

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE GEOCIÊNCIAS

DISCRIMINAÇÃO DE CERRADO RUPESTRE POR MEIO DE IMAGENS MULTITEMPORAIS DO LANDSAT: PROPOSTA METODOLÓGICA

DISSERTAÇÃO DE MESTRADO Nº4

ERIKA REGINA PRADO DO NASCIMENTO

Brasília, DF 2010

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE GEOCIÊNCIAS

DISCRIMINAÇÃO DE CERRADO RUPESTRE POR MEIO DE IMAGENS MULTITEMPORAIS DO LANDSAT: PROPOSTA METODOLÓGICA

DISSERTAÇÃO DE MESTRADO Nº4

ERIKA REGINA PRADO DO NASCIMENTO

Orientador: Dr. Edson Eyji Sano

Brasília, DF 2010

O único lugar onde o sucesso vem antes do trabalho é no dicionário. Albert Einstein

AGRADECIMENTOS

Ao Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) e ao Instituto Chico Mendes da Biodiversidade (ICMBio), pela oportunidade e pelo apoio dado à pesquisa.

Ao pesquisador, companheiro e amigo Dr. Edson Eyji Sano, por sua orientação e ensinamentos.

Ao Prof. José Roberto Rodrigues Pinto do Departamento de Engenharia Florestal da Universidade de Brasília (UnB), que contribui para a conservação e preservação do Cerrado Rupestre, pelas sugestões iniciais ao trabalho.

Ao Prof. Eraldo Matricardi do Departamento de Engenharia Florestal da UnB, pela disponibilidade em repassar seu conhecimento.

Ao Instituto de Geociências da UnB, juntamente com o seu corpo docente, pelos conhecimentos compartilhados.

À equipe do Laboratório de Biofísica Ambiental da Embrapa Cerrados, em especial, ao Heleno.

À administração do Parque Nacional da Chapada dos Veadeiros (PNCV), pelo apoio aos trabalhos de campo. Agradecimentos especiais ao chefe do parque Daniel Rios de Magalhães Borges e à analista ambiental Simone Nunes Fonseca, pela cessão das imagens IKONOS e pelo apoio dado.

Aos colegas do Mestrado e Doutorado, companheiros das horas de estudo. Aos amigos Marilu, Vivyanne, Raquel, Vanessa e Ranério.

Aos meus pais, Joana e Arnaldo, e à minha irmã, Raquel. Ao Gledson, pelo carinho, presença e apoio constantes.

SUMÁRIO

Pág.
LISTA DE TABELAS vi
LISTA DE FIGURASvii
LISTA DE ABREVIAÇÕESx
RESUMOxi
ABSTRACTxii
CAPÍTULO 1 INTRODUÇÃO1
1.1 Contexto e justificativa
1.2 Objetivos
1.3 Hipótese
1.4 Estrutura da dissertação 3
CAPÍTULO 2 REVISÃO BIBLIOGRÁFICA
2.1 Cerrado Rupestre
2.2 Conversão de valores digitais para reflectância na superfície terrestre
2.3 Segmentação e classificação de imagens10
CAPÍTULO 3 ÁREA DE ESTUDO
3.1 Localização e acesso
3.1.1 Histórico
3.1.2 Vegetação
3.1.3 Contexto geológico-geomorfológico
CAPÍTULO 4 MATERIAIS E MÉTODOS
4.1 Materiais
4.2 Abordagem metodológica
4.2.1 Conversão para reflectância
4.2.2 Coleta de regiões de interesse dos alvos selecionados
4.2.3 Reflectância acumulada

4.2.4 Segmentação de imagens	
4.2.4 Interpretação visual	
4.2.4 Validação da interpretação	
CAPÍTULO 5 RESULTADOS E DISCUSSÃO	40
5.1 Desempenho da conversão de valores digitais para reflectância	40
5.2 Reflectância acumulada	41
5.3 Exatidão global	
5.4 Segmentação	
5.4 Mapeamento do Cerrado Rupestre	
CAPÍTULO 6 CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES	
REFERÊNCIAS	51
BIBLIOGRAFIA COMPLEMENTAR	
ANEXO I ACERVO FOTOGRÁFICO	
ANEXO II VALORES MÉDIOS DE REFLECTÂNCIA	64

