
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Improving the Safety of Numerical Programs
(Melhorando a segurança de programas numéricos)

Nikson Bernardes Fernandes Ferreira

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Supervisor
Prof. Dr. Mauricio Ayala-Rincón

Co-Supervisor
Dr. Mariano Miguel Moscato

Brasília
2023

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Improving the Safety of Numerical Programs
(Melhorando a segurança de programas numéricos)

Nikson Bernardes Fernandes Ferreira

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof. Dr. Mauricio Ayala-Rincón (Supervisor)
PPG Informática/UnB

Dr. Laura Titolo Prof. Dr. Vander Ramos Alves
AMA/NASA LaRC FM PPG Informática/UnB

Dr. Aaron Dutle
NASA LaRC Formal Methods

Prof. Dr. Ricardo Pezzuol Jacobi
Coordenador do Programa de Pós-graduação em Informática

Brasília, July 21, 2023

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

Resumo

Este trabalho discute como a precisão dos erros de arredondamento envolvidos em im-
plementações reais do sistema de gerenciamento da NASA para veículos não tripula-
dos DAIDALUS afetam a segurança geral do sistema. A biblioteca DAIDALUS fornece
definições formais para os conceitos de Detecção e Evasão em aviônica demonstrados
mecanicamente no assistente de provas PVS. No entanto, tais verificações são apenas cer-
tificados do bom comportamento da especificação do ponto de vista lógico, o que não
garante a precisão dos algoritmos implementados sob restrições aritméticas de ponto flu-
tuante. Nossa análise assume o padrão IEEE 754 de ponto flutuante, implementados em
diversas linguagens de programação, e a técnica de verificação se baseia na geração de uma
especificação de primeira ordem dos cálculos numéricos. Uma característica proeminente
da abordagem é dividir a especificação em fatias definidas de acordo com os diferentes
ramos de computação. O fatiamento é crucial para simplificar a análise formal das com-
putações com aritmética de ponto flutuante.

Palavras-chave: Análise de Programas, Aritmética de Ponto Flutuante, Detecção e
Evasão, Métodos Formais, PVS

iv

Abstract

This work discusses how the presence of round errors involved in real-world implemen-
tations of DAIDALUS, a NASA library for uncrewed vehicles, affects the system’s over-
all safety. The DAIDALUS library provides formal definitions for avionics’ Detect and
Avoid concepts mechanically proven correct in the proof assistant PVS. However, such
verification assures only the well-behavior of the specification assuming real-numbers se-
mantics, which does not guarantee the correctness of the algorithms when implemented
using floating-point arithmetic. The applied technique overcomes this providing a prov-
ably correct floating-point implementation from real specification assuming the IEEE-754
floating-point standard, the most widely spread approach to developing numerical compu-
tation software in real-life applications. This work describes in detail the applied technique
and the modifications needed for this particular analysis. Notably, these modifications
included the translation into a first-order specification of the numerical computations and
the splitting of the specification into slices defined according to the different computation
branches. Slicing was crucial to simplify the formal analysis of floating point arithmetic
computations.

Keywords: Program Analysis, Floating point arithmetic, Detect and Avoid, Formal
Methods, PVS

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Organization . 3
1.3 Resumo Estendido . 3

1.3.1 Motivação . 3
1.3.2 Organização . 5

2 Background 6
2.1 Floating-point representation . 6

2.1.1 IEEE-754 . 6
2.1.2 Floating Point notation . 11

3 Methodology 12
3.1 PRECiSA . 14
3.2 Frama C . 18
3.3 PVS . 20

4 Case Study: DAIDALUS 28
4.1 DAIDALUS description . 28
4.2 Verification under real-valued declarations . 32

5 Verification of actual computations on DAIDALUS 40
5.1 Slicing . 40

5.1.1 Equivalence theorem . 42
5.2 Code extraction . 44

5.2.1 Processing slices . 44
5.2.2 Top-layer function . 48

5.3 Verification of the floating-point implementation of DAIDALUS 51

6 Related work 56

vi

7 Conclusions and future work 58

Bibliography 60

vii

Chapter 1

Introduction

1.1 Motivation
The so-called Midair Conflicts (unplanned in-air encounters between aircraft) are among
the most dangerous situations in the aerospace domain. As reported by the USA Federal
Aviation Administration, more than forty midair collisions have occurred during the five
years from January 2009 through December 2013 [1].

To mitigate such situations, the mentioned agency stated in Title 14 of the Code
of Federal Regulations (14 CFR) part 91, the concept of See and Avoid. In short, it
poses the responsibility to remain vigilant to see and avoid nearby traffic on the persons
operating the aircraft [15]. The advent of Unmanned Aerial Systems (UAS) and their
incorporation into the airspace provoked the need to restate this concept in terms suitable
for aircraft with no crew onboard. The Detect and Avoid (DAA) concept emerged then
as an effort to support the integration of UAVs into civil airspace. Noticeably, DAA poses
more collision-avoidance responsibilities on the system, or even all of them in the case of
autonomous ships.

Diverse industrial and governmental actors proposed algorithmic detect and avoid
solutions. Among them, the Detect and AvoID Alerting Logic for Unmanned Systems
library (DAIDALUS), a suite of detect and avoid-related algorithms developed by NASA,
stands out [30]. DAIDALUS provides prototypical open-source implementations in Java
and C++, which were included as the reference implementations of the functional re-
quirements presented in DO-365, the Minimum Operational Performance Standards for
Unmanned Aircraft Systems developed by RTCA Special Committee 228 [37]. One dis-
tinguishing characteristic of DAIDALUS is that it also provides formal specifications of
the algorithms along with proofs of correctness and safety properties on them, mechan-
ically checked within the Prototype Verification System (PVS) [34]. Nevertheless, the
adherence of the implementations to the behavior modeled by the formal specifications

1

was checked using a testing-based approach [31]. While this kind of approach is usually
enough for non-critical applications, the correctness of DAA implementations requires a
higher level of assurance. Especially given the nature of the algorithms in DAIDALUS,
since most of them perform numerical computations specified using real-numbers arith-
metic but implemented using floating-point representations.

Since its last version, the PRECiSA tool [45], an analyzer for floating-point programs
based on abstract interpretation, provides a feature that automatically extracts floating-
point C code from a real-valued PVS specification. Remarkably, the extracted C code
contains annotations enabling the use of Frama-C [23], a static program analyzer, to exter-
nally verify properties on the C code, such as its compliance with the original specification.
The Frama-C analyzer generates verification conditions that are seamlessly processed by
diverse backends. The workflow proposed in [45] includes customization of Frama-C that
allowed it to generate the verification conditions in PVS and connect them with the NASA
Library of PVS formalizations (NASALib)1.

The case study presented in [45] focuses on applying this new feature of PRECiSA
to a core function in DAIDALUS. This work aims to apply the code-extraction feature
that automatically generates a formally verified instrumented stable-guard C-code from
a real specification to cover one of the main modules in DAIDALUS and develop proof
strategies to prove the correctness properties of the extraction and its implementation
round-off errors bounds. Due to tool scalability issues, a compositional analysis was
proposed to be able to use it in the case study. The case study module is devoted to
the definition of the condition of Well Clear of an aircraft concerning surrounding traffic.
The Well Clear condition guarantees a collision-free situation. While PRECiSA was well
suited to analyze the mentioned function, the high number of function calls and predicates
in the rest of the declarations in the targeted module prevented the tool from being able
to process them directly, just timing out the execution.

This dissertation proposes diverse modifications to the technique and the tool, en-
abling the analysis of the whole Well Clear module. Mainly, the slicing of the original
specification, which incremented the number of invocations to PRECiSA but simplified
the input in each call. This made the process manageable by the tool and simplified the
annotations on the code, producing more straightforward program analysis obligations.
It also uses a different PVS floating-point formalization which significantly improved the
performance of the analysis of the C code.

1https://github.com/nasa/pvslib

2

1.2 Organization
Chapter 2 presents the required background on floating-point IEEE standard representa-
tion. Chapter 3 introduces the general lines of the proposed methodology and describes
the main elements in the toolchain, namely, PRECiSA, Frama-C, and PVS. Chapter 4
describes the DAIDALUS library, used as the case study in this dissertation. It also ex-
plains how some of its properties were verified assuming real-numbers arithmetic. Chapter
5 presents the slicing technique applied to simplify the overall analysis, the equivalence
theorem between the original specification and the sliced declarations, the code extrac-
tion process used on each slice, and the addition of a top-layer function to complete the
verification of the actual floating-point implementation of DAIDALUS. Finally, Chapter
6 discusses related work, and Chapter 7 concludes and briefly presents some possible lines
of future work.

1.3 Resumo Estendido
Apresenta-se tradução da introdução a modo de resumo estendido.

1.3.1 Motivação

Os chamados Conflitos no ar estão entre as situações mais perigosas no domínio aeroes-
pacial. Conforme relatado pela Administração Federal de Aviação dos EUA, mais de
quarenta colisões aéreas ocorreram durante os cinco anos de janeiro de 2009 a dezembro
de 2013 [1].

Com o objetivo de mitigar tais situações, o referido órgão consta no Título 14 do Código
de Regulamentos Federais (14 CFR) parte 91, o conceito de Ver e Evitar. Em suma, impõe
a responsabilidade de permanecer vigilante para ver e evitar o tráfego próximo das pessoas
que operam a aeronave [15]. O advento dos Sistemas Aéreos Não Tripulados (SISVANT)
e a sua incorporação no espaço aéreo provocou a necessidade de adequar este conceito
para aeronaves sem tripulação a bordo. O conceito Detectar e Evitar (DeE) surgiu então
como um esforço para apoiar a integração de VANTs no espaço aéreo civil. Visivelmente,
o DeE impõe mais responsabilidades de prevenção de colisões ao sistema, ou mesmo todas
elas no caso de aeronaves autônomos.

Diversos atores industriais e governamentais propuseram soluções algorítmicas para
detectar e evitar conflitos. Entre eles, destaca-se a biblioteca Detect and AvoID Alerting
Logic for Unmanned Systems (DAIDALUS), um conjunto de algoritmos relacionados à
detecção e prevenção de conflitos desenvolvido pela NASA [30]. DAIDALUS fornece
implementações de protótipos em código aberto em Java e C++, que foram incluídas

3

como implementações de referência dos requisitos funcionais apresentados no DO-365, os
Padrões Mínimos de Desempenho Operacional para Sistemas de Aeronaves Não Tripula-
dos desenvolvidos pelo Comitê Especial RTCA 228 [37]. Um diferencial do DAIDALUS
é que ele também fornece especificações formais dos algoritmos juntamente com provas
de sua correção e suas propriedades de segurança, verificadas mecanicamente no Sistema
de Verificação de Protótipos (PVS) [34]. No entanto, a aderência das implementações ao
comportamento modelado pelas especificações formais foi verificada utilizando uma abor-
dagem baseada em testes [31]. Embora esse tipo de abordagem geralmente seja suficiente
para aplicações não críticas, a correção das implementações de DeE requer um nível mais
alto de garantia. Especialmente dada a natureza dos algoritmos do DAIDALUS, uma
vez que a maioria deles executa cálculos numéricos especificados usando aritmética de
números reais, mas implementados usando representações de ponto flutuante.

Desde sua última versão, a ferramenta PRECiSA [45], um analisador para programas
de ponto flutuante baseado em interpretação abstrata, fornece um recurso que extrai
automaticamente código C de ponto flutuante de uma especificação utilzando aritmética
real em PVS. O código C extraído contém anotações que permitem o uso do Frama-
C [23], um analisador de programa estático, para verificar externamente propriedades do
código C, como sua conformidade com a especificação original. O analisador Frama-C
gera condições de verificação que são processadas por diversos backends (provadores ou
assistentes de prova externos). O fluxo de trabalho proposto em [45] inclui customização
do Frama-C que permitiu gerar as condições de verificação em PVS e conectá-las com a
biblioteca de formalizações de PVS da NASA (NASALib)2.

O estudo de caso apresentado em [45] concentra-se na aplicação deste novo recurso
do PRECiSA a uma função central do DAIDALUS. Este trabalho visa continuar com
a aplicação do recurso de extração de código que gera automaticamente um código C
instrumentado para detectar guardas instáveis formalmente verificado a partir de uma es-
pecificação real para cobrir um dos principais módulos do DAIDALUS, que é dedicado à
definição da condição de Well Clear (Condição bem definida em que não há conflitos com
respeito a um volume ao redor da aeronave) de uma aeronave em relação ao tráfego circun-
dante. A condiçãoWell Clear garante uma situação livre de colisão. Embora o PRECiSA
fosse adequado para analisar a função mencionada, o alto número de chamadas de função
e predicados no restante das declarações no módulo de destino impediu que a ferramenta
fosse capaz de processá-las diretamente, apenas cronometrando a execução. Esta disser-
tação propõe diversas modificações na técnica e na ferramenta, possibilitando a análise
de todo o módulo Well Clear. Principalmente, o fatiamento da especificação original, que
aumentou o número de invocações para PRECiSA, mas simplificou a entrada em cada

2https://github.com/nasa/pvslib

4

uma delas. Isso tornou o processo gerenciável pela ferramenta e simplificou as anotações
no código, produzindo obrigações de análise de programa mais diretas. Este também usa
uma formalização de ponto flutuante PVS diferente que melhorou significativamente o
desempenho da análise do código C.

1.3.2 Organização

O Capítulo 2 apresenta os fundamentos necessários sobre a representação do padrão IEEE
de ponto flutuante. O Capítulo 3 apresenta as linhas gerais da metodologia proposta e
descreve os principais elementos do conjunto de ferramentas, a saber, PRECiSA, Frama-C
e PVS. O Capítulo 4 descreve a biblioteca DAIDALUS, usada como estudo de caso neste
documento. Também explica como algumas de suas propriedades que foram verificadas
assumindo a aritmética de números reais. O Capítulo 5 apresenta a técnica de fatiamento
aplicada para simplificar a análise geral, o teorema da equivalência entre a especificação
original e as declarações fatiadas, o processo de extração de código usado em cada fatia e
a adição de uma camada superior com uma função para completar a verificação da imple-
mentação de ponto flutuante do DAIDALUS. Finalmente, o Capítulo 6 discute trabalhos
relacionados e o Capítulo 7 conclui e apresenta brevemente algumas possíveis linhas de
trabalho futuro.

5

Chapter 2

Background

2.1 Floating-point representation

2.1.1 IEEE-754

The objective of following the IEEE-754 standard for floating-point arithmetic is to make
the result of any operation independent of the application of any hardware/software.
Floating-point arithmetic intends to approximate real arithmetic using finite resources,
i.e., (finite) hardware should be able to represent and operate over it. Only a finite subset
of the extended real domain is representable using the floating-point representation. This
subset is defined by the parameters of its format, i.e., the base (2 or 10), precision p

(significant length), and minimum/maximum exponent (emin/emax). Each floating-point
data is either ±∞, NaN (Not a number) or a triple:

⟨sign, exponent, significant ⟩ (2.1)

where sign is an integer (0 or 1) that indicates the signal of the number, exponent an
integer in the interval [emin, emax] expressing a scale factor, and significant is the mantissa,
a string of integer digits in the interval [0, base) in the form d0.d1d2...dp−1. The number
of digits, p, is the significant length. The triple represents the number:

(−1)sign × significant × baseexponent (2.2)

The floating-point data is stored in three fields ⟨S, E, T ⟩ in the radix-2 format in Figure
2.1.

