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Abstract: Melanoma, the most aggressive form of skin cancer, presents a major clinical challenge due
to its tendency to metastasize and recalcitrance to traditional therapies. Despite advances in surgery,
chemotherapy, and radiotherapy, the outlook for advanced melanoma remains bleak, reinforcing the
urgent need for more effective treatments. Photodynamic therapy (PDT) has emerged as a promising
alternative, leading to targeted tumor destruction with minimal harm to surrounding tissues. In
this study, the direct and abscopal antitumor effects of PDT in a bilateral murine melanoma model
were evaluated. Although only one of the two tumors was treated, effects were observed in both.
Our findings revealed significant changes in systemic inflammation and alterations in CD4" and
CD8" T cell populations in treated groups, as evidenced by blood analyses and flow cytometry.
High-throughput RNA sequencing (RNA-Seq) further unveiled shifts in gene expression profiles in
both treated and untreated tumors. This research sheds light on the novel antitumor and abscopal
effects of nanoemulsion of aluminum chloride phthalocyanine (AIPcNE)-mediated PDT in melanoma,
highlighting the potential of different PDT protocols to modulate immune responses and to achieve
more effective and targeted cancer treatments.

Keywords: immune system; immunity; immunotherapy; nanoemulsion; cancer; transcriptome

1. Introduction

Melanoma, a highly aggressive form of skin cancer, represents a significant clinical chal-
lenge due to its high metastatic potential and recalcitrance to conventional treatments [1,2].
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Despite advancements in surgical techniques, chemotherapy, and radiotherapy, the progno-
sis for advanced melanoma remains poor [1-4]. This fact spurs an intense search for novel
therapeutic approaches that can more effectively combat this disease. Immunotherapy has
emerged as a promising strategy, leveraging the immune system to target and eliminate
tumor cells [3-5]. However, not all patients respond to it, and the efficacy of immunother-
apy alone is often limited by the immunosuppressive tumor microenvironment and by the
heterogeneous nature of melanoma, highlighting the need for complementary therapeutic
strategies [3].

Photodynamic therapy (PDT) has drawn attention as an alternative, particularly for
localized treatment with minimal damage to the surrounding healthy tissues [6]. PDT
involves the generation of reactive oxygen species (ROS) following the activation of a
photosensitizer by light at a wavelength corresponding to one of its absorbance bands,
leading to tumor eradication through various mechanisms, including apoptosis, necrosis,
vascular damage, and the induction of an antitumor immune response via immunomodu-
latory pathways. [7]. The ability of PDT to target primary tumors and to induce systemic
antitumor immunity capable of addressing secondary tumors or metastases is a critical
aspect of its therapeutic potential and has gained prominence in various studies [8].

Despite its potential, the antitumor efficacy and the ability of PDT to induce a robust
immune response can be influenced by several factors, including the chemical nature
and concentration of the photosensitizer, the light dose, the treatment regimen, and the
wavelength of the applied light [9-11]. The wavelength is particularly crucial due to light
scattering effects, which can limit the penetration of light and, consequently, the over-
all efficacy of the treatment. In this context, chloride aluminum phthalocyanine (AlPc)
and its nanoemulsified form, AIPcNE, have emerged as potent photosensitizers for PDT.
AIPcNE, in particular, exhibits significantly higher photodynamic activity in aqueous media
compared to its non-nanoemulsified form, AlPc [12-14]. PDT mediated by AIPcNE has
demonstrated efficacy against several types of tumors in preclinical studies [15,16] and also
against bacteria [17] and fungi [18]. Simoes and collaborators, 2024 [19] demonstrated that
the lipid-based nanocarrier containing the photosensitizer aluminum phthalocyanine chlo-
ride (SLNs-AlPc), when light-activated, increased ROS production in B16F10 melanoma
cells, modulated the dendritic cell profile, and induced cell death accompanied by DAMP
exposure and autophagosome formation. Furthermore, Mkhobongo et al. (2022) [20]
demonstrated that PDT with a gold nanoparticle-aluminum phthalocyanine conjugate sig-
nificantly increased cytotoxicity and apoptosis while drastically reducing the proliferation
and viability of melanoma cancer stem cells, compared to the non-conjugated treatment
and controls. However, the potential for abscopal effects and the impact on immune system
gene expression in melanoma treatment still require further investigation.

This study assessed the antitumor efficacy and the immune-modulating effects of
AlPcNE-mediated PDT in a murine model of melanoma (B16F10). The direct effects on
treated tumors and the systemic, abscopal effects on distant, untreated tumors, immune
cell modulation, and gene expression profiles were investigated.

We aimed to gain insights into the interplay between PDT and the immune system,
which could contribute to more effective and targeted melanoma treatments and improved
outcomes for patients battling this kind of cancer.

2. Materials and Methods
2.1. Cell Culture

The murine melanoma cell line B16F10 was purchased from the Rio de Janeiro Cell
Bank (BCR]J, Rio de Janeiro, Brazil). Cells were cultured in Dulbecco’s Modified Eagle
Medium containing 10% fetal bovine serum and 1% penicillin/streptomycin at 37 °C in a
5% CO, atmosphere.
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2.2. Animals

All experiments involving mice were approved by the Animal Ethics Committee
of the University of Brasilia (UnBDOC no 46/2019). Female, 18 & 2 g, 6- to 8-week-old
C57B1/6 mice (Faculty of Medicine—Federal University of Goias, Goiania, GO, Brazil)
were maintained in a temperature-controlled environment with 12 h light-dark cycles and
received food and water ad libitum.

2.3. Tumor Model

To assess the direct and abscopal PDT effects, a bilateral tumor model was used. Mice
were injected s.c. with 5 x 10° B16F10 cells in the right flank (primary tumor). Two days
later, 2 x 10° tumor cells were implanted in the left flank (secondary tumor). Tumor size
was monitored by caliper measurement every two days. Tumor volume was calculated as
follows: tumor volume (mm?) = width (mm) x width (mm) x length (mm)/2 (Figure 1).

»*®  Tumor monitoring

0 2nd 12th 18th day

>
5x10° ZXiHO5 PDT euthanasia
cells cells

Figure 1. Treatment scheme for AIPcNE-mediated PDT in the mice animal model.

