

ESTUDO DE CONECTORES DE CISALHAMENTO DO TIPO 'V' EM VIGA MISTA

OTÁVIO RANGEL DE OLIVEIRA E CAVALCANTE

TESE DE DOUTORADO PROGRAMA DE PÓS-GRADUAÇÃO EM ESTRUTURAS E CONSTRUCÃO CIVIL - PECC

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ESTUDO DE CONECTORES DE CISALHAMENTO DO TIPO 'V' EM VIGA MISTA

OTÁVIO RANGEL DE OLIVEIRA E CAVALCANTE

ORIENTADORA: LUCIANO MENDES BEZERRA

TESE DE DOUTORADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

PUBLICAÇÃO: E.TD – 006A/10 BRASÍLIA/DF: AGOSTO – 2010

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL

ESTUDO DE CONECTORES DE CISALHAMENTO DO TIPO 'V' EM VIGA MISTA.

OTÁVIO RANGEL DE OLIVEIRA E CAVALCANTE

TESE SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISÍTOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM ESTRUTURAS E CONSTRUÇÃO CIVIL.

APROVADA POR:

Prof. Luciano Mendes Bezerra, PhD (ENC-UnB) (Orientador)

Prof. William Taylor Matias Silva, DSc (ENC-UnB) (Examinador Interno)

Prof. YOSIAKI NAGATO DSc (ENC-UnB) (Examinador Externo)

Prof. Gustavo de Souza Veríssimo, DSc (UFV) (Examinador Externo)

Prof. Márcio Augusto Roma Buzar , DSc (FAU-UnB) (Examinador Externo)

BRASÍLIA/DF, 26 DE AGOSTO DE 2010

FICHA CATALOGRÁFICA

CAVALCANTE, OTÁVIO RANEGEL DE OLIVE	EIRA
Estudo de Conectores de Cisalhamento do Tipo 'V' em Viga Mista	
[Distrito Federal] 2010.	
xxiii, 192 p., 297 mm (ENC/FT/UnB, Doutor, Estruturas e Construção Civil, 2010). Tese	
de Doutorado – Universidade de Brasília. Faculdade de Tecnologia.	
Departamento de Engenharia Civil e Ambiental.	
1.Estruturas Mistas	2.Vigas Mistas
3.Conectores de Cisalhamento	4. Análise Numérica e Experimental
I. ENC/FT/UnB	II. Título (Doutor)

REFERÊNCIA BIBLIOGRÁFICA

CAVALCANTE, O.R.O. (2010). Estudo de Conectores de Cisalhamento do Tipo 'V' em Vigas Mistas. Tese de Doutorado em Estruturas e Construção Civil, Publicação E.TD – 006A/10, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 192p.

CESSÃO DE DIREITOS

AUTOR: Otávio Rangel de Oliveira e Cavalcante.

TÍTULO: Estudo de Conectores de Cisalhamento do Tipo 'V' em Vigas Mistas.

GRAU: Doutor ANO: 2010

É concedida à Universidade de Brasília permissão para reproduzir cópias desta tese de doutorado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa tese de doutorado pode ser reproduzida sem autorização por escrito do autor.

Otávio Rangel de Oliveira e Cavalcante Rua Prof Silas Ribeiro 420 Apto-1202 – Fortaleza CEP 60175-135 Fortaleza – CE – Brasil <u>otaviorc@hotmail.com</u> - <u>otaviorc@ufc.br</u>

AGRADECIMENTOS

A Deus que sempre esteve ao meu lado, principalmente nos momentos difíceis, mostrando o caminho da luz e da verdade.

Aos meu pais, que sempre estiveram ao meu lado dando apoio e incentivo em mais uma empreitada

Ao meu orientador Prof. Luciano Mendes Bezerra pela paciência, amizade, atenção, incentivo e valiosas sugestões fornecidas ao longo de todo o trabalho; o meu muito obrigado.

Aos professores do Programa de Pós-Graduação em Estruturas e Construção Civil (PECC) da Universidade de Brasília (UnB) pelos ensinamentos transmitidos.

Ao CNPq, pelo suporte financeiro.

Ao engenheiro e amigo Miranda pelo incentivo e apoio.

Ao amigo e professor Gustavo Veríssimo, pelas valorosas discussões técnicas e apoio.

À CPC engenharia, que acreditou neste trabalho e o apoiou com as doações dos perfis metálicos e os conectores *studs* que possibilitaram a realização dos ensaios.

À FURNAS, que por meio do amigo Armelim, possibilitou a realização de parte dos ensaios experimentais.

Aos meus familiares queridos: Maria Heliete, Maria Osmina, Suely Coelho e Francisco José pelo incentivo, carinho e confiança.

A minha esposa Nirleide pela paciência e o amor, que foram fundamentais nos momentos mais difíceis.

Aos meus amigos e colegas de pós-graduação, André, Alexandre Gil, Carlos, Paulo, sempre incentivando e dedicando parte de seu precioso tempo para ajudar na fase experimental dos ensaios, o período mais exaustivo deste trabalho.

Aos colaboradores Adelmo, Leandro, Severino e Xavier dos Laboratórios de Estruturas e Ensaios de Materiais.

Dedico este trabalho aos orientadores da minha vida, meus pais, Francisco Rangel e Maria Heliane e ainda a todos os que sempre estiveram me apoiando: meu amigo e irmão Rangel Filho, meus tios, Tita, Mina, Nenca, Sula e a minha esposa Nirleide.

RESUMO

ESTUDO DE CONECTORES DE CISALHAMENTO DO TIPO 'V' EM VIGA MISTA Autor: Otávio Rangel de Oliveira e Cavalcante Orientador: Luciano Mendes Bezerra Programa de Pós-graduação em Estruturas e Construção Civil Brasília, agosto de 2010

Esta tese, através de estudos numéricos e experimentais, apresenta o desenvolvimento de um conector de cisalhamento proposto para uso em vigas mistas de aco-concreto. O conector proposto é de fácil confecção e pode servir como alternativa ao uso do conector stud. Foi idealizada uma geometria para o conector que propiciasse confinamento do concreto da laje, maior área de contato com o concreto além de maior rigidez. Um conector em forma de 'V', feito de cantoneira metálica, foi concebido e de início exaustivamente estudado pelo método dos elementos finitos (MEF) via programa Ansys. O estudo numérico investigou até o colapso a distribuição de tensão, a formação de fissuras e o deslizamento do perfil em relação à laje. Os resultados destas análises foram comparados com iguais análises tanto do conector stud como também do conector em forma de 'U'. A comparação dos resultados numéricos mostrou as vantagens do conector 'V' sugerido. A partir destes resultados numéricos estabeleceu-se um programa experimental que envolveu 16 ensaios de *push-out* a fim de confirmar as boas expectativas obtidas nas análises numéricas pelo MEF. Nos experimentos foram investigados aspectos de ductilidade, uplift, fissuração do concreto, deformação e modos de colapso do conector proposto. Também se apresenta neste trabalho uma formulação matemática de verificação da carga de colapso do conector 'V' com margem de erro de 3%. Os resultados demonstram que o conector 'V' feito de cantoneira apresenta maior rigidez de ligação em relação ao conector 'U' e stud, menor concentração de tensões na laje, e ductilidade semelhante ao conector stud. O conector 'V' aqui proposto mostra-se como uma fácil alternativa de conector de cisalhamento para uso em vigas mistas de aço-concreto.

ABSTRACT

STUDY OF V-SHAPED SHEAR CONNECTORS IN STEEL-CONCRETE COMPOSITE BEAM

Author: Otávio Rangel de Oliveira e Cavalcante Supervisor: Luciano Mendes Bezerra Programa de Pós-graduação em Estruturas e Construção Civil Brasília, August of 2010

This thesis, using numerical and experimental studies, presents the development of a shear connector proposed for applications in composite steel-concrete beams. The proposed connector can easily be manufactured and may be an alternative to using the stud connector. An idealized geometry for the connector was idealized such that it could confine the slab concrete; provides larger contact area with the slab concrete and, in addition, offers higher stiffness. A connector in 'V' shape, made of steel rolled angle, was designed. Initially, such connector was extensively studied with finite element method (FEM) modeling using the Ansys software. The numerical study investigated until collapse the stresses, crack formations and sliding of the steel beam with respect to the concrete slab. The results of such analysis were compared with similar analyses accomplished on stud and 'U' shear connectors. The comparison of the numerical results showed the advantages of the suggested V-shaped shear connector. Based on these numerical results an experimental program was set up comprising 16 push-out tests to confirm the good expectations anticipated in the numerical FEM analyses. The lab experiments investigated ductility, uplift, concrete cracking, deformation and failure modes of the proposed Vshaped connector. This work also presents a mathematical formulation for the verification of the collapse load of the proposed connector with only 3% of error. The results demonstrate that the V-shaped connector made of steel angle has a higher rigidity compared with the 'U' and stud connectors. It also produces less stress concentration in the concrete slab and shows ductility similar to the stud connector. The proposed V-shaped connector represents an easy alternative for use as shear connector in steel-concrete composite beams.

SUMÁRIO

1 – INTRODUÇÃO	1
1.1 – MOTIVAÇÃO	2
1.2 – OBJETIVOS	2
1.3 – METODLOGIA	3
1.4 - ESCOPO DO TRABALHO	3
2 - REVISÃO BIBLIOGRÁFICA	5
2.1 - COMPORTAMENTO NA LIGAÇÃO AÇO-CONCRETO	5
2.2 - GRAU DE CONEXÃO E GRAU DE INTERAÇÃO	6
2.2.1 - Grau de conexão	6
2.2.2 - Grau de interação	8
2.3 - DUCTILIDADE DA LIGAÇÃO	9
2.4 - MODELOS DE CONECTORES DE CISALHAMENTO	10
2.4.1 - Conector pino com cabeça	10
2.4.2 - Conector de cisalhamento 'U'	12
2.4.3 - Outros conector de cisalhamento	12
2.4.4 - Outras formas de conexão de laje e perfil	15
2.5 - DIMENSIONAMENTO DOS CONECTORES DE CISALHAMENTO	16
2.5.1 - Resistência do conector stud	16
2.5.2 - Resistência do conector 'U'	18
2.6 - ENSAIOS DE CISALHAMENTO DIRETO PUSH-OUT	19
2.6.1 - Procedimento para realização e validação do ensaio de push-out	20
2.6.2 - Outro modelo de <i>push-out</i>	21
2.7 - CONSIDERAÇÕES SOBRE OS ESFORÇOS ATUANTES NO CONEC	CTOR
STUD	22
2.8 - DESLIZAMENTO DO PERFIL EM RELAÇÃO À LAJE DEVIDO AC)S
CONECTORES DE CISALHAMENTO	25
2.8.1 - Fissuras na laje de concreto	25
2.8.2 - Efeitos dinâmicos na ligação laje conector	28
2.9 – ESTUDO DA LIGAÇÃO ENTRE O CONECTOR E O CONCRETO	29
2.9.1 - Considerações iniciais	29
2.9.2 - Componentes da aderência	30

2.9.3 - Ensaio de arrancamento, <i>pull-out test</i>	32
3 - CONCEPÇÃO DO CONECTOR 'V' E ANÁLISE NUMÉRICA	34
3.1 - A CONCEPÇÃO DO CONECTOR 'V'	34
3.1.1 - Área efetiva dos conectores	36
3.1.2 - Estudo da área efetiva dos conectores de cisalhamento	37
3.2 - ANÁLISE NUMÉRICA EM ELEMENTOS FINITOS	39
3.2.1 - Especificações de contato no programa Ansys	40
3.2.1.1 - Atrito e tensão de cisalhamento	. 41
3.2.1.2 - Coeficiente de rigidez normal dos elementos de contato 'CSS'	. 42
3.2.2 - Elementos finitos adotados	42
3.2.3 - Aspectos gerais da modelagem numérica	45
3.2.3.1 - Condições de contorno	46
3.2.3.2 - Acoplamentos e vínculos	47
3.2.4 - Critérios adotados para o aço e o concreto na análise não-linear	. 47
3.2.4.1 -Aço adotado para o perfil e a armadura	47
3.2.4.2 - Aço aplicado ao conector de cisalhamento	48
3.2.4.3 - Características aplicadas ao concreto	48
3.2.4.4 -Critério de convergência	49
3.3 - MODELOS NUMÉRICOS CONSTRUÍDOS	50
3.4 - MODELO NUMÉRICO PHS-2	51
3.4.1 - Característica dos materiais adotados no PHS-2	53
3.4.2 - Relação força deslocamento para o modelo PHS-2	55
3.4.3 - Tensões e fissuras provocadas pelos conectores	57
3.5 - MODELO - PHU	61
3.5.1 - Características dos materiais aplicadas no PHU	61
3.5.2 - Relação força deslocamento para o modelo PHU	63
4 – PROGRAMA EXPERIMENTAL	65
4.1 - FABRICAÇÃO DOS MODELOS ENSAIADOS	65
4.1.1 - Modelo com o conector <i>stud</i>	65
4.1.2 - Modelo com o conector 'V'	66
4.2 - MONTAGEM DAS ARAMDURAS	66
4.3 - PERFIL METÁLICO ADOTADO	67

4.4 - PROJETO DE FÔRMAS	
4.5 - CONCRETAGEM DOS MODELOS E CURA DO CONCRE	сто 69
4.5.1 - Ensaio piloto	69
4.5.2 - Ensaio Final	69
4.6 - INSTRUMENTAÇÃO DOS MOEDLOS ENSAIADOS	
4.6.1 - Instrumentação da armadura	
4.6.2 - Instrumentação dos experimentos	
4.7 - AQUISIÇÃO DE DADOS E CARREGAMENTO	
4.7.1 - Aquisição de dados	
4.7.2 - Aplicação de carregamento	
4.8 - MONTAGEM DO ENSAIO	
4.9 - ENSAIO DE ARRANCAMENTO	
4.9.1 - Detalhes da confecção do experimento	
4.9.2 - Moldagem e cura das peças	
4.9.3 - Montagem do experimento	
4.9.4 - Instrumentação do experimento	
4.9.5 - Aquisição de dados	
4.9.6 - Aplicação do carregamento	
5 - CARACTERIZAÇÃO DOS MATERIAIS	
5.1 - ANÁLISE DO CONCRETO	
5.1.1 - Análise do concreto à compressão	
5.1.2 - Análise do concreto à compressão diametral	
5.1.3 - Módulo de elasticidade do concreto (E _c)	
5.2 - ANÁLISE DOS MATERIAIS METÁLICOS	
5.2.1 - Corpos-de-provas metálicos	
5.2.2 - Ensaios de tração	
5.2.3 - Ensaio de dureza	
6 - ENSAIO DE <i>PUSH-OUT</i>	103
6.1 - EXPERIMENTO PILOTO	
6.1.1 - Modelos de ensaios	
6.1.1.1 - Instrumentação da armadura	
6.1.2 - Carregamento aplicado	

6.1.3 - Resultados obtidos	
6.1.3.1 - Deformações na armadura	
6.1.3.2 - Tendência de separação transversal (uplift)	
6.1.3.3 - Relação Força x Deslizamento relativo perfil e laje	
6.1.3.4 - Avaliação do ensaio	
6.1.4 - Fissuração do concreto	
6.1.5 - Deformação dos conectores	
6.2 - EXPERIMENTO FINAL	
6.2.1 - Modelos de ensaios	
6.2.1.1 -Instrumentação da armadura	
6.2.2 - Carregamento aplicado	
6.2.3 - Resultados obtidos	
6.2.3.1 - Deformações na armadura	
6.2.3.2 - Tendência de separação transversal (uplift)	
6.2.3.3 - Relação Força por Deslizamento relativo perfil e laje	
6.2.4 -Avaliação do ensaio	
6.2.5 - Fissuração do concreto	
7 - ENSAIO DE ARRANCAMENTO	142
7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS	
7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS 7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA	
7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS 7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA	
7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS 7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA 8 - FORMULAÇÃO MATEMÁTICA	
7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS 7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA 8 - FORMULAÇÃO MATEMÁTICA	
7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS 7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA 8 - FORMULAÇÃO MATEMÁTICA 9 - CONCLUSÕES E SUGESTÕES	
 7 - ENSAIO DE ARRANCAMENTO	
 7 - ENSAIO DE ARRANCAMENTO 7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS 7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA 8 - FORMULAÇÃO MATEMÁTICA 9 - CONCLUSÕES E SUGESTÕES 9.1 - CONCLUSÕES 9.1.1 -Conclusões do estudo numérico 	
 7 - ENSAIO DE ARRANCAMENTO	
 7 - ENSAIO DE ARRANCAMENTO	
 7 - ENSAIO DE ARRANCAMENTO	
 7 - ENSAIO DE ARRANCAMENTO	
 7 - ENSAIO DE ARRANCAMENTO	

REFERÊNCIAS BIBLIOGRÁFICAS 1	57
A DÊNDICES	
AFENDICES	

A - DETALHE DAS FÔRMAS UTILIZADAS 163
A.1 – FÔRMA APLICADA NOS ENSAIOS DO CONECTOR <i>STUD</i> 163
A.2 – FÔRMA APLICADA NOS ENSAIOS DO CONECTOR 'V'165
B - DADOS DO ENSAIO DE DUREZA BRINELL
B.1 – DADOS DA DUREZA BEINELL PARA OS CORPOS-DE-PROVA
SUBMETIDOS À TRAÇÃO167
B.2 - DADOS DA DUREZA BRINELL PARA AS AMOSTRAS DOS
CONECTORES DE CISALHAMENTO169
C - DADOS DOS GRÁFICOS DO ENSAIO PILOTO DE <i>PUSH-OUT</i> 173
C.1 - DADOS DAS DEFORMAÇÕES DAS ARMADURAS
C.1.1 - Dados do conector <i>stud</i> 173
C.1.2 - Dados do conector 'V' 174
C.2 - DADOS DOS DEFLETÔMETROS175
C.2.1 - Dados dos defletômetros horizontais do conector stud 175
C.2.2 - Dados dos defletômetros horizontais do conector 'V'176
C.2.2 - Dados do defletômetro vertical para ambos os conectores
analisados 177
D - DADOS DOS GRÁFICOS DO ENSAIO FINAL DE PUSH-OUT177
D.1 - DADOS DAS DEFORMAÇÕES DAS ARMADURAS
D.1.1 - Dados do conector <i>Stud</i> 178
D.1.2 - Dados do conector 'V' 179
D.2 - DADOS DOS DEFLETÔMETROS184
D.2.1 - Dados dos defletômetros horizontais do conector stud
D.2.2 - Dados dos defletômetros horizontais do conector 'V'185
D.2.3 - Dados do defletômetro vertical para os conectores analisados 189

LISTA DE TABELAS

Tabela 3.1 Resumo das principais características do elemento SOLID-45
Tabela 3.2 - Características dos conectores
Tabela 3.3 - Condições de contorno adotada no ensaio push-out 46
Tabela 3.4 - Descrição das constantes que definem o elemento SOLID-65 49
Tabela 3.5 - Propriedades do aço do perfil e dos conectores (ref. gráfico Figura. 3.18) 53
Tabela 3.6 - Valores adotados para o concreto no modelo PHS-2 (Tristão, 2002) 54
Tabela 3.7 - Valores considerados para as constantes do elemento de contato
Tabela 3.8 - Valores sugeridos por Clímaco (2001) para a coesão e coeficiente de atrito 55
Tabela 3.9 - Propriedade do perfil e dos conectores (ref. ao gráfico da Figura 3.18) 62
Tabela 3.10 - Valores adotados para o concreto no modelo PHU (Fonte Tristão (2002)) 62
Tabela 3.11 - Valores das constantes do elem. de contato, ensaio PHU - conector 'V' 63
Tabela 4.1 - Traço e quantitativos dos materiais empregados no concreto
Tabela 5.1 - Resultados dos ensaios de compressão
Tabela 5.2 - Resultado do ensaio de compressão diametral para os ensaios finais91
Tabela 5.3 - Resultado dos ensaios de módulo de elasticidade (Ec)
Tabela 5.4 - Valores das medidas aplicadas nos 'CPs' metálicos
Tabela 6.1 - Resumo das cargas e deslizamentos máximos obtidos 111
Tabela 6.2 - Resumo das cargas, deslizamentos característicos e verificação uplift 112
Tabela 6.3 - Modelos de peças adotados para o ensaio final 122
Tabela 6.4 - Resumo das cargas e deslizamentos máximos obtidos 136
Tabela 6.5 - Resumo das cargas, deslizamentos característicos e verificação uplift 137
Tabela 8.1 - Área efetiva encontrada para os conectores 'V' 150
Tabela 8.2 - Valores da resistência à tração para os corpos de prova 150
Tabela 8.3 - Comparação das resistências ao cisalhamento dos conectores 'V' 150
Tabela B.1 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB 167
Tabela B.2 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB 168
Tabela B.3 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB para o
conector stud
Tabela B.4 - Valores da dureza Brinell (HB) e resistências à tração correlacionada a HB
para as amostras do conector 'V'- 2,65 mm
Tabela B.5 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB para as
amostras do conector 'V'- 3,75 mm

Tabela B.6 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB para as
amostras do conector 'V'- 4,75 mm
Tabela C.1 - Dados do conector stud para as Figuras 6.3 e 6.4173
Tabela C.2 - Dados do conector stud para as figuras 6.5 e 6.6
Tabela C.3 - Dados dos defletômetros horizontais do conector stud para a Figura-6.7 175
Tabela C.4 - Dados dos defletômetros horizontais do conector 'V' para a Figura-6.8 176
Tabela C.5 - Dados do defl. vertical para os conectores analisados para a Figura- 6.10 177
Tabela D.1 - Dados do conector stud para a Figura 6.24
Tabela D.2- Dados do conector stud para a Figura 6.24
Tabela D.3- Dados do conector 'V'- 2,65 mm (modelo -01 e 02) para a Figura 6.26 180
Tabela D.4 - Dados do conector 'V'- 2,65 mm (modelo -03) 'V' -3,75 mm (modelo-01),
respectivamente para as Figuras 6.26 e 6,27
Tabela D.5 - Dados do conector 'V'- 3,75 mm (modelo -02 e 03) para a Figura 6.27 182
Tabela D.6 - Dados do conector 'V'- 4,75 mm (modelo -01 e 02) para a Figura 6.28 183
Tabela D.7 - Dados do conector 'V'- 4,75 mm (modelo -03) para a Figura 6.28184
Tabela D.8 - Dados dos defletômetros horizontais do conector stud para a Figura-6.31 185
Tabela D.9 - Dados dos defletômetros hori. do conector 'V' -2,65 mm para a Figura-6.31
Tabela D.10 - Dados dos defletômetros hori. do conector 'V' -3,75 mm para a Figura-6.31
Tabela D.11 - Dados dos defletômetros hori. do conector 'V' -4,75 mm para a Figura-6.31
Tabela D.12 - Dados do defl. vertical do conector stud para a Figura- 6.34
Tabela D.13 - Dados do defl. vertical do conector 'V'- 2,65 mm para a Figura- 6.35 190
Tabela D.14 - Dados do defl. vertical do conector 'V'- 3,75 mm para a Figura- 6.35 191
Tabela D.15 - Dados do defl. vertical do conector 'V'- 3,75 mm para a Figura- 6.35 192

LISTA DE FIGURAS

Figura 1.1 - Exemplo de estrutura mista (laje em concreto e pilares e vigas metálicos) 1
Figura 2.1 - Ponte de Rock Rapids (Viest, 1992)5
Figura 2.2 - Deformada de uma viga mista simplesmente apoiada6
Figura 2.3 - Forças resultantes numa seção mista
Figura 2.4 - Gráficos de tensão e deformação de uma viga mista, considerando o grau de
conexão (Oehlers e Bradford,1995)7
Figura 2.5 - Distribuição das deformações para uma estrutura híbrida e mista
Figura 2.6 - Exemplo de curva Força/Deslizamento de um Conector 10
Figura 2.7- Aplicação do conector stud (Kotinda, 2006)11
Figura 2.8 - Fonte elétrica e gerador utilizado na execução do Taguatinga Shopping 11
Figura 2.9- Representação esquemática do conector 'U' laminado 12
Figura 2.10- Outros modelos de conectores (Eurocode 4 Draft, 1992) 12
Figura 2.11- Conector da Hilti HVB (Queiroz, 2001)
Figura 2.12 - Conector de cisalhamento perfobond (Kotinda, 2006)
Figura 2.13 - Conector crestbond, produção e produto final
Figura 2.14 - Modelos de conectores testados e desenvolvido por Chaves (2009)14
Figura 2.15 - Conector 'U' laminado, alça em barra redonda e chata (Chaves, 2009) 15
Figura 2.16 - Modelo de conexão de Ju & Kim (2005)16
Figura 2.17 - Modelo do ensaio push-out com conectores de cisalhamento stud, (EN 1994 -
1-1:2004)
Figura 2.18 - Determinação da capacidade de deslizamento (□u) (EN- 1994-1-1:2004) 21
Figura 2.19 - Esquema de ensaio de Topkaya, Yura e Williamson (2004) (David, 2007) . 22
Figura 2.20 - Modelo de esforços atuantes em um conector stud
Figura 2.21- Deformação do conector stud (Kotinda, 2006)
Figura 2.22 - Forças aplicadas em conector stud (Hajjar, 2002)
Figura 2.23 - Tipos de fissuração na laje devido à concentração de tensões induzidas pelo
conector (Tristão, 2002, adaptada de Oehlers (1989))
Figura 2.24 - Ação dos conectores e a distribuição das tensões na laje de concreto em uma
seção de uma viga 'T' mista (Oehlers, 1989)
Figura 2.25 - Detalhe da distribuição das tensões na laje de concreto (Oehlers, 1989) 27
Figura 2.26 - Modelos aplicado ao estudo de 'ba' (Oehlers, 1989)
Figura 2.27 - Comportamento cíclico de Força x Deslocamento do stud (Salari, 2001) 29

Figura 2.28 - Tensão de cisalhamento x Deslocamento relativo do aço em relação ao	
concreto (Silva, 2006)	0
Figura 2.29 - Aderência pro adesão (Fernandes, 2000) 3	1
Figura 2.30 - Aderência por atrito (Fernandes, 2000)	1
Figura 2.31 - Aderência mecânica (Fusco, 1995) 3	2
Figura 2.32 - Esquema do ensaio de arrancamento direto, Rilem (1973) 3	3
Figura 2.33 - Detalhes do ensaio de arrancamento direto (França, 2004)	3
Figura 3.1- Modos de fabricação do conector 'V' 3	5
Figura 3.2 - Conector 'V' produzido	5
Figura 3.3 - Detalhe de fixação dos conectores no perfil metálico	6
Figura 3.4 - Vista ilustrativa do conector do conector 'V'	7
Figura 3.5 - Influência da espessura do conector na área efetiva ao cisalhamento	8
Figura 3.6 - Influência da largura do conector 'U' na área efetiva ao cisalhamento 3	8
Figura 3.7 - Análise da influência do comprimento do conector em 'V' na área efetiva ao	
cisalhamento	9
Figura 3.8 - Simbologia dos elementos contato e alvo e suas respectivas normais 4	0
Figura 3.9 - Modelo de atrito pela teoria de Coulomb (Barbosa, 2000) 4	1
Figura 3.10 - Penetração entre superfícies, monitorada por 'FKN' (Barbosa, 2000) 4	2
Figura 3.11-Elemento SOLID -45 disponível no programa Ansys 4	3
Figura 3.12 - Elemento SOLID -65 disponível no programa Ansys 4	3
Figura 3.13 - Elemento de barra LINK-08 4	4
Figura 3.14 - Representação do elemento CONTAT-173 (Fernandes, 2000) 4	4
Figura 3.15 - Representação esquemática da interação entre os elementos de contato e os	
sólidos a que estão associados4	5
Figura 3.16 - Orientação do sistema cartesiano da estrutura mista 4	6
Figura 3.17 - Gráfico tensão x deformação para a armadura (gráfico fora de escala) 4	8
Figura 3.18 - Comportamento elasto-plástico multilinear (Tristão, 2002) 4	8
Figura 3.19 - Superfície de ruptura para o concreto (Ansys) 5	0
Figura 3.20 - Modelo em elementos finitos adotado para PHS-2 5	1
Figura 3.21 - Modelo em elementos finitos adotado para conector em 'V' 5	2
Figura 3.22 - Dimensões do ensaio push-out para o 'MEF' do modelo PHS-2 5	2
Figura 3.23 - Dimensões do ensaio push-out para o 'MEF' do conector 'V' 5	3
Figura 3.24 - Dados da análise numérica de PHS-25	6
Figura 3.25 – Comparação Estudo comparativo entre conectores stud e 'V'	6

Figura 3.26 - Progressão de fissuras na região dos conectores força até 70 kN	. 58
Figura 3.27 - Progressão de fissuras na região dos conectores, força de 90 kN a 130 kN	. 59
Figura 3.28 - Detalhe das tensões (kN/cm ²) nos conectores de cisalhamento	. 60
Figura 3.29 - Ensaio de Push-out realizado por Malite (1993) (Tristão, 2002)	. 61
Figura 3.30 - Força x Deslizamento - conectores 'U' e 'V' com espessura de 2,66 mm	. 64
Figura 3.31 - Força x Deslizamento - conectores 'U' e 'V' com espessura de 4,66 mm	. 64
Figura 4.1 - Modelo adotado para o ensaio do conector stud, medidas em 'cm'	. 65
Figura 4.2 - Modelo adotado para o conector do tipo 'V', medidas em 'cm'	. 66
Figura 4.3 - Modelo de armadura montada, pronta para ser utilizada	. 66
Figura 4.4 – Detalhe da montagem da armação da ferragem	. 67
Figura 4.5 - Seção transversal do perfil W250x73	. 67
Figura 4.6 - Detalhes da forma aplicada ao modelo de conector stud	. 68
Figura 4.7 - Fôrmas para o modelo com conector 'V'	. 68
Figura 4.8 - Local da moldagem – Taguatingua Shoping	. 69
Figura 4.9 - Ensaio de consistência do concreto no momento de recebimento do mesmo.	. 70
Figura 4.10 - Lançamento do concreto nas fôrmas	. 71
Figura 4.11 - Adensamento do concreto e acabamento superfícial	. 71
Figura 4.12 - Aspecto dos modelos durante a fase de cura do concreto	. 72
Figura 4.13 - Controle da umidade das peças	. 72
Figura 4.14 - Corpos de prova e o procedimento de cura	. 73
Figura 4.15 - Procedimento de limpeza, fixação e proteção do 'EER'	. 74
Figura 4.16 - Instrumentação das armadura	. 74
Figura 4.17 - Aplicação da proteção na instrumentação da armadura	. 75
Figura 4.18 - Armaduras instrumentadas	. 75
Figura 4.19 - Calibração do defletômetro	. 76
Figura 4.20 - Posicionamento dos defletômetros nos ensaios piloto e final	. 76
Figura 4.21 - Fixação dos defletômetros aplicados em todos os ensaios	. 77
Figura 4.22 - Fixação do segundo defletômetro vertical (ensaios finais)	. 77
Figura 4.23 - Sistema de aquisição de dados	. 78
Figura 4.24 - Sistema de aquisição dos valores de carregamento	. 79
Figura 4.25 - Bomba hidráulica utilizada nos ensaios	. 79
Figura 4.26 - Apoio do experimento	. 80
Figura 4.27 - Sistema de distribuição de cargas	. 81
Figura 4.28 - Modelo de ensaio de push-out realizado	. 81

Figura 4.29 - Dois blocos para uso no ensaio de arrancamento	82
Figura 4.30 - Detalhe da barra de aço na face interna da forma	83
Figura 4.31 - Moldagem dos blocos de arrancamento	83
Figura 4.32 - Cura dos blocos do ensaio de arrancamento	84
Figura 4.33 - Ensaio de arrancamento	84
Figura 4.34 - Montagem do experimento de arrancamento	85
Figura 4.35 - Instrumentação da barra	86
Figura 4.36 - Limpeza da região e fixação da plaqueta de vidro	86
Figura 4.37 - Instrumentação da barra e do bloco de concreto	87
Figura 4.38 - Sistema de leitura do carregamento	87
Figura 4.39 - Sistema de aquisição de dados	88
Figura 4.40 - Bomba utilizada na aplicação da carga	88
Figura 5.1 - Preparação dos corpos de prova de concreto	90
Figura 5.2 - Modelo de ruptura do corpo-de-prova de concreto para os ensaios finais	91
Figura 5.3 - Corpo-de-prova no ensaio de compressão diametral	91
Figura 5.4 - Representação esquemática do carregamento para a determinação do módu	lo
de elasticidade, vide NBR 8522:2005	92
Figura 5.5 - Determinação do módulo de Elasticidade do concreto (Ec)	93
Figura 5.6 - Detalhe da geometria dos corpos metálicos	94
Figura 5.7 - Detalhe dos CPs metálicos dos conectores para ensaio de tração	94
Figura 5.8 - Aplicação do extensômetro nos 'CPs' Metálicos	95
Figura 5.9 - Aplicação de extensômetro e strain gage	95
Figura 5.10 - Gráficos de Tensão (MPa) x Deformação dos conectores	96
Figura 5.11 - Gráfico Tensão (MPa) x Deformação do vergalhão usado na armadura	97
Figura 5.12 - Durômetro Brinell e detalhe do ensaio de dureza	98
Figura 5.13 - Processo de limpeza dos corpos-de-prova do ensaio de dureza Brinell	99
Figura 5.14 - Dureza 'HB', corpos-de-prova conectores stud e 'V'-2,65 mm	100
Figura 5.15 -Dureza 'HB', corpos-de-prova conectores 'V'-3,75 mm e 'V'-4,75 mm	101
Figura 5.16 - Resistência à tração das amostras do conector 'V' via dureza HB	102
Figura 6.1 - Posição dos strain gages (SG) ou extensômetros elétricos (EER)	104
Figura 6.2 - Força (kN) x Tempo (s) aplicados nos ensaios	105
Figura 6.3 - Força (kN) x Deformação (mm/m) das armaduras - stud-100 mm	106
Figura 6.4 - Força (kN) x Deformação (mm/m) das armaduras - stud-130 mm	106
Figura 6.5 - Força (kN) x Deformação(mm/m) das armaduras do 'V'-100 mm	107

Figura 6.6 - Força (kN) x Deformação (mm/m) das armaduras do 'V'-130 mm 108
Figura 6.7 - Comportamento Força (kN) x Uplift (mm) dos studs 108
Figura 6.8 - Comportamento Força (kN) x Uplift (mm) dos conectores 'V' 109
Figura 6.9 - Força (kN) x Afastamento transversal (mm) - defletômetro-01 (Def-01) 109
Figura 6.10 - Força (kN) x Afastamento transversal (mm) - defletômetro-02 (Def-02) 110
Figura 6.11 - Relação Força (kN) x Deslizamento (mm) do perfil dos ensaios 111
Figura 6.12 - Final do ensaio push-out com conectores do tipo stud -100 mm 113
Figura 6.13 - Face externa da laje presa ao perfil114
Figura 6.14 - Base quebrada da lateral da laje presa ao perfil
Figura 6.15 Face da laje destacada do perfil 116
Figura 6.16 - Face interna da laje presa ao perfil117
Figura 6.17 - Face interna da laje presa ao perfil118
Figura 6.18 - Retirada da laje de concreto com, britador elétrico 119
Figura 6.19 - Conector stud- 100 mm ainda soldado no perfil, retirado da laje 119
Figura 6.20 - Conector stud - 130 mm ainda soldado no perfil, retirado da laje 120
Figura 6.21 - Conector 'V'-130 mm ainda soldado no perfil, retirado da laje 120
Figura 6.22 - Posição dos straing gages (SG), para cada peça de push-out 122
Figura 6.23 - Gráfico Força (kN) x Tempo (s) 123
Figura 6.24 - Modelos ensaiados para o conector stud 124
Figura 6.25 - Perfil removido da laje mostrando studs rompidos e empenados 125
Figura 6.26 - Força (kN) x Deformações (mm/m) na armadura, conector V'-2,65 mm 126
Figura 6.27 - Força (kN) x Deformações (mm/m) na armadura, conector V'-3,75 mm 127
Figura 6.28 - Força (kN) x Deformações (mm/m) na armadura, conector V'-4,75 mm 128
Figura 6.29 - Força (kN) x Deformações para 'SGs' na região central da armadura 129
Figura 6.30 - Força (kN) x Deformações para 'SGs' na região de canto da armadura 130
Figura 6.31 - Estudo da separação entre lajes nos ensaios de push-out
Figura 6.32 - Força (kN) x Afastamento transversal (mm) para o defletômetro-01 132
Figura 6.33 - Força (kN) x Afastamento transversal (mm) para o defletômetro-02 132
Figura 6.34 - Deslizamento do perfil em relação à laje para os conectores stud 133
Figura 6.35 – Deslizamento do perfil em relação à laje para os conectores 'V' 134
Figura 6.36 - Comparativo dos modelos p/ Força (kN) x Deslizamento (mm) do perfil 135
Figura 6.37 - Detalhe das fissuras na região posterior do conector
Figura 6.38 - Marcação da fissura na laje para o push-out dos conectores 'V' 138
Figura 6.39 - Marcação da fissura na laje para o push-out dos conectores 'V' 139

Figura 6.40 - Deformada dos conectores presos na laje de concreto
Figura 6.41 - Detalhe da abertura entre o conector 'V'-2,65 mm e a laje 140
Figura 6.42 - Deformada dos conectores retirados da laje
Figura 7.1 - Ensaio de arrancamento medindo Deslizamento (mm) x Tempo (s) 142
Figura 7.2 - Carga (kN) x Tempo (s) do ensaio de arrancamento
Figura 7.3 - Carga (kN) x Deslizamento (mm) do ensaio de arrancamento 144
Figura 7.4 - Esquema de ruptura do bloco144
Figura 7.5 - Acabamento superficial de fios e barras lisas (Fusco, 1995)145
Figura 7.6 - Detalhe da região interna das barras em contato com o concreto 146
Figura 7.7 - Detalhe internos dos blocos de concretos
Figura 8.1 - Vista ilustrativa do conector 'V', sem escala
Figura 8.2 - Detalhe das tensões atuantes nas paredes do conector
Figura A.1 - Peças da fôrma em mediante medidas em 'cm'163
Figura A.2 - Detalhe das peças da fôrma (numeração referente à Figura A.1)163
Figura A.3 - Detalhe da montagem da fôrma sem os espaçadores internos (numeração
referente à Figura A.1)
Figura A.4 - Forma completa
Figura A.5 - Medida das peças do caixote em 'cm'165
Figura A.6 - Detalhe das peças da fôrma (numeração referente à Figura A.5)165
Figura A.7 - Detalhe da montagem da fôrma sem os espaçadores internos (numeração
referente à Figura A.5)166
Figura A.8 - Fôrma completa (Fôrmas +Espaçadores internos+ Travas externas)

