
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Adaptive Context Modeling and Hyperparameter
Selection in Neural-based Data Compression

Modelagem de Contextos Adaptativa e Seleção de
Hiperparâmetros em Compressão de Dados

Baseada em Redes Neurais

Lucas S. Lopes

Tese apresentada como requisito parcial para

conclusão do Doutorado em Informática

Orientador

Prof. Dr. Ricardo Lopes de Queiroz

Brasília
2024

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Adaptive Context Modeling and Hyperparameter
Selection in Neural-based Data Compression

Modelagem de Contextos Adaptativa e Seleção de
Hiperparâmetros em Compressão de Dados

Baseada em Redes Neurais

Lucas S. Lopes

Tese apresentada como requisito parcial para

conclusão do Doutorado em Informática

Prof. Dr. Ricardo Lopes de Queiroz (Orientador)

CIC/UnB

Prof. Dr. Eduardo A. B. da Silva Prof. Dr. Bruno Zatt

UFRJ UFPel

Prof. Dr. Pedro Garcia Freitas Prof. Dr. Bruno Luiggi Macchiavello Espinoza

CIC/UnB CIC/UnB

Prof. Dr. Rodrigo Bonifácio Almeida

Coordenador do Programa de Pós-graduação em Informática

Brasília, 19 de Julho de 2024

Acknowledgements

I would like to thank my advisor, Prof. Dr. Ricardo Lopes de Queiroz, for his constant

and sincere feedback, which made me greatly improve as a researcher.

I would also like to thank Dr. Philip Andrew Chou, for his substantial contributions

to this work, and Lucas Gribel dos Reis, for proofreading the final text.

Finally, I would like to thank my wife, Jessica, who supported me during the entire

period of my Doctorate’s Degree, and my parents, who first motivated me to study.

iii

Abstract

Neural-based data compression has not yet reached its full potential. Context modeling for

arithmetic coding is usually done through frequency counting and look-up tables (LUTs).

These models are usually continuously updated as new samples are seen. All neural-

based context models which have been proposed so far make use of previous training. We

propose a neural-based method of context modeling for arithmetic coding in which the

neural networks are trained on-the-fly. The model essentially begins as a uniform distri-

bution, and gradually approaches the true probability distribution of the data, instead of

the training data distribution. The method performs better than the simple frequency

counting technique, and allows the increase of the context size to levels not possible with

LUT-based methods. Black-box multi-objective hyperparameter optimization (MOHPO)

methods exist which can be used in neural-based data compression. However, in data

compression, the complexity of the compressor is generally as important, or more, than

its compression performance. We propose a method of multi-objective hyperparameter

optimization which naturally constructs the set of optimal solutions, or the lower-convex

hull, in increasing order of complexity. This allows the algorithm to be stopped once the

desireable value of compression performance, or the maximal value of acceptable com-

plexity, is achieved. We compared this algorithm with state-of-the-art methods present

in a popular MOHPO platform, with the proposed method showing competitive results.

Keywords: Arithmetic coding, context modeling, neural networks, hyperparameter op-

timization

iv

Resumo

A compressão de dados baseada em redes neurais ainda não atingiu todo o seu poten-

cial. A modelagem de contexto para codificação aritmética geralmente é feita por meio

de contagem de frequência e tabelas de consulta (LUTs, do inglês, “look-up tables”). Es-

ses modelos geralmente são atualizados continuamente à medida que novas amostras são

vistas. Todos os modelos de contexto baseados em redes neurais que foram propostos até

o momento fazem uso de pré-treinamento. Nós propomos um método de modelagem de

contexto baseado em redes neurais para codificação aritmética em que as redes neurais

são treinadas dinamicamente. O modelo começa essencialmente como uma distribuição

uniforme, e gradualmente se aproxima da verdadeira distribuição de probabilidade dos da-

dos, em vez da distribuição dos dados de treinamento. O método tem melhor desempenho

do que a simples contagem de frequências, e permite o aumento do tamanho do contexto

para níveis não possíveis com métodos baseados em LUT. Existem métodos caixa-preta

de otimização de hiperparâmetros multiobjetivo (MOHPO, do inglês, “multi-objective

hyperparameter optimization”) que podem ser usados na compressão de dados baseada

em redes neurais. Porém, em compressão de dados, a complexidade do compressor é

geralmente tão importante, ou mais, do que seu desempenho de compressão. Propomos

um método de otimização de hiperparâmetros multiobjetivo que constrói naturalmente

o conjunto de soluções ótimas, ou o casco convexo inferior, em ordem crescente de com-

plexidade. Isso permite que o algoritmo seja interrompido ao se atingir o desempenho

de compressão desejado, ou o valor de complexidade máximo aceitável. Comparamos

este algoritmo com métodos do estado-da-arte presentes em uma popular plataforma de

v

MOHPO, com o método proposto apresentando resultados competitivos.

Palavras-chave: Codificação aritmética, modelagem de contextos, redes neurais, otimi-

zação de hiperparâmetros

vi

Contents

1 Introduction 1

1.1 Contextualization . 1

1.2 The problems we address . 4

1.3 Overview of relevant literature . 8

1.4 Objectives and dissertation layout . 10

2 Data Compression Fundamentals 12

2.1 Preliminaries . 12

2.2 Arithmetic Coding . 15

2.3 Probability Estimation . 22

2.4 Context-based Probability Estimation . 27

2.5 Context Modeling . 31

2.6 Context-Adaptive Binary Arithmetic Coding 34

3 Neural Networks and Hyperparameter Optimization 39

3.1 Feedforward Neural Networks . 39

3.2 Neural Network Training . 42

3.3 Recurrent Neural Networks . 46

3.4 Cross-Validation . 49

3.5 Hyperparameter Optimization . 50

3.6 Lower Convex Hull . 52

3.7 Dominated Hypervolume . 55

vii

3.8 Bayesian Optimization . 55

3.9 Variational Image Compression . 57

4 Perceptron Coding 62

4.1 Motivation . 62

4.2 Perceptron Coding . 65

4.3 Adaptive Perceptron Coding . 67

4.4 Adaptive Coding with Recurrent Neural Networks 70

4.5 Binary Image Datasets . 72

4.6 Forward Coding of Binary Images . 73

4.7 Backward Adaptive Coding of Binary Images 80

5 Greedy Lower Convex Hull 89

5.1 Motivation . 89

5.2 The Architecture Graph . 91

5.3 The Basic GLCH Algorithm . 92

5.4 Select Functions . 94

5.5 Simplifying the Select Functions . 96

5.6 Reasoning behind the Select Functions . 100

5.7 Rate-Distortion-Complexity Optimization with the GLCH Algorithm . . . 101

5.8 Rate-Complexity Optimization in Lossless Image Compression 103

5.8.1 Multiply-accumulate operations per pixel 106

5.8.2 Joules per pixel . 106

5.8.3 Encoded model bits . 106

5.8.4 Results . 107

5.9 Rate-Distortion-Complexity Optimization in Lossy Image Compression . . 116

6 Conclusion 122

6.1 Future work . 124

viii

Annex 136

I Dataset Samples 137

II GLCH Complementary Results (Lossless) 143

III GLCH Complementary Results (Lossy) 154

IV Publications 167

ix

List of Figures

1.1 To the left, a portion of an image in PNG format and, to the right, the

same portion with the image converted to JPEG with a quality factor of

75. The PNG file was downloaded from [3] and has 558kB. The image

converted to JPEG has 41kB. 2

1.2 Evolution of the LLM model sizes over the years, with the model size

measured in number of parameters. Based on data from [8]. 3

1.3 BD-rate savings versus kMAC/pixel and versus peak memory for several

learned video codecs. Better compression is generally achieved with more

arithmetic operations. Source: [6]. See the source for more details on the

measures and labels. 4

1.4 Training costs of several learned codecs in 2020 US dollars and in days of

training. The training costs in dollars were obtained based on kMAC/pixel

data from [6] and estimation methods from [13]. The training times were

provided by the authors themselves on their papers. We use the same labels

for the codecs as [6]. 6

1.5 Energy consumption of several learned codecs in µJ/pixel and in Wh per

1 minute of video. We use the same labels for the codecs as [6]. 7

2.1 Cumulative distribution function of a discrete random variable X with

sample space {0, 1, 2, 3, 4}. F̄ (x) is the midpoint of the step corresponding

to x. Based on figure 5.5 of [59]. 17

x

2.2 Illustration of the arithmetic coder encoding process. Numbers are rep-

resented in base 2. In this example, the symbols are A,B and C with

probabilities P (A) = 0.5 = (0.1)2 and P (B) = P (C) = 0.25 = (0.01)2.

The encoded sequence is ABC, and the tag is (0.010111)2. The fractional

part of the tag is already truncated to the correct amount of bits since the

length of the final interval is (0.00001)2 and ⌈− log2((0.00001)2)⌉ + 1 = 6

bits. Based on Fig. 2 of [18]. 20

2.3 Illustration of the arithmetic coder decoding process. Numbers are rep-

resented in base 2. In this example, the symbols are A,B and C with

probabilities P (A) = 0.5 = (0.1)2 and P (B) = P (C) = 0.25 = (0.01)2.

The value of the tag is (0.010111)2 = 0.359375 and the decoded sequence

is ABC. Based on Fig. 2 of [18]. 20

2.4 Illustration of the arithmetic coder encoding process when the samples are

not iid. In this example, the probabilities of the symbols A,B,C change

from 0.5,0.25,0.25 to 0.25,0.25,0.5 to 0.25,0.5,0.25, the encoded sequence

is ACB and the tag is (0.0110)2. The fractional part of the tag is already

truncated to the correct amount of bits since the length of the final interval

is (0.001)2 and ⌈− log2((0.001)2)⌉+ 1 = 4 bits. Based on Fig. 2 of [18]. . . 21

2.5 Illustration of the arithmetic coder decoding process when the samples are

not iid. In this example the probabilities of the symbols A,B,C change from

0.5,0.25,0.25 to 0.25,0.25,0.5 to 0.25,0.5,0.25, the tag is (0.0110)2 = 0.375

and the decoded sequence is ACB. Based on Fig. 2 of [18]. 21

2.6 Schematic representation of the arithmetic encoder and the arithmetic de-

coder. Given a stream of symbols in uncompressed/compressed format

and their probabilities, the arithmetic encoder/decoder returns the com-

pressed/uncompressed sequence. 22

xi

2.7 A more complete representation of a compressor and of a decompressor

based on arithmetic coding. A probability estimation step is required to

obtain the probabilities used with arithmetic coding. 22

2.8 Example of overfitting. The data is linear with added noise. A polyno-

mial of degree 7 perfectly fits the observed data, but performs poorly on

unobserved data. 26

2.9 Portion of the binary image used to compute the entropies of Table 2.1.

It corresponds to the third page of the article [65] converted to binary

following the process described in Section 4.5. 28

2.10 Five alternative context definitions to use with a binary image, correspond-

ing to different amounts of pixels surrounding the current pixel. The cur-

rent pixel is represented by a cross, while the pixels that make up the

context are numbered from closest to farthest, respecting the rule that two

pixels cannot have the same number. 29

2.11 State machine corresponding to a first order discrete-time Markov chain

which could be used to model the dependencies in a binary source. E0 and

E1 are the states, which could mean, for example, that the current symbol

is 0 and 1, respectively. P (0|0), P (0|1), P (1|0), P (1|1) are the transition

probabilities. Based on Fig. 2.3 of [57]. 30

2.12 Example of LUT created from a binary image. The context definition is

the one shown in Figure 2.10 (b). This LUT stores how many times each

symbol is seen immediately after each context. 32

xii

2.13 Block diagram of the H.26X video coders. The frames are divided into

blocks. Each block is processed first by subtracting a prediction, which

can be intra or inter-frame, then by transforming the residual, in general

using the Discrete Cosine Transform. The transform coefficients are quan-

tized and, together with other relevant information, entropy coded using

CABAC. After decoding the quantization labels, the decoder recovers the

residual transform coefficients, converts them to pixel values, and adds

them to the prediction. Finally, the recovered blocks are grouped to form

the frames and filtered to remove blocking artifacts, for example. This

figure was adapted from Figure 1 of [69]. 35

2.14 Block diagram of CABAC. First, the syntax elements are converted to

binary strings. Some syntax elements, with a more random nature, bypass

the arithmetic coder. The others are coded using arithmetic coding with

one of several context models. The previously coded sample is used to

update the context models and is stored to form the context for the next

samples. This figure was adapted from Fig. 1 of [70]. 36

2.15 (a) Context template and (b) reverse diagonal scan coding order used in

the regular residual coding mode of H.266/VVC. (c) Context template and

(d) forward scan order used in the transform skip residual coding mode

of H.266/VVC. This figure was adapted from Figures 3 and 5 of [68], and

Figure 1 of [71]. 36

3.1 Illustrations of: (a) a neuron; (b) a layer of neurons; (c) a neural network. 40

3.2 Sigmoid (left) and ReLU (right) activation functions. 42

3.3 The Pareto frontier versus the LCH of a set of points. The points on the

Pareto frontier are those represented by the red squares, while the points

on the LCH are those touching the blue dashed lines. 53

xiii

3.4 Illustration of an algorithm which can be used to find the LCH based on

the Gift Wrapping algorithm. The algorithm starts with the leftmost point,

and subsequently selects the point with lowest polar angle, with respect to

the last found convex-hull side. 54

3.5 Illustration of the Hypervolume of Pareto set P with reference point r. The

hypervolume is the volume of the space dominated by P and bounded from

above by r. 55

3.6 Block diagram of the variational autoencoder. The input image ψ is ini-

tially transformed by an analysis neural network. The output of the anal-

ysis network ω is then quantized during inference, which is represented by

the “Q” block, or is added with uniform noise during training, which is

represented by the “U” block. The noisy version of the transformed image

is represented by ω̃, while the quantized version is represented by ω̂. The

quantized data is arithmetically encoded and then decoded using an also

learned probability mass function pΩ̂. Then, a synthesis network converts

the data back to pixel domain. The output is either ψ̂ or ψ̃, depending if

the input was ω̂ or ω̃. 61

4.1 To the left: patch of a binary image. To the right: context of size M = 67

for the pixel at (187, 459). 74

4.2 ((g) - (k)) Values of bits/sample for the different pages of [65]. Page 3 was

used for training and page 5 was used for validation. All other pages were

used for testing. The value at zero is the average code length for static

binary arithmetic coding (AC). The x-axis is in a modified logarithmic

scale capable of representing values near zero [99]. 77

4.3 (a) Average code lengths on the 10 randomly selected pages from the 27th

Volume of the IEEE Signal Processing Letters used for training. (b) Aver-

age code lengths on the 100 randomly selected pages from the 28th Volume

of the IEEE Signal Processing Letters used for testing. 79

xiv

4.4 Impact of progressively using more pages in order to train the MLP, on

the validation average code length . In this figure, the neighborhood size

is fixed at 67. 80

4.5 ((g) - (k)) Evolution of the bitrate in bits/symbol of APC and ALUT when

coding the different pages from the article [65]. 83

4.6 Cumulative rate (bits/symbol) when coding page 2 of the article [96] with

APC, M = 26 and different values of learning rate. 84

4.7 Cumulative rate (bits/symbol) when coding page 2 of the article [96] with

ARNN, updates every 64 samples, and different values of learning rate. . . 85

4.8 Cumulative rate in bits/symbol as APC and ALUT progress to encode a

given 5-page paper in the test set of Dataset 6, with M = 26. We also

included results using ARNN for comparison. 85

4.9 Evolution of cumulative rate in bits/symbol for Xavier initialization and

our initialization, for M = 26 and ϵ = 0.01. 87

4.10 Comparison of APC with our custom initialization and with the network

initialized with pre-trained weights, for M = 10 and ϵ = 0.0001. 88

5.1 Illustration of our algorithm, aiming to track the lower convex hull of a

cloud of rate-complexity operating points. Circled dots, or dots at one

extreme of an arrow, are visited, or trained, networks. The other dots are

all unvisited by the algorithm, that is, the corresponding neural networks

did not have to be trained. 91

5.2 (a) Example of architecture graph for three hyperparameters, h1, h2, h3,

with number of possible values equal to 4,3 and 4, respectively. (b) Example

of path (in green) from the minimum to the maximal node, and example

of a tree (green and red) that a constrained GLCH algorithm can generate. 93

xv

5.3 The three different configurations of relevance of child nodes relative to the

parent node. In each case, the parent node is the node labeled with an

h. All other nodes are candidates for next parent node. The circled node

is the one selected to be the next parent node (cases 2 and 3), or to just

branch off newer nodes (case 1). 99

5.4 Illustration of what happens when we ignore the particular values of R and

D, and compute the LCH of only C and L = R + λD, in a rate-distortion-

complexity optimization problem. We find the LCH of the projected points

on the C-L(λ) plane, where L(λ) is the axis with the same direction as the

vector [1, λ, 0]. 103

5.5 Clouds of rate-complexity points and final trees for the GLCH algorithm

with the select functions 5 (left column) and 6 (right column), and with

complexity measured in multiply/add operations per pixel (top row), µJoules

per pixel (middle row), and encoded model bits (bottom row). Dots are

rate-complexity performance of hyperparameters/nodes. At termination,

blue nodes are never visited, red nodes have been visited (moved to the

open set O) but never selected, green and yellow nodes have been visited

and selected (moved to the closed set C). Arrows show parent-child rela-

tionships from green or yellow parents to red, green, or yellow children,

and take the child color. A green arrow and child indicate that the child

is selected in the step immediately following its parent’s selection, while

yellow indicates a gap between the parent’s and child’s selection. 108

5.6 Zoomed portions of the bottom right plot of Figure 5.5, which demonstrate

the shortcomings of a constrained select function. Because of the constraint

of only selecting nodes among the current deepest open nodes, when they

find more than one point that make part of the LCH, they must select

one, and the other cannot be selected later in a future iteration. The

unconstrained select functions do not suffer from this issue. 110

xvi

5.7 Comparison between the different versions of the GLCH algorithm and

other MOHPO methods. The methods are compared in terms of log hy-

pervolume difference with respect to the maximal hypervolume, which is

obtained considering all combinations of hyperparameters. 113

5.8 Comparison between the GLCH algorithm and other MOHPO methods.

The methods are compared in terms of hypervolume difference up to the

complexity level achieved by the GLCH method. 115

5.9 Template of the considered VAE architectures. GDN and IGDN indi-

cate the activation functions in the encoder and the decoder [27]. Conv

h2x5x5/2↓ indicate a convolutional layer of h2 kernels (filters) with width

and height equal to 5 pixels, and a stride of 2. Deconv h2x5x5/2↑ indicate a

transposed convolutional layer of h2 kernels (filters) with width and height

equal to 5 pixels, and a stride of 2. See [108] for an introduction on the

convolutional and the transposed convolutional layers. Based on Figure 4

from [27]. 117

5.10 Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 6. The loss

is equal to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 ×

0.01 (middle row) and 2552 × 0.02 (bottom row), R is the rate in bits per

pixel, and D is the distortion in mean squared error, with the pixel values

normalized between 0 and 1. Complexity is given in number of parameters

(left column), and in number of FLOPs (right column). 119

5.11 Animation of the rate-distortion-complexity cloud of points, and an LCH

approximation, found by the GLCH algorithm, using the select function

in Algorithm 6. In this figure, we only highlight the nodes which were

parent nodes during the execution of the GLCH algorithm. These points

are represented as green cubes. The other points are represented as blue

spheres. To view this animation, open this PDF file in Acrobat Reader. . 120

xvii

5.12 Performances of the different versions of the GLCH algorithm, and other

MOHPO methods, on the rate-distortion-complexity optimization problem.

The methods are compared in terms of log hypervolume difference with

respect to the maximal hypervolume, which is obtained considering all of

the 420 networks, for the different h1, h2, h3 and the different λ. 121

II.1 Clouds of rate-complexity points with execution and final state of the

GLCH algorithm for the select functions: Alg. 2 (left column) and Alg. 3

(right column). Bitrate is in bits per pixel and complexity is in multi-

ply/add operations per pixel (top row), µJoules per pixel (middle row),

and encoded model bits (bottom row). 144

II.2 Clouds of rate-complexity points with execution and final state of the

GLCH algorithm for the select function Alg. 4. Bitrate is in bits per pixel

and complexity is in multiply/add operations per pixel (top row), µJoules

per pixel (middle row), and encoded model bits (bottom row). 145

II.3 Clouds of rate-complexity points with execution and final state of the

GLCH algorithm for the select functions in Alg. 5 (left column) and Alg. 6

(right column). Bitrate is in bits per pixel and complexity is in multi-

ply/add operations per pixel (top row), µJoules per pixel (middle row),

and encoded model bits (bottom row). 146

III.1 Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 2. The loss

is equal to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 ×

0.01 (middle row) and 2552 × 0.02 (bottom row), R is the rate in bits per

pixel, and D is the distortion in mean squared error, with the pixel values

normalized between 0 and 1. Complexity is given in number of parameters

(left column), and in number of FLOPs (right column). 155

xviii

III.2 Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 3. The loss

is equal to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 ×

0.01 (middle row) and 2552 × 0.02 (bottom row), R is the rate in bits per

pixel, and D is the distortion in mean squared error, with the pixel values

normalized between 0 and 1. Complexity is given in number of parameters

(left column), and in number of FLOPs (right column). 156

III.3 Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 4. The loss

is equal to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 ×

0.01 (middle row) and 2552 × 0.02 (bottom row), R is the rate in bits per

pixel, and D is the distortion in mean squared error, with the pixel values

normalized between 0 and 1. Complexity is given in number of parameters

(left column), and in number of FLOPs (right column). 157

III.4 Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 5. The loss

is equal to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 ×

0.01 (middle row) and 2552 × 0.02 (bottom row), R is the rate in bits per

pixel, and D is the distortion in mean squared error, with the pixel values

normalized between 0 and 1. Complexity is given in number of parameters

(left column), and in number of FLOPs (right column). 158

III.5 Clouds of loss-complexity points, with emphasis on the parent nodes found

by the GLCH algorithm, using the select function in Algorithm 6. The loss

is equal to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 ×

0.01 (middle row) and 2552 × 0.02 (bottom row), R is the rate in bits per

pixel, and D is the distortion in mean squared error, with the pixel values

normalized between 0 and 1. Complexity is given in number of parameters

(left column), and in number of FLOPs (right column). 159

xix

List of Tables

2.1 Values of entropies calculated for the binary image of Figure 2.9 assuming

the different context definitions of Figure 2.10. The calculated entropy

reduces to almost one fifth when the number of previous samples used

increases from 0 to 26 pixels. 29

2.2 Number of unseen contexts and total number of contexts for the context

definitions of Figure 2.10 on the binary image of Figure 2.9. This illustrates

that the number of unseen contexts grows quickly with the context size. . 33

4.1 Datasets used in the perceptron coding experiments, all consisting of binary

document images, extracted from scientific journals. 73

4.2 Coding rates (bits/symbol) attained for different context sizes M with the

offline-trained PC and LUT methods, APC (with λ = 0.01), ALUT, and

JBIG, on the 10 test pages from the Dataset 5. 87

4.3 Coding rates (bits/symbol) attained for different context sizes M with the

offline-trained PC and LUT methods, APC (with λ = 0.01), ALUT, and

JBIG, on the 100 test pages from the Dataset 4. 87

5.1 Numbers of visited networks for all variants of the GLCH algorithm and

for complexity measured in: (a) MAC/pixel; (b) µJ/pixel and (c) model

bits. 109

xx

5.2 Actual numbers of trained networks for all variants of the GLCH algorithm,

complexity measured in MAC/pixel (a), µJ/pixel (b) and model bits (c), if

we consider that the networks with same numbers of hidden units (h1, h2),

but different numbers of quantization bits (h3), share the same training. . 109

II.1 Final trees of the GLCH algorithm with the select functions Alg. 2 (a,c,e)

and Alg. 3 (b,d,f) for the different complexity measures: MAC/pixel (a,b),

µJ/pixel (c,d) and encoded model bits (e,f). Each node is represented by

its hyperparameters in the order: units in the first hidden layer, units in

the second hidden layer and quantization bits, if applicable (continued on

the next pages). 147

II.2 Final trees of the GLCH algorithm with the select function Alg. 4 for

the different complexity measures: (a) MAC/pixel, (b) µJ/pixel and (c)

encoded model bits. Each node is represented by its hyperparameters in

the order: units in the first hidden layer, units in the second hidden layer

and quantization bits, if applicable. 150

II.3 Final trees of the GLCH algorithm with the select functions Alg. 5 (a,c,e)

and Alg. 6 (b,d,f) for the different complexity measures: MAC/pixel (a,b),

µJ/pixel (c,d) and encoded model bits (e,f). Each node is represented by

its hyperparameters in the order: units in the first hidden layer, units in

the second hidden layer and quantization bits, if applicable (continued on

the next pages). 151

xxi

III.1 Points of the loss-complexity clouds that were parent nodes during the exe-

cution of the GLCH algorithm with the select function Alg. 2 for λ′ = 0.005

(top row), 0.01 (middle row) and 0.02 (bottom row) and for complexity

measured as number of parameters (left column), and number of FLOPs

(right column). Each node is represented by its hyperparameters in the

order: number of layers of the encoder and the decoder, number of filters

of all layers except the last of the encoder, and number of filters of the last

layer of the encoder. 160

III.2 Points of the loss-complexity clouds that were parent nodes during the exe-

cution of the GLCH algorithm with the select function Alg. 3 for λ′ = 0.005

(top row), 0.01 (middle row) and 0.02 (bottom row) and for complexity

measured as number of parameters (left column), and number of FLOPs

(right column). Each node is represented by its hyperparameters in the

order: number of layers of the encoder and the decoder, number of filters

of all layers except the last of the encoder, and number of filters of the last

layer of the encoder. 161

III.3 Points of the loss-complexity clouds that were parent nodes during the exe-

cution of the GLCH algorithm with the select function Alg. 4 for λ′ = 0.005

(top row), 0.01 (middle row) and 0.02 (bottom row) and for complexity

measured as number of parameters (left column), and number of FLOPs

(right column). Each node is represented by its hyperparameters in the

order: number of layers of the encoder and the decoder, number of filters

of all layers except the last of the encoder, and number of filters of the last

layer of the encoder (continued on the next pages). 162

xxii

III.4 Points of the loss-complexity clouds that were parent nodes during the exe-

cution of the GLCH algorithm with the select function Alg. 5 for λ′ = 0.005

(top row), 0.01 (middle row) and 0.02 (bottom row) and for complexity

measured as number of parameters (left column), and number of FLOPs

(right column). Each node is represented by its hyperparameters in the

order: number of layers of the encoder and the decoder, number of filters

of all layers except the last of the encoder, and number of filters of the last

layer of the encoder. 165

III.5 Points of the loss-complexity clouds that were parent nodes during the exe-

cution of the GLCH algorithm with the select function Alg. 6 for λ′ = 0.005

(top row), 0.01 (middle row) and 0.02 (bottom row) and for complexity

measured as number of parameters (left column), and number of FLOPs

(right column). Each node is represented by its hyperparameters in the

order: number of layers of the encoder and the decoder, number of filters

of all layers except the last of the encoder, and number of filters of the last

layer of the encoder. 166

xxiii

List of Acronyms

AC Arithmetic Coding.

ALUT Adaptive Look-Up Table.

APC Adaptive Perceptron Coding.

ARNN Adaptive Recurrent Neural Network.

AVC Advanced Video Coding.

BO Bayesian Optimization.

BPTT Backpropagation Through Time.

CABAC Context-Adaptive Binary Arithmetic Coding.

CNN Convolutional Neural Network.

EHVI Expected Hypervolume Improvement.

EI Expected Improvement.

FLOP Floating-Point Operations.

GD Gradient Descent.

GLCH Greedy Lower Convex Hull.

GPU Graphics Processing Unit.

xxiv

GRU Gated Recurrent Unit.

H.264 Video compression standard also known as MPEG-4 Part 10 or AVC.

H.265 Video compression standard also known as MPEG-H Part 2 or HEVC.

H.266 Video compression standard also known as MPEG-I Part 3 or VVC.

HEVC High Efficiency Video Coding.

HV Dominated Hypervolume.

IEEE Institute of Electrical and Electronics Engineers.

JPEG Joint Photographic Experts Group.

KLD Kullback Leibler Divergence.

LCH Lower Convex Hull.

LLM Large-Language Model.

LPS Least Probable Symbol.

LSTM Long Short-Term Memory Network.

LUT Look-Up Table.

MAC Multiply-Accumulate Operations.

MLE Maximum Likelihood Estimation.

MLP Multi-Layer Perceptron.

MOHPO Multi-Objective Hyperparameter Optimization.

MPS Most Probable Symbol.

xxv

MSE Mean Squared Error.

ParEGO Efficient global optimization for Pareto optimization.

PC Perceptron Coding.

PDF Portable Document Format.

PNG Portable Network Graphics.

qNEHVI Parallel noisy EHVI.

qNParEGO Parallel noisy ParEGO.

ReLU Rectified Linear Unit.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

SOHPO Single-Objective Hyperparameter Optimization.

SPL Signal Processing Letters.

TBPTT Truncated Backpropagation Through Time.

TIP Transactions on Image Processing.

US United States.

VAE Variational Autoencoder.

VVC Versatile Video Coding.

xxvi

List of Symbols

a A neuron’s output with activation function.

aj A layer’s j-th neuron output with activation function.

a A layer’s output with activation function.

a(d) MLP’s d-th layer output with activation function.

a(d)
n MLP’s d-th layer output with activation function for the input at instant n.

ā(d)
n Elman RNN’s d-th layer output with activation function for the input at instant n.

b A neuron’s bias.

bj A layer’s j-th neuron bias.

b
(d)
j MLP’s d-th layer j-th neuron bias.

b A layer’s bias vector.

b(d) MLP’s d-th layer bias vector.

b̄(d) Elman RNN’s d-th layer bias vector.

B Batch. Subset of data containing B samples.

B, |B| Batch size.

{Bi} Partition of the set {1, 2, ..., N}.

xxvii

c One cost-function.

cmin Current estimate of the minimum value of the cost function c.

ci One cost-function from the vector c of cost-functions.

c Vector of cost-functions.

C Complexity.

Co Complexity operating point.

Ch Complexity associated with the hyperparameter vector h.

∆Ch′ difference between Ch′ and Ch.

C Closed set.

dmax Number of MLP layers.

d Some distance measure.

D Distortion.

Dh Distortion associated with the hyperparameter vector h.

DKL(p||q) Kullback-Leibler divergence from q to p.

D Dataset.

|D| Dataset size.

E0, E1 Markov chain states.

Et Current set of non-dominated solutions.

EI(h) Expected improvement for domain point h.

EHVI(h) Expected hypervolume improvement for domain point h.

xxviii

E Edge set of graph G .

f Output with activation function of a neural network of a single output.

f̂ Output without activation function of a neural network of a single output.

f Outputs with activation function of a neural network of multiple outputs.

f̂ Outputs without activation function of a neural network of multiple outputs.

F (x) Cumulative distribution function of X.

F̄ (x) Cumulative distribution function of discrete random variable X which gives the

midpoint of the step corresponding to x.

⌊F̄ (x)⌋ℓ(x) Truncation of F̄ (x) to ℓ(x) bits.

g Activation function.

g Function of multiple inputs and multiple outputs whose components are activation

functions.

g(d) MLP’s d-th layer vector-valued activation function.