S E T

Figure 2.1: Floating-point binary format

6

In this format, S, the sign, is stored as a one-bit; E, stored in w-bits, is the positive
biased integer exponent E, E = exponent + bias; T stored in t-bits characterize a positive
integer representing the significant. It is interpreted as:

1. NaN, if E = 2w − 1 and T ≠ 0;

2. (−1)sign ∞, if E = 2w − 1 and T = 0;

3. (−1)sign×significant×baseexponent, where significant = (1+T ×base1−p) and exponent =
E − bias, if 1 ≤ E ≤ 2w − 2, called normal form;

4. (−1)sign × significant × baseemin , where significant = (0 + T × base1−p), if E = 0 and
T ≠ 0, called subnormal form;

5. (−1)sign 0, E = 0 and T = 0

The IEEE-754 standard presents three basic bit-encoding lengths: 32 (single preci-
sion), 64 (double precision), and 128 (long double precision) and extensions [22]. Table
2.1 shows concrete parameters for each binary floating-point format specified. baseemin

is the minimum positive representable normal number and baseemax × (base − base1−p) is
the largest. Every number above the maximum positive number is represented as infinity
since the number extrapolates the representable range. It is called overflow. The same
occurs for the negative bound. Numbers closer to zero than the minimum positive num-
ber are represented as zero. It is called underflow since the number goes out of the lower
representable bound.

parameter 32-bit (float) 64-bit (double) 128-bit (long double)
p 24 53 113
emax 127 1023 16383
minimum
positive
number

1.175494e-38 2.225074e-308 3.362103e-4932

maximum
positive
number

3.402823e+38 1.797693e+308 1.189731e+4932

Table 2.1: Concrete floating-point bounds for each format with base = 2.

Since the floats representation is given in finite exponential terms, the exactly repre-
sentable numbers are not uniformly distributed in the representable range as shown in
2.2. The closer to zero, the more numbers are representable; Closer to the representable
limit, the fewer numbers are representable.

7

������� � ������

Figure 2.2: Representable floating-point numbers distribution.

Rounding is an operation that converts a real number to fit a finite representation if
it is not exactly representable, signaling when an exception occurs during this process,
such as overflow. The standard defined four possible modes:

• round-to-nearest - Convert to nearest representable value. If it has the same distance
to two representations, then it can:

– ties-to-even - Converto to the even one, i.e., the one in which the least signifi-
cant bit is zero.

– ties-to-away - Convert to largest one.

• round-towards-positive - Convert the real number to the smallest representation
greater than it;

• round-towards-negative - Convert the real number to the largest positive represen-
tation less than it;

• round-towards-zero - Convert the real number with round-towards-minus-infinity if
it is positive and with round-towards-plus-infinity if it is negative.

For instance, the real number 0.10, which is not exactly representable in the floating-
point domain, is rounded to 0.0999999940 in the single precision floats format using
round-towards-negative or round-towards-zero mode; While using round-towards-positive
or round-to-nearest it is represented as 0.1000000015.

The difference between the ideal number with infinite precision and the finite precision
representation is called round-off error. In the previous example, the round-off errors are
5.96e-09 and -1.19e-09, respectively. The default implementation defined by the standard
is round-to-nearest and ties-to-even. It prevents statistical bias and provides numerical
stability, i.e., the round-off error is bounded even with multiple sequential roundings
operations in arithmetic expressions. Since an infinite precision number is rounded to the
nearest representation, it introduces an error of, at most, half the gap between the two
consecutive representations around the value. As depicted in Figure 2.2, the representable
values are not uniformly distributed, then this gap depends on the real value intended to
be represented and the representation precision.

8

The concept of Unit in the Last Place (ulp) expresses the minimum difference repre-
sentable in a floating-point scale, i.e., the significant’s last digit maximum contribution
to represent the value. A finite real number r is represented in the floating-point domain
as:

round(r) = (−1)sign × significant × baseexponent

= (−1)sign × (1 + T × base1−p) × baseexponent (2.3)

since T is a positive integer number represented in binary format, the maximum contri-
bution of the least significative binary digit of T in significant is 1 × base1−p, so:

ulp(r) = baseexponent(r)−p+1 (2.4)

For instance, the ulp of 0.1 in single precision is 7.450581e-09 since its exponent is -4
and precision p is 24, as shown in Table 2.1, while the ulp of 1e7 is 1 in the same format.
Note that the round-off error using the round-to-nearest mode is less than or equal to half
ulp. Still, this error could appear irrelevant at first glance; In a hypothetical situation
where banks use the single-precision format, it could allow someone to steal up to 50 cents
from each bank account with more than 10 million dollars without altering its balance,
i.e., without leaving a clear trace of the crime behind. Since this process does not affect
the balance, it could be repeated endlessly if not discovered.

The IEEE-754 standard also defines how floating-point operations should be per-
formed. Infinite is interpreted as an arbitrarily large number greater than all others.
Regardless of invalid operations, such as ∞ ∗ 0 and ∞ −∞, or operations with special
operands, such as addition with infinities or NaN, every basic operation should be per-
formed as if calculated with infinite precision and then rounded to a floating-point value.
For example, a floating-point sum is performed as:

evalF(f1 + f2) = round(evalR(Float2Real (f1) +Float2Real (f2))) (2.5)

where eval means evaluating an expression using the subscript arithmetic R to reals and
F to floating-point. Float2Real is the conversion from the floating-point domain to reals.
For instance, the sum 0.10 + 0.10 is evaluated over floating-point as:

round(evalR(0.1000000015 + 0.1000000015)) = 0.2000000030 (2.6)

Unstable guards, also known as unstable tests [42], are guards in a conditional sentence
that can evaluate different results when using real-valued or floating-point arithmetic lead-

9

ing the program to take a different control flow. [45]. A stable guard is a complementary
definition, i.e., in both representations, the guard has convergent evaluations, then, the
execution flow is the same. For instance, the branch expression presented in Specification
2.1 returns 100 if the expression is less than zero. Otherwise, returns 1.

100 if floor ((4/3 - 1) * 3 - 1) < 0 else 1

Specification 2.1: Unstable guard example

The expression’s result is 1 when evaluated using real arithmetic, but using floating-point
is 100, since (4/3 − 1) ∗ 3 − 1) evaluation is -2.22e-16 instead of 0. As seen above,
unstable guards can lead to absolutely different behavior under ideal real and floating-
point computations. In the Specification 2.1, the round-off error is 99 due to the guard
instability.

More formally, the stable-guard behavior could be expressed by the logical formula:

evalR(guard(x1, ..., xn)) ≡ evalF(guard(x1, ..., xn)) (2.7)

where eval means evaluating a boolean expression using the subscript arithmetic R to
reals and F to floating-point. guard(x1, ..., xn) is a guard expression with n attributes.
The Formula 2.7 can also be expressed as:

(evalR(guard(x1, ..., xn)) ∧ evalF(guard(x1, ..., xn)))∨
(¬evalR(guard(x1, ..., xn)) ∧ ¬evalF(guard(x1, ..., xn))) (2.8)

The expression ((4/3−1)∗3−1) in previous example can be rewritten equivalently as((4∗3)/3−3)−1) using distributivity. However, when evaluated using floating-point arith-
metic, these expressions are not equivalent, resulting in -2.22e-16 and 0.0, respectively.
Indeed, real field properties such as associativity and commutativity are not preserved in
floating-point arithmetic.

In general, designing correct and safe floating-point programs could be challenging.
Moreover, it is crucial in safety-critical applications, where a minimum error could lead
to catastrophic consequences. For instance, the Patriot missile failure (1991) failed to
track and intercept a missile, which led to 28 deaths [17]. Another example of round-off
error failure was reported in 2007 by Air-services Australia, where the ADS-B (Automatic
Dependent Surveillance-Broadcast) system, currently used by thousands of aircraft, re-
ported the position of an aircraft 220 nautical miles away from the actual position [40].
In [14] was demonstrated that CPR (Compact Position Reporting) algorithm responsible
for encoding and decoding aircraft positions’ original requirements does not guarantee the
claimed precision.

10

2.1.2 Floating Point notation

For simplicity, in this document, boxed operators and expressions will be used to dis-
criminate floating-point-evaluated expressions. For instance, the guard (4/3 − 1) ∗ 3 − 1
in the if-then-else expression used in the previous subsection’s example means that all
operations are performed in f floating-point representation.

⌊(4/3 − 1) ∗ 3 − 1⌋
To discriminate operator variables and constants represented in floating point notation,

they are boxed separately, as in the example below.

floor (4 ⧄ 3 ⊟ 1 ⊠ 3 ⊟ 1)
So, since both expressions are considered to be performed in floating point arithmetic,

they are equal, but

⌊(4/3 − 1) ∗ 3 − 1⌋ ≠ ⌊(4/3 − 1) ∗ 3 − 1⌋
since the right-hand side of the inequality above is computed in real arithmetic.
Abusing in notation, a real number operation with floating-point operands includes a

hidden transformation from floats to real. For instance, consider the real multiplication
between floats v1 and v2 :

v1 ∗ v2 = Float2Real (v1) ∗Float2Real (v2)
In addition, an operation op with arity n, can be expressed as:

op(vi)n−1
i=0 = op(v0, v1, ..., vn−2, vn−1)

11

Chapter 3

Methodology

This work proposes a verification methodology that extends the approach described in
previous works [42, 45]. Figure 3.1 shows the tailored and expanded version of the original
approach applied to the analysis of DAIDALUS. The different steps of the approach are
summarized below according to the case study analyzed in the present work.

1. Due to the restrictions of the PRECiSA tool, we translate the higher-order specifi-
cation to equivalent first-order declarations. In the case study, the higher-order def-
initions in the DAIDALUS library are manually translated into semantic-preserving
declarations in which the higher-order parameters are downgraded to first-order
arguments.

2. We prove the equivalence between the original specification and the proposed first-
order version using the PVS theorem prover.

3. We split the specification lifting the conditions.

4. We prove the equivalence between each slice specification and the original higher-
order declarations assuming the slice input restriction.

5. We prove the soundness of the slicing, i.e., selecting the correct slice in each situation
covers all input possibilities, and it is equivalent to the higher-order declaration.

6. For each slice, we follow the same methodology proposed in [45]:

• provide a real-valuated specification, as well as input variable range to PRE-
CiSA, generating a stable-guard ASCL instrumented C-Code, numerical errors
bounds, and PVS certificates ensuring round-off errors properties;

• apply Frama-C/WP to output verification conditions (VCs) from the generated
C-code, and;

• use PVS to prove the verification conditions.

12

DAIDALUS
PVS Higher-order
Real Specification

PVS First-order
Real Specification

PVS sliced
Specification

PVS sliced
Specification

PVS sliced
Specification PRECiSA

Kodiak

PVS round-off errors
certificates

PVS

Instrumented
ACSL/C program Frama-C

Verification
Conditions

Figure 3.1: Workflow of the verification approach. White boxes are files and grey are
tools. Straight lines are translations, inputting a file to a tool or its output provided,
whereas snake lines are verifications.

7. We manually add a top-level C function with the purpose of selecting the slice
corresponding to a specific input. This function is annotated with pre- and post-
conditions allowing to verify its adherence to the first-order declarations from 1.

The proposed methodology adds to the approach [42, 45] the steps related to restating
from higher-order to first-order and splitting the specification into slices. Conditional slic-
ing has the advantage of simplifying the formal analysis substantially. Since the analysis
looks for unstable guards, the more possible control flows, the more complexity in the
analysis. However, it assumes the stability of the guards associated with determining the
slice to be executed in the program flow of the first-order specification. So, it is important
to highlight that this approach considers unstable guards only inside each slice, leaving
aside the possibility of dealing with unstable tests at the top-level function. This issue
will be addressed in future works.

Figure 3.1 depicts the actors’ interaction in the approach, and their roles are described
below.

• The translation from higher- to first-order and the slicing of the declarations are
performed manually.

• The functional equivalence of these specifications is formalized in PVS.

• PRECiSA generates round-off certificates and stable-guard C-code from each slice.

• Frama-C analyses the generated code and output verification conditions to be proved
in PVS.

In the next sections, we will present each tool participating in our approach’s toolchain.

13

3.1 PRECiSA
PRECiSA (Program Round-off Error Certifier via Static Analysis) is a static analyzer
for floating-point programs. Given a floating-point specification, computes symbolic error
expressions and, if ranges for the input values are provided, it uses a global optimizer
(Kodiak) to provide an over-approximation of roundoff-error bounds, along with PVS
certificates ensuring its correctness [45, 42].

In fact, since IEEE-754 establishes that basic operations should be performed as if they
had infinite precision and then rounded back to the desired precision, the evaluation of the
application of an arbitrary floating-point operation has two main errors when compared
with its ideal real counterpart: the rounding error already accumulated in the variables
appearing in the expression, and the error originated in the rounding of the resulting
value. Equation 3.1 expresses a bound for the rounding error of any real value x included
between the largest negative and the largest positive representable numbers, under the
to-the-nearest rounding modality.

∣ x − x ∣≤ 1
2ulp(x) (3.1)

In the equation above, x is the floating-point counterpart of x and ulp(x) is unit
in the last place, which can be seen as a measure of the floating-point representation
precision. ulp(x) is expressed by baseexp (x)−p+1, where exp (x) is the exponent of the
floating-point number x , p is the precision and base is the base of format under use.

Similarly for an arbitrary operation op with arity n + 1, for any n ∈ N0:

∣ op(vi)ni=0 − op(vi)ni=0 ∣≤ 1
2ulp(op(vi)ni=0) (3.2)

where op(vi)ni=0 is an abbreviation for op(v0, v1, ..., vn). Note that in this notation, when
applying a real operation on floating-point arguments an implicit conversion from floats to
reals its assumed. For example, Equation 3.2 shows the particular instance of Equation 3.3
obtained by instantiating op with the multiplication operation.

∣ v1 ∗ v2 − v1 ∗ v2 ∣≤ 1
2ulp(v1 ∗ v2) (3.3)

The propagation of the round-off error depends on the operation and input values.
For instance, for the multiplication, the propagation error for two floats, v1 and v2 ,
with respective non-negative round-off errors bounds e1, e2, is given below.

v1 ∗ v2 = (v1 ± e1) ∗ (v2 ± e2)
= (v1 ∗ v2) + (±v1e2 ± v2e1 ± e1e2)

14

Thus, one possible expression that bounds the error propagation produced when mul-
tiplying two values, denoted as ϵ∗(v1, e1, v2, e2), is:

∣(v1 ∗ v2) − (v1 ∗ v2)∣ = ∣ ± v1e2 ± v2e1 ± e1e2 ∣ ≤ ϵ∗(v1, e1, v2, e2)
≤ ∣v1∣e2 + ∣v2∣e1 + e1e2 (3.4)

In the following, the greek letter ϵ will be used to denote error propagation for any operator
op, i.e., ϵop = ∣op(vi)ni=0 − op(vi)ni=0∣. Also, the total error of an arbitrary expression E

will be denoted as eE = ∣ E −E ∣. Finally, the error of a floating-point operation op, will
be expressed by eop = ∣ op(vi)ni=0 − op(vi)ni=0 ∣.