LISTA DE SÍMBOLOS, NOMENCLATURA E ABREVIAÇÕES

ABNT	- Associação brasileira de normas técnicas
ASTM	- American society for testing and materials
A _{ce}	- a área da calota esférica impressa no material aplicado no ensaio de
	dureza Brinell.
A _{cs}	- área da seção transversal do conector
b _c	- largura da zona de atuação da carga concentrada de cialhamento
	produzia pelo conector na laje
b _f	- largura da nervura da fôrma metálica, largura da mesa do perfil
	laminado
c	- coesão de contato adotado pelo programa Ansys
С	- resistência à compressão da laje
CNN	- Contato nó-nó desenvolvido na análise numérica em MEF
CNS	- Contato nó-superfície desenvolvido na análise numérica em MEF
СР	- corpo-de-prova
CSS	- Contato superfície - superfície desenvolvido na análise numérica em
	MEF
d	- deslizamento da laje em relação o perfil metálico, altura do perfil
	metálico laminado aplicado no ensaio de push-out, diâmetro da calota
	esférica impressa no CP durante o ensaio de dureza Brinell
d _t	- região tracionada na face frontal do conector
D	- diâmetro da esfera de aço temperado aplicado no ensaio de dureza e
	Brinell
e _{mh}	- distância da borda do fuste do conector à alma da fôrma de aço, medida
	à meia altura da nervura no sentido da força cortante que atua no conector
Ec	-modulo de elasticidade do concreto
EER	- Extensômetros elétricos de resistência
EN	- Euro-norma
f_{ck}	- resistência caracteristíca do concreto
\mathbf{f}_{t}	- máxima tensão de tração quando 'Ps' é aplicado
f _{tk}	- tensão uniaxial de tração aplicado pelo programa Ansys para o concreto
\mathbf{f}_{ucs}	- resistência à ruptura do aço do conector

F _n	- força normal
FKN	- coeficiente de rigidez normal aplicado pelo programa Ansys
F _s	- força tangencial aplicada no atrito através da Lei de Coulomb
F _{sh}	- resistência de conexão ao cisalhamento
F _{sh,min}	- resistência mínima de cisalhamento
F _u	- força última
h _a	- altura da zona de compressão triaxial atuante no conector
h _f	- altura da nervura da fôrma metálica
Н	- altura do conector 'V'
HB	- valor da dureza Brinell
LACAM -	Laboratório de Caracterização de Materiais da Universidade Federal do
	Ceará
L _{cs}	- largura dos conectores 'U' e 'V'
LN	- Linha neutra
MEF	- Modelo em elementos finitos
M_{sh}	- momento fletor ocasionado pela força 'Fsh' distante 'Z' da base do
	conector
Ν	- força normal atuante
Р	- carga aplicada no ensaio de <i>push-out</i> , carga aplicada pelo conector na
	laje de coencreto
P _k	- carga característica determinada num ensaio push-out – corresponde a
	0,9.Q _{Max}
Ps	- resistência da laje ao fendilhamento
Pt	- pressão transversal do concreto sobre barra metálica que ocasiona a
	aderência por atrito
q	- força de atrito
q_{f}	- força de atrito para a qual ocorre fechamento das aberturas entre as
	particulas de concreto
q_{fu}	- valor máximo da força de atrito
Q _{Max}	- máxima carga atingida no ensaio push-out
Q _{Rd}	- resistência de cálculo dos conectores de cisalhamento
Qs	- parcela da resistência do atrito entre os materiais aço concreto
R	- fator de correção aplicado em 'Ps', reação à uma força

R _{b1}	- adrência por adesão
R _g	- coeficiente para a consideração do efeito de atuação de grupo de
	conectores
R _p	- coeficiente para a consideração da posição do conector
R _{est}	- rigidez estimada pelo Ansys em função das características do material
R _{fina} l	- rigidez final de cálculo considerada no elemento de contato pelo
	programa Ansys
t	- tempo em segundos
Т	- esforço de tração, resistência à tração do perfil metálico
T _{auMax}	- Tensão máxima de atrito considerada pelo programa Ansys
T _f	- espessura média da base do conector 'U'
T_W	- epessura da alma do conector 'U', espessura da alma do perfil laminado
	aplicado no ensaio de push-out
u ₁	- deslocamento
Z	- distância de aplicação de ' F_{sh} ' à base do conector de cisalhamento
K _s	- define o formato da distribuição da tensão de cisalhamento
W	- largura da base do conector 'V'
α	- fator de correção do cálculo da resistência dos coenctores de
	cisalhamento, constante experimental adotada para determinar a
	resistência à tração por meio da dureza Brinell do material
μ	- Coeficiente de atrito
η	- o grau de conexão de cisalhamento
γ_{cs}	- coeficiente de ponderação da resistência do conector
δи	- capacidade de deslizamento de um modelo <i>push-out</i> , segundo a EN
	1994-1-1:2004. Deslizamento correspondente a P_k
δ_{uk}	- capacidade de deslizamento característico do ensaio de push-out,
	equivalente a $0.9.\delta u$
τ	- tensão equivalente de cisalhamento aplicada na utlização da teoria de
	atrito
3	- deformação específica
Ø	- diâmetro do conector stud
ν	- coeficiente de Poisson

1 - INTRODUÇÃO

As estruturas mistas demonstram ser uma excelente opção do ponto de vista estrutural e construtivo. Referindo-se ao aspecto estrutural, pode-se ressaltar que as estruturas mistas possibilitam um melhor aproveitamento das propriedades de resistência dos materiais, pois permitem que na mesma estrutura, o concreto esteja predominantemente comprimido e o aço predominantemente sujeito a esforços de tração. Desta forma, ao final é possível obter uma estrutura mais otimizada e leve. Na Figura 1.1 está ilustrado um exemplo comum de estrutura mista onde as vigas de aço são conectadas à laje de concreto por meio de conectores de cisalhamento, soldados aos perfis metálicos.

Para que a laje e o perfil metálico possam atuar como uma estrutura mista, se faz necessária uma ligação entre o concreto e o perfil metálico. Para isso são utilizados elementos metálicos, chamados conectores de cisalhamento, que ficam imersos no concreto e soldados ao perfil metálico.

A escolha do tipo de conector e o seu correto dimensionamento são de grande importância, pois é por meio deles que se determina o grau de interação entre os materiais (aço e concreto) e consequentemente, a maneira como os esforços normais são transmitidos de um material para o outro.

1.1 – MOTIVAÇÃO

Existem diversos tipos de conectores de cisalhamento, utilizados nas estruturas mistas de aço e concreto. No Brasil, os mais frequentes são o pino com cabeça ou *stud bolt* e os conectores em perfil 'U'. O *stud* é o mais usual atualmente devido a sua praticidade de fixação e sua rigidez que resulta em menores deformações e maior resistência aos esforços cisalhantes atuantes na intarface com o perfil metálico. O segundo conector apresenta menores concentrações de tensões na região em torno do conector, em vista de sua maior área de contato com a laje de concreto. Contudo o conector 'U' se deforma mais facilmente do que o *stud* em virtude de sua pequena espessura.

O modelo de conector proposto neste trabalho é uma tentativa de conector com rigidez superior ao conector 'U', e com maior área de contato com o concreto do que o *stud*. Espera-se que desta forma seja possível reduzir os efeitos de concentração de tensões e formação prematura de fissuras no concreto na região do conector.

1.2 – OBJETIVOS

Este trabalho tem como objetivo principal desenvolver e estudar o comportamento estrutural de um novo conector de cisalhamento, com aplicação em vigas mistas de aço e concreto.

Os objetivos específicos a serem conquistados, neste trabalho são:

- Produzir um conector em que o custo e equipamentos necessários para a sua implementação sejam accessíveis.
- Realizar estudos numéricos que simulem o comportamento estrutural do conector e desta forma possibilitar estudos paramétricos para melhor entendimento do conector 'V'.
- Fazer uma análise experimental do referido conector em modelos experimentais normatizados.
- Elaborar uma expressão matemática que estime com precisão satisfatória a capacidade resistente do conector aqui desenvolvido.

1.3 – METODOLOGIA

Para atingir os objetivos acima estabelecidos, foi adotada a seguinte metodologia. Realizar inicialmente um estudo numérico em elementos finitos, com base em análises experimentais e numéricas disponíveis na bibliografia consultada. Realizar um conjunto de ensaios de cisalhamento *push-out*, conforme a norma européia EN 1994-1-1:2004, variando principalmente a espessura do conector, a fim de conhecer a capacidade resistente do conector. Por fim, com base nos resultados experimentais e numéricos, elaborar um modelo semi-empírico que permita estimar com precisão satisfatória a capacidade resistente do conector, possibilitando desta forma o dimensionamento do conector em configurações estruturais diversas.

1.4 - ESCOPO DO TRABALHO

O Capítulo 2 realiza uma revisão bibliográfica, em que estão demonstrados a finalidade, os tipos e as características dos conectores mais utilizados. Também mostran-se os principais esforços atuantes no conector *stud*.

O capítulo 3 apresenta a concepção do conector de cisalhamento 'V' e a análise numérica. Inicialmente é apresentado a forma de produção do conector 'V' e suas características geométricas. O estudo numérico foi realizado pelo método dos elementos finitos (MEF). Com base no estudo experimental realizado por Tristão (2002), objetivou-se calibrar o programa, para a realização de um estudo comparativo entre o conector 'V' proposto, com os conectores *stud* e 'U'. O estudo resume-se a reproduzir o ensaio de *push-out*. Foram averiguados: a carga última de ruptura do ensaio, deslizamento do perfil em relação à laje, fissuração do concreto e concentração de tensão no conector e no perfil.

O capítulo 4 relata o procedimento experimental que foi aplicado em todos os ensaios. Os ensaios realizados são *push-out* normatizados pelo EN 1994-1-1:2004 e de arrancamento.

O capítulo 5 apresenta a caracterização dos materiais utilizados na análise experimental.

O capítulo 6 apresenta o programa experimental de ensaios de cisalhamento *push-out*. Os ensaios foram realizados em duas etapas, para a primeira, ou ensaios piloto, foram

estabelecidos estudos prévios averiguando a influência da espessura do conector 'V' e da altura dos conectores *stud* e 'V'. Na segunda etapa foram realizados estudos comparativos com o conector *stud* e 'V' objetivando uma análise mais aprofundada da influência da espessura da alma do conector 'V'.

O capítulo 7 mostra o ensaio de arrancamento objetivando entender os parâmetros relativos ao atrito entre o conector e o concreto. Parâmetros estes de suma importância para o aferimento da modelagem em elementos finitos o que demanda considerável tempo.

O capítulo 8 relata a formulação matemática desenvolvida para o dimensionamento do conector 'V'. Foram utilizados os resultados dos ensaios de *push-out*, como parâmetro comparador.

O capítulo 9 reporta às conclusões obtidas neste trabalho e relatada as vantagens e restrições do conector 'V', assim como suas características frente ao conector mais utilizado, o *stud*.

2 - REVISÃO BIBLIOGRÁFICA

Segundo Viest (1992), o início das estruturas mistas em aço e concreto é marcado com a patente "Construções em Vigas Mistas" criada por J.Kahn em 1926 e com os primeiros estudos de R. A. Caughey, publicados em 1929. Uma das primeiras obras que se tem notícia em estruturas mistas é a ponte de Rock Rapids (Figura 2.1).

Figura 2.1 - Ponte de Rock Rapids (Viest, 1992)

Segundo Viest (1992) o estudo da interação da laje de concreto e o perfil de aço se deu de forma mais intensa com o projeto intitulado "Concrete Slab Investigation" (Investigação da Laje de Concreto), iniciado em 1936. Entre seus objetivos, estava a realização de testes de interação entre os materiais da seção composta.

2.1 - COMPORTAMENTO NA LIGAÇÃO AÇO-CONCRETO

O fato de o concreto e o aço possuírem propriedades mecânicas distintas permite que na região de interface tais materiais apresentem comportamento diferenciado. Geralmente numa viga mista, as fibras superiores da laje apresentam esforços de compressão, enquanto na base do perfil metálico surgem tensões de tração, como pode ser verificado na Figura 2.2 (a), hà ainda uma diferença de deformação entre laje e perfil tendendo a deslizar a laje em relação ao perfil. Essa diferença de comportamento proporciona também o surgimento de uma tensão de cisalhamento na região de interface e o deslocamento 'd' da laje em relação ao perfil. Os conectores têm a função de garantir a ligação da laje ao perfil, isto é conter o deslocamento 'd' e absorver as tensões de cisalhamento na interface, apresentam deformações, como mostrado na Figura 2.2 (b).

(a) Tensões na interface

(b) Deformada da viga e seus elementos

Figura 2.2 - Deformada de uma viga mista simplesmente apoiada

2.2 - GRAU DE CONEXÃO E GRAU DE INTERAÇÃO

A região de interface laje e perfil apresenta um comportamento complexo e de grande relevância para o estudo e dimensionamento das estruturas mistas. A ligação entre a laje e o perfil está relacionada a dois fenômenos distintos, o grau de conexão e o grau de interação.

2.2.1 - Grau de conexão

O grau de conexão refere-se à resistência dos elementos estruturais laje e perfil que compõem a viga mista e a respectiva ligação entre estes elementos. Desta forma é correto afirmar que a distribuição das tensões normais no sistema misto depende do grau de conexão, que se subdivide em 'total' e 'parcial'.

O equilíbrio dos esforços na seção de uma viga mista depende da resistência à compressão da laje (C), e à tração da viga metálica (T) e também da ligação destes elementos estruturais (F_{sh}), que é desempenhada pelos conectores de cisalhamento, como mostrado na Figura 2.3. A resistência ao cisalhamento horizontal ou a resistência de conexão (F_{sh}), é determinada pela soma das resistências individuais dos conectores .

Figura 2.3 - Forças resultantes numa seção mista

A Figura 2.4 ilustra três situações possíveis quanto à distribuição das tensões na seção de uma viga mista. No primeiro caso, a linha neutra (LN) localiza-se na laje, pelo fato do momento máximo resistente estar limitado pela força resistente de tração da viga metálica (T). O caso 2, apresenta a resistência de compressão da laje de concreto (C) como elemento limitante da resistência à flexão. Em ambos os casos a resistência de conexão (F_{sh}) é maior ou igual à menor das resultantes normais 'C' ou 'T', de forma que se tem uma conexão completa. Sendo assim, um aumento no número de conectores não influencia na resistência ao cisalhamento. No caso de 'C' ou 'T' assumirem valores superiores a ' F_{sh} ', tem-se uma conexão parcial, como está demonstrado no caso 3.

Figura 2.4 - Gráficos de tensão e deformação de uma viga mista, considerando o grau de conexão (Oehlers e Bradford,1995)

O grau de conexão (η) de uma viga mista é definido pela NBR-8800:2008 como sendo:

$$\eta = \frac{F_{sh}}{F_{sh,min}} \tag{2.1}$$

onde:

h - o grau de conexão de cisalhamento

 F_{sh} - resistência da conexão ao cisalhamento

 $F_{sh,min}$ - resistência mínima de cisalhamento em uma situação de conexão completa, igual ao menor valor entre a capacidade da viga de aço ou da laje de concreto.

O valor de ' η ' pode ser 1 para conexão completa, no caso de interação parcial a NBR-8800:2008 admite 0,4 como sendo o valor mínimo. Quando não existe conexão entre o perfil e a laje, isto é a laje está apenas apoiada sobre o perfil, classifica-se a estrutura como híbrida e não como mista.

2.2.2 - Grau de interação

O grau de interação está relacionado com o deslizamento 'd' da laje em relação ao perfil metálico, Figura 2.2. Nas estruturas híbridas a interação é nula, visto que os elementos estruturais trabalham e se deformam independentemente, conforme Figura 2.5 (a), onde a distribuição de tensões no concreto e no perfil é independente.

A interação é considerada total quando a laje está totalmente solidária ao perfil, de forma que o deslizamento 'd' (Figura 2.2) é praticamente nulo. Neste caso se considera que a seção mista tem apenas uma linha neutra (LN), como ilustrado na Figura 2.5 (b).

A interação parcial representa um meio termo, em que existe um deslizamento 'd' entre a laje e o perfil, devido à deformação dos conectores de cisalhamento. Mesmo assim os elementos estruturais - laje de concreto e perfil metálico - continuam solidários, e os materiais permanecem trabalhando em conjunto. Entretanto existem duas LNs, e cada elemento estrutural, aqui entendido como a laje de concreto e o perfil metálico, absorve parte dos esforços, como mostra a Figura 2.5 (c).

Figura 2.5 - Distribuição das deformações para uma estrutura híbrida e mista

2.3 - DUCTILIDADE DA LIGAÇÃO

A ductilidade da ligação é determinada em grande parte pelo conector de cisalhamento. Os conectores de cisalhamento podem ser classificados como rígidos ou flexíveis. Os conectores rígidos proporcionam reduzido deslizamento entre o perfil metálico e a laje de concreto. O colapso com esse tipo de conector é caracterizado por ruptura frágil com esmagamento ou cisalhamento do concreto o que é indesejável por questões de segurança estrutural (Veríssimo, 2007). Os conectores flexíveis apresentam uma conexão mais dúctil implicando em maior deslizamento entre o perfil e a laje, exibindo ruptura entendida como dúctil. Em relação ao modo de falha, Veríssimo (2007) também relata que um conector flexível não é propriamente o ideal em algumas situações por conta da fadiga (e.g o *stud* é um conector rígido, por outro lado, tende a sofrer menos problemas de fadiga. Desta forma o ideal é um conector que apresente pouco ou nenhum deslizamento para cargas de serviço e ductilidade no estado limite último.

O estudo da ductilidade da conexão pode ser realizado por meio de um ensaio de cisalhamento direto, também chamado de ensaio de *push-out*. Com os resultados deste ensaio, a curva Força/Deslizamento pode ser traçada caracterizando o comportamento da conexão (Figura 2.6).

Figura 2.6 - Exemplo de curva Força/Deslizamento de um Conector

2.4 - MODELOS DE CONECTORES DE CISALHAMENTO

Existem diversos tipos de conectores no mercado, contudo os conectores apresentados neste trabalho são os mais utilizados no Brasil. Alguns dos conectores mencionados a seguir servirão de base comparativa para o modelo de conector proposto, nesta pesquisa.

2.4.1 - Conector pino com cabeça

O conector pino com cabeça ou *stud bolt*, por ser de fácil fixação é um dos mais utilizados. A Figura 2.7 ilustra o conector *stud*, e o procedimento de fixação. A solda é realizada por meio de uma pistola elétrica, especificamente projetada para a fixação deste tipo de conector.

Figura 2.7 - Aplicação do conector stud (Kotinda, 2006)

Contudo, o processo de solda demanda considerável potência elétrica para ser realizado. A pistola é conectada a uma fonte de grande potência elétrica. Na maioria dos casos, a fonte é alimentada por um gerador. O aluguel diário da pistola e gerador é consideravelmente oneroso. A fonte elétrica, que é importada, é produzida pela empresa detentora da patente do *stud*. A Figura 2.8 ilustra os equipamentos utilizados na fixação dos studs das peças utilizadas no estudo experimental. Este equipamento de solda foi utilizado para soldar as peças da análise experimental e se encontrava no canteiro de obras do Taguatinga Shopping Center, localizado na cidade satélite de Taguatinga, no Distrito Federal. A obra de expansão deste centro comercial adotou como solução estrutural vigas e lajes mistas, com pilares metálicos.

(a) Gerador e fonte elétrica para soldadr o *stud*

(b) Pistola para solda do *stud*

2.4.2 - Conector de cisalhamento 'U'

O conector de cisalhamento 'U' é produzido a partir de perfis em 'U' ou 'C'. Devido a sua reduzida espessura de alma (t_w -Figura 2.9) este conector apresenta uma reduzida inércia à força normal, quando comparado com o conector *stud*. Desta forma o conector em 'U' é mais susceptível a deformações do que o conector do tipo pino. Contudo o conector em 'U' em relação ao conector *stud* apresenta uma melhor distribuição de tensões na região do concreto que envolve este conector. A área de contato com o concreto do conector 'U' é superior à área de contato do conector *stud*.

Figura 2.9- Representação esquemática do conector 'U' laminado

2.4.3 - Outros conector de cisalhamento

Segundo Queiroz (2001) o Eurocode 4 Draft (1992) "Shear Connection in Beams for Buildings" apresenta outros conectores, conforme Figura 2.10. Tais conectores são conhecidos como conectores de bloco e "devem ser rígidos o suficientes para que na ruína a pressão de contato possa ser considerada uniformemente distribuída" (Queiroz, 2001).

Figura 2.10 - Outros modelos de conectores (Eurocode 4 Draft, 1992)
A empresa Hilti apresenta outro tipo de conector de cisalhamento que pode ser visto na Figura 2.11. A maior vantagem deste tipo de conector em relação aos conectores do tipo pino é a forma de fixação, que não requer energia elétrica.

Figura 2.11 - Conector da Hilti HVB (Queiroz, 2001)

Outro modelo de conector citado no trabalho de Kotinda (2006) é o conector 'perfobond'. Este conector de cisalhamento consiste de uma chapa de aço perfurada e soldada longitudinalmente ao longo da mesa do perfil metálico da estrutura mista, ver Figura 2.12.

Figura 2.12 - Conector de cisalhamento do tipo 'perfobond' (Kotinda, 2006).

Um outro conector de cisalhamento inovador é o 'crestbond', apresentado por Veríssimo (2007). Este conector é confeccionado a partir de um corte simétrico e em zig-zag, vide Figura 2.13 (a). O resultado é um conector em chapa dentada, ver Figura 2.13 (b). Este conector apresenta boa rigidez em serviço e maior ductibilidade que o conector perfobond citado anteriormente.

(a) Corte para produção do 'crestbond'

(b) 'Crestbond' produzido

Figura 2.13 - Conector 'crestbond', produção e produto final

Chaves (2009) propôs dois modelos de conector de cisalhamento 'alça', soldados em um perfil (Cr 125 x 80 x 20 x 3,0 mm) do tipo cartola. Um destes é uma barra redonda de vergalhão soldado a 90 ° com a mesa do perfil. O outro conector é uma alça de chapa fina (3,0 mm), dobrada e soldada a 30° em relação ao plano da mesa do perfil metálico. A Figura 2.14 ilustra o resultado dos ensaios comparativos entre conectores de cisalhamento em forma de 'alça' e um conector de cisalhamento 'U'.

(a) Perfil 'U'

(b) Alça com barra

(c) Alça com chapa fina

Na avaliação destes conectores foi desenvolvido, entre outras análises experimentais, o ensaio de *push-out*. A Figura 2.15 apresenta respectivamente o esquema de ensaio de *push-out* realizado por Chaves (2009), para conector 'U', alça em barra redonda e barra chata.

Figura 2.14 - Modelos de conectores testados e desenvolvido por Chaves (2009)

Figura 2.15 - Conector 'U' laminado, alça em barra redonda e chata (Chaves, 2009)

2.4.4 - Outras formas de conexão de laje e perfil

Nardin (2008) cita em seu trabalho uma forma de conexão entre a laje e o perfil metálico apresentada por Ju & Kim (2005). Neste caso, um perfil metálico assimétrico com abertura na parte superior, por onde passam as barras de aço, fará a ligação entre o concreto e o perfil. Um perfil 'C' complementar é fixado na base da viga metálica assimétrica para dar suporte à forma da laje. Este modelo de ligação é apresentado na Figura 2.16.

2.5 - DIMENSIONAMENTO DOS CONECTORES DE CISALHAMENTO

A resistência da ligação entre a laje e o perfil depende dos conectores. No dimensionamento dos conectores de cisalhamento são considerados diversos aspectos dentre os quais, a área efetiva dos conectores e a resistência do concreto. Os conectores em uso comercial *stud* e 'U' formam a base de comparação desta pesquisa.

2.5.1 - Resistência do conector stud

A NBR 8800: 2008 relata que os conectores *stud* depois de soldados devem possuir comprimento mínimo igual a quatro vezes o diâmetro. Deve-se tomar um cuidado especial quanto às dimensões e o processo de soldagem dos conectores nas vigas mistas. Adota-se como força resistente de um conector pino com cabeça embutido em uma laje de concreto maciça, o menor dos dois valores:

$$Q_{Rd} = \frac{1}{2} \frac{A_{cs} \sqrt{f_{ck} E_c}}{\gamma_{cs}}$$
(2.2)

$$Q_{Rd} = \frac{R_g R_p A_{cs} f_{ucs}}{\gamma_{cs}}$$
(2.3)

onde:

 γ_{cs} - coeficiente de ponderação da resistência do conector, tomado igual a 1,25 para combinações últimas de ações normais, especiais ou de construção e igual a 1,10 para combinações excepcionais

 A_{cs} - área da seção transversal do conector

 f_{ucs} - resistência à ruptura do aço do conector

 E_c - modulo de elasticidade do concreto

 R_{g} - coeficiente para a consideração do efeito de atuação de grupo de conectores

 R_p - coeficiente para a consideração da posição do conector

O coeficiente ' R_g ' pode assumir o valor 1,0 para uma linha de conectores soldados diretamente no perfil de aço e na fôrma sobre nervura paralela ao perfil, com relação de $b_f/h_f \ge 1,5$ e para um conector soldado na nervura perpendicular ao perfil. Assume-se 0,85 para dois conectores soldados na nervura perpendicular ao perfil e para um conector soldado na forma sobre nervura paralela ao perfil, com relação de $b_f/h_f \le 1,5$. E finalmente 0,7 para três ou mais conectores soldados na nervura perpendicular ao perfil.

O coeficiente para a consideração da posição do conector pode assumir o valor de 1,0 para conectores soldados diretamente no perfil, ou na fôrma desde que pelo menos 50% da mesa esteja em contato direto com o concreto. Assume 0,75 para conectores soldados na nervura perpendicular ao perfil e com $e_{mh} \ge 50mm$ ou para conectores soldados na fôrma sobre nervura paralela ao perfil. E finalmente 0,6 para conectores soldados na nervura perpendicular ao perfil e com $e_{mh} < 50mm$.

FIGURA 2.11 - Valor de 'e_{mh}' ser tomado (NBR 8800:2008)

O EN 1994-1-1:2004 considera, para o caso de lajes maciças, a resistência de cálculo dos conectores *stud* ao cisalhamento (Q_{Rd}) como sendo o menor dos valores:

$$Q_{Rd} = \frac{\mathbf{0.8}A_{cs}f_{ucs}}{\gamma_{cs}} \tag{2.4}$$

$$Q_{Rd} = \frac{0.29ad^2 \sqrt{f_{ck}E_c}}{\gamma_{cs}}$$
(2.5)

onde:

d: diâmetro do conector stud (d \leq 25 mm)

h: Altura total do conector

 γ_{cs} : Coeficiente de segurança (1,25)

 α : Fator de correção, valendo:

• 1 se h/d > 4• 0.2[(h/d) + 1] se $3 \le h/d \le 4$

2.5.2 - Resistência do conector 'U'

Segundo a NBR 8800:2008 a força resistente de cálculo de um conector de cisalhamento em perfil 'U', com altura da seção transversal não inferior a 75 mm e totalmente embutido em laje maciça de concreto com face inferior plana apoiada totalmente sobre o perfil de aço é dada por:

$$Q_{Rd} = \frac{\mathbf{0.3}(t_f + \mathbf{0.5}t_w)L_{CS}\sqrt{f_{ck}E_c}}{g_{cS}}$$
(2.6)

As recomendações do AISC-LRFD: 1994 e CAN/CSA- S16.1:1994, para o cálculo da força resistente do conector 'U', é dada pela seguinte equação (Alva, 2000):

$$Q_{Rd} = 0.365(t_f + 0.5t_w)L_{CS}\sqrt{f_{ck}}$$
(2.7)

2.6 - ENSAIOS DE CISALHAMENTO DIRETO PUSH-OUT

A avaliação do comportamento dos conectores de cisalhamento é possível por meio de um ensaio de cisalhamento direto, o *push-out* padronizado pela EN 1994-1-1:2004. O ensaio consiste de duas lajes de 60x60x15cm presas a um perfil metálico por meio dos conectores de cisalhamento, conforme a Figura 2.17. Neste ensaio é aplicada uma carga 'P' (Figura 2.17) no perfil, permitindo observar o desempenho do conector. Um dos principais critérios de avaliação é conhecer o deslizamento relativo do perfil em relação à laje, em função da carga aplicada. Através do gráfico carga aplicada x deslizamento relativo do perfil é possível conhecer a ductilidade da conecção.

A Figura 2.17 traz um esquema de realização do ensaio de *push-out*, onde se encontram detalhes da armadura disposição dos conectores e as principais medidas adotadas para a laje de concreto.

Antes da realização dos ensaios, deve-se tomar algumas precauções. A primeira é eliminar a aderência do perfil metálico com a laje de concreto. A ligação entre perfil e a laje é desempenhada somente pelos conectores de cisalhamento. Neste trabalho, antes da concretagem, é aplicada uma camada de graxa na mesa do perfil que faz contato com a laje de concreto. No momento da concretagem dos modelos, deve-se moldar no mínimo 4 corpos-de-prova para cada mistura de concreto realizada. De tais corpos de prova será determinada a resistência do concreto à compressão (f_{cm}), considerada como a média dos resultados obtidos. O ensaio de compressão dos corpos-de-prova do concreto é realizado no tempo do ensaio *push-out* e deve apresentar resistência de 70% ±10% da resistência (f_{ck}) esperada para o concreto.

Figura 2.17 - Modelo do ensaio *push-out* com conectores de cisalhamento *stud*, (EN 1994 - 1-1:2004)

2.6.1 - Procedimento para realização e validação do ensaio de push-out

A força deve ser aplicada de início em incrementos até 40% da carga de ruptura esperada, em seguida a carga aplicada oscila 25 vezes entre 5% e 40% da carga estimada de ruptura. Os subsequentes incrementos de carga devem ser aplicados de forma que a ruptura não aconteça em menos de 15 minutos. O deslizamento longitudinal relativo entre a laje de concreto e a seção de aço do perfil deve ser medido continuamente durante o carregamento ou a cada incremento de carga. O deslizamento deve ser medido até que a carga aplicada reduza em pelo menos 20% em relação à carga máxima.

Para validar o ensaio de *push-out* são realizados três ensaios nominalmente idênticos, o desvio padrão de qualquer resultado individual não deve exceder 10% da média de todos os ensaios. A resistência característica (P_{Rk}) deve ser considerada como a menor carga de ruína (dividida pelo número de conectores) reduzida de 10%.

Para que o desempenho do conector seja considerado satisfatório, este deve resistir à separação transversal que tende a ocorrer entre a laje e o perfil, de modo que o afastamento transversal não deve superar 50 % do deslizamento longitudinal verificado para 0,8 $P_{máx}$. A capacidade de deslizamento característico (δ_{uk}) deve ser considerada como o menor dos valores δ_u , obtidos conforme mostrado na Figura 2.18, reduzido de 10%.

Figura 2.18 - Determinação da capacidade de deslizamento (δ_u) (EN- 1994-1-1:2004)

2.6.2 - Outro modelo de push-out

No trabalho de David (2007) é mostrado outro tipo de ensaio de cisalhamento direto, apresentado por Tipkaya, Yura e Williamson (2004), vide Figura 2.19. Segundo David (2007) este ensaio foi desenvolvido para analisar o comportamento dos conectores e foi realizado quando o concreto apresentava entre 3 e 48 horas de idade. Devido à baixa resistência do concreto, o ensaio foi realizado no local e na posição horizontal.

Figura 2.19 - Esquema de ensaio de Topkaya, Yura e Williamson (2004) (David, 2007)

2.7 - CONSIDERAÇÕES SOBRE OS ESFORÇOS ATUANTES NO CONECTOR STUD

Os conectores em geral apresentam um comportamento semelhante. Entretanto, devido o conector stud ser o mais analisado por diversos autores, ele é tomado como referência para estudo de modelos e esforços atuantes no conector de cisalhamento. A Figura 2.20 ilustra dois modelos sobre os esforços atuantes em um conector stud. O primeiro, desenvolvido por Lawson (1992), apresenta uma idéia simplificada da situação, em que são considerados apenas a força de cisalhamento e a distribuição das tensões normais na face do conector. O modelo apresentado por Oehlers (1992) explicita uma situação mais complexa, em que o pino está submetido a uma força normal e outra de cisalhamento (F_{sh}), além de um momento fletor (Msh). A força de cisalhamento e o momento fletor estão em equilíbrio com uma força normal distante 'Z' do flange do perfil, de maneira que $M_{sh} = F_{sh}$.Z. O valor de 'Z', por sua vez, está vinculado com a rigidez relativa do concreto e do aço. Quando a rigidez do concreto (E_c) tende a um valor muito superior à rigidez do conector (E_a), 'Z' tende a zero. Contudo quando 'Ea' for muito maior que 'Ec', 'Z' tende a ficar à meia altura do pino. A zona de compressão triaxial, região no concreto imediatamente em frente ao conector, está submetida a altas tensões de compressão, e é função da altura efetiva do conector (h_a). Segundo Tristão (2002) h_a =1,8 x ϕ (diâmetro do conector).

(a) Modelo de Lawson (1992)(b) Modelo de Oehlers (1992)Figura 2.20 - Modelo de esforços atuantes em um conector *stud*

Ainda com base no trabalho de Oehlers (1992), podem-se descrever dois mecanismos de ruptura do conector do *stud*. Um exemplo seria o caso da ruína do concreto, antes do início da plastificação do material do conector, o que termina por ocasionar a perda da rigidez do concreto. À medida que 'E_c' diminui, devido às fissuras do concreto, 'Z' aumenta, ocasionando incrementos em 'M_{sh}'. Isto pode conduzir a grandes deformações permanentes no conector ou a sua ruptura. O outro caso seria a perda da rigidez do conector, que implica em redução de 'Z' e do momento (M_{sh}) aplicado ao conector. O que ocasiona também diminuição da zona de compressão triaxial, até que o concreto comece a fissurar. O surgimento destas fissuras possibilita perda da rigidez do concreto, de forma que a estrutura segue o mesmo caminho apresentado anteriormente.

No trabalho de Oehlers e Bradford (1995) é sugerido um modelo complementar ao modelo apresentado por Oehlers (1992). Após a deformação do pino, a cabeça do conector *stud* tende a rotacionar gerando fissuras no concreto que partem da face inferior da cabeça do conector em direção a viga de aço (Figura 2.27). Esta configuração de fissuras possibilita o desprendimento do conector no concreto, situação que se agrava com o aumento da deformação vertical da viga. Nesta situação os conectores estão sendo tracionados. As fissuras aumentam assim como o destacamento da laje e dos próprios conectores, como está ilustrado na Figura 2.21. Pode-se então relatar que os conectores impedem a separação vertical da laje em relação ao perfil. Este movimento é conhecido como *uplift*.

(a) Deformação do conector *stud* (b) Fissuração do conector na região do conector
 Figura 2.21 - Deformação do conector *stud* (Kotinda, 2006)

No trabalho de Hajjar (2002), um outro modelo (Figura 2.22) é apresentado complementando o trabalho de Oehlers e Bradford (1995). Segundo Hajjar (2002) a resultante da força normal 'C' que atua no concreto e que gera o momento 'M' (M=C.Z) na base do conector, é resistida pelo concreto, isto é pela força 'N', distante ' x_c 'do eixo do conector. A força normal 'N' por sua vez incrementa a força de atrito 'S', existente entre a laje e o perfil. Desta forma o autor do modelo conclui que a resistência do conector é a soma da parcela da resistência do atrito (Q_s) entre os materiais aço concreto e também da própria resistência de corte ou de cisalhamento do conector.

Figura 2.22 - Forças aplicadas em conector stud (Hajjar, 2002)

2.8 - DESLIZAMENTO DO PERFIL EM RELAÇÃO À LAJE DEVIDO AOS CONECTORES DE CISALHAMENTO

O deslizamento da laje em relação ao perfil pode estar relacionado a problemas na ligação entre a laje e o perfil metálico, comprometendo assim o desempenho da estrutura mista. Além das deformações excessivas do conector, como já ilustrado nos modelos do item anterior, este problema também pode estar vinculado à perda de rigidez do concreto. A redução da rigidez do concreto em geral está vinculada à fissuração da laje e também a efeitos dinâmicos, por exemplo, o próprio uso da estrutura mista, como a passagem de veículos em pontes ou pedestres em passarelas.

2.8.1 - Fissuras na laje de concreto

As fissuras em uma laje de concreto, oriundas da ação dos conectores podem ser por: rasgamento, fendilhamento, e cisalhamento, como ilustrado na Figura 2.23. Segundo Oehlers (1989) as fissuras por rasgamento dependem da força de compressão no plano da laje e propagam-se transversalmente à viga metálica. Pelo fato de ocorrerem a certa distância da zona de compressão triaxial no concreto, produzem poucos efeitos na resistência do conector.

As fissuras por cisalhamento acontecem na direção da biela de compressão do concreto, contudo é adicionada uma armadura de cisalhamento. A mais nociva de todas é a fissura de fendilhamento, que acontece inicialmente na frente do conector, ocasionando o primeiro deslizamento da laje em relação ao perfil. A propagação desta fissura ocasiona novas fissuras, na região posterior do conector, e alivia a região triaxial da zona de compressão, propiciando a falha do concreto na região do conector.