LISTA DE TABELAS

5.1: Análise da exatidão global e erros de omissão e comissão do mapa de ocorrência de
Cerrado Rupestre no Parque Nacional da Chapada dos Veadeiros. A verdade terrestre
foi obtida a partir da análise visual de mosaico de imagens do Ikonos e QuickBird
48

LISTA DE FIGURAS

2.1 Esquema ilustrativo de fitofisionomias do bioma Cerrado	5
2.2 Fotografia panorâmica de campo de Cerrado Rupestre no Parque Nacional Chapada dos Veadeiros	da 6
3.1 Localização do PNCV no estado de Goiás	14
3.2 Acesso partindo do Distrito Federal até o PNCV	15
3.3 Pontos demonstrando a localização do rio Preto e Cânion I do PNCV	17
3.4 Legislação institutiva do PNCV e as mudanças de limites sofridas	18
3.5 Caracterização geológica do PNCV	22
4.1 Fluxograma das principais atividades desenvolvidas no trabalho	22
4.2 Correção geométrica das imagens reflectância no aplicativo Erdas 9.1	27
4.3 Exemplo de correção geométrica das imagens de reflectância no aplicativo <i>Era</i> 9.1. Visualização da imagem na escala de 1:75.000, sobreposta com o vetor hidrografia . Fonte: Plano de Manejo do Parque Nacional da Chapada dos Veadeir (2009)	<i>las</i> de ros 31

4.4 Localização de pontos de amostragem de campo no Parque Nacional da Chapada dos Veadeiros (PNCV), cuja campanha foi realizada no período de 07 a 08 de maio de 2009.A localização e os tipos fitofisionômicos encontrados estão descritos no Anexo. 35

Anexo: Mapa de Cerrado Rupestre do Pa	rque Nacional da	Chapada dos	Veadeiros -	GO
formato A3				81

LISTA DE ABREVIAÇÕES

6S	Second Simulation of Satellite Signal in the Solar Spectrum
ACORN	Atmospheric CORrection Now
APA	Área de Proteção Ambiental
ASTER	Advanced Spaceborne Thermal Emission and Reflection
ATREM	Atmospheric REMoval
DEM	Digital Elevation Model
ENVI	The Environment for Visualizing Images
ETM^+	Enhanced Thematic Mapper Plus
EVI	Enhanced Vegetation Index
FINATEC	Fundação de Empreendimentos Científicos e Tecnológicos
FLAASH	Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
GPS	Global Positioning System
IBAMA	Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais
	Renováveis
ICMBio	Instituto Chico Mendes da Biodiversidade
IKONOS	Imagem em Grego
LOWTRAN	LOW Resolution Atmospheric Radiance and TRANsmittance
	Model
MODIS	Moderate Resolution Imaging Spectroradiometer
MODTRAN	MODerate resolution atmospheric TRANsmission
MISR	Multi-Angle Imaging Spectroradiometer
NDVI	Normalized Difference Vegetation Index
PARNA	Parque Nacional
PNCV	Parque Nacional da Chapada dos Veadeiros
PROBIO	Projeto de Conservação e Utilização Sustentável da Diversidade
	Biológica
SPRING	Sistema de Processamento de Informações Georreferenciadas
ТМ	Thematic Mapper
UC	Unidade de Conservação