2.4. Photodynamic Therapy Protocols

The nanoemulsion of aluminum phthalocyanine chloride (AIPcNE) was prepared
using the spontaneous emulsification method as described by Muehlmann et al. (2015) [12].
The resulting AIPcNE formulation was thoroughly characterized, exhibiting a mean hydro-
dynamic diameter (DH) of 27.15 4 1.070 nm, a polydispersity index (PdI) of 0.178 + 0.026,
and a zeta potential (ZP) of —0.340 £ 0.188 mV. The final concentration of aluminum
phthalocyanine chloride in the nanoemulsion was determined to be 40 pM. For the PDT
treatment, mice were intratumorally injected with 200 uL of different AIPcNE concentra-
tions into the right tumors on day 12. Thirty minutes after injection, the animals were
anesthetized and covered with aluminum foil, leaving only the right tumor area exposed
for LED irradiation. A custom-designed light-emitting diode (LED) device, developed by
Prof. Paulo Eduardo Narcizo de Souza and configured to deliver light at a wavelength of
660 nm, was used to irradiate the animals. The LED array was positioned at a fixed distance
of 10 cm from the tumor surface to ensure consistent fluence. Mice were randomly assigned
to be treated only on the primary tumor with either: PBS, (1) low energy density [25 ]/cm?]
with low AIPcNE concentration [10 nM] (LL_LPS); (2) low energy density [25 ]/ cm?] with
high concentration of AIPcNE [40 nM] (LL_HPS); (3) high energy density [112 ] /cm?] with
low AIPcNE concentration [10 nM] (HL_LPS); or (4) high energy density [112 ]/ cm?] with
high concentration of AIPcNE [40 nM] (HL_HPS). As control, mice were intratumor injected
with PBS on day 12. Mice were euthanized on day 18.

2.5. Hematological Parameters Analysis

On the day of euthanasia, the animals were anesthetized by 120 mg/kg ketamine
and 16 mg/kg xylazine. Blood samples were then collected by cardiac puncture in EDTA
Vacutte® microtubes. The hematological parameters of WBC (white blood cells), RBC
(red blood cells), HGB (hemoglobin), HCT (hematocrit), PLT (platelets), MCV (mean cor-
puscular volume), MCH (mean corpuscular hemoglobin), and MCHC (mean corpuscular



Pharmaceutics 2024, 16, 1177

4 0f 22

hemoglobin concentration) were evaluated by the automated hematology counter for
veterinary use, Horiba ABX Micros ESV 60 (Sao Paulo, Brazil).

2.6. Histology Analysis

On day 18, mice were euthanized and dissected to collect the irradiated and non-
irradiated tumors. The tissue samples were carefully collected and immersed in 10%
neutral-buffered formalin for 24 h to prevent autolysis. After fixation, the tissue samples
were dehydrated in a series of graded ethanol solutions (70%, 80%, 90%, and 100%).
Following dehydration, the samples were cleared in ethanol-xylene and xylene for 1 h
each, then infiltrated with molten paraffin wax (56-58 °C) for 2—4 h. The tissues underwent
three paraffin baths in an oven at 58 °C and were embedded in paraffin blocks. Histological
sections, 3 to 4 um thick, were fixed on glass slides for microscopy and stained with
hematoxylin and eosin (HE).

2.7. Flow Cytometry Analysis

The single-cell suspension of mice splenocytes was prepared by mechanical digestion
followed by filtering through a 40 mm cell strainer (SPL Life Sciences, Pocheon, Republic
of Korea). Cells samples were resuspended in erythrolysis buffer for 10 min, washed with
PBS, centrifuged, and counted. Cells were transferred to polypropylene tubes in 100 pL
PBS + 10% FBS for labeling for 30 min on ice, protected from light, with the Invitrogen APC
anti-mouse CD3¢, PE/Cyanine? anti-mouse CD4, and PE anti-mouse CD8b antibodies.
The FITC anti-mouse CD45 and PerCP Cy5.5 anti-mouse CD45RA antibodies were used for
activated T cells Panel 1. The FITC anti-mouse CD25 and PerCP Cy5.5 anti-mouse CD62L
antibodies were used for regulatory T cells Panel 2. After additional washes with PBS
containing 2% FBS, the cells were resuspended, acquired by FACSVerse (BD Biosciences,
San Jose, CA, USA), and analyzed by Flow]o software X (version 10.10, BD Biosciences).
Cells labeled with individual antibodies were used for compensation.

2.8. Gene Expression Evaluation

The total RNA was isolated from the frozen homogenized independent samples of
melanoma primary and secondary allografts (n = 3 per group) using the RNeasy Mini kit
(Qiagen, Hilden, Germany), according to the manufacturer instructions. Samples were
quantified by the RNA-specific fluorimetric method using the Qubit™ RNA High Sensitiv-
ity kit (Invitrogen™, Waltham, MA, USA), following the manufacturer’s recommendations.
Sequencing was carried out by the company GenOne Biotech using the Illumina platform
(Ilumina, Inc., San Diego, CA, USA). According to the company’s requirements, only
samples with pure (OD 260/280 > 2.0) and intact (with RIN > 6.3) total RNA were sent for
sequencing. Samples should consist of at least 2 g of lyophilized RNA.

2.9. Statistical Analysis

All the statistical differences were recorded using GraphPad Prism version 6.01 for
Windows (San Diego, CA, USA). Statistical analyses were assessed by one-way or two-way
ANOVA tests, with post hoc Tukey’s multiple-comparison tests. Values are presented as
mean = standard error of the mean. Significance was set at p < 0.05.

3. Results
3.1. The PDT Protocols, except LL_LPS, Reduced the Growth of the Irradiated Tumor

To verify the in situ effect of AIPcNE-PDT on melanoma grafts, four different PDT
protocols were applied. As shown in Figure 2A,B, in a bilateral B16F10 model, AIPcNE-PDT
was administered locally only to the primary tumor, which was monitored for 18 days.
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Figure 2. Direct effect of PDT in primary-site tumors. Primary subcutaneous B16F10 tumor-bearing
mice were treated with four different PDT protocols: low LED with low PS (LL_LPS), laser irradiation
at25]/ cm?, and AIPcNE (10 nM); low LED with high PS (LL_HPS), laser irradiation at 25 J/ cm?,
and AIPcNE (40 nM); high LED with low PS (HL_LPS), laser irradiation at 112 J/ cm?, and AIPcNE
(10 nM); and high LED with high PS (HL_HPS), laser irradiation at 112 J/ cm?, and AIPcNE (40 nM).
(A) Tumor volumes (mm?) for irradiated and PBS right tumors are shown. (B) The area under the
curve (AUC, expressed in mm?-day) was analyzed on day 18 post-tumor-engraftment to assess the
cumulative tumor growth over time. The AUC provides an integrated measure of tumor volume,
taking into account both the magnitude and duration of the tumor growth response. Data are mean
=+ standard deviation. Statistical significance of the tumor volume was determined using a two-way
ANOVA, followed by a Tukey’s multiple-comparison test (n =5, * p < 0.01).