ḡ(d) Elman RNN’s d-th layer vector-valued activation function.

Gn Average self-information of sequences of length n.

G Graph.

hk One hyperparameter from the vector h of hyperparameters.

h An hyperparameter vector.

hmin Minimal hyperparameter vector.

hmax Maximal hyperparameter vector.

h∗ Selected hyperparameter vector during the execution of a GLCH select function.

xxix

Hn Average self-information per sample of sequences of length n.

H(S) Source entropy.

H(X) Entropy of random variable X.

H(X|ξ) Entropy of X given Ξ = ξ.

H(X|Ξ) Entropy of X conditioned on Ξ.

H(p) Entropy for probability distribution p.

H(p, q) Cross-entropy of the distribution q relative to the distribution p.

HV(Et) Hypervolume of set Et.

H Set of possible hyperparameter vectors.

I(c) Improvement for cost-function value c.

I(c(h)) Improvement for cost-function vector c(h).

I Subset of training data containing one sample.

J A layer’s number of neurons.

J (d) MLP’s d-th layer number of neurons.

K(d) MLP’s d-th layer number of inputs.

K Number of hyperparameters being considered during hyperparameter optimization.

ℓ1, ℓ2, ..., ℓS Codeword lengths.

ℓ∗
i Optimal codeword lengths.

ℓ(x) Shannon-Fano-Elias coding codeword length for symbol x.

L Loss-function.

xxx

LI Loss for one training sample.

LB Loss for batch B.

LBi
Loss for batch Bi.

Lseq Loss-function for a sequence.

Ln Loss for the n-th sample.

Lh Loss associated with the hyperparameter vector h.

∆Lh′ difference between Lh′ and Lh.

∂L
∂θ

∣∣∣
θold

Partial derivative of L with respect to θ at θold.

(∇θL)θold Gradient of L with respect to θ at θold.

L(θ|x(N)) Likelihood of θ given x(N).

m = S − 1 Last symbol, assuming the alphabet are the first S nonnegative integers.

M Context size.

N Length of observed data.

N ′ Number of samples after which one RNN update is performed.

N(x′) Length of the data with x′ as the context.

O Open set.

O′ Set of deepest open nodes.

p Arbitrary probability distribution.

pX|Θ Distribution of X conditioned on Θ.

pX|X′,Θ Distribution of X conditioned on X ′ and Θ.

xxxi

pX(n) Model for the probability distribution of X(n).

pX(N)|Θ Distribution of X(N) conditioned on Θ.

pΨ Distribution of Ψ.

pΩ̃ Distribution of Ω̃.

pΩ̂ Distribution of Ω̂.

pΩ̃|Ψ Distribution of Ω̃ conditioned on Ψ.

pΨ|Ω̃ Distribution of Ψ conditioned on Ω̃.

pΩ̃i
Probability distribution of Ω̃i.

pi Probability of the i-th possible symbol, with i = 1, ..., S.

PDFh(c) Estimated probability density function of c for domain point h.

PDFh(c) Estimated probability density function of c for domain point h.

P Pareto set.

q Arbitrary probability distribution.

qX(n) Model for the probability distribution of X(n).

qΩ̃|Ψ Parametric approximation of the distribution of Ω̃ conditioned on Ψ.

r Hypervolume reference point.

R Rate.

Ro Rate operating point.

Rh Rate associated with the hyperparameter vector h.

S Alphabet size.

xxxii

Softmax Softmax activation function.

S Random experiment representing the source.

t1, t2, ..., tN The sequence x1, x2, ..., xN after one-hot-encoding each element.

Tk Number of possible values for hyperparameter hk.

v
(k)
t The t-th value that the hyperparameter hk can take.

Vnd Set of objective vectors non-dominated by Et.

V Vertex set of graph G .

w
(d)
jk MLP’s d-th layer weight from the k-th input to the j-th output.

w A neuron’s weight vector.

wj A layer’s j-th neuron weight vector.

w(d)
j MLP’s d-th layer j-th neuron weight vector.

W A layer’s weight matrix.

W(d) MLP’s d-th layer weight matrix.

W̄(d) Elman RNN’s d-th layer weight matrix.

x Realization from X.

x′ Realization from X ′.

x(n) = {x1, x2, ..., xn} Particular realization of X(n).

X Random variable representing a single observation from the source.

X ′ Random variable representing the sample immediately before X.

{Xn}n∈N+ Discrete-time random process.

xxxiii

X(n) = {X1, X2, ..., Xn} First n random variables from the random process {Xn}n∈N+ .

X Alphabet.

X (n) Set of all possible realizations of X(n).

y Expected output associated with the input ψ.

z A neuron’s output without activation function.

zj A layer’s j-th neuron output without activation function.

z A layer’s output without activation function.

z(d) MLP’s d-th layer output without activation function.

α Constant of exponentially weighted moving average.

γ Weight of complexity.

δ Diameter of graph G.

∆ Quantization step.

ϵ Learning rate.

ζ Function approximated by a neural network.

θ One generic model parameter.

θ0 Particular value of θ.

θold Old value of θ.

θnew New value of θ.

θmin Minimum network parameter.

θmax Maximum network parameter.

xxxiv

θq Quantized parameter.

θ Model parameters. Particular realization from Θ.

θold Old value of θ.

θnew New value of θ.

θn Model parameters when processing the n-th sample.

Θ Random vector representing the parameters of a model.

κ(x) Absolute frequency of the symbol x.

κ(x, x′) Absolute frequency of the pair of symbols x, x′.

λ Weight of distortion.

λ′ Constant related to the weight of distortion λ.

µ Controls the importance given to a distance in L compared to a distance in C when

measuring the distance to the origin in one variant of the GLCH algorithm.

µ′ Constant associated with the constant µ.

ν Number of cost-functions in c.

ξ Context. One realization from Ξ.

ξn Context for the n-th symbol in the sequence.

Ξ Random vector representing the context.

ρη Estimated probability that the η-th symbol is 1, in a sequence of binary symbols

associated with a given context.

σ Sigmoid activation function.

Σ Covariance matrix.

xxxv

Υ Number of possible architectures being considered during hyperparameter optimiza-

tion.

ϕ(i) The parameter vector for model pΩ̃i
.

{χη}η∈N+ Sequence of binary symbols associated with a given context.

ψ Neural network input. One realization from Ψ.

ψ̃ Reconstructed neural network input from ω̃.

ψ̂ Reconstructed neural network input from ω̂.

Ψ Random vector representing the inputs of a neural network.

ω̃i One component of ω̃.

ω Point in transformed domain.

ω̃ Point in transformed domain after the addition of noise. One realization from Ω̃.

ω̂ Point in transformed domain after quantization. One realization from Ω̂.

Ω̃i One component of Ω̃.

Ω̃ Random vector representing a point in transformed domain after the addition of noise.

Ω̂ Random vector representing a point in transformed domain after quantization.

xxxvi

Chapter 1

Introduction

1.1 Contextualization

Although not evident to everyone, data compression is one of the enablers of the modern

world. Without data compression, communication would be much slower and much more

expensive, web pages containing images or videos would take much longer to load with a

much lower quality and the average computer would only be able to store a tiny portion of

the data it stores today. We may also assume there would have been critical technological

development delay due to the absence of data compression.

To put things into perspective, an uncompressed image file is, in general, three to five

times larger than a JPEG file [1]. The gains of video compression, however, are much

more striking: in general, an uncompressed video file may be 20 to 200 times larger than

an H.264 compressed file [2], but these numbers could be much larger depending on the

quality level. Figure 1.1 shows a comparison between an image in PNG format, which

preserves the original quality, and the same image converted to JPEG with a quality

factor of 75. The former is 558kB while the latter is only 41kB. The difference can only

be noticed with a closer look.

Data compression simply provides much more efficiency in a variety of ways. It is

able to reduce the costs associated with storage, transmission, streaming, data access,

1

(a) (b)

Figure 1.1: To the left, a portion of an image in PNG format and, to the right, the same
portion with the image converted to JPEG with a quality factor of 75. The PNG file was
downloaded from [3] and has 558kB. The image converted to JPEG has 41kB.

and many others, bringing considerable savings to everyone involved with these activities,

from the large companies which develop new technologies, to the end users which consume

them.

Therefore, it comes to no surprise that, in the recent years, with the newfound success

of artificial neural networks in many areas of application, the data compression community

has started making use of them. It is undeniable how neural networks increased the power

of newly developed experimental data compressors. For example, in the Challenge on

Learned Image Compression [4], for many years now, neural networks have surpassed the

traditional coders in image compression. Also, in the Large Text Compression Benchmark

[5], the main reference method uses neural networks for text prediction. And this is just

to mention a few relevant data compression conferences.

However, the use of neural networks in data compression poses some additional chal-

lenges compared to other areas of application. Data compression, in general, is subject

to much more stringent conditions than other areas. Neural networks owe its increasing

success in several areas of application mainly to two reasons: the increase in availability

of data which can be used for training; and the increase in model size and computa-

tional resources which can support these large sized models. Take the large-language

models (LLMs) for example. Their success in text generation is largely due to a huge

2

Figure 1.2: Evolution of the LLM model sizes over the years, with the model size measured
in number of parameters. Based on data from [8].

increase in the model size, as the name implies, but it is also due to training models on

a huge amount of content. That is why LLMs have primarily been developed by billion-

aire companies with outstanding computational resources. Figure 1.2 shows an evolution

of the LLM model sizes over the years. It is clear that the model size has sharply in-

creased. Nevertheless, one cannot put a huge model into a cellphone. Recent studies on

learned video compression [6] have shown that most learned video codecs currently have a

kilo-multiply-accumulate-operations per pixel (kMAC/pixel) between 1000 and 2000, as

depicted in Figure 1.3 (a). A few codecs can reach the order of magnitude of hundreds

of kMAC/pixel. However, the capabilities of a modern cellphone are closer to the order

of 1 kMAC/pixel [7].

Other factor is peak memory usage. These learned codecs need to hold the equivalent

of several frames in memory while running. This has implications for memory bandwidth

requirements when they are stored in an external memory. Figure 1.3 (b) shows the peak

memory for the same codecs of Figure 1.3 (a).

Matters such as these have made the consolidation of neural networks in data com-

pression much harder than it has been in other areas. To this day, neural networks in

data compression have mostly been present in the realm of academic research, and left

out of commercial products and international standards, with only a few exceptions, for

example [9],[10],[11]. Although they have shown great potential, there are still many as-

pects that require further development. Beyond the already mentioned reasons why they

are not yet consolidated, other mentionable reasons are: the long time needed to develop

3

(a) (b)

Figure 1.3: BD-rate savings versus kMAC/pixel and versus peak memory for several
learned video codecs. Better compression is generally achieved with more arithmetic
operations. Source: [6]. See the source for more details on the measures and labels.

new standards, and the time required for disseminating a new technology [12].

1.2 The problems we address

In this work, we address two main problems in neural-based data compression, namely

online coding and architecture optimization. Both of these topics are currently active

areas of research.

In order to be used in practical systems, in smartphones, in embedded devices, or in

data streaming, there must be efficient and effective ways of achieving architecture designs

that can fit the system time, power and computational resource restrictions, without

having to resort too much on trial and error.

The traditional way of performing neural network design is by trial and error. This has

traditionally been made through individual publications competing to improve the state-

of-the-art. However, both for scientific and practical reasons, it is desireable to automate

the design process. This can accelerate both the development of new architectures and

the understanding of the problem.

Much more than simplifying the selection of an architecture that can fit into the

constraints of a system, which would probably be done only once for that given system,

4

what is intended is to find the best selection of architectures. However, there is an infinite

number of possible architectures, and we cannot test all of them.

Figure 1.4 (a) shows the training costs of several learned codecs. To obtain these

training costs, we combine kMAC/pixel data from [6], with estimation methods from

[13]. We obtain the total training cost of a codec in number of floating-point operations

(FLOPs) by assuming that: one MAC amounts to two FLOPs; the training set consists

of 91701 videos, having 7 frames, each (Vimeo-90k septuplet dataset [14]); each frame

is cropped to 256 × 256 pixels; one must train four networks, to operate in four quality

settings; each network is trained during 50 epochs; the cost for training is twice the cost for

inference (because of the forward and backward passes). By multiplying all those numbers

(2×91701×7×256×256×4×50×2) with the codec’s kMAC/pixel metric, we obtain our

estimate of the codec’s total training cost in FLOPs. Next, we estimate the codec’s total

training cost in US dollars by first estimating the value of FLOPs · second−1 · dollar−1 in

the year that the associated paper was published. This is done assuming that: the value

of GPU FLOPs · second−1 ·dollar−1 is multiplied by 10 every 8.17 years, and that its value

in the year 2000 was 66 MFLOPs ·second−1 ·dollar−1. This is based on analyzes from [15],

using data from [16] and [17]. The data used to infer this trend went up to 2020 and was

adjusted for inflation, therefore the units are in 2020 US dollars. As in [13], we multiply

the initially estimated value in FLOPs · second−1 · dollar−1 by 0.35, because we assume

that the actual value of FLOPs · second−1 achieved during model training is 35% of the

theoretical peak for the hardware. We multiply the value of FLOPs ·second−1 ·dollar−1 by

the estimated hardware replacement time in seconds, which we assume is the equivalent

of two years. This gives an estimate of the amount of FLOPs per dollar. Finally, we

divide the total training cost in FLOPs by the estimated value of FLOPs per dollar, to

obtain the total training cost in dollars.

Figure 1.4 (b) also shows the time taken to train each codec, according to the authors

of the codecs themselves. As can be seen from Figure 1.4, there is not only financial

costs associated with the training of a neural network but also time investment. The

5

(a) (b)

Figure 1.4: Training costs of several learned codecs in 2020 US dollars and in days of
training. The training costs in dollars were obtained based on kMAC/pixel data from [6]
and estimation methods from [13]. The training times were provided by the authors
themselves on their papers. We use the same labels for the codecs as [6].

costs associated with a single network may not be too large, but they accumulate when

training many networks.

To further demonstrate the importance of reducing the complexity of the neural net-

works used for data compression, Figure 1.5 shows the energy consumption of several

learned codecs. Figure 1.5 (a) was obtained assuming that the energy cost of training is

about 20% of the hardware cost [13]. That is, the energy cost is 20% of the cost shown in

Figure 1.4 (a). We divide this number by the amount of pixels processed during training,

which is 91701× 7× 256× 256, and the number of network passes during training, which

is 4 × 50 × 2 (the number of different networks, times the number of epochs, times the

number of forward and backward passes for one network update). Dividing the result by

the average US energy price in 2020, which was approximately 13 cents per kWh [13],

gives the value of kWh/pixel during execution of the network. Finally, considering that

1 kWh corresponds to 3.6 · 106J, this can be converted to the µJ/pixel value shown in

Figure 1.5 (a). Figure 1.5 (b) was obtained by further assuming that videos of 256× 256

pixels are displayed during 1 minute at 60 frames per second, and converting the units

from µJ to Wh. The average energy consumption of these codecs is about 2 Wh per

minute of video. Considering that a top Samsung cellphone has a battery capacity of

6

(a) (b)

Figure 1.5: Energy consumption of several learned codecs in µJ/pixel and in Wh per 1
minute of video. We use the same labels for the codecs as [6].

about 5000 mAh, and that a lithium battery has a nominal voltage of 3.7V, the amount

of energy this cellphone’s battery is able to produce before recharging is 18.5 Wh. Such

a cellphone running a modern learned codec would last only about 9 minutes without

recharging. This shows how important it is to reduce as much as possible the complexity

of the learned codecs.

Meanwhile, an often overlooked issue with modern neural-based data compression

systems is that the models are mostly trained offline. Online models have been used in

data compression for years for a variety of reasons. Among them is practicality. In general,

training a model beforehand requires the gathering of a huge amount of data which is

representative of the type of data being compressed. In some situations, however, this

is not very practical or desirable. Take, for example, the case when a new type of data

is just emerging. It may seem a little difficult to think of new types of data emerging

nowadays, but it just happened recently. Point clouds is a type of data which has been

popularized and only gained more attention in the recent years, prompting the creation of

new compression standards specific to this type of data. You can predict that, gathering a

huge amount of examples of this type of data initially was not very easy. Online models, on

the other hand, can learn the statistics of the data while coding, and can adapt themselves

to local changes in the signal statistics.

7

Other factor is that coding and decoding must be reproducible. Compression algo-

rithms must be described in international norms and standards. In this way, coding and

decoding can be run on different platforms, created by different companies. If one is going

to create a standard based on pre-trained neural networks, how the neural network is to

be described in the standard? Are the network weights to be included in the standard?

This is not to say it can’t be done, and there are standards being developed right now

which will have to deal with these issues [10],[11]. If the model is trained online, it is not

necessary to describe the weights in the standard, since they are learned from the data

being encoded. Only a pseudo random number generator algorithm and a random seed

used to initialize the network weights have to be described.

Of course, other issues may emerge from the use of online training, for example, the

decoding time may considerably increase. With further technological development, or

dedicated hardware, it may become feasible to use online-trained neural networks in data

compression. In the long run, it may be possible to have fully automated and universal

compression systems, which could learn to encode any type of data on the fly.

1.3 Overview of relevant literature

Neural networks have been investigated for both lossless and lossy data compression [18]–

[30]. Most of these networks have been pre-trained, that is, trained offline on represen-

tative datasets. In this section we will analyze some of the previous literature on neural

based data compression.

In lossless neural-based compression, a neural network is typically used as a probability

model, often called a context model or entropy model, to drive an arithmetic coding (AC)

system. Pre-trained neural networks have been used for context modeling to drive AC in

various settings (e.g., [18]–[25]). In both [20] and [21], the authors replaced the original

context models in H.265/HEVC, which were adaptive, with pre-trained neural networks.

In [22] and [23], the authors proposed methods to progressively transmit voxelized point

8

cloud geometries using AC, neural networks and octree. The idea is, given the occupied

voxels in one level of the octree, transmit the occupancy of the children of those voxels in

the next level. The probabilities of occupancy of the voxels were estimated by pre-trained

neural networks and used to drive AC. In [18] and [19] the authors built language models

using recurrent neural networks (RNNs) and used those language models to feed the AC

for text compression.

In lossy neural-based compression, many works have followed the seminal work of [26],

for example [27]–[30]. In this method, two neural networks jointly learn how to encode

and decode a latent space representation which is quantized and transmitted using con-

text modeling and AC, in a very similar way to how it is done in lossless neural-based

compression. The method is an adaptation of the variational autoencoder [31], proposed

in the field of variational inference, to the task of lossy data compression. It is a form

of transform coding using neural networks. The subsequent works have mainly focused

on improving the entropy model, for example, by: learning and transmitting priors on

the parameters of the entropy model [27]; generalizing the entropy model to a Gaussian

mixture model and including an autoregressive component [28]; and leveraging discretized

Gaussian mixture likelihoods [29]. Other works have focused on extending the methods

for video-compression [30].

Adaptive context modeling has previously been covered in part in [24] and [25], mostly

for text compression. In [24], it was hinted that the off-line methods they proposed

could be adapted by blocking the data and continuously retraining the model. In [25],

a hybrid on-off-line method, DZip, was specifically proposed for sequential data such as

text. Outside of the data compression literature, in the context of language modeling,

[32] and [33] proposed methods to continuously adapt RNN pre-trained weights during

evaluation.

There is a couple of recent works that tackle the problem of jointly optimizing rate,

complexity, and distortion in neural compression [34], [35]. Both aim at controlling com-

plexity through specific network hyperparameters. Works on neural network compression

9

are also closely related, for example [36]–[39], because they intend to reduce the model

size in bits, while keeping as much as possible the original performance of the network.

Energy-constrained data compression also intend to reduce the complexity in Joules of

the coder, be it neural or not, while keeping its original performance and has previously

been studied in [40]–[44]. There is also a vast literature on rate-distortion optimization

[45]–[49]. In a more recent work [12], instead of specifying fixed weights for rate and

distortion in the loss function during the training of the neural network, a fixed rate is

specified, allowing the more effective tracing of the lower convex hull of the rate-distortion

points. In [50]–[52], the authors optimize rate and distortion in tree structured domains

with pruning algorithms, but they are applied to non-neural coders.

There are also general methods for single-objective hyperparameter optimization

(SOHPO) and multi-objective hyperparameter optimization (MOHPO) that can be used

to search for optimum architectures in neural-based data compression [53]–[55]. SOHPO

methods optimize a single objective, or a combination of multiple objectives reduced to a

single objective, for example by a weighted sum. MOHPO methods look for the set of op-

timal solutions for all tradeoffs between objectives. MOHPO is in general a much harder

problem and has been investigated to a much lesser extent than SOHPO. MOHPO has re-

cently been reviewed in [53]. SOHPO has been reviewed for example in [54], [55]. Popular

SOHPO methods include grid-search [56], random-search [56] and Bayesian Optimization

[55], all of which have adaptations for MOHPO [53].

1.4 Objectives and dissertation layout

The main objective of this work is to investigate neural-based adaptive context modeling,

while also tackling the problem of neural architecture search. Our main contribution is

the proposal of a lossless binary coding scheme, coupled with the proposal of a MOHPO

method which can be used in the neural network design.

Traditionally, adaptive context modeling uses a frequency counting method based on

10

look-up tables (LUTs). In part, this work investigates the replacement of the LUTs by

neural networks in adaptive context modeling. LUTs are used to count the frequencies

of occurrence of all symbols given all contexts. The counts are usually updated after

every new observed sample. By developing a neural-based drop-in replacement for LUTs,

we provide a method of compression that, at the same time, combines the advantages of

neural networks and adaptive context modeling. In order to achieve this goal, we first

develop the method that can replace the LUT and then evaluate it on representative data.

We measure the method’s performance and compare it with other alternatives to properly

assess its effectiveness.

This research also investigates how to design neural networks for data compression.

There exists general methods for multi-objective optimization that can be used in data

compression as well. However, there are particularities specific to data compression that

could be explored to develop methods more effective for this area of application. In order

to achieve this, we need to develop such methods, evaluate them objectively, and compare

them with other available generic methods.

This work is organized as follows. In Chapter 2, we review the fundamentals of adap-

tive context modeling, which is necessary for the discussions on the next chapters. In

Chapter 3, we review the basics of neural networks and hyperparameter selection. We

formally introduce MOHPO, and present some state-of-the-art methods which are used

to tackle this problem. Chapters 4 and 5 are devoted to our research problem. We divide

our discussion into two parts. First, in Chapter 4, we present our neural-based method,

which is able to replace the LUT in traditional adaptive context modeling, without delving

into the neural network design process. We call our proposed method adaptive percep-

tron coding (APC). Then, in Chapter 5, we describe our algorithm for MOHPO in data

compression, which we call greedy lower convex hull (GLCH). This work is concluded in

Chapter 6, with a review of our contributions, and possible topics for future research.

11

Chapter 2

Data Compression Fundamentals

2.1 Preliminaries

Data compression is the science of shrinking data to a more compact form [57]. It falls into

the area of information theory which is “the mathematical field dealing with the transfer

of information from one location to another and with the storage of information for later

retrieval and use” [58]. Data compression can be classified into two broad categories:

lossless compression, in which the original data can be perfectly reconstructed , and lossy

compression, in which the data goes through higher compression but is also distorted.

In information theory, a general communication system is subdivided into five parts:

a source, which generates a message; a transmitter, which turns the message into a signal

for transmission; a channel, which conveys the signal; a receiver, which reconstructs the

message; and a destination, which acquires the message [58]. The source outputs symbols,

or letters. The conjunction of several letters forms messages. The set of possible letters

of the source is called its alphabet. Letters are also often called samples.

Information theory answers two major problems in communication: how to efficiently

represent messages, and how to reliably transmit messages over a noisy channel. Although

the second problem is also very important in its own right, we will not be covering it in

this work. In the first front, information theory provides a lower limit for the expected

12

number of bits per symbol when transmitting messages without loss of information, which

is the entropy.

Because of the way digital systems work, information is usually measured in bits. The

process of assigning binary sequences, or codewords, to elements of an alphabet is called

coding, and a code is a set of codewords associated with an alphabet [57]. Encoding is the

conversion of symbols to their codewords, and decoding is the inverse of encoding. We

want the original sequence to be recovered with certainty, therefore we are only interested

in uniquely decodable codes, that is, each sequence of codewords can only be decoded in

one way. Source coding is the type of coding done at the source level with the purpose of

removing redundancy and achieving compression [58].

Entropy is a measure of uncertainty. For example, the entropy of the toss of a fair coin

is larger than the entropy of the toss of an unfair coin, because the uncertainty about the

outcome of the fair coin is larger. Information, in its turn, is a reduction in uncertainty.

In a sequence of 10 coin tosses, knowing the outcomes of the first 3 tosses reduces the

uncertainty about the final outcome of the 10 tosses, unless one of the sides of the coin

was never possible in the first place. One of the important aspects about information in

information theory is that it has nothing to do with semantics.

The amount of information gained with the occurrence of an event A is called its

self-information. If its probability is P (A), then its self-information can be measured in

bits by

log2(1/P (A)) = − log2(P (A)). (2.1)

The choice of this expression is not arbitrary, and it can be derived from a set of properties

expected from a measure of information [57]. This definition is intuitive as well. The

information gained by the occurrence of an event with probability P (A) = 1, or in other

words log2(1/1) = 0, is lower than the information gained by the occurrence of an event

with probability P (A) = 0.5, or in other words log2(1/0.5) = 1.

The definition of entropy relies on the concepts of self-information and random process.

A source in a communication system can be seen as a random experiment S with sample

13

space X . The sample space is the set of all possible individual outcomes from the random

experiment. Therefore, the sample space is also the alphabet. The random experiment

observed over time forms a random process {Xn}n∈N+ , which is a sequence of indexed

random variables. In this case we assume, without loss of generality, that the index n

is a positive, integer-valued, time instant. A stochastic process is stationary when the

joint distribution of any subset of the random variables is invariant with respect to shifts

in the time index [59] and it is independent and identically distributed (iid) when any

subset of the random variables are independent and the marginal distributions are the

same [60]. If the process is iid, the entropy of the source can be characterized by a single

random variable from the random process {Xn}n∈N+ , for example, X1. More specifically,

the entropy of the iid source S can be obtained by the expected self-information of X1:

H(X1) = −
∑

x1∈X
P (x1) log2(P (x1)). (2.2)

However, this is only if the samples are iid. More generally, the entropy of a stationary

source can be defined as the average self-information per sample of longer and longer

sequences generated by the source [57]. We represent the sequence of the first n random

variables of the random process as X(n) = {X1, X2, ..., Xn}, one possible realization of

such sequence as x(n) = {x1, x2, ..., xn}, and all possible realizations as X (n). The average

self-information of the sequences of length n is

Gn = −
∑

x(n)∈X (n)

P (x(n)) log2(P (x(n))) (2.3)

and the average self-information per sample is

Hn = Gn

n
. (2.4)

14

The entropy of the stationary source is

H(S) = lim
n→∞

Hn, (2.5)

where stationarity is a sufficient condition for the limit to exist [59]. The entropy of the

source represents a lower bound for the number of bits per sample, also called the average

codeword length, of lossless compression schemes. Coding algorithms that aim at this

lower bound are referred to as entropy coding algorithms.

2.2 Arithmetic Coding

We now turn our focus to source coding and how we can achieve a coding such that there

is no loss of information and the average codeword length is close to the entropy of the

source.

A code is said to be nonsingular if every symbol is mapped into a different codeword.

It is called uniquely decodable if all sequences of symbols are mapped to different code

strings, and it is called a prefix code if no codeword is a prefix of any other codeword.

A prefix code is also called an instantaneous code because the end of a codeword is

immediately recognizable and therefore a codeword can be decoded without reference to

future codewords. Data compression can be achieved by assigning short codewords to the

most frequent symbols, and longer codewords to the less frequent symbols. It is possible

to show that the broader class of uniquely decodable codes does not offer better choices

of codeword lengths than the narrower class of prefix codes [59].

It is intuitive that we cannot assign short codewords to all source symbols. Consider

a source with set of possible outcomes composed of S elements. The codeword lengths

ℓ1, ℓ2, ..., ℓS of a prefix code must satisfy the Kraft inequality [59]:

∑
i

2−ℓi ≤ 1. (2.6)

15

Also, given a set of codeword lengths that satisfy this inequality, there exists a prefix code

with these word lengths.

Let pi be the probability associated with the i-th possible symbol. We want to find

the prefix code with the minimum expected length that satisfies the Kraft inequality. In

other words, we want to minimize:


minℓ1,ℓ2,...,ℓS

∑
i piℓi

s.t.
∑

i 2−ℓi ≤ 1
(2.7)

whose solution according to calculus is given by ℓ∗
i = − log2 pi. But since the ℓi must be

integers, we will not always be able to set these codeword lengths. We can do this only

when pi = 2−ℓi for integer ℓi, that is, when the distribution is dyadic. The optimal code

under these restrictions can be obtained by finding the dyadic distribution that is closest

to the distribution of the symbols [59]. However, a good approximation can be easily

obtained by rounding up the fractional optimal lengths:

ℓi =
⌈
log2

1
pi

⌉
. (2.8)

This approximation satisfies the Kraft inequality because

∑
2−⌈log2

1
pi

⌉ ≤
∑

2− log2
1

pi =
∑

pi = 1 (2.9)

and is within 1 bit from the expected self-information because

log2
1
pi

≤ ℓi < log2
1
pi

+ 1, (2.10)

therefore

−
∑

pi log2 pi ≤
∑

piℓi < −
∑

pi log2 pi + 1. (2.11)

A practical algorithm which has similar codeword lengths is the Shannon-Fano-Elias

16

Figure 2.1: Cumulative distribution function of a discrete random variable X with sample
space {0, 1, 2, 3, 4}. F̄ (x) is the midpoint of the step corresponding to x. Based on figure
5.5 of [59].

coding algorithm. Assume that the alphabet is {0, 1, ..., m}, where m = S − 1. The cu-

mulative distribution function of a discrete random variable X representing one sample is

F (x) =
∑
a≤x

P (a). (2.12)

The cumulative distribution function of X looks like a staircase whose sizes of the steps are

P (x), as shown in Figure 2.1. The following modification of the cumulative distribution

function

F̄ (x) =
∑
a<x

P (a) + 1
2P (x) (2.13)

gives the midpoint of the step corresponding to x. If all P (x) are greater than zero, then

F̄ (x) can be used as a code for x, since F̄ (a) ̸= F̄ (b) if a ̸= b. More interestingly, it can

be shown that F̄ (x) truncated to ℓ(x) =
⌈
log2

1
P (x)

⌉
+ 1 bits, represented by ⌊F̄ (x)⌋ℓ(x), is

also guaranteed to be within the step corresponding to x [59]. Therefore ⌊F̄ (x)⌋ℓ(x) can

also be used as a code for x. However, because of the additional 1 bit per symbol, the

Shannon-Fano-Elias coding expected codeword length is within 2 bits from the entropy,

instead of only 1.

