VK32) holds, then (f1) and (f2) provide

F@t <e(|t]P +|tF") + C|tP for all t € R.
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If (VK3) holds, then (fy) and (f2) provide

FOt < e([t|™ + [t|P7) 4+ C|t|P for all t € R

with m € (p, p*).
In both cases, holds

P(x,s)

li = 0 uniformly i RY.
|S|—1>IEOO Oz 5) 0 uniformly in x €

Thus, the result follows from Theorem C.0.9. O

3.3 Existence of a least energy positive solution
Since we intend to find a positive solution, we will assume that
(f+) f(t)=0tfor all t € (—o0,0].
Now we define the Nehari set associated to the functional J given by
N = {u € X\{0} : J'(u)u = 0}.

In the next result we show that for each v € X with u # 0, there is an unique projection

in \V.

Lemma 3.3.1. If (f1)- (fa) hold, then, for each u € X with u # 0, there exists an unique
to = to(u) > 0 such that tou € N and J(tou) = max J(tu).

Proof. Let u € X be a function with u # 0 and h(t) = J(tu), i.e.,

Y4 P . .
) = t/ |:L'_“p|Vu|pdx+t/ ]~ V(m)\u|pdm—/ |~ K (2) F(tu)da.
b JrN b JrN RN

Let us start by assuming that (V K3) holds. By (f1) and (f2), fixing € > 0, there exists
C. > 0 such that

P P .
h(t) > / \x|“p]Vu|pda:+(1—E)/ |J:]*bp V(x)|ulPdz
P JrN P JrN
_ ﬂ —bp* p*
Ce— |z| ™ K (z)|u|’ dx.
P JrN

Then, there exists t; > 0 sufficient small such that h(t) > 0, for all 0 <t < #;.
Now suppose that (V K3) holds. By (f1) and (f2), fixing € > 0 there exists C; > 0 such
that

h(t) > — |z| " P|Vu|Pdz + — |z| = V(x)|u|Pdz
P JrN P JrN

m *

t * tp * *
O 05*/ 2" K () [uf?” da.
m JrN p RN

Then, there exists ¢; > 0 sufficient small such that h(t) > 0, for all 0 < ¢ < ;.
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Let us recall that, from (f3), there exist two positive constants D, D" > 0 such that
F(t) > Dt — D' for all t > 0. Then, choosing ¢ € C(RY)\ {0} with ¢ > 0 in RY,
we have

tr —ap P tr —bp* P
J(tp) < — 2| "Vl dx + — 2|7V (z)|elP dz
supp ¢ p supp ¢
—Dte/ |x|_bp*K(a:)g0|9d;U—|—D’/ |x|_bp*K(;U) dx.
supp ¢ supp ¢

Since p < 6 < p*, there exists ¢ > 1 such that h(t) <0, for every ¢ >¢.
Hence, there exists tg > 0 such that

h(to) = max h(t) = max J (tu),

which implies 1/(tp) = 0, i.e.,
[ eVt s e Virds = [ K@) fouuds
RN RN RN
that implies tou € N.

We show that ¢y is unique. Suppose, by contradiction, there exists s > 0 such that
su € N. Then,

* * t
/ $|ap|Vu|pd:c—|—/ 2| 7"V () |u|Pdx :/ || 0P K(a:)f( E?)uda:
RN RN RN th
and
/ || VuPdz + / 2"V () ulPda = / 2 K (2) L5
RN RN RN sh
from (f4), follows by tg = sp. O

In the next lemma we show that the minimizing sequences cannot converge to zero.
Moreover, there exists a real number ¢ = i/I\l/f J > 0.

Lemma 3.3.2. For all u € N, there erists a positive constant C independent on u such
that 0 < C < ||u|| and J(u) > 0.

Proof. Note that using (V K3), (f1), (f2) and for all u € N, we have

Jally = [ 1ol K(a)f(udo < ¢

K * * *
VH / 27"V () [P dx+C’€/ 2 K () [uf?” da.
oo JRN RN

Then, choosing € > 0 we get

1—eCy || X 1/(p*—p)

0<
[ CEC2||KH<>O

Note that using (VK3), (f1), (f2) and for all u € N, we have

ully, = /RN 2| 7% K (2) f(u)u dz

g/ [ K () u]™ dx—l—Cg/ " K ()|l da
RN RN

IN
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Arguing as Lemma 3.2.2 we get

lully, S/ | """ K (2) f (w)u da < s/ | =PV (2)uP d$+0/ | =" K () [ul”” de,
RN RN RN
using that K is a continuous function and m < p* we have
lully, < eChllull” + Col| K floo lul™

and choosing € > 0 we get

1—eCy } 1/(m—p)
0<| 77— < [full.
[C2HK lloo
Note that, from (f4), we obtain
f't——-1)ft) >0, (3.3.1)
for all ¢ > 0. But this inequality implies that
1
—f(t)t — F(t) is increasing for ¢ > 0. (3.3.2)
p

Using (3.3.2) and (VKj) we derive

J(u) = J(u) - ;J%u)u > /R Ny !:CI_b”*K(x)[; flu)u — F(u)]dz > 0.

O
In the next result we prove that the minimizing sequence is bounded.
Lemma 3.3.3. If (u,) C N is a minimizing sequence for J, then (uy,) is bounded in E.
Proof. From (fy), we can consider u, > 0, for all n € N. Then,
1, TER 1
¢+ on(1) = J(up) — —J (un)un > —|lun|ly + K (2)[= f(un)upn — F(un)]dz.
p p RN p
Using (3.3.2) and (V Kp) the proof is over. O

In the next result we prove that c is achieved.
Lemma 3.3.4. There exists u € N such that J(u) = c.

Proof. Consider (u,) C N a minimizing sequence. Then, it is bounded in X and, up to a
subsequence, we have u, — ug in X. Note that ug # 0, because otherwise, using Lemma

3.2.2, we obtain |u,[]}, = 2| 7% K (2) f (un)up dz = o0,(1), which is a contradiction
RN
with Lemma 3.3.2.
Consider ty > 0 such that u = toug € N. Since || - ||y is weak lower semicontinuous and

/ 2| 7" K (2) F (touy, )dz = / 2| %" K () F (toug)dz 4 0,(1) and we get
RN RN

c < J(u) = J(toug) < lirginf J(touy) < liminf J(uy) = c.

n—o0
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3.3.1 Proof of Theorem 3.1.1

Lemma 3.3.5. Suppose thatu € N, ¢ = 1nf J(v) and J(u) = c. Then u is a weak solution
veN

of the problem (P).

Proof. Suppose, by contradiction, that u is not a weak solution of (P). Then we find a
function ¢ € C§°(RY) such that

J(u)p = / 2| 7P| Vu|P~2VuV pda +/ 2| 7PV () [ulP2upda
]RN
- / ||~ K () f (u)¢pdz < —1.
]RN
Choose € > 0 small such that
1
J'(tu+ og)p < —5 for [t — 1|+ |o| < e. (3.3.3)

Let n be a cut-off function that n(t) =1 for |t — 1| <&/2 and n(t) =0 for |t — 1| > .

Now we estimate sup J(tu+en¢g). Observe that for all (¢, o) we have J(tu+ene) < J(u).
>0

In fact, for [t — 1| > ¢, we have J(tu + en¢) = J(tu) < J(u). For 0 < |t — 1| < ¢, from
(3.3.3) we have

1
J(tu+enp) = J(tu)+ /0 J' (tu + oen(t)p)en(t)pdo < J(tu) — %an(t)
< J(tu) < J(u).

Now for ¢ = 1, J(tu + en(t)d) = J(u + en()) < J(u) — %g < J(u). We

concluded sup J(tu + eng)<c = 1nf J( ). Now it is sufficient to find ¢ > 0 such that
£>0

tu +en(t)p € N, which is a contradlctlon by definition of ¢. For this, consider the function
h:[1—¢e1+¢ — X given by h(t) = tu +en(t)p and T : [1 —e,1 4+ €] — R given by
Y(t) = J' (tu+en(t)o)(tu+en(t)e). Note that YT(t) = P(t) — Q(t) where P is a polynomial
and Q(t) = [pn |27 K () f (tu + en(t)d) (tu + en(t)¢)dx arguing as Lemma 3.2.2, we get
that T is a continuous function.

Observe that T(1—¢) = J'(1—e)u)(1—e)u > 0 and Y(1+¢) = J'((1+¢)u)(14+e)u < 0.
Indeed, u € N, then J(u) = max;>o J(tu) from the Lemma 3.3.1, i.e., 1 is the maximum
point of the function w: R — R, w(t) = J(tu), then

w'(l—e)=J(1-¢e)u)u >0

and

w'(1+¢e)=J((1+¢e)u)u < 0.