RESUMO

O Cerrado Rupestre corresponde a uma formação savânica do bioma Cerrado, ocorre predominantemente em relevos acidentados e em meio a afloramentos rochosos de quartzito e arenito, apresenta elevada biodiversidade e várias espécies endêmicas e funciona como barreira para a expansão agrícola. No estado de Goiás, ocorrências expressivas dessa fitofisionomia são encontradas no Parque Nacional da Chapada dos Veadeiros (PNCV). O seu mapeamento por meio de dados de sensoriamento remoto é dificultado por causa de confusões espectrais com outras fitofisionomias do Cerrado, notadamente com Mata Seca em imagens da estação seca e com Cerrado sentido restrito em imagens da estação chuvosa. O objetivo deste estudo foi desenvolver uma nova abordagem metodológica para discriminar Cerrado Rupestre do PNCV com base em imagens multitemporais do satélite Landsat. Sete cenas do referido satélite foram convertidas para reflectância de superfície terrestre com suporte do algoritmo de correção atmosférica denominado FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes). Em seguida, os valores de reflectância de cada cena foram somados e as imagens resultantes foram processadas por meio da técnica de segmentação de imagens por crescimento de regiões. Os segmentos foram exportados para o formato shape e os polígonos correspondentes ao Cerrado Rupestre foram identificados por meio de análise visual na tela do computador da composição colorida falsa-cor das as 4, 5 e 7. Foram mapeados 24.451 hectares de Cerrado Rupestre, o que corresponde a 37% da área do parque. A exatidão global do mapeamento foi de 83,19%. Como continuação desta linha de pesquisa, recomenda-se a inclusão de um número maior de cenas, principalmente da estação chuvosa, a integração dos dados de sensoriamento remoto com modelos digitais de elevação e a análise sinergística entre os sensores ETM+ e TM do Landsat com calibração cruzada.

ABSTRACT

The Rupestrian Cerrado (Cerrado Rupestre) corresponds to a shrub-like vegetation of the Brazilian tropical savanna biome, occurs mainly over hilly topography and rocky quartzite and sandstone outcrops, presents high biodiversity and several endemic species, and acts as barrier for agricultural expansion. In the State of Goias, large occurrences of this type of vegetation are found in the Chapada dos Veadeiros National Park (PNCV - Parque Nacional da Chapada dos Veadeiros). Rupestrian Cerrado mapping using remotely sensed data is difficult because of the spectral confusion with other phytophysiognomies, especially with Dry Forest in dry season images and with Cerrado strictu sensu in wet season images. The goal of this study was to develop a new approach to discriminate Rupestrian Cerrado based on multitemporal Landsat satellite images. The study area was the PNCV. Seven Landsat scenes were converted into surface reflectances with support of FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction algorithm. The reflectances from each ETM+ were summed and the resulting images were processed through the image segmentation technique by growing region. The segments were exported into shapefile format and the polygons related to the Rupestrian Cerrado were identified by visual analysis of the false color composite of 4, 5 and 7 in the computer screen. We found 24,451 hectares of Rupestrian Cerrado, which corresponds to 37% of total area of the park. The global accuracy of the mapping was 83,19%. As ongoing research, we recommend the inclusion of a higher number of scenes, mainly from wet season, the data integration of satellite images with digital elevation models, and the synergistic analysis of cross-calibrated Landsat ETM+ and TM data sets.

CAPÍTULO 1 INTRODUÇÃO

1.1 CONTEXTO E JUSTIFICATIVA

O Cerrado Rupestre corresponde a uma das fitofisionomias representativas do bioma Cerrado e é típico de ambientes rupestres, os quais englobam cerca de 7% da região de domínio do referido bioma (Reatto *et al.*, 2008). O Cerrado Rupestre apresenta grau relativamente elevado de conservação, pois ocorrem sob condições topográficas e edáficas peculiares, isto é, elevadas altitudes e em solos rasos e com elevado número de afloramentos de rochas de quartzito e arenito. Conseqüentemente, as suas áreas de ocorrência atuam como importantes barreiras para a expansão agrícola no Cerrado e para a conservação da vida silvestre do bioma. Além disso, esses ambientes são ricos em biodiversidade, apresentando alto grau de endemismo e várias espécies vegetais raras (Oliveira-Filho & Fluminhan-Filho, 1999; Simon & Proença, 2000).

O estado de Goiás é uma das unidades federativas do Cerrado que apresenta ocorrência relativamente destacada de Cerrado Rupestre. No estudo conduzido por Lima (2008), foram identificados 2.262.000 hectares de possíveis áreas de Cerrado Rupestre, o que corresponde a 6,6% do território goiano.