17

So far we have seen that, when encoding a symbol, the codeword lengths ℓi =
⌈
log2

1
pi

⌉
give an expected codeword length at most 1 bit from the expected self-information. The

overhead per symbol can be reduced by encoding sequences of symbols instead of individ-

ual symbols. This way the extra bit is spread out over many symbols. Then, assuming

the set of possible symbols is X (n), taking the inequality in (2.11), replacing pi and ℓi with

P (x(n)) and ⌈log2(1/P (x(n)))⌉, and dividing by n we get:

− 1
n

∑
x(n)∈X (n)

P (x(n)) log2 P (x(n)) ≤ 1
n

∑
x(n)∈X (n)

P (x(n))
⌈
log2

(
1

P (x(n))

)⌉

< − 1
n

∑
x(n)∈X (n)

P (x(n)) log2 P (x(n)) + 1
n

(2.14)

Therefore by using large block lengths n we can achieve an expected codeword length per

symbol arbitrarily close to the entropy.

Consider an infinite sequence of random variables X1, X2, ... with alphabet {0, ..., m}.

For any outcome x1, x2, ... we can place 0 and a dot in front of the sequence and

consider it as a real number of base m + 1 between 0 and 1. We can treat this se-

quence as representing an interval [0.x1x2...xn000..., 0.x1x2...xnmmm...), or equivalently,

[0.x1x2...xn, 0.x1x2...xn + (1
m+1)n). This is the set of infinite sequences that start with

0.x1x2...xn. It is possible to show that the cumulative distribution function forms an

invertible mapping from infinite source sequences to incompressible infinite binary se-

quences [59]. Under this transform, this interval gets mapped into another interval,

[FX(0.x1x2...xn), FX(0.x1x2...xn + (1
m+1)n)), whose length is equal to P (x1, x2, ..., xn), the

integral of the probability densities of all infinite sequences that start with 0.x1x2...xn .

Similarly to Shannon-Fano-Elias coding, the binary representation of the midpoint of the

interval can be truncated to
⌈
log2

1
P (x1,x2,...,xn)

⌉
+ 1 bits, and the resulting number is still

guaranteed to be within the limits of the interval. Therefore it can be used as a code for

the sequence x1x2...xn.

It is not necessary to transmit the whole sequence all at once. As more and more

symbols are seen, the interval goes from [0, 1), to [FX(0.x1), FX(0.x1 + 1
m+1)), then to

18

[FX(0.x1x2), FX(0.x1x2 + (1
m+1)2)) and so on. At first sight, it may seem that this would

require infinite precision arithmetic, since the number of digits in the top and bottom

ends of the interval keep increasing. But arithmetic coding provides a way to do this with

finite precision. As more symbols are seen, more leading digits from the top and bottom

ends of the interval become equal. As soon as the two ends of the interval agree about

some bits, we can output these bits and shift them out of the calculation. This way all

calculations can be made with finite precision.

Figure 2.2 illustrates through an example how arithmetic coding may work in practice,

assuming that the sequence of symbols is independent and identically distributed. From a

practical point of view, the basic idea of arithmetic coding is to start with an interval from

0 to 1, allocate portions of the interval to the symbols according to their probabilities,

restrict the interval based on the symbol seen and repeat the process with the restricted

interval. The compressed representation of the sequence is a binary fractional number in

the middle of the final interval, truncated to the minimum amount of bits such that the

number is still guaranteed to be in the interval. This number is also called the tag for

the sequence. It is not necessary to wait until the end of the process to start transmitting

the tag. For example, in the example of Figure 2.2, after encoding AB, the bits 0.01 can

already be transmitted, because the top and bottom ends of the interval already agree on

those bits.

The decoding process basically mimics the encoding process. At the decoder, the

symbols are reconstructed basically by retracing the steps done by the encoder with the

help of the tag. Starting with the 0 to 1 interval, the decoder subdivides the interval

between the symbols according to their probabilities the same way as the encoder, iden-

tifies the symbol based on which range the tag falls in, and repeats the process with the

new interval until the last symbol has been reconstructed. This process is illustrated in

Figure 2.3.

We have showed how arithmetic coding works when the samples are iid. However,

when the samples are not iid, the process is basically the same. The only difference is

19

Figure 2.2: Illustration of the arithmetic coder encoding process. Numbers are rep-
resented in base 2. In this example, the symbols are A,B and C with probabilities
P (A) = 0.5 = (0.1)2 and P (B) = P (C) = 0.25 = (0.01)2. The encoded sequence is
ABC, and the tag is (0.010111)2. The fractional part of the tag is already truncated
to the correct amount of bits since the length of the final interval is (0.00001)2 and
⌈− log2((0.00001)2)⌉+ 1 = 6 bits. Based on Fig. 2 of [18].

Figure 2.3: Illustration of the arithmetic coder decoding process. Numbers are rep-
resented in base 2. In this example, the symbols are A,B and C with probabilities
P (A) = 0.5 = (0.1)2 and P (B) = P (C) = 0.25 = (0.01)2. The value of the tag is
(0.010111)2 = 0.359375 and the decoded sequence is ABC. Based on Fig. 2 of [18].

that the portions of the intervals assigned to the different symbols keep changing in size.

Figure 2.4 illustrates the arithmetic encoding process when the samples are not iid.

The decoder must reproduce the same sequence of partitions produced by the encoder,

reconstructing the symbols and restricting the interval based on the portion of the interval

that the tag falls in 1. Figure 2.5 illustrates the arithmetic decoder when the samples are

not iid.
1Note that to correctly decode the sequence, it is essential that the decoder has access not only to the

bitstream generated by the encoder, but also to the exact probabilities used during encoding, and in the
same order.

20

Figure 2.4: Illustration of the arithmetic coder encoding process when the samples are
not iid. In this example, the probabilities of the symbols A,B,C change from 0.5,0.25,0.25
to 0.25,0.25,0.5 to 0.25,0.5,0.25, the encoded sequence is ACB and the tag is (0.0110)2.
The fractional part of the tag is already truncated to the correct amount of bits since the
length of the final interval is (0.001)2 and ⌈− log2((0.001)2)⌉+ 1 = 4 bits. Based on Fig.
2 of [18].

Figure 2.5: Illustration of the arithmetic coder decoding process when the samples are
not iid. In this example the probabilities of the symbols A,B,C change from 0.5,0.25,0.25
to 0.25,0.25,0.5 to 0.25,0.5,0.25, the tag is (0.0110)2 = 0.375 and the decoded sequence is
ACB. Based on Fig. 2 of [18].

In summary, the arithmetic encoder can be seen as a black-box in which you enter

data in raw format and the probabilities of the symbols at each instant, and receive in

return the compressed sequence, as illustrated in Figure 2.6. Similarly, the arithmetic

decoder can be seen as a black-box in which you enter data in compressed format and

the probabilities of the symbols at each instant, and receive in return the uncompressed

sequence.

21

Figure 2.6: Schematic representation of the arithmetic encoder and the arithmetic de-
coder. Given a stream of symbols in uncompressed/compressed format and their proba-
bilities, the arithmetic encoder/decoder returns the compressed/uncompressed sequence.

Figure 2.7: A more complete representation of a compressor and of a decompressor based
on arithmetic coding. A probability estimation step is required to obtain the probabilities
used with arithmetic coding.

2.3 Probability Estimation

In our previous discussion, we have intentionally left out a major component which is

part of any data compressor based on arithmetic coding. The piece that is missing, as

depicted in Figure 2.7, is a probability model of the source. A probability model is a map-

ping from events to probabilities. Models are mathematically represented as probability

distributions. However, the distributions used in probability models have a distinguish-

ing property. They are particularly made to approximate an unknown distribution and

typically have a parametric form with parameters fitted to the data. A model whose

probabilities do not change with the position in the sequence is called a static model,

while a model whose probabilities do change is called an adaptive model [57].

The whole construction of arithmetic coding is based on the availability of the symbol

22

probabilities. In general, it is not possible to precisely know them. Therefore, they must

be estimated somehow. In theory, they could even be obtained by human intuition [61].

However, in practice probability models are built based on empirical observations. If

the model is built prior to encoding, using the data that will be encoded, or any other

data, this is called forward estimation or coding. If the model is built during encoding

or decoding using the previously encoded or decoded samples, this is called backward

estimation or coding. A model built with backward estimation is necessarily an adaptive

model, while a model built with forward estimation may be static or adaptive, depending,

for instance, if context-modeling is used (Section 2.4).

From Section 2.2 we know that arithmetic coding is capable of getting arbitrarily close

to the entropy as the number of coded samples increases. Let pX(n) denote a model for

the joint probability distribution of n samples from the source. Assume that this is the

correct model. If this model is used with arithmetic coding, the average codeword length

approaches

lim
n→∞

− 1
n

∑
x(n)∈X (n)

pX(n)(x(n)) log2(pX(n)(x(n))). (2.15)

However, what happens in the most common case where the correct model is not known?

If a wrong model qX(n) is used instead of pX(n) , then the average codeword length actually

gets closer to

lim
n→∞

− 1
n

∑
x(n)∈X (n)

pX(n)(x(n)) log2(qX(n)(x(n))). (2.16)

The expression −∑ p log q, where p and q are arbitrary probability distributions, is re-

ferred to as the cross-entropy of the distribution q relative to the distribution p, and is

compactly represented as H(p, q). With straightforward manipulation, the cross-entropy

can be rewritten as

H(p, q) = −
∑

p log q = −
∑

p log p +
∑

p log p

q
, (2.17)

where ∑ p log(p/q) is referred to as the Kullback-Leibler divergence (KLD) from q to p,

23

and is also represented as DKL(p||q). The expression −∑ p log p is the entropy for the

probability distribution p and is sometimes denoted as H(p). With this in mind, the

expression in (2.16) can be rewritten as

lim
n→∞

1
n

(H(pX(n)) + DKL(pX(n)||qX(n))) . (2.18)

That is, the cost of compressing the data using a wrong model qX(n) instead of pX(n) is

determined by the KLD from qX(n) to pX(n) . The minimum of the expression in (2.18) is

the entropy and it is achieved when qX(n) is equal to pX(n) or, equivalently, when the KLD

is zero.

When talking of probability estimation, a very common method is maximum likelihood

estimation (MLE). Let x(N) = {x1, x2, ..., xN} be observed data from the joint probability

distribution of N random variables. Assume that we do not know the distribution, but

we know that it is from a specific class of probability distributions, for example, that

it is a multivariate normal distribution. Let the distribution parameters be represented

by a random vector Θ, and a particular realization by θ. The likelihood function is the

joint probability of the observed data given the distribution parameters θ, or L(θ|x(N)) =

pX(N)|Θ(x(N)|θ). The maximum likelihood estimate is the argument θ that maximize the

likelihood function.

Assume a family of probability distributions in which the model parameters θ are

the probabilities of the outcomes themselves. This family of distributions is capable of

representing any discrete probability distribution. In this case, the relative frequencies

form the maximum likelihood estimate for the observed data. Without loss of generality,

assume that the samples are iid. If they are not, and the probabilities depend on a few

previous samples, or the context, as we will discuss more in Section 2.4, the same conclu-

sions are valid for each context individually. Assuming iid samples, the joint probability

of the data is pX(N)|Θ(x(N)|θ) = ∏N
n=1 pX|Θ(xn|θ). This expression is maximized when

pX|Θ(xn|θ) = κ(xn)/N , where κ(xn) = |{i : 1 ≤ i ≤ N and xi = xn}| is the absolute

24

frequency of the symbol xn. This is the case because any distribution with different prob-

abilities than the relative frequencies would have lower chances of having generated that

data.

Other way of verifying this is by realizing that there is an equivalence between max-

imizing the likelihood function and minimizing the average codeword length of an ideal

arithmetic coder driven by a matching probability distribution [62]. Since the average

codeword length would be− log2(pX(N)|Θ(x(N)|θ))/N and the likelihood is pX(N)|Θ(x(N)|θ),

the average codeword length would be minimized when the likelihood is maximized. The

average codeword length is given by

− 1
N

log2 pX(N)|Θ(x(N)|θ) = − 1
N

log2

N∏
n=1

pX|Θ(xn|θ) =

−
∑

n

1
N

log2(pX|Θ(xn|θ)) = −
∑
x∈X

κ(x)
N

log2(pX|Θ(x|θ)) (2.19)

where X is the set of all possible outcomes and x is one possible outcome from the random

variable X. This expression is the cross-entropy between κ(x)/N and pX|Θ(x|θ), which we

know is minimized when their KLD is zero, or in other words when pX|Θ(x|θ) = κ(x)/N .

This is also true even when there is dependence among samples. Consider, for sim-

plicity, that each sample depends only on the sample immediately before it. The joint

probability of the data is pX(N)|Θ(x(N)|θ) = ∏N
n=1 pX|X′,Θ(xn|xn−1,θ) 2, which is maxi-

mized when pX|X′,Θ(xn|xn−1,θ) = κ(xn, xn−1)/N(xn−1), where θ represents the probabil-

ity model parameters, N(xn−1) is the number of occurrences of xn−1 or |{i : 0 ≤ i < N

and xi = xn−1}| and κ(xn, xn−1) is the number of occurrences of the pair xn,xn−1, or

|{i : 0 < i ≤ N and xi, xi−1 = xn, xn−1}| or the absolute frequency of xn given xn−1. The
2It simplifies the notation and the calculations if we extrapolate the data and assume it equal to a

specific symbol s0 outside of the observed support, so for example x0 = s0. This may be a new symbol
added to the set of possible symbols or an already existing symbol.

25

Figure 2.8: Example of overfitting. The data is linear with added noise. A polynomial of
degree 7 perfectly fits the observed data, but performs poorly on unobserved data.

average codeword length of an ideal arithmetic coder would be given by

− 1
N

log2 pX(N)|Θ(x(N)|θ) = − 1
N

N∑
n=1

log2 pX|X′,Θ(xn|xn−1,θ)

= −
∑

x′∈X

N(x′)
N

(∑
x∈X

κ(x, x′)
N(x′) log2 pX|X′,Θ(x|x′,θ)

)
(2.20)

The expression in parenthesis is the cross-entropy of κ(x, x′)/N(x′) and pX|X′,Θ(x|x′,θ),

which is minimized when pX|X′,Θ(x|x′,θ) = κ(x, x′)/N(x′).

When performing MLE, care must be taken to avoid overfitting [63]. Overfitting is

a common problem encountered in mathematical models in general which is when the

model performs well on observed data, but poorly on unobserved data. An example of

overfitting is shown in Figure 2.8 in the setting of polynomial fitting. The larger the order

of the polynomial, the lower is the error on the observed data, also called the bias or the

approximation error, but the larger is the error on the unobserved data, also called the

variance or the generalization error. This is known as the bias-variance tradeoff [64].

Back to the MLE problem, we would like to have a good estimate of the true probability

distribution. Except in particular situations, we do not want a model which explains the

data perfectly, we want a model with a good generalization performance.

26

2.4 Context-based Probability Estimation

As we have seen in previous sections, entropy coding is based on assigning shorter code-

words to the most frequent symbols, or the symbols with the highest probabilities, and

longer codewords to the least frequent symbols, or the symbols with the lowest probabil-

ities. This suggests that higher data compression can be achieved the more unbalanced

is the set of probabilities.

In fact, the entropy is smaller when there are only a few symbols with high proba-

bilities, and all others have low probabilities, compared to when all symbols have similar

probabilities. Consider for example the tosses of a fair and an unfair coins. The outcomes

have equal probabilities with the fair coin, while one has 75% probability and the other

has 25% probability with the unfair coin. The entropy in the first case is 0.5 log2(1/0.5)+

0.5 log2(1/0.5) = 1, and in the second case is 0.75 log2(1/0.75) + 0.25 log2(1/0.25) ≈ 0.81.

Therefore, if it were possible to make the probabilities of the symbols more unbalanced,

we would be able to achieve better compression. The actual entropy of the source is a

fixed and, in general, unknown quantity, and therefore cannot be changed. However, the

minimum possible entropy assuming our model can be changed. For example, when we

develop a static model, we are essentially assuming that the samples are iid, and that the

entropy follows the Equation (2.2). The iid assumption limits how low the entropy of the

source can be.

One way of making the probability distribution more unbalanced is to condition the

probabilities on previous samples. For example, in english, the probability of a vowel is

larger if we know that the previous letter was a consonant. Therefore, by conditioning

the probability of a symbol on the value of the previous symbol, we are able to make

the probability distribution more unbalanced. In general, the condition may be much

more complex than only the previous sample. Such a condition is called the context.

Let the context be represented by a random vector Ξ and let one possible context be

represented by the vector ξ. Our assumption is that P (x|ξ) is more unbalanced than

P (x), and therefore H(X|ξ) is lower than H(X). The final entropy is the average value

27

Figure 2.9: Portion of the binary image used to compute the entropies of Table 2.1. It
corresponds to the third page of the article [65] converted to binary following the process
described in Section 4.5.

of the entropy given each condition, or in other words [57]:

H(X|Ξ) =
∑
ξ

P (ξ)H(X|ξ), (2.21)

but since every H(X|ξ) is lower than H(X), then this expression can only be lower than

H(X). Therefore, by using contexts, we are able to reduce the entropy of the source given

our model.

Table 2.1 shows the values of entropies calculated for the binary image of Figure 2.9

assuming the different context definitions of Figure 2.10. It is assumed that the image

pixels are scanned in a row by row basis, from the left to the right and from the top

to the bottom. The first option (a) actually corresponds to no-context. In the second

option (b), the context is made of the causal values of the left and the upper pixel. In the

third option (c), the context is made of the values of the left pixel, the upper pixel, and

the pixels to the left and to the right of the upper pixel. The other context definitions,

(d) and (e), can be interpreted in a similar way. The calculated entropy continuously

drops as we increase the number of previous samples that make up the context. It is

reduced to almost one fifth when the number of previous samples increases from 0 to 26

pixels.

Questions may be raised about how to choose contexts, what are the best contexts

28

Figure 2.10: Five alternative context definitions to use with a binary image, correspond-
ing to different amounts of pixels surrounding the current pixel. The current pixel is
represented by a cross, while the pixels that make up the context are numbered from
closest to farthest, respecting the rule that two pixels cannot have the same number.

Table 2.1: Values of entropies calculated for the binary image of Figure 2.9 assuming the
different context definitions of Figure 2.10. The calculated entropy reduces to almost one
fifth when the number of previous samples used increases from 0 to 26 pixels.

(a) 0.318
(b) 0.198
(c) 0.168
(d) 0.141
(e) 0.067

to use, what is the best context size, or the size of the vector ξ. These are the types

of questions that are addressed by context modeling. Context modeling is the action of

defining contexts, and assigning context patterns to probability estimates. The context

model is the rule that maps the patterns to the estimates.

There is a close relationship between context modeling and discrete-time Markov

chains. A discrete-time Markov chain can be thought of as a finite state machine with

probabilities attached to each arc [66]. They are very useful when representing depen-

dencies among samples and when developing dynamic probability models. A common

29

Figure 2.11: State machine corresponding to a first order discrete-time Markov chain
which could be used to model the dependencies in a binary source. E0 and E1 are the
states, which could mean, for example, that the current symbol is 0 and 1, respectively.
P (0|0), P (0|1), P (1|0), P (1|1) are the transition probabilities. Based on Fig. 2.3 of [57].

example of a discrete-time Markov chain is a random process with the property that

P (xn|xn−1, ..., xn−M , ...) = P (xn|xn−1, ..., xn−M). (2.22)

That is, the probability of the n-th sample only depends on the M samples immediately

preceding it. The value M is said to be the memory of the random process. Many

random processes are not strict Markov chains of this kind, but can be well approximated

by one with sufficiently large M , since the influence of previous samples fades away with

distance. In this particular example, each state is a combination of values taken by the

set {xn−1, ..., xn−M}. Let S be the size of the sample space, or the number of possible

symbols in the jargon of data compression, then the number of states is given by (S)M .

Figure 2.11 shows one example for M = 1 and S = 2. This Markov chain could be used

to model a binary source. In this example, there are only two states, E0 and E1. The

probabilities of transitioning from one state to the other, or staying in the same state, are

represented by the conditional probabilities P (0|0), P (0|1), P (1|0) and P (1|1).

The state of the Markov chain corresponds to the context in context modeling. It is

important to note that the state is not restricted to be the M samples immediately before

30

the n-th sample. Any set of previous samples, or any information available at the time

the n-th sample is processed, can be used to compose the context. Of importance is the

fact that we can represent the process as a Markov process, in which the next state can

be predicted solely based on the present state [66]. For example, in the case of a binary

image, the context could be any of the contexts depicted in Figure 2.10. In any case, in

this work, we will use M to denote the size of the context, regardless of the context being

or not the M previous samples.

2.5 Context Modeling

The traditional way of performing context modeling is by counting symbol occurrences

for each context and by using a look-up table (LUT) to store the relative or absolute

frequencies. The relative frequencies can be easily obtained from the absolute frequencies

for a given context. As discussed in Section 2.3, the relative frequencies are the maximum-

likelihood estimates of the conditional probabilities.

LUTs can be used in both forward and backward coding. In forward coding, they

are either built on the data being encoded or on some other data. If built on the data

being encoded, the LUT must be transmitted to the decoder in the compressed file. In

backward coding, the LUT is built on-the-fly by both the encoder and the decoder using

the previously encoded or decoded samples, and it is continuously updated as new samples

are seen.

Figure 2.12 shows one example of a LUT created from a binary image. Note that we

adopt the common convention that black corresponds to 0 and white corresponds to 1.

For simplicity, we have assumed that the values of the pixels outside of the image are 1.

The context definition is the one shown in Figure 2.10 (b). The LUT stores how many

times the bits 0 and 1 are seen immediately after each context, or the absolute frequencies

of the bits 0 and 1. The relative frequencies for a context can be easily obtained from

the absolute frequencies for that context. For example, the relative frequency of the bit

31

Figure 2.12: Example of LUT created from a binary image. The context definition is
the one shown in Figure 2.10 (b). This LUT stores how many times each symbol is seen
immediately after each context.

1 for the first context is 6 out of 6, or 100%, and the relative frequency of the bit 0 for

the second context is 6 out of 20, or 30%.

Despite its simplicity and often effectiveness, there are some caveats to be aware of

when using LUTs. Firstly, the number of contexts grows exponentially with the context

size. For example, in the case of a binary source, the number of contexts is given by 2M ,

where M is the context size. For M = 20, the number of contexts has already reached

1 million. This limits the maximum value of context size M that can be used with

LUTs, because of the increasing memory requirements. Secondly, except when the LUT

is built prior to encoding on the data that will be encoded, or on other sufficiently large

amount of data, the larger the context size, the more often we will encounter unexpected

situations. For example: contexts that never occurred in the original data; symbols that

never occurred after a particular context. This is known as the zero frequency problem

[57] or context dilution [67]. If no countermeasure is taken, the associated symbols are

32

Table 2.2: Number of unseen contexts and total number of contexts for the context
definitions of Figure 2.10 on the binary image of Figure 2.9. This illustrates that the
number of unseen contexts grows quickly with the context size.

Unseen Total
(a) 0 1
(b) 0 4
(c) 0 16
(d) 188 1024
(e) 67080469 67108864

encoded using many bits, which considerably increases the final bitrate in bits per sample.

Context dilution also happens when the context occurrences are so infrequent that the

probability estimates are inaccurate.

Table 2.2 shows the number of unseen contexts, for the context definitions in Fig-

ure 2.10, on the binary image of Figure 2.9. When M = 10 (context (d)) the number of

unseen contexts amounts for 18.36% of the total number of contexts, while when M = 26

(context (e)) the number of unseen contexts amounts for 99.96% of the total number of

contexts. Because the LUT cannot extrapolate the conditional probabilities for unseen

contexts, even when it has seen very similar ones, this can be a big problem. Exception

is made when the LUT is used to encode the same data that was used to build it.

In backward adaptive coding, the corresponding entry of the LUT is updated every

time a symbol is seen after a context. The probabilities of the symbols are estimated from

their absolute frequencies. Initially, the symbols can be assumed to be equiprobable, or

the initial counts of all symbols can be assumed to be equal to 1, for example. This

would solve the problem of not having previous samples to estimate the probabilities and

would avoid the zero-frequency problem right at the beginning of coding. In Section 2.6,

we discuss in more detail adaptive relative-frequency-based probability estimation in the

particular case of binary sources.

33

2.6 Context-Adaptive Binary Arithmetic Coding

Context-adaptive binary arithmetic coding (CABAC) is the entropy coder behind the

video coding standards H.265, H.266 and one of the entropy coders available in H.264.

The basic H.26X video coder consists of: a prediction step, including intra-frame and

inter-frame prediction, a transformation step, a quantization step, and an entropy coding

step. Figure 2.13 illustrates the inner workings of the H.26X standards. In summary, the

video frames are divided into blocks, each block is subtracted by an intra or inter-frame

prediction, transformed using the Discrete Cosine Transform, quantized, and entropy

coded along with other relevant information, such as the prediction method [68]. Upon

receiving the bitstream, the decoder reconstructs the frames by undoing the steps per-

formed by the encoder. Because of the quantization step, the reconstruction process is

lossy.

Figure 2.14 illustrates in more detail what happens inside the CABAC module. In

order to simplify context modeling, all values that are to be entropy coded are converted

to binary strings first. In this way, context modeling can be performed on a subsymbol

level, instead of the original domain, which permits the use of higher order conditional

probabilities without suffering from context dilution [67]. The way binarization is per-

formed depends on the syntax element [57]. Syntax elements describe how the video

signal can be reproduced at the decoder. It is important to note that the H.26X coding

standards are very complex and contain many different syntax elements. For example:

quantizer labels, position of the last nonzero label, the prediction mode, and many other

indicators and flags [68]. CABAC relies on hundreds of context models. The context

modeling performed in H.26X, that is, the decision of which probability model to use for

a given symbol, is not done based solely on the values of a few previous symbols. It is

done based on several factors, such as the quantizer state, if it is chroma or luma, the

position of the coefficient inside the transform block, and also on spatially neighboring

quantization labels. Certain syntax elements with a more random nature are not coded

using arithmetic coding and bypass the arithmetic coder.

34

Figure 2.13: Block diagram of the H.26X video coders. The frames are divided into
blocks. Each block is processed first by subtracting a prediction, which can be intra
or inter-frame, then by transforming the residual, in general using the Discrete Cosine
Transform. The transform coefficients are quantized and, together with other relevant
information, entropy coded using CABAC. After decoding the quantization labels, the
decoder recovers the residual transform coefficients, converts them to pixel values, and
adds them to the prediction. Finally, the recovered blocks are grouped to form the frames
and filtered to remove blocking artifacts, for example. This figure was adapted from
Figure 1 of [69].

Figure 2.15 (a) shows the context template used in H.266/VVC. The quantizer labels

of the elements in the shaded area are used to determine the context model, together with

other information such as the quantizer state and the position inside the transformation

block [68]. The context is made of elements in the lower right because the coefficients are

scanned in the reverse diagonal order of the block in Figure 2.15 (b). This template is

also present in H.265/HEVC [70]. As another example, when the H.264/AVC standard

uses spatially neighboring syntax elements to determine the context, it generally uses the

context template illustrated in Figure 2.15 (c), made of the elements to the left and above

the current element in the scanning order [67]. This template is also used in a particular

mode of H.266/VVC [68].

35

Figure 2.14: Block diagram of CABAC. First, the syntax elements are converted to binary
strings. Some syntax elements, with a more random nature, bypass the arithmetic coder.
The others are coded using arithmetic coding with one of several context models. The
previously coded sample is used to update the context models and is stored to form the
context for the next samples. This figure was adapted from Fig. 1 of [70].

Figure 2.15: (a) Context template and (b) reverse diagonal scan coding order used in the
regular residual coding mode of H.266/VVC. (c) Context template and (d) forward scan
order used in the transform skip residual coding mode of H.266/VVC. This figure was
adapted from Figures 3 and 5 of [68], and Figure 1 of [71].

In CABAC, the probability of the next symbol being 1 is estimated, as expected, from

the values of the previous symbols coded using the same context. However, instead of

doing this by simply computing the cumulative average, which would correspond to the

relative frequency, the H.26X standards use an exponential decay window [68]. Consider

36

a sequence of symbols, {χη}η∈N+ , associated with a given context. Instead of estimating

the probability of the next symbol being 1 from the cumulative average

ρη+1 = χ1 + ... + χη

η
, (2.23)

or, in recursive form, from

ρη+1 = χη + (η − 1)ρη

η
, (2.24)

CABAC estimates the probability from [68] [72]

ρη+1 = α[χη + (1− α)χη−1 + (1− α)2χη−2 + ... + (1− α)η−1χ1], (2.25)

where α is a constant between 0 and 1. Note that 1 + (1−α) + (1−α)2 + ... + (1−α)η−1

is equal to (1− (1− α)η)/α, which, for large η, tends to 1/α. That is, Equation (2.25) is

essentially a weighted average with exponentially decaying weights, such that closer values

have larger weights. Equation (2.25) can also be written in recursive form as [68] [72]

ρη+1 = αχη + (1− α)ρη. (2.26)

The constant α controls the rate of adaptation. A lower α results in slower adaptation,

while a larger α results in faster adaptation. In H.264 and H.265, the value of α is [67] [70]

α = 1−
(0.01875

0.5

)1/63
. (2.27)

In other words, α ≈ 0.05. In H.266, two estimates for two rates of adaptation, α0 and α1,

are maintained for each context, with the final probability estimate being the average of

the two estimates, and the values of α0 and α1 were optimized for each context, together

with the initial probabilities, using a training algorithm [68].

In H.264 and H.265 this exponential smoothing estimator is implemented using a

finite state machine with 128 states. What is tracked is a value between 0 and 0.5 which

37

represents the probability of the least probable symbol (LPS), and the value of the most

probable symbol (MPS). The probability of the LPS changes from one state to the other,

being increased if the LPS occurs and decreased if the MPS occurs. If the probability

reaches 0.5 and the LPS occurs, the probability is kept the same but the value of the MPS

is toggled [67] [70]. The H.266 standard does not use this state machine, and derives the

probability estimates using directly the recursive function in Equation (2.26) [68].

38

Chapter 3

Neural Networks and

Hyperparameter Optimization

3.1 Feedforward Neural Networks

An artificial neural network can be defined as “a massively parallel distributed processor

made up of simple processing units that has a natural propensity for storing experiential

knowledge and making it available for use.” [73]. The artificial neurons are the basic

processing units that make up the artificial neural network. Each of them is a combination

of an affine function of the form z(ψ) = wTψ + b, followed by a nonlinear function g,

also called an activation function. The output of the neuron, also called activation, then

is a = g(z). 1 The values in w are called its weights, and the value b is called its bias.

Figure 3.1 (a) shows a schematic representation of a neuron.

Many neurons can be stacked together in parallel, forming a layer. Let J be the

number of neurons being stacked in parallel, let wj and bj be the weight vector and

the bias of the j-th neuron, then the activation of the j-th neuron is aj = g(zj), where

zj = wT
j ψ + bj. The outputs of the J neurons can be represented in a single equation

by a = g(z) = g(Wψ + b), where a = [a1, ..., aJ]T , z = [z1, ..., zJ]T , W = [w1...wJ]T ,
1We have purposely left out the dependence of a and z on ψ, and will continue to do so, in order to

simplify the notation.

39

Figure 3.1: Illustrations of: (a) a neuron; (b) a layer of neurons; (c) a neural network.

b = [b1, ..., bJ]T and g(z) = [g(z1), ..., g(zJ)]T . Figure 3.1 (b) shows an illustration of a

layer.