Since € > 0 is small, then

J((1—=e)u)(l—e)u>0

and

J (1 +e)u)(l+e)u <0,

hence
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T(1—-¢)>0
and
T(l1+¢)<0.
Thus, Intermediate Value Theorem ensures that there exists ¢ € (1 —¢,1+ ¢) such that

Y() = 0. 0

3.4 Existence of a least Energy nodal solution

In the following we search a nodal or sign-changing weak solution of problem (P), i.e., a
function u € X such that u™ := max{u,0} # 0, u~ := min{u, 0} # 0 in RY and

/ || 9P| VulP~2VuVo dx —|—/ 2| 7PV () |u[P~ 2uw da
RN RN
— / 2| %" K (2) f(u)vdz =0, forallve X.
RN

In particular, we look for v € X which has exactly two nodal domains or equivalently
changes sign exactly once. Since the Nehari manifold associated to the functional J

N {u € X\{0} : (J/(u), u) = 0}

is a natural constraint for J, we can look for critical points of J constrained on N still
denoting, for simplicity of notations, J,, by J.

Recall that a non zero critical point w of J is a least energy weak solution of (P) if
J(w) = vmelj\r} J(v) and, since our purpose is to prove the existence of a least energy sign-

changing weak solution of (P), in particular, we look for w € M such that J(w) = mb\l}l J(v),
ve

where M is the subset of A containing all sign-changing weak solutions of (P), i.e.,
M = {w eN:wh #0,w” #0,(J(wh),wt)=0=(J(w),w") }
For sake of simplicity, in the following we often denote

/ \x|apvwi\pdx+/ \x|bp*V(x)|wiypdx:/ 2|~ K (2) f (wh)w? da.
RN RN RN

So, let us begin by establishing some preliminary results which will be exploited in the last
section for a minimization argument.

In particular, in this first lemma, we prove that J is strictly positive on A/ then on M, || -||
is uniformly bounded from below by a strictly positive radius on A and then on M and
the same applies to the positive and negative part w® of every w € M. It follows that J is
coercive on A/ and in particular on M since J(u) — +o0o as ||u|| — +o0, for every u € N.

Lemma 3.4.1. (i) For all u € N such that ||u||y — 400, then J(u) — +oc.

(ii) There exists p > 0 such that ||ul|yv > p for all u € N and |[w® |y > p for all w € M.
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Proof. Consider (un) C N such that [lu,|[}, — co. By (f3) and (VKjp), we have that

Hun) = g Cantun = (3= 5V uall 4 [ 1ol K@ fun)e = Flun )i,

which proves (7).

In order to prove (ii), let us observe that, by assumptions (f;) — (f2) or (ﬁ) — (f2),
respectively we have that, for any € > 0, a positive constant C. > 0 exists such that

e|tlP + C.|t|P", for all t € R. (3.4.1)

<
< elt]™ + C|t|P", for all t € R. (3.4.2)

Since for every u € N it holds

/ |z| " |VulPdx —|—/ 2| 7"V (@) |u|Pdz = / 2| 7% K (2) f (u)udz
RN RN RN
if (V K3) holds, considering (3.4.1), by Sobolev embeddings it is
Collully < Cellullyy, (3.4.3)

where C{ and C. are positive constants. Instead if (VK3) holds, using (3.4.2) and by
continuous Sobolev imbeddings we get

lullf < eCllully + Cellully, (3.4.4)

Hence, in both cases, there exists a positive radius p; > 0 such that ||ul|y > p1.
Now, if w € M, we have that (J'(w®), w*) = 0 namely w* € N, hence by the previous
estimate we obtain 0 < p < [Jw® |y O

From previous lemma we deduce a result valid for every sequence in M that we apply in
the last section to every bounded minimizing sequence of J on M so that the candidate
minimizer is different from zero.

Remark 2. If (wy,) is a sequence in M, we have that

liminf/ & || dz > 0.
RN

n—oo

Lemma 3.4.2. If v € X with vt # 0, then there exist t,s > 0 such that
(J'(tv" 4+ sv7),0") =0 and (J' (vt +sv7),07) =0.
Consequently, tvt + sv™ € M.

Proof. Since the support of positive part of v and negative part of v are disjoint, the proof
is similar of Lemma 3.3.1. O
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3.4.1 Proof of the existence of nodal solution

At this point, we can finally prove the existence of w € M in which the infimum of J is
attained on M. We find that w is a critical point of J and then a least energy nodal solution
of (P). In order to complete the proof of Theorem 3.1.1, we conclude by showing that w
has exactly two nodal domains.

First, let us start with the existence of a minimizer w € M of J. In what follows, we
denote ¢g the infimun of J in M

= inf J(v).
0 'UIGHM (U)

By Lemma 3.4.1, we deduce that ¢y > 0. Thus, there exists a bounded minimizing sequence
(wy) in M and J is coercive on M from Lemma 3.4.1. If (VK3) holds, then, arguing as
Proposition 3.2.1, we can assume up to a subsequence that there exist w,w;, ws € X such
that

wy, —w, wl —wy, w, —~wy inX
Wy = w, w —wy, w, —wsy ianmK(RN),me(p,p*).

Since the transformations w — w™ and w — w™ are continuous from Ly’ (RY) in LZTK(RN )
(see Lemma 2.3 in [17] with suitable adaptations), we have that w™ = w; > 0 and
w~ = wy < 0. At this point, we can prove that w € M. Indeed, by w,} — w™ and
w, — w~ in LIMRY) it is, as n — +oo

Ly e s [l o
R R

Then, by Remark 2, we conclude that w* # 0 and consequently w = w' + w™ is sign-
changing.
By Lemma 3.4.2 and the fact that w™ and w™ have disjoint supports, there exist £,5 > 0
such that

(J'(tw" +5w7),wh) = (J'(tw"),w") = (J'(tw"),tw") =0, (3.4.5)

(J'(twt +35w7),w ) ={(J'(sw),w ) =(J (5w ),5w" ) =0, (3.4.6)

then tw' + sw™ € M.
Now, let us prove that ¢,5 < 1.

Proposition 3.4.3. Let t,5 > 0 be the values of the projections of w* and w™ in M. Then
t,5<1.

Proof. Since ||.||y is weak lower semicontinuous and
Ll K@ ) do o [ e K@)ty da
from the Lemma 3.2.2, we get
(J'(wh),w") <0 and (J'(w™),w™) <0. (3.4.7)
Note that if ¢ > 1, then (J'(w™),w™) # 0 once that tw™ € M and the projection in M

is unique, we conclude that

(J'(wh),w") <0. (3.4.8)

74



Let h: RT — R, h(t) = J(tw™). Observe that

_ _ 1 _ _
W(E) = (T (tw"),w") = = {J'(fw™), fw") =0,
hence h has exactly one critical point once that the projection in M is unique and it is a
maximum point from Lemma 3.3.1. Thus, for £ > 0 small so that (1 —¢)t > 1 and
(J'((1=e)tw™), (1 —e)tw™) > 0. (3.4.9)
(3.4.8), (3.4.9) and the Intermediate Value Theorem provide the existence of & €
(1,(1 — e)t) with
<J'(§w+),§w+> =0,
then h/'(§) = %(J’(é’w*),fw*) = 0, which is a contradiction with the uniqueness of the

critical point of the function h and this shows that ¢ < 1. The same argument shows that
s< 1. O]

In the next step we show that J(tw™ +3sw™) = ¢g and t = 5 = 1 or better J(w) = c.
Indeed, since {,5 < 1 and w,, — w in X as n — +oo, the weak lower semicontinuity of J
on X described above and

1
t— Ef(t)t — F(t), is increasing for ¢ € R.
by the hypothesis (fy), we get
_ _ 1 _ _
co < Jwt+5w)=JEwT +30w7) — , (J'(tw" +35w7), (fw" +3507))
* 1 — —
= intpn|z| 7P K(z)= f(tw)twT — F(twh)dz
p
x 1
+ / 2| 7% K (2) = f(5w™w™)sw w™ — F(3w™w™)dx
RN p
* 1
< [l K@) fwtet - Ft)ds
RN p

—bp” g;l ww™ — F(w)dz
e [ el K@) e = Fu)d
- J(w++w)—;<J’(w++w)a(w++w)>
< liminf <J(w:{ +wy) —;<J’(wi +wy), (wyy +w5)>>

= lim J(wy) = co.
n—+o00

Then we have found that J(fw™ + 5w™) = ¢y or, equivalently, that there exist 0 < ,5 < 1
such that tw' +sw~™ € M and J(twt +5w™) = ¢y. Let us observe that, if ¢ # 1 or 5 # 1
by above calculations we would obtain a contradiction. Thus, t =5 =1, w™ +w™ € M
and J(w) = cg.