Expanding the module in the inequalities 3.3 and 3.4, one has:

−1
2ulp(v1 ∗ v2) ≤ v1 ∗ v2 −(v1 ∗ v2) ≤ 1

2ulp(v1 ∗ v2)
−ϵ∗(v1, e1, v2, e2) ≤ (v1 ∗ v2) − (v1 ∗ v2) ≤ ϵ∗(v1, e1, v2, e2)

Summing both inequalities, you get:

∣ v1 ∗ v2 − (v1 ∗ v2) ∣≤ 1
2ulp(v1 ∗ v2) + ϵ∗(v1, e1, v2, e2) (3.5)

Since ulp is monotonically increasing:

ulp(v1 ∗ v2) ≤ ulp((∣v1∣ + e1) ∗ (∣v2∣ + e2)) (3.6)

More generically, for an arbitrary operation op of arity n:

∣ op(vi)ni=0 − op(vi)ni=0 ∣ ≤ eop(vi, ei)ni=0 (3.7)

= ϵop(vi, ei)ni=0 + 1
2ulp(op(vi)ni=0) (3.8)

For instance, consider the Specification 3.1, which shows the defintion of a function com-
puting the time of the closest point approach between two aircraft. In that function, the

tcpa(sx, vx, sy, vy) =
let v ∶= vx ∗ vx + vy ∗ vy in

if (v > 0) then −(sx ∗ vx + sy ∗ vy)/v
else 0

Specification 3.1: Function computing the closest point of approach of two aircraft given
relative positions and velicities.

15

round-off error bound of expression named v by the let-in statement can be expressed
as:

ev = e+(v2
x, ev2

x
, v2

y , ev2
y
) = ev2

x
+ ev2

y
+ ulp(∣v2

x + v2
y ∣ + ev2

x
+ ev2

y
) (3.9)

where ev2
x

and ev2
y

are the errors of v2
x and v2

y , respectively, and the error expression ev2
x

(also ev2
y

replacing x by y) is defined as:

ev2
x
= e∗(vx, ex, vx, ex) = ∣vx∣evx + ∣vx∣evx + evxevx + ulp((∣vx∣ + evx) ∗ (∣vx∣ + evx))= 2∣vx∣evx + e2

vx
+ ulp((∣vx∣ + evx)2)

where evx is the error bound of vx .
While calculating the error expressions for a given program, PRECiSA keeps the

expression and a set of conditional error bounds. When possible, it is also able to compute
tighter bounds. For instance, the subtraction v1 − v2 can be exactly calculated, i.e.,
without an additional rounding error when v2/2 ≤ v1 ≤ 2v2. This is particularly useful
once a branch statement is followed, where an additional bound is added to this set.

Once every symbolic error expression is derived, the global optimizer Kodiak is called
with assumptions on input ranges, for instance (1 < sx < 1000), to overapproximate its
numeric error bounds. Applying the optimizer to symbolic ev previously defined in the
ranges 1 < vx < 1000 and 1 < vy < 1000, we get the numeric value 4.602043e − 10.

PRECiSA does not assume stable guards (described in Section 2.1.1). Thus, the
computed error bound considers the possibility of taking a wrong branch in the conditional
statements. For example, The error bound of function tcpa is calculated as:

∣ tcpa(sx, vx, sy, vy) − tcpa(sx, vx, sy, vy) ∣≤ max(e−(sx∗vx+sy∗vy)/v, 0) (3.10)

In a different mode of operation, PRECiSA can receive a real-valuated program and
concrete range for its arguments and generate a stable-guard floating-point C-code, that
is, a program that emits a warning if an unstable guard could occur. The generated
C-code is annotated using a domain-specific specification language (ACSL) enabling its
automatic verification [45].

In fact, in this mode, PRECiSA replaces the original conditionals with more restrictive
guards i.e. each guard is replaced by stronger versions of its positive and negative case,
and the interval between the new and original guards is reserved as an unknown state as
presented in Figure 3.2.

16

IF guard(x1,. . ., xn)
THEN x1 ELSE x2 ENDIF ⇝

IF guardβ+(x1,. . ., xn, es)
THEN x1
ELSE

IF guardβ−(x1,. . ., xn, es)
THEN x2
ELSE ω ENDIF

ENDIF

Figure 3.2: PRECiSA guards replacement

where ω is a distinguished value represented a warning, es is a bound for the round-off
error bound of the expression s, and guard is an expression of the form:

guard(x1, . . . , xn) ≡ s > 0
guardβ+(x1, . . . , xn, , es) ≡ s > es

guardβ−(x1, . . . , xn, , es) ≡ s < −es

In the tcpa example, the transformation generates the function shown in Specifica-
tion 3.2. There, PRECiSA adds one symbolic error variable to each branch expression
as a parameter. Compared with just adding one error variable to each input parameter,
according to the authors, this approach can solve one main problem: avoid huge symbolic
expressions, which can be more time-consuming and have worse readability. In the tcpa
example, only the variable ϵ was added.

tcpa(sx, vx, sy, vy, ϵ) =
let v := vx ∗ vx + vy ∗ vy in

if v > ϵ then −(sx ∗ vx + sy ∗ vy)/v
else if v < −ϵ then 0

else ω
endif

endif
Specification 3.2: Transformed version of the function in Specification 3.1.

In this work, PRECiSA is applied to each real specification slice, generating its stable-
guard C-code. Its output is then analyzed by Frama-C which generates corresponding
verification conditions as explained in the following section.

17

1 /∗@
2 logic real tcpa (real sx, real vx, real sy, real vy) =
3 \let v = (vx ∗ vx) + (vy ∗ vy);
4 (v > 0) ? (−((sx ∗ vx) + (sy ∗ vy)) / v) : 0;
5 ∗/

Specification 3.3: tcpa specification in ACSL language.

3.2 Frama C
Frama-C is a collaborative framework for the static analysis of C programs [23]. One of
its main features is extensibility, which allows the addition of diverse plugins. Among
them, the WP plugin [2] implements a Weakest Precondition calculus, translating anno-
tations into mathematical properties, and allowing the use of external tools to prove the
correctness of program contracts written in the code using the ANSI/ISO C Specification
Language (ACSL). ACSL contracts are introduced as regular C comments, but starting
with the at-sign (@). Their semantics is based on a restricted form of typed first-order
logic, where only total functions are allowed. The syntax of ACSL is similar to a subset
of C syntax [2]. For instance, the real version of the tcpa function could be expressed as
shown in Specification 3.3. In line 3, we have a let-in statement that introduces the name
v for the square of horizontal velocity expression (vx ∗ vx) + (vy ∗ vy). In ACSL, special
keywords begin with a backslash. For example, the let-in syntax has form:

\let name = expression1; expression2;

where expression2 is the scope where expression1 is named as name. In Specifica-
tion 3.3, the name v is defined in line 3 and its scope is line 4.

Following the declaration of the tcpa function in ACSL presented in Specification 3.3,
there is a conditional expression in line 4 similar to the in-line C conditional, this is the
unique way that ACSL provides support to branching expressions. Their syntax is:

(guard_expression)? expression1: expression2;

where guard_expression is the branch guard, if the guard is evaluated as true then it
evaluates to expression1, otherwise, expression2.

The syntax for the quantifiers is similar to the let-in statements:

\forall type variables ; expression;

where type could be any ACSL type, multiple variables are separated by coma, and
expression is the scope of the quantifier.

18

Program contracts such as preconditions and postconditions are introduced before each
function declaration with keywords requires and ensures, respectively. For instance, a
function that calculates the squared norm of a 2D vector is shown below.

/*@
assigns \nothing;
ensures \result >= 0;
*/
double squared_norm(double vx, double vy) {

double v = vx * vx + vy * vy;
return v;

}

The expression assigns \nothing means that no variable is assigned by reference. The
keyword \result denotes the result of the annotated function, and the postcondition
states that the result of this function is greater or equal to zero.

Once preconditions and postconditions are introduced, the WP plugin can be ap-
plied. It implements a weakest-precondition calculus to generate verification conditions
to be processed by off-the-shelf solvers, such as theorem provers [2]. Dijkstra originally
introduced the weakest-precondition calculus [13], which is based on the notion of Hoare
triples: {P} f {Q}
where f is a program, and P and Q are predicates on the states of f . The intuitive
meaning of these structures can be stated as "If P is true before running a program f ,
then Q will hold after its execution" [21]. Being A and B two formulas, A is said to be
weaker than B when:

B ⇒ A (3.11)

The Weakest Precondition for a program f allowing it to reach a state described by Q,
and noted as wp(f, Q), is the precondition of f that all other such preconditions imply,
i.e., the "necessary and sufficient precondition" [13]. The weakest precondition calculus
applies the predicate transformer wp to each imperative program statement, transforming
a postcondition into a weak precondition while transversing the program backwards [13].
For instance, consider the previous code snippet. Since there is a variable assignment, the
postcondition is transformed using the rule:

wp(x ∶= E, Q) = Q[x/E] (3.12)

meaning that the weakest precondition for the assignment of an expression E to a variable

19

sqrt(nnx: nnreal): {nnz : nnreal | nnz*nnz = nnx}
Specification 3.4: PVS signature of the square root function.

x and a postcondition Q is the substitution of x by E in Q. In the Specification 3.2, the
postcondition v ≥ 0 is transformed in vx ∗ vx + vy ∗ vy ≥ 0.

When validating the program contracts, we aim to verify that the precondition P , the
program f , and the postcondition Q is a Hoare triple {P} f {Q}. Using the fact that
weakest precondition wp, f and Q is a Hoare triple, one needs to prove that precondition
P implies the wp, as shown in [2]:

P ⇒ wp(f, Q) wp(f, Q) {f} Q{P} f {Q}
In this work, Frama-C/WP receives the instrumented stable-guard C code annotated

with ACSL generated by PRECiSA and generates verification conditions in the PVS
language.

3.3 PVS
Introduced by SRI International in 1996, the Prototype Verification System (PVS) is
a complete formal specification and verification environment. Mainly composed of a
strongly-typed specification language supporting higher-order logic and an interactive
theorem prover with a robust automated deduction engine [34].

The PVS specification language is functional, supporting pre-defined basic types and
user-defined type definitions, subtyping and dependent types. Type definitions cannot
be recursive and use only previously declared symbols. In PVS, types are definitionally
equivalent; that is, two types are equal if their declaration match, i.e., types are handled
as different unless their definitions are equivalent. Subtyping is supported by allowing to
add constraints to a given type by using a predicate. This is particularly useful to specify
a function or predicate that is only defined for restricted input ranges. For instance,
Specification 3.4 shows the PVS signature of the square root on real numbers, a function
that requires a non-negative input. PVS provides built-in sub-types, as in the previous
case, the non-negative reals (nnreal). PVS supports dependent types, where a previously
defined variable appears in the predicate used to restrain the type. For instance, it is
possible to define an ideal square root function as it is shown by Specification 3.4 (taken
from the NASALib). This function requires a non-negative real as an argument, specified
by nnx type nnreal, and returns a non-negative real called nnz such as the input is equal
to nnz squared. Another example is shown in Specification 3.5, where the dependent

20

root((a: real | a ≠ 0), b, (c: real | b^2 - 4*a*c >=0),
(sign: nat | sign = 1 OR sign = -1)): real =

(-b + sign * sqrt(b*b - 4*a*c)) / (2*a)
Specification 3.5: PVS definition of a function calculating the roots of a quadratic poly-
nomial.

sqrt_TCC1: OBLIGATION
EXISTS (x: [nnx: nnreal -> {nnz: nnreal | nnz * nnz = nnx}]): TRUE

Specification 3.6: One of the TCCs generated by type checking the definition in Specifi-
cation 3.4.

types are used in the arguments of a function that calculates de roots of a polynomial of
order 2. The root function receives as an argument the polynomial coefficients called a,
b, c and the sign (indicating plus or minus in the Baskara rule). This function requires
a non-zero a, a c that ensures a non-negative discriminant, and a natural number that
can be interpreted as a sign, i.e., 1 or −1.

The use of subtypes and dependent types adds some delicate issues, such as the match-
ing between the types required by a function or predicate and its calling arguments or
even the existence of some value that satisfies the restriction. The type checker in PVS
uses a static analysis engine to generate proof obligations, called Type Check Conditions
(TCCs). Some of them are usually simple and can be automatically proven using the
PVS proof engine, but there are exceptions because compatibility/type-equivalence is un-
decidable [35]. For instance, consider the definition of square root in Specification 3.4,
where the return type is a dependent type. The type-checking system generates a proof
obligation presented in Specification 3.6. This TCC requires proving the existence of a
function mapping from non-negative real numbers to non-negative real numbers, where
the square of the image of an input number nnx under this function is the actual input
number. Another example is a TCC that ensures there is no division by zero, as presented
in Specification 3.7.

The specification language of PVS supports if-then-else and case statements. While
these kinds of conditionals are not usually defined in classical logic systems, they are
interpreted as follows in PVS.

tcoa_TCC1: OBLIGATION
FORALL (sz, vz: real): (sz * vz < 0) IMPLIES vz ≠ 0

Specification 3.7: Example of TCC.

21

first_conflict_step(CD,B,T,traj,k,ts,MaxN,AL): RECURSIVE
(first_conf_step?(CD,B,T,traj,k,ts,MaxN,AL)) =

IF k > MaxN THEN -1
ELSIF first_conflict_aircraft(CD,B,T,traj,k,ts,0,AL) >= 0

THEN k
ELSE first_conflict_step(CD,B,T,traj,k+1,ts,MaxN,AL)
ENDIF

MEASURE max(MaxN-k+1,0)
Specification 3.8: Example of recursive definition in PVS.

if A then B else C ≡ A ⇒ B ∧ ¬A ⇒ C (3.13)

Recursive definitions are also allowed in PVS and are introduced using the keyword
RECURSIVE. The keyword MEASURE has to be used to provide a function on the same pa-
rameters of the declaration. This auxiliary function has to decrease after each recursive
call. This property is expressed in the TCCs that ensure the termination of the function.
For instance, Specification 3.8 shows a function taken from the DAIDALUS specification
whose goal is to detect if a red band (high-priority alert region) exists. where the function
returns an integer in which the first_conf_step? predicate is valid and the parameter
CD is a conflict detection function, i.e., a function that maps from a lookahead time and
relative states to a boolean indicating a conflict; B and T are non-negative reals indicating
the limits of lookahead time; traj is the aircraft trajectory,i.e., a function mapping from
a non-negative real (time) to the aircraft state (space and velocity vectors); k is a natu-
ral number indicating the timestep interaction; ts is a non-negative real indicating the
timestep value; MaxN is a natural number indicating the máximum number of timesteps;
and, AL the aircraft list (state and name). In one of the generated TCCs, the user must
prove the measure is decreasing max(maxN-k+1, 0) in the recursive call. This is easily
demonstrated for this function since it is called increasing k and maintaining MaxN. This
is a way to emulate interactive for-loops using recursive functions.

The PVS deduction engine is based on Gentzen’s sequent calculus (SC), where each
moment in a proof is represented by a pair of finite collections of formulas called antecedent
and consequent, respectively. Each of these pairs of collections is called a sequent and,
if the symbols Σ and Λ are used to represent the antecedent and the consequent, the
sequent is noted as

Σ ⊢ Λ (3.14)

The intuitive idea behind a sequent is that it represents the implication between
the conjunction of formulas in the antecedent and the disjunction of formulas in the

22

horizontal_WCV_taumod_interval_equivalence: LEMMA
FORALL(sx, sy, vx, vy, T):

LET s = (# x := sx, y := sy #),
v = (# x := vx, y := vy#) IN

LET hni = hor_WCV_ti(T, s, v)
IN hor_WCV_ti(T, sx, sy, vx, vy, TAUMOD, DTHR)
IFF hni‘entry <= hni‘exit

Specification 3.9: Example of a lemma in PVS.

consequent. The proof evolves by the application of so-called proof rules. This application
could close the proof or generate one or more new sequents, generating new proof branches.
The proof is considered finished when all branches in the proof tree are closed. The PVS
proofs start with the objective and end when obviously true sequents are reached. Note
that the proof trees are generated in the inverse order with respect to the classic sequent
calculus. For instance, consider the lemma of equivalence between the original predicate
horizontal_WCV_taumod_interval, for short hor_WCV_ti, and its simplified first-order
version, as shown in Specification 3.9. In this case, the first sequent of the corresponding
proof is shown below.

|--------------------------------------
{1} FORALL (sx, sy, vx, vy, T):

LET s: [# x: real, y: real #] = (# x := sx, y := sy #),
v: [# x: real, y: real #] = (# x := vx, y := vy #)

IN
LET hni: EntryExit[0, T] = hor_WCV_ti(T, s, v)

IN
hor_WCV_ti(T, sx, sy, vx, vy, TAUMOD, DTHR)
IFF hni‘entry <= hni‘exit

where the dotted line represents the turnstile ⊢, and the formulas below it, i.e., with a
positive number, are the ones in the consequent. Some proof branch ends when one of
the axiomatic rules (Ax, FALSE⊢, ⊢TRUE) is applied.