O Parque Nacional da Chapada dos Veadeiros (PNCV), localizado na porção nordeste de Goiás, constitui-se em uma das áreas mais expressivas em termos de ocorrência de Cerrado Rupestre em Goiás e está incluída no projeto "Vegetação arbustivo-arbórea em áreas de Cerrado Rupestre: conhecer para preservar". Esse projeto é financiado pela Fundação de Empreendimentos Científicos e Tecnológicos (FINATEC), pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelo Projeto de Conservação e Utilização Sustentável da Diversidade Biológica (PROBIO) e pela Fundação O Boticário de Proteção à Natureza. O responsável técnico pelo projeto é o Prof. Dr. José Roberto Rodrigues Pinto do Departamento de Engenharia Florestal da Universidade de Brasília (UnB). A área de atuação do projeto inclui a Área de Proteção Ambiental do Pouso Alto - Alto Paraíso de Goiás onde está situado o PNCV.

Estudos anteriores têm mostrado certa dificuldade em discriminar fitofisionomias do Cerrado por meio de imagens ópticas. Por exemplo, Sano et al. (2005) analisaram o desempenho dos índices de vegetação por diferença normalizada (NDVI) e realçado (EVI), derivados de imagens do satélite Landsat para discriminar classes de cobertura vegetal presentes no Parque Nacional de Brasília. Somente dois grupos de cobertura vegetal puderam ser separados: um, formado pela Mata de Galeria e o outro, formado pelas formações campestres e savânicas. Lima et al. (2009) também mencionaram confusão espectral entre Cerrado Rupestre, Cerrado sentido restrito, Mata Seca semidecídua e Mata Seca decídua em imagens do Landsat da Área de Proteção Ambiental Pouso Alto, Goiás. Tais dificuldades estão associadas com a elevada sazonalidade climática e com a transição gradual entre as fitofisionomias do Cerrado.

Alguns autores têm buscado alternativas para obter discriminação espectral de fitofisionomias do Cerrado com acurácia maior. Liesenberg *et al.* (2007) analisaram dados do MISR (*Multi-Angle Imaging SpectroRradiometer*), a bordo da plataforma Terra e com capacidade de imageamento em nove ângulos distintos de incidência, para discriminar cinco fitofisionomias presentes nos limites dos estados de Minas Gerais e da Bahia. Resultados indicaram que imageamentos *off-nadir* possuem elevado potencial para a obtenção de classificações vegetais mais acuradas. Ratana *et al.* (2005) demonstraram, por meio de análise de dados multitemporais do MODIS (*Moderate Resolution Imaging Spectroradiometer*), que os índices de vegetação acumulados em um ano podem melhorar a capacidade de discriminar fitofisionomias do Cerrado. As formações florestais tendem a apresentam índices acumulados maiores que as formações savânicas e campestres.

Infelizmente, ambos os dados, MISR e MODIS, apresentam resolução espacial grosseira - aproximadamente 1 quilômetro para o MISR e 250 metros para o MODIS -, o que inviabiliza o mapeamento de cobertura vegetal em escalas detalhadas (1:100.000 ou superior). Nesse sentido, novas abordagens metodológicas baseadas em imagens com resolução espacial decimétrica (família do Landsat ou similar) ainda precisam ser desenvolvidas e testadas no sentido de se obter discriminação melhorada de fitofisionomias do Cerrado. Outra vantagem do uso das imagens do satélite Landsat é a

desse sensor possuir as bandas espectrais 5 (1,55 μ m a 1,75 μ m) e 7 (2,08 μ m a 2,35 μ m), correspondentes à faixa do infravermelho de ondas curtas.

1.2 OBJETIVOS

O objetivo geral desta dissertação é apresentar uma nova abordagem metodológica para discriminar Cerrado Rupestre do PNCV com base em imagens multitemporais do satélite Landsat ETM+. Para atingir este objetivo principal, os seguintes objetivos específicos foram definidos:

- a) Converter valores digitais multitemporais em dados de reflectância acumulada; e
- b) Identificar ocorrências de Cerrado Rupestre nessas imagens de reflectância acumulada, com suporte da técnica de segmentação de imagens.