At this point, we state that w is a critical point of J, i.e. J'(w) = 0. Then w is a weak
solution of the problem (P). Suppose, by contradiction, that w is not a weak solution of
(P). Then we find a function ¢ € C§°(RY) such that

J () = /R N |z| =% |Vw|P~2VwV ¢dz + /R N 2| 7"V () |w [P P whda
- / 2|7 K (z) f(w)pdw < —1.
RN
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Choose € > 0 small such that
1
J(twt + sw™ +0p)p < ) for [t —1|+[s — 1|+ |o| <e. (3.4.10)

Let n be a cut-off function that n(t,s) = 1 for |t — 1] < ¢/2 and |s — 1| < /2 and
n(t,s) =0for [t —1| > e or for [s — 1] > e.

Now we estimate sup J(tw™ + sw™ + eng). Observe that for all (¢,5,0) we have
t,s>0

J(twt + sw™ + eng) < J(w). In fact, for |t — 1] > € or for |s — 1| > &, we have
J(twT 4+ sw™ +eng) = J(twt +sw”) < J(w). For 0 < [t — 1| <eand for 0 < |[s — 1| <e¢,
from (3.4.10) we have

1
J(twt + sw™ +eng) = J(twT + sw™) +/ J (twt + sw™ + oen(t)p)en(t)pdo
0

1
< Jtwt +sw7) - 587}(75) < Jtwt +sw) < J(w).

1
Now for t =1 and s = 1, J(twt +sw™ +en(t)e) = J(w+en(1)p) < J(w) — 3¢ < J(w).
We concluded

sup J(tw + sw™ + eng)<co = mf J(v).
t,s>0

Now it is sufficient to find ¢, 5 > 0 such that tw™ +5w ™ +en(t)¢ € M, which is a contradiction
by definition of ¢y. For this, consider the function h: [1 —e,14+¢] x [1 —¢,14¢] — X given
by h(t,s) = twt +sw™ +en(t)pand T : [1—e,1+¢] x [1 —&,1+¢] = R given by T(¢,s) =
J' (twt +sw™ +en(t )¢)(tw+ +sw™ +en(t)p). Note that Y(¢,s) = P(t,s) — Q(t, s) where P
is a polynomial and Q(t, s) = [ 2|7 K (2) f(twT +sw™ +en(t)d) (twT +sw™ +en(t)¢)dz
arguing as Lemma 3.2.2, we get that T is a continuous function.

Observe that Y((1— 5), (1-e)=J((1-)w+(1—-e)w )(1—-e)wr+(1—e)w™) >0
and T((1+¢),(1+¢e)=J((1+e)wt+(1+e)w )(1+e)wt + (1 +e)w™) < 0. Indeed,
wt,w™ € N, then J(w™) = max;>o J(tw™) and J(w™) = maxs>o J(sw™) from the Lemma
3.3.1, i.e., £ = 1 is the maximum point of the function uy : R — R, uy(t) = J(tw™) and
s =1 is the maximum point of the function u— : R — R, u_(s) = J(sw™), then

(ur)(1—e)=J((1-e)whwt >0,
(ur) (1 +¢e)=J((1+e)whHwt <0,

(u_)(1—¢) = J((1 - )w )w™ >0

and

() (1 +e) = J((1+e)w )w™ < 0.

As a consequence,

T(1—¢),1-¢) =J((1—-e)w"+(1—-ew )(l—-ecw"+(1l—ecw") >0 and
T(1+e),1+e)=J((1+e)wt+1+e)w )(1+e)wt +(1+e)w™) <O0.

Since € > 0 is small, the Intermediate Value Theorem ensures that there exist ¢,5 €
(1 —&,1+ ¢) such that

J (twHwt =0

and
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hence

and

J' (5w™)sw™ = 0.
The supports of w™ and w™ are disjoints, then Y(¢, 5) = 0.

Similar argument shows that there exists w € M such that w is a critical point of J if
(V K3) holds.

Finally, we prove that w has exactly two nodal domains or equivalently it changes sign
exactly once. Let us observe that assumptions (f1) and (f2) or (f1) and (f2) ensure that
w is continuous and then RN = {x € RY : w(z) # 0} is open. Suppose by contradiction
that RY has more than two components or w has more than two nodal domains and,
since w changes sign, without loss of generality, we can assume that w = w; + wg +
ws, where wy > 0, we <0, w3 # 0, and supp(w;) N supp(w;) = 0, for i # j, 4,5 =1,2,3.
Clearly it is understood that w; = 0 on R™ \ supp(w;) for i = 1,2,3. So the disjointness of
the supports combined with J/'(w) = 0 implies (J' (w1 + w2),w1) = 0 = (J' (w1 + wa), w3) .
Since 0 # w1 = (w1 + w2)' and 0 # wy = (w1 + w2)~, by previous arguments, there exist
t,s € (0,1] such that t(w; + wa)™ + s(wy + w2)~ € M namely twy + swy € M and then
J(tw1 + SU)Q) > Co.

On the other side, 0 # w3 € N, Lemma 3.4.1 (ii) and

co < J(twy + swe) < J(wy + wz) < J(wy + we) + J(w3) = J(w) = ¢

then a contradiction and we conclude that w3 = 0.
Thus, the proof of Theorem 3.1.1 is complete.
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Appendix A

Proof of the Lemma 1.3.8 and
Principle of Symmetric Criticality

A.1 Proof of the Lemma 1.3.8

Recall the Lemma 1.3.8.

Lemma A.1.1. Let ¢ > 0. Suppose that 7 € r satisfies

max (1) < ¢, + ¢,
t€[0,1]

then, there exists (6,u) € R X Eg yqq such that

b diStRXEo,md((aU)»ﬁ([oa 1])) < 2\/5;'

o I(0,u) € [cs — &,y +€l;

o ||[DI(0, u)lrxE;,,, < 2VE.
Proof. Observe that

I(W) = I(0,u) = I(u)

and
1 € cC
—I(u) < [I(u)] < Z;IIUH” + ];HUHP + TEHUHQ <G,

for all w € B(0, p) C Egqq by (1.3.1), then I is bounded below on B(0, p).

As X = (B(0,p), || - ||) is a complete metric space, I is a lower semicontinuous functional
and bounded below on X, the result follows from the hypothesis and by the Ekeland’s

Variational Principle (see Theorem 1.1 in [28]).

A.2 Principle of Symmetric Criticality

We prove the Principle of Symmetric Criticality following the proofs of Proposition 2.1 and

Theorem 2.7 in [40].

Let X be a real Banach space and let X* be its dual. The norms of X and X™* will be
denoted by || - || and || - ||«; respectively. We shall denote by x=(-,-)x the duality pairing

between X and X*; which will be simply denoted by (-,-) if no confusion arises.
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Let G be a group and let 7 be a representation of G over X; that is, 7(g) is a bounded
linear operator in X for each g € G and
m(e)u =u,Vu € X
77(9192)“ = W(gl)(W(QQ))U,VQl,QQ € Gavu € X7
where e is the identity element of G: the representation 7, of G over X* is naturally induced
by 7 through the relation:
(mu(g)v*,u) = (v*, w(g" Nu),g € G,v* € X*u € X. (A.2.1)

*

For simplicity, we shall often write gu or gv* instead of m(g)u or m.(g)v*, respectively. A

function h on X (or X*) is called G-invariant if
h(gu) = h(u),Yu € X (or h(gu®) = h(u"),Vu* € X¥),Vg € G,
and a subset M of X (or M* of X*) is called G-invariant if
gM = {gu;u € M} C M(or gM* C M™),¥g € G.

The linear subspaces of G-symmetric points of X and X* are defined as the common
fixed points of G:

Y={ue X;gu=u,Vg € G},
Y ={v" € X*;gv" =v",Vg € G},

Hence, by (A.2.1), v* € X* is symmetric if and only if it is a G-invariant functional. 3
and X, form closed linear subspaces of X and X*, respectively, so ¥ and ¥, are regarded
as Banach spaces with their induced topologies.

Let CL(X) be the set of all G-invariant C'-functional on X: we consider the following
principle:

P) For all J € CL(X), it holds that (J|x)"(u) = 0 assures J'(u) =0 and u € X.
G

Here (J]x)'(u) and J'(u) denote the Fréchet derivatives of J|s and J at v in ¥ and X,
respectively.