A neural network can be obtained by sequentially stacking many layers. Let a series of

layers in a neural network be indexed by d ∈ {1, ..., dmax}, such that the lower the index,

the closer the layer is to the input. Then, the output of an arbitrary layer in the network

can be represented by a(d) = g(d)(z(d)) = g(d)(W(d)a(d−1) + b(d)), with the input of the

network corresponding to a(0) = ψ. The output of the network may be a(dmax) or z(dmax)

depending on the application, that is, it may contain or not the activation function. The

j-th row in W(d) is the transposed weight vector (w(d)
j)T of the j-th neuron in the d-th

layer, while the j-th element in b(d), or b
(d)
j , is the bias. We will use J (d) to indicate the

number of outputs of the d-th layer, which is equal to the number of neurons in the layer,

and K(d) to indicate the number of inputs of the d-th layer. For convenience, we define

J (0) as the number of elements in ψ. Then, K(d) = J (d−1) for all d. Furthermore, each

vector w(d)
j has K(d) elements, represented by w

(d)
jk .

40

Figure 3.1 (c) illustrates a neural network constructed this way. By convention, the set

of inputs is called the input layer. It is different from the other layers because it does not

contain any neurons. The last layer is called the output layer. The layers in between the

input and output layers are called the hidden layers. The networks of this type are called

feedforward neural networks, because they do not have any loops, and can be represented

by directed acyclic graphs, in contrast with other broad class of neural networks called

recurrent neural networks, which is characterized by the presence of loops, feedbacks or

cycles [73]. A network like the one in Figure 3.1 (c) is also called a multi-layer perceptron

(MLP) for historical reasons. A perceptron is a particular type of artificial neuron, which

preceded the general definition we gave in the beginning of this section. In a perceptron,

the inputs and outputs are either 0 or 1, and the activation function is the heaviside step

function [74]. Initially, a MLP was a network formed by combining perceptrons, but the

community continued using the term to describe more general networks, with inputs other

than 0 and 1, and activation functions other than the heaviside step function.

It can be shown that MLPs are universal approximators [74] [75]. That is, they can

approximate any continuous function ζ : RJ(0) → RJ(dmax) of J (0) inputs and J (dmax)

outputs with arbitrary precision, even if the neural network has a single hidden layer,

as long as there are enough neurons in that layer, or even if the neural network has a

limited number of neurons in each layer, as long as there are enough layers. These results

are known as universal approximation theorems, particularly the arbitrary width and the

arbitrary depth cases. The nonlinear functions in the hidden layers are essential. Without

them, the neural network could only approximate linear functions. The approximation

can be proved for different nonlinear functions. The most common nonlinear functions are

the sigmoid function and the ReLU function (Figure 3.2). With respect to the neurons

in the last layer, the theorems usually assume that there is no activation function. In

this way, the range of values in an output is unlimited. However, if the outputs are

supposed to be probabilities, then the neurons in the output layer may contain a sigmoid

activation function, if the probabilities are supposed to be independent. Alternatively,

41

Figure 3.2: Sigmoid (left) and ReLU (right) activation functions.

they may contain a softmax activation function, if the probabilities are supposed to be

from the same probability distribution. For example, consider a single layer of neurons.

The softmax activation function receives the vector z as input, and outputs a vector with

the same size as the input, Softmax(z). The j-th element of the output of the softmax

has the form ezj /
∑J

j′=1 ezj′ . Not only the softmax transforms the inputs into probabilities

from the same distribution (fits the numbers into the range (0, 1) and makes them add

up to 1), but it also emphasizes the largest number (except when all zj are small) [75].

3.2 Neural Network Training

Neural network training is usually based on two algorithms: mini-batch stochastic gradient

descent and backpropagation. The first one provides a way to minimize a particular loss

function, which is based on the gradients of the loss function, and the second one provides

an efficient way to obtain the gradients of the loss function with respect to the parameters

of the network.

A loss function, or cost function, is a function that we intend to minimize. For example,

we may wish to minimize the mean squared error between the outputs of the network and

the expected outputs for particular inputs. The set of inputs and their corresponding

42

expected outputs form the training dataset. This loss function can be represented as:

L =
∑

(ψ,y)∈D

∥y− f(ψ,θ)∥2

|D|
, (3.1)

where (ψ, y) is one pair of input and expected output from the dataset D, the vector θ

represents the network parameters, and f(ψ,θ) is the output of the network for the

input ψ.

In order to minimize such a loss function, we assume the unlikely case that the loss

function in (3.1) is convex with respect to the network parameters. The partial derivative

of the loss function with respect to a generic network parameter θ, when this is at a

particular value θ0, or ∂L
∂θ

∣∣∣
θ0

, gives the direction of change in L for a positive change in θ.

If the partial derivative is positive, then an increase in θ causes an increase in L. If the

partial derivative is negative, then an increase in θ causes a decrease in L. If we want

to minimize L, then it makes sense to change θ in the opposite direction of the partial

derivative. If a positive change in θ causes a positive change in L, then we should reduce θ.

If a positive change in θ causes a negative change in L, then we should increase θ. This

can be achieved by the following equation:

θnew = θold − ϵ
∂L

∂θ

∣∣∣∣∣
θold

, (3.2)

where the constant ϵ is called the learning rate. Let θ denote all network parameters.

Instead of updating only θ, we could approach the minimum much quicker if we did similar

updates to all parameters in θ . This could be compactly represented by:

θnew = θold − ϵ(∇θL)θold , (3.3)

where ∇θL is the gradient of L with respect to θ. Naturally, a single update of all network

parameters using this update rule would most likely not minimize L with respect to the

network parameters. However, if, on the other hand, this update rule is sequentially

43

applied, then the function L can in fact be minimized, provided that the value of ϵ is low

enough [76]. This is the gradient descent (GD) algorithm.

We have assumed that L is convex with respect to the network parameters. This

ensures that the loss function has a single minimum which is also a global minimum.

Unfortunately, this does not match the common case. In practice, it is often the case

that L is a function with a very complex shape in a very high-dimensional space, with

many local minima. However, this function can still be considered locally convex in many

places. Therefore, GD can still find a local minimum, and we want this minimum to be

not too far from the global minimum. In order to find a good local minimum, the network

parameters’ initialization values are very important. As a consequence, there exist many

initialization methods.

One update using the loss function in (3.1) considers all training samples at once.

Because of this, the algorithm we just described is also called batch gradient descent.

However, this algorithm is not very practical when the training samples are very high-

dimensional. This is the case, for example, with images. It would require a computer with

a very large volatile memory to hold all such data at once. One alternative is to replace

the single update for the whole dataset with several updates, each considering a portion

of the data at a time. Consider, for example, that one update is made for every sample.

Let I indicate a set composed of a single element from D. Then, the loss function for one

sample would be

LI = ∥y− f(ψ,θ)∥2. (3.4)

The update for one training sample would be

θnew = θold − ϵ
∂LI

∂θ

∣∣∣∣∣
θold

. (3.5)

The update for all network parameters at once would be

θnew = θold − ϵ(∇θLI)θold . (3.6)

44

Surprisingly, the algorithm with one update per sample would still approach the minimum

of (3.1), assuming there is only one, with respect to the network parameters [64],[77],[76].

This is so because ∂LI/∂θ|θold is an unbiased estimator to ∂L/∂θ|θold . However, for a

constant ϵ, there is a bias term separating the minimum found by the algorithm and the

true minimum. This bias term can be made to disappear if the learning rate is reduced

as the number of iterations increases [64],[77],[76]. This is the stochastic gradient descent

algorithm.

Similar statements can be made if more samples are taken at a time. For example, for

loss function LB = ∑
(ψ,y)∈B ∥y− f(ψ,θ)∥2/|B| and partial derivatives ∂LB/∂θ, where B

is a subset of the data containing |B| < |D| samples. This is called mini-batch stochastic

gradient descent. It is normally used over the other alternatives when training neural

networks because it is more memory efficient than GD and more time efficient than SGD.

The parameter B = |B| is the “batch size”. One pass over all training samples, be it

on GD, SGD or Mini-batch SGD, is called one “epoch”. One GD update corresponds to

one epoch, while several SGD or Mini-batch SGD updates are necessary to conclude one

epoch.

The difference between machine learning and normal optimization is that the function

one minimizes is not exactly the function one wants to minimize. You want to minimize

the loss function for the test data, or more specifically, for the true distribution of the

data, but instead the loss function for the training data is minimized [64].

As mentioned at the beginning of this section, the backpropagation algorithm can

be used to find the partial derivatives of the loss function with respect to the network

parameters in an efficient way. We will not be covering it in detail, as this is out of the

scope of this work. However, the interested reader is referred to the excellent description

of the backpropagation algorithm present in [74].

45

3.3 Recurrent Neural Networks

Consider again a sequence of data elements x(N) = {x1, x2, ..., xN}. When discussing

recurrent neural networks (RNNs), the elements of the sequence are often words in a

language, for example English, or letters from an alphabet, for example the English al-

phabet, and are generally called tokens. In order to treat the tokens numerically, they

are converted to a suitable numerical representation. Associating each token to an in-

teger is known as ordinal encoding. Associating each token to a binary vector with a

single nonzero entry, with the index of the nonzero entry encoding the token, is known as

one-hot-encoding. In the following, assume that each token is represented by its one-hot-

encoding. Let us compare a couple of network architectures when processing this input

sequence one input at a time.

Let the sequence of tokens in one-hot-encoding representation be denoted by

t1, t2, ..., tN . The following equations describe a MLP with one hidden layer, acting on

one input at a time:

a(1)
n = g(1)(W(1)tn + b(1)) (3.7)

a(2)
n = g(2)(W(2)a(1)

n + b(2)) (3.8)

where W(d) is the weight matrix, b(d) is the bias vector, g(d) are the activation functions

and a(d)
n is the output of the d-th layer at the n-th time instant.

Since the network has no knowledge of the previous input when computing the output

for the current input, the most this network can do is compute a mapping from the

one-hot-encoding representation of the inputs to another representation, possibly with

less numbers. In other words, it can, at most, be used as an embedding layer [64].

Note that this is different from coding for data compression. The output vectors are

continuous-valued, with a fixed size, and there is no guarantee that different inputs would

not be mapped to equal or similar outputs. In fact, the purpose of an embedding layer is

usually to approximate the representations of similar inputs, for example, words that have

similar meanings. These representations are often called word embeddings. In practice

46

an embedding layer often corresponds to a single linear layer.

A recurrent neural network, on the other hand, can take previous inputs into account

when computing the output for the current input. The following equations describe a

basic (Elman) RNN [73], [78]:

ā(1)
n = ḡ(1)

W̄(1)

ā(1)
n−1

tn

+ b̄(1)

 , (3.9)

ā(2)
n = ḡ(2)(W̄(2)ā(1)

n + b̄(2)), (3.10)

where the symbols have similar meanings to what they had in the MLP equations. The

only difference here is that the input of the network is the concatenation of tn with

ā(1)
n−1 , the output of the hidden layer for the previous input, and therefore W̄(1) has more

columns. In this way, information about the previous network state can be passed to the

calculation of the current network state. For initialization purposes, ā(1)
0 may be all zeros,

for example.

For the sake of illustration, consider the common task of predicting the next token

in a sequence using a RNN. Assume that the output of the network approximates the

one-hot-encoding of the next token in the sequence as a real-valued vector. This could be

achieved with a Softmax activation function in the output layer and appropriate training.

After training, during utilization of the model, the actual prediction of the network for the

next token could be obtained, in ordinal encoding, by taking the argmax of the output.

The RNN can be trained for this task as follows. Let f(x(n−1),θ) be the output of

the RNN. Let the loss function for one sequence position n be d(tn,f(x(n−1),θ)), where

d is some distance measure. Then the loss function for the entire sequence would be:

Lseq =
N∑

n=1
d(tn,f(x(n−1),θ)), (3.11)

where x(0) = {} is the empty set and f({},θ) represent the output of the RNN for the first

element of the sequence. During training with stochastic gradient descent, the batch is

47

composed of several sequences of a given length. The network goes through each sequence

computing outputs. The loss for the outputs are computed, first for each token, then for

one entire sequence, then for all sequences. The total loss is used to calculate the partial

derivatives of the loss function with respect to the network parameters. Then, the network

parameters are updated using the partial derivatives. Since there is parameter-sharing

across time steps, the partial derivatives of the loss function with respect to the shared

network parameters contain terms for different time steps. For this reason, the algorithm

used to compute the partial derivatives of the loss function with respect to the parameters

of a RNN is called backpropagation through time (BPTT) [79]. Sometimes the number

of past samples considered is truncated and the resulting algorithm is called truncated

backpropagation through time (TBPTT) [79].

In order to use a MLP for the same task of predicting the next token from the pre-

vious tokens, the input to the network needs to include M − 1 more previous samples

besides only tn−1. Hence, the network would have M one-hot-encoded vectors as input

tn−1, tn−2, tn−3, ..., tn−M and the output of the network would be the network prediction

for tn. The number of input nodes would be M · S. This could be a problem depending

on the vocabulary size S, because the number of parameters could quickly become very

large. One could try using ordinal encoding for the inputs instead of one-hot-encoding,

in which case the number of input nodes would simply be M . However, since the neural

network inputs are usually normalized to the [0, 1] range for numerical reasons, this would

mean fitting many numbers into a small range, except, for example, in the special case of

binary data. In any case, the MLP would only be capable of taking a limited amount of

previous samples (M) into account, while, in theory, a RNN is capable of considering an

unlimited amount of previous samples.

Note that naive RNNs as described here are known to have short memory, that is,

the influence of previous samples on the current output tend to vanish quickly, due to

the vanishing gradient problem [64]. This has motivated the proposal of more sophisti-

cated RNNs, mainly long-short-term-memory (LSTM) networks and gated recurrent units

48

(GRU) [64]. Although their inner workings may considerably change, as black boxes they

are actually quite similar to the naive RNNs. They are all based on the same idea of

having a hidden state being passed from the previous time step to the next.

3.4 Cross-Validation

As mentioned in Section 3.2, one of the main differences between machine learning and

regular optimization is that, in machine learning, the models are optimized on a different

setting from the one in which we are primarily interested. The phase in which the model is

optimized is known as the training phase, while the phase in which the model is effectively

utilized is known as the inference phase, or the prediction phase.

However, since the model is intended to be utilized on data different from the one it was

trained on, it is essential to estimate the generalization performance of the model before

utilizing it. Furthermore, since there are so many different machine learning algorithms,

each of which may have multiple variations, it is also very common to compare multiple

algorithms, and algorithm configurations, before deciding on a specific one. These two

steps are part of a third phase of machine learning which is known as the cross-validation

phase [80]. The specific part in which different models are compared is also known as the

model selection phase, and the part in which the generalization performance is estimated

is known as the test phase.

The different machine learning algorithms often have parameters which are not learned

during training, and have to be decided on by other means. Think of the number of layers

in a multi-layer perceptron, the number of neurons in each layer, or the type of activation

function used in the hidden neurons, for example. These parameters are referred to, in

the machine learning literature, as the model hyperparameters. When the model selection

phase is focused on selecting hyperparameters for a specific algorithm, this phase can also

be called the hyperparameter selection phase, or hyperparameter optimization.

49

There are two main types of cross-validation: holdout cross-validation and k-fold cross-

validation [80]. In proper holdout cross-validation with model selection, the available

data is split into three datasets: a training dataset, a validation dataset, and a test

dataset. As mentioned in Section 3.2, the training dataset is used to optimize the model.

The validation dataset, in its turn, is used to estimate the generalization performance

of the different models during model selection. However, since we use the results on the

validation set to select a specific model, it may now have been overfitted to the validation

set. In order to properly estimate its generalization performance, we must evaluate it

again on a third dataset. This is the purpose of the test set.

In k-fold cross-validation, the training and validation datasets are normally combined

together and subdivided into k folds. During model selection, each of the different models

is trained and evaluated k times. In each time, k − 1 folds are used for training, and the

other 1 fold is used for evaluation. After evaluating each model on all folds, their final gen-

eralization performances are estimated by their average performances on all folds. Then,

the selected model is retrained on all folds and tested on the third, and independent, test

set [80]. k-fold cross-validation is therefore more reliable than holdout cross-validation,

but it is also more costly.

3.5 Hyperparameter Optimization

The problem of selecting the hyperparameters of a model is also an optimization problem,

as is the model training. However, the main difference is that we do not know the

derivatives of the cost function with respect to the hyperparameters. Therefore we cannot

use backpropagation and stochastic gradient descent to learn those parameters. Another

difference is that the models are evaluated on the validation set, instead of the training

set.

There are two main types of hyperparameter optimization: single-objective hyper-

parameter optimization (SOHPO) and multiple-objective hyperparameter optimization

50

(MOHPO). Consider first SOHPO. Let the hyperparameters of a model be represented

by a vector h ∈ H, where H is the set of possible hyperparameter vectors, and the

single-objective function by c : H → R. SOHPO methods seek to solve 2

h∗ = arg min
h∈H

c(h), (3.12)

where the value of the objective function is taken on the validation set. Note that, in

general, the space of hyperparameter vectors,H, is too large. Therefore it is not possible to

train and evaluate the models for all possible h. Then, the optimal hyperparameter vector

must be estimated based on a subset of H. SOHPO methods differ on how this subset is

obtained. The most basic SOHPO methods are grid-search and random-search. In grid-

search, it is previously decided on a set of values to be tested for each hyperparameter.

Then all possible combinations of those hyperparameter values are tested. In random-

search, on the other hand, instead of testing all possible combinations, only a handful

of randomly selected combinations are tested. This allows for considering a larger set of

possible values for each hyperparameter.

In contrast to SOHPO, when optimizing multiple objectives there is not one sin-

gle best solution, but rather a set of incomparable non-dominated solutions, or Pareto-

optimal solutions. Let the multiple objectives be represented by a vector-valued function

c : H → Rν . A hyperparameter configuration h is said to Pareto-dominate another h′,

writen as h ≺ h′, if and only if [53]:

∀ i ∈ {1, ..., ν} : ci(h) ≤ ci(h′) ∧

∃ j ∈ {1, ..., ν} : cj(h) < cj(h′).
(3.13)

A configuration is said to be non-dominated, or Pareto-optimal, if and only if there is no

other configuration that dominates it. Different from SOHPO, two configurations can be

incomparable, when there exist i, j ∈ {1, ..., ν} such that ci(h) < ci(h′) and cj(h′) < cj(h).
2In this work, we assume, without loss of generality, that all objectives that should be maximized have

been converted to ones that should be minimized, for example, by multiplying them by −1.

51

The set of incomparable non-dominated solutions is called the Pareto set, and is defined

as

P := {h ∈ H | ∄ h′ ∈ H s.t. h′ ≺ h}. (3.14)

These solutions have different trade-offs. It is not possible to improve one objective

without degrading another objective. The image of P under c, c(P), is called the Pareto

front.

MOHPO algorithms seek to approximate the set of Pareto-optimal solutions. This

can be expressed as [53]:

min
h∈H

c(h) = min
h∈H

(c1(h), ..., cν(h)). (3.15)

Or [81]:
min c1(h), ..., min cν(h),

h ∈ H.

(3.16)

Again, it is not possible to test all hyperparameter configurations in H. Therefore, a few

hyperparameter vectors must be selected somehow. Grid-search and random-search can

also be used in MOHPO. They have to be combined with some algorithm to find the Pareto

set of a known set of points. One such algorithm is the Best algorithm described in [82].

This algorithm starts with any point, and iterates through the list of hyperparameter

vectors, removing the ones dominated by the given point, until it finds a point which

dominates it. It then removes any dominated points that may have remained in the list.

It repeats this process until the list is empty.

3.6 Lower Convex Hull

A related concept to the Pareto front is the concept of lower convex hull (LCH). Being on

the LCH is actually a stronger requirement than being on the Pareto frontier. The points

on the LCH are a subset of the points that are on the Pareto frontier. Points on the

52

Figure 3.3: The Pareto frontier versus the LCH of a set of points. The points on the
Pareto frontier are those represented by the red squares, while the points on the LCH are
those touching the blue dashed lines.

Pareto frontier are those with no points on the lower left quadrant. The Pareto frontier

includes some “interior” points, which the LCH does not.

Assume, without loss of generality, that there are only two objectives, c1 and c2.

Consider the minimization problem:

min
h

c1(h) + λc2(h). (3.17)

Minimizing it for a specific λ corresponds to sliding a line with a specific inclination,

starting from the origin, until it hits a point (c1(h), c2(h)). The first point that is touched

by the line is the minimum. When λ = 0, the line is vertical. When λ → ∞, the line is

nearly horizontal. For 0 ≤ λ < ∞, the orientation of the line is something in between.

Doing so with various choices of λ ∈ [0,∞) allow us to sweep out the lower left convex

hull of the points. This process excludes some of the points on the pareto frontier. The

difference between the LCH and the Pareto frontier is exemplified in Figure 3.3.

Instead of always saying “the lower left convex hull” of the cloud of points, it is common

to refer to it simply as “the lower convex hull”. Some might even simply say “the convex

53

Figure 3.4: Illustration of an algorithm which can be used to find the LCH based on the
Gift Wrapping algorithm. The algorithm starts with the leftmost point, and subsequently
selects the point with lowest polar angle, with respect to the last found convex-hull side.

hull” when referring to it.

The LCH can be defined in higher dimensions in a similar way. For example, for

objectives c1, c2 and c3, in which case the minimization problems would have the form

minh c1(h) + λc2(h) + γc3(h), with λ ∈ [0,∞) and γ ∈ [0,∞).

The LCH in 2D can be found in various ways. One of them is by a modified version

of the gift wrapping algorithm [83]. We begin with the leftmost point. This is the

point found by minimizing the expression in (3.17) for λ = 0, or, in other words, the

first point touched when sliding a vertical line along the horizontal axis. Consider the

line with λ going through the most recently selected point. The point which gives the

smallest anticlockwise angle with respect to this line, with the most recently selected

point as vertex, is the next point of the LCH. The algorithm then repeats this procedure,

keeping track of the inclination of the last convex-hull side chosen, and selecting the

next LCH point which gives the smallest polar angle with respect to this line-segment.

The algorithm stops when the line becomes horizontal or increasing. This procedure is

illustrated in Figure 3.4.

54

Figure 3.5: Illustration of the Hypervolume of Pareto set P with reference point r. The
hypervolume is the volume of the space dominated by P and bounded from above by r.

3.7 Dominated Hypervolume

Given a reference point r ∈ Rν , the dominated hypervolume (HV) of a Pareto set P is the

volume of the space dominated by P and bounded from above by r [53]. The coordinate

values of the reference point should be set to slightly worse than the values a decision

maker would tolerate. Figure 3.5 illustrates the hypervolume in a two-objective problem.

The dominated hypervolume is also known as the hypervolume indicator.

3.8 Bayesian Optimization

Bayesian optimization [84] [85] is an optimization procedure which is basically composed

of three main elements: an objective function; a surrogate function; and an acquisition

function. The objective function is the unknown function we wish to optimize. Since it

is unknown, that is, it does not have a closed form, we cannot estimate its derivatives, in

order to use methods such as gradient descent. To further complicate things, it is usually

a noisy function, and, in general, very expensive to evaluate. The surrogate function is a

probabilistic model of the objective function that we build based on previously observed

55

samples. It is very common to use a Gaussian Process model as surrogate function.

The Gaussian Process model returns not only the estimated value of the function at a

given domain point (the mean) but also a level of uncertainty (the variance). Finally,

the acquisition function is a function of the mean and variance values returned by the

Gaussian Process Model which is used to determine which point of the domain should be

evaluated next using the costly objective function. Once a new point has been evaluated

using the expensive-to-compute function, the Gaussian Process Model is updated, and

a new point from the domain is selected using the acquisition function. This process is

continued as long as the user desires.

There are many acquisition functions that can be used with Bayesian optimization.

One of the most common is the expected improvement (EI) [81]. Let improvement be

defined as

I(c) =


0, if c > cmin

cmin − c, otherwise
, (3.18)

where c is an arbitrary objective value, and cmin is the best estimate of the objective

minimum so far. Then the EI can be written as:

EI(h) =
∫ cmin

−∞
I(c)PDFh(c)dc, (3.19)

where PDFh denotes the estimated probability density function of the objective for domain

point h. The EI can be extended to noisy settings by treating the current best objective

value as a random variable as well, and obtaining the corresponding expected value of

expression (3.19) [86]. The resulting integral does not have a closed form, but can be

handled with Monte-Carlo integration [86] [87].

The simplest, and also the most limited, approach to tackle multiple objectives is

Scalarization. Scalarization turns a multi-objective optimization problem into a single-

objective one, which can be handled with single-objective Bayesian optimization, for ex-

ample. One of the most common scalarization methods is the weighted sum approach [53].

56

The main drawback of scalarization is that it is not truly multi-objective optimization. It

does not approximate the Pareto frontier. It creates a new objective, which is a function

of the multiple-objectives, and optimizes it instead.

The EI acquisition function can be extended to multi-objective optimization by defin-

ing the improvement in terms of the hypervolumes of two estimates of the Pareto front.

Let Et be the current set of non-dominated solutions. Then we can define the multi-

objective improvement as [81]

I(c(h)) =


HV(Et ∪ {c(h)})− HV(Et), if Et non-dominates c(h)

0, otherwise
. (3.20)

The expected hypervolume improvement (EHVI) can be defined as:

EHVI(h) =
∫

c∈Vnd

I(c)PDFh(c)dc, (3.21)

where c is the vector of multiple objectives, and Vnd := {c : c is non-dominated by Et}.

The EHVI can also be extended to noisy settings in a similar way to EI, by integrating

over the uncertainty in the function values at the observed points [88].

ParEGO is a multi-objective Bayesian Optimization method which relies on scalariza-

tion to approximate the whole Pareto front [89]. It is based on the assumption that the

Pareto front can be approximated by using a different scalarization with the acquisition

function at each iteration. Each time, with a different weight vector. With this approach,

an approximation to the whole Pareto front can be gradually built up [89]. ParEGO can

be easily extended to the noisy setting by using the noisy version of the EI [90].

3.9 Variational Image Compression

Variational image compression [26] [27] is a form of transform coding using neural net-

works. In traditional transform coding of images, the input image ψ is transformed from

57

pixel domain to another more suitable domain, in which loss of information due to quan-

tization is more tolerated. The transformed data is then quantized and entropy coded,

using arithmetic coding, for example. The transformation maps a point in the original

pixel domain, ψ (with number of dimensions equal to the number of pixels), to a point

in the transformed domain, ω (with number of dimensions depending on the transform).

Neural networks operate in continuous domains. They require differentiable operations

in order to be trained using gradient descent. Quantization is a real problem for neural

networks, because the derivative of the quantization function is zero almost everywhere.

Variational image compression is able to circumvent this problem, by essentially replacing

quantization with the addition of uniform noise, in the range [−1/2, 1/2], during training.

Let ω̂ (with associated random variable Ω̂) denote the quantized version of the data

in transformed domain, and let ω̃ (with associated random variable Ω̃) denote the noisy

version. Initially, the input image ψ is transformed by a neural network, which out-

puts ω. Then, uniform noise in the range [−1/2, 1/2] is added, giving ω̃ with distribution

qΩ̃|Ψ(ω̃|ψ). During training, the noisy version of the transformed data is used, but during

inference, actual quantization is performed.

A model for the unconditional prior probability distribution of the quantized rep-

resentation is also required in order to encode it using entropy coding. An important

consequence of replacing quantization with the addition of uniform noise, with the same

width as the quantization bins, is that the probability density function of the noisy data

pΩ̃(ω̃) is a continuous function that interpolates the probability mass function of the

quantized data pΩ̂(ω̂) at integer positions [26]. This is a consequence of the fact that

the probability distribution of the sum of two random variables is the convolution of

the distributions of the two random variables [91], therefore pΩ̃(ω̃) =
∫ ω̃+1/2

ω̃−1/2 pΩ(ω)dω.

Furthermore, the probability mass function pΩ̂(ω̂) for a given ω̂ is the integral of pΩ(ω)

over the corresponding quantization bin [26] [27], or pΩ̂(ω̂) =
∫ ω̂+1/2

ω̂−1/2 pΩ(ω)dω. Then

pΩ̃(i) = pΩ̂(i), for integer i.

The unconditional prior probability distribution of Ω̃ is modeled by a non-parametric

58

fully factorized density model pΩ̃(ω̃), and is learned during training [26] [27]. By fully

factorized we mean that the components of Ω̃ are independent from each other. By

non-parametric we mean that no assumption is made about the shape of the distribu-

tion of each component of Ω̃. This model is trained to minimize the negative expected

likelihood [26]:

−EΩ̃
∑

i

[
pΩ̃i

(ω̃i;ϕ(i))
]

(3.22)

Where pΩ̃i
is the probability distribution of one Ω̃i, which is one component of Ω̃, and

ϕ(i) represents the parameter vector for model pΩ̃i
. The encoder portion of the variational

autoencoder is illustrated in the top part of Figure 3.6.

Decoding is also performed with an uncertainty. Given some vector ω̃ in transformed

domain, the probability of the original image being ψ is assumed to be pΨ|Ω̃(ψ|ω̃) =

N (ψ; ψ̃, (2λ)−1I), where ψ̃ is the output of a synthesis transform (a neural network)

and N (ψ; ψ̃, (2λ)−1I) denote a multivariate normal distribution with mean vector ψ̃ and

covariance matrix (2λ)−1I, where I is the identity matrix and λ is a constant. Again this

specific choice of normal distribution is not arbitrary. It is chosen so that

− ln(pΨ|Ω̃(ψ|ω̃)) = − ln
(

const.× exp
(
−1

2(ψ − ψ̃)T Σ−1(ψ − ψ̃)
))

= λ∥ψ − ψ̃∥2 + const., (3.23)

where Σ = (2λ)−1I is the covariance matrix. This term appears in the loss function of the

variational autoencoder. The decoder portion of the variational autoencoder is illustrated

in the bottom part of Figure 3.6.

In variational inference terms [92], the encoder is linked to the inference model, while

the decoder is linked to the generative model. The objective of the generative model is

to generate the image from the latent representation, and the objective of the inference

model is to infer the latent representation from the image. The true posterior distribution

pΩ̃|Ψ(ω̃|ψ) of the latent representation is assumed intractable. Therefore, it is approxi-

mated by the parametric variational density qΩ̃|Ψ(ω̃|ψ). The variational autoencoder is

59

trained to minimize the Kullback-Leibler divergence between qΩ̃|Ψ(ω̃|ψ) and pΩ̃|Ψ(ω̃|ψ)

for every ψ in the training set, where ψ has distribution pΨ(ψ) :

EΨ∼pΨ [DKL[qΩ̃|Ψ||pΩ̃|Ψ]] = EΨ∼pΨ [EΩ̃∼qΩ̃|Ψ
[ln qΩ̃|Ψ(ω̃|ψ)− ln pΩ̃|Ψ(ω̃|ψ)]] =

EΨ∼pΨ [EΩ̃∼qΩ̃|Ψ
[ln qΩ̃|Ψ(ω̃|ψ)− ln pΨ|Ω̃(ψ|ω̃)− ln pΩ̃(ω̃)]] + const. (3.24)

The first term of expression (3.24) is zero, because the probability density function

qΩ̃|Ψ(ω̃|ψ) is the product of several uniform distributions with width 1, and therefore

is equal to 1 for every ω̃ with non-zero density [27]. The second term is the weighted

distortion (Equation (3.23)). Finally, the third term EΨ∼pΨ [EΩ̃∼qΩ̃|Ψ
[− ln(pΩ̃(ω̃))]] is the

differential (continuous) cross-entropy between the marginal EΨ∼pΨ [qΩ̃|Ψ(ω̃|ψ)] and the

prior pΩ̃(ω̃). Both the distortion and cross-entropy terms in expression (3.24) closely

approximate the quantization error and the average codeword length of the variational

autoencoder [26] [27].