Figura 2.23 - Tipos de fissuração na laje devido à concentração de tensões induzidas pelo conector (Tristão, 2002 - adaptada de Oehlers (1989))

No estudo da influência dos conectores no deslizamento relativo entre laje e perfil, Oehlers (1989) apresenta um modelo em que demonstra a ação dos conectores e a distribuição de tensões, como apresentado na Figura 2.24. Nesta ilustração a laje está submetida a uma carga concentrada de cisalhamento atuando em uma zona de altura 'h_a'e 'b_c' de largura. É válido salientar que 'b_a' não necessariamente é a largura efetiva da laje, mas sim a largura em que as tensões de cisalhamento possam ser consideradas uniformemente distribuídas. Esta carga concentrada produz uma tensão cisalhante lateral de tração na face frontal do conector em uma região tracionada 'd_t' de comprimento 'b_c', ver Figura 2.24 (a). Na face oposta do conector surgem tensões de compressão de mesma magnitude e formato.

(a) Seção transversal de uma viga mista

(b) Distribuição longitudinal das tensões

Figura 2.24 - Ação dos conectores e a distribuição das tensões na laje de concreto em uma seção de uma viga 'T' mista (Oehlers, 1989)

Segundo Oehlers (1989) a resistência ao fendilhamento da laje é dada pela Equação (2.8).

$$P_{S} = \frac{1,75b_{c}h_{a}f_{t}K_{s}}{0,29\left(1 - \frac{b_{a}}{b_{c}}\right)^{2}}$$
(2.8)

onde :

 f_t - máxima tensão de tração quando 'P_s' é aplicado

K_s - define o formato da distribuição da tensão de cisalhamento (Figura 2.25)

Figura 2.25 - Detalhe da distribuição das tensões na laje de concreto (Oehlers, 1989)

Analisando a Equação (2.8), observa-se que quanto maior for o valor da largura de atuação da força de cisalhamento (b_a), maior será a resistência ao fendilhamento. Fazendo uma analogia aos conectores, Oehlers (1989) em seu trabalho analisou a influência de ' b_a ', da largura efetiva da laje (b_c) e os conectores, como demonstrado na Figura 2.26. Observando esta figura, é possível deduzir que uma aplicação de conectores paralelos, melhora o combate ao fendilhamento. Em geral são utilizados paralelamente dois conectores (Grupo 'C', Figura 2.26.). A partir de uma considerável distância entre conectores, essa relação de 'P_s' e 'b_a' não está mais na mesma proporção. Neste caso, a resistência ao cisalhamento nas extremidades não se altera, mas devido ao espaço vazio na região entre os conectores, ocorre uma redução de 'P_s' que deverá ser multiplicado por um fator de correção 'R' ver, Equação (2.9).

$$R = 1 - (b_a/b_c) \tag{2.9}$$

Figura 2.26 - Modelos aplicado ao estudo de 'ba' (Oehlers, 1989).

Com base no que foi dito, o conector 'U' representa uma boa solução para combater os efeitos das fissuras de fendilhamento. Contudo este conector apresenta uma rigidez inferior ao conector *stud*. Desta forma o conector ideal para resolver este problema, é aquele que apresenta uma boa rigidez e ao mesmo tempo uma área efetiva de atuação considerável, a fim de conter as fissuras por fendilhamento. O modelo de conector proposto neste trabalho visa a resolver este problema.

2.8.2 - Efeitos dinâmicos na ligação laje conector

O trabalho de Salari (2001) apresenta um esquema da relação força/deslizamento, para um conector de cisalhamento, conforme a Figura 2.27, onde 'u' representa o deslocamento e 'q' a força de aderência. Seguindo a Figura 2.27, Salari (2001) relata que a rigidez dos trechos ascendentes do gráfico da envoltória monotônica, reduz-se gradualmente do valor inicial até zero. Isto é, ao se atingir a força última de aderência 'q', que no caso está simbolizado pelo ponto de coordenadas 'u₁, q₁', a resistência da aderência decresce até o valor máximo da força de atrito 'q_{fu}'.

O comportamento cíclico da aderência é bem definido pelo trecho de descarregamento 'AB'. Segundo Salari (2001) após a retirada da carga surge uma grande deformação residual inelástica 'OB'. Durante o processo de carregamento surgem fenômenos bastante sutis como o descolamento entre o conector e a laje e também a separação entre as partículas do concreto. Este fato ocasiona perda da rigidez da conexão na região pelo surgimento destes espaços vazios. O trecho 'BC' representa o fechamento destas aberturas, que se encerra sob certa força de aderência 'q_f'. A partir do ponto 'C', ocorre um rápido

ganho de rigidez até o momento em que o concreto começa a fissurar. A resistência e a rigidez da aderência se deteriora durante o processo de carregamento cíclico, o que termina por enfraquecer a ligação e a estrutura mista propriamente dita.

Figura 2.27 - Comportamento cíclico de Força x Deslocamento do stud (Salari, 2001)

2.9 – ESTUDO DA LIGAÇÃO ENTRE O CONECTOR E O CONCRETO

O estudo da ligação entre o conector de cisalhamento e o concreto é de suma importância, para a determinação dos parâmetros de contato, na análise numérica em elementos finitos. Dentre estes parâmetros que envolvem a aderência do concreto com o conector de cisalhamento, estão entre os mais importantes a coesão e o coeficiente de atrito.

2.9.1 - Considerações iniciais

A aderência entre elementos metálicos e o concreto adjacente é que possibilitam a transferência de esforços entre estes materiais, fato este responsável pela existência do concreto armado e das estruturas mistas. Ducatti (1993) relata que a aderência é a tensão de cisalhamento entre a superfície de uma barra da armadura e o concreto que a circunscreve. A aderência é avaliada pela relação entre a tensão de cisalhamento entre os dois materiais e o deslocamento relativo entre o aço e o concreto.

2.9.2 - Componentes da aderência

A aderência está associada a uma combinação das parcelas relativas à adesão, ao atrito e à ancoragem mecânica. Esta divisão, entretanto, é meramente didática, sendo de grande dificuldade determinar cada componente isoladamente, devido à complexidade dos fenômenos envolvidos. Silva (2006) descreve um exemplo de aderência, conforme a Figura 2.28, onde o primeiro trecho da curva corresponde à adesão. O trecho relacionado entre o fim da aderência por adesão e a tensão de cisalhamento última (σ_{bu}) corresponde à aderência mecânica.

Figura 2.28 - Tensão de Cisalhamento x Deslocamento relativo do aço em relação ao concreto (Silva, 2006)

2.9.2.1 - Aderência por adesão

A adesão, ou aderência química, surge devido às ligações físico-químicas na interface durante as reações de pega do cimento. Essa parcela da aderência (R_{b1}) pode ser constatada através da separação de um bloco concretado sobre uma chapa metálica, como indica a Figura 2.29. Filho (2006) relata que esta parcela representa um valor pequeno comparado com os demais. A adesão pode ser destruída pelas ações de serviço ou retração do concreto.

Figura 2.29 - Aderência pro adesão (Fernandes, 2000)

2.9.2.2 - Aderência por atrito

A parcela relativa ao atrito depende das forças de atrito existentes entre o aço e o concreto. Estas forças dependem do coeficiente de atrito entre os materiais que está em função da rugosidade superficial da barra metálica. A aderência por atrito é proveniente da pressão transversal do concreto sobre a barra metálica, como ilustrado na Figura 2.30. Fernandes (2000) cita a retração do concreto e ações de confinamento como exemplos deste tipo de pressão transversal. Essa parcela da aderência é de grande importância para barras lisas, o tipo de barra a ser estudado neste trabalho.

Figura 2.30 - Aderência por atrito (Fernandes, 2000)

2.9.2.3 - Aderência mecânica

A aderência mecânica é relativa à interação mecânica entre o aço e o concreto, devido a presença de saliências ou irregularidades na superfície da barra, conforme Figura 2.31. No caso das armaduras surgem forças de compressão nas nervuras, ocasionando irregularidades, fissuração e micro esmagamento nesta região. Nas barras lisas a irregularidade superficial é devido ao processo de laminação destas barras. Neste caso a aderência mecânica se confunde com a aderência por atrito.

Figura 2.31 - Aderência mecânica (Fusco, 1995)

2.9.3 - Ensaio de arrancamento, pull-out

O estudo da aderência entre a barra metálica e o concreto pode ser realizado por meio de uma série de experimentos normatizados, dentre os quais cita-se como os principais o de flexão, o de conformação superficial e o de arrancamento direto. Este último foi o escolhido para a análise experimental.

O ensaio de arrancamento direto ou *pull-out* é padronizado pela RILEM-FIP-CEB :1973 e também está referido na ASTM C234:1991. O ensaio baseia-se na extração de uma barra metálica imersa em um bloco de concreto, que encontra-se apoiado sobre base metálica. A medição do deslocamento relativo da barra em relação ao concreto é conhecida por meio da outra extremidade da barra metálica. Neste local é fixado um relógio comparador ou qualquer outro instrumento de medição. A descrição do ensaio encontra-se na Figura 2.32.

Figura 2.32 - Esquema do ensaio de arrancamento direto, Rilem (1973)

França (2004) realizou este ensaio nos estudos de aderência, conforme Figura 2.33, onde em uma das extremidades foi fixada uma placa metálica na qual se apoiava uma célula de carga. Na outra extremidade estava um relógio comparador, informando o deslocamento da armadura. Para simular o capeamento do bloco de concreto foi introduzido um pedaço de couro entre a base apoio e bloco de concreto. A peça de couro é de 3mm de espessura.

(a) Detalhe da região posterior

(b) Detalhe da lateral

Figura 2.33 - Detalhes do ensaio de arrancamento direto (França, 2004)

3 - CONCEPÇÃO DO CONECTOR 'V' E ANÁLISE NUMÉRICA

3.1 - A CONCEPÇÃO DO CONECTOR 'V'

Os conectores de cisalhamento mais utilizados no Brasil, o *stud* e o 'U' apresentam características distintas. O *stud* apresenta considerável resistência ao cisalhamento na região de interface perfil/laje proporcionando satisfatória rigidez na ligação do perfil com a laje. Contudo o *stud* apresenta reduzida área de contato com a laje, ocasionando concentrações no concreto. O conector 'U' apresenta considerável área de contato com o concreto, reduzindo efeitos de fissuração na laje, contudo em comparação com o *stud* é observado uma redução da rigidez na ligação do perfil metálico com a laje de concreto. O conector de cisalhamento 'V' assim como o conector 'U' imprime uma considerável área de contato com o concreto, reduzindo efeitos de fissuração no conector 'U' imprime uma considerável área de contato com o conector de cisalhamento 'V' assim como o conector 'U' imprime uma considerável área valor de rigidez de ligação laje/perfil compatível com o conector *stud*.

O conector 'V' pode ser fabricado a partir de perfis metálicos 'U', como demonstra a Figura 3.1. Seguindo estas ilustrações, pode-se produzir o conector 'V' por meio de corte nas abas do perfil 'U' (Figura 3.1(b)), seguido de uma dobra, de forma que as extremidades 'A' e 'B' (Figura 3.1(c)) coincidam e possam ser soldadas. Em função da relação entre as medidas da largura da aba (w) e o comprimento do trecho do perfil 'U' (L_{cs}) pode-se obter dois modelos de conector 'V', como observado na Figura 3.1. O primeiro modelo (Figura 3.1(a) a (d)) é obtido quando w $\geq L_{cs}$ e o segundo tipo (Figura 3.1(e) a (h)) é desenvolvido quando w $< L_{cs}$, que representa o formato a ser pesquisado. Para adaptar melhor este modelo, pode-se realizar um corte no perfil 'U' original com o mesmo ângulo do corte na parte central, ver Figura 3.1(f). Desta forma o produto final terá as laterais das abas paralelas.

O conector 'V' obtido para os ensaios experimentais está mostrado na Figura 3.2.

(a) Vista global

(b) Detalhe dos cantos

(c) Detalhe interno da solda

Solda

Figura 3.3 - Detalhe de fixação dos conectores no perfil metálico

3.1.1 - Área efetiva dos conectores

A área da seção resistente ao esforço de cisalhamento, seção líquida dos conectores, é determinada pela área de sua seção transversal. A seção líquida (Acs_{stud}) dos conectores de cisalhamento *stud*, é conhecida pela seguinte equação:

$$Acs_{stud} = \frac{\pi \phi^2}{4} \tag{3.1}$$

Onde:

Ø - diâmetro do conector stud

Considerando como referência a Figura 2.9, a área efetiva do conector 'U' pode ser determinada pela seguinte equação:

$$Acs_{(U)} = L_{CS}.(t_f + 0.5t_w)$$
 (3.2)

A configuração da área efetiva do conector em 'V' é mostrada pela Figura 3.4. e é fornecida pela seguinte equação:

$$Acs_{(V)} = \frac{b.e_{sp}}{sen(\frac{\alpha}{2})}$$
(3.3)

Onde:

L- comprimento da alma do conector
e_{sp}- espessura da alma do conector
b- largura do conector
α- ângulo interno do conector

Figura 3.4 - Vista ilustrativa do conector do conector 'V'

3.1.2 - Estudo da área efetiva dos conectores de cisalhamento

Admitindo o diâmetro (Ø) do conector *stud* de 19,1 mm, foi realizado um estudo comparativo da área efetiva dos conectores do *stud*, 'U' e 'V'. O estudo aborda a influência da largura e espessura do conector. O ângulo de abertura do conector em 'V' foi mantido em 90°.

Considerando a espessura do conector ('esp', Figura 3.4) como fator preponderante, fixouse a largura do conector ('b', Figura 3.4) como b = 100 mm. Em vista da área efetiva do conector *stud* ser constante, foi considerada a hipótese de utilizar 1, 2 e 3 conectores em paralelo. O resultado obtido é ilustrado na Figura 3.5. Analisando os resultados, o conector 'U' quando utiliza chapa de espessura até 3 mm apresenta área útil inferior a utilização de um conector *stud*. Se comparado com dois *studs* o conector 'U' possui menor área efetiva mesmo para chapas com 5 mm de espessura. O conector 'V' com espessuras de até 2 mm, apresenta área efetiva menor que a de um conector *stud* de 19,1 mm. Um conector 'V' com chapa de 4,25 mm já apresenta área efetiva superior à de 2 *studs* de 19,1 mm.

Figura 3.5 - Influência da espessura do conector na área efetiva ao cisalhamento

A influência da largura (L_{cs}) e da espessura (t_w) do conector 'U' na área útil está demonstrada na Figura 3.6. Para largura de 100 mm e 200 mm do conector 'U', a espessura de 3,00 mm (U-3,0 mm) é a que mais se aproxima da utilização de um e dois *studs*, respectivamente. Uma largura mínima de 200 mm sugere a utilização de três conectores *stud* em paralelo. A espessura de 4,25 mm foi o valor de área útil que mais se aproxima, da área de três studs.

Figura 3.6 - Influência da largura do conector 'U' na área efetiva ao cisalhamento

A Figura 3.7 retrata a influência da largura do conector 'V' na área efetiva ao cisalhamento. Para uma largura de 200 mm a espessura de 2 mm o conector 'V' apresenta o valor de área efetiva mais próximo a área de dois studs. Ainda com esta largura V-3,0 mm representa a área útil mais aproximada da área de três *studs*. Analisando um comprimento de conector de 100 mm, é possível conhecer a espessura de melhor interesse. Respectivamente as espessuras de 2,0, 4,25 e 5,0 mm é que apresentam a área efetiva mais aproximada das áreas de um, dois e três *studs*, respectivamente.

Figura 3.7 - Análise da influência do comprimento do conector em 'V' na área efetiva ao cisalhamento

3.2 - ANÁLISE NUMÉRICA EM ELEMENTOS FINITOS

A análise numérica em elementos finitos foi adotada como ferramenta para os primeiros estudos do conector 'V'. Nestas primeiras análises o conector 'V' é estudado e comparado com o conector *stud*. Neste estudo foi considerada a fissuração do concreto e a distribuição de tensões e deformação destes conectores de cisalhamento.

Os modelos numéricos apresentados neste trabalho foram desenvolvidos com base no estudo numérico desenvolvido por Tristão (2002), que obteve resultados de considerável precisão em relação ao trabalho experimental de Kalfas et al (1997).

A seguir são apresentados aspectos gerais da estratégia adotada na modelagem numérica, utilizando o programa Ansys.

3.2.1 - Especificações de contato no programa Ansys

Antes de apresentar os elementos adotados se faz necessário um entendimento sobre o contato existente entre o concreto e o conector, pois ao aplicar contato entre os materiais o modelo se torna mais complexo e suscetível a não convergência. Aplicado por meio de elementos finitos de contato, citados mais a frente, diversos são os fatores que influenciam a união entre os materiais, dentre eles o atrito e a coesão do concreto.

O contato pode ser classificado em rígido-flexível e flexível-flexível. Neste caso, se trabalha com o modelo rígido-flexível, onde uma das superfícies é mais rígida (concreto) do que a outra (conector), que consequentemente apresenta deformações diferenciadas.

A análise do contato pode ser feita através de três formas: nó-nó (CNN), nó-superfície (CNS) e superfície-superfície (CSS), sendo este último o modelo adotado neste trabalho. No contato superfície-superfície, o elemento finito aplicado na discretização do material deformável é denominado elemento de 'contato', e o elemento do material rígido é identificado como 'alvo'.

Figura 3.8 - Simbologia dos elementos contato e alvo e suas respectivas normais

Segundo Fernandes (2000), os elementos de superfície-superfície possuem algumas vantagens em relação aos de nó-superfície, tais como:

- permitem elementos de alta e baixa ordem na superfície, isto é, elementos com nós de extremidade e nó intermediário;
- permitem grandes deformações, com deslizamento e atrito significativos;
- fornecem melhores resultados no caso de pressão normal e tensões de atrito;
- não existem restrições quanto à forma da superfície rígida. As descontinuidades da superfície podem ser físicas ou devidas à discretização do modelo;
- exigem uma menor quantidade de elementos que os de nó-superfície.

3.2.1.1 - Atrito e tensão de cisalhamento

A definição do atrito existente entre os materiais é de suma importância na modelagem em elementos finitos. Dependendo dos parâmetros adotados no programa Ansys para uma determinada carga, alguns elementos podem deslocar-se bruscamente, dificultando a convergência do resultado. Dentre os fatores considerados no Ansys estão a tensão máxima de cisalhamento (τ_{max}) e o coeficiente de atrito (μ) entre os materiais. O programa considera estes parâmetros (τ_{max} , μ) através da Lei de Coulomb que determina que não há deslizamento quando ($\tau < \tau_{max}$), e que a força tangencial (F_s) não pode exceder uma determinada parcela da força normal (F_n), isto é, (F_s < μ . F_n) como mostra a Figura 3.9(a). Desta forma, pelo gráfico da Figura 3.9(b) a tensão cisalhante equivalente ' τ ' é definida como uma parcela da pressão de contato 'P'.

(a) Demosntração por intermédio de blocos
 (b) Relação tensão de atrito e pressão de contato (P)
 Figura 3.9 - Modelo de atrito pela teoria de Coulomb (Barbosa, 2000)

3.2.1.2 - Coeficiente de rigidez normal dos elementos de contato 'CSS'

Outro parâmetro considerado na modelagem de elemento de contato superfície- superfície é o coeficiente de rigidez normal (FKN), vide Figura 3.10. O 'FKN' é a intensidade de penetração ou separação entre os materiais. Incrementos na rigidez à redução na penetração, entretanto podem ocasionar dificuldades no processo de convergência.

Figura 3.10 - Penetração entre superfícies, monitorada por 'FKN' (Barbosa, 2000)

A rigidez final adotada pelo programa (Rfinal) é obtida por meio da equação (3.1).

$$R_{\text{final}} = FKN$$
. R_{est} (3.1)

onde:

R_{est} - é a rigidez estimada pelo Ansys em função das características do material R_{final} - é a rigidez final de cálculo

O manual do programa limita um intervalo para o coeficiente 'FKN' entre 0,01 e 100, e recomenda utilizar um valor que não ocasione problemas de convergência e produza pequenas penetrações. Desta forma, por meio de tentativas, o valor de 'FKN' foi escolhido de maneira que a penetração máxima fosse da ordem de 0,1mm.

3.2.2 - Elementos finitos adotados

Os elementos finitos adotados da biblioteca do programa Ansys, são elementos com três graus de liberdade por nó, sendo estes graus de liberdade correspondentes às translações nas três direções.

O elemento tridimensional SOLID-45 é aplicado para simular o comportamento dos conectores de cisalhamento e do perfil metálico. Esse elemento permite plasticidade, fluência, dilatação térmica, grandes deflexões e deformações. A Figura 3.11 mostra o elemento SOLID-45 e a Tabela 3.1 resume as principais características deste elemento.

Figura 3.11-Elemento SOLID-45 disponível no programa Ansys

Tabela 3.1 Resumo das principais características do elemento SOLID-45

Numero de nós	8
Conectividade nodal	I, J, K, L, M, N, O, P
Graus de Liberdade	Translações: Ux, Uy, Uz
Aplicações do sólido 3D pelo Ansys	Estrutural, Mecânica, Multifísica

Para simular o concreto armado foi utilizado o elemento SOLID-65. Este elemento é capaz de simular com boa precisão a não-linearidade do concreto, pois considera a deformação plástica, o aparecimento de fissuras em três direções ortogonais e também considera o esmagamento do concreto na região comprimida. A Figura 3.12 ilustra o elemento SOLID-65.

Figura 3.12 - Elemento SOLID-65 disponível no programa Ansys

As barras da armadura do concreto armado são discretizadas pelo elemento de barra LINK-08, que é constituído por dois nós (I e J), ver Figura 3.13. Assim como os demais elementos finitos, também possui três graus de liberdade por nó, sendo o eixo 'x' orientado no sentido do comprimento do elemento.

Figura 3.13 - Elemento de barra LINK-08

O contato entre conectores e concreto é realizado por meio de dois elementos finitos planos aplicados nas superfícies coincidentes dos elementos atribuídos ao concreto e ao conector. O CONTA-173 é o elemento finito plano aplicado sobre a superfície do elemento menos rígido, no caso o conector. Sua função é representar o contato e deslizamento entre a superfície deformável e a superfície "rígida" que recebe o segundo elemento finito plano o TARGE-170. A Figura 3.15 esboça a aplicação dos elementos CONTA-173 e TARGE - 170. O CONTA-173 possui também três graus de liberdade por nó: translações nas direções '**x**', '**y**' e '**z**'. As características geométricas desse elemento são as mesmas da face dos elementos sólidos a qual está ligado, como mostra a Figura 3.14.

Figura 3.14 - Representação do elemento CONTAT-173 (Fernandes, 2000)

O elemento de contato aplicado na superfície do material mais rígido o 'alvo', que no caso é o concreto é o elemento TARGE-170. Assim como o CONTAT-173, este elemento plano, reveste a superfície do elemento rígido e formam um par com a superfície do CONTAT-173. Estes dois elementos estão associados por meio da constante de atrito e devem ter suas normais (N) orientadas em sentidos opostos, como mostra a Figura 3.15.

Figura 3.15 - Representação esquemática da interação entre os elementos de contato e os sólidos a que estão associados.

3.2.3 - Aspectos gerais da modelagem numérica

Neste trabalho é adotado como referência o conector *stud* para estudo comparativo com outros conectores e aferição dos dados aplicados na análise numérica. Os dados de calibração utilizados nas análises do conector *stud* são aplicados na análise conector 'V' e os resultados comparados. Os modelos desenvolvidos seguem a mesma metodologia estabelecida por Tristão (2002), que simulou em elementos finitos os ensaios de *push-out* do conector *stud*, realizados por An&Cederwall (1996). Devido à simetria da geometria do modelo, apenas metade do modelo experimental do *push-out* é simulado numericamente em elementos finitos.

Este modelo é chamado por Tristão (2002) de 'PHS' (*push-out* para o conector *stud*) no qual se utiliza quatro conectores soldados lateralmente dois a dois. O modelo do conector 'V' é avaliado com duas espessuras de alma distintas de 2,66 mm e 4,66 mm. As características geométricas do conector pino adotadas na análise estão explicitadas na Tabela 3.2. A simbologia 'PHS-2' refere-se ao ensaio *push-out* com dois *studs* fixados paralelamente.

Tabela 3.2 - Características dos conectores

Modelo	Tipo de Conector	Diâmetro do Conector	Altura do conector
PHS-2	Sutd	19 mm	75 mm

Na estruturação do modelo buscou-se manter simetria na geometria dos elementos. As dimensões dos lados ortogonais são muito semelhantes, e procurou-se refinar a malha apenas nas regiões de concentração de tensão como as regiões nas proximidades dos conectores. O objetivo é ter uma malha com menos elementos e diminuir o esforço computacional e melhorar as condições de convergência.

3.2.3.1 - Condições de contorno

As condições adotadas visam a simular o ensaio *push-out*, de maneira que sejam restringidas possíveis instabilidades na laje e o perfil possa deslocar-se de forma retilínea ao longo do eixo 'Z', ver Figura 3.16. Em referência a esta figura a Tabela 3.3 apresenta as condições de contorno adotadas:

Tabela 3.3 - Condições de contorno adotada no ensaio push-out

Região analisada		Restrição
Interface (laje/Perfil)	Face superior do flange do perfil	Ux, Uy
	Face inferior da laje	Ux, Uy
Base de apoio da laje		Ux, Uy, Uz
Alma do perfil		Ux

Figura 3.16 - Orientação do sistema cartesiano da estrutura mista

3.2.3.2 - Acoplamentos e vínculos

Os elementos finitos dos diferentes materiais estão acoplados por meio de nós coincidentes. O uso do par de elementos de contato, apesar de terem a mesma geometria, não compartilham o mesmo nó. Desta forma as condições de acoplamentos variam de acordo com os materiais. Os acoplamentos adotados foram:

- Perfil/Conectores a região de união do conector e do perfil compartilha o mesmo nó, garantindo assim a união perfeita entre estes elementos.
- Laje/Conectores nesta região os elementos das faces coincidentes possuem a mesma geometria, porém os elementos não compartilham o mesmo nó. Estes foram duplicados de forma que ficaram sobrepostos. A interação entre estes materiais é realizada por intermédio dos elementos de contato.
- Perfil/Laje as faces coincidentes dos elementos finitos destes materiais também apresentam a mesma geometria, mas não estão ligadas pelo mesmo nó. O fato de não existir nenhuma interação nesta região poderia ocasionar problemas de convergência. Para resolver este problema os deslocamentos dos nós coincidentes do concreto e do flange do perfil foram restritos na direção 'Ux' e 'Uy'.
- Armadura/Laje os elementos de barra compartilham o mesmo nó do elemento adotado para o concreto.

3.2.4 - Critérios adotados para o aço e o concreto na análise não-linear

Para se simplificar o modelo e com o intuito de facilitar a convergência numérica, apenas os conectores e a laje apresentam uma definição mais rigorosa das características de não linearidade.

3.2.4.1 - Aço adotado para o perfil e a armadura

As características aplicadas ao aço da armadura apresentam um comportamento elastoplástico com endurecimento, ver Figura 3.17. O fato do perfil e armadura não serem o foco principal da análise numérica, optou-se em simplificar as características das propriedades mecâncias dos materiais. Materiais de propriedades menos complexas facilitam o processo de convergência.

Figura 3.17 - Gráfico tensão x deformação para a armadura (gráfico fora de escala)

3.2.4.2 - Aço aplicado ao conector de cisalhamento

Os conectores de cisalhamento apresentam as mesmas características adotadas por Tristão (2002), como explicitado na Figura 3.18, onde o material apresenta um comportamento elasto-plástico multilinear, definido por quatro retas que definem módulos de elasticidade distintos (\mathbf{E}_n) para cada estado de carregamento. Seguindo a Figura 3.18, as propriedades plásticas se iniciam quando a tensão (σ_a) atinge o valor de **0,7. f**_v.

Figura 3.18 - Comportamento elasto-plástico multilinear (Tristão, 2002)

3.2.4.3 - Características aplicadas ao concreto

O elemento SOLID-65, adotado para simular o concreto, permite simular a fissuração quando a tensão limite de tração é alcançada. Os parâmetros estabelecidos para o concreto estão explicitados na Tabela 3.4. Os demais valores adotados para estes itens estão
dispostos no próximo capítulo, com exceção dos itens 02, 03 e 07 (Tabela 3.4.) que são os mesmos adotados por Tristão (2002).

	Intervalo	Valor
Dados Exigidos Pelo Programa	de dados	Adotado
01-Temperatura do material		21°C
02 -Coeficiente de transf. do cisalhamento p/ fissuras fechadas	0,0 - 1,0	0,7
03 -Coeficiente de transf. do cisalhamento p/ fissuras abertas	0,0-1,0	1.0
04 -Tensão uniaxial de tração – f_{tk} (positiva) (kN/cm ²)	f _{ck} /10	-
05 - Tensão uniaxial de esmagamento (positiva) $(f_{ck} - kN/cm^2)$	-	-
06- Tensão biaxial (f _{cb})	1,2.f _{ck}	-
07- Estado de tensão no ambiente hidrostático para ser utilizado nos itens 08 e 09. (σ^{h}_{a})	$\sqrt{3.f_{ck}}$	10 ⁻¹⁰
08 - Tensão uniaxial de esmagamento sob um ambiente hidrostático (f ₁)	1,45.f _{ck}	-
09 - Tensão uniaxial de esmagamento sob um ambiente hidrostático (f ₂)	1,725.f _{ck}	-
10- Fator multiplicador para um estado de tensão fissurada	0,0 - 1,0	1,0

Tabela 3.4 - Descrição das constantes que definem o elemento SOLID-65

3.2.4.4 - Critério de convergência

O programa Ansys é capaz de prever a falha do concreto e do aço, por meio dos critérios de ruína quanto ao esmagamento e fissuração para o concreto e ruptura do aço. Para o aço o critério de convergência se baseia no diagrama não-linear de tensão x deformação. Para o concreto, uma superfície de ruptura tridimensional é definida com base nas tensões características de resistência do concreto à tração e à compressão. A superfície 3D de ruptura do concreto pode ser representada num plano através dos valores das tensões principais representadas nos eixo 'x' e 'y' (respectivamente, denominadas de $\sigma_{xp} e \sigma_{yp}$), ver Figura 3.19 (a). O critério de ruptura do concreto pode então ser expresso em função do sinal da menor tensão principal que é representada na direção 'z' ' σ_{zp} '. Seguindo a orientação da superfície de ruptura da Figura 3.19 (a), quando ' σ_{xp} ' e ' σ_{yp} ' assumem valores negativos (compressão), na direção do eixo 'z' pode acontecer $\sigma_{zp} < 0$, $\sigma_{zp} = 0$, σ_{zp}

> 0. se σ_{xp} > 0 e/ou σ_{yp} > 0. O concreto pode fissurar com fissuras no plano perpendicular à tensão principal de tração, conforme Figura 3.19 (b). No caso de σ_{xp} < 0 e/ou σ_{yp} < 0, o concreto pode romper por esmagamento dependendo do sinal da tensão σ_{zp} . Se σ_{zp} < 0 o concreto poderá esmagar, mas se $\sigma_{zp} = 0$ ou $\sigma_{zp} > 0$ o concreto pode ainda fissurar na direção normal à tensão principal que ocasionou o surgimento da fissura, vide Figura 3.19 (b). Nesta figura, a direção da reta (θ_{α} , ϕ_{α}) ali representada é, portanto, função do valor das tensões nos três eixos. Após o surgimento de ruptura o programa anula o módulo de elasticidade na direção paralela à tensão principal tracionada que gerou a fissura. O esmagamento do concreto ocorre quando todas as tensões principais são de compressão e fora da superfície de ruptura. Após a decretação do esmagamento o programa torna o módulo de elasticidade do concreto nulo em todas as direções.

Figura 3.19 - Superfície de ruptura para o concreto (Ansys)

3.3 - MODELOS NUMÉRICOS CONSTRUÍDOS

A fim de conhecer o desempenho do conector 'V', foi desenvolvida uma análise numérica em um modelo em elementos finitos (MEF), simulando o ensaio de *push-out*. Os dados obtidos para o conector proposto foram confrontados com os resultados obtidos para conectores *stud* e 'U'. Os resultados destes ensaios e os valores referentes às características dos materiais estão dispostos no trabalho de Tristão (2002). Com o objetivo inicial de calibrar a modelagem numérica, foi simulado um modelo com o conector *stud*, (PHS-2) e os resultados comparados com os valores obtidos no trabalho de Tristão (2002).

3.4 - MODELO NUMÉRICO PHS-2

Os dados do modelo PHS-2, apesar de estarem dispostos no trabalho de Tristão (2002), foram baseados no trabalho de An&Cederwall (1996), onde os conectores de 19 mm estão embutidos no concreto. O modelo adotado para PHS-2 está explicitado na Figura 3.20.

Figura 3.20 - Modelo em elementos finitos adotado para PHS-2

Aspectos do modelo em elementos finitos (MEF) do conector 'V' estão na Figura 3.21. A título de facilitar a modelagem numérica, o conector 'V' possui a mesma largura da mesa do perfil. A largura da mesa do perfil foi reduzida para obter a mesma área de atuação do conector *stud*, facilitando assim o processo de geração da malha.

Figura 3.21 - Modelo em elementos finitos adotado para conector em 'V'.

As dimensões aplicadas ao modelo PHS-2 tanto para o conector *stud* como para o conector 'V' estão apresentadas na Figura 3.22 e Figura 3.23. No modelo do conector 'V' tem-se a mesma área de atuação do conector *stud*. Isto é, sua largura de 15 cm corresponde ao distanciamento entre centros dos conectores.

Figura 3.22 - Dimensões do ensaio push-out para o 'MEF' do modelo PHS-2

Figura 3.23 - Dimensões do ensaio push-out para o 'MEF' do conector 'V'

3.4.1 - Característica dos materiais adotados no PHS-2

As características dos materiais são as mesmas adotadas por Tristão (2002), onde o aço tem coeficiente de Poisson (v) de 0,3 e os demais dados do aço estão listados na Tabela 3.5. O aço do conector 'V' tem as mesmas propriedades dos conectores do tipo 'U' também estudados por Tristão (2002).

Tabela 3.5 -	- Propriedades	do aco do	perfil e dos	conectores (ref.	. ao gráfico	da Figura 3.18)
	r		r	(0	

Material	s _a	$oldsymbol{s}_b$	s_{c}	s_d	Е	<i>E</i> ₁	E ₂	E ₃
Widterfar	(kN/cm²)	(kN/cm ²)						
Aço do								
conector	29,26	41,8	51,9	51,9	20700	207	20,7	0
stud								
Aço do								
conector	17,35	24,78	35,37	35,37	19900	199	19,90	0
'V'								
Aço do	17.5	25	40	40	20500	205	20.5	0
perfil.	- ,0						_ 3,0	

As propriedades do concreto estão dispostas na Tabela 3.6. O módulo de elasticidade, segundo Tristão (2002), foi determinado pela expressão do ACI (1993)

Dados Exigidos Pelo Programa	Valor Adotado
01-Módulo de elasticidade	2710
02-Coeficiente de transf. do cisalhamento p/ fissuras fechadas	0,7
03-Coeficiente de transf. do cisalhamento p/ fissuras abertas	1,0
04 -Tensão uniaxial de tração – f_{tk} (positiva) (kN/cm ²)	0,322
05 - Tensão uniaxial de esmagamento (positiva) $(f_{ck} - kN/cm^2)$	3,077
06 - Tensão biaxial (f _{cb})	3,692
07 - Estado de tensão no ambiente hidrostático para ser utilizado nos itens 08 e 09. (σ_a^h)	10 ⁻¹⁰
08- Tensão uniaxial de esmagamento sob um ambiente hidrostático (f ₁)	4,462
09 - Tensão uniaxial de esmagamento sob um ambiente hidrostático (f ₂)	5,308
10- Fator multiplicador para um estado de tensão fissurada	1,0

Tabela 3.6 - Valores adotados para o concreto no modelo PHS-2 (Tristão, 2002)

Os valores aplicados nas constantes dos elementos de contato para o ensaio do conector do *stud* estão expostos na Tabela 3.7. Estes dados são referentes ao estudo do conector do *stud*.

Tabela 3.7 - Valores considerados para as constantes do elemento de contato.

Dados	Valores adotados p/ os dois conectores		
Dudos	stud	Modelo 'V'	
Coeficiente de rigidez normal (FKN)	2700	100	
Tolerância de penetração	0,2	0,2	
Coeficiente de atrito (µ)	0,4	0,3	
Tensão máxima de atrito (T _{auMax})	24,133(kN/cm ²)	15(kN/cm ²)	
Coesão de contato (c)	0,18 (kN/cm ²)	0,18 (kN/cm ²)	

O trabalho de Tristão (2002) cita apenas os valores do coeficiente de rigidez normal (FKN) que seriam 2000 para o conector *stud* e 500 para o modelo em 'U'. Tanto a coesão de contato como o coeficiente de atrito (μ) foram também analisados com base no trabalho de

Clímaco (2001). Onde foi verificada a resistência de aderência do concreto a reforços estruturais. Os valores sugeridos por Clímaco (2001) estão na Tabela 3.8.

Condições de interface	Coesão (N/mm ²)	Coeficiente de atrito
Rígido	$0,25 f_{cc}^{2/3}$	1,4
Mediana	$0,25 f_{cc}^{2/3}$	0,9
Macio	0,5 N/mm ²	0,7

Tabela 3.8 - Valores sugeridos por Clímaco (2001) para a coesão e coeficiente de atrito

O valor adotado para a coesão foi obtido do trabalho de Kotinda (2006) que ainda sugere a aplicação de um coeficiente de atrito (μ) de 0,4. O valor adotado para a tensão máxima de atrito foi extraído do manual do programa Ansys, que sugere aplicar o valor de $\sigma y/\sqrt{3}$. Os demais valores foram obtidos por tentativa, utilizando como referência as curvas (carga x deslizamento -Figura 3.24) do trabalho de Tristão (2002).