Proposition A.2.1 ( [40], Proposition 2.1). The principle (P) is valid if and only if
Y N2 = {0}, where S+ = {v* € X*; (v*,u) = 0,Yu € X}

Proof. Suppose ¥, N ¥+ = {0} and let ug be a critical point of J|g. We must show
J'(up) = 0. Since J(ug) = J|s(up) and J(ug +v) = J|s(up + v) for all v € X, we get

x+(J' (uo),v) x =s+ ((J]2) (u0),v)s = 0,Yv € %,

where y+(-, )y denotes the duality pairing between ¥ and its dual ¥*. This implies
J'(up) € ¥*. On the other hand, it follows from the G-invariance of J that

(7(qu).v) = lim J(gu + tvt) — J(gu)
— lim J(u+tg~tv) — J(u)
t—0 t
= (J'(u), g7 "v)
= (g9J'(u),v),
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for all g € G and u,v € X. This means J' is G-equivariant, i.e.,
J (gu) = gJ'(u),Vg € G,Vu € X. (A.2.2)

Especially, since ug € X, we obtain gJ'(ug) = J'(ug) for all g € G, that is, J'(ug) € Z..
Thus, we conclude J'(ug) € X, N X+ = {0}, i.e., J' (ug) = 0.

Reciprocally, suppose that there exists a non-zero element v* € ¥, N+ and define J, ()
by Ji(u) = (v*,u). Then J, € CL(X) and (J.)'(-) = v* # 0 has no critical point in X. On
the other hand, the assumption v* € ¥ implies v*|s = 0, whence follows (Ji|s) (u) = 0
for all w € ¥. This violates the principle (P). Therefore the condition ¥, N X+ = {0} is
necessary for the principle (P). O

We introduce an assumption on G:

(A) G is a compact topological group and the representation 7 of G over X is continuous,
i.e., (g,u) — gu is a continuous mapping from G x X into X.

By Rudin | [43], Theorem 3.27|, for each u € X, there exists a unique element Au € X
such that

(v*, Au) = /G<v*,gu>du(g),Vv* € X*, (A.2.3)

where p is the normalized Haar measure on (G: The mapping A is called the averaging over
G and has the following properties:

e A is a continuous linear projection from X onto .
e If K is a G-invariant closed convex subset of X; then A(K) C K.
Theorem A.2.2 ( [40], Theorem 2.7). If (A) is satisfied, then the (P) is valid.

Proof. We check the condition ¥, N+ = {0} again. Let v* € ¥, N+ and suppose v* # 0.
Since v* € 3, the hyperplane H = {u; (v*,u) = 1} becomes a non-empty G-invariant closed
convex subset of X: Then, for any u € H, we have Au € HN¥ and hence (v*,u) = 0 since
v* € £+ This contradicts the fact that Au € H. O
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Appendix B

Existence of a ground state solution
for an auxiliary problem

Consider the problem

{ —div (||~ |VulP~2Vu) + 2|7 [ulP~?u = |27 |u[""?u in Q, (Po)
Q

u € E(Q),

where 7 is the constant that appeared in the hypothesis (f5) and € is a bounded domain
that appeared in the hypothesis (V). The Euler-Lagrange functional associated to (Pq) is
given by

1 1 * 1 -
Do(u) = /|a:ap\Vu]pdx+/]a:\bp \u|pdx—/\x]bp |u|"dz.
pQ pQ TQ

Arguing as Lemma 2.2.1, from [49, Lemma 1.15|, there exists (u,) C E(f2), a sequence
(PS)¢, for the functional ®y. Arguing as Lemma 2.2.2, we can prove that (u,) C E() is
bounded.

Then, by Sobolev embedding, there exists v € E () such that, up to a subsequence, we
have

Up — u, in E(Q);
Up — U, In Li’lOC(Q), 1<s<p*; (B.0.1)
Uy — U, a.ein Q.

Then,

Cyllun — ullt = Gy [ [tV — v+ [ |x—”p*un—u|p] ,
Q Q

which implies
Cpllun — ull? < O (un)un — D4 (un)u + on(1).
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Appendix C

Basic Results

Lemma C.0.1 (Fatou’s lemma). If (f,) is a sequence of nonnegative measurable functions,
then

/ liminf f,dx < liminf frndx.
R RN

N n—-+o0 n——+oo

Theorem C.0.2 (Brezis Lieb’s Theorem). Let Q be a domain of RN and (h,) C L*()
with s > 1 and

hn(x) — h(z) a.e. in Q.
If there exists C' > 0 such that

/ |hn|Pde < C,
Q
then

hn — h in L3(92).

Theorem C.0.3 (Lebesgue’s Dominated Convergence Theorem). Let A be a measurable
set of RN and (fj) a sequence of measurable functions such that

fi(x) = f(x) a.e. in A,

where f is a measurable function. If there exists a function g € L'(A) such that

Ifi(x)] < g(x) a.e. in A,
then

s [ e = [ fla)dn

Theorem C.0.4 (Vainberg’s Theorem). Let (f;) be a sequence of functions in L1(Q2) and
f € LYQ) such that

fi = [ in LI(Q).
Then there exist (fj,) C (f;) and a function g € L9(S2) such that

| fin (@) < g(x) a.e. in Q
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and

fin(@) = f(z) a.e. in Q.
Proposition C.0.5. [ [38], p.250] If f : RN — R is a radial function, then
f(lz])dr = wn—1 / f(ryrN=tdr,
RN 0

where wn_1 is the area of the unit sphere SN=1 c R,

Proposition C.0.6. Let z,y € RY and (-,-) the inner product on RN, Then

a—y|2 2~

(|lz[P~2z — [y[Py) > {CP(IzHly)
Cp|.fC - y|p7p 2 27

P
1< p<?2,

(C.0.1)

where ¢, 1s a positive constant.

Theorem C.0.7. [ [46], p. 706] Suppose that Q@ C RY is an open bounded domain with C*
boundary and 0 € Q, 1 <p < N, —o0 < a < %. The imbedding Dg?(Q) < L™ (K, |z|~%)

is compact if 1 <r < NN—_’;, a < (1+a)T+N<1—I%>,
Theorem C.0.8. [Concentration Compactness Principle [/6], p.709] Let 1 < p < N,
—o<a< %,a <b<a+1,4q=p*(a,bd) = NNpr,d: 1+a—bec[0,1] and MRYN) be
the space of bounded measures on RY. Suppose that {u,} C D}L’p(RN) be a sequence such
that:
Uy — u in DYP(RY),
fim = ||2]* V| [Pdz — p in M(RY),
U = ||2|PU||9dz — v in M(RY),

Um —> U G.€. on RY.

then there are the following statements:

(1) There exists some at most countable set J, a family {z;;j € J} of distinct points in
RY and a family {vj;j € J} of positive numbers such that

v = [lz|"ul[%dz + > ;6.
Jje€J

where 8, is the Dirac-mass of mass 1 concentrated at v € RY.

(2) The following inequality holds

w > eVl Pde + 37 uid,
jeJ

for some family {pj;7 € J} satisfying

2
q

Sap(vi)e < pj forall j € J.

P

In particular, Z]’EJ(V])E < 0.



Theorem C.0.9. [Compactness lemma of Strauss [15], p.338] Let Q be a bounded domain
and let P and Q : Q2 X R — R be two continuous functions satisfying

lim Pla,s)

= 0 uniformly in x € RY.
|s|>+00 Q(, 5) formiy

Let (uy,) be a sequence of measurable functions from RN to R such that

sup/ |Q(z, up(x))|dr < +00
neN JRN

and

P(un(z,5)) = v(z,s) a.e. in RN and uniformly in z € RN, as n — +oo.

Then for any bounded Borel set B one has

/ |P(x,up(z)) —v(z)|de — 0 as n — +oo.
B
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Appendix D

Technical results

We show the existence of critical points in this appendix.

Lemma D.0.1 (convergence a.e. of the gradient). Let I the functional defined in (1.3.8)
and (uyn) a bounded sequence in Eq such that u, — u in Ey and I'(u,) — 0, then Vu, — Vu
a.e. in RN up to a subsequence.

Proof. Along this proof, we denote all positive constants by c.

Let (u,) a bounded sequence in Fy such that u,, — u in Ey and f’(un) — 0. Asu, — uin
Eo, un(r) — u(z) a.e. in RY. Define e, := |z|~?(|Vu, [P~ 2Vu, — |VuP~2Vu, V(u, —u)) >
0. Let € > 0, define the function 7. : R — R by

e(s) = { s (D0.1)

ﬁ, |s| > e.