The LL_HPS, HL_LPS, and HL_HPS protocols significantly reduced the primary-site
tumors’ growth. In contrast, no direct effect was observed with the LL_LPS protocol, as the
tumors continued to grow similarly to the control group. This could be due to the lower
oxidation of cell components in the tumors treated with the LL_LPS protocol, as it involved
lower concentrations of both AIPcNE and light energy.

3.2. Histological Analyses of the Primary-Site Tumors

Typical features of melanoma tissue were verified in all the samples (Figure 3). Notably,
atypical cells were present, characterized by pleomorphic nuclei. Areas of multifocal
necrosis were evident (eosin stained—arrow), displaying regions of cellular death, with
absence of cell nucleus and no intercellular limits, indicative of an aggressive and rapidly
proliferating tumor microenvironment. Additionally, the analysis confirmed the presence
of pigment characteristic of melanoma cells (*), reasserting the melanocytic origin of the
tumor. Importantly, tumors in the PBS group exhibited a higher frequency of cells in mitosis
compared to the treated groups, suggesting increased cellular proliferation.

3.3. The Growth of the Non-Treated Tumors of the HL_HPS Group Is Significantly Reduced
after PDT

The abscopal effect of the four different AIPcNE-PDT protocols on melanoma grafts
was also verified. The secondary-site tumor was left untreated. Only the HL_HPS PDT
protocol group presented significant growth reduction of the secondary-site tumor when
compared to the other groups (Figure 4A,B), suggesting the induction of systemic antitumor
responses against B16F10 cells.

Even though the group LL_HPS and HL_LPS PDT protocols directly reduced the
primary-site tumors’ volume, no induction of a systemic antitumor activity was de-
tected. Abscopal antitumor activity was not promoted by the application of the LL_LPS
protocol either.
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Figure 3. Photomicrographies of histopathological sections of the mice primary-site tumors. (A) PBS;
(B) LL_LPS; (C) LL_HPS; (D) HL_LPS; (E) HL_HPS groups. N represents necrosis areas.

1,500
A B .
— PBS 60007 —_—
“e —— LL_LPS
E | 0004 — LLHPS ||
g —— HL_LPS 4,000
a:: —— HL_HPS S
5 S
§ so0] 2,000
&
3
0
o - . ; : : . . & ¢ & & &
6 8 10 12 14 16 18 20 \},/ \),/ Q‘V/ &/
Days Post-Tumor Graft

Figure 4. Abscopal effect of non-irradiated left tumors. (A) Volume growth (mm?) of the secondary-
site tumors is shown. (B) The area under the curve (AUC, expressed in mm? -day) was analyzed on
day 18 post-tumor-engraftment to assess the cumulative tumor growth over time. The AUC provides
an integrated measure of tumor volume, taking into account both the magnitude and duration of the
tumor growth response. Data are mean =+ standard deviation. Statistical significance of the tumor
volume was determined using a two-way ANOVA, followed by a Tukey’s multiple-comparison test
(n=5,%*p<0.01).
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3.4. Histological Analyses of the Secondary-Site Tumors

The histological analysis of the secondary-site tumors revealed typical features of
melanoma, like the primary tumor (Figure 5). Atypical cells, characterized by pleomorphic
nuclei typical of melanoma, were observed. Unlike the primary tumor, the secondary-site
tumors displayed multiple small areas of necrosis (stained with eosin), rather than large,
focal areas. The presence of the pigment characteristic of melanoma cells was also noted.

Figure 5. Photomicrographies of histopathological sections of the mice secondary tumor sites. (A) PBS;
(B) LL_LPS; (C) LL_HPS; (D) HL_LPS; (E) HL_HPS groups (Scale bar—200 pm). Stained using H&E
(hematoxylin and eosin).

3.5. Hematological Analysis

To investigate how AIPcNE-PDT protocols influenced hematological parameters in
mice with B16F10 grafts, blood samples were collected on the day of euthanasia and
evaluated. All the AIPcNE-PDT protocols led to a decrease in the number of circulating
leukocytes and lymphocytes compared to the untreated group (Table 1). The HL_HPS
groups were associated with lower platelet levels. The LL_LPS and HL_HPS protocols
showed a reduction in the number of circulating HCT. The levels of neutrophils, monocytes,
eosinophils, and basophils remained unaffected by AIPcNE-PDT.



Pharmaceutics 2024, 16, 1177 8 of 22

Table 1. Results of erythrogram, leukogram, and platelet count of female C57bl6 on day 18 after treat-
ment with PDT or PBS. RBC—red blood cells; HGB—hemoglobin; HCT—hematocrit; MCV—mean
corpuscular volume; MCH—mean corpuscular hemoglobin; MCHC—mean corpuscular hemoglobin
concentration; RDW-CV—red cell distribution width coefficient of variation; RDW-SD—red cell
distribution width standard deviation; WBC—total white blood cell count; NEU—neutrophils;
LYM—lymphocytes; MON-—monocytes; EOS—eosinophils; BAS—basophils; PLT—platelets;
MPV—mean platelet volume; PDW—platelet distribution width; PCT—plateletcrit; g/dL—grams
per deciliter; fL—fentoliters; pg—picograms. Data correspond to mean =+ standard deviation (SD).