(Ax)Σ, a ⊢ a, Λ (FALSE⊢)Σ, FALSE ⊢ Λ (⊢TRUE)Σ ⊢ TRUE, Λ

The first step of the proof in the example is the elimination of the quantifier in the
consequent performing a Skolemization using the PVS rule called skeep:

23

Γ ⊢ A[x/y], Λ (skeep +)Γ ⊢ ∀xA, Λ
Γ, A[x/y] ⊢ Λ (skeep -)Γ,∃xA,⊢ Λ

where y is a fresh name. Note that PVS rules are the inverse of SC rules, i.e., the bottom
part of rules is before the rule application and the top after. The skeep command replaces
the variable with the same name if there is no name collision. In the example, the following
sequent is generated by the application of skeep.

|--------------------------------
{1} LET s: [# x: real, y: real #] = (# x := sx, y := sy #),

v: [# x: real, y: real #] = (# x := vx, y := vy #)
IN
LET hni: EntryExit[0, T] = hor_WCV_ti(T, s, v)

IN
hor_WCV_ti(T, sx, sy, vx, vy, TAUMOD, DTHR)
IFF hni‘entry <= hni‘exit

The next step is to simplify the sequent eliminating the let-in expressions, using the
proof rule implementing β-reduction:

β⊢ (λ(x ∶ T) ∶ a)(b) = a[b/x]
The application of such a rule generates the sequent shown below.

|-------------------------
{1} hor_WCV_ti(T, sx, sy, vx, vy, TAUMOD, DTHR)

IFF
hor_WCV_ti(T,(# x := sx, y := sy #),

(# x := vx, y := vy #))‘entry
<=
hor_WCV_ti(T,(# x := sx, y := sy #),

(# x := vx, y := vy #))‘exit

The next step is to introduce a hypothesis about the equivalence of an internal func-
tion. This process is equivalent to using the cut rule of SC:

Γ, a ⊢ Λ Γ ⊢ a, Λ
CutΓ ⊢ Λ

One introduces a new hypothesis (α) in the left branch and needs to prove it in the
right branch. This can be done in two ways: in the same proof using the PVS command

24

case or in a separate lemma, which is introduced using the lemma command. Usually,
separate lemmas are specified in terms of universal quantifiers just like in this case, so
is necessary to instantiate the lemma with suitable parameters using the PVS command
inst:

∀xA, Γ, a ⊢ Λ (inst-)
A[x/y], Γ ⊢ Λ

Obtaining after introducing the lemma theta_d_equivalence, which states the equiva-
lence of Theta_D function, beta reduction and renaming some terms:

{-1} ((vx ≠ 0 OR vy ≠ 0) AND Delta(sx, sy, vx, vy, DTHR) >= 0) =>
(Theta_D[DTHR](s, v, 1) = Theta_D_pos(DTHR, sx, sy, vx, vy) AND

Theta_D[DTHR](s, v, -1) = Theta_D_neg(DTHR, sx, sy, vx, vy))
|------------------------------------
{1} hor_WCV_ti(T, sx, sy, vx, vy, TAUMOD, DTHR)

IFF
hor_WCV_ti(T, s, v)‘entry <= hor_WCV_ti(T, s, v)‘exit

There is an implication in the antecedent, so one can apply the sequent calculus rule
L→ rule executed by the PVS command split, which also executes L∨ and R∧ SC rules
and splits the if-then-else, which is interpreted as a conjunction of implications.

B, Γ ⊢, Λ Γ ⊢ A, Λ
L→

A → B, Γ ⊢ Λ
A, Γ ⊢, Λ B, Γ ⊢ Λ

L∨
A ∨B, Γ ⊢ Λ

Γ ⊢ A, Λ Γ ⊢ B, Λ
R∧Γ ⊢ A ∧B, Λ

A, B, Γ ⊢, Λ C, Γ ⊢ A, Λ ⊢IFΓ ⊢ if A then B else C, Λ

The first branch after the application of the previous command is:

{-1} Theta_D[DTHR](s, v, 1) = Theta_D_pos(DTHR, sx, sy, vx, vy)
AND
Theta_D[DTHR](s, v, -1) = Theta_D_neg(DTHR, sx, sy, vx, vy)

|---
[1] hor_WCV_ti(T, sx, sy, vx, vy, TAUMOD, DTHR)

IFF
hor_WCV_ti(T, s, v)‘entry <= hor_WCV_ti(T, s, v)‘exit

Since the antecedent has a conjunction, the L∧ rule of the sequent calculus can be
applied. This is done using the command flatten, which also executes R∨ and R→, and
IF⊢.

25

A, B, Γ ⊢, Λ
L∧

A ∧B, Γ ⊢ Λ
A → B,¬A → C, Γ ⊢ Λ

IF⊢if A then B else C, Γ ⊢ Λ

Γ ⊢ A, B, Λ
R∨Γ ⊢ A ∨B, Λ

A, Γ ⊢ B, Λ
R→Γ ⊢ A → B, Λ

Another possible command is prop, which applies all the possible propositional sim-
plifications, i.e., split, flatten, etc. Now, there are two equality formulas in the an-
tecedent. At some point in the proof, one needs to use the equality rule provided by the
command replace:

a = b, Γ[b] ⊢ Λ[b] Repl
a = b, Γ[a] ⊢ Λ[a]

Sometimes some formulas are irrelevant and can be omitted through structural rules.
For instance, in some moments of the previous proof, one arrives at the following sequent.

[-1] sqv(s) - sq(DTHR) <= 0
[-2] min_(T, Theta_D_pos(DTHR, sx, sy, vx, vy)) =

min(T, Theta_D_pos(DTHR, sx, sy, vx, vy))
[-3] FALSE => s * v = 0
[-4] DTHR * DTHR = sq(DTHR)
[-5] Delta(sx, sy, vx, vy, DTHR) = Delta[DTHR](s, v)
[-6] inner_product(sx, sy, vx, vy) = s * v
[-7] sq(sx, sy) = sqv(s)
[-8] sq(vx, vy) = sqv(v)
|---
{1} (vx ≠ 0 OR vy ≠ 0)
[2] sqv(v) = 0
[3] 0 <= min_(T, Theta_D_pos(DTHR, sx, sy, vx, vy)) IFF

0 <= min(T, Theta_D[DTHR](s, v, 1))

Here, only formulas 1 and 2 are necessary to close this branch since either one of the
components is different from zero or the squared norm of velocity is zero. So one could
use structural rules (WL, WR) from sequent calculus to hide the unused formulas; this is
done using the PVS command hide:

Γ ⊢ Λ WL
A, Γ ⊢ Λ

Γ ⊢ Λ WRΓ ⊢ A, Λ

PVS formally supports the earlier software and hardware development life-cycle stages.
Usually, it happens when the system is still in a modeling stage [34]. However, in the

26

current work, following the toolchain proposed in [45], PVS provides formal support in
the latter stages to prove verification conditions generated from the final concrete code.

27

Chapter 4

Case Study: DAIDALUS

4.1 DAIDALUS description
The Detect and AvoID Alerting Logic for Unmanned Systems library (DAIDALUS) is a
collection of algorithms providing detect and avoid (DAA) capabilities [29]. DAIDALUS
was included in RTCA/FAA Minimum Operational Performance Standards (MOPS)
DO365 as the reference implementation. Its goal is to advance the integration of Un-
manned Aircraft Systems into the US National Airspace System (NAS) in non-segregated
civil airspace. Several functions in the DAIDALUS libraries are actually implemented in
C and Java. These implementations are the result of a manual translation from formal
specifications in a more expressive language [29]. In this chapter, we present a description
of the PVS DAIDALUS higher-order specification (see Figure 3.1). It provides three main
features:

• Conflict Detection

• Maneuver Guidance

• Alerting

Conflict detection determines the current status of aircraft regarding the surrounding air
traffic and its prediction interval of occurrence given some assumptions as straight-line
trajectory. Maneuver Guidance calculates the possible maneuvers to keep or recover the
well-clear status. Alerting emits different levels of hazard signals.

Figures 4.1 and 4.2 are part of an example of an application to present information
computed by the DAIDALUS algorithms to pilots. This application, called Danti, is also
being developed by researchers at NASA Langley [26]. In these figures, the ownship is
displayed in the center of the display as a cyan chevron, and the color used in the near
traffic represents the different kinds of alerting signals. As is common in cockpit instru-

28

(a) Conflict: true, Recovery: false (b) Conflict: true, Recovery: false

(c) Conflict: true, Recovery: true (d) Conflict: true, Recovery: true

Figure 4.1: DAIDALUS conflict detection and maneuvering guidance using DAA-display.
Example extracted from [26].

ments, the display shows the airspeed, altitude, and vertical velocity of the ownship using
vertical strips on the sides of the screen. The heading is displayed using a compass cen-
tered at the ownship representation. Figures 4.1 and 4.2 show a sequence of frames from
the same encounter, exemplifying how a conflict situation and some recovery guidance
are presented to the pilot. Initially, the alert is presented in Figure 4.1a, but its level
is 2 (MID), and thus no action is taken. The yellow bands on the compass’s perimeter
and the strips depict heading, velocities, and altitude that must be avoided to disarm the
conflict. In Figure 4.1b, the bands are larger and mostly red. As expected, the red color
means a more critical situation than yellow. In Figure 4.1c, the recovery maneuver begins.
The conflict ends in Figure 4.2a, but the aircraft is still in the recovering maneuver to
return to the original route. The original route is recovered in the last frame, shown in
Figure 4.2d.

The detection of midair conflicts needs to be very carefully implemented since numer-
ical errors can make the program not detect an actual conflict, leading to catastrophic
consequences. For instance, in Figure 4.2, the best conflict resolution is to turn left.

29

(a) Conflict: true, Recovery: true (b) Conflict: false, Recovery: true

(c) Conflict: false, Recovery: true (d) Conflict: false, Recovery: false

Figure 4.2: DAIDALUS conflict detection and maneuvering guidance using DAA-display.
Example extracted from [26] second part

However, a numerical error could make the algorithm take the wrong branch turning to
the right, provoking a mid-air collision. Specification 4.1 shows the PVS specification of
a function from DAIDALUS that could be used to determine which side the turn should
be done to avoid a collision. This function computes the dot product between the relative
velocity and position; if it is positive, then returns 1, indicating a right turn, otherwise
-1, indicating a left turn. The actual implementation of the eps_line function using
floating-point arithmetic can present one unstable guard, leading the airship to turn in
the wrong direction and provoking a collision.

The core of detection logic is the mathematical definition of Well Clear violation

eps_line(vx, vy, sx, sy: real) : real =
IF(sx*vx+sy*vy)*(sx*vx-sy*vy) > 0 THEN 1 % right turn
ELSE -1 % left turn
ENDIF

Specification 4.1: A Maneuvering function from the DAIDALUS module.

30

(WCV) and its predicted occurrence interval. WCV definition is strongly related to
resolution advisories (RA) from Traffic Alerting and Collision Avoidance Systems (TCAS)
being its extension. WCV is based on the self-separation status between two UAVs,
i.e. relative distance, time variables, and respective thresholds (minimum space-time
distance to one eventual maneuver). Self-separation volume is an extension of TCAS
Collision avoidance Threshold (CAT) [29]. TCAS was designed to reduce mid-air collision
occurrence through a set of embedded devices in airships. Its second generation, called
TCAS II, provides resolution advisories (RA) to instruct pilots to maintain or increase
the relative distance between aircraft to avoid collisions. RAs are based on the τ concept,
defined division of range r (relative distance norm) over closure rate (minus range change
rate ṙ), as expressed by:

τ = −r

ṙ
(4.1)

τ is an overapproximation of the closest point approach time (see Lemma 4.4). Both defi-
nitions only give the same result if the aircraft is in a perfect rectilinear route. Otherwise,
τ is more conservative. However, this definition can produce undesirable behaviors, such
as alerting a hazard when the closure rate is too low [27]. Thus, TCAS II uses another
definition for τ called τmod expressed by:

τmod = −r2 − DMOD2

rṙ
(4.2)

where DMOD is a distance threshold.
Using a vectorized representation where s is a 2D vector with form (sx, sy), where s

and v the relative distance and velocity vectors, and s(t) denotes the relative distance
vector in time t assuming constant velocity, i.e:

s(t) = s + vt (4.3)

the range (relative distance norm) is expressed by:

r(t) = ∣∣s(t)∣∣
=√(s + vt) ⋅ (s + vt)
=√(s ⋅ s) + 2t(s ⋅ v) + t2(v ⋅ v)

31

horizontal_tca(s:real, nzv:nzreal) : real = -(s*nzv)/sqv(nzv)
Specification 4.2: Formalization of tcpa

deriving r(t) regarding to t, one obtain the range rate:

ṙ(t) = − 1
2∣∣s(t)∣∣ × (2tsv̇ + 2tv ⋅ v)

= s ⋅ v + t∣∣v∣∣2∣∣s(t)∣∣
Since the closest point approach occurs when the closure rate is zero, the time of

closest point approach tcpa is expressed as:

tcpa(s, v) = − s ⋅ v∣∣v∣∣2 (4.4)

The values τ and τmod can be rewritten using the previous equations as:

τ = −r

ṙ
= −r(0)

ṙ(0) = −∣∣s∣∣
2

s ⋅ v (4.5)

τmod = −r2 − DMOD2

rṙ
= −∣∣s∣∣2 − DMOD2

s ⋅ v (4.6)

Another important time function is the co-altitude time tcoa, also called vertical τ , and
is expressed as:

tcoa = −sz

vz

(4.7)

Formulas 4.4, 4.5, 4.6 and 4.7 are undefined under certain conditions. Thus, for
completeness reasons, in the final specification they return 0 (for tcpa) and -1 (for τ , τmod

and tcoa) in undefined cases or when aircraft are not converging.

4.2 Verification under real-valued declarations
The verification of DAIDALUS properties was fully formalized in [28], assuming exact
computations over real numbers. This section illustrates how real arithmetic calculations
of DAIDALUS fragments were logically verified. DAIDALUS detection is based on time
variables. It is defined as a function that maps the relative states (distance and velocity
vectors) to a real value that is negative if aircraft are diverging (s ⋅ v > 0), and nega-
tive otherwise. As already stated, some of these time variables are tcpa and τ . Their
specifications are shown in Specification 4.2 and 4.3, respectively.

32

tau(s:Vect2,(v:Vect2|(s*v ≠ 0))) : real = -sqv(s)/(s*v)
Specification 4.3: Formalization of τ

tau_tca: LEMMA FORALL (s,v:Vect2): s*v<0 IMPLIES
tau(s,v) >= horizontal_tca(s,v)

Specification 4.4: Lemma tau_tca

Specification 4.4 shows the PVS lemma tau_tca, which states that τ is one overap-
proximation of tcpa as discussed above.