Observe that |7-(s)| < |s|, then 7. € Ej.
Holder’s inequality provides

‘/ endx §/
RN

2| =P (| Vun PV — [VuP 72 V)]~V (un — u)|dz
N

p—1

_p_
“x\ Wy, P2V, — |Vu|p_2Vu‘P*1 dx> ’

(L oo
< 2]~ (u —u)\”dx>p
(L
(L

IN

X

p—1

IN

||~ || Vun P~ 2V, — |Vu|p_2Vu}# dw) ’

X 2|~ |V (uy — u)\pdx> ’ (D.0.2)

Use the inequality (a +b)" < 2""!(a” + ") in the last two integrals to have
_p_ 1
/ 2] | [Vt 2Vt — |VulP~2Vu| 7T di < m—l/ [~ (|Van P + [VulP)da
RN RN
and
/ |z| = |V (uy, — u)|P dz < 2p_1/ |z| " P (|Vun|P + |VulP)dx
RN RN
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These two estimates and the boundedness of the sequence (u,) in Ey ensure that (e;,)
is bounded in L!'(RY).

Let ¢ € C°(RY) such that supp ¢ C Bn+1(0), 0 < ¢ < 1 and AlB,0) =1. Let 1 >0
and define

O = {z e RY; |u(z)| > 1} and w; = {z € RY; |[u(z)| < 1},
then
1 1 1
/ pehdr = / perdr + | oendr. (D.0.3)
RN Q wy
We proceed to estimate the integral in the right-hand side of the equation above.

Step 1. Estimate over €.
Holder inequality and the boundedness of (e,) provide

p—1

1 1 p=1
1 P P
deldr < < / endm) ( ¢p51dx)
Q Q Q
1 et
< (/ endaﬁ) ! / qﬁﬁ dx
©UNBnt1(0)

p—1

p
(/QlﬁBm+1 >
p—1
‘ P
(e 1)
QlﬁBm+1

N o\
p* . p
( ‘ ’ bp* |u‘* d.fC) / |$’bp dx
lp Bm+1(0)

1
= p—1
ZT
with ¢ independent of [ and n.
Step 2. Estimate over wj.
Define

(D.0.4)

Qe ={ze€ RN, lun(z) —u(z)| > e} and wy . = {z € RN, lun () —u(z)] < e},
then

1
/ (be,’{dx—/ pern dm—i—/ 0 pehdx. (D.0.5)
wiNwn e wWiNn e

Step 2.1 Estimate over w; N €, .
Holder inequality and the boundedness of (ey,) provide

p—1

b P
<c / or-ldx
wiNQp,eNBm+1(0)

p—1

<c (meas (RN Bry1(0))) »
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As meas (Bp11(0)) < oo and up(x) — u(z) ae. in RY, we have that (unlg,,,(0))
converges to u in measure, then there exists ng € N such that

meas ({az € RY; Jup () — u(z)| > %} N Bm+1(0)> < % for all n > nyg.

Then
(meas (N Bpy1(0))) < e for all n > nyg,
hence
1 p=1
lim sup/ endr < ce » . (D.0.6)
n—o00 WNQp e

Step 2.2 Estimate over w; Nwpe.
Holder inequality provides

1 1
/ oehdr = / pehdx
wiNwn,e wiNwn,eNBrm+1(0)
P
/ pendx / odx
wlﬂwn’gﬂBm+1(0) wlmw'n,gmBm+l(0)

<c / pendr | . (D.0.7)
wiN2n,eNBm+1 (0)

p—1
p

IN

RS

By definition of e,

/ pendr = / 2|~V [P 2V u, V (U, — u)da
wlmw'n’EmBnlﬁ_l(o) wmwn,gﬂBmH(O)

— / 2| =P | VuP 2V uV (u, — u)pdzx
wiNwn,eNBm+1(0)

= / 2| 7P|V, [P~ 2V u, Ve (uy — u)dde
wWiNwn,eNBm1(0

— / lz| P | Vu P2V uN T (uy, — u)pda
W NWn,eNBpm1(0

S/ 2|~ |V P2V un Ve (uy — u)dda
RN

—/ || P | Vu P2V uN 7 (uy, — u)dda.
RN

This and (D.0.7) provide
1 \?
c / pendr | < / |2 7P |Vt [P 2V V7o (t, — 1) diz
wiNwn, e RN

—/ || 7P| Vu P2V uV T (uy, — u)pde. (D.0.8)
RN

Step 2.2.1 Estimate the second integral in the right-hand side of (D.0.8).
Observe the functional H defined in Ey by

H(w) = /RN 2| 7P| VuP2VuVwhdz
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is bounded and, as u, — u, we have
/ 2|~ |V uP 2 VuV . (u, — u)pde = H(u, — u) — 0. (D.0.9)
RN

Step 2.2.2 Estimate the first integral in the right-hand side of (D.0.8).
Observe that

/ |x|_ap|vun|p_2vunV7-€(un - u)¢dx = / |x‘—ap|vun|p—2vunv(7.€(un - u)(b)dac
RN RN
—/ |x\_“p|Vun|p_2VunV¢Tg(un —u)dx
RN
(D.0.10)

Step 2.2.2.1 Estimate the second integral in the right-hand side of (D.0.10).
Holder’s inequality, the boundedness of (e,) in Ey and 7. < ¢ ensure that

\ [ a0 Ve — )
RN

<e / 2]~V P |Vl < el I6]] < ce.
]RN
(D.0.11)

Step 2.2.2.2 Estimate the first integral in the right-hand side of (D.0.10).
By definition of I, we have

Oud (Ony un) (7 (U, — 1))
= exp((N — p)b,,) /]RN \a:|_ap|Vun|p_2VunV(¢TE(un —u))dx

+ exp(N6,,) / ]m\*bp* \un\pﬂun(qﬁn(un —u))dz
]RN

_ exp(N,) / 27" ) (67 (1 — 1)) (D.0.12)
]RN

Observe that u, — u in Ey, then (uy) is bounded in Ej and it is bounded in L}(RY),
hence u,, — w in LY(RY). This and 7. < ¢ ensure that

|| 7P ju|P2ugds + 0, (1).
N

(D.0.13)

/ |2~ | [P 2 (7 (1, — w))da < 5/ 2| 7" |, [P 2up pda = 6/
RN RN

R

Since (7¢(un —u)) is bounded, we see that 0,1 (0, uy)(P7:(uy —u)) — 0. From (D.0.12),
(D.0.13), Hoélder’s inequality, 7. < ¢, the (1.3.2) and 6,, — 0, we have
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‘/ |a:|_ap|Vun|p_2VunV(ngg(un —u))dx

RN

< exp(—(N — p)en)‘auf(em Uun ) (67 (up — )]

xpN) [l funl? (7
RN

+ exp(—(N —p)by)

+ exp(—(N — p)0y,) exp(pby)

<on(t) +ccexppt) ( [ fal " fuPda
Bm+1(0

+ cexp(pby) / \x|*bp*h(un)d:r
Bm+1

\xl’b”* IUIpdw>

< op(l) +ec

+ e exp(pby)

(h...
()

2|7 (elunlP~ + Celun|q1)¢dx>

m+1 O

/ ’x’_bp*h(un)(¢76(un —u))dx
RN

(D.0.14)

The boundedness of (u,) in Ep, Hélder’s inequality and Ey — L;(RY) for s € [p,p*]

ensure that

e exp(pty) (/ |2 (e|un[P~ " + Cs\unq_l)(ﬁdw)
Bm+1(0)

p—1

D
< cexp(py) | e / 2| |unlPde / |
Bm+1(0) Bm+1(0)

g=1 1
q q
oo [l e[ ol
Bm+1(0) Bm11(0)

<ec(l+o0,(1)).

From (D.0.14) and (D.0.15),

<ec(l 4+ on(1)).

/N |ac]_“p|Vun|p_2VunV(¢T€(un —u))dx
R

Step 3. Combine the estimates to conclude.
Take the limit in (D.0.10) and use (D.0.11) and (D.0.16), then

limsup/ |2 7P|Vt [P 2V, Ve (uy, — u)dda
RN

n—oo

= lim sup/ |2 7P|V [P 2V un V(72 (1, — u)@)da
RN

n—oo

- limsup/ 2|V, [P 2V u, Vore (u, — u)dz
RN

n—oo

< limsup(ec(1 + 0,(1))) + limsup(ce) < ce,

n—oo n—oo
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Take the limit in (D.0.8) and use (D.0.9) and (D.0.17), then

L \?
limsup ¢ / pehdr | <lim sup/ 2|7 |V P2V un Ve (uy, — u)dda
W NWn,e RN

n—o0 n—o0

— lim sup/ 2| =P | VuP 2V uN 7 (uy, — u)dda
RN

n—o0

< lim sup(ce)

n—o0

< cg,

hence

1
lim sup/ pendr < ce. (D.0.18)
wiNwn, e

n—oo

Take the limit in (D.0.5) and use (D.0.6) and (D.0.18), then

n—o0 n—oo n—oo

1 1 1
lim sup / ¢esdr = limsup / ¢es dx + lim sup / pendx
wy w;Nwn, e wiNQy, e

p=1
< limsup(ce 7 )+ limsup(ce)

n—oo n—oo

< o(e). (D.0.19)

Use (D.0.4) and (D.0.19) in (D.0.3). This shows that

1
lim sup ¢eh dr = limsup qﬁe}{ dx + lim sup / qﬁe}{ dx

n—o0 RN n—o0 ) n—o00

n—oo n—oo

< lim sup (ﬁ) + lim sup o(¢)
[ »

- + o(e).