PBS LL_LPS LL_HPS HL_LPS HL_HPS
Erythrogram
RBC (x103/uL) 6.6 £1.1 40+17 56+15 44426 34+13
HGB (g/dL) 109+ 1.6 70+27 9.1+23 71+41 584+22
HCT (%) 313 +4.7 198 +81a 270+ 7.6 20.8 +11.9 176 +71a
MCV (fL) 473 +2.0 50.2 +4.3 48.0+1.0 485+ 8.1 52.1 +2.8
MCH (pg) 165+ 04 17.7 +£1.0 164 +0.2 16.3+0.4 172+0.2
MCHC (g/dL) 35.0+0.1 354+ 1.4 34.0+1.0 34.4 4+ 4.7 33.1+2.0
RDW-CV (%) 16.1 £3.8 19.6 £ 6.7 199 +54 246 +7.7 23.0 £ 5.6
RDW-SD (fL) 34.4 +10.3 444 4+ 18.8 4294133 54.7 +22.8 a 543 +15.6a
Leukogram
WBC (x103/uL) 10.8 £2.7 49+13a 51+15a 50+£02a 44+17a
NEU (x10%/uL) 3.2+09 194+0.7a 14+07a 124+04a 14+ 06a
LYM (x103/uL) 62+13 25+10a 31+07a 3.0+08a 27+14a
MON (x10%/puL) 14 +0.7 05+0.1a 04 +05 0.6 =04 03+02a
EOS (x103/uL) 0.1+0.0 0.0+ 0.0 02+02 0.1+0.1 0.1+0.0
BAS (x103/uL) 0.0 £0.0 0.0£0.0 0.0 £0.0 0.0 £0.0 0.0£0.0
NEU (%) 29.7 £ 3.7 39.5+11.3 252 +7.7 242 4+ 7.8 31.1+94
LYM (%) 592 +7.0 49.6 +9.8 65.4 +14.3 60.6 +15.9 60.4 +13.1
MON (%) 102 +£5.3 100+ 2.4 71+6.1 123+78 6.7 +34
EOS (%) 09+03 09+08 24426 29+16 194+0.7
BAS (%) 0.0 £0.0 0.0+£0.0 0.0 £0.0 0.0 £0.0 0.0+£0.0
Platelet parameters
PLT (x103/uL) 682.6 £107.0a 509.8 + 187.9 476.8 +293.4 624.0 + 308.0 530.8 £59.2a
MPV (fL) 55405 62+1.0 54+0.2 5.8 +0.2 6.6 £0.5
PDW 15.8 £ 0.4 159+ 0.4 15.8 £0.2 16.0 £ 0.6 16.3+ 0.4
PCT (%) 04 +0.1 03+0.1 03+0.2 04+02 04+0.1

a = Significant difference compared to PBS group, detected by Tukey’s multiple-comparison test, p < 0.01.

3.6. Flow Cytometry Analyses

To evaluate the T cell population in mice spleens, the frequency of CD4+ T and
CD8+ T cells was analyzed by flow cytometry. In mice from groups LL_LPS and HL_HPS,
the population of CD4+ T cells decreased compared to the control groups (Figure 6A). Addi-
tionally, the splenic CD8+ T cell population in HL_HPS-treated mice increased compared to
the controls (Figure 6B). These findings suggest that treatment with HL_HPS may promote
antitumor immunity through both CD4+ and CD8+ T cells. There were no statistically
significant differences in the CD4+ and CD8+ T cell populations between groups LL_HPS
and HL_LPS compared to the control.

To explore the subpopulation of splenic CD4+ and CD8+ T cells, markers for CD45+
and CD45RA+ (Panel 1) and CD25+ and CD62L+ cells (Panel 2) were used.

Significant differences were revealed in the mean fluorescence intensity (MFI) of
CD4+CD45+ cells among the experimental groups. Specifically, the HL_HPS protocols
significantly increased the percentage of CD4+CD45+ cells compared to control. No
statistically significant differences of CD4+CDA45+ cells were observed between LL_LPS,
LL_HPS, and HL_LPS groups and PBS (Figure 7A). These results suggest that the HL_HPS
treatment may induce higher differentiation of CD4+CD45+ T cells compared to the control
group, while the LL_LPS, LL_HPS, and HL_LPS protocols do not.
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Figure 6. Flow cytometry analyses of the mice spleens’ T cell populations. (A) Percentage of
CD4+ T cells; (B) percentage of CD8 + T cells. (C) CD4+ and CD8+ T cells. (n = 6). One-way ANOVA
followed by Tukey’s post hoc test was performed for statistical analysis; * p < 0.05, ** p < 0.01. Data
are presented as the mean =+ SD.

The LL_HPS group exhibited fewer CD8+CD45+ cells compared to the HL_HPS group.
No statistically significant differences of CD8+CD45+ cell frequencies were observed for
the LL_LPS and HL_LPS protocols compared to the control group (Figure 7C).

Collectively, these findings indicate that the HL._ HPS protocol can promote a T-cell-
specific immune response.

3.7. The HL_HPS Protocol Induced Distinct Expression Profiles for Immune Response Genes in
Primary- and Secondary-Site Tumors

The reduction in the growth of the non-treated tumor, together with the distinct
immunological responses elicited by the HL_HPS_PDT protocol, was the most significant
finding in this study. Consequently, we concentrated on the transcriptomic analysis via
RNA-Seq of primary- and secondary-site tumors in irradiated animals from the HL_HPS
condition, in comparison with tumors from the PBS group. This approach aimed to
elucidate and correlate the underlying antitumor mechanisms involved.

For RNA sequencing, three independent samples from both primary- and secondary-
site tumors of the PBS and HL_HPS groups were collected. These samples met the required
criteria for total RNA concentration, quality, and purity stipulated by the service provider.
Gene expression levels were estimated by transcript abundance, with values normalized
to FPKM (fragments per kilobase of transcript per million mapped reads), accounting for
sequencing depth and gene length effects on the fragment counts.

The number of unique and co-expressed genes within each PDT and PBS protocol
was illustrated using a Venn diagram. In the right tumor samples, 11,658 genes were
co-expressed, with 284 and 415 unique genes in the PBS and HL._HPS group, respectively.
In contrast, the left tumors presented 11,755 genes co-expressed across the two groups,
with 738 and 412 unique genes in the PBS and HL_HPS group, respectively (Figure 8).
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Figure 7. Flow cytometry analyses of the mice splenic CD4+ and CD8+ T populations. PANEL 1:
markers for CD45+ and CD45RA+ T cells. MFI of (A) CD4+CD45+; (B) CD4+CD45RA+; (C) CD8+CD45+;
(D) CD8+CD45RA+. PANEL 2: (E) CD4+CD25+; (F) CD4+CD62L+; (G) CD8+CD25+; (H) CD8+CD62L+;
MFI: mean fluorescence intensity. (n = 3). One-way ANOVA followed by Tukey’s post hoc test was
performed for statistical analysis; * p < 0.05. Data are presented as the mean =+ SD.
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Figure 8. Venn diagram of the numbers and distribution of unique and co-expressed genes for the
PBS and HL_HPS treatment conditions. (A) Right tumors. (B) Left tumors.

Profound alterations in gene expression profiles were observed between irradiated
and control animals (Figure 9). Additionally, there was a noticeable similarity in gene
expression profiles between the right and left tumors in the PBS group, whereas the right
and left tumors in the HL._HPS group exhibited predominantly different profiles.

Genes with significantly different expression levels under various conditions
(Ilog2(FoldChange)| > 1 and padj < 0.05) were identified. A log2FC > 0 indicates
higher gene expression in the experimental condition compared to the control condition,
whereas a log2FC < 0 indicates lower expression in the experimental condition compared to
the control.