3.4.2 - Relação força deslocamento para o modelo PHS-2

Conforme mencionado anteriormente os dados do modelo PHS-2 foram utilizados para aferir o modelo numérico. O resultado desta análise encontra-se disposto na Figura 3.24, onde se mostra o deslizamento relativo entre a laje e o perfil pela força aplicada em cada um deles. Esta força é determinada dividindo-se a carga aplicada pelo número de conectores, no caso 4 da Figura 3.24. A curva intitulada de 'numérico' são os resultados obtidos na análise numérica por Tristão (2002) e PHS-2 refere-se aos valores do estudo em elementos finitos desenvolvido neste trabalho. As demais curvas de título 'experimental' são os valores obtidos na análise experimental de An&Cederwall (1996). Analisando este gráfico percebe-se que os valores de PHS-2 estão a favor da segurança e seu comportamento condizente com os dados experimentais, o que valida os valores considerados para as constantes aplicadas nesta análise numérica.

Figura 3.24 - Dados da análise numérica de PHS-2

No estudo comparativo dos conectores *stud* e 'V', vide Figura 3.25, a força total aplicada no 'MEF' do conector 'V' foi divida também por 4. Cada conector 'V' está desempenhando o papel de dois conectores *stud*. Analisando a Figura 3.25, percebe-se que o conector 'V' de 2,66 mm, apesar de apresentar uma menor rigidez, tem uma resistência final aproximada ao valor máximo obtido para os conectores *stud*. O conector 'V' de 4,66 mm apresenta valores aproximados do conector *stud*, na região elástica até aproximadamente a carga de 70 kN, onde a plastificação do pino já foi iniciada. O modelo 'V' de 4,66 mm apresenta um ganho de resistência de aproximadamente 22% em relação ao *stud* e 34% em relação ao 'V' de 2,66 mm.

Figura 3.25 - Comparação Estudo comparativo entre conectores stud e 'V'

3.4.3 - Tensões e fissuras provocadas pelos conectores

O estudo das tensões ocasionadas pelo uso dos conectores de cisalhamento em viga mista contempla dois aspectos: a propagação de fissuras no concreto e a distribuição de tensões no conector e no perfil.

A partir da análise dos resultados dos modelos em elementos finitos, nota-se que as fissuras plotadas, com o auxílio do programa Ansys são referentes a diferentes níveis de força, conforme mostrados nas Figura 3.26 e Figura 3.27, esta última é continuação da primeira.

O valor das forças atuantes nesta figura segue os mesmos níveis de tensão estabeleidos nos gráficos da Figura 3.24 e da Figura 3.25. Analisando a Figura 3.26 e a Figura 3.27 percebe-se que o modelo com *studs* apresenta uma maior quantidade de fissuras em relação aos conectores 'V'. O que permite deduzir que os *studs* proporcionam uma maior concentração de tensão. No modelo *studs* essas fissuras se iniciam nas faces do conector enquanto nos com 'V' as fissuras encontram-se na face exterior do conector. Isto permite que o concreto na região interna do conector se mantenha comprimido e as tensões estejam mais distribuídas, prolongando o surgimento de fissuras.

Outro fato observado é que as fissuras nos conectores *studs* atingem uma considerável área em torno do conector ao de se unirem às fissuras dos conectores adjacentes, o que não acontece com os conectores 'V'. Desta forma o conector 'V' aumenta a união do perfil com a laje e reduz a possibilidade do perfil destacar-se da laje.

Deve-se relatar que na Figura 3.27 (e) só está presente apenas a figura do conector 'V' de 4,66 mm de espessura, pois nos demais casos o programa apresentou não convergência para a força de 130 kN.

(c) Força atuante por conector de aproximadamente 70 kN

Figura 3.26 - Progressão de fissuras na região dos conectores força até 70 kN

(b) Força atuante por conector de aproximadamente 130 kN

Figura 3.27 - Progressão de fissuras na região dos conectores, força de 90 kN a 130 kN

Analisando as tensões nos conectores e no perfil a Figura 3.28 apresenta as tensões equivalentes de von Mises (kN/cm²) tanto no perfil metálico quanto no conector. Analisando esta figura é notório que para o conector *stud*, existe um forte nível de concentração de tensão tanto na base do conector quanto na mesa do perfil. Concentrações de tensão na mesa do perfil exige perfis com mesas de maior espessura, para assegurar boa fixação dos conectores, e evitar grandes deformações nesta região. Os conectores 'V' como apresentam menores concentrações de tensões na mesa possibilitam a utilização de perfis com menor espessura de mesa. Proporcionando assim perfis de menor peso, conferindo portanto, redução de custos no material da viga.

(a) Força atuante por conector de aproximadamente 30 kN

(b) Força atuante por conector de aproximadamente 50 kN

(c) Força atuante por conector de aproximadamente 70 kN $\,$

(d) Força atuante por conector de aproximadamente 90 kN

Figura 3.28 - Detalhe das tensões (kN/cm²) nos conectores de cisalhamento

3.5 - MODELO - PHU

Os modelos PHU referem-se a conectores 'U' formado a frio, que foram ensaiados *push-out* por Malite (1993) e cujos dados da análise laboratorial estão presentes no trabalho de Tristão (2002), que simulou em 'MEF' estes ensaios. Neste caso foram utilizados conectores de 2,66 mm e 4,66 mm de espessura. A Figura 3.29 ilustra o ensaio de Malite (1993). Neste trabalho, compararam-se os resultados de Malite (1993) com os resultados da análise numérica do conector 'V'.

Figura 3.29 - Ensaio de Push-out realizado por Malite (1993) (Tristão, 2002)

O conector 'V' possui as mesmas dimensões do conector 'U' com largura de 10 cm e ambos os conectores foram confeccionados com duas espessuras: 2,66 mm e 4,66 mm. Nos modelos em elementos finitos, as dimensões adotadas para o ensaio de *push-out*, são as mesmas adotadas em PHS-2 com exceção da largura do conector, que neste caso é de 10 cm e não de 15 cm.

3.5.1 - Características dos materiais aplicadas no PHU

As propriedades do aço do perfil e do conector 'V' são as mesmas aplicadas no estudo do modelo PHS-2 desenvolvido por Tristão (2002). O conector 'U' possui as mesmas propriedades do conector 'V'. Os valores adotados para as constantes dos elementos de contato também são iguais aos aplicados no modelo PHS-2, mantendo assim um padrão.

Material	<i>s</i> _a	s_b	s_{c}	s_d	E	<i>E</i> ₁	<i>E</i> ₂	E ₃
wideria	(kN/cm²)	(kN/cm ²)	(kN/cm²)	(kN/cm ²)	(kN/cm²)	(kN/cm²)	(kN/cm ²)	(kN/cm²)
Aço do								
conector	17,35	24,78	35,37	35,37	19900	199	19,90	0
(U)								
Aço do	17 35	24 78	35 37	35 37	19900	199	19.90	0
perfil	17,55	24,70	55,57	55,57	17700	177	17,70	0

Tabela 3.9 - Propriedade do perfil e dos conectores (ref. ao gráfico da Figura 3.18)

Em relação ao concreto as propriedades dos materiais foram obtidas das análises de Tristão (2002), que de acordo com cada espessura do conector em 'U' adotou diferentes valores como está demonstrado na Tabela 3.10.

Tabela 3.10 - Valores adotados para o concreto no modelo PHU (Tristão, 2002)

Dados Exigidos Pelo Programa	Valor Adotado		
	Esp. 2,66 mm	Esp. 4,66 mm	
01-Módulo de elasticidade	3609	3215	
02-Coeficiente de transf. do cisalhamento p/ fis. fechadas	0,7	0,7	
03 -Coeficiente de transf. do cisalhamento p/ fissuras abertas	1,0	1,0	
04 -Tensão uniaxial de tração – f_{tk} (positiva) (kN/cm ²)	0,271	0,276	
05 - Tensão uniaxial de esmagamento (positiva) $(f_{ck} - kN/cm^2)$	2,59	2,67	
06- Tensão biaxial (f _{cb})	3,108	3,204	
07 - Estado de tensão no ambiente hidrostático para ser utilizado nos itens 08 e 09. (σ_a^h)	10 ⁻¹⁰	10 ⁻¹⁰	
08 - Tensão uniaxial de esmagamento sob um ambiente hidrostático (f ₁)	3,756-	3,872	
09 - Tensão uniaxial de esmagamento sob um ambiente hidrostático (f ₂)	4,468	4,606	
10- Fator multiplicador para um estado de tensão fissurada	1,0	1,0	

Quanto aos elementos de contato, Tristão (2002) cita apenas que utilizou um FKN de 500. Os valores aplicados para estas análises estão explicitados na Tabela 3.11.

Dados dos fatores relativo aos	Valores adotados p/ os conectores 'V'		
elementos de contato	De esp-2,66 mm	De esp-4,66 mm	
Coeficiente de rigidez normal (FKN)	100	100	
Tolerância de penetração	0,2	0,2	
Coeficiente de atrito (µ)	0,3	0,3	
Tensão máxima de atrito (T _{auMax})	15(kN/cm ²)	15(kN/cm ²)	
Coesão de contato (c)	0,18 (kN/cm ²)	0,18 (kN/cm ²)	

Tabela 3.11 - Valores das constantes do elem. de contato no ensaio PHU p/ o conector 'V'

3.5.2 - Relação força deslocamento para o modelo PHU

Neste estudo foi realizado uma análise comparativa entre os resultados numéricos de Tristão (2002), os experimentais de Malite (1993) para o conector 'U' e os resultados numéricos obtidos para os conectores 'V' de 2,66 mm e 4,66 mm. As curvas com legenda 'experimental' correspondem aos resultados experimentais de Malite (1993) com conectores 'U' de 2,66 mm e 4,66 mm de espessura, dispostos, respectivamente, na Figura 3.30 e na Figura 3.31. No caso, como se está trabalhando com um conector, a força por conector é obtida dividindo a força aplicada no perfil do ensaio de *push-out* por dois (número de conectores 'U' e 'V').

Analisando o gráfico da Figura 3.30, nota-se que a análise numérica de Tristão (2002) segue de forma razoável o comportamento da análise experimental. Desta forma pode-se considerar os valores das constantes adotadas para o concreto e o aço, como válidas. Ainda no mesmo gráfico percebe-se que o ganho de resistência do conector 'V' é da ordem de 60% em relação aos conectores 'U'. Isto se deve ao fato de que os conectores 'V' são bem mais rígidos. A relação Força (kN) x Deslizamento (mm) é bem inferior ao conector 'U', como pode ser constado na Figura 3.30.

Figura 3.30 - Força x Deslizamento - conectores 'U' e 'V' com espessura de 2,66 mm

O estudo dos conectores 'U' e 'V' com espessura de 4,66 mm está apresentado na Figura 3.31. Com base nos resultados deste gráfico percebe-se que o ganho de resistência com o modelo em 'V' é de aproximadamente 40%.

Figura 3.31 - Força x Deslizamento - conectores 'U' e 'V' com espessura de 4,66 mm.

4 - PROGRAMA EXPERIMENTAL

Na análise experimental foram realizados ensaio de *push-out*, normatizado pelo EN 1994-1-1:2004. Inicialmente, nos ensaios piloto, a análise experimental apresenta-se como verificação dos estudos numéricos no modelo em elementos finitos (MEF), previamente realizados, a fim de compreender o comportamento dos conectores 'V'. A segunda etapa do programa experimental constitui um estudo mais aprofundado do conector 'V' e *stud*, dentre os fatores estudados estão a fissuração do concreto, resistência e deformação do conector, fissuração do concreto e a relação Carga x Deslizamento entre perfil e a laje. Na segunda etapa do programa experimental foram realizados ensaios complementares de arrancamento. Tais ensaios são importantes para o conhecimento da aderência do conector com o concreto e esclarecer alguns parâmteros adotados na análise numérica em elementos finitos.

4.1 - FABRICAÇÃO DOS MODELOS ENSAIADOS

4.1.1 - Modelo com o conector stud

O modelo com o conector *stud* segue os mesmos parâmetros estabelecidos pelo EN 1994-1-1:2004, que estão explicitados na Figura 4.1, onde todas as medidas estão em 'cm'.

Figura 4.1 - Modelo adotado para o ensaio do conector stud, medidas em 'cm'

4.1.2 - Modelo com o conector 'V'

No modelo construído para o ensaio do conector 'V', procurou-se manter a mesma distância entre os conectores, adotado no modelo com o *stud*. Para isto, e tendo em vista a geometria do conector, foi necessário desenhar o perfil e as lajes com um comprimento ligeiramente superior ao especificado no EN 1994-1-1:2004 como mostrado na Figura 4.2.

Figura 4.2 - Modelo adotado para o conector do tipo 'V', medidas em 'cm'

4.2 - MONTAGEM DAS ARAMDURAS

Em todos os modelos foi utilizada armadura com barras de aço CA-50 de mesma bitola, \emptyset 10 mm. O formato da armadura se assemelha a uma gaiola, ver Figura 4.3.

Figura 4.3 - Modelo de armadura montada, pronta para ser utilizada

A Figura 4.4 ilustra a montagem da armadura.

(a) Aplicação dos modelos de armadura
(b) Detalhe do canto da conexão
Figura 4.4 – Detalhe da montagem da armação da ferragem

4.3 - PERFIL METÁLICO ADOTADO

O perfil especificado no EN 1994-1-1:2004 para o ensaio *push-out* é o perfil europeu conhecido como HEB 260. Como este perfil não é disponível no mercado brasileiro, adotou-se um perfil nacional equivalente ao perfil W 250x73, cujas as dimensões estão na Figura 4.5.

Figura 4.5 - Seção transversal do perfil W 250x73

4.4 - PROJETO DE FÔRMAS

As fôrmas foram confeccionadas em madeirite plastificado de 17 mm de espessura. As formas utilizadas nos modelos com *studs* seguem o mesmo modelo utilizado por Veríssimo

(2007). O perfil fica encaixado na abertura central e apoiado na própria forma, conforme Figura 4.6.

Figura 4.6 - Detalhes da fôrma aplicada ao modelo de conector stud

Tendo em vista a geometria do conector 'V' e a posição no qual ele é colocado no modelo, optou-se por concretar o modelo de cabeça para baixo para evitar vazios em seu interior. Assim o conector ficou com a abertura para cima. Para isto, a face inferior da fôrma foi elevada e o perfil fica apoiado diretamente no piso, conforme mostra a Figura 4.7. Esse tipo de fôrma, apesar de consumir mais madeira, proporciona maior facilidade para a montagem do conjunto e maior estabilidade no processo de concretagem, visto que o perfil está totalmente apoiado no piso.

Figura 4.7 - Fôrmas para o modelo com conector 'V'

As medidas das fôrmas e maiores detalhes de montagem estão descritos no Apêndice -B

4.5 - CONCRETAGEM DOS MODELOS E CURA DO CONCRETO

4.5.1 - Ensaio piloto

A concretagem dos modelos para o ensaio piloto foi realizada no canteiro de obras da expansão do Taguatingua Shopping, localizado na cidade satélite de Taguatingua do Distrito Federal. O concreto foi o mesmo aplicado nas lajes mistas do centro comercial, ver Figura 4.8. O material, de origem usinada, era constituído de brita '0' e '1' e segundo o relatório de concretagem da empresa foi obtido um concreto de *slump* de 10 cm com resistência de 25 MPa. Para essa concretagem foram moldados corpos-de-prova cilíndrico de 15x30 cm, que após os ensaios apresentaram resistência média à compressão de: 25,4; 26 e 25,8 MPa.

 (a) Vista geral do 4° andar (cinemas/sala comercial)
(b) Vista interna do local da moldagem Figura 4.8 - Local da moldagem –Taguatingua Shoping

4.5.2 - Ensaio Final

A concretagem dos modelos para a segunda campanha experimental foi realizada com um concreto usinado e aconteceu no laboratório de estruturas da Universidade de Brasília. O concreto foi encomendado com ' f_{ck} ' de 25 MPa. As quantidades dos materiais utilizados para 1 m³ de concreto estão dispostos na Tabela 4.1.

Material	Quantidade (kg)
Cimento	340
Brita-'0'	946
Areia artificial	1393
Areia Rosa	1885
Água	104
Aditivo	2.0

Tabela 4.1 - Traço e quantitativos dos materiais empregados no concreto

O concreto requisitado deveria ter características fluídas, para não gerar nichos de concretagem, e manter trabalhabilidade até o final do processo de concretagem. O abatimento solicitado à empresa foi de 12 ± 2 cm. Foi obtido abatimento de 12,1 cm em ensaio conforme ilustra a Figura 4.9.

(a) Retirada do molde(b) Consistência do concreto(c) Abatimento obtidoFigura 4.9 - Ensaio de consistência do concreto no momento de recebimento do mesmo

A concretagem dos modelos ocorreu de forma manual com lançamento do concreto em carros-de-mão e em seguida nas fôrmas localizadas próximas ao caminhão, ver Figura 4.10. O caminhão betoneira estava aproximadamente a 3 m das fôrmas

(a) Caminhão betoneira
(b) Lançamento do concreto nas fôrmas om pás e adensamento
Figura 4.10 - Lançamento do concreto nas fôrmas

O adensamento foi realizado com vibrador de agulha de diâmetro 25 mm. Após a concretagem a superfície recebeu um acabamento superficial com espátula metálica, conforme Figura 4.11. Este procedimento é de considerável importância para os conectores 'V', visto que foram concretados de forma invertida. A base das peças em contato com as placas de apoio durante o ensaio deve apresentar superfície plana, livre de irregularidades evitando assim concentração de tensões durante o ensaio.

(a) adensamento

Base de apoio p/ o conector 'V'

(c) Superfície acabada

Figura 4.11 - Adensamento do concreto e acabamento superficial

(b) Acabamento da superfície

A cura dos modelos foi realizada com um pano, mantido sempre úmido, sobre as peças, conforme Figura 4.12

(a) Vista geral da cura das peças(b) Detalhe da cura da peçaFigura 4.12 - Aspecto dos modelos durante a fase de cura do concreto

Os modelos foram confeccionados sobre um estrado de madeirite, para correção do nível do piso e para evitar troca de umidade com o piso. Durante o procedimento de cura das peças, estas foram mantidas úmidas nos primeiros dias para manter a umidade do local equilibrada, tendo em vista o clima seco de Brasília, Figura 4.13.

Figura 4.13 - Controle da umidade das peças

Nesta concretagem, foram moldados 13 corpos de prova cilíndricos, com 7,5 cm de diâmetro de base e 15 cm de altura, seguindo as recomendações da NBR 5738:1994. Os corpos-de-prova foram usados para determinar a resistência à tração, a resistência à

compressão e o módulo de elasticidade. Com o objetivo dos corpos-de-prova representarem o máximo possível o concreto das peças, os corpos-de-prova estiveram sempre ao lado das peças e receberam o mesmo procedimento de cura, ver Figura 4.14.

(a) Corpos-de-prova moldados
(b) Cura dos corpos-de-prova
Figura 4.14 – Corpos-de-prova e o procedimento de cura

4.6 - INSTRUMENTAÇÃO DOS MOEDLOS ENSAIADOS

4.6.1 - Instrumentação da armadura

Com o intuito de conhecer o comportamento da estrutura como um todo durante o estudo experimental, a armadura foi instrumentada em diversos pontos. Para isto foram utilizados extensômetros elétricos de resistência (EER) também conhecidos por *starin gage* (SG). Os 'EERs' ou "strain gages" foram dispostos aos pares em cada barra e posicionados um de cada lado da barra, no caso na face inferior e superior do vergalhão.

Os extensômetros elétricos eram da marca Kyowa, modelo KFG-5-120-C1-11 próprios para aço com comprimento de 5 mm, resistência de 120 Ω e fator de correção 2,10 ±1.0. O procedimento de fixação é iniciado com o lixamento dos vergalhões, com o intuito de remover as morsas da região desejada. Após a regularização da superfície, foi feita a limpeza da mesma com três tipos de soluções. A primeira com álcool isopropílico, depois foi apalicada uma solução condicionadora e, por último, uma solução neutralizadora. Em

seguida fixa-se o 'EER' com uma cola à base de epóxi (super bond), para posterior soldagem da fiação, e aplicação das demais camadas,conforme a Figura 4.15.

(a) Limpeza(b) Fixação do 'EER' com super-bond(c) Aplicação de aralditeFigura 4.15 - Procedimento de limpeza, fixação e proteção do 'EER'

Após a soldagem dos fios, é depositada sobre o 'EER' uma camada de uma resina epóxi (araldite), para garantir uma proteção mecânica ao conjunto, como pode ser observado na Figura 4.16.

Figura 4.16 - Instrumentação das armadura

Após a camada de araldite, é adicionada uma camada de silicone e uma camada de fita de alta fusão. Garantindo adequada impermeabilização e proteção mecânica ao 'EER', como pode ser observado na Figura 4.17. Na Figura 4.18 estão mostradas as armaduras já instrumentadas.

(a) EER com araldite

(b) Barra finalizada

Figura 4.17 - Aplicação da proteção na instrumentação da armadura.

Figura 4.18 - Armaduras instrumentadas

4.6.2 - Instrumentação dos experimentos

A instrumentação dos modelos foi realizada com medidores de deslocamentos (defletômetros) com a finalidade de medir o deslocamento vertical do perfil em relação às lajes e o distanciamento das faces internas das lajes de concreto.

A calibração dos defletômetros foi realizada com auxílio de um paquímetro de altura, como mostra a Figura 4.19. O procedimento de calibração consiste em aplicar um deslocamento conhecido, o qual é definido pela régua, para conhecer a voltagem retornada pelo defletômetro ao sistema de aquisição de dados. Esse procedimento foi realizado três vezes tanto na retirada quanto no recolhimento do êmbolo, totalizando seis curvas de calibração (Deslocamento x Voltagem), que por meio de uma média ponderada chega-se a um valor representativo para alimentar o sistema de aquisição de dados.

(a) Visão geral do sistema

(b) Detalhe da leitura da régua

(c) Detalhe da fixação (régua/defletômetro)

Figura 4.19 - Calibração do defletômetro

A disposição dos defletômetros nos ensaios *push-out* é basicamente a mesma. Nos ensaios do projeto piloto foram utilizados dois defletômetros horizontais e um vertical. Nos ensaios finais foi mantida a configuração dos ensaios piloto, mas acrescentou-se um defletômetro vertical, sendo este posicionado na outra laje, porém em sentido contrário ao primeiro, conforme a Figura 4.20. Este segundo defletômetro permite visualizar o comportamento do perfil enquanto se desloca em relação às lajes de concreto.

Figura 4.20 - Posicionamento dos defletômetros nos ensaios piloto e final

Os defletômetros são fixados em chapas de aço que se prendem à laje com uma braçadeira. A extremidade (o êmbolo do defletômetro) é fixada por meio de bases magnéticas. A Figura 4.21 mostra a fixação de um defletômetro vertical e dois na horizontal, configuração esta aplicada em todos os ensaios.

(a) Fixação dos defletômetros(b) Detalhe a fixação com as bases magnéticasFigura 4.21 - Fixação dos defletômetros aplicados em todos os ensaios

A Figura 4.22 mostra o segundo defletômetro vertical utilizado para verificar se durante o ensaio o perfil se desloca de forma retilínea. Esta configuração foi aplicada somente nos ensaios finais.

(a) Vista geral

(b) Detalhe da fixação

Figura 4.22 - Fixação do segundo defletômetro vertical (ensaios finais)

4.7 - AQUISIÇÃO DE DADOS E CARREGAMENTO

4.7.1 - Aquisição de dados

Para coletar e armazenar as leituras dos extensômetros fixados na armadura passiva e também dos defletômetros foi utilizado o sistema de aquisição de dados 'Spyder-8' em conjunto com o software 'Catman-4.5'. O programa pertence ao fabricante do sistema de aquisição, a empresa alemã HBM (Hottinger Baldwin Messtechnik GmbH). Para o gerenciamento e armazenamento dos dados coletados pelo sistema mencionado foi utilizado um microcomputador conforme Figura 4.23.

Figura 4.23 - Sistema de aquisição de dados

O controle do carregamento aplicado foi possível a partir da leitura direta de sua intensidade em painel digital. A unidade de leitura deste painel é em tonelada. Este medidor é conectado a uma célula de carga, localizada em posição de ação direta da carga, entre o macaco hidráulico e o pórtico (Figura 4.24). A capacidade de medição desta célula é de 2000 kN.

(a) Painel digital(b) Sistema célula de carga e macacoFigura 4.24 - Sistema de aquisição dos valores de carregamento

4.7.2 - Aplicação de carregamento

O acionamento do macaco foi realizado através de uma bomba hidráulica manual, composta de braço de acionamento, uma válvula de controle de direção do fluxo do fluído e dois canais de fluxo (ação e alívio). A Figura 4.25 mostra os componentes de operação da bomba.

(a) Vista da bomba de óleo

(b) Detalhe das conexões (Freitas, 2008)

Figura 4.25 - Bomba hidráulica utilizada nos ensaios

Os carregamentos foram aplicados seguindo as recomendações da EN 1994-1-1:2004. O primeiro passo resume-se à aplicação de um pré-carregamento de 25 ciclos. Os carregamentos conforme recomendações da EN 1994-1-1:2004 oscilam entre 5 e 40% da

carga última estimada. O controle do carregamento foi realizado manualmente com a abertura da válvula e controlando a carga pelo painel digital. A maior preocupação nesta fase foi manter o período constante nos ciclos. O segundo e último passo é levar a estrutura ao colapso. Neste caso objetivou-se manter a mesma velocidade de carregamento em todas as fases e ensaios.

4.8 - MONTAGEM DO ENSAIO

O ensaio *push-out* foi realizado sobre blocos de concreto com medidas de base de (75x75cm) e altura de 55 cm, para que os modelos chegassem à altura do macaco hidráulico, instalado no pórtico, por conta das configurações do pórtico utilizado para ensaios de pilar. Sobre o bloco de concreto fixaram-se com gesso duas chapas de aço de espessura 25,4 mm para distribuir melhor o carregamento, como está demonstrado na Figura 4.26. Os modelos para os ensaios de *push-out* também foram apoiadas sobre uma camada de gesso, para corrigir pequenas as irregularidades existentes na base.

(a) Chapas de aço

(b) Aplicação de gesso Figura 4.26 - Apoio do experimento

(c) Fixação da peça

Após a cura do gesso, fixa-se no perfil, por meio de encaixe, um conjunto de chapas e uma rótula metálica de alta resistência, conforme Figura 4.27. O conjunto de chapas aplicados nos ensaios possibilita distribuição da carga no perfil. Foram utilizados 2 chapas de 5 cm para os ensaios do conector 'V' e 4 chapas de 5 cm de espessura para o *stud*, por causa da diferença de altura dos modelos. A rótula tem por objetivo manter a carga alinhada com o perfil.

(a) Sistema de distribuição de cargas
(b) Detalhe da rótula
Figura 4.27 - Sistema de distribuição de cargas

A configuração dos ensaios realizados está ilustrada na Figura 4.28, em especial, o ensaio representado nesta figura é do conector *stud*.

Figura 4.28 - Modelo de ensaio de push-out realizado

4.9 - ENSAIO DE ARRANCAMENTO

O ensaio de arrancamento tem como objetivo fornecer alguns parâmetros relativo a aderência entre conector de cisalhamento e concreto, tais informações são importantes para a análise numérica em elementos finitos. Dentre os parâmetros a se enfatizar estão a coesão e o coeficiente de atrito. Os ensaios foram realizados nos laboratórios de Furnas em Goiânia, GO, em corpos-de-prova confecionados com o mesmo concreto utilizado nas análises experimentais finais.

4.9.1 - Detalhes da confecção do experimento

Foram moldadas 8 peças de blocos de arrancamento utilizando o mesmo concreto das peças do ensaio de *push-out* do experimento final. As fôrmas eram de madeirite resinado de 15 mm de espessura. Dois módulos de fôrma foram utilizados, de maneira a produzir 4 blocos, ver Figura 4.29. Para que se mantivessem as barras metálicas retilíneas, foi confeccionado um suporte também de madeirite.

Figura 4.29 - Dois blocos para uso no ensaio de arrancamento

As barras metálicas são lisas, com 20 mm de diâmetro e 100 cm de comprimento. As barras foram inseridas nas formas por meio de dois furos alinhados entre as duas faces opostas da forma. Para evitar a influência das tensões de compressão ocasionadas pela placa de apoio, foi desprezada a aderência do aço no concreto numa faixa de 10 cm de comprimento. Esta recomendação é sugerida pela RILEM-FIP-CEB:1973 e para isso, foi

usado um tubo de PVC. Para impermeabilizar o sistema foi aplicada uma fita branca na região de contato tubo e barra, conforme Figura 4.30.

(a) Vista superior da face interna
(b) Detalhe da união entre barra e tubo de PVC
Figura 4.30 - Detalhe da barra de aço na face interna da forma

4.9.2 - Moldagem e cura das peças

Para a moldagem das peças, utilizou-se o mesmo concreto dos ensaios de *push-out* (Figura 4.31). O adensamento também foi mecânico com um vibrador de agulha de diâmetro 25 mm.

(a) Moldagem dos blocos(b) Blocos moldadosFigura 4.31 - Moldagem dos blocos de arrancamento

A cura também foi realizada com panos umedecidos sobre as peças que foram molhadas diariamente, vide Figura 4.32. Todo o processo de cura e moldagem foi realizado próximo às peças do ensaio de *push-out*. O intuito é que fosse obtido o mesmo concreto das peças do ensaio de *push-out*.

(a) Peças moldadas e corpos de provas
(b) Detalhe da cura dos blocos de arrancamento
Figura 4.32 - Cura dos blocos do ensaio de arrancamento

4.9.3 - Montagem do experimento

Inicialmente o tubo de PVC foi removido para montagem dos demais equipamentos. Assim como no trabalho de França (2004), foi utilizada uma camada de couro antes do anteparo rígido para melhor distribuir as tensões sobre a superfície, ver Figura 4.33.

(a) Remoção do tubo PVC

(b) Camada de couro (c Figura 4.33 - Ensaio de arrancamento

(c) Chapa de dist. de tensões
A retirada da barra de aço acontece com a ação de um macaco hidráulico vazado. O macaco hidraúlico se apóia na chapa metálica de distribuição de tensões e tem sua extremidade fixada por meio de uma porca na extremidade da barra de aço, ver Figura 4.34. Tendo em vista que a barra era muito maior que o macaco, foi adicionado um prolongador entre a base do macaco hidráulico e a chapa de distribuição. O prolongador constituído de um embolo de macaco hidráulico ficou apoiado por meio de uma chapa de 25,54 mm de espessura.

Figura 4.34 - Montagem do experimento de arrancamento.

4.9.4 - Instrumentação do experimento

Os equipamentos utilizados na instrumentação possuem calibração certificada. A instrumentação do ensaio se baseou em medir o deslocamento da barra por meio de sensores de deslocamentos fixados sobre o bloco por meio de bases magnéticas. As bases magnéticas estão fixadas em uma chapa metálica (espessura ³/₄'') apoiada sobre o bloco. Um peso de 10 kg é adicionado ao sistema para garantir estabilidade extra, como se vê na Figura 4.35.

Figura 4.35 - Instrumentação da barra

Em vista da barra de aço apresentar *pits* de corrosão superficial na extremidade, o que pode ocasionar um atrito extra, a parte exposta foi lixada, ver Figura 4.36. Para facilitar o apoio dos sensores de deslocamento na barra, foi fixada com cola rápida uma plaqueta de vidro, para receber os sensores de deslocamentos.

(a) Barra a ser limpa

(b) Barra lixada e com a plaqueta de vidro

Figura 4.36 - Limpeza da região e fixação da plaqueta de vidro

Foram utilizados três sensores de deslocamentos, sendo dois do tipo LVDT e um defletômetro digital. Um destes sensores está apoiado na face do bloco de concreto para medir qualquer movimentação do bloco e outro na face da barra, capturando o deslocamento da barra, ver Figura 4.37. O defletômetro digital, tem curso de 5,0 mm e divisões de 0,001 mm. A função deste defletômetro é conhecer o deslocamento da barra

com a aplicação da carga com um dos LVDTs. O sistema de aquisição de dados só permite a visualização da carga durante o ensaio.

Defletom. digital LVDT-bloco (a) Vista geral da instrumentação

reral da instrumentação (b) Apoio dos sensores na placa de vidro Figura 4.37 - Instrumentação da barra e do bloco de concreto

Uma célula de carga foi posicionada na extremidade da barra rosqueada em posição de ação direta da carga, conforme a Figura 4.38. A capacidade de medição desta célula é de 500 kN. A face superior da célula de carga é côncava e trabalha em conjunto com uma rótula para melhor acomodar o sistema.

(a) Vista frontal

(b) Detalhe da célula de carga

4.9.5 - Aquisição de dados

A aquisição de dados foi realizada pelo equipamento da empresa Vishay modelo Scanner 6100, programado para realizar 5 leituras por minuto. O programa de leitura de dados da Vishay permite visualizar o carregamento e reconhecer os LVDTs, ver Figura 4.39. A leitura do deslocamento da barra é realizada pelo defletômetro digital.

(a) Conjunto de aquisição de dados

(b) Tela do monitor

(c) Aquisição de dados

4.9.6 - Aplicação do carregamento

O processo de carregamento segue os parâmetros e conceitos normativos internos estabelecidos por Furnas. Estes conceitos foram estabelecidos durante processos rotineiros desenvolvidos ao longo do tempo. O carregamento foi aplicado por uma bomba manual. O valor da carga é conhecido pela tela do programa, ver Figura 4.39.

Figura 4.40 Bomba utilizada na aplicação da carga

5 - CARACTERIZAÇÃO DOS MATERIAIS

Os materiais caracterizados são relativos tanto aos ensaios piloto como aos finais. Nos ensaios foram analisados o concreto, a armadura, os conectores *stud* e 'V'. O conhecimento das propriedades dos materiais é de extrema importância para a análise numérica em elementos finitos.

5.1 - ANÁLISE DO CONCRETO

O concreto, tanto no ensaio piloto quanto nos ensaios finais, foi ensaiado quanto à resistência a compressão. Para a análise final, foram determinados também o módulo de elasticidade e a resistência à compressão diametral. Para todas as análises foram moldados corpos-de-prova cilíndricos.

5.1.1 - Análise do concreto à compressão

A obtenção da resistência à compressão foi adquirida com base na NBR 5739:2007. Todos os corpos-de-prova foram capeados com enxofre.

O resultado do concreto do ensaio piloto teve duas fontes. A primeira delas foi informada pela empresa executora da obra do Taguatinga Shopping, na cidade satélite de Taguatinga no Distrito Federal, local onde foram moldados os modelos do ensaio piloto. A segunda fonte foi obtida por intermédio dos corpos-de-prova moldados no local de concretagem dos modelos e rompidos no laboratório de materiais da Universidade de Brasília (UnB). Os valores obtidos estão dispostos na Tabela 5.1 a seguir.

Os ensaios da fase final foram realizados no laboratório de materiais de Furnas Goiânia, GO. Foram analisados seis corpos-de-prova, três destes destinados ao ensaio de compressão e os demais foram utilizados para a determinação do módulo de elasticidade (E_c) do concreto. A Figura 5.1 ilustra os corpos-de-prova preparados para os ensaios.

Figura 5.1 - Preparação dos corpos-de-prova de concreto

O resultado do ensaio de compressão está mostrado na Tabela 5.1, na qual a coluna 'Ensaio-tipo' refere-se ao tipo de ensaio para o qual corpo-de- prova (CP) foi destinado. O item 'Módulo de elasticidade' desta tabela refere-se aos corpos-de-prova utilizados no ensaio de determinação do módulo de elasticidade, mas que também foram rompidos à compressão.

Dados da compressão (MPa)					
Local dos ensaios	Dados		Média		
	Ensaio- Tipo	Compressão	Preliminar	Final	
Ensaio Piloto- Lab. UnB		25,56	25,647		
	Compressão	26,32			
		25,06			
Ensaios Finais (FURNAS)	Compressão	30,6		31,012	
		30,01	30,523		
		30,96			
	Módulo de Elasticidade	31,3			
		30,6	31,500		
		32,6			

Tabela 5.1 - Resultados dos ensaios de compressão

A ruptura dos blocos para os ensaios manteve um padrão, semelhante ao mostrado na Figura 5.2

Figura 5.2 - Modelo de ruptura do corpo-de-prova de concreto para os ensaios finais

5.1.2 - Análise do concreto à compressão diametral

O ensaio de compressão diametral seguiu as recomendações da NBR 7222:1994. Os corpos-de-prova foram apoiados na prensa em duas chapas metálicas, padronizadas, conforme Figura 5.3.

(a) Antes do ensaio

(b) Após o ensaio

Figura 5.3 - Corpo-de-prova no ensaio de compressão diametral

O resultado geral do ensaio de compressão diametral é apresentado na Tabela 5.2.

Compressão Diametral				
CP ₁ =	2,52	MPa		
CP ₂ =	3,16	MPa		
CP ₃ =	3,29	MPa		
Média (CP _M)	2,99	MPa		

Tabela 5.2 - Resultado do ensaio de compressão diametral para os ensaios finais

5.1.3 - Módulo de elasticidade do concreto (E_c)

O módulo de elasticidade do concreto (E_c) foi determinado com base na NBR 8522:2008, onde inicialmente é aplicado um pré-carregamento equivalente a uma tensão de 0,5 MPa. Em seguida é aplicado no corpo-de-prova uma carga cíclica de 3 períodos, com valor mínimo de 0,5 MPa e máximo de 30% da resistência estimada à compreção do concreto (f_{ck}). A Figura 5.4 apresenta o esquema de aplicação do carregamento e realização do ensaio.

Figura 5.4 - Representação esquemática do carregamento para a determinação do módulo de elasticidade, vide NBR 8522:2005

Seguindo como referência a Figura 5.4, o módulo de elasticidade (E_c) em gigapascals é conhecido pela seguinte equação:

$$\mathbf{E}_{c} = \frac{\Delta\sigma}{\Delta\varepsilon} \mathbf{10}^{-3} = \frac{\sigma_{b} - \sigma_{a}}{\varepsilon_{b} - \varepsilon_{a}} \mathbf{10}^{-3}$$
(5.1)

O ensaio foi realizado de forma automática pela prensa, onde as leituras das deformações foi realizada pelo par de extensômetros, fixados na face do corpo-de-prova, ver Figura 5.5. Os resultados dos ensaios estão listados na Tabela 5.3.