P

Thus, e — 0 and [ — oo ensure that

1 1
lim sup/ ehdr < limsup pehdx =0,
m (0)

n—o00 n—o0 RN
hence

1

el — 0in LY(B,,(0)).
If p > 2, then it follows by (C.0.1) that

1
/ |Vu, — Vu|dx < / endr — 0.
1 (0) B (0)

Then

Vu, = Vu a.e. in By, (0).
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fl<p<2lets= 132;7’2’” >1landt= é > 0. Use Holder’s inequality and (C.0.1) to
get

/ |Vu, — Vu|*'dz < / el (|Vun| + |Vu]) 2Ptz
B (0)

m

< (/ effd:r)
m (0)
1
< / ek dx
By (0)

|V, — Vu| = 0 in LY(B,,(0)),

s—1

(2-p)ts s
(/ (1Vun| + |Vaul) 4 da:)
Bon(0)

(2—p)ts P
/ (V| + [Vu) 55z | 0.
B2 (0)

0 =

[

»

Thus,

hence

Vu, = Vu a.e. in By, (0),

up to a subsequence. A diagonal argument shows that

Vu, = Vu a.e. in RN,

An adaptation on Step 2.2.2.2 allow to prove the next three lemmas.

Lemma D.0.2 (convergence a.e. of the gradient). Let Iy the functional defined in (1.4.3)
and (upn) a bounded sequence in Do? (RY) such that u, — u in DgP (RY) and I} (up) — 0,
then Vu, — Vu a.e. in RN up to a subsequence.

Lemma D.0.3 (convergence a.e. of the gradient). Let I, the functional defined in (2.2.1)
when ¢ = 0 and (upn) a bounded sequence in E such that up, — u in E and I} o(un) — 0,

then Vu, — Vu a.e. in RN up to a subsequence.

Lemma D.0.4 (convergence a.e. of the gradient). Let 1,1 the functional defined in (2.2.1)
when ¢ = 1 and (upn) a bounded sequence in E such that up, — w in E and I} 1 (un) — 0,

then Vu, — Vu a.e. in RN up to a subsequence.

Lemma D.0.5. Let u, — u in Egrqq. Then

/]RN 2| 7" [ [P~ 20 pda — /RN || 7" [u[P~2upda, Vo € C&ad(RN). (D.0.20)
Proof. From u, — v in Egqd,
Un(x) = u(zx) a.e. in RY.
Observe that <|m|_b<p;1)p*|un|p_2un) C L#(RN) and |~T|_b(p’%1)p*|u|p_2“ €

LvT (RN) because

p

p(p=1) - e .
/ <|x\ b( P )p ]un|p1> ' dr = / ]a:|7bp |un [Pdx < sup ||un\|f)j < 00
RN RN neN
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and

P

_p(e=L)p* p—T *
/ <|x b( z )p |up_1> T de :/ 2|7 |ulPda < |jullf < oo,
RN RN

Also, note that
p *
dx = / || 0P
RN
p( 1)
e 2P o e Lr(RY).

—b p—1 p* _9 _b(ﬂ)p* _9 . N
As |z P up ()P un () — |z P ) u(z) P 2u(z)  ae. in RY,

—1 * _pf =1\ *
\x!fb(I)T)p |t |P~2uy, | is bounded in L%(RN) and |z b(pp )p lulP~2u € Lppj(]RN),

oG

plPdr < [lell§ < oo,

Brezis-Lieb’s Theorem implies that
* _p(p=1 * RN Y *
J I e B S T M e g
RN RN
_p( =L )y* _p(L)p*
o [l a6
RN
= /N \x|_bp*|u|p_2u<pdx,Vg0 € Cgﬁqad(RN),
R
which proves (D.0.20). O
We proceed to show that u is a critical point of I restricted to Ep ,qq-

Theorem D.0.6. Let u, — u in Eyqq. Then u is a critical point of I restricted to Ep rqq.

Proof. Let ¢ € C3°_,(RY) and fix it.
We want to show that

/ ’$|_ap|vun|p_2vunvs0d$—>/ ||~ |Vul|P~?VuVedz, (D.0.21)
RN RN
/ ‘$|_bp*|un|p_2ung0dx—>/ |x]_bp*]u|p_2ugpd33 (D.0.22)
RN RN
and
/ ||~ h(un)pdr — | || h(u)pd. (D.0.23)
RN RN

p—1 p—
P

1
Observe that (IW( >”Vunp—2wn) c LI ®RY) and 2 U7 )7 vup2vu e

L5t (RN) because

P

(2= =
/ <\x! a(pp )p]Vun]p1> T de = / 2|~ |V |Pdz < sup |Jun||h < oo
RN RN neN
and
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p

(e N\ )
/ (m (554)2 1>p d:c:/ [~ | VP < [[ull? < co.
RN RN

Also, note that

i

1
ie., |x\_a(f’)pVg0 € LP(RM).
_a(ﬂ)p _9 —a(E)p _92 . N
As x| P )\ Vu () |P~*Vup(z) — |z P )5 Vu(x)|P~*Vu(zr) a.e. in R

-1
from Lemma D.0.1, <\:U|a<pp)p]Vun]p2Vun> is bounded in L%(RN) and

—a(l P
PO dx:/RN 2]~ VplPdz < oy < oo,

]x\7a<p7?1>p\Vu|p*2Vu € L%(RN), Brezis-Lieb’s Theorem implies that
/]RN || =% |V [P 2Vu, Vpds = /]RN |a:|7a(%>p|Vun|p_2Vun|x|7a(%)pVgpdx
- 2 )P w29 e G )Py pds
= /RN 2|~ |VuP2VuVpdz, Vo € C(RY),

which proves (D.0.21).

(D.0.22) is true by the Lemma D.0.5.

Up — u in Ey ,qq implies that u, — u in Lj(suppy) for 1 < s < p* from Theorem C.0.7.
The Vainberg’s theorem implies that there exists g5 € Lj(suppy) with 1 <'s < p* such that

{un(:r) — u(z) a.e. in RY;
lun ()] < |gs(x)| a.e. in RY

up to a subsequence.
By continuity of h,

[ B (@) p() — || B(u(z))p(e) ae. in RY.
By (1.3.2),

2] h(un(2))p(x) < el fun (@) [P o(2)] + Celz| ™"
< elz| 7 gy (@) [P ()| + Cel| 7

un ()| ()]
9a(@)[" (@), (D.0.24)

therefore Holder’s inequality and the boundedness of (uy,) in L} (RY) imply that
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[ Jal ™ hepde < e [ ol gl eldo + C [ ol gy )1 olde
RN RN RN
(=t (L)
= e [l g el ) folaa

RN
+C [ a7 pg 4o
RN

p

p—1 1

o P ok P

§6< / | |gp\pda:) ( / 2|t \sorpdx)
RN RN

q

a1 1
o ([l lgiras) ([ el ppar)
RN RN

< 00.

This and  (D.0.24)  imply  that  |z|7% h(u,(z))p(x) is  dominated
by elal =" |g, (@) P Llp()] + Celal " |gy(2) 7 ¢(x)] € LARY). Thus, the Dominated
Convergence Theorem provides the convergence (D.0.20). Since #,, — 0 from Lemma 1.3.9,

lim exp((N —p)f,) = lim exp(N6,) = 1. These, (D.0.21), (D.0.22), (D.0.23) and
n—-+00 n—-+o0o

(1.3.13) ensure that
I'(u)p = 0.
Since ¢ € C@ad(RN) is arbitrary,
I'(u)p = 0 for all ¢ € C5oqq(RY).
By density, u is a critical point of I restricted to Ep yqq. O

We proceed to show that w is a critical point of Iy restricted to Dclt’fad(RN).