Proof of lemma tau_tca. (Sketch) This lemma considers logical aspects and its proof uses
known reals properties. Initially expanding the definitions of tau and horizontal_tcpa,
one get:

−(s ⋅ s)
s ⋅ v ≥ −s ⋅ v

v ⋅ v (4.8)

At this point, one needs to include a known reals property called cross_mult. It states
that an equality/inequality of fractions can be replaced by its cross-multiplication once
none of the denominators is zero. PVS provides a large set of proven properties/lemmas
in its prelude, including this one and, as described in Section 3.3, it is possible to include
an external lemma using the lemma rule, corresponding to the cut rule of the sequent
calculus. Once the lemma is added, instantiated, and simplified, the consequent shows
the rule to be proven: (s ⋅ v)(s ⋅ v) ≤ (s ⋅ s)(v ⋅ v) (4.9)

This inequality is equal to the Cauchy-Schwarz inequality. Thus, to finish the proof, one
needs to invoke the Cauchy-Schwarz inequality lemma present in Specification 4.5. This
lemma is available on PVS NASALib, a collaborative corpus of mathematical theorems
in a variety of areas such as algebra, analysis, geometry, topology, etc.

Another important property is the symmetry of these time functions since both the
owner and the intruder must have the same conflict. Let tvar denote any of these 3
functions: τ , τmod or tcpa, then:

tvar(s, v) = tvar(−s,−v) (4.10)

cauchy_schwarz : LEMMA sq(u*v) <= sqv(u)*sqv(v)
Specification 4.5: Cauchy-Schwarz theorem as formalized in PVS.

33

WCV(tvar:TimeVar)(s,v: Vect3): bool =
horizontal_WCV(tvar)(s,v) AND vertical_WCV(s‘z,v‘z)

vertical_WCV(sz,vz:real): bool =
abs(sz) <= ZTHR OR
(0 <= tcoa(sz,vz) AND tcoa(sz,vz) <= TCOA)

tcoa(sz,vz:real): real =
IF (sz*vz < 0) THEN -(sz/vz)
ELSE -1
ENDIF

horizontal_WCV(tvar:TimeVar)(s,v:Vect2): bool =
sqv(s) <= sq(DTHR) OR
(sqv(s+tcpa(s,v)*v) <= sq(DTHR) AND
0 <= tvar(s,v) AND tvar(s,v) <= TTHR)

Specification 4.6: Formalizaiton of the WCV function.

Theorem 1 (Symmetry of time functions). τ, τmod, tcpa are symmetric

Proof. (Sketch) After expanding, the symmetric and tvar definitions, introduce a hypothe-
sis of the branch statement guard in both tvar instances; for example, in the tcpa, introduce
using the case PVS rule (cut SC rule or LEM), v ≠ 0 and −v ≠ 0, then expand the defi-
nitions and apply some arithmetic simplifications.

However, these properties are not necessarily inherited by floating-point arithmetic.
Thus, the lemma does not remain valid by simply replacing the variables and operations
with their floating-point counterparts.

WCV logic extends TCAS RA for more time-variable functions. Thus it defines a
violation as simultaneous horizontal and vertical violations [32]. Its formalization is shown
in Specification 4.6. There, ZTHR is the vertical distance threshold, TCOA is the time
threshold for co-altitude, and tcoa function calculates the co-altitude time assuming
constant velocity. The time of co-altitude is only relevant if aircraft are converging in
this way. In the horizontal_WCV function, s and v are relative horizontal distance and
velocity, DTHR and TTHR are distance and time threshold, respectively, tcpa is a function
that calculates the closest point approach time expressed in Specification 4.7 and tvar is
any of previously defined time variables, such as taumod is expressed in Specification 4.8.

Several properties of the DAIDALUS implementation using real representation were
proved. For instance, the symmetry of the WCV expressed as:

Theorem 2. A time variable tvar to be symmetric implies WCV(tvar) is symmetric.

34

tcpa(sx,vx,sy,vy:real) : real =
IF (vx*vx + vy*vy ≠ 0) THEN
-(sx*vx + sy*vy)/(vx*vx + vy*vy)
ELSE 0
ENDIF

Specification 4.7: Formalizaiton of the tcpa function.

taumod(sx,vx,sy,vy,DTHR:real) : real =
IF (sx*vx)+(sy*vy) < 0
THEN (DTHR*DTHR - (sx*sx + sy*sy))/(sx*vx + sy*vy)
ELSE -1
ENDIF

Specification 4.8: Formalizaiton of the taumod function.

Proof. (Sketch) WCV_vertical is independent from tvar. To prove the symmetry of
WCV_horizontal, one need to remove the forall quantifier using Skolen simplification
through the command skeep, them invoke the lemmas that state the symmetry of the
square of a vector (sqv) and tcpa. Then induce the hypothesis:

-s + tcpa(s, v) * -v = -(s + tcpa(s, v) * v)

Then split the rules using the split command and each branch applies some propositional
simplifications followed by the use of the assumption that tvar is symmetric.

The importance of the previous lemma is related to the desired behavior of both owner
and intruder aircraft, calculating the same violation from each’s perspective.

Another behavior of the well-clear functions is the most rigid, providing the most
conservative prediction.

Theorem 3. (WCV inclusion) For all relative states (distance and velocity vectors) and
the same thresholds, the fact that a time variable function is an upper bound of another
implies that detection of WCV using the first one is included in the second one, that is,
a WCV model with the first one implies a WCV with second one:

WCV_inclusion : THEOREM
FORALL (tvar1,tvar2:(pre_timevar?)):

tvar2 <= tvar1 IMPLIES
(WCV(tvar1)(s,v) IMPLIES WCV(tvar2)(s,v))

(pre_timevar?) type indicates that tvar1 and tvar2 are time-variable functions in which
s ⋅ v < 0 ∧ s ⋅ s > DTHR2 ∧ sqv(s + tcpa(s, v) ∗ v) ≤ DTHR2 implies tvar(s, v) > 0.

35

Proof. (Sketch) As shown in Specification 4.6, WCV is separated into vertical and hori-
zontal. The vertical branch is trivial since it is independent of the time variable. In the
second one, one expands the definitions and does propositional simplifications until one
gets the sequent below.

tvar1 ≤ tvar2, 0 ≤ tvar2(s, v) ≤ TTHR, Γ ⊢ 0 ≤ tvar1(s, v) ∧ tvar1(s, v) ≤ TTHR, Λ

where Γ includes the tvar1 and tvar2 type predicate pre_timevar? previously cited. One
introduces a case where s ⋅ v = 0, which is closed trivially since implies in a null tcpa, but
it is used in another branch where it is assumed false. At this point, one needs to expand
the definition of ≤ for two-time variables, which claims:

FORALL (s, v: Vect2):
s*v < 0 AND sqv(s) > sq(DTHR) AND sqv(s+tcpa(s,v)*v) <= sq(DTHR)
IMPLIES tvar1(s, v) <= tvar2(s, v)

Then, splitting this implication, the first branch is closed using the transitivity prop-
erty and the second one using the assumed types.

As a Cololary of the previous lemma, the following properties hold for WCV predicate
expressed in Specification 4.6. WCV (well clear violation) depends on the aircraft’s relative
states (distance and relative velocity vectors) and indicates if the aircraft remain outside
of distance and time thresholds.

• WCV(τ)(s,v) ⇒ WCV(tcpa)(s,v)

• WCV(tcpa)(s,v) ⇒ WCV(τ)(s,v)

Theorem 4. (Local convexity) The aircraft is in a WCV at most one time in a time
interval in a straight-line trajectory, i.e.,

WCV_locally_convex?(tvar) : bool =
FORALL (B,(T|B<T),s,v: Vect2):

NOT EXISTS(t1,t2,t3:Lookahead[B,T]): t1 <= t2 AND t2 <= t3 AND
WCV(tvar)(s+t1*v,v) AND
NOT WCV(tvar)(s+t2*v,v) AND
WCV(tvar)(s+t3*v,v)

Proof. (Sketch) Invoke the lemma that states the correctness of the function that pre-
dicts the interval of occurrence is correctness, instantiate it and do some propositional
simplifications.

36

horizontal_WCV_taumod_interval(T,s,v): EntryExit[0,T] =
LET a=sqv(v),

b=2*(s*v)+TAUMOD*sqv(v),
c=sqv(s)+TAUMOD*(s*v)-sq(DTHR) IN

IF a = 0 AND sqv(s)<=sq(DTHR) THEN WholeInterval[0,T]
ELSIF sqv(s)<=sq(DTHR) THEN (# entry :=0 ,exit:=min(T,Theta_D[DTHR](s,v,1))#)
ELSIF s*v>=0 OR discr(a,b,c)<0 THEN EmptyInterval[0,T]
ELSIF Delta[DTHR](s,v)>=0 AND root(a,b,c,-1)<=T THEN

(#entry := max(0,root(a,b,c,-1)),exit:=min(T,Theta_D[DTHR](s,v,1))#)
ELSE EmptyInterval[0,T]
ENDIF

Specification 4.9: Function computing the interval of occurrence of a horizontal well clear
violation for time variable τmod.

The function horizontal_WCV_interval predicts the time interval of a future viola-
tion assuming a uniform rectilinear motion. Specification 4.9 is for τmod and Specifica-
tion 4.10 for tcpa.

The correctness and soundness of the horizontal_WCV_interval of τmod are expressed
in the lemma presented in Specification 4.11 and soundness in Specification 4.13.

The above predicate horizontal_interval_correct? is curried and uses two pa-
rameters. The argument taumod is a variable time function. It is specified in Specifica-
tion 4.12.

horizontal_interval_correct?(tvar:TimeVar)(hi:HorizontalInterval) : bool =
FORALL (T:posreal,s,v:Vect2,t:Lookahead[0,T]) :

LET interval = hi(T,s,v),
tentry = interval‘entry,

texit = interval‘exit IN
horizontal_WCV(tvar)(s+t*v,v) IFF
(tentry<=t AND t<=texit)

Specification 4.12: Predicate indicating the correctness of the function
horizontal_WCV_taumod_interval, i.e, there is a well-clear violation only within the
computed interval.

In the specification of this predicate, the parameter tvar is a time variable function,
and the parameter hi is a function that calculates a time for violation and a function
that calculates the violation interval. This predicate states that for all lookahead time T,
relative 2D distance s, relative 2D velocity v, and time t in lookahead interval, there is a
violation in the future position at time t (s+t*v) if and only if the is between the entry
and exit violation time calculated by hi.

37

horizontal_WCV_tcpa_interval(T,s,v): EntryExit[0,T] =
IF sqv(v) = 0 AND sqv(s)<=sq(DTHR) THEN WholeInterval[0,T]
ELSIF sqv(v)=0 THEN EmptyInterval[0,T] % detection returns false
ELSIF sqv(s)<=sq(DTHR) THEN (# entry:=0,exit:=min(T,Theta_D[DTHR](s,v,1)) #)
ELSIF s*v>0 THEN EmptyInterval[0,T] % detection returns false
ELSIF sqv(s + horizontal_tca(s,v)*v)>sq(DTHR) THEN (# entry:=T,exit:=0 #)
ELSIF Delta[DTHR](s,v)<0 AND horizontal_tca(s,v)-TCPA>T

THEN EmptyInterval[0,T] % detection returns false
ELSIF Delta[DTHR](s,v)<0 THEN

(# entry:=max(0,horizontal_tca(s,v)-TCPA),
exit:=min(T,horizontal_tca(s,v)) #)

ELSE LET tmin = min(Theta_D[DTHR](s,v,-1),horizontal_tca(s,v)-TCPA) IN
IF tmin > T THEN EmptyInterval[0,T] % detection returns false
ELSE (# entry:= max(0,tmin), exit:=min(T,Theta_D[DTHR](s,v,1)) #)
ENDIF

ENDIF
Specification 4.10: Function computing the interval of occurrence of a horizontal well
clear violation for time variable tcpa.

horizontal_WCV_taumod_interval_correct : LEMMA
horizontal_interval_correct?(taumod)(horizontal_WCV_taumod_interval)
Specification 4.11: Correctness of the predicate horizontal_WCV_taumod_interval

Proof. (Sketch) As the WCV with time variable τmod is equivalent to the TCAS RA
definition, the lemma involves the equivalence between both definitions.

horizontal_WCV_taumod_interval_sound : LEMMA
horizontal_interval_sound?(taumod)(horizontal_WCV_taumod_interval)

Specification 4.13: Soundness of the horizontal_WCV_taumod_interval

Above the predicate horizontal_interval_sound? is specified below, and taumod is
a time variable function.

horizontal_interval_sound?(tvar:TimeVar)(hi:HorizontalInterval) : bool =
FORALL (T:posreal,s,v:Vect2) :

LET interval = hi(T,s,v),
tentry = interval‘entry,
texit = interval‘exit IN

(nonempty?(interval) IMPLIES
FORALL (t:Lookahead[0,T]):

((t < tentry OR t > texit) IMPLIES NOT horizontal_WCV(tvar)(s+t*v,v)) AND

38

((t = tentry OR t = texit) IMPLIES horizontal_WCV(tvar)(s+t*v,v)))
AND
((EXISTS (t:Lookahead[0,T]): horizontal_WCV(tvar)(s+t*v,v)) IMPLIES

nonempty?(interval))

Specification 4.14: Predicate indicating the soundness of the function
horizontal_WCV_taumod_interval

This predicate has two parameters: a function that calculates a time for violation and
a function that calculates the violation interval. It is composed of two main clauses
in conjunction. The first one claims that if the function returns a violation interval
(expressed by predicate nonempty?), then the entry time for violation calculated is the
first time that there is a violation, and the exit time is the last one, i.e., for all time in the
lookahead in the interval (expressed by Lookharead[0, T]) the time before entry time
or after exit time implies that there is no violation considering that the aircraft keep the
same velocity, that is, the position is expressed by s+t*v, and exactly in entry and exit
time, is the violation. The second clause ensures that the function returns a nonempty
violation interval if there is a violation in the lookahead interval.

Proof. (Sketch) The Lemma 4.11 is proven by relating horizontal_WCV_taumod_interval
definition with the TCASS II RA2D definition shown in Specification 4.15 which is similar
to ir regardless of some minor differences in the return type (tuple instead of LoakHead
interval).

RA2D_interval(so,vo,si,vi): [real,real] =
LET s=so-si,v=vo-vi,aa=sqv(v),bb=2*(s*v)+TAU*sqv(v),

cc=sqv(s)+TAU*(s*v)-sq(DMOD)
IN (IF aa = 0 AND sqv(s)<=sq(DMOD) THEN (B,T)

ELSIF sqv(s)<=sq(DMOD) THEN (B,root(sqv(v),2*(s*v),sqv(s)-sq(DMOD),1))
ELSIF s*v>=0 OR discr(aa,bb,cc)<0 THEN (T+1,0)
ELSIF Delta[DMOD](s,v)>=0 THEN (root(aa,bb,cc,-1),Theta_D[DMOD](s,v,1))
ELSE (root(aa,bb,cc,-1),root(aa,bb,cc,1)) ENDIF)

Specification 4.15: TCASS II RA2D declaration in PVS formalization

To finish the proof, only propositional simplifications need to be applied.

As mentioned, in [29], real arithmetic computations were formally verified. Properties
such as local convexity are proven using real arithmetic. Nevertheless, they cannot be
automatically assumed when using floating-point representations instead.