(a) Instrumentação do corpo-de-prova

(b) Detalhe do extensômetro

Figura 5.5 - Determinação do módulo de Elasticidade do concreto (E_c)

Corpo-de-prova	Módulo de Elasticidade (E _c)		
CP-1	E _{c1} =	23	GPa
CP-2	E _{c2} =	25,2	GPa
CP-3	E _{c3} =	24,1	GPa
	Média (E _{cM}) =	24,1	GPa

Tabela 5.3 - Resultado dos ensaios de módulo de elasticidade (E_c)

5.2 - ANÁLISE DOS MATERIAIS METÁLICOS

No ensaio piloto foram realizados ensaios de tração do aço do conector 'V'. Nos ensaios finais foram realizados também ensaios de dureza Birnell, em todos os aços utilizados nos conectores de cisalhamento. O aço do vergalhão foi analisado somente utilizando-se o ensaio à tração.

5.2.1 - Corpos-de-provas metálicos

Os corpos-de-prova foram moldados seguindo as recomendações da NBR 6892:2002. A geometria dos corpos metálicos está apresentada na Figura 5.6. Alguns valores referentes ao diâmetro do 'CP' cilíndrico foram alterados, em virtude da abertura das castanhas da prensa. A Tabela 5.4 relata os valores das dimensões aplicados ao corpo-de-prova conforme o tipo de conector.

Figura 5.6 - Detalhe da geometria dos corpos metálicos

Dados	Conector stud	Conector 'V'-2,65 mm	Conector 'V'-3,75 e 4,75 mm
D1	11	40	40
Do	9.5	20	20
R	8	15	20
L ₀	59.24	120	100
L ₁	66	154	120
L ₂	32	40	45
Lt	130	234	210

Tabela 5.4 - Valores das medidas aplicadas nos 'CPs' metálicos

As modificações geométricas nos corpos-de-prova foram necessárias para atender a abertura das castanhas da prensa hidráulica. No caso das chapas metálicas, referentes ao conector 'V' foram soldados calços nas extremidades. A Figura 5.7 mostra os 'CPs' metálicos utilizados nos ensaios de tração.

(b) 'CP' do conector 'V'

5.2.2 - Ensaios de tração

Os ensaios de tração foram realizados nos laboratórios do Departamento de Engenharia Mecânica da Universidade de Brasília (UnB). A prensa servo-controlada possibilita obter o valor da carga aplicada e também deformação. O valor da deformação é fornecido por meio de um extensômetro eletrônico. A aplicação do extensômetro eletrônico nos corposde-prova (CPs) metálicos está presente na Figura 5.8.

(a) 'CP'-stud

(b) 'CP'- Vergalhão

Figura 5.8 - Aplicação do extensômetro nos 'CPs' Metálicos

Observou-se que foram realizados ensaios prévios utilizando *strain gage*, conforme mostrado na Figura 5.9. As leituras em ambos, *strain gage* e extensômetro eletrônico, apresentaram considerável semelhança com diferenças despresíveis. Porém durante o ensaio após determinado nível de deformação do corpo-de-prova metálico o *strain gage* apresentou destacamento do 'CP', enquanto o estensômetro eletrônico permanceia fixado ao corpo-de-prova. O que permitiu ao extensômetro eletrônico maior aquisição de dados.

Figura 5.9 - Aplicação de extensômetro eletrônico e strain gage

Os resultados dos ensaios de tração dos conectores de cisalhamento estão na Figura 5.10. A carga real final do ensaio é ligeiramente superior aos valores apontados nesta figura. Isto porque o transdutor eletrônico deve ser removido antes da ruptura da peça, afim de não ser danificado. O valor real da tensão final de ruptura varia de 10 a 50 MPa, nestes corpos-de-prova.

Figura 5.10 - Gráficos de Tensão (MPa) x Deformação (mm/m) dos conectores

Os resultados dos ensaios de tração (Figura 5.10) demonstraram resultados distintos para os aços utilizados no conector 'V'. Tal diferença observa-se especialmente no aço do conector 'V' com 3,75 mm de espessura de alma ('V' -3,75 mm, na figura) que apresenta resistência à tração mais elevada que o aço do conector 'V'-4,75 mm. Por conta desta inesperada resistência, utilizou-se ensaios complementares para avaliar que tipo de aço efetivamente foi usado em cada conector 'V'. Nota-se que diferentes materiais podem reproduzir resultados diversos no ensaio de *push-out*. O ensaio de dureza Brinell (que se relaciona com a resistência à tração) apresentou-se, portanto, como uma solução para a melhor caracterização dos materiais utilizados na confecção dos conectores 'V'.

A armadura aplicada no ensaio de *push-out* foi um vergalhão CA-50, onde a curva característica Tensão (MPa) x Deformação(mm/m) está exposta na Figura 5.11.

Figura 5.11 - Gráfico Tensão (MPa) x Deformação do vergalhão usado na armadura

5.2.3 - Ensaio de dureza

O ensaio de dureza Brinell foi realizado para as amostras dos conectores utilizados nos ensaios finais de *push-out* e nos respectivos corpos-de-prova avaliados nos ensaios de tração, com o intuito de facilitar a interpretação dos resultados dos ensaios de tração. Os ensaios de dureza foram realizados para os conectores de cisalhamento de forma ampla, visando um conhecimento mais completo do material utilizado na confecção dos conectores. Inicialmente foi determinada a dureza dos corpos-de-prova metálicos utilizados nos ensaios de tração do conector 'V'. Desta forma foi possível correlacionar com maior precisão os valores de resistência à tração dos conectores. Com base nestes parâmetros de aferição foram retira do conector 'V' utilizados nos ensaios de *push-out*, amostras para então se determinar sua verdadeira resistência à tração por meio do ensaio de dureza.

O ensaio de dureza segue as recomendações da NBR NM 187-1:1999 e da ASTM E-10:2004. Os ensaios foram realizados com um durômetro Brinell, vide Figura 5.12 (a) no laboratório de caracterização de materiais (LACAM) da Universidade Federal do Ceará (UFC). O ensaio de dureza escolhido foi o Brinell que consiste em comprimir lentamente uma esfera de aço temperado, de diâmetro 'D', sobre uma superfície plana, polida e limpa de um metal. Através de uma carga (F), durante um tempo (t), a esfera produz uma marca em forma de calota esférica de diâmetro 'd' na superfície metálica. A dureza Brinell (HB) é entendida como sendo a relação entre a carga aplicada (F) na esfera de aço e a área da calota esférica (A_{ce}) impressa no material ensaiado. A dureza Brinell (HB) é determinada pela seguinte equação:

$$\mathbf{HB} = \frac{\mathbf{F}}{\mathbf{A}_{ce}} \tag{5.2}$$

A área da calota esférica (Ace) é aproximada pela NBR NM 187-1:1999 como:

$$\mathbf{A}_{ce} = \mathbf{D}.\,\mathbf{p} \tag{5.3}$$

Onde 'p' é a profundidade da calota, (vide Figura 5.12). Devido à dificuldade técnica de medição da profundidade que é um valor muito pequeno; a NBR - NM 187: 1999 sugere o cálculo da dureza HB pela seguinte expressão:

$$HB = \frac{2F}{\pi D (D - \sqrt{D^2 - d^2})}$$
(5.4)

Figura 5.12 - Durômetro Brinell e detalhe do ensaio de dureza

A ASTM E-10:2004 estabelece que a carga aplicada no ensaio não produza uma impressão na chapa metálica de modo que possa ser visualizada na outra face. O que representa uma relação muito vaga entre a carga aplicada e a espessura do corpo-de-prova. A NBR - NM 187: 1999 sugere que a profundidade (p) impressa na chapa seja no mínimo oito vezes menor que a espessura do corpo-de-prova. Seguindo esta orientação e por meio de ensaios prévios, foi adotada para todos os ensaios de dureza, uma carga (F) de 187,5 kgf em uma esfera de diâmetro (D) de 2,5 mm. O tempo de carregamento (t) foi de 15 s, superior ao valor mínimo de 10 segundos sugerido pela NBR - NM 187: 1999. Em cada uma das amostras foram realizadas 5 leituras sempre respeitando a distância mínima entre os furos, estabelecida pela NBR - NM 187 (1999).

A preparação dos corpos de prova consiste de uma limpeza e uniformização da superfície onde será aplicado o carregamento. O processo de preparação destes corpos-de-prova está mostrado na Figura 5.13. Inicialmente o corpo-de-prova é lixado com lixa 80 em uma politriz; em seguida é seco e passa-se acetona na camada onde se efetuará a leitura. A acetona mantém a superfície mais limpa e inibe, inicialmente, o processo de corrosão. Um secador é utilizado para secar a acetona, da superfície metálica.

(a) Lixamento na politriz

Figura 5.13 - Processo de limpeza dos corpos-de-prova do ensaio de dureza Brinell

Para uma caracterização mais ampla, foi medida a dureza dos corpos-de-prova metálicos utilizados nos ensaios de tração e uma amostra dos conectores de cisalhamento. A leitura da dureza nas peças utilizadas para os ensaios de tração permite estabelecer um comparativo entre os resultados. Por meio da dureza Brinell (HB) é possível estimar a resistência final à tração. Garcia (2000) relata que o limite de resistência á tração (σ_u) pode ser conhecido por meio de:

Onde:

 α - constante experimental;

 σ_u - limite de resistência a tração em (MPa)

HB- valor da dureza Brinell (MPa)

Callister (1994) sugere para aço o carbono adotar $\alpha = 0,36$, contudo Souza (1982) sugere 0,34 e 0,33, respectivamente, para aço carbono e aço-liga tratados termicamente. Neste trabalho foi considerado $\alpha = 0,34$.

As leituras da dureza nos corpos-de-prova utilizados nos ensaios de tração, foram realizadas na região de maior área, o local onde as castanhas da prensa fixam o corpo-deprova. A dureza do conector *stud* foi obtida através de outro conector, mas do mesmo lote de fabricação. Os resultados destas análises estão representados na Figura 5.14 e Figura 5.15. Os valores demonstrados nesta figura se aproximam dos resultados obtidos no ensaio de tração. Deve-se considerar que a carga final relatada no ensaio de tração (Figura 5.10) é ligeiramente inferior ao valor real final medido, conforme citado anteriormente.

(a) Conector stud

(b) Conector 'V'-2,65 mm

Figura 5.14 - Dureza 'HB', corpos-de-prova conectores stud e 'V'-2,65 mm

(a) Conector 'V'-3,75 mm

(b) Conector 'V'-4,75 mm

Figura 5.15 - Dureza 'HB', corpos-de-prova conectores 'V'-3,75 mm e 'V'-4,75 mm

As amostras retiradas dos conectores em 'V' têm dimensões de 50 x 50 mm. Este material foi removido à meia altura do conector, com o objetivo de se distanciar da região de solda, realizada para sua fixação no perfil metálico. Para a remoção da amostra foi utilizada uma policorte com resfriamento natural. Foram analisados dois conectores 'V' por peça, resultando um total de 18 amostras.

O resultado da análise dos conectores em 'V' está na Figura 5.16, onde se encontra a resistência à tração dos conectores em 'V' obtidos por meio da dureza Brinell. Os conectores 'V' de espessura 2,65 mm e 3,75 mm apresentaram maior uniformidade nos resultados. Os resultados do conector 'V'-3,75 mm relatam um aço com maior resistência à tração. O conector 'V'-4,75 mm por outro lado mostra em sua análise a presença de aços com três diferentes limites de ruptura. Três das seis amostras tem limite de resistência à tração próximas a 330 MPa. Um dos corpos de prova tem limite de resistência à tração similar ao conector 'V'-3,75mm e outro ao conector 'V'-2,65mm. A proximidade de valores da carga final do ensaio *push-out* dos conectores de cisalhamento, 'V'-3,75 mm e 'V'-4,75 mm está atrelada às diferentes resistências à tração do aço utilizado na confecção destes conectores.

(a) Dureza para conector 'V'-2,65 mm

(b) Dureza para conector 'V'-3,75 mm

⁽c) Dureza para conector 'V'-4,75 mm

Figura 5.16 - Resistência à tração de amostras do conector 'V' via dureza HB

6 - ENSAIO DE PUSH-OUT

Os ensaios de *push-out* realizados após os resultados positivos da análise numérica, constituem uma parcela significativa dos estudos do conector 'V'. Os ensaios de *push-out* foram divididos em duas etapas. A primeira etapa ou projeto piloto constituiu uma análise prévia do conector 'V' esclarecendo diversos questionamentos levantados na análise numérica. A segunda etapa do programa experimental ou ensaios finais configuraram uma análise mais detalhada do conector 'V'.

6.1 - EXPERIMENTO PILOTO

A análise experimental piloto constitui um estudo inicial do conector em 'V', onde o intuito é averiguar os resultados da análise numérica previamente realizada. Nesta análise são levados em consideração os efeitos de fissuração do concreto e a relação Força (kN) x Deslizamento (mm) do perfil e a influência da altura do conector.

6.1.1 - Modelos de ensaios

Os modelos dos ensaios seguem os parâmetros mostrados no capítulo do procedimento experimental. Foram moldados quatro modelos. Duas peças eram com conector *stud*, sendo uma delas com *stud* de 100 mm de altura e a outra com 130 mm. Os outros dois eram conectores em 'V' com chapa de 2,65 mm, mas com alturas idênticas as alturas dos *studs*.

6.1.1.1 - Instrumentação da armadura

As armaduras foram instrumentadas em duas diferentes posições, canto e meio, como pode ser observado na Figura 6.1. Os *strain gages* (SG) ou estensomteros elétricos (EER) foram dispostos na peça em diferentes posições, permitindo assim uma vasta análise das tensões na região dos conectores. O mapeamento das tensões nestas regiões foi realizado na face frontal e posterior do conector no ponto central e na extremidade de sua atuação, conforme pode ser observado na Figura 6.1 onde consta também a denominação de cada extensômetro elétrico (EER) ou *strain gage* (SG).

Figura 6.1 - Posição dos strain gages (SG) ou extensômetros elétricos (EER)

6.1.2 - Carregamento aplicado

O carregamento foi aplicado seguindo as recomendações do EN 1994-1-1:2004. Os 25 ciclos iniciais de carregamento oscilaram entre 50 e 320 kN, valores estes baseados no valor da carga final obtida no estudo do modelo em elementos finitos (MEF). A Figura 6.2 ilustra a relação Carga (kN) x Tempo (s) aplicada nos ensaios do projeto piloto. Nos conectores de 100 mm a fase final apresenta descontinuidade em vista da tentativa em descobrir a carga última. Desta forma, após determinada leitura espera-se a carga estabilizar, mas sempre realizando leituras periódicas.

6.1.3 - Resultados obtidos

Os resultados consistem da análise das deformações das armaduras e dos defletômetros horizontais e vertical, que mediram a movimentação das lajes e do perfil. Os valores referentes aos gráficos apresentados neste capítulo referentes ao ensaio plioto, encontram-se no Apêndice-C.

6.1.3.1 - Deformações na armadura

Os valores mostrados na Figura 6.3 representam as deformações das armaduras lidas pelo sistema de aquisição de dados pelo valor da carga em 'kN' aplicada na peça. As armaduras do *stud* de 100 mm apresentam deformações muito semelhantes, conforme Figura 6.3. Contudo o *strain gage* do meio na terceira posição (SG meio-03) apresenta maior número de leituras. Os demais 'SGs' estão em regiões de maior concentração de tensão por isso apresentaram possível falha de leitura, ocasionado por descolamento do extensômetro ou acentuada deformação da armadura. O SG meio-01 demonstra ser o mais solicitado. Isto porque, nesta região existe uma considerável concentração de tensões, provenientes dos *studs* inferiores e das reações de apoio da base do ensaio

Analisando o comportamento do *stud*-130 mm (Figura 6.4) as deformações das armaduras apresentam valores aproximados. No entanto o SG meio-02 demonstra valores de deformações ligeiramente inferiores ao SG meio-03, e com falha de leitura antecipada. A sobreposição de tensões na região dos conectores acontece mais intensamente no final do ensaio. A falha na leitura de grande parte de *strain gage* (SG) pode ser atribuída em parte ao processo e ao local de moldagem das peças. No adensamento foi utilizado o mesmo o operador do vibrador da obra. Ainda sob supervisão constante no processo de adensamento, o operador cometeu alguns equívocos. Em alguns momentos encostava a agulha do vibrador na armadura, algumas vezes muito próximo dos SGs.

Figura 6.4 - Força (kN) x Deformação (mm/m) das armaduras - stud-130 mm

A Figura 6.5 apresenta o comportamento da armadura no modelo com o conector em 'V' de 100 mm de altura ('V'- 100 mm). Os SGs do meio de número '01' e '03' apresentam comportamentos semelhantes. Contudo o SG meio 03 apresenta maiores deformações e se mantêm mais preservado, visto sua localização. As leituras iniciais de SG meio-02 indicam valores negativos, relatando uma compressão na armadura. Este fato corresponde ao último passo de carga da fase cíclica de carregamento, pois no processo de remoção da carga podem surgir tensões de compressão, nesta região.

Figura 6.5 - Força (kN) x Deformação (mm/m) das armaduras do 'V'-100 mm

A Figura 6.6 ilustra as deformações lidas no modelo de conector 'V' de 130 mm. Os extensômetros SG meio-02 e canto-02 mostram um comportamento muito semelhante na frente do conector. Comparando os 'SG' do meio 02 do conector 'V' e *stud* observou-se que o modelo 'V' apresenta menor deformação. Entretanto o SG meio -03 do conector 'V' (Figura 6.6) apresentou comportamento diferenciado. Este problema pode ser devido a fase final do ensaio momento em que as lajes inclinam-se a se separar do perfil (fenômeno *uplift*). Este fenômeno faz com que os conectores tendam a ser arrancados das lajes. Desta forma o 'SG' situado na face superior da armadura tendem a mostrar uma compressão, justificando assim o aparecimento de deformações negativas. Este fato pode estar relacionado à proximidade da armadura com o conector ou à ruptura de alguns conectores. Quando um conector rompe, o perfil tende a inclinar-se, acentuando o efeito de arrancamento dos demais conectores.

Figura 6.6 - Força (kN) x Deformação (mm/m) das armaduras do 'V'-130 mm

6.1.3.2 - Tendência de separação transversal (uplift)

A análise dos defletômetros conforme Figura 6.7 a Figura 6.10 relata o fenômeno *uplift*, afastamento transversal das faces internas da laje em função da força (kN) total aplicada no ensaio. Na análise dos *studs* (Figura 6.7) observa-se que o afastamento do *stud* de 100 mm de altura aconteceu de forma mais simétrica. O *stud* de 130 mm de altura , Figura 6.7(b) apresentou os maiores afastamentos na parte superior do modelo.

Figura 6.7 - Comportamento Força (kN) x uplift (mm) dos studs

Na análise do conector 'V' (Figura 6.8) os afastamentos transversais aconteceram de maneira simétrica aos defletômetros. A semelhança do *uplift* é comprovada em ambos os conectores 'V'.

Figura 6.8 - Comportamento Força (kN) x uplift (mm) dos conectores 'V'

Estabelecendo um comparativo entre todos os conctores para as leituras do defletômetro superior (Def-01), nota-se um *uplift* aproximado para uma força inferior a 700 kN, ver Figura 6.9. Para uma força superior a 800 kN o conector *stud* de 100 mm apresentou o maior afastamento transversal.

Figura 6.9 - Força (kN) x Afastamento transversal (mm) - defletômetro-01 (Def-01)

Na análise do defletômetro-02 (Figura 6.10), os menores afastamentos transversais foram registrados respectivamente nos *studs* de 100 e 130 mm, especialmente para uma força inferior 700 kN. O *stud* de 100 mm após 3 mm de *uplift* apresentou considerável crescimento do afastamento transversal.

Figura 6.10 - Força (kN) x Afastamento transversal (mm) - defletômetro-02 (Def-02)

6.1.3.3 - Relação Força x Deslizamento relativo perfil e laje

A Figura 6.11 ilustra ainda o deslizamento relativo entre o perfil e a laje em função da carga total aplicada no ensaio. Observa-se que os conectores *stud* apresentaram um comportamento mais dúctil do que os conectores 'V'. O conector 'V' pode ser classificado como conector flexível e não rígido. Os conectores 'V' demonstram maior aderência entre o perfil e as lajes. Para uma determinada carga, principalmente para valores superiores a 400 kN, em que o deslizamento dos conectores *stud* é superior. Desta forma para uma situação real, os conectores em 'V' podem proporcionar uma considerável aderência entre perfil e laje. De maneira geral pelas análises desenvolvidas no conector 'V' a ligação entre o perfil e a laje pode ser superior a do conector mais utilizado, o *stud*.

Figura 6.11 - Relação Força (kN) x Deslizamento (mm) do perfil dos ensaios

6.1.3.4 - Avaliação do ensaio

O processo de avaliação do ensaio segue as recomendações do EN 1994 -1-1:2004, apresentadas no item 2.6.1. Inicialmente determina-se os valores máximos das cargas aplicadas e os deslizamentos relativos do perfil em relação à laje as cargas e deslizamentos máximos. A Tabela 6.1 faz um resumo destes valores máximos. Observa-se que as cargas máximas assim como a resistência característica (P_k), apresentam valores aproximados para todas as situações. Contudo os conectores *stud* relatam maiores deslizamentos.

Q_{max} -Modelo do P_k Q_{max} δ_{u} δ_{uk} por conector conector kN kN kN mm mm stud-100 mm 800,8 880,0 110,0 17,09 15,38 stud-130 mm 900,8 112,6 800,8 18,39 16,55 'V'- 100 mm 227,9 911,4 821,0 5,00 4,50 'V'- 130 mm 880,0 220,0 804,2 7,06 6,35

Tabela 6.1 - Resumo das cargas e deslizamentos máximos obtidos

Onde :

Q_{max} – carga máxima lida no ensaio

 P_k – Resistência característica ($P_k = 0.9Q_{max}$)

δ_u - Deslizamento referente a 'P_k' δ_{uk} - Capacidade de deslizamento característica ($δ_k = 0.9 δ_u$) A Tabela 6.2 traz um resumo dos valores reduzidos em 20 % da carga aplicada no ensaio e o deslizamento relativo do perfil em relação à laje de concreto. Analisando estes valores verifica-se que todos os conectores apresentam resistência ao *uplift*. Neste quesito os conectores 'V' mostram os valores mais aproximados do *uplift* limite que é de 50%. Este resultado é devido ao reduzido deslizamento do perfil (δ_{80}) referente ao valor de 80% da carga máxima (0,8 Q_{max}).

Modelo do conector	Q _{max}	0,8 x Q _{max}	δ ₈₀	uplift ₍₈₀₎	$uplift_{(80)}/\delta_{80}$	
	tf	tf	mm	mm	%	Resultado
<i>Stud</i> -100 mm	88,00	70,14	6,66	1,03	15,53	ok
Stud -130 mm	90,08	70.16	9,43	1,28	13,55	ok
V- 100 mm	91,14	70,12	3,10	1,37	44,31	ok
V- 130 mm	88,00	70,26	3,99	1,60	40,08	ok

Tabela 6.2 - Resumo das cargas, deslizamentos característicos e verificação uplift

onde :

 δ_{80} – deslizamento relativo a 0,8 Q_{max}

 $uplift_{80} - uplift$ correspondente a 0,8 Q_{max}

6.1.4 - Fissuração do concreto

Ao final do ensaio, uma das lajes destacava-se do perfil, como apresenta a Figura 6.12. Assim foi possível observar a formação das fissuras na face interna da laje, como mostra esta figura. As demais fissuras, que poderiam ser visualizadas durante o ensaio, foram destacadas com pincel durante o ensaio, a título de melhor visualização. Estas fissuras mais visíveis estavam à mostra, na lateral e na face externa da laje.

Figura 6.12 - Final do ensaio push-out com conectores do tipo stud -100 mm

Analisando a Figura 6.13 verifica-se que ambos os conectores de 130 mm de altura produziram maior número de fissuras no concreto. A forma e o traçado das fissuras nestes dois casos apresentam semelhanças. Duas fissuras horizontais na altura dos conectores e uma terceira vertical, ligando-as. Em ambos os casos a fissura horizontal surgiu na fase final do ensaio. No caso do *stud* as fissuras apareceram com uma força de aproximadamente 900 kN e, para o conector 'V', 850 kN. Os conectores com 100 mm de altura apresentaram um comportamento diverso, no que se refere a apresentação de fissuras. Contudo existe semelhança com os modelos dos conectrores com 130 mm de altura. O *stud* de 100 mm de altura apresenta uma linha horizontal na altura do conector, enquanto no 'V'-100 mm existe uma linha horizontal na altura dos conectores e o início de fissura.

Nas laterais destas lajes, surgiram fissuras na base da laje, ver Figura 6.14. Essas fissuras surgem com uma carga de aproximadamente 500 kN. Ao final do ensaio, quando a peça tomba, tais fissuras se tornam mais expressivas, visto que, ao final do ensaio, as lajes começam a se separar e a peça tende a inclinar nos últimos passos de carga. Esta inclinação faz com que a laje que ficará presa ao perfil, ao fim do ensaio, apoie-se mais na borda interna de sua base gerando uma zona de concentração de tensões. Este fato proporciona o fissuração desta área, podendo esta borda se destacar da laje, ver Figura 6.14 (a). Contudo estas patologias aconteceram nos conectores *stud* e 'V' com 100 mm de altura. O conector *stud*, que suportou uma maior carga, apresentou expressivas trincas. A Figura 6.14 (a) mostra a profundidade desta trinca. A profundidade da trinca do conector 'V' era de aproximadamente 250 mm, até a face da armadura.

(a) Conector stud-100 mm

(b) Conector 'V'-100 mm Figura 6.14 - Base quebrada da lateral da laje presa ao perfil

As fissuras na face externa das lajes destacadas do perfil estão monstradas na Figura 6.15. O *stud*-130 mm apresentou menor grau de fissuração em comparação com *stud* de 100 mm de altura. Retornando à Figura 6.13, as maiores fissuras idenficadas foram no experimento do *stud* de 130 mm de altura. O nível de fissuração depende também de que lado ocorre o rompimento dos conectores. O conector em 'V', contudo, apresentou menor nível de fissuração do concreto, ver Figura 6.15.

(a) Conector stud-100 mm

(c) Conector 'V'-100 mm Figura 6 15 - Fa

(b) Conector stud-130 mm

(d) Conector 'V'-130 mm

Figura 6.15 - Face da laje destacada do perfil

A análise da face interna das lajes do conector mostra a deformação dos *studs*, Figura 6.16. A Figura 6.6 (a) e a Figura 6.6 (b) exibem as faces internas que apresentaram maior nível de fissuração. Na Figura 6.6 (c) é visualizado a deformação do conector *stud*, sendo ainda perceptível a zona de tração no concreto na região posterior do conector e também são identificadas as fissuras nas proximidades do conector, Figura 6.6 (d).

(c) Detalhe da região do stud

(d) Fissuras na região dos studs

Figura 6.16 - Face interna da laje presa ao perfil

O conector em 'V' por outro lado preservou mais o concreto, não demonstrando sinais superficiais de fissuração no concreto, ver Figura 6.17. Na zona de tração o desprendimento do conector 'V' em relação à laje de concreto foi menor do que para o conector *stud*, conforme Figura 6.16 (c). Nesta zona de tração, deve-se ainda desconsiderar a área ocupada pela solda do conector com o perfil. Esta deformação reduzida do conector 'V' é devida a sua geometria. Sua forma permite uma maior área de concreto comprimido, sendo assim o conector permanece mais intacto no concreto.

(c) Detalhe da região do conector 'V'-100 mm

Figura 6.17 - Face interna da laje presa ao perfil

6.1.5 - Deformação dos conectores

A análise dos conectores é obtida com a retirada dos mesmos da laje de concreto, com uso de um britador manual elétrico (Figura 6.18), para a retirada da laje de concreto. Incialmente a laje era removida, mas preservando uma parcela do concreto em torno do conector. Assim era possível observar a existência de fissuras no concreto e não danificar os conectores. Em seguida foi removido o restante do concreto deixando apenas os conectores e o perfil metálico.

Figura 6.18 - Retirada da laje de concreto com britador elétrico

Os conectores *stud* apresentaram deformações semelhantes às obtidas na análise numérica com o 'MEF', ver Figura 6.19 (a) e Figura 6.20 (b), na qual o *stud* assume uma acentuada curvatura e concentração de tensões na base. Na base do conector, se verifica uma redução da seção transversal do *stud*, caracterizando escoamento do material. Em alguns casos, ocorreu o rompimento do conector, como pode ser observado na Figura 6.19, em que um dos conectores *stud*-100 mm desprendeu-se do perfil.

(a) Conector stud-100 mm

(b) Detalhe da região da base

```
Figura 6.19 - Conector stud- 100 mm ainda soldado no perfil, retirado da laje
```

Na análise dos *studs* de 130 mm de altura ocorreu a ruptura de dois conectores, ver Figura 6.20. Estes conectores estavam alinhados no sentido longitudinal e o rompimento destes pode ter ocasionado instabilidade na peça, explicando assim o diferenciado comportamento dos defletômetros horizontais dos *studs* dispotos em duas alturas distintas, ver Figura 6.7.

(a) Deformada do *stud* Posterior
(b) Deformada do *stud* Frontal
(c) *stud* rompido
Figura 6.20 - Conector *stud* - 130 mm ainda soldado no perfil, retirado da laje

Em todos os casos analisados os conectores 'V' não romperam na solda. O comportamento destes conectores foi muito semelhante à análise do 'MEF'. Tais conectores apresentaram uma deformação mais acentuada na base, ver Figura 6.21. Esta curvatura é mais acentuada na frente do conector, com leve torção para fora, como se existisse neste local uma barra ancorada. Esse comportamento indica que a ruptura do conector inicia-se em sua face frontal. Assim como o conector *stud* o conector 'V' apresenta redução de sua altura em função das deformações em sua base. Este fenômeno no conector 'V' implica em esforços de compressão no concreto em seu interior, fato positivo não identificado no *stud*. A redução da altura do conector *stud* resulta na formação de uma fissura que se incia na face inferior de sua cabeça seguindo de forma inclinada na direção do perfil, conforme apresentado na Figura 2.21.

(a) Conector 'V'-130 mm (b) Detalhe da região da base (c) Base do 'V' preso ao perfil Figura 6.21 - Conector 'V'-130 mm ainda soldado no perfil, retirado da laje
Com base na análise experimental piloto, fica comprovado os resultados obtidos na análise numérica pelo 'MEF' (ver capítulo 3). As deformações dos conectores *stud* e 'V' apresentam semelhança tanto na análise numérica quanto na experimental. Contudo seu comportamento da ligação da laje com o perfil na análise experimental demonstra ser mais dúctil do que o obtido na análise numérica do 'MEF'. É preciso um estudo mais aprofundado na questão da ligação de contato entre o conector de cisalhamento e a laje de concreto, podendo-se assim simular numericamente com maior precisão o comportamento plástico do ensaio de *push-out*. Constatou-se também que o conector 'V' pode ser cracterizado como conector flexível assim como o *stud*. O conector 'V' mesmo apresentadando carga final próxima do valor obtido pelo *stud*, demonstrou melhor ligação da laje de concreto. Foi obsevado também na análise experimental que o concreto em volta do conector 'V' paresentou a menor nível de fissuração do concreto, especialmente na face interna da laje com a qual o conector está em contato com o concreto.

6.2 - EXPERIMENTO FINAL

A análise experimental final constitui um estudo voltado ao conector de cisalhamento do tipo 'V'. Aqui procura-se investigar a utilização do conector 'V' de altura única, confeccionado com diferentes espessuras. Nesta análise são levados em consideração os efeitos de fissuração do concreto e a relação Força (kN) total aplicada x Deslizamento (mm) relativo do perfil, em relação à laje e à influência da espessura da alma do conector 'V'.

6.2.1 - Modelos de ensaios

Os modelos dos ensaios para o conector 'V' são de três espessuras, mas a altura é mantida constante assim como para o conector stud. Todas as peças são de 130 mm de altura. Para cada modelo, foram moldadas três peças idênticas, totalizando 12 peças, conforme resumo na Tabela 6.3.

Tipo de conector	Espessura ou diâmetro	Número de peças moldadas	Altura do conector	
stud	19 mm 03		-	
	2,65 mm	03	130 mm	
Conector 'V'	3,75 mm	03	150 1111	
	4,65 mm	03		

Tabela 6.3 - Modelos de peças adotados para o ensaio final

6.2.1.1 - Instrumentação da armadura

As armaduras foram instrumentadas de forma semelhante ao ensaio piloto. Não foi utilizada a terceira linha de *strain gage* (SG), a que fica próxima ao conector mais acima. Os "straing gages" foram dispostos em duas diferentes posições. Uma no canto e outra no meio da peça, em duas diferentes alturas, ver Figura 6.22. Os 'SGs' de canto ficaram em uma face do modelo e os de meio na outra face.

Figura 6.22 - Posição dos "straing gages" (SG), para cada peça de push-out

6.2.2 - Carregamento aplicado

O carregamento aplicado seguiu as recomendações do EN 1994-1-1:2004. Inicalmente aplicando 25 ciclos de carregamento, com a carga variando de 5% a 40 % do valor da força final aplicada no ensaio. Os valores adotados estão ilustrados na Figura 6.23 .

Figura 6.23 - Gráfico Força (kN) x Tempo (s)

O ensaio relativo ao conector 'V'-4,75 mm demandou maior tempo, em virtude da estimativa do valor da carga final. Estipulou-se um ciclo de carga variando de 70 a 500 (kN). Os demais conectores 'V' apresentaram semelhança, de forma que seus valores ficam sobrepostos na Figura 6.23 (b).

6.2.3 - Resultados obtidos

Os resultados consistem da análise das deformações das armaduras e dos defletômetros horizontais e verticais. Os valores referentes aos gráficos apresentados neste capítulo referentes ao ensaio final encontram-se no Apêndice-D.

6.2.3.1 - Deformações na armadura

Os valores mostrados representam as deformações das armaduras lidas pelo sistema de aquisição de dados em função da carga total aplicada na peça. A disposição dos extensômetros segue o modelo mostrado na Figura 6.22. A Figura 6.24 relata o resultado das deformações na armadura para o conector *stud*. As três peças, ou modelos ensaiados,

demonstram semelhança. Os extensômetros de canto apresentam maiores níveis de deformação de armadura. Isto devido à proximidade dos mesmos com o conector.

Figura 6.24 - Modelos ensaiados para o conector stud

Contudo as diferenças existentes no caso dos *studs* se devem ao rompimento dos conectores, visto que este rompimento não segue um padrão e não ocorre de maneira simultânea. A ruptura de um conector implica transferência de esforços para os demais conectores e perda de equilíbrio do sistema, resultando em maiores deformações na armadura próxima aos conectores resistentes. Este desequilíbrio permite que ao final do ensaio uma das lajes permaneça ligada ao perfil metálico e outra se destaque. Após o ensaio, o modelo -01 dos *studs*, a laje com os 'SGs'do meio permaneceu fixada ao perfil metálico. Contudo, nesta laje, ocorreu a ruptura de dois conectores alinhados no sentido vertical, o que explica os valores mais acentuados da deformação de meio (SG Meio-01 e 02). Nos modelos 02 e 03, a laje com 'SGs'de canto permaneceu fixada no perfil, após o ensaio. Porém dois conectores que estavam alinhados com os 'SGs' romperam.

Figura 6.25 - Perfil removido da laje mostrando studs rompidos e empenados

Os conectores em 'V' apresentam comportamento semelhante, no que se refere às deformações medidas na armadura, conforme indicam a Figura 6.26 a Figura 6.28. Entretanto os modelos dos conectores 'V' de espessuras de alma de 3,75 mm (Figura 6.27) e 4,75 mm (Figura 6.28) relatam maior proximidade entre seus resultados. Nas análises realizadas, o extensômetro de canto na face posterior (SG Canto-02) apresentou as maiores leituras. Neste local, a armadura é solicitada pelos esforços de ambos os conectores. Os conectores de maior espessura são mais rígidos. Assim para uma determinada deformação da armadura, o sistema recebe uma maior parcela da força.

(a) Modelo-01

(b) Modelo-02

Figura 6.26 - Força (kN) x Deformações (mm/m) na armadura, conector 'V'-2,65 mm

(a) Modelo-01

(b) Modelo-02

(c) Modelo-03

Figura 6.27 - Força (kN) x Deformações (mm/m) na armadura, conector 'V'-3,75 mm

(a) Modelo-01

(b) Modelo-02

Figura 6.28 - Força (kN) x Deformações (mm/m) na armadura, conector 'V'-4,75 mm

As deformações na região central da armadura, são menores para os conectores 'V' - 3,75mm e 'V'- 4,75 mm do que para o 'V'- 2,65 mm e o *stud*, vide Figura 6.29. Estes conectores em 'V' permitem valores reduzidos de deformação da armadura para valores elevados de carga (800 kN). O *stud*, por outro lado, possibilita que a deformação aumente de modo mais expressivo, para valores de carga superiores a 400 kN. Desta forma o conector em 'V' proporciona uma melhor distribuição de tensões nesta região.

(b) Valores para a armadura superior

Figura 6.29 - Força (kN) x Deformações para 'SGs' na região central da armadura

Na região de canto, as deformações na armadura para o conector stud são superiores aos conectores 'V'-3,75 mm e 'V'-4,75 mm, conforme Figura 6.30. Na armadura mais inferior,

Figura 6.30 (a), o conector 'V'- 4,75 mm apresenta melhor distribuição de esforços, em virtude de apresentar os menores valores para a relação carga/deformação. Com exceção do 'V'-4,75mm, os demais mostram crescente incrementos de deformação, para uma força de valor superior a 600 (kN). A armadura do conector *stud* apresenta crescente deformação ao atingir uma força próxima de 800 (kN).