1.3 HIPÓTESE

Imagens de refletância acumulada do Landsat permitem uma melhor discriminação do Cerrado Rupestre.

1.4 ESTRUTURA DA DISSERTAÇÃO

Os assuntos abordados nos demais capítulos estão descritos a seguir:

O Capítulo 2 está dividido em subseções que abordam revisão bibliográfica sobre as principais características vegetacionais do Cerrado Rupestre e conversão de valores digitais originais em imagens de reflectância na superfície.

No Capítulo 3, é apresentada a descrição da área de estudo.

No Capítulo 4, são descritos os principais materiais utilizados nesse estudo e a correspondente abordagem metodológica.

No Capítulo 5, são apresentados os resultados do mapeamento de Cerrado Rupestre no PNCV e a correspondente acurácia do mapeamento.

No Capítulo 6, são feitas as considerações finais e recomendações.

CAPÍTULO 2 REVISÃO BIBLIOGRÁFICA

2.1 CERRADO RUPESTRE

Vários estudos envolvendo o bioma Cerrado retratam a vegetação localizada em ambientes rupestres de forma generalizada, levando em consideração apenas o fato de estarem sobre afloramentos rochosos e em altitudes elevadas (Pinto *et al.*, 2009). Os mesmos autores ressaltaram que estudos em áreas de Cerrado, situadas em ambientes rupestres, ou seja, em altitudes elevadas e sobre afloramentos rochosos, ainda são incipientes. O Cerrado Rupestre pertence à classe das formações savânicas, cuja cobertura arbórea varia de 5% a 20%, com altura média de 2 metros a 4 metros (Ribeiro & Walter, 2008).

O Cerrado Rupestre pode ser definido como uma fitofiosionomia reconhecida pelos solos rasos com presença de afloramento de rocha e espécies especialmente adaptadas a este ambiente, onde os indivíduos concentram-se nas fendas entre as rochas, sendo a densidade variável, dependendo do volume de solo (Ribeiro & Walter, 2008) (Figuras 2.1 e 2.2). Esses autores destacaram ainda que trechos com Cerrado sentido restrito, sem afloramento de rocha, mas com grande quantidade de cascalho emergindo do solo, não devem ser considerados como Cerrado Rupestre.

Figura 2.1: Esquema ilustrativo de fitofisionomias do bioma Cerrado. O Cerrado Rupestre faz parte do grupo denominado Cerrado sentido amplo e ocorre predominantemente em relevo acidentado. Fonte: Ribeiro & Walter (2008).

Figura 2.2: Fotografia panorâmica de campo de Cerrado Rupestre no Parque Nacional da Chapada dos Veadeiros. Localização da foto: 14°01'41,15".S e 47°31'56,06".W. Data: 08 de maio de 2009. Foto: Edson Sano.

Ribeiro & Walter (2008) ainda destacaram que os solos onde ocorrem o Cerrado Rupestre são os Neossolos Litólicos que são originados da decomposição de arenitos e quartzitos, pobres em nutrientes e com baixos teores de matéria orgânica. Os Neossolos Litólicos são solos rasos, associados a muitos afloramentos de rocha (Reatto *et al.*, 2008). Segundo os mesmos autores, os Neossolos Litólicos, por serem muito rasos, e, conseqüentemente, serem expostos aos efeitos da enxurrada, tornam-se inaptos para a agricultura, principalmente com sistemas de produção mecanizados ou semimecanizados.

O Cerrado Rupestre apresenta elementos florísticos característicos que também estão presentes no Campo Rupestre (Ribeiro & Walter, 2008). Em trabalho realizado próximo a Três Picos no Parque Estadual dos Pireneus, Pirenópolis, Goiás, Moura (2006) encontrou espécies lenhosas de Cerrado Rupestre das famílias das *Myrtaceae*,

Leguminosae, Euphorbiaceae, Melastomataceae, Vochysiaceae, Apocynaceae e Rubiaceae.