Theorem D.0.7. Let u, — u in Di’f@d(RN). Then u is a critical point of Iy restricted to
pLp (]RN).

a,rad

Proof. Let ¢ € C5°, (RY) and fix it.
Observe that the proof that

/ |x_“p|Vun|p_2Vuan0d:c—>/ |z| P | VulP 2 VuV pdz (D.0.25)
RN RN

is similar to the previous theorem once that the Lemma D.0.2 holds.
We show that

[ pmdode [ 17 s(wpds (D.0.26)
RN RN
From fi), given € > 0, there exist § > 0 and A > 1 such that
1, -«
F@) < Sl ~L forall t € (0,9),
ft) < E\t\p*_l, for all t € (A, 00)
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and the continuity of f over the compact interval [J, A] ensures that there exists C' > 0
such that

f(t) < CJtP" =1, for all t € [4, AJ.
The last three inequalities ensure that

) <eltlP" "t + ot 7Y, forall teR.

*

fb<p7*>p* N . ) . )
Then |z| P flup) € LP=1(RY) and it is bounded since (uy) is bounded in
LV (RM).
From wu, — v in Di:fad(RN),
Un(x) = u(x) a.e. in RY.
By continuity of f,

21U f (@) = 1o )P f(ua)) ace. in RY.

Thus, Brezis-Lieb’s Theorem provides (D.0.26).
Since 0, — 0 from Lemma 1.4.7, lim exp((N —p)6,) = lim exp(N6,) = 1. These,
n—+oo n—+oo

(D.0.25), (D.0.26) and (1.4.8) ensure that

Iy(u)p = 0.
Since ¢ € Cg}‘;ad(RN) is arbitrary,
Ii(u)p =0 for all p € C’&Omd(RN).
By density, u is a critical point of Iy restricted to Dé’fad(RN). O
We proceed to show that u, is a critical point of 1, .

Theorem D.0.8. Let u, — u, in E. Then u, is a critical point of 1,,0.

Proof. Let Q as in (V2), p € C3°(92) and fix it.

From wu, — v, in F,

un () — uy,(z) ae. in RY

and

UpP — uy in K.

From Theorem C.0.7, it follows that E(supp ¢) < Lj(supp ¢) with s € [1,p*) and

Un¢ — uy@ in Li(supp ¢).
By the Vainberg’s Theorem, there exists h € Lj(supp ¢) such that

un(x)p(x) = u(x)p(x) a.e. in supp ¢

and

lun(x)p(x)| < h(z) a.e. in supp ¢
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up to a subsequence.
By continuity of f,

fun(2))o(z) = f(uu(x))d(x) ae. in supp ¢.
Observe that

] 7| (un (@) ()] < [~ (Elun(@) P~ + Celun(a)|™ o ()|
= Ela| 7 Jun (@) P~ (@) + Cel| ™" un ()" 6(2)]
< €|~ [h(@) P o ()] + Cela| ™" |h()]" " é(2)] ae. in supp ¢.

Holder’s inequality ensures that
/ 2] (@) [P () | der < oo
RN
and
/ 2]~ |h() () e < oo,
RN

then &lz| =" |h(z)[P~H ¢ ()| + Celz[~*#" |h(2)|" " |¢(x)| € L (supp ¢).
From Dominated Convergence Theorem,

[ el tuode > [l pu)od
RN RN
From Brezis-Lieb’s theorem and Lemma D.0.3,
/ 2| =P |V, P2 Vu, Vodr — / 2| =P |V, |P~2Vu,Vodr
RN RN
and

/ |x’bp*’un|p2un¢d$—>/ |$’7bp*yuu’pi2uu¢d$-
RN RN

Recall that I}, o(un)¢ = on(1).
Combine these convergences and take the limit when n — 400 to get

/ \x’*aP‘VUM‘P*QVuMVQsdx t / |x’7bp* Uu‘pﬁ“/ﬂbdw B / \évlfbp*f(uu)cbdw =0,
RN RN RN

i.e.,

)

Since ¢ € C§°(Q) is arbitrary, we have

I o(uu) ¢ = 0,Y¢ € C5°(Q).
By density, u, is a critical point of I, . O

The next lemma is an adaptation of | [46], p.711 and 712].
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Lemma D.0.9. Let (uy) a (PS).,, sequence bounded in E such that u, — u in E and

cu1 < (11? — p1*> Sé\zpd, forall 1 > 0 and for all X > \*. Then [pn |27 |u, [P dz —

S 127 [ul?” da.

Proof. Let ¢ € C§°(Q2) and fix it. Then there exists R > 0 with supp ¢ C Bg(0).
Since (uy,) a bounded (PS)., , sequence in E, (uy) is a bounded sequence in £/(£2). Then

(un) is bounded in Dy (Q),
([un]?"~2uy,) is bounded in L;(f’*)’((z),
(|un|P~2uy) is bounded in LY ()

and

*

{|un(m) P2y (2) — |u(z)P "2u(z) ae. in Q,
[t (2) [P~ 2 (2) — |u(z)|P~2u(x) ae. in Q.

Brezis-Lieb’s Theorem and Lemma D.0.4 ensure that

Vo |P~2Vu, — |VulP~2Vu in (LP'(Q, |z|~%P))V,
[ [P" 2, — [ulP""2u in Lgp*)/(ﬂ), (D.0.27)

|t [P~ 2y, — [ufP~2u in LY (Q).
On the other hand,
E(Q) S L3 (Q),1 < s < p*.

By the Vainberg’s theorem, there exist hy € Lj(€2) such that

{un(az) — u(x) a.e. in Q,
|un(z)] < hs(z) a.e. in £,

then

{ Fun(z)) = flu(z)) ae. in Q,
|| 77| f (un (@) p(2)| < Elz| 70" |y () [P ()| + Celz| =" |hp ()" p(2)] ace. in €,

where [2] =" [hy [P~ |6] + || 77|, " g € LT ().
The Dominated Convergence Theorem implies that

/ 2| 7% f (up ) pdx —>/ 2| 75" f (u) pd. (D.0.28)
RN RN

As (up) is a (PS)c, , sequence, holds that

11 (Un)® = on(1) (D.0.29)

Do n — +o0 in (D.0.29), use (D.0.27) and (D.0.28) to have
/ \:L'|_ap]Vu|p_2VuV¢d:t+/ \x|_bp*|u]p_2u<bdm (D.0.30)
RN RN

= [ el pjods [ fal 7l Pugs.
RN RN
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Let ® € C°(RY) such that 0 < ®(z) < 1 for all x € RY and

o(z) = {1, if 2 € B1(0),

0, if = € B(0).

For each € > 0, define

we<x)=¢>(”_:”f>,

3

where {z;},c; is a set of points of Q will be fixed later.
Observe that

1, if x € Be(xj),
R
0, if x € BE(x;).

Let 1 > ¢ > 0 such that B.(z;) C Q. We show that (¢.uy) is bounded in E. Since
0 < .(x) <1 for all z € RV,

/N(|$|_“p|v(¢sun)|p+ 2| " theuy [P)d < /N(|$|_apv¢sun\p+ |27 | |P)dae
R R
:/ |x|—ap\wg|fﬂ|un\m+/ ([P [Tty [P [P
RN RN
+/ || Jup [P da
RN
< [ e+ [ e
RN RN
* / |m|_bp* [un|Pdz.
RN

It is sufficient to show that [px ||~ |Vi)e|?|u, [Pdz is bounded independent of e.

—, then

Let y =

1
Ve (x) = qu)(y)'
Since ® € C§°(RY), we have

VOl
—=.

[Vipe(z)| < (D.0.31)

From Holder’s inequality,

el IV PlunlPde = [ el anPla] o0V o
R R

p

< |27 un[” dx
RN

*

P —p

__pp*(a—b) p*
lx| ™ 7= |V [Pdx
RN
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From (1.2.1), the boundedness of the sequence (u,) in E and (D.0.31)
D

= (oo toae)

( / o]~ wapdx)
BE(J:])

1 _
< </ 2] apyvunypdx>
Sa,b ]RN

(/ |x\_ X —P |V¢6\pdx>
BE(‘rj)
1 pp (a b)
sup a1l
Sabne B:(z;)
p _pp (u. b) T;
(/ |z|” P = dm)
Be(z;)

V@l |”

<
5

V®llo

1
= sup ||un,||?
5o sl

From Proposition C.0.5,

_pp*(a=b) 7 € _wiesh) oo v
|x|” P=r dx = WN_1 rooPoe i T
BE(LBJ') 0

Thus,
p*:p
1 Vo p _ pp*(a=b) P
/ |2~V e [Plun[Pde < TSUP HunHﬁ w (/ || ppp =p d;v)
RN a,b neN Bs(ﬂfj)
dp
_ 1 supHu ”p HV(I)”OO pr ) <d> N P
- mn —
Sab neN N
dp
L sup un 2|V O A
= sup ||u wv_1 | — ’
Sa,b nGII\)I e oo N1 N

hence the boundedness of (¢Yeu,) in E follows.
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Choose ¢ = ¥.u, in (D.0.29), then