The global distribution of differentially expressed genes in the HL_HPS-PDT protocol
for the primary- and secondary-site tumors compared to the PBS control group, as well as
between primary and secondary tumors within the same group, was inferred by volcano
plots (Figure 10).

Comparing the PBS_R and HL_HPS_R samples, a total of 693 differentially expressed
genes were identified, with 273 upregulated and 420 downregulated transcripts in
HL_HPS_R. The PBS_L vs. HL_HPS_L sample comparison revealed 1208 differentially
expressed genes, including 835 upregulated and 373 downregulated in HL_HPS_L. The
comparison of PBS_R and PBS_L samples identified 1052 differentially expressed genes,
with 100 upregulated and 952 downregulated in PBS_L. The HL_HPS_R vs. HL_HPS_L
sample comparison revealed 121 differentially expressed genes, including 60 upregulated
and 61 downregulated sequences in HL_HPS_L.

The evaluation of the gene ontology of DEG in the PBS_R vs. HL_HPS_R sample
comparison identified several genes related to the immune response, most of them being
downregulated (Figure 11A). Conversely, in the PBS_L vs. HL_HPS_L sample analysis,
differentially expressed immune-response-related genes were predominantly upregulated
(Figure 11B).

Table 2 highlights the DEGs for the comparisons PBS_R vs. HL_HPS_R and PBS_L
vs. HL_HPS_L based on the GO category for Immune System Processes (GO:0002376).
This analysis revealed that the HL_HPS_R tumor exhibited 28 upregulated genes and
60 downregulated genes associated with immune system processes, while in the HL_HPS_L
tumor, 122 genes were upregulated and 49 were downregulated.
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Figure 9. Heatmap of differentially expressed genes between the right and left tumor samples in PBS

and HL_HPS groups. The heatmap displays the Z-score normalized differential expression across
three replicates. R indicates right tumor, and L indicates left tumor.
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Figure 10. Volcano plot of differential expression of genes from RNA-Seq comparing the (A) PBS_R
vs. HL_HPS_R; (B) PBS_L vs. HL_HPS_L; (C) PBS_R vs. PBS_L; (D) HL_HPS_R vs. HL_HPS_L.
Each dot indicates one gene. Red dots represent upregulated genes, while green dots represent
downregulated genes.

It was possible to identify genes that are upregulated both in the HL_HPS_R and
HL_HPS_L tumors compared to the same tumors in the PBS group, such as Hercé6, Kat7,
Mef2¢, Rbm15, and Shld3 (Table 2). On the other hand, the genes that were downregulated
both in HL_HPS_R and HL_HPS_L tumors compared to the same tumors in the control
group were Cdc42ep2, Cebpg, Fzd9, Gprc5b, Hexim1, Kenj8, Mitf, Nfkb2, Nr4a3, Prkd2,
Rarg, Tbkbp1, Vegfa, Xkr8, and Zbtb7b (Table 2).

The comparison of DEGs between the primary- and secondary-site tumors in each
treatment indicated that, in the PBS group, most immune-response-related genes were
downregulated in the secondary-site tumor compared to the primary one (Figure 12A). In
contrast, the primary- and secondary-site tumors in the HL_HPS group did not exhibit
significant differential expression of immune-related genes (Figure 12B).
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Figure 11. Number of upregulated (red) and downregulated (green) genes based on Gene Ontology
(GO) in Immune System Processes (GO:0002376). (A) Comparison between PBS_R and HL_HPS_R.

(B) PBS_L vs. HL_HPS_L.

Table 2. List of DEGs upregulated and downregulated in HL_HPS_R in PBS_R vs. HL_HPS_R and
HL_HPS_L in PBS_L vs. HL_HPS_L based on Gene Ontology (GO) in Immune System Processes
(GO:0002376). (Ilog2(FoldChange)| > 1 and padj < 0.05).

DEGs_UP

DEGs_DOWN

PBS_R vs.
HL_HPS R

PBS_L vs.
HL_HPS L

Asxl1, Brpfl, Cacnb4, Cd3d, Chid1l, Cmtm?7, Cnpy3, Crtam,
Cxcll1, Gli3, Gprl7, H2-Eb2, Herc6, Kat7, Kit, Klrk1, Mef2c,
Nuggc, Prss56, Rbm15, Shld3, Slc25a38, Socs1, Sox6, Sppl,
Stxbp4, Tabl, Traf4.

Adgrel, Adgrf4, Adtrp, Alcam, Angptl, Aqp3, Bankl,
Bcllla, Belllb, Bel2ald, Blnk, Bmil, Bmp4, Bpifc, Ccl28,
Ccn3, Cd180, Cd209b, Cd55, Ciita, Coch, Crhrl, Ctsc, Ctse,
Cx3cll, Cx3crl, Cxadr, Cxcl10, Cxcr6, Cyld, Dapk2, Dapll,
Ddx3x, Defb1, Dhx15, Dnasel113, Dock11, Edn2, Egr3, Emp2,
Endou, Erapl, Evpl, Extl, F2rl1, F830016B08Rik, Fgfr3, Fgl2,
Foxnl, Foxpl, Fzd5, Gata3, Gbp10, Gbp6, Herc6, Igfl, Ighm,
M1rap, Irf4, Itgal, Itgax, Itgb8, Ivl, Kat7, Kif5b, Laccl, Lairl,
Lcp2, Lefl, Ly6d, Marchf7, Mecom, Mef2c, Milll, Mysml,
Nedd9, Nfkbiz, Notchl, Padi4, Pagl, Pdgfd, Pik3apl,
Pla2g2f, Pparg, Ppl, Prdm1, Prkcb, Prlr, Psg17, Ptger4, Ptprc,
Pycard, Rasgrpl, Rbm15, Rel, Ret, Rnf115, S100a14, Selp,
Serpinb9, Sfn, Sfrp1, Shld3, Sirpb1la, Sirtl, Skil, Slamf§,
Slc40al, Socs6, Sp1, Sp3, Spn, Tbx1, Teeal, Trim?29, Usp14,
Usp9x, Vav3, Wdfy4, Wntba, Ythdf2, Zbtbé.

Ackr3, Acvrlb, Ahr, Argl, C6, Cend3, Cd36,
Cdc42ep2, Cdknla, Cebpg, Ctla2a, Defb1, Dusp10,
Ecml, Egr3, Emp2, Ephb3, Fosl2, Fzd9, Gprc5b,
Gramd4, Grem1, Hcfc2, Heximl, [136g, Ivl, Jun, Jund,
Kenj8, Lrpl, Mavs, Meis1, Mitf, Mospd2, Nfkb2,
Nos2, Nr4a3, Pdedb, Plec, Prkd2, Ptké6, Pura, Pvr,
Rarg, Sfn, Sh2b2, Six1, Sox9, Tbkbp1, Thra,
Tmem45b, Tnfaip3, Tnfsf14, Tnfsf9, Trpm4, Ttbk1,
Vegfa, Xkr8, Zbtb7a, Zbtb7b.