Miranda *et al.* (2007) demonstraram, em estudo realizado na Serra Dourada, Goiás, que a diversidade de espécies do Cerrado Rupestre apresentaram uma densidade total de 1.137 indivíduos.ha⁻¹ e área basal de 7,085 m².ha⁻¹. Em um outro trabalho de análise da composição fitossociológica de um Cerrado Rupestre da Fazenda Sucupira, Brasília, DF, Amaral *et al.* (2006) encontraram uma diversidade similar à encontrada em Cerrado Sentido Restrito. Os autores observaram as espécies *Sclerobium Paniculatum, Qualea Parviflora* e *Miconia Ferruginata.* Os mesmo autores encontraram uma similaridade florística entre as dez parcelas do Cerrado rupestre da área foi predominantemente baixa que variou de 0,16 a 0,71.

2.2 CONVERSÃO DE VALORES DIGITAIS PARA REFLECTÂNCIA NA SUPERFÍCIE TERRESTRE

Os efeitos da atmosfera sobre as imagens de sensoriamento remoto envolvem a redução da possibilidade de detecção de pequenos objetos dentro de uma cena e a diferenciação entre objetos que apresentam pequenas variações na intensidade de sinal, assim como a redução do contraste entre os objetos de determinada cena (Novo, 2008). Desta forma, a correção atmosférica de imagens é de grande importância nas pesquisas de sensoriamento remoto (Zheng *et al.*, 2007).

A correção dos efeitos atmosféricos quando o usuário quer comparar imagens de diferentes datas em termos das propriedades dos objetos na cena (Novo, 2008). Desta forma, a conversão de números digitais para valores de parâmetros físicos como radiância e reflectância tem como principal objetivo permitir a caracterização espectral de objetos, bem como permitir a elaboração de cálculos que incluem dados de imagens de diferentes bandas espectrais (Ponzoni & Shimabukuro, 2007). Para que isso ocorra, é necessário o conhecimento de características do sensor e das condições atmosféricas e do terreno na hora da passagem do satélite. Ao se utilizar parâmetros que aparecem como padrão nos aplicativos, esses modelos podem gerar resultados sem acurácia (Zheng *et al.*, 2007). Desta forma, um cuidado com a entrada de dados é importante para o resultado final satisfatório.

A conversão de valores digitais para reflectância na superfície terrestre é feita em duas etapas. A primeira envolve a transformação de valores digitais para radiância no topo da atmosfera, enquanto a segunda transforma a radiância no topo da atmosfera para reflectância na superfície da Terra (correção atmosférica).

Ponzoni & Shimabukuro, 2007, destacam que em imagens que tiveram seus números digitais convertidos para radiância aparente, assume-se que os dados contidos nas imagens de diferentes as de um mesmo sensor ou de sensores diferentes podem então ser comparados entre si. Entretanto, esses mesmos autores destacam que a radiância não é o parâmetro adequado para avaliações das propriedades espectrais de alvos, pois depende da intensidade da radiação. Sendo assim, a fase de conversão dos dados para reflectância possui papel importante nos estudos que necessitam da caracterização espectral de alvos.

Para a conversão de imagens com valores digitais para valores de reflectância aparente, modelos de correção atmosférica são utilizados. De acordo com Latorre *et al.* (2002) os métodos de correção atmosférica podem ser divididos em métodos alternativos e métodos físicos. Os métodos alternativos são aqueles que utilizam informações intrínsecas das imagens, ou seja, utilizam números digitais existentes em pixels que são representativos de feições específicas (Latorre *et al.*, 2002). O método alternativo possui, como limitação, a exigência de um alvo específico. Um exemplo desse método é o método conhecido como *dark subtraction*, que se baseia no pressuposto de que em toda a cena deve haver um alvo de radiância zero, mas que em decorrência da radiância atmosférica, um valor constante foi adicionado a todos os pixels da cena (Novo, 2008). Já nos métodos físicos, é necessário o conhecimento das propriedades ópticas da atmosfera bem como do processo de interação da radiação com a atmosfera e com a superfície.