39

Chapter 5

Verification of actual computations
on DAIDALUS

5.1 Slicing
This work aims to generate an instrumented stable-guard floating point program, that is,
a program that detects potentially unstable inputs and emits a warning. The complexity
of this analysis is directly correlated with the size of the program’s possible control flow
graph. Thus, reducing the branching of the control-flow graph has a positive impact on
the performance of the analysis. Among the program simplification analysis techniques,
Slicing is one of the more classical approaches and has been applied to simplify code
analysis for more than four decades since its invention by Mark D. Weiser [46, 47]. In
particular, the so-called conditional slicing technique decomposes programs into simpler
parts, named slices, according to its control flow graph defined by guards and cases in its
branching instructions (case-of and if-then-else instructions). Each slice assumes specific
input restrictions, and its execution corresponds to a particular subset of the control-flow
paths of the original program. This slicing technique was introduced by Canfora et al.
and Ning et al. [7, 33, 39]. Slicing first-order PVS specifications was a crucial step in this
work since it allowed us to simplify the inputs to PRECiSA and make feasible the overall
analysis. The conditional slicing was applied manually on the real-valued declaration
of the WCV_interval predicate (Specification 5.1) and produced six cases, determined
by the relative velocity between the aircraft participating in the encounter. Each slice
represented a particular kind of encounter, as described below.

• Aircraft maintain both their horizontal and vertical separation unmodified;

• The vertical position of the intruder increases regarding the ownership, but the
horizontal one is kept unmodified;

40

• The vertical position of the intruder decreases regarding the ownership, but the
horizontal one is kept unmodified;

• Aircraft alter only their horizontal separation;

• The vertical position of the intruder increases regarding the ownership and alters
their horizontal separation;

• The vertical position of the intruder decreases regarding the ownership and alters
their horizontal separation.

Example 5.1.1. Specification 5.1 shows the definition of WCV_interval predicate used
to detect whether there is a violation in the lookahead time interval. The definition was
extracted from the DAIDALUS specification and manually translated into a first-order
declaration.

WCV_interval(B, T, sx, sy, sz, vx, vy, vz, TAUMOD, TCOA, DTHR, TTHR, ZTHR): bool
=

LET vexit_minus_ventry = vertical_WCV_exit_minus_entry(B, T, sz, vz, TCOA, ZTHR),
ventry = vertical_WCV_entry(B, T, sz, vz, TCOA, ZTHR),
proj_x = sx + vx * ventry,
proj_y = sy + vy * ventry

IN IF vexit_minus_ventry < 0 THEN FALSE
ELSIF vexit_minus_ventry ≠ 0 THEN

horizontal_WCV_taumod_interval(vexit_minus_ventry, proj_x, proj_y,
vx, vy, TAUMOD, DTHR)

ELSIF horizontal_wcv(proj_x, proj_y, vx, vy, DTHR, TTHR) THEN
TRUE

ELSE FALSE
ENDIF

Specification 5.1: First-order WCV interval predicate

The slices corresponding to the cases in which the aircraft maintain both their horizontal
and vertical separation unmodified and the aircraft alter only their horizontal separation
are presented in Specification 5.2, and Specification 5.3, respectively.

WCV_intervalvz=0∧v=0(B, T, sx, sy, sz, nzvx, nzvy, pvz,
DTHR, ZTHR: real): bool =

abs(sz) - ZTHR <= 0 AND sq(sx, sy) - DTHR*DTHR <= 0

Specification 5.2: slice of WCV_interval predicate in which the aircraft maintain both their
horizontal and vertical separation unmodified, i.e., null vertical and horizontal relative velocities.

41

WCV_intervalvz=0∧v≠0(B, (T | T > B), sx, sy, sz, nzvx,
(nzvy | nzvx ≠ 0 OR nzvy ≠ 0), pvz,
TAUMOD, DTHR, ZTHR): bool =

LET proj_x112 = sx + nzvx * B,
proj_y112 = sy + nzvy * B

IN abs(sz) - ZTHR <= 0 AND
horizontal_WCV_taumod_interval_non_zero_velocity(T-B, proj_x112,

proj_y112, nzvx,
nzvy, TAUMOD, DTHR)

Specification 5.3: slice of WCV_interval predicate in which the aircraft alter only their
horizontal separation, i.e., null vertical relative velocity and non-null horizontal.

It is important to note that program slicing is usually applied to reduce the complexity
of concrete implementations; in this work, it is applied to the specification level, aiming
to overcome scalability issues on PRECiSA.

5.1.1 Equivalence theorem

Since the objective of the module is to detect well-clear violations in a look ahead time
interval under all conditions, instead of under a specific situation, it is necessary to ag-
gregate all slices together, providing the same functionality as the original specification.
It is expressed through the equivalence theorem shown in Specification 5.4.

1 slicing_equivalence: THEOREM
2 FORALL(sx, sy, sz, vx, vy, vz, B, (T| B < T)):
3 LET s = (# x := sx, y := sy, z := sz #),
4 v = (# x := vx, y := vy, z := vz #) IN
5 LET wcv_interval = WCV_taumod_interval(B, T, s, v)
6 IN (wcv_interval‘entry <= wcv_interval‘exit) IFF
7 % The vertical position of the intruder decreases regarding the ownership
8 IF vz < 0 THEN
9 IF vx ≠ 0 ∨ vy ≠ 0 THEN % alters their horizontal separation

10 WCV_intervalvz<0∧v≠0(B, T, s, v)
11 ELSE WCV_intervalvz<0∧v=0(B, T, s, v)
12 ENDIF
13 ELSIF vz > 0 THEN
14 IF vx ≠ 0 ∨ vy ≠ 0 THEN
15 WCV_intervalvz>0∧v≠0(B, T, s, v)

42

16 ELSE WCV_intervalvz<0∧v=0(B, T, s, v)
17 ENDIF
18 ELSE
19 IF vx ≠ 0 ∨ vy ≠ 0 THEN
20 WCV_intervalvz=0∧v≠0(B, T, s, v)
21 ELSE WCV_interval_zerovz=0∧v=0(B, T, s, v)
22 ENDIF
23 ENDIF

Specification 5.4: Slicing Equivalence Theorem

In Specification 5.4, lines 3-4 express the three-dimensional space and velocity, and
lines 5-6 express there is an original WCV detection, i.e., a valid conflict interval if and
only if the corresponding slice detects a violation too (lines 7-22). The latter is called the
top-layer function and combines the slices by selecting the correct slice for each situation.
The slice assumptions are expressed as subscripts. For instance, in lines 7-9, there is a
decrement in vertical and an alteration in horizontal separation.

The Equivalence theorem is proven using each slice equivalence lemma. For instance,
the slice’s equivalence lemma where the vertical separation decreases, but the horizontal
one is kept unmodified is shown in Specification 5.5.

1 WCV_interval_taumod_interval_equivalence: LEMMA
2 FORALL(sx, sy, sz, nvz, B, (T| B < T)):
3 LET s = (# x := sx, y := sy , z := sz #),
4 v = (# x := 0, y := 0, z := nvz #) IN
5 LET wcv_interval = WCV_taumod_interval(B, T, s, v)
6 IN WCV_intervalvz<0∧v=0(B, T, s, v) IFF
7 (wcv_interval‘entry <= wcv_interval‘exit)

Specification 5.5: Slice decreasing vertical separation, keeping the horizontal one unmod-
ified equivalence lemma

Line 4 states no changes in horizontal separation, i.e., null horizontal relative velocity, and
a decrease in vertical separation, i.e., negative vertical relative velocity. Thus, slice detec-
tion only occurs if and only if the original specification returns a valid conflict interval.
The WCV_intervalvz<0∧v=0 is defined in Specification 5.6.

WCV_intervalvz<0∧v=0(B, T, sx, sy, sz, zvx, zvy, nvz): bool =
LET centry1 = coalt_entryvz<0(sz, nvz, TCOA, ZTHR),

cexit1 = coalt_exitvz<0(sz, nvz, ZTHR)
IN T - centry1 >= 0 AND cexit1 - B >= 0 AND

43

sq(sx, sy) - DTHR*DTHR <= 0

Specification 5.6: WCV associated interval for slice decreasing vertical separation and
keeping horizontal one unmodified

Above, coalt_entry and coalt_exit calculate the time to co-altitude between the owner
and intruder; B and T are the endpoints of the look-ahead time interval; TCOA, DTHR, ZTHR
are the time and distances threshold constants; and sq is a function that calculates the
squared norm of a vector.

5.2 Code extraction
As mentioned, the DAIDALUS specification was verified assuming real-valuated oper-
ations. Still, its floating-point implementation could present different behaviors since
round-off errors in guards of conditionals could lead to choosing a different branch, lead-
ing the program to take a different control flow than its ideal verified version. In this
manner, the program could either not detect a safety-critical situation or detect when
there is no one. Usually, estimating round-off errors is a tough task that requires floating-
point expertise. Thus, automatically generating an instrumented implementation that
emits a warning when an unstable guard could occur following the methodology given in
Chapter 3 has significant value.

5.2.1 Processing slices

As described in Section 3.1, the program transformation implemented in PRECiSA re-
places all real arithmetic operations from a real-valuated program by their floating-point
counterpart, then replaces each guard statement with a parametrized one that is more
restrictive. This new parameter takes into account the possible round-off error. PRECiSA
also calculates such a round-off error for a desired floating-point precision. The original
guard’s replacement introduces some inputs in which the transformed program is not de-
fined, while the original program returns a numerical value. In this case, PRECiSA adds
a warning indicating a possible divergence between the evaluation of the original guard
using reals and floating-point arithmetic. PRECiSA provides a sound over-approximation
of the round-off bound, which means that false warnings may be emitted. However, it
also guarantees that all actual instabilities raise a warning.

The transformation of the tcpa function is depicted in 3.2. At the same time, the actual
output of PRECiSA is shown below with some syntactic simplifications.

1 /*@
2 real tcpa(real sx, real vx, real sy, real vy) =

44

3 vx
2 + vy

2 > 0 ? -(sx * vx + sy * vy) / (vx
2 + vy

2) : 0;
4
5 double tcpa (double sx , double vx , double sy , double vy) =

6 v2
x + v2

y > 0 ? −(sx ∗ vx + sy ∗ vy)/(v2
x + v2

y) ∶ 0 ;

7
8 predicate tcpa_stable_paths(real sx, real vx, real sy, real vy,
9 double sx , double vx , double sy , double vy) =

10 vx
2 + vy

2 > 0 ∧ v2
x + v2

y > 0

11 ∨ ¬ (vx
2 + vy

2 > 0) ∧ ¬ v2
x + v2

y > 0 ;

12
13 requires: 0 <= ϵ ∧ finite?(ϵ) ;
14 ensures: result ≠ ω ⇒ result = tcpa

15 ensures: result ≠ ω ⇒ (|(v2
x + v2

y)-(vx
2 + vy

2)| ≤ ϵ => tcpa_stable_paths)

16 */
17 double’ tcpa_fp(double sx , double vx , double sy , double vy , double ϵ){

18 if(v2
x + v2

y > ϵ){

19 return −(sx ∗ vx + sy ∗ vy)/(v2
x + v2

y) ;

20 }
21 else{
22 if(v2

x + v2
y ≤ −ϵ)

23 return 0 ;
24 else
25 return ω;
26 }
27 }

Specification 5.7: C function and annotations generated by PRECiSA for tcpa. Some syntactic
simplifications were applied for ease of reading.

The Specification 5.7 shows the C code and its ACSL annotations generated by PRECiSA
for the tcpa function. Lines 1-16 contain the ACSL annotations expressing the contracts
explained below, and lines 17-27 contain the tcpa function that is equivalent to those
presented in the Specification 3.2. The type double∗ expresses a type that is the union
of type double and the warning ω. The specification of the function over reals and its
floating-point counterpart are given in lines 2-3 and 5-6. The precondition in line 13
restricts the argument ϵ to be positive and finite, i.e., it cannot be infinity nor NaN. The
postcondition (in line 14) states that if the tcpa_fp function does not output a warning,

45

then it equals the non-instrumented floating-point version of tcpa. This post-condition
is called structural behavior. The floating-point counterparts replace the real number
operations with their float ing-point counterparts. The postcondition in line 15 is called
stable-path behavior and expresses that if the result is not a warning and the ϵ is the guard
expression round-off sound error approximation, then the predicate tcpa_stable_paths
holds. The latter predicate is defined in lines 8-11 and expresses that the evaluation
using both the real number and the floating-point arithmetic is the same. This means
that there are no unstable conditions. Here, it is important to remark that the variable
ϵ is expected to be a sound-over approximation of guard expression round-off error since
when the floating-point evaluation of the guard expression is in the interval [−ϵ,+ϵ) the
function returns a warning expected when an unstable guard may occur.

Given ranges for the arguments, PRECiSA also computes numeric round-off error over-
approximations. For instance, if the velocities remain in the interval (1, 1000), the bound
for the round-off error of the expression v2

x +vy computed is ϵ = 4.602043e−10. PRECiSA
also generates formal certificates claiming these bounds that can be mechanically verified
using PVS. These certificates are indeed theorems; for instance, the Theorem 5 refers to
the above case of tcpa.

Theorem 5 (Error bound for the guard in tcpa). For all real values vx, vy in the interval(0, 1000) and its rounding to floating-point represetation vx , vy :

∣ v2
x + v2

y − (v2
x + v2

y) ∣ ≤ 4.602043e − 10 (5.1)

PRECiSA also computes bounds for the round-off errors in the output of function
tcpa_fp as the maximum between the error bounds of all branches which do not return
a warning as expressed in Equation 3.10.

1 /*@
2 ensures (∀ real sx, sy, vx, vy;
3 1 < vx < 1000 ∧ 1 < vy < 1000 ∧ 1 < sx < 1000 ∧ 1 < sy < 1000∧
4 ∣ sx − sx∣ ≤ ulp(sx)/2 ∧ ∣ sy − sy ∣ ≤ ulp(sy)/2 ∧
5 ∣ vx − vx∣ ≤ ulp(sx)/2 ∧ ∣ vy − vy ∣ ≤ ulp(vy)/2
6 ⇒ |(result - tcpa(sx, vx, sy, vy)| ≤ 9.106570e − 07)| ;
7 */
8 double’ tcpa_num(double sx , double vx , double sy , double vy) {

9 return tcpa_fp (sx, vx, sy, vy, 4.602043e-10);

46

10 }

Specification 5.8: Concrete C function and annotations generated by PRECiSA for tcpa . Some
syntactic simplifications were applied for ease of reading.

Specification 5.8 shows the concrete version of tcpa_fp assuming the inputs remain in
the provided input range. In fact, tcpa_num implementation (lines 8-10) is just tcpa_fp
with the concrete value ϵ = 4.602043e − 10 calculated by PRECiSA. The postcondition
(lines 2-7) states that if the inputs remain in the input range (line 3) and the relation
between the real input and floats is the same as the Theorem 5 premise (lines 4-5), then
the difference between the concrete C-function and its real-valuated specification is at
most 9.106570e − 07 (line 9).

The previous case is an example of code transformation and the contracts for more
complex non-boolean functions. However, predicates are a particular case that deserves a
separate analysis. The code extraction process applied in predicates, such as WCV_interval,
produces two abstract functions and their corresponding concrete implementation. It is
similar to the code extraction of two distinct functions that return numeric values pre-
viously shown. One of those pairs (abstract and concrete implementation), called beta
plus, represents a more restrictive implementation of the original predicate for the positive
(true) considering the round-off error. The other, called beta minus, is the negative case.