Aire, Ccr10, Cdc42ep2, Cebpg, Cxcll, Cybcl, Cyren,
Ephb4, F7, Fkbp1b, Fzd9, Gata2, Gdf15, Gpr137,
Gprc5b, Hexim1, Hs1bp3, 1115, 1117d, Irf3, Jmjd6,
Kenj8, Kenn4, Kmt5c, Mark4, Men1, Mitf, Mospd?2,
Nemp1, Nfkb2, Nr4a3, Orail, Ppbp, Prdm16, Prelid1,
Prkd2, Rac3, Rara, Rarg, Rbm14, Slc37a4, Sppl2b,
Tall, Tbkbp1, Trim68, Tusc2, Vegfa, Xkr8, Zbtb7b.
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Figure 12. Number of upregulated (red) and downregulated (green) DEGs based on Gene Ontology
(GO) in Immune System Processes (GO:0002376). (A) Comparison between PBS_R and PBS_L.
(B) HL_HPS_R vs. HL_HPS_L.

Table 3 presents the DEGs identified in the comparison between tumors within the
same group, PBS_R vs. PBS_L, and HL_HPS_R vs. HL_HPS_L. This analysis revealed
12 upregulated and 206 downregulated genes associated with immunological processes in
PBS_L. Conversely, in the HL_HPS_L group, only seven genes related to immunological
processes were upregulated and three were downregulated.

Table 3. List of DEGs upregulated and downregulated in PBS_L in PBS_R vs. PBS_L and HL_HPS_L in
HL_HPS_R vs. HL_HPS_L based on Gene Ontology (GO) in Immune System Processes (GO:0002376).
(1log2(FoldChange) | > 1 and padj < 0.05).

DEGs_UP DEGs_DOWN

PBS_R vs. PBS_L

HL_HPS_R vs.
HL_HPS_L

Acp5, Adgrel, Adgrf4, Adipoq, Adtrp, Aim2, Alox5, Ang, Angptl, Anxa3, Aqp3,
Bcll1b, Bel2ald, Blnk, Bmp4, Bpifc, Bstl, Btk, Clgb, Clqc, C3arl, C6, Camkld,
Ccl21a, Ccl6, Ccl7, Ccl8, Ccl9, Cen3, Ccr2, Cer5, Cd209b, Cd209d, Cd244a, Cd24a,
Cd36, Cd37, Cd55, Cd84, Cd86, Cebpa, Cth, Clec2d, Clec2g, Clec4al, Clec4a2,
Clec4a3, Cmklrl, Coch, Corola, Crhrl, Csflr, Csf2rb, Csf2rb2, Ctsc, Ctse, Ctss,
Cxcl12, Cxcl14, Cxcl16, Cybb, Cysltrl, Dapkl, Dapk2, Dapll, Defbl, Dock2, Dpp4,
Dtx4, Ear2, Edn2, Ednrb, Egrl, Egr3, Emp2, Ephb3, Evpl, F2rl1, Fcerlg, Fcgr2b,
Fegr3, Fcgr4, Fgfr3, Fgl2, Fgr, Foxnl, Gas6, Gata3, Gbp2b, Gm5431, Gpr55, H2-T24,
Hck, Hspbl1, Ifi204, Ifi205, Ifi207, Ifi209, Igf1, Ighm, Tkzf1, I11rl2, Tl4ra, Il6ra,
Inpp5d, Irf5, Itgal, Itgam, Itgb2, Ivl, Kitl, Lairl, Laptm5, Lcp2, Lefl, Lfng, Lilrb4a,
Lilrb4b, Lmo2, Lpxn, Ly6d, Ly86, Lyn, Lyvel, Mafb, Marchfl, Milll, Mpeg1,
Mrgprbl, Myolf, Myolg, Mysm1, Naip6, Ncfl, Nckap1l, Nedd9, Nfam1, Notchl,
P2ry14, Padi4, Pagl, Pckl, Pdgfd, Pik3ap1, Pirb, Pla2g2f, Plcl2, P1d4, Plscr2,
Pou2f2, Pparg, Ppl, Prdm1, Prkcb, Prkch, Prlr, Psg17, Ptafr, Ptger4, Ptprc, Ptpre,
Ptpro, Rac2, Rasgrpl, Rftnl, Rnase4, S100a14, Slprl, Sash3, Selp, Sema4a, Sfn,
Sfrpl, Sirpblc, Slamf7, Slc11al, Slc7a2, Slfnl, Slfn2, Spink5, Svep1, Tbx1, Themis2,
Tifab, Tlr13, T1r8, TIr9, Tmem?229b, Tmem98, Tnfaip812, Tnfrsf13b, Tnfrsflb,
Tnfrsf21, Tnip3, Trem2, Trim29, Trpm?2, Tyrobp, Vavl, Vcaml, Vsig4, Vsir, Wdfy4,
Wifdc17, Wntl10b, Zeb1

Dpep1, Hba-al, Hba-a2

Aire, Cdh17, Evl, Gpr137, Kcnj8,
Kenn4, Kmt5c, Ppbp, Prss56, Prxl2a,
Rara, Vegfb

Egr3, Endou, 1136g, I136rn, KI1k5,
Ptk6, Sox9
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Overall, The HL_HPS-PDT protocol elicited substantial changes in the gene expression
profiles of both primary- and secondary-site tumors, in comparison to the corresponding
tumors of the PBS group. These alterations underscore the impact of HL_HPS-PDT on the
molecular landscape of the tumors, highlighting its potential as an effective modulator of
tumor gene expression.

4. Discussion

In recent years, photodynamic therapy (PDT) has garnered increasing attention due to
its broad range of anticancer mechanisms [9,13,14,21]. The impact of PDT on the immune
system is becoming an area of intense study [22,23]. The results of this study highlight the
efficacy of PDT in treating grafted melanoma in mice, emphasizing significant effects on
both the primary-site and distant tumors (abscopal effect), providing insights into tumor
and immune-response mechanisms. To test the direct and abscopal effects mediated by
AIPcNE-PDT, a bilateral melanoma graft model (B16F10) in mice was established, with
PDT applied to only one of the tumors.