Ainda a cerca dos modelos de correção atmosférica, Novo (2008) destacou que esses estimam a radiação solar direta descendente e a iluminação difusa que atinge a superfície da Terra. Tais modelos foram modificados para estimar a radiância da trajetória atmosférica que atinge o sensor orbital e remover esse sinal, de modo a se

obter o valor de reflectância de superfície (Novo, 2008). Como exemplo de modelos de correção atmosférica pode-se citar o 6S e o MODTRAN.

O modelo 6S (*Second Simulation of the Satellite Signal in the Solar Spectrum*) corrige os efeitos de espalhamento e de absorção atmosférica e normaliza as variações sazonais na irradiância solar (Novo, 2008); já a formulação do MODTRAN (MODerate resolution atmospheric TRANsmission) teve como objetivo modelar a absorção atmosférica molecular como função da temperatura e pressão; calcular parâmetros de modelos de a para 12 moléculas e proporcionar a integração do LOWTRAN 7 (LOW Resolution Atmospheric Radiance and TRANsmittance Model) em novos algoritmos (Latorre *et al.*, 2002).

O 6S fornece conversões para a faixa espectral de 0,25 µm a 4,0 µm, após premissa de uma atmosfera sem cobertura de nuvens (Vermonte *et al.*, 1997). Esse modelo minimiza os principais efeitos atmosféricos inerentes ao processo de aquisição de dados ópticos e orbitais de sensoriamento remoto: absorção da radiação pelo vapor d'água, gás carbônico, oxigênio e ozônio e espalhamento pelos aerossóis. Com esses parâmetros, a irradiância ao nível da superfície, radiância dos satélites e três coeficientes de correção atmosférica podem ser obtidos (Zhao *et al.*, 2000). O 6S modela o sinal do sensor a partir das características de modelos estatísticos baseados nas as de absorções atmosféricas; modelagem de várias funções atmosféricas para um tratamento completo do processo de espalhamento; e um tratamento aproximado de interação entre os dois efeitos onde inicialmente o código estima o sinal no sensor sem a absorção dos gases. Nesse caso, se a banda espectral exibir alguma contaminação, o sinal é corrigido por um fator de transmissão de gases (Latorre *et al.*, 2002).

O modelo 6S têm sido utilizado em alguns estudos (Zhao *et al.*, 2000) por não ser específico para uma cena, área ou classe de objetos específicos. Isso o torna bastante interessante nas aplicações porque quando um modelo é utilizado em casos específicos a obtenção de todos os parâmetros de correção atmosférica se torna mais difícil. Além disso, um modelo de correção atmosférica que seja de fácil utilização independente do local e das condições atmosféricas fornecem acurácia e flexibilidade necessárias.

O MODTRAN vem sofrendo constantes atualizações de forma a otimizar seu desempenho. A atualização, que gerou o MODTRAN4, introduziu a Correlação-K (CK), que aumenta a acurácia do cálculo do espalhamento múltiplo, particularmente em regiões dos espectrais que contém forte linha de absorção espectral (Latorre *et al.*, 2002).

Os principais pacotes de correção atmosférica, e que utilizam modelos de correção atmosférica já citados anteriormente, são o ATREM (Atmospheric REMoval), o ACORN (Atmospheric CORrection Now) e o FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) (Kruse, 2004). Apenas o último está disponível no *software* ENVITM (The Environment for Visualizing Images), em pacotes separados.

De acordo com Kruse (2004), o FLAASH permite correções atmosféricas para sensores que operam na faixa espectral de 0,4 µm a 2,5 µm. Para isto, é necessário fornecer, como parâmetros de entrada, dados como elevação do terreno, coluna de vapor d'água, aerossóis e visibilidade. O FLAASH proporciona ainda uma flexibilidade adicional em comparação aos outros programas de correção atmosférica, como o ACORN e o ATREM, pois permite cálculos de transferência radiativa personalizados para uma ampla gama de condições, incluindo os ângulos zenitais e azimutais do *offnadir*, além de todos os modelos padrão de aerossol do MODTRAN (Scaled DISORT, DISORT, ISAACS). Kruse (2004) observou ainda que o FLAASH requer espaço em disco temporário na ordem de cinco vezes o tamanho do arquivo de dados a ser corrigido. Isto pode inibir a execução de grandes conjuntos de dados.