The Specification 5.9 depicts PRECiSA output for the slice in which aircraft in-
crease vertical and maintain horizontal separation for predicate WCV_interval, called
WCV_intervalvz>0∧v=0. For simplicity, the actual C-code of the functions and predicate
definitions are omitted. The predicate WCV_intervalvz>0∧v=0 (line 2) is the original sliced
predicate evaluated over reals, and WCV_intervalvz>0∧v=0_fp (line 3) is its floating-point
non-instrumented counterpart. Notice that there are no error variables as arguments.
The function in line 10 (WCV_intervalvz>0∧v=0_plus) is the instrumented implementation
to the beta plus that is omitted. The type bool∗, similarly to double∗, is the datatype
that represents the disjoint union between the booleans and the warning ω. The contract
in lines 5-8 claims that if the result of the instrumented plus version is not a warning
and holds, then the real predicate and its floating-point counterpart also hold. Similarly,
the floating point to the negation of the WCV_intervalvz>0∧v=0 predicate is shown in line
19. The contract to the beta minus is slightly different and states that if the beta minus
implementation holds, then the real predicate does not hold as well as its floating-point
counterpart. PRECiSA also produces concrete versions for these functions. The difference
between the concrete function for predicates and functions that return numeric values is
that no round-off error must obviously be estimated for the result. Thus, the contract
states that if the function holds, its real version also does.

47

1 /*@
2 predicate WCV_interval⇕●(real b, t, sx, sy, sz, vx, vy, vz) =
3 predicate WCV_interval⇕●_fp(double b, t, sx, sy, sz, vx, vy, vz) =;
4
5 ensures: ∀ real b, t, sx, sy, sz, vx, vy, vz;
6 \result ≠ ω∧ \result
7 => WCV_interval⇕●(b, t, sx, sy, sz, vx, vy, vz) ∧
8 WCV_interval⇕●_fp(b, t, sx, sy, sz, vx, vy, vz)
9 */

10 bool’ WCV_interval⇕●_plus(double b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3){...}
11
12 /*@
13
14 ensures: ∀ real b, t, sx, sy, sz, vx, vy, vz;
15 \result ≠ ω∧ \result
16 => ¬ WCV_interval⇕●(b, t, sx, sy, sz, vx, vy, vz) ∧
17 ¬ WCV_interval⇕●_fp(b, t, sx, sy, sz, vx, vy, vz)
18 */
19 bool’ WCV_interval⇕●_mns(double b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3){...}

Specification 5.9: Piece of the C function and annotations generated by PRECiSA for slice in-
creasing vertical and keeping horizontal separation for WCV_interval predicate. Some syntactic
simplifications were applied for ease of reading.

5.2.2 Top-layer function

As mentioned above, the transformation is applied to each slice, generating instrumented
C code that warns whenever the program presents an unstable guard. However, it is nec-
essary to recover the semantics of the original code, i.e., a code with the same functionality
instead of several snippets.

Therefore, an addition of a top-layer function is required. This layer is responsible
for selecting the suitable slice for each situation, and it is annotated with contracts that
relate full-definition and joined slices as depicted in Specification 5.4.

1 /*@
2 predicate wcv_in_range(real b, t, sx, sy, sz, vx, vy, vz) =
3 // WCV?((b, t), (vx, vy, vz), (sx, sy, sz)) previously defined
4
5 requires: \is_finite(e0) ∧ e0 > 0 ∧ ... ∧\is_finite(en) ∧ en > 0 ;
6 ensures: ∀ real b, t, sx, sy, sz, vx, vy, vz;

48

7 ∣ δ − vz ∗ δtcoa − δ − vz ∗ δtcoa∣ < e0 ∧
8 ∣ (t − coalt_t_asc_fp(sz, vz) − (t − coalt_t_asc_fp(sz, vz)∣ < e1 ∧
9 ...

10 \result ≠ ω

11 ⇒ (\result ⇐⇒ wcv_in_range(b, t, sx, sy, sz, vx, vy, vz))
12 */
13 bool∗ WCV_interval(double b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3...){

14 bool∗ res;
15 if (vz > 0){ // increasing vertical separation
16 if (vx == 0.0 ∧ vy == 0.0){ // maintaining horizontal separation

17 res = WCV_intvz>0∧v=0_plus(b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3);

18 if (res == ω ∨ res) return res;
19 res = WCV_intvz>0∧v=0_minus(b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3);

20 if (res == ω) return ω;
21 if (res) return false;
22 return ω;
23 } else{ // altering horizontal separation
24 res = WCV_intvz>0∧v≠0_plus(b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3);

25 if (res == ω ∨ res) return res;
26 res = WCV_intvz>0∧v≠0_minus(b, t, sx, sy, sz, vx, vy, vz, e1, e2, e3);

27 if (res == ω) return ω;
28 if (res) return false;
29 return ω;
30 }
31 } else if (vz < 0){ // decreasing vertical separation
32 ...
33 } else { // maintaining vertical separation
34 ...
35 }
36 }

Specification 5.10: Top-layer function draft

Specification 5.4 shows a fragment of the top-layer function. Line 5 precondition states
that every error variable e must be strictly positive and finite. The postcondition in Lines
6-11 states that for all real counterparts, each error variable denotes an error bound of
the conditionals present in the whole program. This implies the equivalence between
the top-layer function and the original not-sliced specification expressed by the predicate

49

wcv_in_range. The top-layer function is depicted in lines 13-36. The slice selection is
made through nested conditionals expressions, lines 15-30 contain the scope of increasing
vertical separation cases, whereas, in lines 16-22, the keeping horizontal distance and lines
23-29 changing, both for increasing vertical distance cases. Inside each slice, the top layer
checks the stronger positive version of the slice predicate (lines 17-18), and if it returns
either true or a warning, the top layer returns it. Otherwise, the top layer checks the
negative stronger version of the slice (lines 19-21). If it is either true or a warning, the
top layer will output it (inverting the logic value). Otherwise, it returns a warning. The
rest of the cases are handled in a similar way.

One important point to highlight is the absence of floating-point operations inside
these added guards, i.e., the values used by the top-layer function guards are assumed to
be coming directly from sensors. So, the round-off errors are just representational errors
that do not affect the sign.

One can see the similarities between this annotated code and the Specification 5.5.
The proof that ensures the contracts prevalence uses the Specification 5.5, jointly with
contracts of called functions.

Currently, both the slicing processes and the addition of the top-layer function are
implemented manually. However, these tasks can be done automatically with user hints
about the slicing conditions.

Figure 5.1a1 shows the number of lines of C-code (LOC) generated for each slice.
Such metrics are correlated with algorithm complexity. It is possible to see that the more
complex slices are those in which aircraft are altering horizontal separation (increasing,
decreasing, and maintaining vertical separation in order). However, the number of ver-
ification conditions per slice, presented in Figure 5.1b, demonstrates that it does not
follow the same distribution. Still, the two slices with more verification conditions are
those in which aircraft alter both horizontal and vertical separation as well in the 5.1a;
It is followed by those in which the aircraft are altering only the vertical separation, then
comes the slice that alters only horizontal distance, followed by the slice that maintains
the separation. It indicates that there is no direct relation between LOC and the number
of verification conditions and altering the vertical separation is more determinant in the
number of VCs than altering the horizontal.

1These statistics are from a preliminary version of the work and will be updated in the document’s
final version.

50

(a) Number of lines of code in each slice (b) Number of verification conditions gener-
ated for each slice

Figure 5.1: Slicing statistics of a preliminary version

5.3 Verification of the floating-point implementation
of DAIDALUS

Once the annotated instrumented stable-guard C code is generated for each slice, Frama-
C is used to process the code and the ACSL annotations with the plugin WP (weakest
pre-condition). For each function, it generates verification conditions (VCs) ensuring the
validity of the program contracts in the PVS language (Figure 3.1). These VCs could be
discharged using ad-hoc strategies generated, since the proofs are heavily driven by the
syntactic structure of the program.

Frama-C generates three VCs for the function tcpa. The first two are related to the
contracts annotated in lines 14-15 on Specification 5.7 and the last one in lines 2-6 of
Specification 5.8. The Specification 5.11 shows the stable-path behavior VC (theorem)
in one intermediary language between the PVS and mathematical languages. It expresses
that if the pre-condition holds (lines 3), the computation gives a result without producing
a warning (line 3), the highlighted post-condition premise to the stable-path behavior
holds (line 4), and, in addition, if types are preserved (lines 5), then the stable-paths
condition holds (line 9). Lines 6-8 express whether the result of the computation in double

51

floating-point precision equals the desired result. Input parameter result is the result of
the function implemented in C. The type of result contains its value and a boolean flag of
its validity, and its type could be defined in a disjoint union between double domain and
warning. Recall that boxed expressions are floating-point operations, and cross-operations
between boxed and not boxed expressions have an underlying conversion from floats to
reals.

1 tcpa_fp_stable_paths_ensures: THEOREM
2 FORALL (vx, vy : real, ϵ, sx, sy, vx, vy : double, result : double’):

3 (0 ≤ ϵ) => result ≠ ω =>
4 ∣ vx ∗ vx + vy ∗ vy − (v2

x + v2
y) ∣ ≤ ϵ =>

5 (finite?(ϵ) =>
6 (IF ϵ < v2

x + v2
y

7 THEN result = −(sx ∗ vx + sy ∗ vy)/(v2
x + v2

y)
8 ELSE (result = 0 AND v2

x + v2
y ≤ −ϵ ENDIF) =>

9 p_tcpa_stable_paths(vx, vy, vx, vy))

Specification 5.11: Stable-path behavior VC for tcpa function.

Simplifying, and omitting typing conditions, the VC theorem in Specification 5.11 might
be abbreviated as the formula below.

0 ≤ ϵ → result ≠ ω → ∣ v2
x + v2

y − (v2
x + v2

y)∣ ≤ ϵ →
⎛⎜⎜⎜⎝

if ϵ < v2
x + v2

y then result = −(sx ∗ vx + sy ∗ vy)
v2

x + v2
y

else v2
x + v2

y ≤ −ϵ ∧ result = 0

⎞⎟⎟⎟⎠ →
p_tcpa_stable_paths(vx, vy, vx, vy)

(5.2)

To prove the stable-paths behavior VC in Specification 5.11, one uses the definitions
available in the NASALib axiomatic floating-point formalizations and takes advantage
of the premisses that state that the error variable ϵ as the absolute bound of guard
expression round-off error; i.e., ∣(v2

x + v2
y)−(v2

x+v2
y)∣ < ϵ. Thus, if the more restrict guard

β+ (v2
x + v2

y > ϵ) is satisfied, then necessarily, the original real-expressed (vx
2 + vy

2 > 0)

also is. The same happens for β− (v2
x + v2

y < −ϵ). That is:

(v2
x + v2

y > ϵ ⇒ (vx
2 + vy

2 > 0) ∧ v2
x + v2

y > 0 ∧
(v2

x + v2
y ≤ −ϵ ⇒ ¬(vx

2 + vy
2 > 0) ∧ ¬v2

x + v2
y > 0) (5.3)

52

The structural behavior VC in Specification 5.12 comes from line 14 of Specification
5.7. It claims that if the precondition holds (line 3), the result is not a warning (highlighted
in line 3), and types are preserved (lines 4), then the result of the instrumented floating-
point C implementation is the same as the result of the non-instrumented floating-point
implementation (line 8). Lines 5-8 are similar to the previous VC, expressing the desired
result of the computed floating-point implementation.

1 tcpa_fp_structural_ensures: THEOREM
2 FORALL (ϵ, sx, sy, vx, vy : double, result : double’):

3 (0 ≤ ϵ) => result ≠ ω =>
4 (finite?(ϵ) =>
5 (IF ϵ < v2

x + v2
y

6 THEN result = −(sx ∗ vx + sy ∗ vy)/(v2
x + v2

y)
7 ELSE (result = 0 AND v2

x + v2
y ≤ −ϵ ENDIF) =>

8 result = l_tcpa_fp(sx, sy, vx, vy)))

Specification 5.12: Structural behavior VC for tcpa function.

The proof of the structural behavior VC, in Specification 5.12, is based on precon-
dition clams that once error variable ϵ is strictly positive. Thus, the new guard β+ is
stronger than the original, also satisfying the floating-point non-instrumented guard.

(v2
x + v2

y > ϵ ⇒ (vx
2 + vy

2 > 0) ∧ v2
x + v2

y > 0 ∧
(v2

x + v2
y ≤ −ϵ ⇒ ¬(vx

2 + vy
2 > 0) ∧ ¬v2

x + v2
y > 0) (5.4)

The numerical ensures VC shown in Specification 5.13 is related to lines 2-6 of
Specification 5.8. It claims that if the result is not a warning (line 3), the input variables
remain in the input range (line 4). The difference between the real variable in its floating-
point representation is at most half of ulp (lines 5-6), the structure behavior holds (line 7),
stable path behavior holds for all vx and vy where the difference of the expression compared
in the guard using real arithmetic and floating point is at most the explicit value (lines
8-11). Then the difference between the instrumented floating-point implementation and
the real specification is, at most, the value calculated by PRECiSA and presented in line
13.

1 tcpa_num_ensures: THEOREM
2 FORALL (sx, vx, sy, vy:real, ϵ, sx, sy, vx, vy :double, result:double’):

3 result ≠ ω =>

53

4 1 < vx < 1000 => 1 < vy < 1000 => 1 < sx < 1000 => 1 < sy < 1000 =>
5 ∣ sx − sx∣ ≤ ulp(sx)/2 => ∣ sy − sy ∣ ≤ ulp(sy)/2 =>
6 ∣ vx − vx∣ ≤ ulp(sx)/2 => ∣ vy − vy ∣ ≤ ulp(vy)/2
7 result = l_tcpa_fp(sx, sy, vx, vy) =>

8 (FORALL (vx, vy:real):
9 ∣ vx ∗ vx + vy ∗ vy − (v2

x + v2
y) ∣ ≤

10 (8901646138474497 / 19342813113834066795298816)) =>
11 p_tcpa_stable_paths(vx, vy, vx, vy)) =>

12 |result - tcpa(sx, vx, sy, vy)| <=
13 (4300455909721841 / 4722366482869645213696

Specification 5.13: Numerical ensures VC for tcpa function.

The proof of numerical ensures VC relies on the PRECiSA’s certificates that are
automatically discharged and relate the original real specification with its not-instrument
floating-point counterpart assuming stable-guards (only replacing the real operations by
their finite precision versions, and constants and values by their float representations).
The Specification 5.14 shows one of these certificates expressing this implementation’s
error bound (lines 8-9). Since the representational error between the real variables and
their float counterparts is at most half of ulp (lines 3-4), there is no division by zero (line
5). The input variables are in the input range (line 6), and assume stable-paths (line 8).
Worth remarking that this error bond is the maximum between the round-off errors of
the branches as expressed in Equation 3.10.

1 tcpa_fp_c_0 : LEMMA
2 FORALL(sx, vx, sy, vy: real, ϵ, sx, sy, vx, vy : double):

3 ∣ sx − sx∣ ≤ ulp(sx)/2 ∧ ∣ sy − sy ∣ ≤ ulp(sy)/2 ∧
4 ∣ vx − vx∣ ≤ ulp(sx)/2 ∧ ∣ vy − vy ∣ ≤ ulp(vy)/2 ∧
5 v2

x + v2
y ≠ 0 ∧ v2

x + v2
y ≠ 0 ∧

6 sx ∈ [1,1000] ∧ vx ∈ [1,1000] ∧ sy ∈ [1,1000] ∧ vy ∈ [1,1000]) =>
7 p_tcpa_stable_paths(vx, vy, vx, vy) =>

8 ∣ tcpa_fp(sx, vx, sy, vy) − tcpa(sx, vx, sy, vy)∣ ≤
9 4300455909721841 / 4722366482869645213696

Specification 5.14: PRECiSA tcpa numerical certificate

It is important to highlight there is nothing about the symbolic error variable in Speci-
fication 5.14, just the error between the real implementation and its floating-point coun-
terpart, assuming no unstable guards.