(a) Valores para a armadura inferior

(b) Valores para a armadura superior

Figura 6.30 - Força (kN) x Deformações para 'SGs' na região de canto da armadura

6.2.3.2 - Tendência de separação transversal (uplift)

O estudo do uplift segue o mesmo padrão do ensaio piloto. Na Figura 6.31, mostra-se a relação força (kN) total aplicada no modelo pelo afastamento transversal entre as lajes. A legenda destes gráficos está na forma "C-0x-y" que representa a leitura relativa ao conector 'C', deflectômetro 'x' no ensaio 'y'. Portanto, stud-01-2 refere-se a leitura no conector stud obtida pelo segundo defletômetro instalado no primeiro modelo ensaiado. As leituras no conector stud- 02-01 e stud- 02-02 mostram grande semelhança, significando que a separação das lajes ocorreu de forma contínua e que o perfil deslocou-se verticalmente, de forma uniforme. A diferença na leitura nos demais studs, entre outros fatores, pode ter sido ocasionada pelo rompimento dos conectores. Após o ensaio, no processo de demolição da laje ainda fixada no perfil, foram encontrados studs que se desprenderam do perfil metálico ou seja na solda. As lajes dos conectores 'V' se afastam de maneira mais uniforme, como pode ser observado na Figura 6.31.

(a) Ensaios do conector stud

(c) Ensaios do conector 'V'-3,75 mm

(d) Ensaios do conector 'V'-4,75 mm

Figura 6.31 - Estudo da separação entre lajes nos ensaios de push-out

Analisando todos o conectores quanto ao afastamento transversal da face superior da laje, percebe-se que o conector 'V'-2,65 mm apresenta os maiores deslocamentos (Figura 6.32). O conector *stud* apresenta valores intermediários de afastamento transversal, porém apresenta afastamento transversal máximo próximo do 'V'- 2,65 mm. O afastamento dos conectores 'V'-3,75 mm e 'V'-4,75 mm relatam proximidade de resultados. Porém o conector 'V'-4,75 mm proporciona maior ligação laje perfil, visto que apresenta os menores deslocamentos entre as lajes.

Figura 6.32 - Força (kN) x Afastamento transversal (mm) para o defletômetro-01

Analisando o afastamento transversal da regiãoinferior das lajes (Figura 6.33), o *stud* mostra menor movimentação entre as laje do que o 'V'-2,65 mm. Os conectores 'V'-3,75 mm e 'V'-4,75 mm mantêm o comportamento mostrado nas leituras do defletômetro-01.

Figura 6.33 - Força (kN) x Afastamento transversal (mm) para o defletômetro-02

6.2.3.3 - Relação Força por Deslizamento relativo perfil e laje

O estudo da relação força (kN) total aplicada no ensaio pelo deslizamento do perfil em relação à laje está mostrado na Figura 6.34 e na Figura 6.35. Os dois defletômetros verticais nos gráficos destas figuras são chamados de 3 e 4, seguindo a mesma metodologia aplicada aos gráficos da Figura 6.31. O defletômetro-03 do primeiro conector stud-1 (stud-1-3) apresentou problemas na leitura durante o ensaio, justificando assim a ausência da legenda. Analisando os conectores de forma geral é notório que o perfil deslizou verticalmente de forma uniforme, visto a proximidade de valores das leituras dos defletômetros 3 e 4. O conector 'V'-3,75 mm, dentre todos os demais mostrou maior semelhança entre os resultados obtidos. O conector 'V'- 4,75 mm apresentou certas diferenças nas leituras dos defletômetros verticais, o que pode estar relacionado ao material aplicado na confecção dos conectores. Conforme a caracterização dos materiais, foi detectada a utilização de dois tipos de aço para a confecção do conector 'V'-4,75 mm. Os conectores stud apresentaram maior ductilidade na ligação enquanto os conectores 'V' 3,75 mm e 'V'-4,75 mm apresentaram maior resistência na ligação entre o perfil e a laje. Para forças entre 85 e 90 kN, que correspondem aos valores máximos resistidos pelo stud, cujo deslizamento está acima dos 7 mm, os conectores 'V' -3,75 mm e 'V'-4,75 mm ainda se encontram no início do processo de plastificação e com deslizamentos inferiores a 2 mm.

Figura 6.34 - Deslizamento do perfil em relação à laje para os conectores stud

(a) Relação Força (kN) x Deslizamento (mm) do perfil para o conector 'V'- 2,65 mm

(b) Relação Força (kN) x Deslizamento (mm) do perfil para o conector 'V'- 3,75 mm

Estabelecendo uma análise comparaitvo entre os conectores referente ao deslizamento relativo do perfil em relação à laje (Figura 6.36), observa-se que após a fase de carregamento cíclico os conectores *stud* apresentaram maiores deslizamentos iniciais, do que os conectores em 'V'. Fato de considerável relevância para situações com carregamentos desta natureza, como é o caso de pontes, passarelas, etc. O conector 'V', especialmente, apresenta maior interatividade entre o perfil e a laje, após o carregamento cíclico, tendo em vista os valores apresentados para o deslizamento do perfil em relação à laje, como pode ser observado também na Figura 6.36. Com base neste gráfico, nota-se que os conectores 'V'- 3,75 mm e 'V'- 4,75 mm apresentaram melhor ligação entre o perfil e a laje. O conector 'V'-3,75 mm expressa semelhança na carga final, em relação ao conector 'V'-4,75 mm, mas com maior deslizamento do perfil. O conector 'V'-2,65 mm mostra ligação semelhante com o modelo *stud*, até o deslizamento de 6 mm. Para valores de deslizamento inferiores a 2 mm o conector, 'V'-2.65 mm expressa maior interatividade entre o perfil e a laje, do que o *stud*.

Figura 6.36 - Comparativo dos modelos p/ Força (kN) x Deslizamento (mm) do perfil

6.2.4 - Avaliação do ensaio

Na Tabela 6.4 estão os resultados das cargas máximas e os respectivos deslizamentos do perfil em relação à laje. Observa-se nesta tabela que o conector *stud* apresenta valores de

cargas finais próximos ao conector 'V'-2,65 mm. Contudo os valores de deslizamentos do conector 'V'-2,65 mm são próximos dos resultados obtidos para o conector 'V'-4,65 mm, este conector apresenta os maiores valores de força máxima (Q_{max}). Analisando a capacidade de deslizamento característico (δ_{uk}), observa-se que apenas o modelo-01 do conector *stud* satisfez a condição de conector dúctil ($\delta_{uk} \ge 6$ mm) estabelecido pelo EN–1994-1-:2004. O sistema de aplicação de carga que era manual, apresentou grande dificuldade na obtenção da fase descendente pós carga máxima do gráfico Força (kN) x Deslizamento (mm). Desta forma os valores de deslizamentos característicos foram calculados em função da carga máxima, ocasionando uma considerável redução dos valores de ' δ_{uk} '. Contudo o conector *stud* é classificado como um conector dúctil. O conector 'V' também pode ser considerado como dúctil, visto que seu comportamento plástico é semelhante ao *stud*, como pode ser observado nos gráficos de Força (kN) x Deslizamento (mm).

Modelo do conector		Q _{max}	Q _{max -} por conector	P _k	δ _u	δ _{uk}
		kN	kN	kN	mm	mm
	Mod01	793,40	99,18	710,00	8,63	7,76
<i>stud</i> - 130 mm	Mod02	914,20	114,28	820,20	5,73	5,16
	Mod03	850,00	106,25	756,00	5,30	4,77
'V'- 2,65 mm	Mod01	867,00	108,38	783,00	4,21	3,79
	Mod02	857,60	107,20	782,00	2,78	2,50
	Mod03	855,80	106,98	785,40	4,32	3,89
	Mod01	1230,00	153,75	1153,00	5,18	4,67
'V'- 3,75 mm	Mod02	1191,60	148,95	108,34	4,87	4,38
	Mod03	1262,80	157,85	114,22	5,21	4,69
'V'- 4,75 mm	Mod01	1219,80	152,48	1101,00	4,13	3,72
	Mod02	1244,20	155,53	1147,00	4,48	4,03
	Mod03	1221,40	152,68	1086,40	5,27	4,74

Tabela 6.4 - Resumo das cargas e deslizamentos máximos obtidos

Onde:

Q_{max} – carga máxima lida no ensaio

 P_k – Resistência característica ($P_k = 0.9Q_{max}$)

 δ_{u} - Deslizamento referente a ' P_{k} ' δ_{uk} - Capacidade de deslizamento característica ($\delta_{k} = 0.9\delta_{u}$) Na análise do *uplift* todos os conectores apresentaram resultados favoráveis. Os valores do *uplift* são aproximados para estes conectores de cisalhamento. Os menores valores de percentual relatado pelo conector *stud* é devido aos elevados valores de deslizamento do perfil. Os conectores 'V' apresentam maior ligação entre perfil e laje, porém os coeficientes entre os '*uplifts*₍₈₀₎' e o deslizamento ' δ_{80} ', ambos medidos a 80% da carga máxima (Q_{max}), estão bem próximos do valor limite de 50% recomendado, ver seção 2.6.1.

Modelo do conector		Q _{max}	0,8 x Q _{max}	δ ₈₀	uplift ₈₀	up	$lift_{80}/\delta_{80}$
		kN	kN	mm	mm	%	Resultado
	Mod01	793,40	657,20	5,365	1,865	34,77	ok
stud-130 mm	Mod02	914,20	735,60	2,984	0,664	22,24	ok
	Mod03	850,00	697,00	4,072	0,294	7,21	ok
	Mod01	867,00	660,00	1,999	0,997	49,86	ok
'V'- 2,65 mm	Mod02	857,60	701,60	1,485	0,737	49,60	ok
	Mod03	855,80	666,00	2,615	1,120	42,84	ok
	Mod01	1230,00	988,00	2,964	1,275	43,00	ok
'V'- 3,75 mm	Mod02	1191,60	96,02	2,018	0,925	45,83	ok
	Mod03	1262,80	110,99	3,875	1,864	48,09	ok
'V'- 4,65 mm	Mod01	1219,80	96,50	2,261	0,918	40,59	ok
	Mod02	1244,20	102,50	2,616	0,876	33,49	ok
	Mod03	1221,40	98,54	2,820	1,066	37,80	ok

Tabela 6.5 - Resumo das cargas, deslizamentos característicos e verificação do uplift

onde :

 δ_{80} - deslizamento relativo a 0,8.Q_{max}

uplift₈₀ - uplift correspondente a 0,8.Q_{max}

6.2.5 - Fissuração do concreto

Analisando a região do conector, observou-se uma fissura de maior comprimento no conector *stud*, conforme Figura 6.37. No conector 'V' as fissuras foram de amplitude menor. Os conectores 'V'-3,75 mm e 'V'-4,75 mm por suportarem maior carga, apresentaram maiores fissuras.

(a) Conector *stud* (b) Conector – 'V' -3,75 mm
 Figura 6.37 - Detalhe das fissuras na região posterior do conector

As fissuras na face interna são menores do que as obtidas no ensaio piloto. Diversos fatores influenciaram para este fato, dentre as quais podem-se citar: o tipo de concreto, as condições de controle, a execução e a cura do concreto. As fissuras analisadas na face externa das lajes mostram semelhança, entre os modelos de cada tipo de conector, conforme Figura 6.38 e Figura 6.39. O conector *stud* apresenta três fissuras horizontais, sendo duas na região do conector e uma entre os conectores. Também foi constatada uma fissura vertical que segue do par de conector mais elevado até a base da laje. Os conectores 'V' apresentaram comportamento semelhante, três fissuras horizontais na altura do conector e uma vertical. Esta última apresenta uma ramificação na região do conector inferior, mostrando assim a biela de compressão. O formato da biela de compressão no conector 'V'-3,75 mm, demonstrou maior abertura em relação ao conector 'V'-4,75 mm. O conector 'V' tende a aumentar seu ângulo interno de 90° com o incremento da carga.

(a) Modelo-01 (stud)(b) Modelo-02 (stud)(c) Modelo-03 (stud)Figura 6.38 - Marcação da fissura na laje para o *push-out* dos conectores 'V'

Figura 6.39 - Marcação da fissura na laje para o push-out dos conectores 'V'

Analisando a deformação dos conectores, Figura 6.40, percebe-se que o conector *stud* apresenta maior deformação. Conforme a Figura 6.40 (a), nota-se que a face do conector destaca-se do concreto da laje aproximadamente 10 mm. Também foi identificada uma abertura de 50 mm entre laje e conector. O conector 'V' apresentou menor deformação. Devido a sua reduzida espessura, o conector 'V'-2,65 mm apresentou maior abertura do conector como um todo, ver Figura 6.40 (c). Mesmo com o aumento do ângulo interno, o

conector ainda se apresenta bastante fixo à laje. Fato comprovado também pela Figura 6.41, que mostra o destacamento do perfil em relação à laje. O conector 'V'-4,75 mm apresentou menor abertura visto que possui maior rigidez. Porém surgiu uma dobra, nas proximidades de sua extremidade, ver Figura 6.40 (c)

(a) *stud*

(b) 'V'-2,65 mm

(c) 'V' -4,75 mm

Figura 6.40 - Deformada dos conectores presos na laje de concreto

Figura 6.41 - Detalhe da abertura entre o conector 'V'-2,65 mm e a laje

Após a retirada da laje fixada ao perfil, é possível observar a deformada dos conectores analisados, conforme Figura 6.42. Nesta figura, os conectores 'V'-4,75 mm apresentaram inclinação como um todo, onde o eixo da rotação é a base. Notas-se O conector 'V'-2,65 mm apresentou deflexão de poucos milímetros aproximadamente à meia altura do conector e a cerca de 50 mm da sua base. A reduzida espessura da chapa do conector reduz sua rigidez, proporcionando o aprecimento desta deflexão no conector. Contudo esta deflexão não assume as mesmas proporções da deflexão observada no conector *stud* – ver Figura

6.42 (a). Sendo esta deflexão bem maior do que as deflexões apresentadas pelos conectores'V' Figura 6.42 (b) e (c).

(a) Conector *stud*

(b) Conector 'V'-4,75 mm

(c) Conector 'V'-2,65 mm

Figura 6.42 - Deformada dos conectores retirados da laje

7 - ENSAIO DE ARRANCAMENTO

O ensaio de arrancamento tem como objetivo conhecer o comportamento da aderência do aço do conector ao concreto e objetiva estabelecer valores aproximados do coeficiente de atrito e coesão. A expectativa em proceder tal ensaio seria definir de forma mais consistente os parâmetros de contato utilizados na análise numérica do 'MEF' (capítulo 3).

O ensaio de arrancamento é realizado por meio de aplicações sucessivas de deslizamentos pré-estabelecidos de 0,2 mm a intervalos de 2 min entre aplicações até não se encontrar mais resistência ao arrancamento. Foram moldados 8 corpos-de-prova e descartado um por apresentar movimento da barra durante o processo de desmoldagem. Um bloco foi ensaiado como ensaio piloto. Os resultados dos ensaios (Deslizamento-Tempo) encontram-se na Figura 7.1. Durante os ensaios, na tentativa de se obter deslizamento de 0,2 mm, as barras apresentaram deslizamentos diferentes, portanto, os gráficos na Figura 7.1 não permitem dizer de forma conclusiva, qual a barra com maior ou menor aderência. Nota-se, entretanto, que para um deslizamento de 10 mm a barra do bloco-2 foi a que chegou mais rápido ao final do ensaio e que a barra do bloco-4 foi a que mais demorou. A barra do bloco-7 apresentou os maiores deslizamentos, após atingir os 10 mm de deslizamento (que sinaliza o fial do ensaio). Partes destes deslizamentos aplicados no mestes intervalos de 2 min, tendo em conta os incrementos de deslizamentos aplicados no mestes intervalos de tempo.

Figura 7.1 - Ensaio de arrancamento medindo Deslizamento (mm) x Tempo (s)

7.1 - ANÁLISE DE RESULTADOS DOS ENSAIOS

Estabelecendo uma relação entre carga aplicada e tempo, todos os blocos, com exceção do BL-02, obedeceram a um padrão, conforme o gráfico da Figura 7.2. Apesar dos resultados adversos, os blocos apresentaram elevada carga inicial, ligeiro acréscimo de carga resistente e posterior redução do carregamento. Contudo os diferentes resultados são problemas relativos à corrosão da barra de aço e aos pedaços de fita presos à barra no interior do bloco. Esta fita foi utilizada na vedação do tubo de PVC, que gerou, respectivamente, aderência e ancoragem extra na barra. No ensaio do BL-02, a extremidade da barra onde estavam apoiados os defletômetros não foi lixada. Os pontos ou *pits* de corrosão nesta área proporcionaram uma ancoragem quando a barra iniciou seu deslocamento, favorecendo o ganho de resistência ao deslizamento da barra. As extremidades dos demais blocos foram lixadas. O BL-07 que apresenta o maior pico de carga, apresentou consideráveis níveis de corrosão da região da barra em contato com o concreto, conforme Figura 7.6 e Figura 7.7. O BL-05, por outro lado, não apresentou corrosão da armadura, o que explica o resultado mais linear, obtido na Figura 7.2 e Figura 7.3.

Figura 7.2 - Carga (kN) x Tempo (s) do ensaio de arrancamento

Figura 7.3 - Carga (kN) x Deslizamento (mm) do ensaio de arrancamento

7.2 - ANÁLISE DO BLOCO E DA BARRA METÁLICA

Após o ensaio, a barra foi removida do bloco e este foi aberto, permitindo análise completa da região de contato. O bloco foi rompido utilizando o mesmo princípio do ensaio de compressão diametral. Fixando taliscas de madeira nas faces do bloco, Figura 7.4 (a), a carga aplicada pela prensa permitiu a ruptura do bloco na região de abertura, conforme pode ser observado pela Figura 7.4 (b).

Figura 7.4 - Esquema de ruptura do bloco

Estabelecendo um comparativo entre o estado da barra metálica em todos os blocos ensaiados (Figura 7.6) e a região do concreto em contato com a barra (Figura 7.7), pode-se entender melhor o gráfico da Figura 7.3. O bloco-3 apresentou leve corrosão na barra,

manchas perceptíveis também no bloco de concreto. O que permitiu valores intermediários na relação carga deslizamento (Figura 7.3). O bloco-4 apresentou considerável nível de corrosão na barra metálica e pedaços da fita branca utilizada na vedação do tubo de PVC, pedaços estes preso à barra. Tais fatos propiciaram ancoragem extra a esta barra metálica. A barra do bloco- 5 não evidencia sinais consideráveis de corrosão, resultando nos menores valores de carga de arrancamento. Contudo neste bloco de concreto foram encontradas pequenas manchas, provavelmente relacionadas com o início do processo de corrosão da barra. Foram encontrados sinais brandos de corrosão no concreto do bloco-06, apesar da barra de aço estar limpa. Também foi identificado neste caso, vazamento de nata de cimento presa a um considerável volume de fita branca. Fita esta utilizada na vedação do tubo de PVC. No bloco-7 foram identificados os maiores valores de carregamento. Isto se deve principalmente à corrosão da armadura, identificada na armadura (Figura 7.6), e nas manchas na face interna do bloco de concreto (Figura 7.7). O procedimento de corrosão altera a conformidade da superfície da barra, imprimindo maiores coeficientes de atrito, como pode ser observado na Figura 7.5. No processo de adensamento, pequenas mudanças na posição da agulha do vibrador influenciam na aderência, visto que o tamanho da peça é reduzido. É possível que nos demais blocos a agulha do vibrador tenha se aproximado mais ou menos da barra imersa no bloco, ou tenha tocado a fôrma. Neste caso o conjunto vibra por inteiro, inclusive a barra metálica, podendo comprometer a ligação do concreto com a barra metálica.

Figura 7.5 - Acabamento superficial de fios e barras lisas (Fusco, 1995)

Barra com *pits* de corrosão (BL-02)

Barra com corrosão (BL-04)

Região em contato com concreto (BL-06)

Nata de cimento

que vazou

Barra com corrosão (BL-03)

Barra em contato com o concreto (BL-05)

Nata de cimento que vazou (BL-06)

Figura 7.6 - Detalhe da região interna das barras em contato com o concreto

BL-02

BL-04

BL-03

BL-05

BL-07

Figura 7.7 - Detalhe internos dos blocos de concretos

A dispersão dos resultados aqui apresentados não nos permite calcular com rigor os coeficientes de coesão e de atrito. Portanto, não se pode obter coeficientes mais confiáveis que poderiam melhorar ainda mais a modelagem numérica já apresentada no capitulo 3, onde tais coeficientes (coesão e atrito nos elementos de contato) foram obtidos da literatura e por tentativa e erro. Para melhorar os resultados aqui obtidos, sugere-se refazer os ensaios, mas utilizando-se *studs* e equipamento servo controlado.

8 - FORMULAÇÃO MATEMÁTICA

A formulação matemática foi desenvolvida considerando a utilização da área do conector sob ação de cisalhamento direto. A área da seção do conector, com base na Figura 8.1, pode ser calculada pela equação -8.1. Equação obtida por relações trigonométricas.

$$A_{cs} = \frac{b.e_{sp}}{sen(\frac{a}{2})}$$
(8.1)

onde:

A_{cs}- área útil da seção de aço

b- largura da base

e_{sp}- espessura da chapa

 α -ângulo interno de abertura do conector

Figura 8.1 - Vista ilustrativa do conector 'V', sem escala

A tensão (σ) considerada no cálculo do cisalhamento, corresponde a uma parcela da tensão atuante (σ_{at}) nas paredes do conector. No cálculo considera-se que ' σ ' esteja normal as paredes do conector. Diferentemente de ' σ_{at} ' que incide de forma inclinada, conforme

Figura 8.2 . Desta forma chega-se ao seguinte relação:

$$\boldsymbol{S} = \boldsymbol{S}_{at}.\,\boldsymbol{sen(a/2)} \tag{8.2}$$

Considerando que nos ensaios $\alpha = 90^{\circ}$ se tem que:

$$s = 0.707 s_{at}$$
 (8.3)

Figura 8.2 - Detalhe das tensões atuantes nas paredes do conector

Considerando forças normais atuantes no concreto confinado e as equações 8.1 e 8.3 se tem que a resistência do conector (R_n) isoladamente pode ser obtida como sendo:

$$R_c = \frac{A_{cs} f_u}{sen(a/2)}$$

Sendo: f_u – limite de resistência à tração do conector

Seguindo as recomendações da NBR- 8800:2008, a resistência nominal (R_n) do conector 'V' ao cisalhamento deverá ser o menor valor entre as equações seguintes:

$$R_n = \mathbf{0.5.} A_{cs} \sqrt[2]{f_{ck}E_c}$$

$$R_c = \frac{A_{cs}f_u}{sen(a/2)}$$

$$8.5$$

Onde:

 f_{ck} - Resistência característica do concreto à compressão, não podendo ser tomada para valor superior a 28 MPa

E_c – Módulo de elasticidade do concreto

A E.q-8.6 pode ser averiguada por meio dos ensaios de *push-out*. Inicialmente com base na equação-8.1 determina-se a área útil dos modelos. A Tabela 8.1 apresenta os valores área útil dos conectores 'V' aplicados nos ensasios, calculados por meio da Eq-8.1.

Área útil para os conectores (cm ²)					
'V'-2,65 mm 'V'-3,75 mm 'V'-4,75 mm					
3,7477	5,3033	6,7175			

Tabela 8.1 - Área efetiva encontrada para os conectores 'V'

Atribuindo os valores das resistências limite (' f_u ') à tração determinadas nos ensaios de tração dos conectores determinam-se as resistências últimas médias à tração, ver Tabela 8.2.

Tabela 8.2 - Valores da resistência à tração para os corpos de prova

Caracterização dos materiais -Tensão (kN/cm ²)					
Conector	Resistên (fu)	cia final	dos CPs	Média	
'V'-2,65 mm	39,21	37,51	37,85	38,19	
'V'-3,75 mm	40,66	40,65	42,05	41,12	
'V'-4,75 mm	45,63	30,51	31,02	30,76	

O conector 'V'- 4,75 mm apresenta valor elevado para o primeiro ensaio. Este valor é desconsiderado no cálculo da média. Visto não ser o mesmo tipo de aço aplicado no ensaio *push-out* do conector 'V'- 4,75 mm. Atribuindo os valores da Tabela 8.1 e Tabela 8.2 na E.q-8.6, é obtido a resistência individual do conector (R_n). Para cada ensaio de *push-out* são considerados quatro conectores 'V', observa-se na Tabela 8.3:

Tabela 8.3 - Comparação das resitências ao cisalhamento dos conectores 'V'

	Conector			
Dados	'V'- 2,65 mm	'V'- 3,75 mm	'V'- 4,75 mm	
Resistência-R _n (kN/cm ²)	20,24	30,84	29,23	
Resit. P/ Push-out (4.R _n)	80,96	123,36	116,91	
Carga de ensaio (Push-out)	83,15	121,85	120,00	
Diferença (%)	2,63	1,24	2,58	

9 - CONCLUSÕES E SUGESTÕES

9.1 - CONCLUSÕES

São apresentadas aqui as conclusões de cada uma das diferentes etapas desenvolvidas, que procuraram analisar o conector 'V' sob diversos aspectos e situações. As análises de caráter numérico e experimental procuram entender o comportamento deste conector, assim como compará-lo aos modelos mais aplicados, dentre os quais o conector 'U' e o conector *stud*, o mais aplicado nos dias atuais.

9.1.1 - Conclusões do estudo numérico

A análise numérica apesar da carência de dados, principalmente relativos à aderência ou seja os dados utilizados nos elementos de contato, proporcionou uma visão global do funcionamento dos conectores *stud* e 'V'. Conclui-se que, mesmo com as dificuldades de utilização de alguns itens do programa, especialmente os coeficientes relevantes ao contato do conector com a laje, foram obtidos resultados significativos. O que nos permite concluir que :

- O conector 'V' em comparação com o conector *stud*, proporciona menores concentrações de tensões no perfil e na laje. Em vista de sua maior área de contato com o concreto, os esforços ficam mais bem distribuídos na laje. A menor concentração de tensões na região do perfil e do conector permite-se utilizar vigas com menor espessura de flange.
- As fissuras no concreto se manifestam de forma mais expressiva no conector stud.
 O conector 'V' na região frontal, induz o concreto a um confinamento e isto possibilita uma redução no nível de fissuração na região do entorno do conector. No conector stud as fissuras se iniciam em torno de cada conector e se propagam em direção aos demais. Inicialmente, as fissuras dos conectores se interpõem com as existentes advindas dos conectores adjacentes. Em seguida estas fissuras alcançam os que estão mais a frente, na direção do alinhamento da viga metálica.
- A ligação do perfil com o concreto se torna mais rígida, quando se refere ao conector em 'V'. Como conseqüência a resistência última da ligação entre concreto e perfil é maior quando se refere ao conector 'V'. Outra propriedade observada

para o conector 'V' é que existem menores deslizamentos entre o perfil e a laje de concreto. Observou-se ainda que em comparação com o conector 'U' a rigidez da ligação do conector em 'V', é bem superior.

 O fenômeno de aderência entre o aço e o concreto é muito complexo para ser modelado no programa Ansys. A modelagem deste fenômeno resultou numa vasta análise pelo método tentativa e erro até se obter uma resposta confiável. Portanto faz-se necessário um estudo mais aprofundado sobre a questão da aderência, para conhecer as características do contato entre o concreto e o aço. Com este aprofundamento de estudo pode-se realizar um maior número de análises do fenômeno aderência. Os resultados foram satisfatórios para os conectores analisados, *stud* de 100 mm, *stud* de 130 mm 'V' de 2,65 mm com alturas de 100 mm e 130 mm.

9.1.2 - Conclusões do ensaio de push-out

O ensaio de *push-out* foi realizado com o intuito de avaliar o conector 'V' e o *stud*, de forma a estabelecer um comparativo. A Análise experimental foi dividida em duas campanhas realizadas em diferentes momentos, sendo um ensaio piloto e outra final.

9.1.2.1 - Experimental piloto

A análise experimental piloto pode esclarecer diversos fatores, importantes para uma observação mais aprofundada. A partir dos resultados obtidos pode-se concluir que:

- Na análise da conexão do perfil com a laje o conector 'V' apresentou ductilidade, mas com valores inferiores ao conector *stud*, como pode ser observado na relação de deslizamento do perfil com a laje. É fato que a área útil do conector 'V'-2,65 mm é consideravelmente inferior à área do *stud*. Nota-se ainda que a reduzida área útil influencia na redução do comportamento dúctil da conexão.
- A altura do conector influencia no resultado do ensaio de *push-out*. Os conectores de maior altura mostraram maior deslizamento do perfil em relação à laje. O menor nível de ligação destas peças pode ser devido à posição de atuação dos esforços no conector. Conectores de maior altura têm seu ponto de aplicação de carga mais elevado, possibilitando maiores momentos fletores atuantes no conector.

- O valor da carga final de ligação entre o perfil e a laje, obtida nos ensaios de *pushout*, é muito semelhante para ambos os conectores. Contudo, para valores acima de 450 kN, os conectores em 'V' demonstram melhor interatividade entre perfil e laje. Fato observado pelos valores reduzidos do deslocamento relativo do perfil em relação à laje.
- Durante a fase de carregamento cíclico, o conector em 'V' demonstrou maior ligação entre laje e perfil, tendo em vista os menores valores de deslizamento do perfil. Após esta fase, no gráfico de deslizamento do perfil em relação à laje, o conector *stud* de 130 mm apresenta deslizamentos iniciais superiores aos demais conectores. O *stud* de 100 mm demonstra pequenos deslizamentos do perfil, mais ainda superiores ao conector 'V'. Pode-se concluir que para ações cíclicas, o conector 'V' apresentou inicialmente resultados satisfatórios, em vista dos valores reduzidos do deslizamento do perfil em relação à laje.

9.1.2.2 - Conclusões do estudo experimental final

No estudo experimental final foi realizada uma análise mais aprofundada dos conectores. Neste estudo pode-se concluir que:

- Ocorreu uma melhor distribuição de tensões no concreto nos modelos que utilizaram o conector 'V'. As deformações lidas pelos 'SGs' fixados nas armaduras foram superiores para o conector *stud*. Desta forma os conectores 'V'- 3,75 mm e 'V'-4,65 mm produziram as menores deformações na armadura. Na região mais crítica, que é o canto do conector, o modelo 'V'-4.75 mm mostrou os melhores resultados. Isto é, a leitura dos 'SGs' nesta região apresentou valores menores, implicando em valores reduzidos de deformação da armadura. Em relação à deformação nos 'SGs', as mudanças mais significativas ocorrem após a carga de 1000 kN, valor de carregamento superior à carga última do conector *stud*.
- No ensaio de *push-out* o conector 'V'-2,65 mm apresentou resultados aproximados ao conector *stud*. Para valores de carga inferiores a 450 kN, o 'V'-2,65 mm demonstrou maior rigidez na ligação do que o *stud*, comportamento muito semelhante ao ensaio piloto. Mesmo não apresentando ductilidade de ligação igual ao conector *stud*, o conector 'V'- 2,65 mm relatou carga final semelhante ao *stud*.

- Quanto ao deslizamento relativo do perfil em relação à laje, foi identificado semelhança de resultados para os conectores 'V'-3,75 mm e 'V'- 4,75 mm. Esta semelhança está no tipo de aço identificado para estes conectores. O conector 'V'- 4,75 mm foi confeccionado com um aço de resistência à tração inferior aos demais conectores. O resultado foi uma redução da carga final obtida no ensaio de *pushout*. O resultado final deste ensaio ficou abaixo da estimativa.
- A ruptura dos conectores em 'V' inicia-se pela base das extremidades livres, onde ocorre um empenamento da região, de maneira que, ao se iniciar o processo de falha nesta região, tal falha se estende para a seção posterior da peça, isto é, em direção à parte interior do conector.
- As deformações do conector *stud* foram superiores as deformações dos conectores 'V'. Estas deformações refletem-se na ligação com o concreto, de forma que as deformações mais acentuadas do conector proporcionam um grau superior de fissuração do concreto e maiores valores para o *uplift*.
- Durante a fase cíclica de carregamento, os modelos do conector *stud* mostraram maiores deslizamentos do perfil em relação à laje. Conclui-se que para ações cíclicas o conector em 'V' mostra, portanto, melhor ligação entre perfil e laje.

9.1.3 - Conclusões do estudo experimental de arrancamento

Na tentativa de obter parâmetros mais consistentes para melhorar ainda mais as análises numéricas apresentadas neste trabalho diversos ensaios de arrancamento foram efetuados, destes ensaios pode-se obter as seguintes conclusões:

- Os valores obtidos das cargas que determinam a coesão da ligação aço e concretos são adversos. Processos de corrosão na barra metálica na região de contato com o concreto e vazamentos da nata de cimento para a região do tubo de PVC, possibilitaram incrementos na aderência da barra no concreto, ocasionando divergência nos resultados de medição da força de coesão e do coeficiente de atrito.
- O ensaio de arrancamento é de grande valia, para entender o conceito de aderência utilizado pelo programa Ansys. Todavia seria melhor utilizar uma prensa automatizada e o próprio *stud*, para melhor entender os elementos de contato do programa Ansys que simulam a aderência do concreto em relação ao conector.

9.2 - CONCLUSÕES GERAIS DO TRABALHO

O trabalho apresentou um estudo inicial do modelo conector de cisalhamento em 'V'. Foram obtidos resultados positivos com os quais se conclui que:

- O conector em 'V' proporciona uma melhor distribuição de tensões no perfil e na laje de concreto. Em relação ao perfil, o conector 'V', possibilita a utilização de perfis metálicos com menor espessura de mesa, visto que a mesa do perfil ancora o conector e recebe todos os esforços aplicados no conector. Assim, quanto maior for a concentração de tensões no perfil, mais rígida e espessa deverá ser a mesa. Neste caso, aumenta-se a espessura da mesa ou utiliza-se um perfil com aço de resistência mecânica superior, gerando maiores custos. Em todo caso, geram-se mais custos. A laje de concreto apresenta um nível inferior de fissuração e permite a utilização de concretos com menor resistência (f_{ck}).
- Os conectores *stud* demonstram uma maior deformação, resultando em acréscimos de fissuração no concreto e seu maior desprendimento. Este fato é observado na fase cíclica de carregamento. O conector 'V' é uma peça adequada para a utilização em peças com carregamentos cíclicos, como por exemplo, em estruturas em viga mista de pontes.
- O conector em 'V' confeccionado com chapas superiores a 2,65 mm de espessura apresentam uma carga de ruptura superior ao conector *stud*. Em termos de carga final, para ensaio de *push-out*, o conector 'V'-2,65 mm (mesmo com aço de propriedades mecânicas e área útil inferior ao conector *stud*) apresenta valores muito próximos aos obtidos para o conector *stud*
- Além da carga final de ensaio maior que o conector *stud*, o conector 'V' apresentou melhor ligação entre perfil e concreto. Fato observado nos valores reduzidos dos deslocamentos horizontais da laje, o *uplift*.
- A formulação analítica para o cálculo da carga última de ruptura do conector 'V' apresentada neste trabalho mostrou-se bastante consistente com os resultados experimentais.

9.3 - SUGESTÕES PARA TRABALHOS FUTUROS

Este trabalho possibilitou um estudo inicial do modelo de conector 'V', porém diversos questionamentos para estudos futuros podem ser levantados, dentre os quais:

- Estudo experimental de viga bi-apoiada com aplicação de conectores *stud*, 'V' e 'U', em vez de utilizar estudos somente estudos de *push-out*. Assim, também seria possível averiguar e aferir a formulação analítica desenvolvida.
- Uma análise da região da solda do conector 'V' com o perfil para poder se estimar a espessura mínima da base do conector, da mesa do perfil em contato com o conector e, desta forma, obter elementos para dimensionar de forma adequada o comprimento de solda. Assim seria possível obter um conector mais econômico e um dimensionamento ainda mais preciso.
- Realizar um estudo sobre o outro modelo de conector 'V', mostrado na Figura 3.1, no qual o comprimento das abas é igual ou superior à largura do conector em 'U' utilizado em sua fabricação.
- Um estudo mais aprofundado do fenômeno de contato entre o aço e o concreto através de um modelo experimental, para pesquisar valores agrupados sobre a força de coesão e o coeficiente de atrito.
- Realizar estudos sobre a influência dos conectores de cisalhamento, considerando como exemplo o *stud*, 'U' e 'V'.
- Realizar novos ensaios de *push-out* com equipamentos de maior nível de controle a fim de se obter o gráfico de carga x deslizamento pos carga de ruptura e, consequentemente, aferir de forma mais adequada à efetiva ductilidade do conector aqui proposto.
- Realizar estudos mais aprofundados envolvendo o espaçamento entre conectores e a influência de sua altura na resitência da conexão entre perfil metálico e laje de concreto armado.
REFERÊNCIAS BIBLIOGRÁFICAS

ALVA, G.M.S. (2000). Sobre o Projeto de Edifícios em Estrutura Mista Aço-Concreto. Dissertação de Mestrado, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, SP. 277.

AMERICAN CONCRETE INSTITUTE. (1993). ACI manual of concrete practice. Part1: Material and general properties of concrete, Detroit.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (1994). AISC-LRFD- Load and resistence factor design, Chicago.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (1991). ASTM C 234-Standard test method for comparing concretes on the basis of the bond developed with reinforced steel, Philadelphia.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (2004). ASTM E-10 Standard Test Method for Brinell Hardness of Metallic Materials, Philadelphia.