60

Figure 3.6: Block diagram of the variational autoencoder. The input image ψ is initially
transformed by an analysis neural network. The output of the analysis network ω is
then quantized during inference, which is represented by the “Q” block, or is added with
uniform noise during training, which is represented by the “U” block. The noisy version
of the transformed image is represented by ω̃, while the quantized version is represented
by ω̂. The quantized data is arithmetically encoded and then decoded using an also
learned probability mass function pΩ̂. Then, a synthesis network converts the data back
to pixel domain. The output is either ψ̂ or ψ̃, depending if the input was ω̂ or ω̃.

61

Chapter 4

Perceptron Coding

4.1 Motivation

Our objective is to propose a neural-based replacement for the LUT, which is used in

many data compression standards. We explained the LUT in detail in Section 2.5. In

data compression, LUTs are often used as context models for arithmetic coding. Broadly

speaking, a context model can be seen as a function f : RM → RS, where M is the number

of values that make up the context, and S is the number of symbols. The context model

returns the estimates of the conditional probabilities of the symbols given the context.

The LUT is optimal when applied to the observed data. It gives the MLE of the con-

ditional probabilities, which also translates to achieving the minimum average codeword

length. However, the LUT is also maximally overfit. It has a huge number of parameters,

one for each combination of symbol and context. The number of parameters of the LUT

is (SM)S = SM+1, where S is the number of possible symbols and M is the context size.

It suffers from the zero-frequency problem or context dilution [57], which happens when a

symbol to be encoded has not been encountered before for a given context. In such a case,

the conditional probability of the symbol is zero, and, in theory, it would take an infinite

number of bits to encode it, unless any precaution has been taken, such as starting with

a count of 1 for every symbol. This is a clear case of overfitting, and it happens more

62

frequently for larger numbers of LUT parameters, or larger context size M .

In theory, neural networks can serve as drop-in replacements for LUTs. Neural net-

works, such as MLPs, are universal approximators, and can therefore approximate any

continuous function. Although convolutional neural networks are also universal approx-

imators [75], they are more stringent in their assumptions about the input data. MLPs

are more general and flexible for different types of data. Besides universal approximation,

with neural networks it is possible to control the number of parameters, trading off gen-

eralization error (or variance, or error in unobserved data) for approximation error (or

bias, or error in observed data).

Let the context be represented by a vector ξ ∈ RM . We represent the context as

a vector of real numbers, even though the symbols are generally integers, because the

context is the input of the neural network, and the neural network accepts any real

number as input. Let the neural network without activation function be represented

by the function f̂(ξ,θ), where θ represents the network parameters. Then, the neural

network output with activation can be represented as f(ξ,θ) = Softmax(f̂(ξ,θ)). These

are the conditional probability estimates of the symbols given the context ξ. In order to

train the neural network, we need a way to tell if it is doing a good job or not. In other

words, we need a cost function.

In Section 2.2 we have seen that an ideal arithmetic coder compresses a sequence

x1, x2, ..., xN with − log2(P (x1, x2, ..., xN)) bits. This can be expanded as

− log2(P (x1, x2, ..., xN)) = − log2(P (x1))− log2(P (x2|x1))− ...− log2(P (xN |xN−1, ..., x1)).

(4.1)

That is, each symbol in the sequence is compressed with a number of bits equal to the

negative log of its conditional probability. Then, we can train the neural network to

minimize the negative log of the symbol probabilities output by the network. This can

63

be mathematically expressed as

L = −
N∑

n=1
log2(tT

nf(ξn,θ)), (4.2)

where tn and ξn are the one-hot-encoding and the context for the n-th symbol in the

sequence, xn, and f(ξn,θ) are the estimated symbol probabilities given the context ξn.

Note that, by the definition of one-hot-encoding, tn is a binary vector with only a single

nonzero entry, which is associated with a particular value of xn. Therefore, tT
nf(ξn,θ)

selects the component of f(ξn,θ) associated with the symbol xn.

Note that this is also equivalent to seeking to maximize the probabilities that are

output by the network for the observed symbols. It is also equivalent to seeking the

MLE of the conditional probabilities, which, as we know from Section 2.5, are the relative

frequencies stored by the LUT. If there are enough parameters in the network, it could

learn to exactly reproduce the LUT. For example, a single layer of neurons, with one

neuron per conditional probability, could simply learn to store the relative frequencies,

one per neuron. However, by limiting the number of parameters of the network, we force

it to make more interesting extrapolations about the underlying structure of the data,

which can better generalize in the case of unobserved data.

The loss function in (4.2) is the cross-entropy loss. If we group the terms in (4.2)

for which the values of xn are the same, expression (4.2) is then the sum of the negative

log of the probability estimates of the possible symbols, multiplied by their absolute

frequencies. This is equivalent to the cross-entropy we have seen in Section 2.3 when

discussing probability estimation, except for a normalization factor. By minimizing it

we minimize the KLD between the observed and estimated probability distributions. It

approaches the entropy of the source according to the observed distribution. The cross-

entropy loss is also extensively used in machine learning to train classification models.

However, the main objective there is not to minimize the average codeword length, but

to find a good estimate of the membership probabilities in a more practical way [62].

64

4.2 Perceptron Coding

We call the neural based method we developed to replace the LUT as perceptron coding

(PC). We transform any input data into binary data beforehand. This is so for the same

reason as CABAC: in order to simplify context modeling. The simplification comes into

two forms: first, with fewer possible symbols, there are fewer possible contexts for the

same context size M . This means that the same contexts occur more frequently, and the

possibility of coming across unseen contexts is lower. Second, for each context, there are

fewer conditional probabilities. These two factors simplify the neural network training

and learning.

As neural network architecture, we use MLPs, two hidden layers, and ReLU activation

in the hidden neurons. MLPs are universal approximators, and can therefore approximate

any continuous function, provided there are enough neurons. CNNs are also universal

approximators [75], but MLPs make fewer assumptions about the input data. CNNs were

developed for computer vision tasks, and they learn filters which are capable of extracting

interesting visual features in the input data. With MLPs, each input may have a different

meaning, they do not have to be all neighboring pixels from the same image for example.

We use two hidden layers because, although even one hidden layer would be sufficient,

if there were enough neurons in that layer, with two hidden layers we increase the number

of ways the neural network can learn the same function [74]. We could further increase

the number of layers. However, the training becomes harder the larger the number of

layers, because of the vanishing gradient problem [74]. Therefore, we keep the number of

hidden layers equal to two as a middle-ground compromise.

In regards to the number of neurons in each layer, in theory, we should define the

number of neurons in each layer according to the amount of approximation error that we

consider acceptable. However, recall that we do not only want the network to approximate

the function on the training set, but we also want it to generalize well to other unseen

data. For that, it is important that the number of parameters is not too high to avoid

overfitting. In any case, it is expected that the complexity of the underlying function

65

increases with the context size M , and, as a consequence, it is also necessary to increase

the number of neurons in each layer to keep the approximation error low. For this reason,

we use a number of hidden neurons per hidden layer which is proportional to the context

size M .

We use 64M units in the first hidden layer and 32M units in the second hidden layer.

It is important to note that these numbers are somewhat arbitrary. These are numbers

which we assume to yield good approximation and generalization errors. Later results

confirm this to some extent. Note that, in this section, our focus is not on the neural

network design process. We explore the problem of hyperparameter selection in more

depth in Section 5.8. Note that we use more neurons in the first hidden layer compared

to the second hidden layer. This pyramid structure is based on a common design strategy

present in many works that use MLPs, for example [22], [93]. In Section 5.8, we also

present some results that corroborate this common design strategy.

Since the data is converted to binary form, the network may go through some sim-

plifications compared to what we have previously discussed. The network only needs to

output the probability of the bit 1, since the probability of the bit 0 is its complement.

Therefore, the network without activation may be represented by a function f̂(ξ,θ) and its

output with activation by f(ξ,θ) = σ(f̂(ξ,θ)), where σ represents the sigmoid activation

function. The cost function may be simplified to:

L =
N∑

n=1
−xn log2(f(ξn,θ))− (1− xn) log2(1− f(ξn,θ)), (4.3)

which is known in the machine learning literature as the binary cross entropy loss.

Since the hidden layers have 64M and 32M neurons, the total number of parameters

of the network is 2112M2 + 128M + 1. This comes from the sizes of the weight matrices

and bias vectors representing each layer. The growth in M sharply contrasts with the

growth of parameters in the LUT. For binary symbols, it suffices to store the conditional

probabilities of the bit 1. Then, the number of parameters in the LUT is 2M instead

66

of 2M+1. Note that, for M > 19, there are more LUT entries than parameters in the

network!

4.3 Adaptive Perceptron Coding

So far, we have described how the MLP can be used in place of the LUT in forward

coding. In our description, we have assumed that the networks would be trained using

batch gradient descent with a dataset of size N , and either the loss function in (4.2) or

(4.3). However, this overlooks a major advantage of the LUT as used in many applications:

the LUT is usually adaptive. It is continuously updated after each new sample is coded,

it does not require previous training, and it can track changes in source statistics, in the

case of non-stationary processes.

It is important to remember that, in the context of this work, the networks are intended

to drive arithmetic coding engines. This means that the networks in the encoder and the

decoder must estimate the same probabilities, otherwise reconstruction is not possible.

Therefore, in order to use the MLP in place of the LUT in online coding, the networks in

the encoder and the decoder must go through the same sequence of states. For that, they

must be initialized the same way in both the encoder and the decoder, and the network

updates must also be the same at each corresponding encoding/decoding step. Next, we

describe a method that is able to achieve this. We call our proposed method adaptive

perceptron coding (APC).

We have seen in Section 3.2 that training is often carried one batch at a time, instead

of one update for the whole data all at once. The loss function in (4.2) may be broken

into portions attributed to different batches of data as

L =
∑

i

LBi
, (4.4)

LBi
= −

∑
n∈Bi

log2(tT
nf(ξn,θ)), (4.5)

67

where {Bi} is a partition of the set {1, 2, ..., N} such that all Bi have the same size B,

except maybe for one i, in case N is not divisible by B. Also, the elements that compose

each batch are consecutive to each other.

In an online coding setting, data coding and stochastic gradient descent can occur

in parallel using the following procedure. The neural network is randomly initialized,

with care taken to initialize it the same way in both the encoder and the decoder, using

the same random seed and the same pseudo random number generator. The first B

samples are coded using the randomly initialized model. Since the neural network has

been randomly initialized, the initial probability distribution is close to uniform, as can

be experimentally verified. After B samples have been coded, one update of the network

parameters is performed using the B previously coded samples. The next B samples are

coded using the updated model, and, after that, a new update on the network parameters

is made. This goes on until there is no more data to be coded.

One characteristic of this approach is that the network does not go through the same

data twice. Therefore, every new sample is a different sample from the distribution, and

the network continuously learns to approach the true probability distribution, instead of

the training set distribution [64]. Even if the distribution changes its characteristics, in

the case of a non-stationary process, the network tries to converge to the new statistics.

The important is that the process statistics do not change quicker than the neural

network can converge. In fact, we want the neural network to converge faster than the

process would change its statistics. In practice, however, there are many factors into play.

The learning rate, the neural network size and architecture, the optimization algorithm,

the learning rate schedule, if present, all can affect how quickly the network can converge,

and how large the generalization error will be. There is also the nature of the data itself to

take into account and how quickly it changes its statistics. All this can affect the overall

coder performance.

In theory, this method could be used with any S-ary data. However, as before, we

assume that any input data has been converted to binary to simplify context modeling.

68

In this case, the network may have only a single output, the probability of bit 1, and we

can use the binary-cross-entropy loss (Equation (4.3)). Also, although the batch size B

can be freely chosen, we use it fixed at B = 1 in order to maximize adaptivity. The value

of B is associated with the tradeoff between running time and adaptivity. It controls the

frequency of updates, which affects positively the adaptivity, but negatively the running

time. The frequency of updates affect the running time in two ways. Firstly, inference

requires only one forward pass in the network, but a training update also requires a

backward pass of backpropagation. Therefore, one update requires roughly twice the time

of a single inference. Secondly, using multiple samples at once (for inference or training) is

more efficient than processing a single sample at a time, because of parallelism. Another

factor which affects the running time is the network architecture, since the larger the

network architecture, the longer it takes to complete a forward or backward pass.

The method with S = 2 and B = 1 may be described as follows. Let the neural

network without activation function at instant n be represented by f̂(ξn,θ). The output

with activation function may be represented by f(ξn,θ) = σ(f̂(ξn,θ)) where ξn represents

the context at instant n. Since the data has been converted to binary, the contribution

of the current sample to the loss function may be represented by

Ln = −xn log2(f(ξn,θ))− (1− xn) log2(1− f(ξn,θ)). (4.6)

The network parameters θn may be updated after coding this sample by

θn+1 = θn − ϵ(∇θLn)θn (4.7)

where ϵ is the learning rate.

In APC, we use the same context-size-dependent network architecture that was de-

scribed in Section 4.2. The initial network is obtained by randomly initializing the network

parameters. We guarantee that the initial parameters are the same in both the encoder

and the decoder by using the same random number generator seed, and the same pseudo

69

random number generator algorithm. A common initialization method of network param-

eters is Xavier initialization [94]. We use a slightly modified version of Xavier initialization

based on the fact that more diverse initial values in a layer is often better [64]. Let J (d)

denote the number of nodes in the d’th layer of a MLP. J (0) = M is the number of

inputs and J (dmax) = 1 is the number of outputs. Instead of initializing the weights or

biases of the d’th layer, except the input layer, by sampling a uniform distribution in

the interval (−1/
√

J (d−1), 1/
√

J (d−1)), we take their values from a random permutation

of equally spaced values in this interval. We have experimentally confirmed that this

modification leads to consistently better results. The encoding results for the APC are

shown in Section 4.7.

4.4 Adaptive Coding with Recurrent Neural Net-

works

Adaptive context modeling with neural networks has previously been tackled to some

extent in a few previous works ([25], [32], [33]), for the particular case of textual data.

Because of the sequential nature of this type of data, in general, these methods consisted

in predicting next word or character using RNNs. The RNN weights are usually updated

after processing each sample.

In [32] and [33], RNN’s pre-trained weights are continuously updated during evalua-

tion, in the context of language modeling. The RNN method in [32], consists of training an

Elman network with SGD updates at every time step, with fully truncated backpropaga-

tion through time (TBPTT). The method in [33], improves the method in [32] essentially

by using: LSTMs, updates for slightly larger chunks of sequence (5-20), backpropagation

over more time steps, and regularization. In [25], a hybrid model, composed of one pre-

trained bootstrap model, and a continuously updated supporter model, is used to drive

arithmetic coding in text compression. The context is composed of a fixed number of

previous samples. The input sequence is divided into 64 equally sized parts, and predic-

70

tions are generated for each part in a single batch. Weight updates are performed after

encoding/decoding blocks of 20 symbols (per part).

Inspired by these previous works, we developed a compression method based on RNNs

to compare with APC. We call the RNN method we developed adaptive RNN (ARNN). In

this method the RNN architecture consists of two GRU layers with 650 hidden units each.

This architecture is similar to the one used in [33]. Let the output of the RNN without

activation be represented by either f̂(x(n−1),θ) or f̂(x(n−1),θ), and the output with ac-

tivation by either f(x(n−1),θ) = σ(f̂(x(n−1),θ)) or f(x(n−1),θ) = Softmax(f̂(x(n−1),θ)),

depending if the data is binary or S-ary. In the case of S-ary data, the RNN outputs

correspond to the probabilities of the next element in the sequence, xn, being each sym-

bol. In the case of binary data, the output corresponds to the probability of the next

element in the sequence being 1. The probability of 0 can be obtained by the output’s

complement, in this case.

The network is updated during coding using SGD and BPTT in the following man-

ner. The initial network weights are randomly obtained, with the random seed shared

between the encoder and the decoder. The initial prediction for the first N ′ < N samples

is obtained either using the randomly-initialized network or by assuming a uniform dis-

tribution. We opted to use the randomly-initialized network. Since it has been randomly

initialized, there is no special trend for the output probabilities to favor one symbol or the

other. The initial output probability distribution is close to uniform, which was experi-

mentally verified. Then, after N ′ samples have been encoded/decoded, the sequence of

length N ′ is used to update the neural network weights using BPTT. The next N ′ samples

are predicted using the newly updated model, and so on. This is continued until there

are no more samples to encode/decode. The network parameters are updated following

the rule:

θi+1 ← θi − ϵ ∇θ

 min{iN ′,N}∑
n=(i−1)N ′+1

d(tn,f(x(n−1),θ))
∣∣∣∣∣∣

θ=θi

, (4.8)

where the partial derivatives are obtained with BPTT, i ∈ {1, ..., ⌈N/N ′⌉} and

71

d(tn,f(x(n−1),θ)) = − log2(tT
nf(x(n−1),θ)). In Equation (4.8), we have assumed S-ary

data. The update rule for binary data can be obtained by replacing the cross-entropy loss

with the binary cross-entropy loss.

The RNN is fed the same data that goes through the arithmetic coder, in the same

order. This means that, in theory, all previous samples can be taken under consideration.

In other words, it means that the context size is unbounded. In practice, however, the

context size is not unbounded due to numerical reasons, and depends on the capabilities

of the RNN, with LSTMs and GRUs having longer memories than naive RNNs.

4.5 Binary Image Datasets

This section is devoted to describing the datasets used in the perceptron coding exper-

iments. All datasets here described consist of binary document images, extracted and

processed from scientific journals. We defined six datasets, with different pages selected

for training, validation and testing.

The pages from the Datasets 1, 2 and 3, were obtained from the paper [65] which

appeared in the 26th volume of the IEEE Transactions on Image Processing (IEEE TIP).

The pages were converted from portable document format (PDF) to portable network

graphics (PNG) with a value of dots per inch of 93, resulting in images with dimensions

of 791× 1024 pixels. When converting to greyscale, we used the ITU-R 601-2 luma

transform, and when converting to bi-level, all values above 40% the maximum value

were set to 1, and all values below or equal were set to 0.

In the experiments using these datasets, we discarded the pixels around the borders

for which the context was not complete. Restricting ourselves to these smaller images has

no impact on the conclusions taken from the experiments. It corresponds to reducing the

margins of the documents, since the pixels discarded correspond to only a small portion

of the width and height of the image.

72

The pages from the Datasets 4, 5 and 6 were extracted from the IEEE Signal Processing

Letters (IEEE SPL). The extracted pages were converted to binary following a pipeline

similar to that of Datasets 1, 2 and 3. However, the resulting images have dimensions

of 768× 1024 pixels, and the threshold was separately determined for each image, using

Otsu’s method [95]. Table 4.1 summarizes the pages used in each dataset and for what

purpose (training, validation or testing). Sample pages from the datasets can be viewed

in Annex I.

In the experiments using Datasets 4, 5 and 6, we considered the pixels outside of the

borders of the image to be equal to 1. This permits encoding all image pixels. Recall that

we use the common convention that 1 corresponds to white.

The pages from datasets 4 and 5 were selected at random. Their training and validation

sets are the same, but the test set from Dataset 4 has all pages from the test set of

Dataset 5 and 90 other pages.

Table 4.1: Datasets used in the perceptron coding experiments, all consisting of binary
document images, extracted from scientific journals.

Dataset Journal Volume papers Training Validation Test
pages pages pages

Dataset 1 IEEE TIP 26 [65] p. 3 p. 5 pp. 1,2,4,6-11
Dataset 2 IEEE TIP 26 [65] pp. 1-4,6-11 p. 5 -
Dataset 3 IEEE TIP 26 [65] - - pp. 1-11
Dataset 4 IEEE SPL 27, 28 multiple 10 (Vol. 27) 5 (Vol. 27) 100 (Vol. 28)
Dataset 5 IEEE SPL 27, 28 multiple 10 (Vol. 27) 5 (Vol. 27) 10 (Vol. 28)
Dataset 6 IEEE SPL 27, 28 [96], [97] - p. 2 ([96]) pp. 1-5 ([97])

4.6 Forward Coding of Binary Images

This section deals with perceptron coding with pre-trained neural networks. That is,

as described in Sections 4.1 and 4.2. More specifically, in the settings discussed in this

section, the neural networks are trained beforehand on a training set, and then used to

code other data, be it validation or simply test data.

73

Figure 4.1: To the left: patch of a binary image. To the right: context of size M = 67 for
the pixel at (187, 459).

In order to train, validate and test our method, we need suitable binary data. It is

desirable to use long-memory signals, such as binary images, since we want to test the

effects of different context sizes. We opted for binary document images because they are

rich in detail and easily accessible. We introduced our binary image datasets in Section 4.5.

We assume that the image pixels are encoded following a forward non-diagonal lex-

icographical scan order, that is, in a row by row basis, from left to right and from top

to bottom. With respect to the context, we selected the M closest pixels in the causal

neighborhood to make up the context. These pixels were selected because they have the

highest correlation with the current pixel, based on proximity, among the pixels which

are available to the decoder. Figure 4.1 shows an illustration of the context used for a

specific value of M . Other examples, for other values of M , are depicted in Figure 2.10.

The neural network trainings were done in Pytorch, during 420 epochs, using a learning

rate of 10−5, stochastic gradient descent, and a batch size of 2048 1. A large number of

epochs and small learning rate were selected so the networks converged slowly but steadily.

The training and validation losses were monitored to verify convergence. Multiple training

and validation trials were performed in order to select the training parameters.

In the first experiment, our intention is to obtain an initial comparison between the

MLP and the LUT for different values of context size M . In this section, the LUTs are
1All programs used in this work can be accessed at https://github.com/lucassilvalopes/

perceptronac.

74

https://github.com/lucassilvalopes/perceptronac
https://github.com/lucassilvalopes/perceptronac

also built prior to encoding, on the same data used to train the neural networks. We use

Dataset 1 for this experiment. Figure 4.2 shows the values of bits/sample for exponentially

increasing values of context size M , for both the perceptron coding and LUT methods.

Both methods use the same context. The results for the LUT method were limited to

M = 26, because, above this number, the memory requirements become too high. When

M = 0, the operation corresponds to static AC.

In order to have a reference, we also include values in bits/sample for the pages encoded

with JBIG [57]. JBIG is a well-established bi-level image compression standard. It also

makes use of context models for binary arithmetic coding, in a similar way to the H.26X

standards. In the particular implementation of JBIG that we use [98], the encoder uses

10 neighbor pixels to estimate the probability of the next pixel being zero or one. One

out of these 10 pixels is allowed to move up to 8 pixels away horizontally. JBIG also uses

other artifices to further enhance its compression capability.

The x-axis in Figure 4.2 is in one of a set of modified logarithmic scales capable of

representing values near zero [99]. In this case, the x-axis is linear for values between

0 and 1, and logarithmic for values above 1. This adaptation is necessary because the

regular logarithmic scale is not capable of representing values near zero (log(x) → −∞

as x→ 0+).

Note how the MLPs approximate the LUT on the training set (Figure 4.2 (c)). The

LUT is optimal for the training set and better than the MLP, as expected. For M = 10,

the MLP lags with respect to the LUT. However, the behavior of the LUT for M ≥ 10 is a

clear indication of overfitting (or context dilution). As M increases, the average codeword

length decreases in the training set, but sharply increases in the validation and test sets.

The MLPs, on the other hand, only begins overfitting much later, at about M = 67. At

M = 67, the overfitting is still not too noticeable. It is at M = 170 that it becomes

evident.

The overfitting of the MLP is probably due to a combination of factors. First, one

could argue that for large values of M , the heuristic for the number of hidden units in the

75

(a) Page 1 (b) Page 2

(c) Page 3 (d) Page 4

(e) Page 5 (f) Page 6

Figure 4.2: ((a) - (f)) Values of bits/sample for the different pages of [65]. Page 3 was
used for training and page 5 was used for validation. All other pages were used for testing.
The value at zero is the average code length for static binary arithmetic coding (AC). The
x-axis is in a modified logarithmic scale capable of representing values near zero [99].

76

(g) Page 7 (h) Page 8

(i) Page 9 (j) Page 10

(k) Page 11

Figure 4.2: ((g) - (k)) Values of bits/sample for the different pages of [65]. Page 3 was
used for training and page 5 was used for validation. All other pages were used for testing.
The value at zero is the average code length for static binary arithmetic coding (AC). The
x-axis is in a modified logarithmic scale capable of representing values near zero [99].

77

first and second hidden layers leads to too many parameters. This is a valid observation.

However, fixing the number of hidden units in the first layer to 2048, and the number of

hidden units in the second layer to 1024 for M > 26, changes the validation average code

lengths only by approximately 10%, and the values of bits per pixel are greater instead

of lower. Limiting these values to 1024 and 512, respectively, also has similar effects.

Therefore, the number of parameters is not by itself the only reason for this overfitting.

Another factor, which is likely the most significant in this case, is the number of pos-

sibilities. This value is a 52-digit number (2170) for M = 170, and a 21-digit number (267)

for M = 67. There are simply too many possibilities in these two cases. No feasible

dataset size would lead to enough significant training examples to prevent the network

from overfitting. Considering that one page of 791× 1024 pixels leads to 809984 training

examples, about 182 trillion pages would be necessary to reach a training set in the order

of magnitude of 267. On the other hand, 226 is only an 8-digit number and, with less than

100 pages, the training set size reaches the order of magnitude of 226. It is not necessary

that all possible contexts are present in the training set, only the ones that are reason-

able for the data distribution under consideration need to be present. Nevertheless, their

number is also expected to grow exponentially.

We also experimented with more training and test data to verify if the results still

hold, for Dataset 4. Figure 4.3 shows the results on the training and test data. The

overall appearance of the curves are similar to the observed in the previous experiments,

and the relations among the different methods are also similar.

It is well known in the literature that the likelihood of correct generalization depends

on the number of networks being considered, the number of networks that give good

generalization and the number of training examples [100]. If the size of the network

is too large and/or the number of training examples is too small, there will be a vast

number of networks consistent with the training data, but only a small portion provides

good generalization. In this case, the experiments indicate that the main cause for the

observed overfitting is the training set size, which is likely too small for M > 67.

78

(a) (b)

Figure 4.3: (a) Average code lengths on the 10 randomly selected pages from the 27th
Volume of the IEEE Signal Processing Letters used for training. (b) Average code lengths
on the 100 randomly selected pages from the 28th Volume of the IEEE Signal Processing
Letters used for testing.

In order to study the effect of the training set size on the average code lengths, we

progressively increased the number of pages used for training with the neighborhood size

fixed at M = 67 and verified the average code length on the validation set. We chose

M = 67 because it was associated with the best results from the previous experiments.

The data used was Dataset 2. The results are presented in Figure 4.4. As it can be seen in

Figure 4.4, increasing the number of training examples considerably improves the results,

until about 7 pages.

What this data is showing is that it becomes increasingly harder to find good examples

to use as training data. More and more pages become necessary for the same reduction

in bits/sample. Ideally, the number of diverse training samples would be infinite. In this

case, the network would continuously learn and would approach the true source probability

distribution, instead of the training set distribution [64]. However there are increasing

costs in order to keep reducing the average codeword length. A compromise must be

made between generalization performance and the investment applied into training and

dataset selection.

79

Figure 4.4: Impact of progressively using more pages in order to train the MLP, on the
validation average code length . In this figure, the neighborhood size is fixed at 67.

4.7 Backward Adaptive Coding of Binary Images

The previous section showed that the pre-trained MLP can be successfully used in place

of the LUT in a forward coding setting. In this section, we compare our proposed method

for online coding, APC, with the use of a LUT which is continuously updated based on

previously coded samples. We addressed online trained LUTs in Sections 2.5 and 2.6, and

the APC method in Section 4.3.

In our particular implementation of the LUT-based method, the probabilities are

updated following Equation (2.24), starting the count of every symbol as 1, and therefore

with ρ1 equal to 0.5. Note that the value of α used in H.264 and H.265 in the exponential

decay window is very small which leads to very slow adaptation, making it close to the

cumulative average of Equation (2.24). Therefore, our method is similar to the one used

in H.264 and H.265 in this respect. These standards use specific side information available

at the encoder and the decoder to determine the initial probabilities [67] [70], which are

not available in our specific application, therefore the best we can do is to assume that the

symbols are initially equiprobable. In the following discussion, we call our implementation

of the LUT-based method as adaptive LUT, or ALUT, for short.

80

As before, we opted to test our method on binary document images because of their

long-memory, richness in detail and widespreadness. The datasets used in the experiments

are described in Section 4.5. Again, the contexts used, in both APC and ALUT, are the

M closest pixels in the causal neighborhood. Exemplary contexts are shown in Figures

2.10 and 4.1.

Figure 4.5 shows how APC and ALUT compare to each other, for a particular selection

of hyperparameters, when coding the different pages from Dataset 3. The results are for

context size M = 26 and learning rate ϵ = 0.01. The first pixel of each page has no priors

from where to infer probabilities and is encoded with 1 bit. The borders of a page are

all white, so that all methods quickly learn to encode whites and the rate drops to nearly

0. As a page progresses, and the encoders encounter text and graphics, they slowly build

context models and stabilize after about 200K pixels.

Note how APC outperforms ALUT in the results of Figure 4.5, specially at the begin-

ning of coding. As coding procedes, their average codeword lengths become approximately

the same. It is possible to see that, although the LUT is optimal when used on the same

data that was used to build it, it is not optimal in online coding. The ALUT has a worse

generalization performance than APC, and this is reflected in the results. An important

point to be made is that results like these indicate that APC can successfully be used in

place of the ALUT for the same context size M . This means that, if one wishes to reduce

the average codeword length by means of increasing the context size M , one can use APC

instead of ALUT when the context size becomes too large to use the LUT-based method.

In order to define the learning rate for APC, we compressed the validation page of

Dataset 6 with different values of learning rate ϵ. Figure 4.6 shows the evolution of the

average codeword length as the page of nearly 787K samples is encoded, with ϵ equal to

10−1, 10−2, 10−3 and 10−4. As can be seen from the figure, for ϵ = 10−4 the adaptation is

too slow, which makes the average codeword length lag compared to the other values of

ϵ. For ϵ = 10−1, on the other hand, the adaptation is too fast, and the method overshoots

the target, making it hard to recover later. However, for ϵ = 10−2, the adaptation seems

81

(a) Page 1 (b) Page 2

(c) Page 3 (d) Page 4

(e) Page 5 (f) Page 6

Figure 4.5: ((a) - (f)) Evolution of the bitrate in bits/symbol of APC and ALUT when
coding the different pages from the article [65].

82

(g) Page 7 (h) Page 8

(i) Page 9 (j) Page 10

(k) Page 11

Figure 4.5: ((g) - (k)) Evolution of the bitrate in bits/symbol of APC and ALUT when
coding the different pages from the article [65].

83

Figure 4.6: Cumulative rate (bits/symbol) when coding page 2 of the article [96] with
APC, M = 26 and different values of learning rate.

just about right, reaching the optimal value of average codeword length compared to the

other values of ϵ. We also tested these different learning rates for M equal to 4,10,26 and

67, with ϵ = 0.01 leading to the best results for every M , therefore we fixed that value of

ϵ in other runs of APC.