The LL_HPS, HL_LPS, and HL._HPS PDT protocols showed a significant reduction
in the volume of the primary-site tumor. This effect can be attributed to the antitumor
capabilities of PDT through the production of reactive oxygen species (ROS), leading
to necrosis and apoptosis of tumor cells. Kolarova et al. (2007) [24] demonstrated that
PDT can inhibit the proliferation of malignant melanoma cells by increasing intracellular
ROS levels.

Notably, the HL_HPS condition not only reduced the volume of the primary-site
tumor but also induced an abscopal effect, evidenced by the reduction in the volume of
the secondary-site, non-irradiated tumor grafted on the opposite side. This phenomenon
suggests the activation of a systemic immune response capable of attacking tumors distant
from the primary treatment site. This abscopal effect is particularly significant as it indicates
a therapeutic potential for treating metastases in locations not directly exposed to PDT. A
similar effect was found in other studies, such as Gurung et al. (2023) [25], which showed
that PDT with Ce6 as a photosensitizer was able to induce potent local and systemic
antitumor immune responses in a murine model of malignant melanoma, further enhanced
by the combination with PD-1/PDL-1 inhibitors.

The variation in efficacy among treatments can be attributed to differences in the
concentration of the photosensitizer, as well as to the different light dosages. According
to Morais et al. (2021) [9], different PS concentrations in PDT can induce different biolog-
ical responses, including various types of cell death and the release of DAMPs, thereby
influencing the induction of immunogenic cell death. Udartseva and colleagues (2019) [26]
found that low-dose PDT significantly increased the secretion of proangiogenic factors
such as VEGF-A, IL-8, PAI-1, and MMP-9 by in vitro mesenchymal stem cells (MSCs) and
enhanced their angiogenic potential, suggesting a heightened pro-tumorigenic capability
of MSCs. In contrast, Doix et al. (2019) [27] reported that low doses of the non-porphyrin
photosensitizer OR141 were found to more effectively induce damage-associated molec-
ular patterns (DAMPs) in vitro and to suppress the growth of squamous cell carcinoma
in mice compared to higher doses. This supports our study finding that mice treated
with different PS concentrations and light dosages exhibited varying direct and abscopal
antitumor outcomes.

The observed hematological changes highlight the impact of different photodynamic
therapy (PDT) protocols on systemic physiology. The PBS control group shows a WBC
count of 10.8 + 2.7 x 103/ uL, which is within the normal range for C57BL/6 mice (typically
around 6.0—10.0 x 10%/uL) as reported in studies like White et al. (2016) [28]. The elevated
WBC levels in the PBS group could indicate a systemic inflammatory response to the grafted
tumor, corroborating the chronic inflammatory responses seen in tumor-bearing hosts [29].
Conversely, the LL_LPS, LL_HPS, and HL_LPS, groups showed significantly lower WBC
counts, particularly the HL_HPS group with 4.4 4- 1.3 x 103/uL, suggesting a reduction in
systemic inflammation in response to the treatment.
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Lymphocyte (LYM) counts also varied, with the PBS group showing elevated lev-
els (6.2 + 1.3 x 10%/uL), which aligns with chronic immune responses described for tu-
mors [30]. Treated groups showed reduced LYM counts, with HL_HPS exhibiting
2.7 4+ 1.4 x 103/uL, suggesting a dampening of the immune response or a shift towards
immune regulation. According to Was et al. (2020) [31], this reduction may indicate an
active mobilization of leukocytes from the blood to the tumor site.

Additionally, the reduction of WBC and LYM counts in treated groups suggests that
PDT may mitigate systemic inflammation, which could contribute to the antitumor efficacy
by reducing pro-tumorigenic inflammatory environments. This can be explained by the
modulation of the immune response, promoting the activation of dendritic cells and the
presentation of tumor antigens, which may lead to a more effective and targeted immune
response, resulting in the reduction of WBC and LYM levels [32]. Other studies also report
that PDT can decrease inflammatory markers in animal models and patients [33].

Studies have demonstrated that the presence of tumors can trigger a chronic im-
mune response, characterized by the increased presence of leukocytes and lymphocytes
in peripheral blood. This response reflects the immune system attempt to combat the
tumor presence, although it is often insufficient to contain tumor growth [34,35]. On the
other hand, this inflammation can create a pro-tumor environment that favors cancer cell
survival and invasion, increased angiogenesis, and recruitment of immunosuppressive
cells, allowing tumor cells to escape immune destruction [34]. Studies have shown that
inflammatory cytokines such as TNF-«, IL-6, and IL-1f3 can activate cellular signaling path-
ways that promote tumor survival and growth [36]. Understanding these hematological
impacts is crucial for optimizing PDT regimens’ therapeutic benefits while minimizing
adverse effects.

The present study found that AIPcNE-PDT induced a systemic increase in the popu-
lation of cytotoxic CD8* T cells and a reduction in the population of CD4" T cells in the
HL_HPS group. The reduction in CD4* T cells may reflect an impact on immune regulation,
while the increase in CD8* T cells suggest cytotoxic activation against tumor cells. It is well
known that subpopulations of CD4* T cells, such as regulatory T cells (Tregs), promote
immunosuppression, while helper T cells (Th) support CD8* T cells by providing activating
cytokines [37]. Our study suggests that, despite the reduction in the systemic population
of CD4" T cells, most of these cells in the HL_HPS group correspond to the differenti-
ated CD4*CD45" form, an important marker of antigen receptor signal transduction and
lymphocyte development, indicating a potential long-term immune response [38]. CD8*
T cells, which have effector cytotoxic functions, are known to slow down distal tumor
growth [39,40].

Several studies have demonstrated that PDT stimulates the immune system in var-
ious ways, including the release of tumor-associated antigens (TAAs) and immunostim-
ulatory molecules from tumors, which can activate and trigger an anticancer immune
response [41,42]. While PDT has been shown to activate both humoral immunity and cell-
mediated adaptive immunity, CD8" T cells are primarily responsible for the immunological
effects of PDT [41,42]. Our findings demonstrated that the systemic population of CD8*
T cells was enhanced by AIPcNE-PDT in the HL_HPS condition. However, systemic T
cells were depleted in the other irradiated groups and were unable to evoke an anticancer
immune response. This could explain the non-occurrence of an abscopal effect with PDT,
in groups other than HL_HPS.

Despite the direct antitumor effect observed in the LL_HPS and HL_LPS groups,
antitumor immunity appears to be insufficient to eradicate the melanoma. This is possibly
due to the low proliferation and activation of CD8" T cells in the face of the tumor’s
aggressiveness. According to previous studies, in the tumoral microenvironment, barriers
can develop to prevent immune cells from migrating and penetrating the non-irradiated
tumor [40,43].