AN, L., Cederwall, K. (1996). Push-out tests on studs in high strength and normal strength concrete, Journal of Construction Steel Research, v.436.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (2008). NBR 8800. Projeto e execução de estruturas de aço e de mistas aço e concreto de edifícios. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1986). NBR 14: Projeto e execução de estruturas de aço de edifícios. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1980). NBR 6118:. Projeto e execução de obras de concreto armado. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1994). NBR 5738 Moldagem e cura de corpos-deprova cilíndricos ou prismáticos de concreto – Método de ensaio. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (2007). NBR 5739 – Concreto - Ensaio de compressão de corpos-de-prova cilíndricos - Método de ensaio. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1994). NBR 7222 Argamassa e concreto- Determinação da resistência à tração por compressão diametral de corpos-deprova cilíndricos. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (2008). NBR 8522:2008-Concreto – Determinação do módulo de elasticidade estático à compressão. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1998). NBR NM 67:1998 -Concreto – Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (2002). NBR 6892 – Materiais metálicos– Ensaio de tração à temperatura ambiente Concreto. Rio de Janeiro.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. (1999). NBR NM 187-1 – Materiais metálicos– Dureza Brinell- Parte: 1 Medição da dureza Brinell. Rio de Janeiro.

BARBOSA, P. C. (2000). Estudo da interação de paredes de alvenaria estrutural com vigas de concreto armado, Dissertação de Mestrado, Departamento de Estruturas da EESC-USP, São Carlos.

CALLISTER, Willian D. (1994). Materials Science and Engineering: An Introduction 3° Edição, New York, John Wiley & Sons.

CANADIAN STANDARDS ASSOCIATION (1994). CAN/CSA-S16.1-94 Limit state design of steel structures. Toronto, Ontario.

CAVALCANTE, O. R. C. (2005). Estudo das tensões na solda da alma de vigas mistas de aço (alveolares) em estruturas mistas, Dissertação de Mestrado, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF.

CHAVES, I.A. (2009). Viga Mista de aço e concreto constituída por perfil formado a frio preenchido, Dissertação de Mestrado, Departamento de Estruturas da EESC-USP, São Carlos.

CLIMACO, J. C. T. S. (2001). Regan, P. E., Evaluation of Bond strength between old and new concrete in structural repairs , Magazine of concrete research, No- 06.

DAVID, D. L. (2007). Análise teórica e experimental de conectores de cisalhamento e vigas mistas constituídas por perfis de aço formados a frio de vigotas pré-moldadas, Tese de Doutorado, Departamento de Estruturas da EESC-USP, São Carlos.

DUCATTI, V.A. (1993). Concreto de elevado desempenho: Estudo da aderência com a armadura. São Paulo, Tese de doutorado, Escola Politécnica, Universidade de São Paulo.

EUROPEAN COMMITTEE FOR STANDARDIZATION (1992). -1-1: Eurocode 4-Design of composite steel and concrete structures Part 1.1 General rules and rules for buildings, Bruxelas.

FERNANDES, R. M. (2000). A influência das ações repetidas na aderência aço-concreto, Dissertação de Mestrado, Departamento de Estruturas da EESC-USP, São Carlos.

FILHO, Fernando M.A (2006). Contribuição estudo da aderência entre barras de aço e concreto auto adensáveis. Tese de doutorado, Departamento de Estruturas da EESC-USP, São Carlos.

FRANÇA, V.H, (2004) Aderência aço-concreto, uma análise do comportamento do concreto fabricado com resíduos de borracha, Dissertação de mestrado, Programa de Pósgraduação em engenharia civil da UNESP, São Paulo. FREITAS, C.A.S, (2008) Análise teórico-experimental da conexão estampada de treliça espacial de aço sob carregamentos estático e cíclico, Tese de Doutorado, Programa de Pósgraduação em estruturas e construção civil da UnB, Brasília.

FUSCO, P.B., (1995). Técnica de armar as estruturas de concreto. Editora Pini Ltda, São Paulo.

KALFAS, C. et al. (1997). Inelastic behavior of shear connection by a method based on FEM. Journal of Construction Steel Research, v.44.

KOTINDA, T. I. (2006). Modelagem numérica de vigas mistas aço-concreto simplesmente apoiadas: ênfase ao estudo da interface laje-viga, Dissertação de Mestrado, Departamento de Estruturas da EESC-USP, São Carlos.

GARCIA, Amauri. SPIM, Jaime A. SANTOS, Carlos A (2000). Ensaio dos materiais, LTC, Rio de Janeiro.

HAJJAR, Jerome F. (2002). Composite construction in steel and concrete IV : proceedings of the conference, May 28-June 2. Sponsored by United Engineering Foundation, Inc. ; edited by Jerome F. Hajjar. Banff, Alberta, Canada.

JU, Y.-K.; Kim, S.-D. (2005). Behavior of RC column to iTECH composite beam joint. Proceedings of the Institution of Civil Engineers – Structures & Buildings, v. 158, n.2, p. 97–107.

LAWSON, R. Mark`(1992). Shear Connection in Composite Beams, Proceedings of Composite Construction in Steel and Concrete II. ASCE. New York.

MALITE, M. (1993). Análise do comportamento estrutural de vigas mistas aço-concreto constituídas por perfis de chapa dobrada, Tese de doutorado, Departamento de Estruturas da EESC-USP, São Carlos.

QUEIROZ, G. (2001). Elementos das estruturas mistas aço-concreto. Editora o Lutador, Belo Horizonte.

OEHLERS, Deric J. (1989). Splitting induced by shear connectors in composite beams, Fevereiro Journal of Structural Engineering, Vol 115, Paper No. 02.

OEHLERS, Deric J. PARK, Sung M. (1998). Shear connectors composite Beams with longitudinally crack slabs, Agosto, Journal of Structural Engineering, Vol 118, Paper No. 03.

RILEM-FIP-CEB (1973). Bond test for reinforcing steel – 1-Beam test (7-II 28-D). 2-Pullout test (7-II 28-D): Tentative recommendations. RILEM Journal Materials and Structures, V.6, n.32, p.96-105.

SALARI, M. R. SPACONE, E. (2001). Analysis of steel-concrete composite frames with Bond-slip, Novembro, Journal of Structural Engineering, Vol 127, Paper No. 11

SILVA, R. D, (2006). Estudo da aderência aço-concreto em pilares mistos preenchidos, Dissertação de Mestrado, Departamento de Estruturas da EESC-USP, São Carlos.

SOUZA, S. A, (1982). Ensaios mecânicos de materiais metálicos- Fundamentos teóricos e práticos, Blucher, São Paulo (1982).

TOPKAYA, C. YURA, J.A; WILLIAMSON, E.B. (2004). Composite shear stud strength at early concrete ages. Journal of Structural Engineering, ASCE, v 130, n.6, p.952-960.

TRISTÃO, Gustavo A. (2002). Comportamento de conectores de cisalhamento em vigas mistas aço-concreto com análise da resposta numérica, Dissertação de Mestrado, Departamento de Estruturas da EESC-USP, São Carlos.

VERÍSSIMO, G. S. (2007). Desenvolvimento de um conector de cisalhamento em chapa dentada para estruturas mistas de aço e concreto e estudo do seu comportamento, Tese de Doutorado, Departamento de Estruturas da UFMG. Minas Gerais.

VIEST, I.M. (1992). Composite Construction Recent Past, Present and Near Future Proceedings of Composite Construction in Steel and Concrete II. ASCE. New York, USA.

APÊNDICES

A - DETALHE DAS FÔRMAS UTILIZADAS

A.1 – FÔRMA APLICADA NOS ENSAIOS DO CONECTOR STUD

Detalhes das fôrmas utilizadas para os ensaios com conectores stud.

Figura A.1 - Peças da fôrma em mediante medidas em 'cm'

 (a) Fôrma sem o encaixe
(b) Fôrma c/encaixe do perfil
(c) Fôrma com espaçadores internos do perfil

Figura A.2 - Detalhe das peças da fôrma (numeração referente à Figura A.1)

Figura A.3 - Detalhe da montagem da fôrma sem os espaçadores internos (numeração referente à Figura A.1)

Figura A.4 - Forma completa

A.2 – FÔRMA APLICADA NOS ENSAIOS DO CONECTOR 'V'

Detalhes das formas utilizadas para os ensaios com conectores em 'V'.

Figura A.5 - Medida das peças do caixote em 'cm'

Figura A.6 - Detalhe das peças da fôrma (numeração referente à Figura A.5)

Figura A.7 - Detalhe da montagem da fôrma sem os espaçadores internos (numeração referente à Figura A.5)

Figura A.8 - Fôrma completa (Fôrmas +Espaçadores internos+ Travas externas)

B - DADOS DO ENSAIO DE DUREZA BRINELL

Aqui são apresentados os valores obtidos para o ensaio de dureza Brinell assim como a resistência a tração obtida por tal ensaio.

B.1 – DADOS DA DUREZA BEINELL PARA OS CORPOS-DE-PROVA SUBMETIDOS À TRAÇÃO

Inicialmente foi medida a dureza Brinell (HB) dos corpos de prova metálicos utilizados no ensaio de tração. Ensaio este que também é parte da caracterização dos materiais. Os valores estão na Tabela B.1e Tabela B.2. Nestas tabelas estão mostrados o desvio padrão e a média da resistência à tração, calculada em 'MPa'.

Conector e peça lida	Número da Leitura	Leitura (d) mm	HB	Resist. Tração (MPa)	Desvio Padrão	Média (MPa)
'V'- 2,65 mm Peça-01	1	1,350	120,58	409,96		
	2	1,346	346 121,36 412,62			
	3	1,308	129,18	439,21	13,52	425,59
	4	1,321	126,43	429,86		
	5	1,312	128,32	436,30		
	1	1,300	130,91	445,10		
NV 2 65 mm	2	1,361	118,45	18,45 402,73		
Peca-02	3	1,352	120,19	408,63	18,12	413,17
T Cça-02	4	1,363	118,07	401,44		
	5	1,353	119,99	407,97		
	1	1,337	123,15	418,72		
	2	1,351	120,38	409,29		
'V'- 2,65 mm Peça-03	3	1,331	124,37	422,85	18,61	419,43
	4	1,368	117,13	398,23]	
	5	1,296	131,79	448,08		

Tabela B.1 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB

Conector e peça lida	Número da Leitura	Leitura (d) mm	НВ	Resist. Tração (MPa	Desvio Padrão	Média (MPa)
	1	1,265	138,879	472,19		
NU 275	2	1,242	144,483	491,24		
Peça-01	3	1,238	145,489	494,66	13,01	478,89
	4	1,269	137,935	468,98		
	5	1,271	137,467	467,39		
	1	1,281	135,156	459,53		
SP 0 75	2	1,265	138,879	472,19		
V -3,75 mm	3	1,274	136,768	465,01	9,01	460,09
1 0ça-02	4	1,287	133,796	454,91		
	5	1,295	132,010	448,84		
	1	1,277	136,074	462,65		
(I.I.) = -	2	1,282	134,928	458,76		
$V^{-3}, /5 \text{ mm}$	3	1,263	139,355	473,81	10,09	471,18
1 0ça-05	4	1,253	141,765	482,00		
	5	1,257	140,794	478,70		
	1	1,456	102,10	347,15		
	2	1,459	101,57	345,34		344,99
V' - 4,65 mm	3	1,472	99,58	338,57	3,83	
1 Cça-01	4	1,453	102,51	348,53		
	5	1,459	101,57	345,34		
	1	1,214	151,74	515,90		
	2	1,224	149,09	506,90		
V' - 4,65 mm	3	1,213	152,00	516,81	8,12	510,01
1 CÇa-02	4	1,217	150,94	513,18		
	5	1,235	146,25	497,25		
	1	1,463	100,95	343,24		
	2	1,471	99,73	339,08		
V' - 4,65 mm	3	1,439	104,74	356,12	7,20	344,16
r cya-03	4	1,473	99,43	338,05		
	5	1,461	101,26	344,29		

Tabela B.2 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB

B.2 - DADOS DA DUREZA BRINELL PARA AS AMOSTRAS DOS CONECTORES DE CISALHAMENTO

A Tabela B.3 apresenta os valores da dureza Brinell (HB) para as amostras retiradas dos conectores de cisalhamento. Deve ser lembrado que no caso do conector *stud* foi confeccionado um outro corpo-de-prova, mas do mesmo lote dos *studs* utilizados nos ensaios.

Tabela B.3 -	Valores	da dureza	'HB'	e resistências	à tração	correlacionada ac) HB	para o
conector stud								

Conector e peça lida	Número da Leitura	Leitura (d) mm	HB Resist. Tração (MPa)		Desvio Padrão	Média (MPa)
	1	1,146	171,60	583,44		
C (1	2	1,146	171,60	583,44		590,24
Stua Peca-01	3	1,137	174,50	593,30	6,47	
î cçu oî	4	1,137	174,50	593,30		
	5	1,133	175,81	597,75		
	1	1,141	173,20	588,89		584,16
C () J	2	1,138	174,17	592,19		
Stua Peca-02	3	1,141	173,20	588,89	8,18	
1 Cça-02	4	1,152	169,71	577,00		
	5	1,155	168,77	573,82		
	1	1,144	172,239	585,61		
G. 1	2	1,136	174,825	594,40		
Stud Peça-02	3	1,149	170,650	580,21	7,24	583,06
	4	1,150	170,334	579,14		
	5	1,153	169,393	575,94		

Tabela B.4 - Valores da dureza Brinell (HB) e resistências à tração correlacionada a HB para as amostras do conector 'V'- 2,65 mm

Conector e peça lida	Número da Leitura	Leitura (d) mm	HB	Resist. Tração (MPa)	Desvio Padrão	Média (MPa)
	1	1,331	124,37	42,28		
	2	1,334	123,76	42,08		
4 mostra-01	3	1,329	124,78	42,42	0,29	42,13
7 mostra-01	4	1,340	122,55	41,67		
	5	1,332	124,16	42,22		
	1	1,339	122,75	41,74		
$(M^2) \rightarrow C5$ mm	2	1,332	124,16	42,22		42,16
v = 2,00 mm Amostra-02	3	1,327	125,19	42,56	0,57	
Amostra 02	4	1,323	126,01	42,84		
	5	1,343	121,95	41,46		
	1	1,338	122,95	41,80		
(XI) = 0.65 mm	2	1,335	123,56	42,01		
V = 2,65 mm Amostra-03	3	1,329	124,78	42,42	0,94	42,52
7 mostra-05	4	1,332	124,16	42,22		
	5	1,305	129,82	129,82 44,14		
	1	1,309	128,96	43,85		
$(M^2) \rightarrow C5$ mm	2	1,319	126,85	43,13		
V - 2,65 mm Amostra-04	3	1,322	126,22	42,91	0,44	43,12
A mostra 04	4	1,321	126,43	42,99		
	5	1,325	125,60	42,70		
	1	1,330	124,57	423,54		
(NI) 0 (5 mm	2	1,324	125,81	427,74		
V = 2,65 mm Amostra-05	3	1,321	126,43	429,86	3,82	428,74
7 mostra-05	4	1,323	126,01	428,44		
	5	1,315	127,69	434,14		
	1	1,309	128,96	438,48		
	2	1,319	126,85	431,28		
V - 2,65 mm	3	1,322	126,22	429,15	4,37	431,16
1 Milosti a-00	4	1,321	126,43	429,86		
	5	1,325	125,60	427,03		

Tabela B.5 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB para as amostras do conector 'V'- 3,75 mm

Conector e peça lida	Número da Leitura	Leitura (d) mm	НВ	HB Resist. Tração (MPa)		Média (MPa)
	1	1,210	152,813	519,565		
312 2 75	2	1,201	155,276	527,938		
V' - 3, /5 mm Amostra-01	3	1,197	156,388	531,720	4,65	525,34
7 mostra-01	4	1,206	153,901	523,263		
	5	1,205	154,175	524,194		
	1	1,209	153,084	520,486		511,05
W? 275 mm	2	1,221	149,876	509,579		
V = 3,75 mm Amostra-02	3	1,226	148,567	505,128	5,74	
Amostra-02	4	1,222	149,613	508,685		
	5	1,219	150,404	511,375		
	1	1,213	152,004	516,815		
(NI) 2 75 mm	2	1,218	150,669	512,276		
$\sqrt{-3}$, $\sqrt{5}$ mm	3	1,214	151,736	515,902	18,37	525,47
7 mostra 05	4	1,204	154,449	525,126		
	5	1,171	163,897	557,249		
	1	1,215	151,468	514,993		537,34
(NI) 2 75 mm	2	1,211	152,543	518,646		
V = 3,75 mm Amostra-04	3	1,192	157,794	536,501	20,82	
7 mostru o r	4	1,168	164,795	560,304		
	5	1,172	163,599	556,236		
	1	1,224	149,089	506,902		
(NI) 2 75 mm	2	1,206	153,901	523,263		
V = 3,75 mm Amostra-05	3	1,164	166,004	564,414	23,05	535,13
7 mostra 05	4	1,176	162,414	552,208		
	5	1,200	155,553	528,880		
	1	1,187	159,218	541,342		
(1) 275	2	1,197	156,388	531,720		525,68
v - 3,/3 mm Amostra-06	3	1,200	155,553	528,880	12,86	
7 miosu a-00	4	1,211	152,543	518,646		
	5	1,223	149,351	507,792		

Tabela B.6 - Valores da dureza 'HB' e resistências à tração correlacionada ao HB para as amostras do conector 'V'- 4,75 mm

Conector e peça lida	Número da Leitura	Leitura (d) mm	НВ	Resist. Tração (MPa)	Desvio Padrão	Média (MPa)
	1	1,210	152,813	519,565		
	2	1,207	153,628	522,335		
$\sqrt{-4}$, $\sqrt{5}$ mm A mostra-01	3	1,200	155,553	528,880	7,65	519,44
7 mostra-01	4	1,211	152,543	518,646		
	5	1,223	149,351	507,792		
	1	1,329	124,776	424,238		
(M) 4.75 mm	2	1,390	113,088	384,499		408,40
4,75 mm Amostra-02	3	1,325	125,598	427,035	17,93	
7 milliostra=02	4	1,352	120,185	408,629		
	5	1,369	116,938	397,589		
	1	1,469	100,034	340,114		
'V'- 4,75 mm Amostra-03	2	1,483	97,932	332,967		
	3	1,473	99,427	338,052	11,89	338,68
	4	1,437	105,067	357,227		
	5	1,499	95,600	325,039		
	1	1,429	106,377	361,682		
	2	1,489	97,048	329,965		340,59
$\sqrt{-4}$, $\sqrt{5}$ mm A mostra-04	3	1,462	101,107	343,763	13,39	
7 mostra-0+	4	1,492	96,611	328,477		
	5	1,471	99,730	339,081		
	1	1,471	99,730	339,081		
N 12 A 75 mm	2	1,481	98,228	333,976		
V = 4,75 mm Amostra-05	3	1,456	102,039	346,933	5,88	339,13
7 mostra-05	4	1,464	100,799	342,716		
	5	1,483	97,932 332,967			
	1	1,495	96,176	326,997		
	2	1,448	103,300	351,218		
V - 4, $/5 mm$	3	1,475	99,126	337,027	9,59	341,19
Amosua-00	4	1,454	102,352	347,998		
	5	1,464	100,799	342,716		

C - DADOS DOS GRÁFICOS DO ENSAIO PILOTO DE PUSH-OUT

Aqui são apresentados os valores utilizados nos ensaios piloto de *push-out*. Os referentes gráficos estão dispostos no Capítulo-06.

C.1 - DADOS DAS DEFORMAÇÕES DAS ARMADURAS

Os valores mostrados neste item são referentes às deformações das armaduras lidas pelo extensometro elétrico, ou os *strain gages* (SG).

C.1.1 - Dados do conector Stud

	Gráf	ico da Figu	Gráfico da Figura-6.4				
Forca		Leitura	do 'SG'		Forca	Leitura d	lo 'SG'
(kN)	Meio-01	Meio-02	Meio-03	Canto-02	(kN)	Meio-02	Meio-03
53,40	0,0372	-0,0019	0,0156	0,0072	56,00	-0,03576	-0,013
320,20	0,0494	0,0038	0,0218	0,0122	321,40	-0,02112	0,0115
405,20	0,0624	0,0082	0,0298	0,0187	350,00	-0,01656	0,0158
405,20	0,0708	0,0113	0,035	0,0245	400,00	-0,0072	0,0286
452,60	0,0847	0,019	0,0427	0,036	452,00	0,00168	0,0449
501,00	0,0931	0,0218	0,0413	0,0458	502,20	0,01608	0,0677
550,20	0,103	0,029	0,042	0,061	553,30	0,02832	0,0919
601,40	0,1094	0,0473	0,0607	0,0811	600,00	0,0576	0,1392
650,80	0,121	0,1092	0,0835	0,1375	651,80	0,13416	0,2196
701,40	0,1958	0,2707	0,155	0,3019	701,60	0,30888	0,3658
750,00			0,7236		753,20	0,4704	0,4834
800,80			0,797		800,80	0,7608	0,9235
					850,60	0,76032	0,9552
					900,80	0,87552	1,0562

Tabela C.1 - Dados do conector stud para as Figuras 6.3 e 6.4

C.1.2 - Dados do conector 'V'

	Gráfico da Figura-6.5				Gráfico da Figura-6.6				
	Le	eitura do 'SC	3'		Leitura do 'SG'				
Força			Meio-	Força			~		
(kN)	Meio-01	Meio-02	03	(kN)	Meio-01	Meio-03	Canto-02		
54,80	0,00936	-0,02208	0,01344	53,2	0,00888	0,03888	0,00576		
332,80	0,01176	-0,02232	0,01656	351,4	0,00912	0,042	0,00552		
364,00	0,02352	-0,01728	0,02784	401,2	0,01224	0,04584	0,00816		
404,60	0,02952	-0,01752	0,03072	451,2	0,01752	0,05136	0,0132		
452,20	0,04272	-0,01272	0,0396	500	0,02208	0,04992	0,01656		
502,40	0,05064	-0,0108	0,04392	550,6	0,02496	0,04344	0,01872		
551,80	0,06048	-0,00744	0,04896	603	0,03888	0,03696	0,03432		
600,00	0,06816	-0,00528	0,05328	651,6	0,06312	0,01656	0,06216		
652,00	0,0744	-0,00144	0,06144	702,6	0,1728		0,14208		
701,20	0,0792	0,01368	0,08256	750,6	0,28248		0,294		
750,60	0,0732	0,01968	0,08328	804,2	0,37608		0,39144		
792,60	0,0756	0,02352	0,08976	851	0,426		0,42216		
755,00	0,0732	0,0276	0,09048	880	0,50616		0,4428		
780,00	0,07752	0,0312	0,09696						
763,00	0,078	0,03288	0,10056						
782,40	0,08136	0,04056	0,10992						
806,00	0,08472	0,05808	0,1212						
822,80	0,084	0,06624	0,12288						
834,40	0,08688	0,07944	0,13392						
851,40	0,09024	0,09336	0,1428						
820,00	0,09408	0,11592	0,1548						
854,40	0,10056	0,13848	0,16656						
821,00	0,10176	0,15624	0,17232						
852,00	0,10392	0,1584	0,17448						
873,20	0,10752	0,16584	0,18192						
902,40	0,11712	-	0,20208						
911,40	0,18216		0,26376						
860,00	0,26856		0,3432						

Tabela C.2 - Dados do conector *stud* para as figuras 6.5 e 6.6

C.2 - DADOS DOS DEFLETÔMETROS

Dados relativos aos deslocamentos lidos pelos defletômetros horizontais e verticais. Estas medidas estão em 'mm'.

C.2.1 - Dados dos defletômetros horizontais do conector stud

	Gráfico da Figura-6.7									
Conec	ctor stud-10	0 cm	Conect	tor <i>stud</i> -130) mm					
Forca	Def. Ho	Def. Horizontais		Def. Ho	rizontais					
(kN)	Dfe-01	Def-02	(kN)	Dfe-01	Def-02					
53,40	0,0096	0,0350	56,000	0,0021	0,0021					
320,20	0,0202	0,0636	321,400	0,0042	0,0042					
405,20	0,0415	0,1197	350,000	0,0074	0,0074					
405,20	0,0724	0,1970	400,000	0,0222	0,0222					
452,60	0,1118	0,2945	452,000	0,0243	0,0243					
501,00	0,1470	0,3940	502,200	0,0116	0,0116					
550,20	0,1779	0,5106	553,300	0,0074	0,0074					
601,40	0,2503	0,6461	600,000	0,0581	0,0581					
650,80	0,3536	0,8209	651,800	0,1067	0,1067					
701,40	0,4836	1,0338	701,600	0,2144	0,2144					
750,00	0,6870	1,2425	753,200	0,3496	0,3496					
800,80	1,8592	2,6243	800,800	0,3612	0,3612					
851,00	2,4920	3,6447	850,600	0,3528	0,3528					
880,00	2,4931	3,6500	900,800	0,3781	0,3781					
740,00	2,8327	4,2620								
700,00	2,8327	4,2705								
800,00	2,8327	4,2811								
720,00	2,8348	4,2980								
981,20	4,2453	5,9453]							

Tabela C.3 - Dados dos defletômetros horizontais do conector stud para a Figura-6.7

C.2.2 - Dados dos defletômetros horizontais do conector 'V'

Gráfico da Figura-6.8									
Cone	ctor 'V'-10	0 mm	Conector 'V'-130 mm						
Forca	Def. Ho	orizontais	Forca	Def. Horizontais					
(kN)	Dfe-01	Def-02	(kN)	Dfe-01	Def-02				
54,8	0,08284	0,16169	53,2	0,24851	0,0702078				
332,8	0,09983	0,18509	351,4	0,27719	0,0840366				
364	0,14762	0,23083	401,2	0,32392	0,1042479				
404,6	0,21559	0,29040	451,2	0,39507	0,125523				
452,2	0,30161	0,36593	500	0,50977	0,3042337				
502,4	0,40994	0,44571	550,6	0,66376	0,4584781				
551,8	0,56181	0,55741	603	0,88148	0,666974				
600	0,74129	0,69038	651,6	1,14592	0,8754698				
652	0,96432	0,85845	702,6	1,59834	1,2531026				
701,2	1,29992	1,11162	750,6	2,08687	1,6796681				
750,6	1,37213	1,16481	804,2	2,42035	1,9913481				
792,6	1,41568	1,20204	851	2,54036	2,1317637				
755	1,46453	1,23289	880	2,65506	2,381746				
780	1,47727	1,24991							
763	1,51657	1,27544							
782,4	1,59834	1,34033							
806	1,69924	1,42543							
822,8	1,73534	1,45202							
834,4	1,80544	1,50521							
851,4	1,86810	1,55840							
820	1,94987	1,62861							
854,4	2,00191	1,66903							
821	2,06776	1,72328							
852	2,07094	1,72541							
873,2	2,10068	1,75094							
902,4	2,21538	1,84561							
911,4	2,54779	2,12325							
860	2,89613	2,41366							

Tabela C.4 - Dados dos defletômetros horizontais do conector 'V' para a Figura-6.8

C.2.2 - Dados do defletômetro vertical para ambos os conectores analisados

	Gráfico da Figura-6.10									
Cone	ector 'V'-10	00 cm	Cor	nector 'V'-1	30 mm					
Forca	Def. Ho	orizontais	Forca	Def. Horizontais						
(kN)	Dfe-01	Def-02	(kN)	Dfe-01	Def-02					
54,8	0,08284	0,16169	53,2	0,24851	0,0702078					
332,8	0,09983	0,18509	351,4	0,27719	0,0840366					
364	0,14762	0,23083	401,2	0,32392	0,1042479					
404,6	0,21559	0,29040	451,2	0,39507	0,125523					
452,2	0,30161	0,36593	500	0,50977	0,3042337					
502,4	0,40994	0,44571	550,6	0,66376	0,4584781					
551,8	0,56181	0,55741	603	0,88148	0,666974					
600	0,74129	0,69038	651,6	1,14592	0,8754698					
652	0,96432	0,85845	702,6	1,59834	1,2531026					
701,2	1,29992	1,11162	750,6	2,08687	1,6796681					
750,6	1,37213	1,16481	804,2	2,42035	1,9913481					
792,6	1,41568	1,20204	851	2,54036	2,1317637					
755	1,46453	1,23289	880	2,65506	2,381746					
780	1,47727	1,24991								
763	1,51657	1,27544								
782,4	1,59834	1,34033								
806	1,69924	1,42543								
822,8	1,73534	1,45202								
834,4	1,80544	1,50521								
851,4	1,86810	1,55840								
820	1,94987	1,62861								
854,4	2,00191	1,66903								
821	2,06776	1,72328								
852	2,07094	1,72541								
873,2	2,10068	1,75094								
902,4	2,21538	1,84561								
911,4	2,54779	2,12325								
860	2,89613	2,41366								

Tabela C.5 - Dados do defl. vertical para os conectores analisados para a Figura- 6.10

D - DADOS DOS GRÁFICOS DO ENSAIO FINAL DE PUSH-OUT

Aqui são apresentados os valores utilizados nos ensaios piloto de *push-out*. Os referentes gráficos estão dispostos no Capítulo-06.

D.1 - DADOS DAS DEFORMAÇÕES DAS ARMADURAS

Os valores mostrados neste item são referentes às deformações das armaduras lidas pelo extensometro elétrico, ou os *strain gages* (SG).

D.1.1 - Dados do conector Stud

			C	Bráfico da I	Figura- 6.	24				
	STUD	-01 Leitur	a do 'SG'		STUD-02 Leitura do 'SG'					
Carga	Meio-	Meio-	Canto-	Canto-	Carga	Meio-	Meio-	Canto-	Canto-	
(kN)	01	02	01	02	(kN)	01	02	01	02	
52,20	0,0125	0,0269	0,0125	0,0206	53,00	0,0038	0,0062	0,0101	0,0101	
324,20	0,0139	0,0293	0,0134	0,0221	322,00	0,0134	0,0235	0,0178	0,0250	
350,20	0,0158	0,0341	0,0149	0,0254	351,80	0,0144	0,0254	0,0182	0,0269	
403,00	0,0187	0,0413	0,0178	0,0298	402,20	0,0163	0,0288	0,0202	0,0302	
450,80	0,0226	0,0504	0,0211	0,0355	454,80	0,0197	0,0336	0,0226	0,0365	
501,60	0,0259	0,0586	0,0245	0,0418	500,00	0,0226	0,0379	0,0250	0,0432	
550,00	0,0293	0,0667	0,0278	0,0466	552,20	0,0254	0,0408	0,0288	0,0499	
599,80	0,0322	0,0749	0,0336	0,0437	602,40	0,0288	0,0442	0,0326	0,0523	
657,20	0,0360	0,0840	0,0394	0,0355	653,00	0,0322	0,0480	0,0389	0,0547	
690,00	0,0538	0,1205	0,0475	0,0418	704,80	0,0350	0,0518	0,0451	0,0720	
710,00	0,0758	0,1512	0,0514	0,0456	735,60	0,0374	0,0562	0,0509	0,1051	
740,00	0,1205	0,1910	0,0586	0,0523	766,40	0,0394	0,0586	0,0542	0,1286	
771,00	0,1277	0,1963	0,0562	0,0518	795,20	0,0437	0,0624	0,0638	0,1824	
780,00	0,1325	0,2011	0,0571	0,0523	820,20	0,0470	0,0643	0,0739	0,2040	
793,40	0,1627	0,2304	0,0619	0,0547	857,60	0,0533	0,0658	0,1022	0,2366	

Tabela D.1 - Dados do conector stud para a Figura 6.24

	Grá	ífico da Figu	ra- 6.24	
Carga		STUD-03 L	eitura do 'SG	'
(kN)	Meio-01	Meio-02	Canto-01	Canto-02
55,40	0,0048	0,0062	0,0019	0,0038
319,00	0,0154	0,0269	0,0096	0,0182
350,20	0,0168	0,0293	0,0106	0,0197
406,00	0,0187	0,0341	0,0125	0,0240
450,00	0,0206	0,0398	0,0139	0,0278
502,00	0,0240	0,0456	0,0158	0,0317
550,80	0,0274	0,0523	0,0182	0,0360
600,60	0,0326	0,0600	0,0221	0,0442
650,50	0,0389	0,0662	0,0278	0,0523
697,00	0,0466	0,0725	0,0379	0,0686
733,20	0,0494	0,0758	0,0418	0,0768
756,00	0,0557	0,0816	0,0509	0,0946
782,00	0,0638	0,0869	0,0739	0,1282
804,00	0,0715	0,0917	0,1560	0,2314
825,40	0,0845	0,0960	0,3091	0,4387
846,00	0,0955	0,1008	0,3758	0,5155
850,00	0,1090	0,1046	0,4330	0,5707
840,00	0,1214	0,1051	0,5026	0,6259

Tabela D.2- Dados do conector *stud* para a Figura 6.24

D.1.2 - Dados do conector 'V'

	Gráfico da Figura- 6.26												
Força	V-2,65r	nm Leitur	a do 'SG' M	Iodelo-01	Força	V-2,65mm	Leitura do '' 02	SG' Modelo-					
(kN)	Meio- 02	Meio- 01	Canto- 02	Canto- 01	(kN)	Meio-02	Meio-01	Canto-01					
45,00	0,0024	0,0125	0,0067	0,0096	41,20	0,00096	0,00240	0,00528					
242,20	0,0029	0,0134	0,0072	0,0110	247,60	0,00576	0,01920	0,02448					
260,20	0,0038	0,0158	0,0082	0,0130	262,20	0,00624	0,02064	0,02592					
302,20	0,0034	0,0168	0,0091	0,0144	302,20	0,00720	0,02448	0,03024					
345,00	0,0034	0,0182	0,0096	0,0163	340,80	0,00816	0,02784	0,03408					
380,20	0,0029	0,0187	0,0101	0,0178	383,00	0,00960	0,03168	0,03840					
420,80	0,0034	0,0197	0,0110	0,0206	420,00	0,01056	0,03456	0,04272					
462,40	0,0048	0,0221	0,0120	0,0245	465,20	0,01248	0,03936	0,04848					
500,00	0,0043	0,0226	0,0125	0,0264	502,40	0,01344	0,04368	0,05328					
540,40	0,0048	0,0240	0,0130	0,0302	547,20	0,01488	0,04848	0,05952					
585,00	0,0029	0,0264	0,0125	0,0384	581,60	0,01632	0,05376	0,06672					
620,00	0,0029	0,0293	0,0125	0,0446	623,00	0,01728	0,05808	0,07440					
660,00	0,0029	0,0346	0,0120	0,0547	667,80	0,01824	0,06240	0,08448					
700,00	0,0019	0,0379	0,0110	0,0624	701,60	0,01968	0,06672	0,09696					
743,00	0,0058	0,0480	0,0110	0,0797	742,40	0,02064	0,07152	0,10944					
783,00	0,0211	0,0931	0,0154	0,1411	782,00	0,02112	0,07776	0,12048					
825,00	0,0768	0,1853	0,0283	0,2578	806,00	0,02160	0,08544	0,13344					
					821,40	0,02112	0,09024	0,14928					
					849,40	0,02112	0,09696	0,18048					

Tabela D.3- Dados do conector	'V'- 2,65 mm	(modelo -01 e 02) para a Figura 6.26

	Gráfico da Figura 6,26 e 6,27											
Força	V-2	2,65mm L Mod	eitura do elo-03	'SG'-	Força	V-3,75n	nm Leitura	u do 'SG' - N	Iodelo-01			
(kN)	Meio- 02	Meio- 01	Canto- 02	Canto- 01	(kN)	Meio- 02	Meio- 01	Canto- 02	Canto- 01			
47,20	0,0091	0,0082	0,0091	0,0043	42,40	0,0005	0,0065	0,0019	0,0082			
243,60	0,0096	0,0086	0,0096	0,0048	256,00	0,0058	0,0077	0,0082	0,0082			
266,20	0,0106	0,0091	0,0101	0,0053	266,20	0,0062	0,0082	0,0082	0,0086			
306,00	0,0110	0,0096	0,0106	0,0053	304,40	0,0072	0,0096	0,0091	0,0101			
344,40	0,0106	0,0096	0,0106	0,0058	348,00	0,0082	0,0110	0,0101	0,0130			
383,80	0,0101	0,0101	0,0101	0,0058	388,00	0,0077	0,0110	0,0101	0,0130			
425,60	0,0096	0,0106	0,0096	0,0058	383,20	0,0086	0,0120	0,0110	0,0154			
465,40	0,0086	0,0120	0,0086	0,0067	420,80	0,0096	0,0130	0,0125	0,0187			
502,80	0,0072	0,0130	0,0082	0,0082	468,60	0,0106	0,0144	0,0139	0,0235			
542,00	0,0048	0,0149	0,0053	0,0120	505,00	0,0110	0,0158	0,0154	0,0278			
581,20	0,0043	0,0158	0,0053	0,0144	541,20	0,0125	0,0173	0,0168	0,0326			
616,60	0,0034	0,0182	0,0048	0,0230	585,20	0,0139	0,0202	0,0192	0,0384			
666,00	0,0038	0,0264	0,0096	0,0490	619,60	0,0149	0,0221	0,0206	0,0446			
705,40	0,0115	0,0466	0,0307	0,0984	662,60	0,0163	0,0254	0,0226	0,0533			
744,20	0,0158	0,0547	0,0466	0,1200	700,00	0,0182	0,0288	0,0250	0,0634			
785,40	0,0211	0,0629	0,0648	0,1459	746,20	0,0197	0,0326	0,0269	0,0734			
820,00	0,0259	0,0701	0,0816	0,1690	775,00	0,0216	0,0365	0,0288	0,0859			
					826,20	0,0240	0,0413	0,0302	0,1042			
					861,60	0,0274	0,0475	0,0346	0,1373			
					902,60	0,0322	0,0566	0,0557	0,1685			
					942,00	0,0403	0,0725	0,0883	0,2030			
					988,00	0,0638	0,1046	0,1349	0,2914			
					1025,60	0,1733	0,1656	0,1987	0,4349			
					1042,60	0,2155	0,1954	0,2299	0,4997			
					1069,00	0,2419	0,2194	0,2544	0,5563			
					1109,60	0,2832	0,2597	0,2990	0,6658			
					1153,00	0,3830	0,3533	0,3797	0,8525			
					1161,60	0,4090	0,3869	0,4022	0,9058			
					1200,00	0,4445	0,4296	0,4325	0,9691			
					1210,00	0,4526	0,4411	0,4382	0,9840			
					1224,00	0,5074	0,5222	0,4723	1,0598			
					1230,00	0,5424	0,5741	0,4853	1,0901			
					1221,00	0,5659	0,5995	0,4896	1,0987			