For completeness, in this section, we also compare APC with an online trained RNN,

which we call ARNN. The ARNN method also requires tuning the learning rate. Therefore

we also experimented compressing the validation page of Dataset 6 using ARNN with

different values of learning rate. We found that the best results were obtained for ϵ = 0.01

and updates after every 64 samples. We also tested ϵ equal to 0.05, 0.005 and 0.001, and

updates every 1 and 96 samples. Therefore we fixed those values in subsequent runs

of ARNN. Figure 4.7 shows how different learning rates affect the cumulative bitrate of

ARNN with updates every 64 samples.

With the hyperparameter tuning process explained, we proceed with more comparisons

among methods. We compared APC, ALUT and ARNN to encode the complete 5-page

article from the test set of Dataset 6. The results are shown in Figure 4.8. The Figure

shows the bitrate at different instants for APC and ALUT with M = 26. Note that the

cumulative rate keeps decreasing as the methods learn more context patterns.

84

Figure 4.7: Cumulative rate (bits/symbol) when coding page 2 of the article [96] with
ARNN, updates every 64 samples, and different values of learning rate.

Figure 4.8: Cumulative rate in bits/symbol as APC and ALUT progress to encode a given
5-page paper in the test set of Dataset 6, with M = 26. We also included results using
ARNN for comparison.

APC also outperforms ARNN. The reason why ARNN performs poorly even though

its context size is unbounded is because the effect of previous samples on the RNN fades

away with distance. LSTMs and GRUs can capture longer data dependencies, but it is

hard to capture very long data dependencies. Samples closest in the path are given more

importance, and the ARNN follows the same traversal order as the arithmetic coder,

that is, row by row. This means that distant samples from the same row are given more

85

importance than closer ones from a different row. Other orders of traversal would face

similar problems. The MLP, on the other hand, is more flexible. Even though its context

size is limited, we can design the context size so that it focuses on the samples that matter

the most. One way to make the RNN also focus on the samples that matter would be

through the use of attention [101].

Tables 4.2 and 4.3 show the results of APC, ALUT, JBIG and the offline methods

of Section 4.6 on the 10 test pages from the Dataset 5, and the 100 test pages from the

Dataset 4, for different context sizes M . As before, we only include the values of the

LUT-based methods up to M = 26. For M > 26, they become too memory-consuming

and impractical. Besides all the advantages of the online-trained methods, due to them

not requiring previous training, another advantage, that we mentioned in Section 4.3, is

that they approach the true probability distribution, instead of the training data distri-

bution. Therefore, it is our expectation that the online-trained methods should surpass

the offline-trained methods, in terms of compression performance. As can be seen from

Tables 4.2 and 4.3, this still does not happen for all M for only the 10 test pages from

the Dataset 5. However, when the number of test pages is increased to the 100 test pages

from the Dataset 4, the online-trained methods are finally able to surpass the offline-

trained methods for all values of M . Recall that the training sets of Datasets 5 and 4

are the same. This was the training set used to train the offline methods. The results

for the offline methods (and JBIG) on the Table 4.3 are the same as the ones present in

Figure 4.3 (b).

As mentioned in Section 4.3, we use a slightly modified version of Xavier initializa-

tion with APC. In order to demonstrate that our modifications truly improve the re-

sults, we made repeated experiments using the validation page of Dataset 6, ϵ equal to

10−1, 10−2, 10−3 and 10−4, and M equal to 4, 10, 26 and 67. The result is that the initial-

ization method described in Section 4.3 always yields slightly better results than Xavier

initialization. Figure 4.9 shows an example of the evolution of the cumulative bit-rate for

the two initializations. The example in Figure 4.9 is for M = 26 and ϵ = 0.01.

86

Table 4.2: Coding rates (bits/symbol) attained for different context sizes M with the
offline-trained PC and LUT methods, APC (with λ = 0.01), ALUT, and JBIG, on the 10
test pages from the Dataset 5.

Offline
M PC LUT APC ALUT JBIG
0 0.442 0.441
2 0.262 0.263 0.253 0.260
4 0.236 0.236 0.228 0.233
10 0.204 0.204 0.197 0.201 0.188
26 0.132 0.242 0.140 0.152
67 0.106 0.127
170 0.105 0.139

Table 4.3: Coding rates (bits/symbol) attained for different context sizes M with the
offline-trained PC and LUT methods, APC (with λ = 0.01), ALUT, and JBIG, on the
100 test pages from the Dataset 4.

Offline
M PC LUT APC ALUT JBIG
0 0.469 0.469
2 0.265 0.265 0.259 0.264
4 0.235 0.235 0.227 0.235
10 0.201 0.201 0.194 0.200 0.185
26 0.131 0.250 0.121 0.126
67 0.107 0.098
170 0.104 0.103

Figure 4.9: Evolution of cumulative rate in bits/symbol for Xavier initialization and our
initialization, for M = 26 and ϵ = 0.01.

87

Figure 4.10: Comparison of APC with our custom initialization and with the network
initialized with pre-trained weights, for M = 10 and ϵ = 0.0001.

We also compared the initialization described in Section 4.3 with pre-training. We

used the pre-trained weights and biases obtained in Section 4.6. The test data were the

100 pages from the dataset 4. However, in this case, we removed the margins of the pages.

We used a learning rate close to the one used during pre-training, ϵ = 0.0001. Larger

learning rates sometimes caused abrupt changes in the network parameters, which were

accompanied by large increases in the average codeword length. The result is shown in

Figure 4.10. The curves are for M = 10.

As can be seen, the effects of initialization are long lasting. Even after 100 pages,

the average codeword length of the pre-trained network is still better than the randomly

initialized network. However, the average codeword lengths are close to each other. Al-

though both networks are learning the same distribution, the networks are most likely

at all times at very different positions in the graph of the loss function. This explains

why the average codeword lengths of two differently initialized online-trained networks

get close to each other, but may still be different, even after coding many pages.

88

Chapter 5

Greedy Lower Convex Hull

5.1 Motivation

Machine learning and deep learning have often been associated to a form of art, rather than

to a form of science [102]–[104]. One of the reasons for this is that many of the design

choices behind the neural network architectures, that feature in research papers, seem

arbitrary. They give the impression that the authors have guessed the hyperparameters

at random.

That is not too far from the truth, since random-search is one of the most popular

algorithms used for hyperparameter selection [56]. However, random search, and other

hyperparameter selection algorithms, for that matter, do not solely rely on the generation

of neural network architectures. They can actually be seen as a two step process. In

the first step, tentative network architectures are obtained. These architectures can be

randomly generated, such as in random search, or they can be generated in a smarter

way, for example, as in Bayesian optimization. In the second step, the best architecture,

or the set of optimal architectures, is obtained, either by picking the one that optimizes

the objective, or by using an algorithm to find the Pareto frontier (on the validation set).

In other words, the first step may indeed be arbitrary, depending on the case, but the

second step actually gives the best options among the ones that were generated.

89

Therefore, depending on how it is done, hyperparameter selection is not as obscure as

it may seem. There is actually objective reasoning behind it. We intend to further develop

this aspect of hyperparameter selection, by making the process more direct. Especially

in the case of neural-based data compression.

In the case of data compression, contrary to other applications of deep learning, the

more complex is not always the better. In many applications, one is only interested in

a single objective. This objective may be, for example, image classification accuracy.

In these cases, it is often the case that better results can be obtained by increasing

the complexity of the network. For example, by increasing the number of layers, or the

number of filters in the convolutional layers, of the network. In data compression, however,

minimizing the complexity of the coder is almost as important as reducing the average

codeword length (the rate). This is so because the coder might often be run in mobile

phones or other devices of the sort.

Bearing in mind that increasing a hyperparameter often increases complexity but

reduces the rate, we propose an algorithm that traces the LCH, or the Pareto frontier,

at the same time that it proposes new architectures. Figure 5.1 illustrates the basic idea

of the algorithm. Assume we want to operate at a complexity Co or rate Ro. The idea

behind the algorithm is to build a tree starting from a point with high rate and low

complexity, for example the simplest architecture. At each step, we have one node, which

we call the parent node, from which we obtain new architectures, which we call the child

nodes. We separately increase the values of K hyperparameters from the parent node (in

the example of the figure, K = 3). with this we expect the complexity to increase and the

rate to decrease, but this is not guaranteed, specially for situations where the complexity

measurement is noisy. This gives K new options to choose as the next parent node. Then,

we pick the child node with the best performance and set it as the new parent node. We

recur this procedure until reaching Ro or Co and the resulting set of all parent nodes is

our estimate of the LCH.

We call this algorithm greedy LCH (GLCH) because of the greedy choice of child node

90

Figure 5.1: Illustration of our algorithm, aiming to track the lower convex hull of a cloud
of rate-complexity operating points. Circled dots, or dots at one extreme of an arrow, are
visited, or trained, networks. The other dots are all unvisited by the algorithm, that is,
the corresponding neural networks did not have to be trained.

made at each step. This algorithm distinguishes itself from Bayesian optimization and

other algorithms in that it introduces an ordering to the architectures. It begins with the

simplest architecture, and subsequently increases its complexity, allowing one to stop the

algorithm as soon as the desired maximum complexity, or a satisfactory rate is achieved.

5.2 The Architecture Graph

The GLCH algorithm assumes a predefined set of architectures connected in a particular

way, which we represent by a graph. Consider a family of network architectures which

differ only on the values of K hyperparameters. Let the hyperparameters of one archi-

tecture be represented by a vector h = (h1, . . . , hK). Assume that hyperparameter hk

takes values in v
(k)
1 , . . . , v

(k)
Tk

or, without loss of generality, in 1, . . . , Tk. Then, the number

of possible architectures is Υ = ∏K
k=1 Tk, which exponentially grows with the number of

hyperparameters K.

Let G = (V , E) be a directed graph with vertex set V and edge set E , such that

each element of the vertex set corresponds to one of the possible hyperparameter vectors

hmin, . . . , hmax. Assume that there is one directed edge from every node h to every other

node h′ such that h′
k = hk + 1 for exactly one k, and h′

k = hk for the other k. Thus, the

91

graph G corresponds to a K-dimensional, T1 × · · · × TK rectangular grid, with links from

every node to its immediate next neighbor along each axis. Figure 5.2 (a) illustrates one

such rectangular grid for K = 3, T1 = T3 = 4 and T2 = 3.

The following can be said about the graph G:

• It is a directed acyclic graph.

• The out-degree of each node is at most K.

• There is a unique “minimal” node with in-degree 0, namely hmin = (1, 1, . . . , 1),

which we call the root of the graph.

• There is a unique “maximal” node with out-degree 0, namely hmax = (T1, . . . , TK).

• It is weakly connected.

• There exists a path from the root to any node.

• All paths from the root to a node have the same length, which we call the depth of

the node.

• A node’s depth is given by the Manhattan distance between the hyperparameter

vectors of the root and the node.

• The longest path in the graph is from the minimal node to the maximal node.

• The length of the longest path (i.e., the diameter) of the graph is δ = ∑K
k=1(Tk− 1),

which is the depth of the maximal node.

5.3 The Basic GLCH Algorithm

In Algorithm 1 we show the basic GLCH algorithm. This algorithm essentially operates

on a graph G, with the properties described in Section 5.2, and iteratively builds a tree,

which is a subgraph of G, starting from the minimal node hmin. At every step, the set of

nodes V is partitioned into three sets: the set of open nodes O, the set of closed nodes C,

and the set of unvisited nodes. Initially, only the root node hmin is in the open set. At

every step, we select one node from the open set, move it to the closed set, and add the

children of the selected node to the open set. The children of a node are the targets of

92

Figure 5.2: (a) Example of architecture graph for three hyperparameters, h1, h2, h3, with
number of possible values equal to 4,3 and 4, respectively. (b) Example of path (in green)
from the minimum to the maximal node, and example of a tree (green and red) that a
constrained GLCH algorithm can generate.

the directed edges which originate from it. We terminate when the maximal node hmax is

reached or an early termination condition is satisfied. Only the architectures in the open

and closed sets need to be trained. The nodes that compose the tree are those who are

present in the open and closed sets.

Algorithm 1 GLCH Algorithm
Input: the graph G of all possible hyperparameter vectors

1: Set the open and closed sets to the empty set: O ← ∅, C ← ∅

2: Train/evaluate the minimal node hmin, make it the parent node, and add it to the open set:

h← hmin, O ← O ∪ {h}

3: repeat

4: Train/evaluate all children (i.e., out-neighbors) of the parent node h and add to O

5: Move the parent node to the closed set: C ← C ∪ {h}, O ← O \ {h}

6: Select a new parent node from the open set: h← select(O, C, h)

7: until h is the maximal node hmax, or satisfies an early termination condition

Output: the set O ∪ C of visited nodes, and the history of all past parent nodes h

At the heart of Algorithm 1 is the select function in line 6, used to choose the node

93

that is to be moved to the closed set and whose children are to be added to the open

set. Different select functions yield different variants of the algorithm. In particular, we

propose two broad classes of GLCH algorithms.

In the first class, the select function is constrained to choose a node h from O only if

it is among the deepest open nodes O′ ⊂ O. Then the GLCH algorithm keeps extending

the longest path and terminates having visited not more than δK nodes, that is, trained

not more than δK network architectures, where δ is the diameter of the graph. Since

δK grows quadratically in K, whereas the total number of possible architectures, Υ,

grows exponentially in K, there is considerable savings compared to training all the

networks. Figure 5.2 (b) illustrates one possible tree that a constrained GLCH algorithm

can generate.

In the second class, the select function is unconstrained, that is, it is allowed to choose

any node h from O. This allows the algorithm to extend other leaves of the tree besides

the deepest leaves. This often results in a better LCH approximation, with the cost of

more trained networks. In fact, in the worst case scenario, the number of trained networks

may even reach Υ, although in practice the algorithm usually terminates much earlier.

5.4 Select Functions

In order to choose one among several alternative network architectures, it is necessary to

evaluate the performances of the network architectures on the multiple objectives. The

multiple objectives are loss and complexity. We use the term loss instead of rate because

the GLCH algorithm may be used with any loss other than rate. Rate is only the loss

function in lossless compression.

One immediate approach, for choosing the best architectures, is to rely on other ex-

isting algorithms that can find the LCH of a set of known points. Note that the GLCH

algorithm aims at finding an approximate LCH, of a set of initially unknown points, with-

out having to reveal all of them. Algorithms to find the LCH of a set of known points,

94

such as the one described in Section 3.6, assume that the input points are all there is, and

ignore the existence of any others, differently from the GLCH algorithm

In Algorithms 2 and 3 we propose two alternative select functions, one constrained and

another unconstrained. They both depend on other algorithms in order to find the LCH

of a subset of points. Let Lh and Ch be the loss and complexity of the neural network

associated with the node with hyperparameter vector h. In both select functions, we

choose the node that has the least complexity Ch among the nodes that are in O or O′

and that are in the LCH (calculated following the procedure described in Section 3.6)

of O ∪ C. The set O ∪ C consists of all visited networks so far. We pick the node with

least complexity, ignoring the nodes with higher complexity but lower loss, because, in

subsequent iterations, the algorithm is expected to explore points with increasingly higher

complexity and lower loss.

In the event that there are no nodes to choose from on the LCH of O ∪ C, then the

functions fall back to choosing among nodes in O or O′ with performance on the LCH

of O or O′. In this case, the point with most complexity among the available options is

selected. Note that none of the available options are on the LCH of all trained networks

so far. However, if no node is selected, the algorithm cannot continue. In this case, the

point with least complexity is generally not an option because a point with high rate and

low complexity, close to the initial point hmin, may be selected, bringing the algorithm

back to where it started.

Algorithm 2 Unconstrained Select Function 1
Input: O, C

1: Find node h∗ ∈ O with least complexity Ch∗ s.t. (Ch∗ , Lh∗) is on LCH of {(Ch, Lh) : h ∈

O ∪ C} if exists, else with most complexity on LCH of {(Ch, Lh) : h ∈ O}

Output: h∗

95

Algorithm 3 Constrained Select Function 1
Input: O, C

1: Let O′ ⊂ O be the subset of O whose distance from the root (i.e., depth) is largest

2: Find node h∗ ∈ O′ with least complexity Ch∗ s.t. (Ch∗ , Lh∗) is on LCH of {(Ch, Lh) : h ∈

O ∪ C} if exists, else with most complexity on LCH of {(Ch, Lh) : h ∈ O′}

Output: h∗

We experimentally observed that, in the constrained case, when there is more than one

node, or no node, on the LCH of O∪C, selecting the point closest to the origin, generally

gives better results. Even on par with the unconstrained case. We measure the distance

to the origin with C + µL where µ controls the importance given to the distance in L

compared to the distance in C. We use µ = (1/µ′)(|Chmax−Chmin|/|Lhmax−Lhmin |), where

|Chmax − Chmin | and |Lhmax − Lhmin| are the distances between the minimal and maximal

nodes in the C and L axes, and µ′ is a constant. That is, we define µ based on the ranges

of values in the C and L axes. In our experiments, we found that giving slightly more

importance to C yields better results. Therefore, we use µ′ = 6.

Algorithm 4 Constrained Select Function 2
Input: O, C

1: Let O′ ⊂ O be the subset of O whose distance from the root (i.e., depth) is largest

2: Find node h∗ ∈ O′ with least Ch∗ +µLh∗ s.t. (Ch∗ , Lh∗) is on LCH of {(Ch, Lh) : h ∈ O∪C}

if exists, else with least Ch∗ + µLh∗ s.t. (Ch∗ , Lh∗) is on LCH of {(Ch, Lh) : h ∈ O′}

Output: h∗

5.5 Simplifying the Select Functions

The dependence on a third-party routine, to compute the LCH of a subset of nodes, is

not really necessary. We can specify a set of rules, to use in every possible configuration

of the child nodes relative to the parent node, and we can create select functions based

on these rules.

96

The LCH of an arbitrary set of known points in 2D can be obtained by starting from

the leftmost point and always picking the point that gives the smallest polar angle, with

respect to the previously chosen convex hull side, as depicted in Figure 3.4. This algorithm

is described in Section 3.6, and works to obtain the LCH of a known set of points. When

the set of points is initially unknown, but is gradually revealed, there is no guarantee that

the remaining points are not to the left and below the lastly selected point. The newly

revealed points could be everywhere relative to the lastly selected point.

In the case of the GLCH algorithm, when we increase one hyperparameter of a node h,

we expect the complexity to increase and the loss to decrease. However, this is not always

the case. Sometimes, the complexity might slightly decrease or the loss might increase.

The loss can increase, for example, because of overfitting. The complexity measure, in its

turn, can decrease in the case of a noisy complexity measure, such as energy consumption.

This creates unexpected situations, that traditional algorithms are not prepared to deal

with. Furthermore, differently from traditional algorithms, we do not want to stop when

all points are above the lastly selected point. Since the points are gradually revealed, and

since the loss and complexity can oscillate, it is perfectly possible that future points fall

below the lastly selected point.

Figure 5.3 shows three relevant situations. By dealing with these situations, we can

create standalone select functions, that do not depend on third-party routines to compute

the LCH of known points. Firstly, if no option has lower loss than h, we do not update

h and we find other node from where to branch off newer nodes 1. For this purpose,

we choose the node with the lowest loss in O or O′, and if there is more than one node

that satisfies this requirement, we choose the one with largest complexity among them.

This is a similar rule to the fall-back rule used in Algorithms 2 and 3. Secondly, if

one or more nodes are better than h in both loss and complexity, we pick the one with

lowest complexity to replace h, and if there is more than one such node, we pick the one

with lowest loss among them. This is natural, since this would be the first point on the
1The node h may be called the “real parent”, while the node used to branch off newer nodes may be

called the “surrogate parent”

97

LCH of the points in O or O′ that is below h. We ignore points above h to avoid the

algorithm from going backwards. Thirdly, if all nodes h′ in O or O′, that have lower

loss than h, also have higher complexity than h, then a node h′ with best performance

is one that maximizes −∆Lh′/∆Ch′ , where ∆Lh′ = Lh′ − Lh and ∆Ch′ = Ch′ − Ch. If

there is more than one node that satisfies such condition, we pick the node with largest√
(∆Lh′)2 + (∆Ch′)2 among them. The reason for this is because if we did not pick this

point, the unconstrained algorithm could pick it in a subsequent run, but the constrained

algorithm would not be able to do so. This third case is essentially the standard rule used

by the algorithm described in Section 3.6.

In Algorithms 5 and 6 we show how Algorithms 2 and 3 can be adapted to use these

rules. Later we show that the results using Algorithms 5 and 6 are nearly identical to the

results using Algorithms 2 and 3.

Algorithm 5 Unconstrained Select Function 2
Input: O, C, h

1: if all points in O have larger loss than h then make h∗ ← h, find the node in O with lowest

loss then largest complexity, move it from O to C and add its children to O

2: else if there is any point in O with lower or equal loss and lower or equal complexity than

h then find the node h∗ among them with lowest complexity then lowest loss

3: else find the node h∗ ∈ O, with lower or equal loss than h, such that −∆Lh∗/∆Ch∗ is

maximum

4: end if

Output: h∗

98

Figure 5.3: The three different configurations of relevance of child nodes relative to the
parent node. In each case, the parent node is the node labeled with an h. All other nodes
are candidates for next parent node. The circled node is the one selected to be the next
parent node (cases 2 and 3), or to just branch off newer nodes (case 1).

99

Algorithm 6 Constrained Select Function 3
Input: O, C, h

1: Let O′ ⊂ O be the subset of O whose distance from the root (i.e., depth) is largest

2: if all points in O′ have larger loss than h then make h∗ ← h, find the node in O′ with

lowest loss then largest complexity, move it from O to C and add its children to O

3: else if there is any point in O′ with lower or equal loss and lower or equal complexity than

h then find the node h∗ among them with lowest complexity then lowest loss

4: else find the node h∗ ∈ O′, with lower or equal loss than h, such that −∆Lh∗/∆Ch∗ is

maximum

5: end if

Output: h∗

5.6 Reasoning behind the Select Functions

The different select functions presented reflect the thought process we went through when

designing the GLCH algorithm. We first envisioned the Algorithms 2 and 3, but they rely

on subroutines to compute the LCH of a known set of points. Therefore, we proposed

Algorithms 5 and 6 to replace them.

Algorithm 4 is an alternative version of the Algorithm 3, which gave better results

in our set of examples. However, since this algorithm was based on a heuristic, and has

a parameter which was set based on our particular set of experiments, this algorithm is

likely overfitted to our examples.

In practice, one would only need Algorithms 5 or 6, depending if one desires the

constrained or the unconstrained version of the algorithm. The constrained version of the

algorithm always terminates after evaluating a known number of networks. If one wishes

a better LCH approximation at the cost of a higher (and unknown) number of trained

networks, one may use the unconstrained version of the algorithm.

100

Algorithm 7 Unconstrained Select Function 3
Input: O, C
1: Find node h∗ ∈ O such that Rh∗ + λ0Dh∗ + γ0Ch∗ is minimum

Output: h∗

5.7 Rate-Distortion-Complexity Optimization with

the GLCH Algorithm

Neural networks for lossy compression are usually trained to minimize a loss L = R+λD,

where R is the rate using the network, and D is the distortion. In cross-validation, one

would train several networks to minimize this loss for a fixed λ, and would later select

the one with minimum L on the validation set. Assuming that R is the horizontal axis,

and that D is the vertical axis, this corresponds to finding the first point that touches a

line with inclination −1/λ, or normal vector [1, λ], emanating from the origin. The LCH

is the set of points that minimize L for all different λ in the interval (0,∞).

We would also want to take complexity under consideration. In this case, the metric

is R + λD + γC, and the LCH is the set of points that minimize it for every λ and γ in

the interval (0,∞). Each pair of λ and γ defines a set of parallel planes in 3D, the planes

with normal vector [1, λ, γ], and the minimum for a specific λ and γ is the first point that

touches one such plane emanating from the origin.

The GLCH algorithm can be used in all the following three cases: (i) to approximate a

specific optimal point, for a specific λ and a specific γ; (ii) to approximate sets of optimal

points for slices of data; and (iii) to approximate the LCH of the cloud of points. We

explore each of these cases in the following:

(i) In the simplest case, one is interested in only the minimum for one λ and one γ.

In this case, one can use the GLCH algorithm with the select function shown in

Algorithm 7. We would like to find the tracked point as quickly as possible, and

then interrupt execution. Constraining the algorithm would not be advantageous,

because this could prevent it from exploring leaves, that could more quickly lead

101

closer to the optimal point. For early termination, a condition, such as a maximum

number of iterations, can be used.

(ii) By slice of data, we mean the points trained for a specific λ. In this case what

matters is to minimize L = R+λD, irrespective of the values of R and D. Therefore,

we can run the GLCH algorithm on the L-C-plane, using any of the select functions

in Algs. 2-6.

(iii) When we consider only C and L, and ignore the particular values of R and D, we

project the points on the plane formed by the vectors [0, 0, 1] and [1, λ, 0], as depicted

in Figure 5.4. The inner product of a point [R, D, C] with the vector [0, 0, 1] gives

the complexity, [0, 0, 1] · [R, D, C] = C, and the inner product of a point [R, D, C]

with the vector [1, λ, 0] gives the loss, [1, λ, 0]·[R, D, C] = R+λD = L. Interestingly,

points on the LCH of the projected points, are also on the LCH of the original cloud

of points. This is so because, consider the minimum for a fixed λ and γ, that is

arg minh Rh + λDh + γCh. When λ is fixed, the specific values of Rh and Dh do

not matter. What matters is the value of Lh = Rh + λDh. Therefore, this same

minimum can be found by arg minh Lh +γCh. Therefore, when we minimize L+γC

in the projected space for a specific γ (and λ), we are also minimizing R + λD + γC

in the original space for a particular λ and γ. In this process, we ignore the networks

not trained for this λ, because it is unlikely that they have a lower L for this given

λ. What all this means is that the LCH of the cloud of points can be approximated

by running the GLCH algorithm for the slices corresponding to several λ.

102

Figure 5.4: Illustration of what happens when we ignore the particular values of R and
D, and compute the LCH of only C and L = R + λD, in a rate-distortion-complexity
optimization problem. We find the LCH of the projected points on the C-L(λ) plane,
where L(λ) is the axis with the same direction as the vector [1, λ, 0].

5.8 Rate-Complexity Optimization in Lossless Image

Compression

The GLCH algorithm can be used to select neural network architectures, from a set of

possible architectures, without having to evaluate the performances of all network archi-

tectures. We particularly developed the GLCH algorithm in order to take complexity into

account when selecting neural networks, instead of only accounting for the performance

metric it was trained to minimize. The optimal network architectures are the ones that

lie on the LCH of the cloud of points. The GLCH algorithm visits neural network archi-

tectures, and therefore builds the LCH, in increasing order of complexity. In this way, the

algorithm can be stopped once the highest level of acceptable complexity, or the superior

level of desired network loss, is achieved.

In this section, we use the GLCH algorithm to select networks for lossless compression

of binary images. We assume that the images are to be compressed using a method of

103

forward coding with context modeling for arithmetic coding, similar to the PC method

we described in Section 4.2. The context is composed of the M = 32 closest causal pixels,

which gives a context similar to the ones shown in Figures 2.10 and 4.1 for other values

of M .

We assume that the set of possible architectures consists of MLPs with two hidden

layers, having either 10, 20, 40, 80, 160, 320, or 640 hidden units, each. Thus, in this

case, the number of hyperparameters is K = 2, and the number of possible values per

hyperparameter is Tk = 7 for k = 1, 2. The total number of architectures is Υ = 49.

For the purpose of evaluating the GLCH algorithm, we train all possible networks.

The networks are trained on an NVidia GTX 1080Ti GPU to minimize the binary cross

entropy loss on the training set of Dataset 5 (described in Section 4.5). We use stochastic

gradient descent, 100 epochs, a learning rate of 0.0001, and a batch size of 1024 samples.

We assume one is interested in two forms of forward coding. One is the more traditional

forward coding scheme, in which the networks are trained on data from one set and used

to compress data from another set. We use the validation set of Dataset 5 to select

networks for this form of coding. Therefore, when selecting the networks for this form of

coding, the performances reported are measured while encoding the validation set. The

complexity is measured in either Joules/pixel or MAC/pixel.

The other form of forward coding, that we assume one is interested in, is based on

algorithmic information theory [57]. The basic idea of compression based on algorithmic

information theory is to describe a program which can be used to regenerate the data.

One approach views the construction of such program as data modeling [57]. For example,

the data could be exactly represented by some model and the residual between the model

and the data. Optimality is achieved when the sum of the size of the model and the size

of the residual is minimized. This is the minimum description length [57]. In one possible

adaptation of this form of coding, the network takes the place of the model, and the

compressed data takes the place of the residual, and both are included in the compressed

file. In this case, the network is trained and evaluated on the data to be compressed.

104

It does not have to generalize to other data. There is no need for three separate sets

(training, validation and test sets). Only one set is necessary. We assume that this set

is the training set of Dataset 5. When we select networks for this form of coding, we

measure complexity in number of encoded model bits.

Note that, in this case, all that matters is the minimum description length, or R+λC,

with λ = 1, where C and R are the model bits and the data bits divided by the number

of samples. However, since the rate-complexity points are initially unknown, finding the

LCH is still beneficial. The minimum description length operating point lies on the LCH,

and can be searched using the GLCH algorithm. The algorithm can be stopped once

λ = 1 is reached.

The networks are initially trained using 32-bit floating point arithmetic. Therefore, the

size of the network in bits is, initially, its number of parameters times 32 bits. To create

more network alternatives for the second form of coding, we also quantize the network

parameters to 8 and 16 bits. This corresponds to including a third hyperparameter h3,

with T3 = 3 possible values (8, 16 and 32), increasing the total number of network

alternatives to Υ = T1T2T3 = 147.

We do not include points for different quantization levels when selecting networks for

the first form of coding (traditional forward coding), because we assume that the number

of Joules/pixel and the number of MAC/pixel do not change with quantization. Since

the network is trained using 32 bits, then quantized, we also assume that the bitrate does

not improve, but actually gets worse, with quantization. Therefore, in these cases, we do

not expect the quantized networks to be on the LCH.

In order to summarize, we measure complexity in three different ways: (1) MAC per

pixel, (2) Joules per pixel, and (3) model bits. It is important to describe how we obtain

the values for each of these three metrics. We explain this in the following three sections.

105

5.8.1 Multiply-accumulate operations per pixel

The values of MAC/pixel and the number of parameters of an MLP are essentially the

same. First of all, the network is run once per pixel, therefore the values of MAC/pixel

and MAC are the same. Second of all, at each neuron, the input values are multiplied

by the weights then added (together with the bias), which amounts to a number of MAC

equal to the number of weights. If we count the number of weights in all neurons, the

total number of weights is an estimate of the number of MAC. The number of parameters

of the MLP also includes the biases, and the activation functions also amount to some

operations, but these numbers are generally negligible compared to the number of weights.

Therefore, we can generally consider the values of MAC/pixel and network parameters as

almost equivalent.

5.8.2 Joules per pixel

We estimate Joules by measuring the power consumption in watts every second, using

the Nvidia-smi Toolkit®, then adding up all values. The samples are 1 second apart.

Therefore, it approximately corresponds to the integral of the power consumption during

the period of the evaluation. Since the energy consumption taken this way is very noisy,

we repeat this process 200 times. We average the results to obtain the final energy

consumption estimate, and divide by the total number of pixels in the validation set to

obtain the value of Joules per pixel.