54

Every function that returns numeric values generates at least structural and numeric
VCs to be proven. In cases of predicates, it generates twice as many VCs due to the β+
and β− versions. Thus, creating ah-hoc strategies based on the proof structure to prove
them is an interesting approach.

55

Chapter 6

Related work

Several approaches are available to analyze the numerical properties of floating-point
software and improve its safeness and quality [4, 5, 3, 18, 25, 44, 20, 38]. Nevertheless,
most of them can be differentiated from the present work in at least one of the following
aspects:

• Handling of unstable guards;

• Instrumentation of the final code to provide a warning when an unstable test is
detected;

• Generation of a proof certificate able to be verified using an external proof assistant;

• Requiring hints from the user;

• Requiring floating-point specialist knowledge;

• Level of automation.

The current work uses the toolchain proposed in [45] integrating the formal methods
tools PRECiSA, Frama-C and PVS. Frama-C was already used jointly with Gappa to
analyze numerical properties of C source code [12]. However, it was only applied to
straight-line code and required additional annotations and expert-provided hints.

The Coq prover also has been integrated with Gappa to check verification conditions [4,
5, 3, 25] using a floating-point formalization developed in [6]. Nevertheless, this approach
relies on some interaction from the user to complete the proofs.

Besides PRECiSA and Frama-C, other tools have been used to analyze floating-point
round-off errors. These tools can be segregated into two main groups: precision allo-
cation and optimization [42]. Precision allocation tools select the lowest floating-point
encoding length to reach target accuracy improving the program performance as Rosa
[11], Precimonius [38] and FPTuner [8]. Rosa can receive a real-valuated implementation

56

and provide a floating-point implementation using a compilation algorithm. Rosa even
deals with unstable guards but does not instrument the code to provide warnings when
they occur. Program optimization tools rewrite floating-point arithmetic expressions by
equivalent ones with a lower accumulated round-off error. This category include tools as
CoHD [41], Herbie [36], AutoRNP [48] and Salsa [10].

Fluctuat [19] and Astrée [9] are two commercial analyzers for C based on abstract
interpretation. Fluctuat correctly estimates the rounding error of a program and detects
possible unstable guards, as reported by Goubault and Putot [20], but it does not provide
any warning in this situation. Astrée is a tool that detects the presence of runtime
exceptions such as floating-point overflows, computations returning not-a-number values,
and divisions by zero.

A previous version of the approach applied in this work was presented in [42] and was
used to generate code from a point-in-polygon algorithm. Later, the integrated toolchain
used in this work was presented and applied to obtain a small fragment of DAIDALUSver-
ified implementation [43].

In [24], the authors face the limitation of currently available approaches bound to the
round-off error for more complex code fragments, such as N-body collision simulation,
which contains a loop. The authors propose the identification of numerical kernels (most
complex computations) and a two-step phase approach. The first phase uses abstract
interpretation to infer the sound input ranges of the kernel pre-conditions, and the second
phase uses an SMT-solver. Such a technique, as the approach in the current work, reduces
the analysis of a more complex code in small pieces using pre-conditions; however, the
analysis focuses on some computation inside a for-loop. In contrast, our approach handles
depth function calls with branches.

The Floating-point Error Analyzer FErA [16] applies a methodology that provides an
over-approximation of round-off error bound using a branch-and-bond global optimizer
and an under-approximation. The main limitation of this tool is given by the operations
it supports, including only the basic arithmetic functions.

57

Chapter 7

Conclusions and future work

The present work generated a verified instrumented floating-point implementation of a
core module of DAIDALUS using a formal approach. This implementation emits a warn-
ing whenever an unstable guard may occur. A crucial step in the approach applied in this
work was to slice the original declarations of the Well Clear module into an equivalent col-
lection of simpler conceptual units. The discrimination in slices enables the application of
the code generation feature of PRECiSA on each of these slices, generating a C-program
annotated with ACSL contracts ensuring its correct behavior. Frama-C analyses the gen-
erated code for each slice and outputs verification conditions in PVS language that is
used to prove them. The VCs ensure that all unstable guards are detected, the bound of
round-off error, and there is no overflow.

In the process, we discovered several issues and opportunities for improvement in the
tool; all these were opportunely communicated to the PRECiSA development team. The
analysis of the slices also required modifying PRECiSA to add support for operators and
modalities that were not supported yet.

The availability of a new floating-point formalization from NASALib was essential
in improving the efficiency of the analysis. In particular, it significantly reduced the
time spent by PVS in the type checking of the verification conditions output by Frama-
C. Nevertheless, this change impacted the existing proof strategies, which are no longer
usable. One of the main tasks that remain to be done is to fix those strategies to allow
automatic verification of the verification conditions.

Regarding threats to validity, our approach assumes and builds upon the correctness of
all the tools participating in the analysis process. However, the integration of these tools
introduced instances of cross-validation. Each tool validates the results of the previous
steps at least partially. For instance, if PRECiSA generates an ill-formed contract, Frama-
C would detect it. Furthermore, if PRECiSA generates annotated code syntactically
accepted by Frama-C but not compliant with its contract, then the VCs expressed as

58

PVS theorems cannot be proved. Consequently, such integration provides a higher level
of confidence than the one provided by each individual tool.

In future work, the goal is to improve the automation level of the approach applied in
this work. In principle, it is not viable to fully automate the slicing process. However, once
the slicing criteria are defined, the definition of each slice is basically mechanical. Thus,
developing a tool that provides slices of declarations and states corresponding equivalence
theorems could be doable. The author also intends to improve the automation degree
of the proofs, maintaining and developing more proof strategies. Another line of future
work is applying the technique to other case studies, for instance, other modules of the
DAIDALUS library.

59

Bibliography

[1] Advisory Circular, U.S. Dept. of Transportation, Federal Aviation Admin. AC 90-
48D - Pilots’ Role in Collision Avoidance. U.S. Government, 2016. 1, 3

[2] Patrick Baudin, François Bobot, Loïc Correnson, Zaynah Dargaye, and Allan Blan-
chard. WP Plug-in Manual, 2023. 18, 19, 20

[3] S. Boldo, F. Clément, J. C. Filliâtre, M. Mayero, G. Melquiond, and P. Weis. Wave
equation numerical resolution: A comprehensive mechanized proof of a C program.
Journal of Automated Reasoning, 50(4):423–456, 2013. 56

[4] S. Boldo and J. C. Filliâtre. Formal verification of floating-point programs. In 18th
IEEE Symposium on Computer Arithmetic, ARITH, pages 187–194. IEEE Computer
Society, 2007. 56

[5] S. Boldo and C. Marché. Formal verification of numerical programs: From C anno-
tated programs to mechanical proofs. Mathematics in Computer Science, 5(4):377–
393, 2011. 56

[6] S. Boldo and G. Melquiond. Flocq: A unified library for proving floating-point
algorithms in Coq. In 20th IEEE Symposium on Computer Arithmetic, ARITH,
pages 243–252. IEEE Computer Society, 2011. 56

[7] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, and Giuseppe A. Di Lucca.
Software salvaging based on conditions. In Proceedings of the International Confer-
ence on Software Maintenance, ICSM, pages 424–433. IEEE Computer Society, 1994.
40

[8] W. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan, and Z. Raka-
marić. Rigorous floating-point mixed-precision tuning. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pages 300–315. ACM, 2017. 56

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and Rival. The
ASTREÉ Analyzer. In Proceedings of the 14th European Symposium on Programming
(ESOP 2005), volume 3444 of LNCS, pages 21–30. Springer, 2005. 57

[10] N. Damouche and M. Martel. Salsa: An Automatic Tool to Improve the Numerical
Accuracy of Programs. 6th Workshop on Automated Formal Methods, AFM, 2017.
57

60

[11] E. Darulova and V. Kuncak. Sound compilation of reals. In Proceedings of the
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 235–248. ACM, 2014. 56

[12] F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point im-
plementation of an elementary function using Gappa. IEEE Trans. on Computers,
60(2):242–253, 2011. 56

[13] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, aug 1975. 19

[14] A. Dutle, M. Moscato, L. Titolo, and C. Muñoz. A formal analysis of the compact
position reporting algorithm. 9th Working Conference on Verified Software: Theories,
Tools, and Experiments, VSTTE 2017, Revised Selected Papers, 10712:19–34, 2017.
10

[15] FAA. Code of Federal Regulations Title 14, Part 91 Aeronautics and Space (Last
amended 6/15/2023). U.S. Federal Aviation Administration, 2004. 1, 3

[16] Rémy Garcia, Claude Michel, and Michel Rueher. Rigorous enclosure of round-off
errors in floating-point computations. In Software Verification: 12th International
Conference, VSTTE, and 13th International Workshop NSV, Revised Selected Pa-
pers, page 196–212, Berlin, Heidelberg, 2020. Springer-Verlag. 57

[17] United States of America General Accounting Office. Patriot missile defense: Soft-
ware problem led to system failure at Dhahran, Saudi Arabi. Technical Report
GAO/IMTEC-92-26, U.S. General Accounting Office, Washington, D.C. 20548,
February 1992. 10

[18] A. Goodloe, C. Muñoz, F. Kirchner, and L. Correnson. Verification of numerical
programs: From real numbers to floating point numbers. In Proceedings of the NASA
Formal Methods Symposium NFM, volume 7871 of LNCS, pages 441–446. Springer,
2013. 56

[19] E. Goubault and S. Putot. Static analysis of numerical algorithms. In Proc. of the
13th International Symposium on Static Analysis, SAS, volume 4134 of LNCS, pages
18–34. Springer, 2006. 57

[20] E. Goubault and S. Putot. Robustness analysis of finite precision implementations. In
Proceedings of the 11th Asian Symposium on Programming Languages and Systems,
APLAS, volume 8301 of LNCS, pages 50–57. Springer, 2013. 56, 57

[21] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, oct 1969. 19

[22] IEEE. IEEE standard for binary floating-point arithmetic. Technical report, Institute
of Electrical and Electronics Engineers, 2008. 7

[23] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A Software Analysis Perspective. Form. Asp. of Comput.,
27(3):573–609, 2015. 2, 4, 18

61

[24] Debasmita Lohar, Clothilde Jeangoudoux, Joshua Sobel, Eva Darulova, and Maria
Christakis. A two-phase approach for conditional floating-point verification. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 43–63, Cham,
2021. Springer International Publishing. 57

[25] C. Marché. Verification of the functional behavior of a floating-point program: An
industrial case study. Science of Computer Programming, 96:279–296, 2014. 56

[26] Paolo Masci and César Muñoz. A graphical toolkit for the validation of requirements
for detect and avoid systems. In Proceedings of the 14th International Conference on
Tests and Proofs TAP, volume 12165 of Lecture Notes in Computer Science, pages
155–166. Springer, June 2020. 28, 29, 30

[27] César Muñoz, Anthony Narkawicz, and James Chamberlain. A TCAS-II resolution
advisory detection algorithm. In Proceedings of the AIAA Guidance Navigation, and
Control Conference and Exhibit 2013, August 2013. 31

[28] César Muñoz, Anthony Narkawicz, James Chamberlain, María Consiglio, and Jason
Upchurch. A family of well-clear boundary models for the integration of UAS in
the NAS. In Proceedings of the 14th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference, June 2014. 32

[29] César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle,
and María Consiglio. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned
Systems. In Proceedings of the 34th Digital Avionics Systems Conference DASC,
September 2015. 28, 31, 39

[30] César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle,
and María Consiglio. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned
Systems. In Proceedings of the 34th Digital Avionics Systems Conference DASC,
2015. 1, 3

[31] Anthony Narkawicz, César Muñoz, and Aaron Dutle. The MINERVA software de-
velopment process. In Automated Formal Methods, volume 5 of Kalpa Publications
in Computing, pages 93–108. EasyChair, 2018. 2, 4

[32] Anthony J. Narkawicz, César A. Muñoz, Jason M. Upchurch, James P. Chamberlain,
and María C. Consiglio. A well-clear volume based on time to entry point. Technical
Memorandum NASA/TM-2014-218155, NASA, Langley Research Center, Hampton
VA 23681-2199, USA, January 2014. 34

[33] Jim Q. Ning, Andre Engberts, and Wojtek Kozaczynski. Automated support for
legacy code understanding. Commun. ACM, 37(5):50–57, 1994. 40

[34] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
Proceedings of the 11th International Conference on Automated Deduction, CADE,
pages 748–752. Springer, 1992. 1, 4, 20, 26

[35] Sam Owre and Natarajan Shankar. The Formal Semantics of PVS. Technical Report
CSL-97-2R, SRI International, 1999. 21

62

[36] P. Panchekha, A. Sanchez-Stern, J.R. Wilcox, and Tatlock Z. Automatically improv-
ing accuracy for floating point expressions. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI,
pages 1–11. ACM, 2015. 57

[37] RTCA DO-365A. Minimum Operational Performance Standards (MOPS) for Detect
and Avoid (DAA) Systems, Appendix H. RTCA, February 2020. 1, 4

[38] C. Rubio-González, C. Nguyen, H.D. Nguyen, J. Demmel, W. Kahan, K. Sen, D.H.
Bailey, C. Iancu, and D. Hough. Precimonious: tuning assistant for floating-point
precision. In International Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, page 27. ACM, 2013. 56

[39] J. Silva. A vocabulary of program slicing-based techniques. ACM Comput. Surv.,
44(3):12:1–12:41, 2012. 40

[40] Busyairah Syd Ali, Wolfgang Schuster, Washington Ochieng, and Arnab Majumdar.
Analysis of anomalies in ADS-B and its GPS data. GPS Solutions, 20, 03 2015. 10

[41] L. Thévenoux, P. Langlois, and M. Martel. Automatic source-to-source error com-
pensation of floating-point programs. In 18th IEEE International Conference on
Computational Science and Engineering, CSE, pages 9–16. IEEE Computer Society,
2015. 57

[42] L. Titolo, M. Feliú, M. Moscato, and C. Muñoz. An abstract interpretation frame-
work for the round-off error analysis of floating-point programs. In Proceedings of
the 19th International Conference on Verification, Model Checking, and Abstract In-
terpretation (VMCAI), pages 516–537. Springer, 2018. 9, 12, 13, 14, 56, 57

[43] L. Titolo, M. Moscato, M. Feliú, and C. Muñoz. Automatic generation of guard-
stable floating-point code. In Proceedings of the 16th International Conference on
Integrated Formal Methods (IFM), volume 12546 of LNCS, pages 141–159. Springer,
2020. 57

[44] L. Titolo, M. Moscato, C. Muñoz, A. Dutle, and F. Bobot. A formally verified
floating-point implementation of the compact position reporting algorithm. In Pro-
ceedings of the 22nd International Symposium on Formal Methods (FM), volume
10951 of LNCS, pages 364–381. Springer, 2018. 56

[45] Laura Titolo, Mariano Moscato, Marco A. Feliu, and César A. Muñoz. Automatic
generation of guard-stable floating-point code. In Integrated Formal Methods, volume
12546 of LNCS, pages 141–159, Cham, 2020. Springer International Publishing. 2,
4, 10, 12, 13, 14, 16, 27, 56

[46] Mark D. Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, San Diego, California, USA, March 9-12, 1981, pages 439–
449. IEEE Computer Society, 1981. 40

[47] Mark D. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.
40

63

[48] X. Yi, L. Chen, X. Mao, and T. Ji. Efficient automated repair of high floating-point
errors in numerical libraries. PACMPL, 3(POPL):56:1–56:29, 2019. 57

64