Encouraged by the immunogenic capabilities of HL_HPS-PDT, we hypothesized that
the antitumor immunity generated resulted from the modulation of the expression of
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genes involved in immune system processes. RNA-Seq data revealed distinct patterns of
gene expression in response to the treatment. In the HL_HPS condition, the primary-site
tumor exhibited more downregulated genes related to immunological processes, while the
secondary-site tumor presented prevalence of upregulated genes in the same category. This
suggests that the mechanisms of tumor growth inhibition were different in the two tumors.

The genes Herc6, Kat7, Mef2c, Rbm15, and Shld3 were found to be upregulated in both
the right and left tumors of the treated groups, suggesting a coordinated response in tumor
inhibition. Mao and colleagues (2018) [44] and Sala-Gaston et al. (2020) [45] proposed that
HERC proteins may have dual roles in cancer, acting as oncogenes or tumor suppressors
depending on the tumor type, although there is a lack of studies specifically on HERCS6.
Swanson and collaborators (1998) [46] demonstrated that all members of the MEF2 family
(A-D) are expressed in B cell lines and all, except MEF2C, are expressed in T cell lines. This
suggests that MEF2C expression is related to B cell development and function. Newman
and colleagues (2017) [47] highlighted the essential role of Kat7 in the development, fitness,
and survival of T cells, particularly in maintaining the acetylation of the histone 3 lysine
14 (H3K14ac), an essential epigenetic mark for the development of a normal immune
system. Gao and collaborators (2021) [48] identified KAT7 as a tumor suppressor protein in
colorectal cancer and non-small-cell lung cancer, while Dong et al. (2023) [49] showed that
Rbm15 is associated with pancreatic cancer progression by promoting tumor proliferation,
migration, and metastasis. Nonetheless, the role of Rbm15 on melanoma cells remains
understudied. Lastly, Shld3 is involved in DNA regulation and repair [50].

The high expression of CD3D correlates with immune cell infiltration and with the
response to immunotherapy in patients with head and neck squamous cell carcinoma [51]
and colon adenocarcinoma [52]. Upregulation of CXCL10 in the HL_HPS_R tumor and
upregulation of CXCL11 in the HL_HPS_L tumor seem relevant since they act as key
immunological chemoattractant during inflammatory responses [53]. The positive modula-
tion of these genes can potentially enhance the efficacy of the immune response against
melanoma tumor cells.

Calabrese and co-workers (2009) [54] showed that the inactivation of SOCS1 disabled
the p53-dependent senescence in response to oncogenic STAT5A and radiation-induced
apoptosis in T cells, corroborating the results of inhibition of tumor growth and the up-
regulation of this gene in HL_HPS_R and indicating that SOCS1 could be a key gene in
inhibiting tumor growth.

Another significant gene found as a DEG of the primary-site tumor in the HL_HPS
group is CRTAM. CRTAM is a protein-coding gene expressed on the surface of activated NK
T cells and CD8* T lymphocytes. It enhances the infiltration into the tumor of immune cells,
particularly CD8* T cells. Moreover, CRTAM may promote the proliferation of activated T
cells and the secretion of interferon (IFN)-y, thereby enhancing the antitumor effectiveness
of T cells [55].

Huang and colleagues (2020) [56] found a strong positive correlation between the gene
expression of CXCL10 and the infiltration into the tumor of immune cells (B cells, CD8* T
cells, CD4* T cells, macrophages, neutrophils, dendritic cells).

Several genes associated with memory, activation, and survival of CD8 T cells, such as
REL and FOXP1, were found to be upregulated in the secondary-site HL_HPS tumor, in
accordance with Feldman et al. (2018) [57], in the melanoma mice model.

These results suggest a differential modulation of immune responses, potentially
reflecting a systemic immune activation.

Among the downregulated genes known to play an important role in melanoma
progression are CXCL1, which exerts melanoma growth-stimulating activity, and MITF, a
crucial oncogenic transcription factor to maintain tumor survival, increase proliferation, and
promote differentiation [58-60]. These downregulated genes are involved in the signaling
pathway and in the activation of the immune system. They also reduce immunosuppression
and decrease tumor cell survival and proliferation. The genes CXCL1 and MITF were
downregulated in both tumors of the HL_HPS group. This downregulation could create an
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environment less favorable to tumor growth and more permissive to the action of immune
cells, resulting in a more effective AIPcNE-PDT response and the potential increase in
abscopal effects.

Comparison between primary- and secondary-site tumors in the control group re-
vealed a higher number of downregulated genes in the secondary one, indicating an
immunosuppressive or adaptive response. In contrast, the absence of significant DEGs
between primary- and secondary-site tumors in the AIPcNE-PDT HL_HPS-treated group
suggests a homogenization of the immune response, likely due to the dissemination of
systemic immune signals induced by AIPcNE-PDT.

The noteworthy results in the HL_HPS group can be attributed to the ability of AIPcNE-
PDT to modulate the expression profile of genes involved in the immune system process.
This modulation led to an increase in the systemic population of CD8" T cells and the
identification of an abscopal effect in the non-irradiated tumor.

5. Conclusions

Our findings suggest for the first time that AIPcNE-PDT can induce potent local
and systemic antitumor immune responses. The antitumor effects of AIPcNE-PDT were
achieved through direct action and by modulation of the gene expression profile of both
primary- and secondary-site tumors, leading to the observed abscopal effects. To our
knowledge, this is also the first evaluation of AIPCNE-PDT impact on both direct and
abscopal effects.

This study confirmed the efficacy of PDT in reducing tumor volume and inducing
systemic immune responses, particularly highlighted in the HL_HPS-PDT group, which
presented an abscopal effect. Hematological changes and alterations in the T cell population
indicated a complex interaction between PDT and the immune system, suggesting new
avenues for optimizing combination therapies. RNA-Seq analysis reinforces the idea
that PDT can modulate gene expression related to the immune system in a localized
and systemic manner. To strengthen our conclusions, it would be beneficial to conduct
additional studies to validate the RNA-Seq results, using techniques such as RT-PCR, and
to investigate the molecular mechanisms underlying the abscopal effect.

In summary, this study demonstrated that PDT with AIPcNE can induce local and
systemic antitumor immune responses, representing a potentially robust approach to
enhancing melanoma treatment outcomes. The identification of modulated genes by the
therapy, in both primary- and secondary-site tumors, suggests new therapeutic targets
and strategies to enhance the abscopal effects and reduce the adverse effects. These
discoveries represent a significant advancement in the field of photodynamic therapy and
may positively impact melanoma and other cancer treatments.
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