5.8.3 Encoded model bits

The size of the network in bits is its number of parameters times the number of quanti-

zation bits. As we said, we consider network architectures for numbers of quantization

bits h3 equal to 8, 16 and 32. We determine the quantization step ∆ from the range of

values of all parameters in the network, that is ∆ = (θmax − θmin)/2h3 , where θmax is the

maximum and θmin is the minimum of all network parameters. Then we use midtread

106

uniform quantization after subtracting the parameter value by θmin + ∆/2 or, in other

words,

θq = round
(

θ − θmin −∆/2
∆

)
, (5.1)

where θq represents a quantized parameter. We make sure that the extremes θmin and

θmax are rounded to 0 and 2h3 − 1, respectively. We do not retrain the networks after

quantization. For h3 = 32, nothing needs to be done, since the networks are already

trained using 32-bit floating point numbers.

It is important to note that we are assuming a 32-bit platform and that, regardless of

the data width (if it is either 8,16 or 32) we are assuming that it will be processed with a

32-bit MAC. This is also why we assume that the number of Joules/pixel and the number

of MAC/pixel do not change with quantization.

5.8.4 Results

Figure 5.5 shows the final states of the GLCH algorithm with the select functions 5 and 6

for complexity measured in MAC/pixel, µJoules per pixel, and model bits. The other

select functions find trees only slightly different from the ones shown in Figure 5.5 (see

Annex II for the trees found by the other select functions). Table 5.1 summarizes the

number of visited networks for all variants of the GLCH algorithm. The select function

in Algorithm 4 was the one which, in general, visited the least number of networks.

If we consider that the networks with same h1 and h2, but different h3, that is, with

same numbers of hidden units, but different quantization bits, share the same training,

then the numbers of trained networks, when complexity is measured in model bits, are

reduced to the numbers shown in Table 5.2. Note that, in this work, we did not retrain the

neural networks for different numbers of quantization bits. However, in other works, the

networks could be separately trained using 8-, 16- and 32-bit-floating-point arithmetic.

107

Figure 5.5: Clouds of rate-complexity points and final trees for the GLCH algorithm
with the select functions 5 (left column) and 6 (right column), and with complexity mea-
sured in multiply/add operations per pixel (top row), µJoules per pixel (middle row), and
encoded model bits (bottom row). Dots are rate-complexity performance of hyperparam-
eters/nodes. At termination, blue nodes are never visited, red nodes have been visited
(moved to the open set O) but never selected, green and yellow nodes have been visited
and selected (moved to the closed set C). Arrows show parent-child relationships from
green or yellow parents to red, green, or yellow children, and take the child color. A green
arrow and child indicate that the child is selected in the step immediately following its
parent’s selection, while yellow indicates a gap between the parent’s and child’s selection.

108

Table 5.1: Numbers of visited networks for all variants of the GLCH algorithm and for
complexity measured in: (a) MAC/pixel; (b) µJ/pixel and (c) model bits.

complexity measure
variant (a) (b) (c)
Alg. 2 25 26 40
Alg. 3 22 24 37
Alg. 4 21 24 33
Alg. 5 25 26 40
Alg. 6 22 24 37

Table 5.2: Actual numbers of trained networks for all variants of the GLCH algorithm,
complexity measured in MAC/pixel (a), µJ/pixel (b) and model bits (c), if we consider
that the networks with same numbers of hidden units (h1, h2), but different numbers of
quantization bits (h3), share the same training.

complexity measure
variant (a) (b) (c)
Alg. 2 25 26 23
Alg. 3 22 24 23
Alg. 4 21 24 19
Alg. 5 25 26 23
Alg. 6 22 24 23

The constrained select functions find sets of points close to the LCH while only visiting

a fraction of the Υ networks. However, Figure 5.6 demonstrates the potential shortcomings

of the constrained algorithms. Since they are constrained to only select nodes from the

subset O′ ⊂ O of deepest open nodes, they cannot select previously visited nodes that

are not in O′, even if they are better options. The unconstrained algorithms, on the other

hand, do not have this problem, and can find sets of points that more closely approximate

the set of optimal points. However, this comes at the cost of a higher number of trained

networks.

By analyzing the networks that make up the LCH approximations, we find ground-

ing for a popular MLP design strategy. The GLCH tree nodes, for the different select

functions, are present in the tables of Annex II. The nodes that make up the LCH approx-

imations are marked in boldface. The set of all possible network architectures included

109

Figure 5.6: Zoomed portions of the bottom right plot of Figure 5.5, which demonstrate the
shortcomings of a constrained select function. Because of the constraint of only selecting
nodes among the current deepest open nodes, when they find more than one point that
make part of the LCH, they must select one, and the other cannot be selected later in a
future iteration. The unconstrained select functions do not suffer from this issue.

examples of pyramid, inverted pyramid, and rectangular structure. Nevertheless, the net-

works on the LCH approximations ended up having a pyramid structure. This seems

to confirm the common pyramid design strategy many practitioners use when designing

MLPs. We have also used such strategy in Section 4.2.

Regarding the feasibility of including the neural network along with the data in the

compressed file: note that the number of pixels in the training set is 10× 768× 1024 =

7864320, while the number of model bits is in the range from 103 to 107. In general, the

number of model bits per data sample is much lower than the number of data bits per

sample. This means that, in many cases, it is feasible to include the network along with

the data in the compressed file. In some cases, it may even be beneficial, if compared to

other compression alternatives.

So far, we have only qualitatively evaluated the GLCH algorithm. We can evaluate

it quantitatively by computing the hypervolume of the visited points, and comparing it

with the hypervolume considering all Υ architectures. We defined the hypervolume in

Section 3.7. To recapitulate, the hypervolume of a set of points is the volume of the space

Pareto-dominated by those points. A point Pareto-dominates another when it is better

or equal in all objectives, and strictly better in at least one objective. Note that, in this

110

work, we assume that an objective is better when it is lower. If this is not the case for one

objective, we can make it the case, by multiplying the objective by −1. When computing

the hypervolume, it is necessary to specify a reference point, otherwise the dominated

hypervolume would always be infinite. We set each coordinate of the reference point to a

value 10% higher than the highest value in that coordinate. When obtaining the highest

value in each coordinate, we include all the points involved in the hypervolume calculations

with respect to that reference point. The dominated hypervolume is then computed as the

volume of the dominated space, bounded from above by this reference point (as depicted in

Figure 3.5). The maximum possible hypervolume is only achieved by sets which contain

the Pareto set, that is, the set of pareto optimal solutions. Evidently, the set of all

possible Υ network architectures contains the Pareto set, therefore the hypervolume for

the Υ network architectures is the maximum. The LCH and the Pareto set are almost

equivalent (as discussed in Section 3.6, and depicted in Figure 3.3). Therefore, sets that

contain the LCH have close to maximum dominated hypervolume. In other words, a

method to compute the LCH is good when the distance from its hypervolume to the

maximum possible hypervolume is small. We refer to this quantity as the hypervolume

difference.

A common way to compare multi-objective hyperparameter optimization methods,

when the maximum possible hypervolume is known, is to compare their hypervolume

differences, as the number of visited networks increases. The best method, for a given

number of visited networks, is the one which gives the lowest value of hypervolume dif-

ference. The number of points that can be visited depends of the amount of budget that

is available. The method that gives the best LCH approximation might differ from one

number of visited networks to another.

Figure 5.7 shows the log hypervolume difference of several methods, relative to the

hypervolume of the Υ architectures, as the number of visited networks increases. Be-

sides the five variants of the GLCH algorithm, we also included results for three other

methods, obtained using a popular platform for multiobjective optimization [105]. The

111

three methods are Sobol, qNEHVI and qNParEGO. The first one essentially corresponds

to the random search method described in Section 3.5. However, it specifically selects

points based on the Sobol sequence [106], which provides a more uniform coverage of the

sample space. The qNEHVI and qNParEGO are noisy parallel versions of the EHVI and

ParEGO methods mentioned in Section 3.8.

We run these methods for a number of iterations equal to the maximal number of

iterations of the GLCH methods. However, note that the Bayesian Optimization methods

operate in continuous domains. The suggested hyperparameters in a given iteration are

continuous. After rounding the hyperparameters, the suggested architecture in a given

iteration may be one already suggested in a previous iteration. In the plots of Figure 5.7,

the horizontal axis is the number of distinct networks that have been visited. This applies

to all methods. Note that a child node at a given iteration of the GLCH algorithm,

with an unconstrained select function, may also correspond to a node that has already

been explored before. This is because a node can be reached from different paths in the

architecture graph. In that case, the repeated node is ignored, and is not counted as a

newly explored network. In the plots of Figure 5.7, we have already accounted for this,

and removed duplicates when counting the number of visited networks reported in the

horizontal axis.

We run each of the Sobol, qNEHVI and qNParEGO methods 25 times, each time with

a different set of initialization points. The first six points in each run are initialization

points, and are shared between these three methods. The maximum number of visited

networks is different in each run of each method. For each method, we take the average

of the HV curves over the different runs. When computing the average HV for a given

number of visited networks, it is evident that we can only consider the runs in which the

number of visited networks have reached that particular value. We only keep the averages

computed using at least 10 runs. That is one of the reasons why the curves in the plots

of Figure 5.7 do not go up to the same number of visited networks. Other reason is that

the GLCH methods naturally terminate with different numbers of visited networks.

112

Figure 5.7: Comparison between the different versions of the GLCH algorithm and other
MOHPO methods. The methods are compared in terms of log hypervolume difference
with respect to the maximal hypervolume, which is obtained considering all combinations
of hyperparameters.

Analyzing Figure 5.7 we can see that, for low numbers of visited networks, Sobol,

qNEHVI and qNParEGO provide a better approximation of the overall pareto front.

However, when the GLCH methods are close to terminate execution, they surpass the

other methods for the same number of visited networks. This is a consequence of the fact

that the GLCH methods build the LCH in increasing order of complexity.

If, instead of considering all points, we only consider the points up to the complexity

level already achieved by the GLCH method, the advantages of the GLCH method become

clear. In Figure 5.8, we show the results for the select function in Algorithm 5. Similar

results hold for the other select functions. To obtain the plots of Figure 5.8, we consider

113

the history of visited networks by the methods. The GLCH method visits the networks

in increasing order of complexity. When the GLCH method reaches a given level of

complexity, we compare its suggested networks with the suggested networks by the other

methods, for the same number of visited networks. We calculate the hypervolume of the

points with complexity lower than the GLCH complexity level. Then we take its log

difference with respect to the maximum hypervolume. A lower value indicates a better

LCH approximation for the region up to that complexity level. As before, the curves of

Sobol, qNEHVI and qNParEGO are averages over multiple runs. We use the same runs

used to generate the plots of Figure 5.7. Again, we only keep curve points which are

computed by averaging results from at least 10 runs.

Therefore, if one is only interested on the LCH up to a given level of complexity one

can largely benefit from the GLCH algorithm. It visits networks in increasing order

of complexity, giving a better LCH approximation than the other methods up to the

currently explored complexity level. Even if one is interested on the LCH for all levels of

complexity, the GLCH can still give better LCH approximations for specific numbers of

visited networks.

114

Figure 5.8: Comparison between the GLCH algorithm and other MOHPO methods. The
methods are compared in terms of hypervolume difference up to the complexity level
achieved by the GLCH method.

115

5.9 Rate-Distortion-Complexity Optimization in

Lossy Image Compression

In Section 5.8, we have shown that the GLCH method can effectively be used to select

neural networks for lossless compression. However, the applicability of the GLCH method

actually extends to more than simply lossless compression. It can also be used in lossy

compression with much effectiveness.

This section is devoted to testing the GLCH method in lossy compression. More

specifically, we use the GLCH algorithm to optimize complexity in lossy image compres-

sion. This problem is already inherently a multi-objective optimization problem of rate

and distortion. We also want to take complexity into account.

We assume that the compromise between rate and distortion is already included in

the loss function of the neural network, but the complexity is not. Specific network

architectures may lead to overfitting, or may be excessively complex, therefore it is of

interest to consider multiple architectures. After considering several architectures, the

best one, or the best ones, must be selected. The GLCH algorithm tackles both of the

problems of finding the best architectures among the available options, and of deciding

which architectures to train. In this way, it finds a good approximation of the overall

LCH, even if we include the points which were not visited by the GLCH algorithm. It

returns an approximate set of the optimal architectures for the different tradeoffs between

rate, distortion and complexity.

In order to evaluate the GLCH method in a lossy setting, we consider the compression

of colored images with the VAE compression approach of Section 3.9. For the purpose

of the experiments of this section, we use, as training data, a small sub-set, composed

of 240 frames, of the Vimeo-90K dataset [14], and, as validation data, the entire Kodak

dataset [3], composed of 24 images.

We consider variants of the bmshj2018-factorized model from [107], which is based

on [27]. Figure 5.9 illustrates the model template, and the hyperparameters we vary.

116

Figure 5.9: Template of the considered VAE architectures. GDN and IGDN indicate
the activation functions in the encoder and the decoder [27]. Conv h2x5x5/2↓ indicate
a convolutional layer of h2 kernels (filters) with width and height equal to 5 pixels, and
a stride of 2. Deconv h2x5x5/2↑ indicate a transposed convolutional layer of h2 kernels
(filters) with width and height equal to 5 pixels, and a stride of 2. See [108] for an
introduction on the convolutional and the transposed convolutional layers. Based on
Figure 4 from [27].

Those are: the number of layers of the encoder and the decoder (h1), the number of

filters of all convolutional layers of the encoder and the decoder, except for the last

convolutional layers (h2), and the number of filters of the last convolutional layer of the

encoder (h3). The values considered for h1 are 3 and 4, while h2 varies from 32 to 224

in steps of 32, and h3 varies from 32 to 320 in steps of 32. In other words, in this case

the number of hyperparameters is K = 3, the numbers of hyperparameter values are

T1 = 2, T2 = 7, T3 = 10, and the total number of architectures is Υ = T1T2T3 = 140.

The networks are trained for 10000 epochs, with a learning rate of 0.0004 and a batch

size of 16. We consider values of λ = 2552λ′, for λ′ = 0.005, 0.01 and 0.02, with rate

117

measured in bits per pixel, and distortion measured in mean squared error (MSE), with

the pixel values normalized between 0 and 1. Therefore, if we also consider the λ as a

hyperparameter (h4), we have K = 4 hyperparameters, T1 = 2, T2 = 7, T3 = 10, T4 = 3,

and Υ = T1T2T3T4 = 420 possible networks. However, we do not consider λ as an

hyperparameter in the GLCH algorithm for lossy compression, and treat each λ separately.

It is only after finding the LCH approximations on the LC-planes for the different λ that

the results are combined to obtain the overall LCH approximation on the RDC-space.

We measure complexity either as the number of parameters of the network, or in number

of floating-point operations (FLOPs). The numbers of FLOPs are obtained using the

ptflops tool [109].

Figure 5.10 shows the clouds of loss-complexity points for the different λ, and the LCH

approximations found by the GLCH algorithm, using the select function in Algorithm 6.

We only show the parent nodes, which can be seen as the approximation of the LCH.

The graphs for the other variants of the GLCH algorithm are shown in Annex III. The

plots are arranged as follows. The top row corresponds to λ′ = 0.005, the middle row

corresponds to λ′ = 0.01 and the bottom row to λ′ = 0.02. The left column corresponds

to complexity measured in number of parameters, and the right column corresponds to

complexity measured in number of FLOPs.

Combining the points found for the different λ, we obtain an estimate of the LCH

for the rate-distortion-complexity cloud of points. Figure 5.11 shows the parent nodes

found by the GLCH algorithm for the different λ, whose combination can be seen as an

approximation of the LCH on the RDC-space. The results are for the select function in

Algorithm 6.

Figure 5.12 shows the hypervolume differences of the GLCH methods as the number of

trained networks increases. In Figure 5.12, the reference hypervolume is the hypervolume

in the RDC-space of the 420 networks, for the different h1, h2, h3 and the different λ. We

include results for Sobol, qNEHVI and qNParEGO as well. The plots in Figure 5.12 are

similar to the plots in Figure 5.7.

118

Figure 5.10: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 6. The loss is equal
to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 × 0.01 (middle row) and
2552× 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

The GLCH methods present competitive results, particularly for a number of trained

networks lower than 60, in which case they dominate the other methods. For more than 60

119

Figure 5.11: Animation of the rate-distortion-complexity cloud of points, and an LCH
approximation, found by the GLCH algorithm, using the select function in Algorithm 6.
In this figure, we only highlight the nodes which were parent nodes during the execution
of the GLCH algorithm. These points are represented as green cubes. The other points
are represented as blue spheres. To view this animation, open this PDF file in Acrobat
Reader.

trained networks, qNEHVI catches up with the GLCH methods, for complexity measured

in number of parameters. It seems that it would show better results for larger numbers

of trained networks. The qNEHVI curve stops at around 60 trained networks. This is

120

Figure 5.12: Performances of the different versions of the GLCH algorithm, and other
MOHPO methods, on the rate-distortion-complexity optimization problem. The meth-
ods are compared in terms of log hypervolume difference with respect to the maximal
hypervolume, which is obtained considering all of the 420 networks, for the different
h1, h2, h3 and the different λ.

so, because in the 25 times we ran this method and for a number of iterations matching

the number of iterations of the GLCH methods, it only reached 60 trained networks less

than 10 times. Note that we only keep averages computed with more than 10 samples.

However, if we do include the remainder of the curve, with values computed using less

than 10 samples, the qNEHVI method does indeed surpass the GLCH methods for more

than 60 trained networks. However, it is important to note that the results for qNEHVI

are averages. The results for a specific run may be better or worse. In the GLCH case, if

the rate-complexity-distortion performance of the points are pre-defined, the result is the

same at every run.

121

Chapter 6

Conclusion

In this work, our focus was to investigate neural-based adaptive context modeling, while

also considering the neural network design process. In order to achieve this goal, we broke

down this main objective into two more specific secondary objectives: 1) to propose and

investigate a neural-based replacement for the look-up table (LUT) and 2) to propose and

investigate a method of MOHPO more specific to data compression.

We tackled the first objective with the proposal of the adaptive perceptron coding

(APC) method. Differently from the other currently available alternatives, the APC

method does not require pre-training and continuously adapts to the signal statistics.

Continuous adaptation is an attractive quality of most context modeling approaches us-

ing LUTs, and it is of interest to have a neural-based method with this characteristic.

Such a method combines the approximation power of neural networks with the adaptivity

of most LUT-based methods. Since every new sample is different, it continuously learns

the signal statistics, and approaches the true probability distribution of the data, instead

of the training data probability distribution. We compared the APC method to alterna-

tives using LUTs and RNNs, and showed that the APC method is able to overcome the

shortcomings of the LUT-based methods. Since, in principle, a LUT requires a separate

storage space for every conditional probability estimate for every context size, and the

growth of the number of possible contexts is exponential with respect to the context size,

122

memory consumption is a real issue with LUT-based methods. With APC, we are able to

increase the context size much further, and to consequently decrease the average codeword

length.

We tackled the second objective with the proposal of the greedy lower convex hull

(GLCH) method. We developed the GLCH method to minimize rate, or rate and dis-

tortion, while also minimizing complexity. However, it could also be used to minimize

other objectives, even outside of the data compression field. The output of the GLCH

method is an approximation of the LCH, or the Pareto front, for the multiple objectives

considered. An attractive quality of the GLCH method is that it progressively builds

this approximation. It first builds the approximation up to a given value of one objec-

tive, in the case of our applications, up to a complexity value, then to a higher value,

and so on. In MOHPO, it is generally the case that the degradation of one objective is

associated with the improvement of other objective, and vice versa [53]. For example,

an increase in complexity generally causes a reduction in average codeword length. The

progressive construction of the LCH by the GLCH algorithm allows one to stop execution

once the maximum, or the minimum, acceptable value of one objective is achieved. As

our comparison results demonstrate, other MOHPO methods build the entire LCH for

the entire domain from the very beginning, and do not have this advantage. This means

that the LCH approximation with the GLCH method is generally better, up to a given

value of complexity. In data compression, we are often interested in solutions only up to

a certain level of complexity, and the GLCH method permits focusing on those solutions.

The GLCH method also showed competitive overall results compared to state-of-the-art

methods present in a popular MOHPO platform.

Other minor contributions of our work include a brief analysis of the neural networks

that compose the LCH, which gave more groundings to the pyramid design strategy

commonly used when designing MLPs. That is, designs with more hidden units in the

initial hidden layers, compared to the final hidden layers. We also proposed a variant of

the Xavier initialization method, which consistently gave better results, and embedded it

123

into APC.

6.1 Future work

The online-trained neural-based methods are still much slower than the LUT-based meth-

ods. However, we did not investigate how faster it can become with dedicated hardware,

which could be tested with, for example, Field-Programmable Gate Arrays (FPGAs).

Furthermore, it is expected that, in the long run, with the advancement of hardware

speed and processing power, online-trained neural-based methods will eventually become

more appealing.

The APC can also be tested for the task of encoding any type of data on the fly.

Since in APC, just like in CABAC, all data is converted to binary, and then encoded

using context modeling and arithmetic coding, in principle it can be used to encode any

type of data. Adjustments would have to be made to make the context as agnostic as

possible. Since the context modeling in APC is adaptive, it can continuously approach

the statistics of the different sources, as the data type changes from one type to another.

The fact that the APC can be used with larger context sizes, compared to LUT-based

methods, can make it better for this task as well.

The GLCH method can be explored in different areas of application other than data

compression. Our application of the GLCH method to rate-distortion-complexity opti-

mization explored the fact that a network for lossy compression is generally trained to

minimize a loss of the form L = R + λD. Therefore it was natural to apply GLCH to

the LC-planes for different λ, and then combine the results to obtain an estimate of the

LCH of the RDC-space. However, the question remains if this approach would also be

effective in other areas of application.

124

Bibliography

[1] G. J. J. Verhoeven, “It’s all about the format - unleashing the power of raw aerial

photography,” International Journal of Remote Sensing, vol. 31, no. 8, pp. 2009–

2042, 2010.

[2] D. Vatolin, I. Seleznev, and M. Smirnov, “Lossless video codecs comparison ’2007,”

Graphics and Media Lab Video Group, Moscow State University, Moscow, Russia,

Tech. Rep., Mar. 2007.

[3] R. Franzen. “Kodak lossless true color image suite.” (2013), [Online]. Available:

http://r0k.us/graphics/kodak/ (visited on 03/17/2024).

[4] J. Ballé, G. Toderici, L. Versari, et al., “6th challenge on learned image com-

pression,” compression.cc, Accessed: March 17, 2024. [Online]. Available: https:

//compression.cc/.

[5] M. Mahoney, “Large text compression benchmark,” mattmahoney.net, Accessed:

March 17, 2024. [Online]. Available: https://www.mattmahoney.net/dc/text.

html.

[6] K.-C. Chen, W.-H. Peng, and C. G. G. Lee, “Overview of intelligent signal process-

ing systems,” APSIPA Transactions on Signal and Information Processing, vol. 12,

Jan. 2023.

[7] G. Sullivan and J.-R. Ohm, “Meeting report of the 22nd meeting of the joint video

experts team (jvet), by teleconference, 20-28 april 2021,” JVET ISO/IEC JTC

1/SC 29/WG 5, Apr. 2021.

125

http://r0k.us/graphics/kodak/
https://compression.cc/
https://compression.cc/
https://www.mattmahoney.net/dc/text.html
https://www.mattmahoney.net/dc/text.html

[8] A. D. Thompson. “Inside language models (from gpt to olympus).” (2024), [Online].

Available: https://lifearchitect.ai/models/ (visited on 06/11/2024).

[9] compression.ai, “World’s best image compression,” compression.ai, Accessed:

March 22, 2024. [Online]. Available: https://compression.ai/.

[10] JPEG, “Overview of jpeg ai,” jpeg.org, Accessed: March 22, 2024. [Online]. Avail-

able: https://jpeg.org/jpegai/.

[11] G. Martin-Cocher, “Proposed final requirements for learned-based point cloud cod-

ing,” WG 07 MPEG-I, Apr. 2024.

[12] N. Guerin, R. Silva, M. Oliveira, et al., “Rate-constrained learning-based image

compression,” Signal Processing: Image Communication, vol. 101, p. 116 544, Nov.

2021.

[13] B. Cottier, “Trends in the dollar training cost of machine learning systems,”

epochai.org, Accessed: March 23, 2024. [Online]. Available: https://epochai.

org/blog/trends-in-the-dollar-training-cost-of-machine-learning-

systems.

[14] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhancement with

task-oriented flow,” International Journal of Computer Vision, vol. 127, no. 8,

pp. 1106–1125, Feb. 2019.

[15] M. Hobbhahn and T. Besiroglu, “Trends in gpu price-performance,” epochai.org,

Accessed: April 9, 2024. [Online]. Available: https://epochai.org/blog/trends-

in-gpu-price-performance.

[16] B. Maltinsky, J. Gallagher, and J. Taylor, “Feasibility of training an agi using deep

rl: A very rough estimate,” Median Group, Tech. Rep., Mar. 2019.

[17] Y. Sun, N. B. Agostini, S. Dong, and D. Kaeli, “Summarizing cpu and gpu design

trends with product data,” 2020. arXiv: 1911.11313.

126

https://lifearchitect.ai/models/
https://compression.ai/
https://jpeg.org/jpegai/
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://epochai.org/blog/trends-in-gpu-price-performance
https://epochai.org/blog/trends-in-gpu-price-performance
https://arxiv.org/abs/1911.11313

[18] Q. Liu, Y. Xu, and Z. Li, “Decmac: A deep context model for high efficiency

arithmetic coding,” in 2019 International Conference on Artificial Intelligence in

Information and Communication (ICAIIC), 2019, pp. 438–443.

[19] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, “Deepzip: Lossless data com-

pression using recurrent neural networks,” in 2019 Data Compression Conference

(DCC), 2019, pp. 575–575.

[20] R. Song, D. Liu, H. Li, and F. Wu, “Neural network-based arithmetic coding of

intra prediction modes in hevc,” 2017 IEEE Visual Communications and Image

Processing (VCIP), pp. 1–4, 2017.

[21] C. Ma, D. Liu, X. Peng, Z.-J. Zha, and F. Wu, “Neural network-based arithmetic

coding for inter prediction information in hevc,” in 2019 IEEE International Sym-

posium on Circuits and Systems (ISCAS), 2019, pp. 1–5.

[22] E. C. Kaya and I. Tabus, “Neural network modeling of probabilities for coding the

octree representation of point clouds,” 2021 IEEE 23rd International Workshop on

Multimedia Signal Processing (MMSP), pp. 1–6, 2021.

[23] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, “Octsqueeze: Octree-

structured entropy model for lidar compression,” in 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1310–1320.

[24] J. Schmidhuber and S. Heil, “Sequential neural text compression,” IEEE Transac-

tions on Neural Networks, vol. 7, no. 1, pp. 142–146, 1996.

[25] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, “Dzip: Improved general-

purpose loss less compression based on novel neural network modeling,” in 2021

Data Compression Conference (DCC), 2021, pp. 153–162.

[26] J. Ballé, V. Laparra, and E. Simoncelli, “End-to-end optimized image compres-

sion,” in International Conference on Learning Representations, 2016.

127

[27] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image

compression with a scale hyperprior,” in International Conference on Learning

Representations, 2018.

[28] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and hierarchical pri-

ors for learned image compression,” in Advances in Neural Information Processing

Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, Eds., vol. 31, Curran Associates, Inc., 2018.

[29] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image compression

with discretized gaussian mixture likelihoods and attention modules,” in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2020, pp. 7936–7945.

[30] E. Agustsson, D. Minnen, N. Johnston, J. Ballé, S. J. Hwang, and G. Toderici,

“Scale-space flow for end-to-end optimized video compression,” in 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8500–

8509.

[31] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd Interna-

tional Conference on Learning Representations (ICLR), 2014.

[32] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent

neural network based language model,” in Proceedings of the 11th Annual Con-

ference of the International Speech Communication Association, INTERSPEECH

2010, vol. 2, Makuhari, Chiba, Japan, Jan. 2010, pp. 1045–1048.

[33] B. Krause, E. Kahembwe, I. Murray, and S. Renals, “Dynamic evaluation of neural

sequence models,” in Proceedings of the 35th International Conference on Machine

Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Re-

search, vol. 80, Stockholm, Sweden: PMLR, Oct. 2018, pp. 2766–2775.

[34] Y. Gao, R. Feng, Z. Guo, and Z. Chen, “Exploring the rate-distortion-complexity

optimization in neural image compression,” 2023. arXiv: 2305.07678.

128

https://arxiv.org/abs/2305.07678

[35] J. Guo, D. Xu, and G. Lu, “Cbanet: Toward complexity and bitrate adaptive

deep image compression using a single network,” IEEE Transactions on Image

Processing, vol. 32, pp. 2049–2062, 2023.

[36] H. Louati, S. Bechikh, A. Louati, A. Aldaej, and L. B. Said, “Joint design and

compression of convolutional neural networks as a bi-level optimization problem,”

Neural Computing and Applications, vol. 34, pp. 15 007–15 029, 2022.

[37] M. Tonin and R. L. de Queiroz, “On quantization of image classification neural net-

works for compression without retraining,” in 2022 IEEE International Conference

on Image Processing (ICIP), 2022, pp. 916–920.

[38] L. Qin and J. Sun, “Model compression for data compression: Neural network

based lossless compressor made practical,” in 2023 Data Compression Conference

(DCC), 2023, pp. 52–61.

[39] J.-H. Kim, J.-H. Choi, J. Chang, and J.-S. Lee, “Efficient deep learning-based lossy

image compression via asymmetric autoencoder and pruning,” in ICASSP 2020 -

2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2020, pp. 2063–2067.

[40] T. A. da Fonseca and R. L. de Queiroz, “Energy-constrained real-time h.264/avc

video coding,” in 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing, 2013, pp. 1739–1743.

[41] T. A. Fonseca and R. L. de Queiroz, “Towards greener computing systems for video

compression,” Journal of Communication and Information Systems, vol. 30, no. 1,

May 2015.

[42] E. Hosseini, F. Pakdaman, M. R. Hashemi, and M. Ghanbari, “Fine-grain com-

plexity control of hevc intra prediction in battery-powered video codecs,” Journal

of Real-Time Image Processing, vol. 18, pp. 603–618, 2021.

129

[43] C. Herglotz, F. Brand, A. Regensky, F. Rievel, and A. Kaup, “Processing energy

modeling for neural network based image compression,” in 2023 IEEE Interna-

tional Conference on Image Processing (ICIP), 2023, pp. 2390–2394.

[44] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, “Power-rate-distortion analysis

for wireless video communication under energy constraints,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 15, no. 5, pp. 645–658, 2005.

[45] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video

compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23–50, 1998.

[46] G. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,”

IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, 1998.

[47] P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized media,”

IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 390–404, 2006.

[48] T. Yue, “Overview of rate control algorithms in mainstream video coding stan-

dards,” in Signal and Information Processing, Networking and Computers, Y.

Wang, L. Xu, Y. Yan, and J. Zou, Eds., Singapore: Springer Singapore, 2021,

pp. 696–703.

[49] Q. Wang, Z. Cheng, X. Pan, and Y. Chen, “Rate control technology in video cod-

ing,” in Signal and Information Processing, Networking and Computers, Y. Wang,

M. Fu, L. Xu, and J. Zou, Eds., Singapore: Springer Singapore, 2020, pp. 889–895.

[50] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers

(speech coding),” IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 36, no. 9, pp. 1445–1453, 1988.