Tabela D.4 - Dados do conector 'V'- 2,65 mm (modelo -03) 'V' -3,75 mm (modelo-01), respectivamente para as Figuras 6.26 e 6,27

	Gráfico da Figura-6.27										
	V-3	,75mm Le	itura do 'S	5G' -		V-3,	,75mm Le	itura do 'S	5G' -		
Força		Mode	lo-02	~	Força		Mode	elo-03	~		
(kN)	Meio-	Meio-	Canto-	Canto-	(KN)	Meio-	Meio-	Canto-	Canto-		
1.06	01	02	0 0042	0.0010	4.40	0.0014	02	01	02		
4,00	0,0048	-0,0019	0,0043	0,0010	4,40	0,0014	0,0005	0,0020	0,0005		
24,72	0,0048	0,0082	0,0043	0,0125	24,36	0,0062	0,0048	0,0043	0,0082		
26,36	0,0053	0,0086	0,0048	0,0134	27,66	0,0072	0,0058	0,0053	0,0091		
30,76	0,0062	0,0106	0,0058	0,0163	30,04	0,0082	0,0067	0,0062	0,0106		
34,78	0,0067	0,0120	0,0067	0,0187	34,02	0,0082	0,0072	0,0058	0,0110		
38,64	0,0077	0,0130	0,0077	0,0211	38,18	0,0101	0,0086	0,0067	0,0130		
42,70	0,0086	0,0139	0,0086	0,0230	42,14	0,0115	0,0101	0,0072	0,0139		
46,04	0,0096	0,0149	0,0096	0,0250	46,40	0,0125	0,0115	0,0082	0,0144		
50,62	0,0101	0,0163	0,0106	0,0274	51,48	0,0134	0,0120	0,0082	0,0144		
54,04	0,0106	0,0173	0,0115	0,0288	54,20	0,0144	0,0139	0,0082	0,0163		
57,88	0,0115	0,0187	0,0130	0,0317	58,04	0,0158	0,0158	0,0091	0,0230		
62,44	0,0120	0,0197	0,0134	0,0331	62,40	0,0182	0,0192	0,0091	0,0533		
66,06	0,0130	0,0221	0,0144	0,0350	66,40	0,0230	0,0250	0,0125	0,0998		
70,50	0,0139	0,0259	0,0154	0,0374	70,56	0,0370	0,0408	0,0341	0,1915		
74,42	0,0154	0,0336	0,0163	0,0403	74,28	0,0562	0,0586	0,0538	0,2280		
78,00	0,0192	0,0566	0,0168	0,0442	78,06	0,0802	0,0802	0,0840	0,2707		
82,50	0,0269	0,0888	0,0187	0,0542	82,56	0,1166	0,1138	0,1224	0,3168		
85,58	0,0370	0,1181	0,0197	0,0634	86,24	0,1574	0,1526	0,1613	0,3542		
92,12	0,0797	0,1709	0,0917	0,2006	90,08	0,1930	0,1853	0,2040	0,3850		
96,02	0,1258	0,2088	0,1781	0,2885	94,00	0,2405	0,2261	0,2592	0,4219		
100,10	0,1718	0,2438	0,2386	0,3648	98,04	0,2736	0,2534	0,2904	0,4502		
104,78	0,2122	0,2746	0,2909	0,4349	102,02	0,3240	0,2990	0,3283	0,4896		
108,34	0,2501	0,3005	0.3518	0,5174	107,10	0,3816	0.3518	0.3715	0,5400		
112,18	0,3139	0,3403	0,4488	0,5923	110,99	0,4253	0,3898	0,4037	0,5856		
116.36	0,3725	0,3974	0,5347	0,6662	114.22	0,4867	0,4426	0,4440	0,6619		
118.66	0.4378	0.4661	0.6307	0.8126	118,48	0.5453	0.4930	0,4824	0.7459		
119.16	0.4507	0.4810	0.6504	0,8530	120.00	0.5755	0.5174	0.5026	0.7954		
116.26	0.4651	0.4992	0.6744	0.9173	124.02	0.6341	0.5640	0.5376	0.8947		
118 14	0.4728	0.5098	0.6912	0.9749	126.28	0.6797	0.5990	0.5635	0.9768		
116.46	0.4781	0.5093	0.7032	1.0042	120,20	3,0777	3,2770	3,2 022	0,7700		

Tabela D.5 - Dados do conector 'V'- 3,75 mm (modelo -02 e 03) para a Figura 6.27

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gráfico da Figura-6.28											
Força (kN)Meio- 02 Meio- 01 Canto- 02 Força 01 Meio- 02 Meio- 01 Meio- 02 Meio- 01 Canto- 02 Meio- 01 Meio- 02 Canto- 02 Meio- 00 Canto- 00 Canto- 00 Canto- 00 Meio- 00 Canto- 00 Canto	-											
(kN) Meio- 02 Canto- 01 Canto- 02 Canto- 02 Canto- 02 (kN) Meio- 02 Meio- 02 Canto- 02 Canto- 0 Canto- 02 Canto- 0 Canto- 0												
0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 $70,20$ $0,0029$ $0,0082$ $0,0082$ $0,0005$ $63,20$ $0,0030$ $0,0030$ $0,0040$ 0 $516,40$ $0,0168$ $0,0374$ $0,0374$ $0,0168$ $447,00$ $0,0120$ $0,0330$ $0,0150$ 0 $563,40$ $0,0187$ $0,0413$ $0,0413$ $0,0202$ $481,80$ $0,0130$ $0,0360$ $0,0170$ 0 $624,00$ $0,0202$ $0,0461$ $0,0245$ $502,40$ $0,0130$ $0,0380$ $0,0170$ 0 $640,40$ $0,0206$ $0,0475$ $0,0475$ $0,0245$ $547,80$ $0,0140$ $0,0410$ $0,0180$ 0 $685,00$ $0,0221$ $0,0509$ $0,0269$ $582,80$ $0,0150$ $0,0430$ $0,0180$ 0 $719,40$ $0,0226$ $0,0542$ $0,0542$ $0,0288$ $625,80$ $0,0160$ $0,0460$ $0,0190$ 0 $758,00$ $0,0235$ $0,0581$ $0,0581$ $0,0312$ $664,80$ $0,0170$ $0,0460$ $0,0210$ 0 $804,20$ $0,0254$ $0,0624$ $0,0346$ $707,60$ $0,0180$ $0,0470$ $0,0210$ 0 $883,40$ $0,0288$ $0,0730$ $0,0730$ $0,0437$ $783,40$ $0,0250$ $0,0540$ $0,0230$ 0 $923,40$ $0,0151$ $0,1968$ $0,1968$ $0,0768$ $866,40$ $0,0790$ $0,0730$ $0,0240$ 0 $996,$	anto-											
10,200,0020,0020,0020,00320,00020,00000,00000,00000,00000,00000,00000,0000516,400,01680,03740,03740,0168447,000,01200,03300,01500563,400,01870,04130,04130,0202481,800,01300,03600,01700624,000,02020,04610,04610,0235502,400,01300,03800,01700640,400,02060,04750,04750,0245547,800,01400,04100,01800685,000,02210,05090,05090,0269582,800,01500,04300,01800719,400,02260,05420,05420,0288625,800,01600,04600,01900758,000,02350,05810,05810,0312664,800,01700,04600,02100804,200,02740,06720,06720,0379745,000,02000,04800,02100842,000,02740,06720,06720,0379745,000,02000,04800,02100883,400,02880,07300,07300,0437783,400,02500,05000,02200923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,1968866,400,07900,07300,02400<	0020											
510,100,01000,01110,0110111,000,01200,01200,01300,01300,01300,01300,01300,01300,01700624,000,02020,04610,04610,0235502,400,01300,03800,01700640,400,02060,04750,04750,0245547,800,01400,04100,01800685,000,02210,05090,05090,0269582,800,01500,04300,01800719,400,02260,05420,05420,0288625,800,01600,04600,01900758,000,02350,05810,05810,0312664,800,01700,04600,02000804,200,02740,06240,06240,0346707,600,01800,04700,02100842,000,02740,06720,06720,0379745,000,02500,05000,02200923,400,03310,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,06000,02300996,200,17180,25970,25970,1022902,800,07900,07300,02400	0140											
00000000000000000000000000000000000	0150											
640,400,02060,04750,04750,0245547,800,01400,04100,01800685,000,02210,05090,05090,0269582,800,01500,04300,01800719,400,02260,05420,05420,0288625,800,01600,04600,01900758,000,02350,05810,05810,0312664,800,01700,04600,02000804,200,02540,06240,06240,0346707,600,01800,04700,02100842,000,02740,06720,06720,0379745,000,02000,04800,02100883,400,02880,07300,07300,0437783,400,02500,05000,02200923,400,1510,19680,19680,0768866,400,05000,06000,02300996,200,17180,25970,25970,1022902,800,07900,07300,02400	0160											
685,000,02210,05090,05090,0269582,800,01500,04300,01800719,400,02260,05420,05420,0288625,800,01600,04600,01900758,000,02350,05810,05810,0312664,800,01700,04600,02000804,200,02540,06240,06240,0346707,600,01800,04700,02100842,000,02740,06720,06720,0379745,000,02000,04800,02100883,400,02880,07300,07300,0437783,400,02500,05400,02300923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,07300,02400996,200,17180,25970,25970,1022902,800,07900,07300,02400	0180											
719,400,02260,05420,05420,0288625,800,01600,04600,01900758,000,02350,05810,05810,0312664,800,01700,04600,02000804,200,02540,06240,06240,0346707,600,01800,04700,02100842,000,02740,06720,06720,0379745,000,02000,04800,02100883,400,02880,07300,07300,0437783,400,02500,05000,02200923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,07300,02400996,200,17180,25970,25970,1022902,800,07900,07300,02400	0190											
758,000,02350,05810,05810,0312664,800,01700,04600,02000804,200,02540,06240,06240,0346707,600,01800,04700,02100842,000,02740,06720,06720,0379745,000,02000,04800,02100883,400,02880,07300,07300,0437783,400,02500,05000,02200923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,06000,02400996,200,17180,25970,25970,1022902,800,07900,07300,02400	0210											
804,20 0,0254 0,0624 0,0624 0,0346 707,60 0,0180 0,0470 0,0210 0 842,00 0,0274 0,0672 0,0672 0,0379 745,00 0,0200 0,0480 0,0210 0 883,40 0,0288 0,0730 0,0730 0,0437 783,40 0,0250 0,0500 0,0220 0 923,40 0,0331 0,0850 0,0557 824,40 0,0360 0,0540 0,0230 0 965,00 0,1051 0,1968 0,1968 0,0768 866,40 0,0500 0,0230 0 996,20 0,1718 0,2597 0,2597 0,1022 902,80 0,0790 0,0730 0,0240 0	0210											
842,000,02740,06720,06720,0379745,000,02000,04800,02100883,400,02880,07300,07300,0437783,400,02500,05000,02200923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,06000,02300996,200,17180,25970,25970,1022902,800,07900,07300,02400	0200											
883,400,02880,07300,07300,0437783,400,02500,05000,02200923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,06000,02300996,200,17180,25970,25970,1022902,800,07900,07300,02400	0200											
923,400,03310,08500,08500,0557824,400,03600,05400,02300965,000,10510,19680,19680,0768866,400,05000,06000,02300996,200,17180,25970,25970,1022902,800,07900,07300,02400	0190											
965,000,10510,19680,19680,0768866,400,05000,06000,02300996,200,17180,25970,25970,1022902,800,07900,07300,02400	0200											
996,20 0,1718 0,2597 0,2597 0,1022 902,80 0,0790 0,0730 0,0240 0	0220											
	0260											
1029,40 0,2088 0,3010 0,3010 0,1277 935,30 0,1110 0,1030 0,0240 0	0400											
1063,40 0,2539 0,3547 0,3547 0,1723 985,40 0,1550 0,1680 0,0530 0	1330											
1101,00 0,2904 0,3970 0,3970 0,2074 1025,00 0,1950 0,2610 0,1210 0	2090											
1145,00 0,3557 0,4584 0,4584 0,2664 1067,00 0,2380 0,3700 0,2110 0	3270											
1184,00 0,4200 0,5045 0,5045 0,3341 1100,00 0,2630 0,4350 0,2610 0	4130											
1219,80 0,5136 0,5794 0,5794 0,5318 1147,00 0,2950 0,5110 0,3210 0	5210											
1203,00 0,5390 0,5986 0,5986 0,6130 1178,00 0,3360 0,6440 0,3860 0	6540											
1186,00 0,3400 0,6580 0,3950 0	6740											
1201,00 0,3590 0,6890 0,4330 0	7510											
1213,40 0,3690 0,6870 0,4520 0	7860											
1216,60 0,3760 0,6790 0,4650 0	8120											
1221,40 0,3830 0,6640 0,4780 0	8350											
1239,20 0,3870 0,6300 0,4870 0	8530											
1244,20 0,4050 0,5710 0,5250 0	9230											
1220,00 0,4100 0,5500 0,5380 0	9450											

Tabela D.6 - Dados do conector 'V'- 4,75 mm (modelo -01 e 02) para a Figura 6.28

Gráfico da Figura-7.3										
Force	V-4,75n	nm Leitura	1 do 'SG' - N	Iodelo-02						
(kN)	Meio-	Meio-	Canto-	Canto-						
(111)	02	01	02	01						
64,40	0,0048	0,0053	-0,0019	0,0163						
420,80	0,0120	0,0187	0,0082	0,0432						
460,00	0,0125	0,0206	0,0091	0,0466						
500,60	0,0130	0,0206	0,0106	0,0528						
544,60	0,0134	0,0202	0,0110	0,0600						
582,00	0,0139	0,0202	0,0120	0,0730						
642,60	0,0149	0,0221	0,0139	0,0854						
662,40	0,0158	0,0240	0,0149	0,0931						
696,60	0,0168	0,0259	0,0168	0,1022						
749,00	0,0192	0,0341	0,0269	0,1219						
788,90	0,0202	0,0370	0,0326	0,1291						
823,60	0,0211	0,0408	0,0456	0,1387						
860,00	0,0230	0,0523	0,0749	0,1584						
902,20	0,0302	0,0672	0,1123	0,1795						
948,00	0,0475	0,0840	0,1483	0,2050						
985,40	0,0739	0,1013	0,1766	0,2419						
1025,20	0,1229	0,1320	0,2501	0,4133						
1060,00	0,1536	0,1536	0,2885	0,4877						
1086,40	0,1771	0,1752	0,3168	0,5410						
1124,40	0,2059	0,2030	0,3499	0,5966						
1160,00	0,2534	0,2909	0,3869	0,6538						
1185,60	0,2842	0,3461	0,4138	0,6917						
1203,90	0,3072	0,3859	0,4310	0,7123						
1211,40	0,3365	0,4229	0,4546	0,7382						

Tabela D.7 - Dados do conector 'V'- 4,75 mm (modelo -03) para a Figura 6.28

D.2 - DADOS DOS DEFLETÔMETROS

Dados relativos aos deslocamentos lidos pelos defletômetros horizontais e verticais. Estas medidas estão em 'mm'.

D.2.1 - Dados dos defletômetros horizontais do conector stud

Tabela D.8 - Dados dos defletômetros horizontais do conector stud para a Figura-6.31

	Gráfico da Figura- 6.31												
Stu	ud Modelo	-01	Stu	ud Modelo	-02	Stud Modelo -03							
Carga	Def. Hro	orizontais	Carga	Def. Hro	rizontais	Carga	Def. Hrorizontais						
(kN)	Def-01	Def-02	(kN)	Def-01	Def-02	(kN)	Def-01	Def-02					
52,20	0,1480	0,3395	53,00	0,0936	0,0477	55,40	-0,0204	0,0515					
324,20	0,1543	0,3548	322,00	0,0817	0,0782	319,00	-0,0570	0,0515					
350,20	0,1805	0,4044	351,80	0,0817	0,0820	350,20	-0,0613	0,0515					
403,00	0,2330	0,4807	402,20	0,0936	0,0916	406,00	-0,0667	0,0572					
450,80	0,3180	0,5989	454,80	0,1291	0,1049	450,00	-0,0731	0,0610					
501,60	0,4208	0,7324	500,00	0,1592	0,1183	502,00	-0,0624	0,0668					
550,00	0,5751	0,9213	552,20	0,1979	0,1450	550,80	-0,0506	0,0725					
599,80	0,9372	1,3257	602,40	0,2549	0,1602	600,60	-0,0355	0,0839					
657,20	1,4990	1,8655	653,00	0,3528	0,1946	650,50	0,0215	0,0992					
690,00	1,9023	2,1631	704,80	0,5120	0,4368	697,00	0,2935	0,1717					
710,00	2,0615	2,2614	735,60	0,6636	0,6008	733,20	0,3957	0,1926					
740,00	2,2680	2,3883	766,40	0,7432	0,6809	756,00	0,5423	0,2155					
771,00	2,2777	2,3957	795,20	0,9089	0,8679	782,00	0,7155	0,2403					
780,00	2,2788	2,3999	820,20	1,0250	0,9957	804,00	0,8388	0,2575					
793,40	2,3638	2,4591	857,60	1,1745	1,1578	825,40	0,9121	0,2670					
			888,60	1,3165	1,3218	846,00	0,9754	0,2747					
			901,50	1,4897	1,5088	850,00	1,0076	0,2823					
			914,20	1,5854	1,6137	840,00	1,0975	0,2861					
			921,80	1,9285	1,8807								

D.2.2 - Dados dos defletômetros horizontais do conector 'V'

	Gráfico da Figura-6.31											
V-2.65 mm	n Modelo-01	V' -2,6	5 mm Mode	elo -02	V' -2,6	5 mm Mode	elo -03					
	Def.											
	Hrorizontais	Carga	Def. Hrorizontais		Carga	Def. Hro	rizontais					
Carga (kN)	Def-01	(kN)	Def-01	Def-02	(kN)	Def-01	Def-02					
45,00	0,0210	41,20	-0,0084	0,0248	47,20	-0,0600	0,0338					
242,20	0,0220	247,60	-0,0126	0,0420	243,60	-0,0444	0,0486					
260,20	0,0273	262,20	-0,0126	0,0439	266,20	-0,0111	0,0993					
302,20	0,0367	302,20	-0,0126	0,0496	306,00	0,0244	0,1479					
345,00	0,0630	340,80	-0,0105	0,0572	344,40	0,0655	0,2155					
380,20	0,0882	383,00	0,0000	0,0687	383,80	0,1011	0,2715					
420,80	0,1291	420,00	0,0084	0,0820	425,60	0,1599	0,3465					
462,40	0,1816	465,20	0,0483	0,1640	465,40	0,2432	0,4405					
500,00	0,2435	502,40	0,0913	0,2365	502,80	0,3598	0,5598					
540,40	0,3474	547,20	0,1532	0,3471	542,00	0,5541	0,7552					
585,00	0,6045	581,60	0,2340	0,4883	581,20	0,6652	0,8450					
620,00	0,7651	623,00	0,3464	0,6676	616,60	0,8562	1,0066					
660,00	0,9970	667,80	0,5088	0,9137	666,00	1,1205	1,2263					
700,00	1,1932	701,60	0,7368	1,2513	705,40	1,4691	1,5031					
743,00	1,4514	742,40	1,0079	1,6537	744,20	1,5757	1,5897					
783,00	1,7492	782,00	1,2338	2,0276	785,40	1,7057	1,6900					
825,00	2,2299	806,00	1,3897	2,3156	820,00	1,8578	1,8041					
		821,40	1,5091	2,5388								
		849,40	1,6253	2,7715								

Tabela D.9 - Dados dos defletômetros hori. do conector 'V' -2,65 mm para a Figura-6.31

	Gráfico da Figura- 6.31												
'V'-3,75	5 mm Mod	elo -01	'V'-3,75	5 mm Mod	elo -02	'V'-3,75	5 mm Mod	elo -03					
Carga	Def. Hro	orizontais	Carga	Def. Hro	rizontais	Carga	Def. Hro	rizontais					
(kN)	Def-01	Def-02	(kN)	Def-01	Def-02	(kN)	Def-01	Def-02					
42,40	0,0411	0,0930	40,60	-0,0452	-0,0529	44,00	0,0086	0,0011					
256,00	0,0378	0,1174	247,20	-0,0667	-0,0529	243,60	0,0161	0,0021					
266,20	0,0378	0,1184	263,60	-0,0678	-0,0529	276,60	0,0172	0,0032					
304,40	0,0378	0,1258	307,60	-0,0656	-0,0529	300,40	0,0194	0,0042					
348,00	0,0400	0,1406	347,80	-0,0581	-0,0529	340,20	0,0366	0,0074					
388,00	0,0400	0,1417	386,40	-0,0516	-0,0529	381,80	0,0581	0,0106					
383,20	0,0422	0,1544	427,00	-0,0430	-0,0539	421,40	0,0742	0,0148					
420,80	0,0522	0,1692	460,40	-0,0280	-0,0497	464,00	0,0968	0,0190					
468,60	0,0733	0,1945	506,20	-0,0075	-0,0455	514,80	0,1205	0,0254					
505,00	0,0977	0,2157	540,40	0,0161	-0,0423	542,00	0,1463	0,0328					
541,20	0,1222	0,2389	578,80	0,0344	-0,0359	580,40	0,1839	0,0486					
585,20	0,1577	0,2643	624,40	0,0656	-0,0243	624,00	0,2528	0,0782					
619,60	0,1888	0,2886	660,60	0,1108	-0,0106	664,00	0,3270	0,1755					
662,60	0,2276	0,3214	705,00	0,1592	0,0032	705,60	0,4367	0,3098					
700,00	0,2865	0,3637	744,20	0,2226	0,0211	742,80	0,5141	0,4049					
746,20	0,3676	0,4229	780,00	0,2936	0,0444	780,60	0,6271	0,4641					
775,00	0,4919	0,5138	825,00	0,3980	0,0761	825,60	0,7454	0,5561					
826,20	0,6407	0,6206	855,80	0,4958	0,1057	862,40	0,8831	0,6914					
861,60	0,8484	0,7686	921,20	0,7142	0,1702	900,80	1,0218	0,8268					
902,60	1,0660	0,9325	960,20	0,9250	0,4493	940,00	1,2197	1,0192					
942,00	1,3026	1,1122	1001,00	1,1229	0,6407	980,40	1,3810	1,1756					
988,00	1,5102	1,2750	1047,80	1,3273	0,8426	1020,20	1,5908	1,3934					
1025,60	1,7345	1,4695	1083,40	1,5276	1,0467	1071,00	1,8457	1,6630					
1042,60	1,8778	1,5943	1121,80	1,8129	1,3691	1109,90	2,0415	1,8639					
1069,00	1,9944	1,6990	1163,60	2,0550	1,6630	1142,20	2,3103	2,1525					
1109,60	2,2220	1,9030	1186,60	2,3526	2,1028	1184,80	2,5653	2,4348					
1153,00	2,7917	2,4591	1191,60	2,4115	2,2286	1200,00	2,7137	2,5976					
1161,60	2,9405	2,6071	1162,60	2,4925	2,3544	1240,20	2,9697	2,8883					
1200,00	3,1215	2,7869	1181,40	2,6125	2,4824	1262,80	3,1558	3,0966					
1210,00	3,1726	2,8387											
1224,00	3,4258	3,1146											
1230,00	3,5723	3,3176											

Tabela D.10 - Dados dos defletômetros hori. do conector 'V' -3,75 mm para a Figura-6.31

	Gráfico da Figura-6.31												
'V'-4,75	5 mm Mod	elo -01	'V' -4,7	5 mm Mod	lelo -02	'V'-4,75	5 mm Mod	elo -03					
Carga	Def. Hro	rizontais	Carga	Def. Hro	orizontais	Carga	Def. Hro	orizontais					
(kN)	Def-01	Def-02	(kN)	Def-01	Def-02	(kN)	Def-01	Def-02					
70,20	0,1299	0,0380	63,20	-0,024	0,017	64,40	0,0455	-0,0152					
516,40	0,1432	0,0549	447,00	-0,035	0,015	420,80	0,0577	-0,0152					
563,40	0,1444	0,0592	481,80	-0,024	0,017	460,00	0,0622	-0,0108					
624,00	0,1699	0,0750	502,40	-0,020	0,017	500,60	0,0755	-0,0043					
640,40	0,1954	0,1479	547,80	-0,016	0,018	544,60	0,0933	0,0065					
685,00	0,2410	0,1965	582,80	-0,004	0,029	582,00	0,1233	0,0238					
719,40	0,2921	0,2514	625,80	0,015	0,042	642,60	0,1677	0,1441					
758,00	0,3620	0,3317	664,80	0,040	0,055	662,40	0,2077	0,2124					
804,20	0,4575	0,4193	707,60	0,065	0,073	696,60	0,2587	0,2817					
842,00	0,5541	0,5102	745,00	0,081	0,092	749,00	0,3875	0,4302					
883,40	0,7029	0,6369	783,40	0,116	0,115	788,90	0,4508	0,4887					
923,40	0,8406	0,7521	824,40	0,180	0,301	823,60	0,5164	0,5558					
965,00	1,0305	0,9179	866,40	0,228	0,395	860,00	0,6529	0,6783					
996,20	1,2060	1,0626	902,80	0,279	0,486	902,20	0,7795	0,7953					
1029,40	1,3425	1,1894	935,30	0,351	0,609	948,00	0,9261	0,9318					
1063,40	1,5413	1,3721	985,40	0,425	0,716	985,40	1,0682	1,0662					
1101,00	1,7312	1,5474	1025,00	0,543	0,876	1025,20	1,2739	1,2753					
1145,00	2,0543	1,8453	1067,00	0,666	1,036	1060,00	1,4598	1,4595					
1184,00	2,3519	2,1115	1100,00	0,851	1,257	1086,40	1,6165	1,6188					
1219,80	2,8206	2,5171	1147,00	0,994	1,416	1124,40	1,7992	1,8095					
1203,00	3,0493	2,6671	1178,00	1,181	1,644	1160,00	2,0091	2,0218					
			1186,00	1,441	1,906	1185,60	2,1605	2,1833					
			1201,00	1,479	1,945	1203,90	2,2691	2,2775					
			1213,40	1,654	2,098	1211,40	2,4174	2,4238					
			1216,60	1,744	2,185	1221,40	2,5292	2,5309					
			1221,40	1,805	2,251								
			1239,20	1,864	2,304								
			1244,20	1,917	2,359								
			1220,00	2,122	2,552								
			1190,00	2,196	2,626								
			1188,00	2,289	2,716								

Tabela D.11 - Dados dos defletômetros hori. do conector 'V' -4,75 mm para a Figura-6.31

D.2.3 - Dados do defletômetro vertical para os conectores analisados

Gráfico da Figura- 6.34								
Stud Modelo -01		Stud Modelo -02			Stud Modelo -03			
Carga	Def. Vertical	Carga	Def. Vertical		Carga	Def. Vertical		
(kN)	Def-04	(kN)	Def-03	Def-04	(kN)	Def-03	Def-04	
52,20	0,6671	53,00	0,9225	0,5266	55,40	0,3208	0,1962	
324,20	0,6791	322,00	0,9537	0,5480	319,00	0,3208	0,2053	
350,20	0,7637	351,80	0,9911	0,5725	350,20	0,3208	0,2385	
403,00	0,9146	402,20	1,0874	0,6245	406,00	0,4064	0,3049	
450,80	1,2043	454,80	1,2738	0,7531	450,00	0,5103	0,4769	
501,60	1,5273	500,00	1,4877	0,8939	502,00	0,6692	0,7293	
550,00	2,0284	552,20	1,7963	1,1235	550,80	0,8464	1,0539	
599,80	3,2258	602,40	2,1232	1,3929	600,60	1,1795	1,6631	
657,20	5,3657	653,00	2,6793	1,8245	650,50	1,6613	2,5050	
690,00	7,5668	704,80	3,2996	2,3632	697,00	2,7696	4,0724	
710,00	8,6260	735,60	3,9718	2,9845	733,20	3,1276	4,5285	
740,00	10,1044	766,40	4,3141	3,3243	756,00	3,7908	5,3031	
771,00	10,2911	795,20	5,1177	4,1385	782,00	4,6563	6,3040	
780,00	10,3676	820,20	5,7319	4,7568	804,00	5,4689	7,2743	
793,40	11,1941	857,60	6,6532	5,6598	825,40	6,2939	8,3181	
		888,60	7,6370	6,6529	846,00	7,0141	9,2670	
		901,50	8,7858	7,7982	850,00	7,7628	10,3628	
		914,20	9,4926	8,4961	840,00	8,8431	12,1821	
		921,80	12,787	11,769				

Tabela D.12 - Dados do defl. vertical do conector stud para a Figura- 6.34

Gráfico da Figura-6,35								
'V'-2,65 mm Modelo -01			'V'-2,65 mm Modelo -02			'V'-2,65 mm Modelo -03		
Carga	Def. V	'ertical	Carga	Def. Vertical		Carga	Def. Vertical	
(kN)	Def-03	Def-04	(kN)	Def-03	Def-04	(kN)	Def-03	Def-04
45,00	0,0187	0,0920	41,20	0,0062	0,0184	47,20	0,0218	0,0634
242,20	0,0218	0,0951	247,60	0,0093	0,0184	243,60	0,0249	0,0936
260,20	0,0249	0,0982	262,20	0,0093	0,0215	266,20	0,0311	0,1388
302,20	0,0280	0,1442	302,20	0,0125	0,0215	306,00	0,0405	0,1841
345,00	0,0342	0,1810	340,80	0,0187	0,0276	344,40	0,2024	0,2505
380,20	0,0996	0,2147	383,00	0,0311	0,0337	383,80	0,2802	0,3109
420,80	0,1775	0,2638	420,00	0,0436	0,0399	425,60	0,4047	0,3984
462,40	0,2802	0,3313	465,20	0,1214	0,0644	465,40	0,5729	0,5584
500,00	0,3923	0,4233	502,40	0,1993	0,0767	502,80	0,8126	0,7727
540,40	0,6009	0,5767	547,20	0,2989	0,1933	542,00	1,2578	1,1862
585,00	1,0648	1,0245	581,60	0,4514	0,3098	581,20	1,4913	1,4220
620,00	1,3979	1,3466	623,00	0,6382	0,4509	616,60	1,9396	1,8689
660,00	1,9996	1,8453	667,80	0,9215	0,6718	666,00	2,6152	2,5210
700,00	2,4658	2,3071	701,60	1,4854	1,1429	705,40	3,5784	3,5649
743,00	3,2036	2,9893	742,40	2,0859	1,5982	744,20	3,9131	3,9109
783,00	4,2092	3,9069	782,00	2,7771	2,1394	785,40	4,3240	4,3670
825,00	6,1235	5,5338	806,00	3,3250	2,6344	820,00	4,8139	4,8813
		•	821,40	3,7951	3,0178			
			849,40	4,3246	3,4917			
			857,6	5,0824	4,0923			

Tabela D.13 - Dados do defl. vertical do conector 'V'- 2,65 mm para a Figura- 6.35

Gráfico da Figura-6.35								
V -3,/5 mm Modelo -01		V -3,75 mm Modelo -02		V'-3,/5 mm Modelo -03				
Carga	Def. V	ertical	Carga	Def. V	Pertical	Carga	Def. V	ertical
(kN)	Def-03	Def-04	(kN)	Def-03	Def-04	(kN)	Def-03	Def-04
42,40	0,0062	0,0031	40,60	0,00934	0,006135	44,00	0,0244	0,0272
256,00	0,0156	0,0031	247,20	0,012453	0,009202	243,60	0,0336	0,0332
266,20	0,0156	0,0031	263,60	0,012453	0,009202	276,60	0,0336	0,0332
304,40	0,0156	0,0092	307,60	0,021793	0,015337	300,40	0,0336	0,0332
348,00	0,0156	0,0122	347,80	0,021793	0,018405	340,20	0,0428	0,0362
388,00	0,0156	0,0122	386,40	0,024907	0,027607	381,80	0,0550	0,0392
383,20	0,0156	0,0184	427,00	0,024907	0,03681	421,40	0,0611	0,0453
420,80	0,0187	0,0245	460,40	0,031133	0,052147	464,00	0,0703	0,0513
468,60	0,0218	0,0582	506,20	0,03736	0,067485	514,80	0,0917	0,0755
505,00	0,0249	0,0735	540,40	0,043587	0,076687	542,00	0,1222	0,0996
541,20	0,0342	0,1010	578,80	0,05604	0,092025	580,40	0,1956	0,1268
585,20	0,0841	0,1194	624,40	0,07472	0,110429	624,00	0,3117	0,1841
619,60	0,1650	0,1500	660,60	0,146326	0,217791	664,00	0,4064	0,2324
662,60	0,2717	0,2051	705,00	0,214819	0,325153	705,60	0,5683	0,3411
700,00	0,4147	0,2725	744,20	0,301993	0,466258	742,80	0,6936	0,4377
746,20	0,5882	0,3674	780,00	0,395392	0,607362	780,60	0,8464	0,5705
775,00	0,8255	0,5113	825,00	0,541719	0,819018	825,60	1,0542	0,7425
826,20	1,1146	0,7041	855,80	0,672478	1,02454	862,40	1,3108	0,9538
861,60	1,5011	1,0317	921,20	1,088809	1,54908	900,80	1,6164	1,2194
902,60	1,9150	1,4174	960,20	1,463124	2,018405	940,00	2,0289	1,6058
942,00	2,4232	1,8858	1001,00	1,91352	2,544099	980,40	2,3956	1,9620
988,00	2,9649	2,3695	1047,80	2,42478	3,120616	1020,20	2,9242	2,4932
1025,60	3,5888	2,9481	1083,40	2,960386	3,769575	1071,00	3,6342	3,2388
1042,60	4,0270	3,3552	1121,80	3,922041	4,868277	1109,90	4,2382	3,8756
1069,00	4,4165	3,7042	1163,60	4,865437	5,948868	1142,20	5,2127	4,8783
1109,60	5,1837	4,4296	1186,60	6,371701	7,656764	1184,80	6,2027	5,9345
1153,00	6,8171	5,9142	1191,60	6,702744	8,11291	1200,00	6,8285	6,6080
1161,60	7,3730	6,4345	1162,60	7,146217	8,731308	1240,20	8,0770	7,9427
1200,00	8,0850	7,1171	1181,40	7,599059	9,475224	1262,80	9,1289	9,0050
1210,00	8,2880	7,3405	1164,60	7,901994	10,07219			
1224,00	9,5435	8,6099						
1230,00	10,4429	9,5956						
1221,00	11,1847	10,5689						

Tabela D.14 - Dados do defl. vertical do conector 'V'- 3,75 mm para a Figura- 6.35

Gráfico da Figura-7.7 item "d"									
'V'-4,75 mm Modelo-01		'V'-4,75 mm Modelo -02			'V'-4,75 mm Modelo -03				
Carga	Def. V	ertical	Carga Def. Vertical		Carga	Def. Vertical			
(kN)	Def-03	Def-04	(kN)	Def-03	Def-04	(kN)	Def-03	Def-04	
70,20	0,2556	0,0551	63,20	0,2190	0,1350	64,40	0,0996	0,0275	
516,40	0,2891	0,0796	447,00	0,2620	0,1530	420,80	0,1121	0,0520	
563,40	0,2982	0,0827	481,80	0,2920	0,1740	460,00	0,1401	0,0582	
624,00	0,3743	0,0918	502,40	0,3010	0,1870	500,60	0,1837	0,0796	
640,40	0,4078	0,0980	547,80	0,3350	0,2080	544,60	0,2210	0,0918	
685,00	0,4930	0,1837	582,80	0,3860	0,2330	582,00	0,2958	0,1224	
719,40	0,6056	0,2755	625,80	0,4440	0,2690	642,60	0,3985	0,1622	
758,00	0,7608	0,4041	664,80	0,5450	0,3210	662,40	0,5012	0,2081	
804,20	0,9677	0,5602	707,60	0,6330	0,3700	696,60	0,6351	0,2418	
842,00	1,1808	0,7317	745,00	0,7580	0,4320	749,00	0,9620	0,3612	
883,40	1,5155	1,0011	783,40	0,9170	0,5080	788,90	1,1115	0,4193	
923,40	1,8046	1,2460	824,40	1,0830	0,5970	823,60	1,2858	0,5112	
965,00	2,2611	1,6378	866,40	1,2450	0,6730	860,00	1,6376	0,7132	
996,20	2,6936	2,0112	902,80	1,5170	0,8140	902,20	1,9956	0,9122	
1029,40	3,0528	2,3357	935,30	1,7950	0,9520	948,00	2,4035	1,1846	
1063,40	3,5993	2,8469	985,40	2,1910	1,2000	985,40	2,8207	1,4784	
1101,00	4,1334	3,3764	1025,00	2,6160	1,4660	1025,20	3,4362	1,9467	
1145,00	5,0953	4,3406	1067,00	3,2600	1,9310	1060,00	4,0388	2,4151	
1184,00	6,0509	5,2833	1100,00	3,7590	2,3140	1086,40	4,5835	2,8558	
1219,80	7,7024	6,8964	1147,00	4,4810	2,9070	1124,40	5,2652	3,4190	
1203,00	8,5541	7,6818	1178,00	5,5140	3,7400	1160,00	6,1203	4,1463	
			1186,00	5,6960	3,8650	1185,60	6,7746	4,7033	
			1201,00	6,3890	4,5090	1203,90	7,3041	5,1321	
			1213,40	6,7800	4,8880	1211,40	8,0619	5,7173	
			1216,60	7,0880	5,1850	1221,40	8,6652	6,1429	
			1221,40	7,3570	5,4330				
			1239,20	7,6100	5,6550				
			1244,20	8,6150	6,5750				
			1220,00	8,9900	6,9440				
			1190,00	9,4660	7,3910				
			1188,00	11,6260	9,3150				

Tabela D.15 - Dados do defl. vertical do conector 'V'- 3,75 mm para a Figura- 6.35