/ 2] |V [PV 0V (st e+ / 2] et [Pt (0 )
RN RN

- / 127" un) (o) + / PR
RN RN

un’p*izun(d}aun)dwa

ie.,

/ 2]Vt P2V ¥ (162 il + / 2P|V P da + / 2| [ P oo
RN RN RN

- / 2] () (Wetin)dr + / 2] P ed,
RN RN
Observe that

(D.0.32)

EQ) S L3 (Q),1 < s < p*.
By the Vainberg’s theorem, there exist hs € L;(€2) such that

{un(:c) — u(r) a.e. in £,

lun ()| < hs(z) a.e. in Q,
then

{ Flun(@)) = f(u(z)) ae. in Q,
|| 707 f (un ()¢ (2)un (2)| < Elz| =" |hy(2) Plyp(x)]| + Cela| =" | (2)[7|¢(2)] ae. in Q,

where |2| 7" |hy|P|1| + Celx| =% |h,|"[¢)] € L1() once that ¢ € C§°(RY).
The Dominated Convergence Theorem implies that

/ 127" f 1) (Y0 — / 27" f () (o) e
RN RN

Do n — +o0 in (D.0.32), use (D.0.27), (D.0.33) and Theorem C.0.8 to have

[ el uvar29uT i + [ ppde = [ 1o fyeds + [ v,
RN RN RN RN

(D.0.33)

ie.,

/ 2|~ Pu| Vul[P AV uVibdr + / Yedp = / 2| 7" f (u)youdz +/ Yedr. (D.0.34)
RN RN RN RN
Do ¢ = ¢-u in (D.0.30) to have

/ |x|_ap|Vu|p_2VuV(¢5u)d:U—I—/ |$|_bp*|u|p_2u(w5u)dm
RN RN

- / ]~ () () + / 2|~ [ (o),
RN RN

ie.,

/ 2|~ Pu| VuP 2V uVipedr + / 2| =P | Vu[Pypeda + / || =% |u|Pepoda
RN RN RN

_ / 2|~ f () (o) da + / 2~ [P . (D.0.35)
RN RN
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From (D.0.34) and (D.0.35),
[ et [ edo == [ e Vap Ve + [ a7 f)(vads
RN RN RN RN
= [ el rvapids+ [ el ulveds [l ul e
RN RN RN

From this and Theorem C.0.8,

/ Yedp =Y vjve(zy) + / ||| VulPyedr + / 2|~ [uPypedz,  (D.0.36)
ier RN RN

We proceed to show that

lim |x| PIVulPrpdr = hm/ || 78" Ju|Pepedx = 0,

e—0

lim wad,u—/ du
e—=0 JpN {z;}

and

lim Yedv :/ dv.
e—=0 JpN {z;}
For each € > 0,
[ Jal I up e = [ el T 0P, oy d
RN RN
and
|| Vu(a) Prpe(2) X B. (2;) (@) < [2]~P[Vu(@)[?,
where |z|~%|VulP € LY(RN). If ¢ — 0,
||~ |V u(@)[Pye (2) X . (o) (x) = 0 ae. in RY.

Dominated Convergence Theorem ensures that

lim ]:):\ P|VulPrp.dx = 0. (D.0.37)

e—0

Similar argument shows that
lim [ |z|7% |ul|Ppedz = 0. (D.0.38)
RN

e—0

For each ¢ > 0,

|Ye(@)XB. (z) ()] < 1.
Ife =0,

¢£($)XBE(:BJ-)($) — X{:pj}(x)
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Since Radon measures are finite, we have that 1 is integrable with respect to v. Thus,
Dominated Convergence Theorem ensures that

lim Yedy = lim/ VeXB.(x;,)V = / X{a;} AV = dv. (D.0.39)
e—0 RN e—0 RN ht RN J {x]}
Similar argument shows that
lim Yedp :/ du. (D.0.40)
e—=0 JrN {z;}
From (D.0.36), (D.0.37), (D.0.38), (D.0.39) and (D.0.40),

vi = v(zj) = u(xs) = py,
then

P
Sap(V§)?" < pj = vj,

i.e.,

N
vj > ngl’) for v; # 0. (D.0.41)

As (up) is a (PS),, sequence, holds that

P dx

+ /]RN || =" <;f(un)un - F(“n)) de.

The hypothesis (f4) implies that
1
t — —f(t)t — F(t), is increasing for ¢t € (0, +00).
p
Hence

/ |t <1f(un)un _ F(un)> dz > 0,
RN p

then

p Dp*

1 1 * *
Cu1 +op(l) > < — ) / |x‘*bp |t |P da.
RN

0<tc(x)<1lforall z e RY provides that

1 1 . « 1 1 " *
( - *> / ‘.T’_bp ”U,n’p dx Z ( - *> / ’x‘_bp ‘un‘p wgdflj
p D RN p p RN

If n — oo, Theorem C.0.8 ensures that

. 1 1 —bp* * 1 1 _bp* *
i (1) [l v = (A L) [ (e + S, | v

% *
p P b jeJ
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then

11 ot o
Cul > (—*>/ |z| 7P |ulP +ZVj5z. pedx
b p RN Jed ’
1 1
> < — *)/ Zl/jéx. Pedx
PP/ ey \ig
1 1
= < — *)/ Yevdx
p p RN
1 1
(D)o
p p RN
If ¢ — 0, (D.0.40) ensures that
1
Cu,1 > ( — )/ dv
p {z5}

From (D.0.41),

><1 1> > S% for v; £ 0
1z | -— = v = or v, ,
o p P J a,b J

which is a contradiction with the Lemma 2.4.1. Thus, v; = 0 for all j € J and Theorem

C.0.8 ensures the convergence.
O]

We proceed to show that u, is a critical point of I, 1.
Theorem D.0.10. Let u, — u, in E. Then u, is a critical point of I, 1.

Proof. Let Q as in (V2), ¢ € C§°(2) and fix it.
From w, — u, in E,

un () — u,(z) ae. in RY
and
UpP — uy¢ in K.
From Theorem C.0.7 it follows that E(supp ¢) < L;(supp ¢) with s € [1,p*) and

Un® — uu@ in Ly(supp ¢).
By the Vainberg’s theorem, there exists h € Lj(supp ¢) such that

Un(x)p(x) = u(x)p(x) a.e. in supp ¢

and

|un(2)¢(x)| < h(z) a.e. in supp ¢

up to a subsequence.
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By continuity of f,

flun(z))o(x) = f(uu(z))o(z) a.e. in supp ¢.
Observe that

] =" f (un(2)) d(2)| < J| = (EJun(@) P~ + Celun ()" é(2)]
= El| ™ Jun () P (@) + Cele| ™" fun ()"~ 6(2)]
< a7 (@) [P o ()] + Cela| ™ [h(x)[" ()] ae. in supp ¢.

Holder’s inequality ensures that

/ PR
RN

[l @) ota)ide < o,

then &|z| =" |h(x) [P~ ¢ (x)| + Cela| =" [h(z)|"~!|¢(2)| € L' (supp ¢).
From Dominated Convergence Theorem,

h(z) P~ p(x)|da < oo

and

/ 2] f ()b — / 2] F(u,) g
RN RN
From the Lemma D.0.9,

UpP — Uy @ in Lf* (supp ¢).

By the Vainberg’s theorem, there exists h € Lf* (supp ¢) such that

|t ()P 2 (2) () — u(@)|uu (@) P "2u,(z)d(x) ae. in supp ¢

and

lun(x)p(x)| < h(z) a.e. in supp ¢

up to a subsequence.
Observe that

| Jun (2) 7" P (@) @(2)| < ||~ [h(@)[”" " d(x)| ae. in supp ¢.

Holder’s inequality ensures that

/ RO
]RN

then |x|~%"|h(x)|P"~t|p(z)| € L (supp ¢).
From Dominated Convergence Theorem,

h(z) P g () |da < oo,

/ 2|7 | Pz — / 2|0 [P 2 b
RN RN

From Brezis-Lieb’s theorem and Lemma D.0.4,

/|x|_“p\Vun\p_2Vuanbdﬂs—>/ 2|~ |V, P2V, Véda
RN RN
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and

/ |~ [P P un g — / | fuy [P P pd.
RN RN

Recall that I}, | (un)¢ = o (1).
Combine these convergences and take the limit when n — 400 to get

/ 2|V, [P~2 Vi, Vbda + / 2] P2 b — / 2] f ()
RN RN RN

- [ el
RN

ie.,

w|P" Py, pdr = 0,

n(u)o = 0.
Since ¢ € C§°(Q) is arbitrary, we have

1 (uu)9 = 0,99 € C5°(9).

By density, u, is a critical point of I, 1.
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