[51] P. Chou, T. Lookabaugh, and R. Gray, “Optimal pruning with applications to

tree-structured source coding and modeling,” IEEE Transactions on Information

Theory, vol. 35, no. 2, pp. 299–315, 1989.

130

[52] S. W. Wu and A. Gersho, “Rate-constrained picture-adaptive quantization for jpeg

baseline coders,” in 1993 IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 5, 1993, 389–392 vol.5.

[53] F. Karl, T. Pielok, J. Moosbauer, et al., “Multi-objective hyperparameter opti-

mization in machine learning – an overview,” ACM Transactions on Evolutionary

Learning and Optimization, vol. 3, no. 4, pp. 1–50, Dec. 2023.

[54] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperpa-

rameter optimization in hundreds of dimensions for vision architectures,” in Pro-

ceedings of the 30th International Conference on Machine Learning, S. Dasgupta

and D. McAllester, Eds., ser. Proceedings of Machine Learning Research, vol. 28,

Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 115–123.

[55] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter

optimization,” in Advances in Neural Information Processing Systems, J. Shawe-

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24, Curran

Associates, Inc., 2011.

[56] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic al-

gorithm: A big comparison for nas,” 2019. arXiv: 1912.06059.

[57] K. Sayood, Introduction to Data Compression, Fifth Edition, 5th. Cambridge, MA,

USA: Morgan Kaufmann Publishers Inc., 2017.

[58] D. Salomon, Coding for data and computer communications. Springer, 2005.

[59] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley, 2006.

[60] R. Gray and L. Davisson, An Introduction to Statistical Signal Processing (An

Introduction to Statistical Signal Processing). Cambridge University Press, 2010.

[61] C. E. Shannon, “Prediction and entropy of printed english,” The Bell System Tech-

nical Journal, vol. 30, no. 1, pp. 50–64, 1951.

131

https://arxiv.org/abs/1912.06059

[62] C. M. Bishop, Neural Networks for Pattern Recognition. USA: Oxford University

Press, Inc., 1995.

[63] F. Cady, “Maximum likelihood estimation and optimization,” in The Data Science

Handbook. John Wiley & Sons, Ltd, 2017, ch. 23, pp. 345–356.

[64] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[65] R. L. de Queiroz and P. A. Chou, “Transform coding for point clouds using a

gaussian process model,” IEEE Transactions on Image Processing, vol. 26, no. 7,

pp. 3507–3517, 2017.

[66] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language Pro-

cessing. Cambridge, Massachusetts: The MIT Press, 1999.

[67] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arith-

metic coding in the h.264/avc video compression standard,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, 2003.

[68] H. Schwarz, M. Coban, M. Karczewicz, et al., “Quantization and entropy coding

in the versatile video coding (vvc) standard,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 31, no. 10, pp. 3891–3906, 2021.

[69] D. G. Fernández, G. Botella, A. A. D. Barrio, C. García, M. Prieto-Matías, and

C. Grecos, “Hevc optimization based on human perception for real-time environ-

ments,” Multimedia Tools and Applications, vol. 79, pp. 16 001–16 033, 2020.

[70] V. Sze and D. Marpe, “Entropy coding in hevc,” in High Efficiency Video Coding,

2014.

[71] T. Nguyen, X. Xu, F. Henry, et al., “Overview of the screen content support in

vvc: Applications, coding tools, and performance,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 31, no. 10, pp. 3801–3817, 2021.

[72] C. Holt, “Forecasting seasonals and trends by exponential weighted moving aver-

ages,” International Journal of Forecasting, vol. 20, pp. 5–10, Mar. 2004.

132

[73] S. Haykin, Neural Networks and Learning Machines. Pearson, 2008.

[74] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[75] G. Strang, Linear Algebra and Learning from Data. Wellesley-Cambridge Press,

2019.

[76] G. Garrigos and R. M. Gower, “Handbook of convergence theorems for (stochastic)

gradient methods,” 2023. arXiv: 2301.11235.

[77] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2022.

[78] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson,

2020.

[79] P. Werbos, “Backpropagation through time: What it does and how to do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[80] S. Raschka and V. Mirjalili, Python machine learning: Machine learning and deep

learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd., 2019.

[81] M. Emmerich, K. Giannakoglou, and B. Naujoks, “Single- and multiobjective

evolutionary optimization assisted by gaussian random field metamodels,” IEEE

Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 421–439, 2006.

[82] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and analyses for maximal vector

computation,” The VLDB Journal, vol. 16, pp. 5–28, Jan. 2007.

[83] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms. Cambridge, MA, USA: MIT Press, 2001.

[84] P. I. Frazier, “A tutorial on bayesian optimization,” 2018. arXiv: 1807.02811.

[85] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the

human out of the loop: A review of bayesian optimization,” Proceedings of the

IEEE, vol. 104, no. 1, pp. 148–175, 2016.

133

https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/1807.02811

[86] B. Letham, B. Karrer, G. Ottoni, and E. Bakshy, “Constrained Bayesian Opti-

mization with Noisy Experiments,” Bayesian Analysis, vol. 14, no. 2, pp. 495–519,

2019.

[87] M. Balandat, B. Karrer, D. R. Jiang, et al., “Botorch: A framework for efficient

monte-carlo bayesian optimization,” in Proceedings of the 34th International Con-

ference on Neural Information Processing Systems, ser. NIPS ’20, Vancouver, BC,

Canada: Curran Associates Inc., 2020.

[88] S. Daulton, M. Balandat, and E. Bakshy, “Parallel bayesian optimization of mul-

tiple noisy objectives with expected hypervolume improvement,” in Neural Infor-

mation Processing Systems, 2021.

[89] J. Knowles, “Parego: A hybrid algorithm with on-line landscape approximation

for expensive multiobjective optimization problems,” IEEE Transactions on Evo-

lutionary Computation, vol. 10, no. 1, pp. 50–66, 2006.

[90] S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected hypervolume

improvement for parallel multi-objective bayesian optimization,” in Proceedings

of the 34th International Conference on Neural Information Processing Systems,

ser. NIPS ’20, Vancouver, BC, Canada: Curran Associates Inc., 2020.

[91] J. Cai, “Convolutions of distributions,” in Encyclopedia of Actuarial Science. John

Wiley & Sons, Ltd, 2006.

[92] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,”

Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.

[93] Z. Chen and H. Zhang, “Learning implicit fields for generative shape modeling,”

in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2019, pp. 5932–

5941.

134

[94] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, Y. W. Teh and M. Titterington, Eds.,

ser. Proceedings of Machine Learning Research, vol. 9, Chia Laguna Resort, Sar-

dinia, Italy: PMLR, 13–15 May 2010, pp. 249–256.

[95] R. Gonzalez and R. Woods, Digital Image Processing. Pearson, 2018.

[96] Q. Zou, “A pde model for smooth surface reconstruction from 2d parallel slices,”

IEEE Signal Processing Letters, vol. 27, pp. 1015–1019, 2020.

[97] S. Yan, P. Addabbo, C. Hao, and D. Orlando, “Adaptive detection of dim maneu-

vering targets in adjacent range cells,” IEEE Signal Processing Letters, vol. 28,

pp. 633–637, 2021.

[98] M. Kuhn. “Jbig-kit.” (2018), [Online]. Available: https://www.cl.cam.ac.uk/

~mgk25/jbigkit/ (visited on 03/17/2024).

[99] J. B. W. Webber, “A bi-symmetric log transformation for wide-range data,” Mea-

surement Science and Technology, vol. 24, no. 2, p. 027 001, Dec. 2012.

[100] Y. LeCun, “Generalization and network design strategies,” in Connectionism in

perspective, R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, Eds. Elsevier, 1989.

[101] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Advances

in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, et

al., Eds., vol. 30, Curran Associates, Inc., 2017.

[102] A. Bundy, “Artificial intelligence: Art or science?” RSA Journal, vol. 136, no. 5384,

pp. 557–569, 1988.

[103] H. A. Simon, “Artificial intelligence: An empirical science,” Artificial Intelligence,

vol. 77, no. 1, pp. 95–127, 1995.

135

https://www.cl.cam.ac.uk/~mgk25/jbigkit/
https://www.cl.cam.ac.uk/~mgk25/jbigkit/

[104] R. Baraniuk, D. Donoho, and M. Gavish, “The science of deep learning,” Pro-

ceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30 029–30 032,

2020.

[105] Facebook. “Adaptive experimentation platform.” (2024), [Online]. Available:

https://ax.dev/ (visited on 06/05/2024).

[106] I. Sobol’, “On the distribution of points in a cube and the approximate evaluation

of integrals,” USSR Computational Mathematics and Mathematical Physics, vol. 7,

no. 4, pp. 86–112, 1967.

[107] J. Bégaint, F. Racapé, S. Feltman, and A. Pushparaja, “Compressai: A pytorch

library and evaluation platform for end-to-end compression research,” 2020. arXiv:

2011.03029.

[108] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

2018. arXiv: 1603.07285.

[109] V. Sovrasov. “Ptflops: A flops counting tool for neural networks in pytorch frame-

work.” (2018-2023), [Online]. Available: https://github.com/sovrasov/flops-

counter.pytorch (visited on 03/17/2024).

136

https://ax.dev/
https://arxiv.org/abs/2011.03029
https://arxiv.org/abs/1603.07285
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch

Annex I

Dataset Samples

137

Figure I.1: First nine pages from the paper [65], which are used in Datasets 1, 2 and 3
for different purposes.

138

Figure I.2: Nine pages from the training set of Dataset 5, which is also the training set
of Dataset 4.

139

Figure I.3: Four pages from the validation set of Dataset 5, which is also the validation
set of Dataset 4. The first page is also the only page from the validation set of Dataset 6.

140

Figure I.4: Nine pages from the test set of Dataset 5, which are also present in the test
set of Dataset 4.

141

Figure I.5: First four pages from the test set of Dataset 6.

142

Annex II

GLCH Complementary Results

(Lossless)

143

Figure II.1: Clouds of rate-complexity points with execution and final state of the GLCH
algorithm for the select functions: Alg. 2 (left column) and Alg. 3 (right column). Bitrate
is in bits per pixel and complexity is in multiply/add operations per pixel (top row),
µJoules per pixel (middle row), and encoded model bits (bottom row).

144

Figure II.2: Clouds of rate-complexity points with execution and final state of the GLCH
algorithm for the select function Alg. 4. Bitrate is in bits per pixel and complexity is in
multiply/add operations per pixel (top row), µJoules per pixel (middle row), and encoded
model bits (bottom row).

145

Figure II.3: Clouds of rate-complexity points with execution and final state of the GLCH
algorithm for the select functions in Alg. 5 (left column) and Alg. 6 (right column).
Bitrate is in bits per pixel and complexity is in multiply/add operations per pixel (top
row), µJoules per pixel (middle row), and encoded model bits (bottom row).

146

Table II.1: Final trees of the GLCH algorithm with the select functions Alg. 2 (a,c,e) and
Alg. 3 (b,d,f) for the different complexity measures: MAC/pixel (a,b), µJ/pixel (c,d) and
encoded model bits (e,f). Each node is represented by its hyperparameters in the order:
units in the first hidden layer, units in the second hidden layer and quantization bits, if
applicable (continued on the next pages).

(a)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
40,10 80,10 40,20
40,20 80,20 40,40
40,40 80,40 40,80
80,10 160,10 80,20
80,20 160,20 80,40
80,40 160,40 80,80
160,10 320,10 160,20
160,20 320,20 160,40
160,40 320,40 160,80
320,20 640,20 320,40
640,20 640,40
640,40 640,80
640,80 640,160
640,160 640,320
640,320 640,640

(b)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
40,10 80,10 40,20
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
160,40 320,40 160,80
160,80 320,80 160,160
320,80 640,80 320,160
640,80 640,160
640,160 640,320
640,320 640,640

147

(c)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
20,20 40,20 20,40
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
80,80 160,80 80,160
160,40 320,40 160,80
160,80 320,80 160,160
160,160 320,160 160,320
320,80 640,80 320,160
160,320 320,320 160,640
320,320 640,320 320,640
640,320 640,640

(d)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
20,20 40,20 20,40
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
80,80 160,80 80,160
160,80 320,80 160,160
160,160 320,160 160,320
160,320 320,320 160,640
320,320 640,320 320,640
640,320 640,640

148

(e)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
20,10,8 40,10,8 20,20,8 20,10,16
40,10,8 80,10,8 40,20,8 40,10,16
40,20,8 80,20,8 40,40,8 40,20,16
40,40,8 80,40,8 40,80,8 40,40,16
80,20,8 160,20,8 80,40,8 80,20,16
80,40,8 160,40,8 80,80,8 80,40,16
160,20,8 320,20,8 160,40,8 160,20,16
320,20,8 640,20,8 320,40,8 320,20,16
640,20,8 640,40,8 640,20,16
640,40,8 640,80,8 640,40,16
640,80,8 640,160,8 640,80,16
640,160,8 640,320,8 640,160,16
640,320,8 640,640,8 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32

(f)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
20,20,8 40,20,8 20,40,8 20,20,16
40,20,8 80,20,8 40,40,8 40,20,16
40,40,8 80,40,8 40,80,8 40,40,16
80,40,8 160,40,8 80,80,8 80,40,16
80,80,8 160,80,8 80,160,8 80,80,16
160,80,8 320,80,8 160,160,8 160,80,16
320,80,8 640,80,8 320,160,8 320,80,16
320,160,8 640,160,8 320,320,8 320,160,16
640,160,8 640,320,8 640,160,16
640,320,8 640,640,8 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32

149

Table II.2: Final trees of the GLCH algorithm with the select function Alg. 4 for the
different complexity measures: (a) MAC/pixel, (b) µJ/pixel and (c) encoded model bits.
Each node is represented by its hyperparameters in the order: units in the first hidden
layer, units in the second hidden layer and quantization bits, if applicable.

(a)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
40,10 80,10 40,20
80,10 160,10 80,20
160,10 320,10 160,20
160,20 320,20 160,40
160,40 320,40 160,80
320,40 640,40 320,80
640,40 640,80
640,80 640,160
640,160 640,320
640,320 640,640

(b)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
20,20 40,20 20,40
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
80,80 160,80 80,160
160,80 320,80 160,160
160,160 320,160 160,320
160,320 320,320 160,640
320,320 640,320 320,640
640,320 640,640

(c)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
20,10,8 40,10,8 20,20,8 20,10,16
40,10,8 80,10,8 40,20,8 40,10,16
80,10,8 160,10,8 80,20,8 80,10,16
160,10,8 320,10,8 160,20,8 160,10,16
320,10,8 640,10,8 320,20,8 320,10,16
640,10,8 640,20,8 640,10,16
640,20,8 640,40,8 640,20,16
640,40,8 640,80,8 640,40,16
640,80,8 640,160,8 640,80,16
640,160,8 640,320,8 640,160,16
640,320,8 640,640,8 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32

150

Table II.3: Final trees of the GLCH algorithm with the select functions Alg. 5 (a,c,e) and
Alg. 6 (b,d,f) for the different complexity measures: MAC/pixel (a,b), µJ/pixel (c,d) and
encoded model bits (e,f). Each node is represented by its hyperparameters in the order:
units in the first hidden layer, units in the second hidden layer and quantization bits, if
applicable (continued on the next pages).

(a)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
40,10 80,10 40,20
40,20 80,20 40,40
40,40 80,40 40,80
80,10 160,10 80,20
80,20 160,20 80,40
80,40 160,40 80,80
160,10 320,10 160,20
160,20 320,20 160,40
160,40 320,40 160,80
320,20 640,20 320,40
640,20 640,40
640,40 640,80
640,80 640,160
640,160 640,320
640,320 640,640

(b)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
40,10 80,10 40,20
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
160,40 320,40 160,80
160,80 320,80 160,160
320,80 640,80 320,160
640,80 640,160
640,160 640,320
640,320 640,640

151

(c)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
20,20 40,20 20,40
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
80,80 160,80 80,160
160,40 320,40 160,80
160,80 320,80 160,160
160,160 320,160 160,320
320,80 640,80 320,160
160,320 320,320 160,640
320,320 640,320 320,640
640,320 640,640

(d)
parent child 1 child 2
10,10 20,10 10,20
20,10 40,10 20,20
20,20 40,20 20,40
40,20 80,20 40,40
40,40 80,40 40,80
80,40 160,40 80,80
80,80 160,80 80,160
160,80 320,80 160,160
160,160 320,160 160,320
160,320 320,320 160,640
320,320 640,320 320,640
640,320 640,640

152

(e)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
20,10,8 40,10,8 20,20,8 20,10,16
40,10,8 80,10,8 40,20,8 40,10,16
40,20,8 80,20,8 40,40,8 40,20,16
40,40,8 80,40,8 40,80,8 40,40,16
80,20,8 160,20,8 80,40,8 80,20,16
80,40,8 160,40,8 80,80,8 80,40,16
160,20,8 320,20,8 160,40,8 160,20,16
320,20,8 640,20,8 320,40,8 320,20,16
640,20,8 640,40,8 640,20,16
640,40,8 640,80,8 640,40,16
640,80,8 640,160,8 640,80,16
640,160,8 640,320,8 640,160,16
640,320,8 640,640,8 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32

(f)
parent child 1 child 2 child 3
10,10,8 20,10,8 10,20,8 10,10,16
10,20,8 20,20,8 10,40,8 10,20,16
10,40,8 20,40,8 10,80,8 10,40,16
20,40,8 40,40,8 20,80,8 20,40,16
40,40,8 80,40,8 40,80,8 40,40,16
80,40,8 160,40,8 80,80,8 80,40,16
80,80,8 160,80,8 80,160,8 80,80,16
160,80,8 320,80,8 160,160,8 160,80,16
320,80,8 640,80,8 320,160,8 320,80,16
320,160,8 640,160,8 320,320,8 320,160,16
640,160,8 640,320,8 640,160,16
640,320,8 640,640,8 640,320,16
640,640,8 640,640,16
640,640,16 640,640,32

153

Annex III

GLCH Complementary Results

(Lossy)

154

Figure III.1: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 2. The loss is equal
to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 × 0.01 (middle row) and
2552× 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

155

Figure III.2: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 3. The loss is equal
to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 × 0.01 (middle row) and
2552× 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

156

Figure III.3: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 4. The loss is equal
to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 × 0.01 (middle row) and
2552× 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

157

Figure III.4: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 5. The loss is equal
to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 × 0.01 (middle row) and
2552× 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

158

Figure III.5: Clouds of loss-complexity points, with emphasis on the parent nodes found
by the GLCH algorithm, using the select function in Algorithm 6. The loss is equal
to R + λD, where λ is equal to 2552 × 0.005 (top row), 2552 × 0.01 (middle row) and
2552× 0.02 (bottom row), R is the rate in bits per pixel, and D is the distortion in mean
squared error, with the pixel values normalized between 0 and 1. Complexity is given in
number of parameters (left column), and in number of FLOPs (right column).

159

Table III.1: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 2 for λ′ = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a)
node 106 parameters loss

3,32,32 0.114 1.254
3,96,32 0.668 1.241
3,128,32 1.112 1.226
3,128,64 1.319 1.185
3,160,32 1.666 1.168
3,192,32 2.330 1.157
3,224,32 3.105 1.131

(b)
node 1010 FLOPs loss

3,32,32 0.171 1.254
3,96,32 1.141 1.241
3,128,32 1.941 1.226
3,128,64 2.046 1.185
3,160,32 2.950 1.168
3,192,32 4.170 1.157
3,224,32 5.599 1.131

(c)
node 106 parameters loss

3,32,32 0.114 2.274
3,32,64 0.167 1.953
3,64,32 0.336 1.855
3,96,32 0.668 1.842
3,96,64 0.824 1.838
3,128,64 1.319 1.825
3,160,64 1.924 1.803
3,192,64 2.639 1.742
3,224,64 3.466 1.709

(d)
node 1010 FLOPs loss

3,32,32 0.171 2.274
3,32,64 0.197 1.953
3,64,32 0.551 1.855
3,96,32 1.141 1.842
3,96,64 1.220 1.838
3,128,64 2.046 1.825
3,160,64 3.082 1.803
3,192,64 4.327 1.742
3,224,64 5.782 1.709

(e)
node 106 parameters loss

3,32,32 0.114 3.186
3,64,32 0.336 3.094
3,96,32 0.668 2.851
3,160,32 1.666 2.520

(f)
node 1010 FLOPs loss

3,32,32 0.171 3.186
3,64,32 0.551 3.094
3,96,32 1.141 2.851
3,160,32 2.950 2.520

160

Table III.2: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 3 for λ′ = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a)
node 106 parameters loss

3,32,32 0.114 1.254
3,96,32 0.668 1.241
3,128,32 1.112 1.226
3,128,64 1.319 1.185

(b)
node 1010 FLOPs loss

3,32,32 0.171 1.254
3,96,32 1.141 1.241
3,128,32 1.941 1.226
3,128,64 2.046 1.185

(c)
node 106 parameters loss

3,32,32 0.114 2.274
3,32,64 0.167 1.953
3,96,64 0.824 1.838
3,128,64 1.319 1.825
3,160,64 1.924 1.803
3,192,64 2.639 1.742
3,224,64 3.466 1.709

(d)
node 1010 FLOPs loss

3,32,32 0.171 2.274
3,32,64 0.197 1.953
3,96,64 1.220 1.838
3,128,64 2.046 1.825
3,160,64 3.082 1.803
3,192,64 4.327 1.742
3,224,64 5.782 1.709

(e)
node 106 parameters loss

3,32,32 0.114 3.186
3,64,32 0.336 3.094
3,96,32 0.668 2.851
3,160,32 1.666 2.520

(f)
node 1010 FLOPs loss

3,32,32 0.171 3.186
3,64,32 0.551 3.094
3,96,32 1.141 2.851
3,160,32 2.950 2.520

161

Table III.3: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 4 for λ′ = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder (continued on the next pages).

(a)
node 106 parameters loss

3,32,32 0.114 1.254
3,64,32 0.336 1.318
3,96,32 0.668 1.241
3,128,32 1.112 1.226
3,160,32 1.666 1.168
3,192,32 2.330 1.157
3,224,32 3.105 1.131
3,224,64 3.466 1.184
3,224,96 3.826 1.215
3,224,128 4.186 1.213
4,224,128 6.796 1.204
4,224,160 7.157 1.202
4,224,192 7.517 1.190
4,224,224 7.878 1.242
4,224,256 8.238 1.283
4,224,288 8.598 1.355
4,224,320 8.959 1.288

(b)
node 1010 FLOPs loss

3,32,32 0.171 1.254
3,64,32 0.551 1.318
3,96,32 1.141 1.241
3,128,32 1.941 1.226
3,128,64 2.046 1.185
3,128,96 2.151 1.208
3,128,128 2.256 1.206
4,128,128 2.360 1.247
4,160,128 3.606 1.241
4,160,160 3.639 1.241
4,192,160 5.153 1.221
4,192,192 5.192 1.240
4,224,192 6.975 1.190
4,224,224 7.021 1.242
4,224,256 7.067 1.283
4,224,288 7.113 1.355
4,224,320 7.159 1.288

162

(c)
node 106 parameters loss

3,32,32 0.114 2.274
3,64,32 0.336 1.855
3,96,32 0.668 1.842
3,96,64 0.824 1.838
3,128,64 1.319 1.825
3,160,64 1.924 1.803
3,192,64 2.639 1.742
3,224,64 3.466 1.709
3,224,96 3.826 1.735
3,224,128 4.186 1.780
3,224,160 4.547 1.812
3,224,192 4.907 1.847
3,224,224 5.268 1.860
3,224,256 5.628 1.881
3,224,288 5.988 1.947
3,224,320 6.349 1.825
4,224,320 8.959 2.150

(d)
node 1010 FLOPs loss

3,32,32 0.171 2.274
3,64,32 0.551 1.855
3,96,32 1.141 1.842
3,96,64 1.220 1.838
3,128,64 2.046 1.825
3,160,64 3.082 1.803
3,192,64 4.327 1.742
3,224,64 5.782 1.709
3,224,96 5.966 1.735
3,224,128 6.149 1.780
3,224,160 6.333 1.812
3,224,192 6.516 1.847
3,224,224 6.700 1.860
3,224,256 6.883 1.881
4,224,256 7.067 1.927
4,224,288 7.113 1.946
4,224,320 7.159 2.150

163

(e)
node 106 parameters loss

3,32,32 0.114 3.186
3,64,32 0.336 3.094
3,96,32 0.668 2.851
3,128,32 1.112 2.862
3,160,32 1.666 2.520
3,192,32 2.330 2.691
3,192,64 2.639 2.568
3,192,96 2.949 2.582
3,224,96 3.826 2.636
3,224,128 4.186 2.699
3,224,160 4.547 2.696
3,224,192 4.907 2.764
3,224,224 5.268 2.941
3,224,256 5.628 2.847
3,224,288 5.988 2.829
3,224,320 6.349 2.960
4,224,320 8.959 3.343

(f)
node 1010 FLOPs loss

3,32,32 0.171 3.186
3,64,32 0.551 3.094
3,96,32 1.141 2.851
3,96,64 1.220 2.951
3,128,64 2.046 2.780
3,160,64 3.082 2.749
3,192,64 4.327 2.568
3,192,96 4.484 2.582
3,192,128 4.642 2.736
3,192,160 4.799 2.821
3,192,192 4.956 2.859
3,224,192 6.516 2.764
3,224,224 6.700 2.941
3,224,256 6.883 2.847
3,224,288 7.067 2.829
3,224,320 7.250 2.960
4,224,320 7.159 3.343

164

Table III.4: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 5 for λ′ = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a)
node 106 parameters loss

3,32,32 0.114 1.254
3,96,32 0.668 1.241
3,128,32 1.112 1.226
3,128,64 1.319 1.185
3,160,32 1.666 1.168
3,192,32 2.330 1.157
3,224,32 3.105 1.131

(b)
node 1010 FLOPs loss

3,32,32 0.171 1.254
3,96,32 1.141 1.241
3,128,32 1.941 1.226
3,128,64 2.046 1.185
3,160,32 2.950 1.168
3,192,32 4.170 1.157
3,224,32 5.599 1.131

(c)
node 106 parameters loss

3,32,32 0.114 2.274
3,32,64 0.167 1.953
3,64,32 0.336 1.855
3,96,32 0.668 1.842
3,96,64 0.824 1.838
3,128,64 1.319 1.825
3,160,64 1.924 1.803
3,192,64 2.639 1.742
3,224,64 3.466 1.709

(d)
node 1010 FLOPs loss

3,32,32 0.171 2.274
3,32,64 0.197 1.953
3,64,32 0.551 1.855
3,96,32 1.141 1.842
3,96,64 1.220 1.838
3,128,64 2.046 1.825
3,160,64 3.082 1.803
3,192,64 4.327 1.742
3,224,64 5.782 1.709

(e)
node 106 parameters loss

3,32,32 0.114 3.186
3,64,32 0.336 3.094
3,96,32 0.668 2.851
3,160,32 1.666 2.520

(f)
node 1010 FLOPs loss

3,32,32 0.171 3.186
3,64,32 0.551 3.094
3,96,32 1.141 2.851
3,160,32 2.950 2.520

165

Table III.5: Points of the loss-complexity clouds that were parent nodes during the exe-
cution of the GLCH algorithm with the select function Alg. 6 for λ′ = 0.005 (top row),
0.01 (middle row) and 0.02 (bottom row) and for complexity measured as number of pa-
rameters (left column), and number of FLOPs (right column). Each node is represented
by its hyperparameters in the order: number of layers of the encoder and the decoder,
number of filters of all layers except the last of the encoder, and number of filters of the
last layer of the encoder.

(a)
node 106 parameters loss

3,32,32 0.114 1.254
3,96,32 0.668 1.241
3,128,32 1.112 1.226
3,128,64 1.319 1.185
3,192,64 2.639 1.181

(b)
node 1010 FLOPs loss

3,32,32 0.171 1.254
3,96,32 1.141 1.241
3,128,32 1.941 1.226
3,128,64 2.046 1.185
3,192,64 4.327 1.181

(c)
node 106 parameters loss

3,32,32 0.114 2.274
3,32,64 0.167 1.953
3,96,64 0.824 1.838
3,128,64 1.319 1.825
3,160,64 1.924 1.803
3,192,64 2.639 1.742
3,224,64 3.466 1.709

(d)
node 1010 FLOPs loss

3,32,32 0.171 2.274
3,32,64 0.197 1.953
3,96,64 1.220 1.838
3,128,64 2.046 1.825
3,160,64 3.082 1.803
3,192,64 4.327 1.742
3,224,64 5.782 1.709

(e)
node 106 parameters loss

3,32,32 0.114 3.186
3,64,32 0.336 3.094
3,96,32 0.668 2.851
3,160,32 1.666 2.520

(f)
node 1010 FLOPs loss

3,32,32 0.171 3.186
3,64,32 0.551 3.094
3,96,32 1.141 2.851
3,160,32 2.950 2.520

166

Annex IV

Publications

167

1. L. S. Lopes, P. A. Chou and R. L. de Queiroz, “Adaptive Context Modeling for

Arithmetic Coding Using Perceptrons,” in IEEE Signal Processing Letters, vol.

29, pp. 2382-2386, 2022.

2. V. F. Figueiredo, R. L. de Queiroz, P. A. Chou, L. S. Lopes “Embedded Coding of

Point Cloud Attributes” in IEEE Signal Processing Letters, vol 31, pp. 890-893,

2024.

3. L. S. Lopes, R. L. de Queiroz and P. A. Chou, “Rate-Complexity Optimization

in Lossless Neural-based Image Compression,” accepted for publication at ICIP

2024.

168

	Agradecimentos
	Abstract
	Resumo
	Introduction
	Contextualization
	The problems we address
	Overview of relevant literature
	Objectives and dissertation layout

	Data Compression Fundamentals
	Preliminaries
	Arithmetic Coding
	Probability Estimation
	Context-based Probability Estimation
	Context Modeling
	Context-Adaptive Binary Arithmetic Coding

	Neural Networks and Hyperparameter Optimization
	Feedforward Neural Networks
	Neural Network Training
	Recurrent Neural Networks
	Cross-Validation
	Hyperparameter Optimization
	Lower Convex Hull
	Dominated Hypervolume
	Bayesian Optimization
	Variational Image Compression

	Perceptron Coding
	Motivation
	Perceptron Coding
	Adaptive Perceptron Coding
	Adaptive Coding with Recurrent Neural Networks
	Binary Image Datasets
	Forward Coding of Binary Images
	Backward Adaptive Coding of Binary Images

	Greedy Lower Convex Hull
	Motivation
	The Architecture Graph
	The Basic GLCH Algorithm
	Select Functions
	Simplifying the Select Functions
	Reasoning behind the Select Functions
	Rate-Distortion-Complexity Optimization with the GLCH Algorithm
	Rate-Complexity Optimization in Lossless Image Compression
	Multiply-accumulate operations per pixel
	Joules per pixel
	Encoded model bits
	Results

	Rate-Distortion-Complexity Optimization in Lossy Image Compression

	Conclusion
	Future work

	Annex
	Dataset Samples
	GLCH Complementary Results (Lossless)
	GLCH Complementary Results (Lossy)
	Publications

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