2.3 SEGMENTAÇÃO E CLASSIFICAÇÃO DE IMAGENS

A segmentação de imagens é um procedimento adotado antes da fase de classificação (Moreira, 2005). De acordo com esse mesmo autor, nesse procedimento, a imagem é dividida em regiões espectralmente homogêneas, em que algumas dessas áreas são utilizadas como treinamento do classificador. Na segmentação, a definição das as espectrais e dos limiares de similaridade e de tamanho da área são responsáveis pelo número de segmentos que serão gerados e que servirão de base para a classificação temática posterior.

No Brasil, uma das técnicas de segmentação de imagens mais utilizadas é de crescimento de regiões, disponível no aplicativo SPRING (Sistema de Processamento de Informações Georreferenciadas) disponível gratuitamente no sítio eletrônico do Instituto de Pesquisas Espaciais, INPE, na versão 4.0. O crescimento de regiões consiste em uma técnica de agrupamento de dados em que os pixels são agrupados segundo determinados critérios que incluem a média, variância, área, perímetro, excentricidade e linearidade média das bordas (Earthal *et al.*, 1991). Moreira & Assad (2000) destacaram que a principal vantagem de trabalhar com classificação por regiões é que essa técnica fornece informações de natureza espacial que não podem ser extraídas individualmente de pixels e que são normalmente consideradas durante o processo de análise visual de imagens.

Em áreas de topografia acidentada, a segmentação é facilitada pela textura da imagem devido aos elementos rugosos presentes na cena. De acordo com Backes & Bruno (2006), a textura da imagem está diretamente relacionada à distribuição e organização dos pixels de uma determinada região da imagem, atuando, dessa maneira, como uma excelente ferramenta para segmentar regiões ou ainda, como métrica a ser utilizada no reconhecimento de padrões.

Na prática, o usuário precisa definir apenas os limiares de similaridade e de área. O limiar de similaridade é o valor da distância Euclidiana mínima entre as médias das regiões consideradas, enquanto o limiar de área é o valor da área mínima, dado em número de pixels, para que uma região seja individualizada (Nascimento, 1998). Não existem valores ideais de similaridade e área, pois os resultados da segmentação dependem das características espectrais da área de estudo e das as espectrais utilizadas na segmentação.

Os processos de classificação podem ser divididos em classificação supervisionada e não supervisionada. Ambas possuem vantagens e desvantagens. A vantagem da interpretação visual é que os seus resultados tendem a ser mais precisos do que os obtidos de maneira automática (Moreira, 2005). Entretanto, o intérprete necessita ter conhecimento sobre a área e sobre os alvos a serem analisados. A classificação digital procura rotular cada pixel da imagem por meio de algoritmos estatísticos de reconhecimento de padrões espectrais (Schowengerdt, 2007). A classificação visual

pode ser definida como o ato de examinar uma imagem com o propósito de identificar objetos e estabelecer julgamentos sobre suas propriedades (Novo, 2008).

Novo (2008) destacou que os dois métodos de classificação são úteis e complementares, pois a interpretação de imagens pode ser facilitada com o préprocessamento com realce dos aspectos de interesse do intérprete.

A análise visual pode ser combinada também com a segmentação, como no trabalho realizado por Moreira & Assad (2000), que avaliaram o processo de segmentação por meio da comparação visual entre a imagem segmentada e pela sobreposição de uma imagem realçada. Os autores concluíram que a utilização das técnicas de segmentação de imagens e classificação supervisionada por regiões, implementadas no SPRING, mostraram-se eficientes na separabilidade das regiões.

CAPÍTULO 3 ÁREA DE ESTUDO

3.1 LOCALIZAÇÃO E ACESSO

O PNCV, com uma extensão de 65.514 ha, está localizado no segmento nordeste do estado de Goiás, entre as latitudes 13°51'S e 14°10'S e entre as longitudes 47°25'e 47°42'W. Abrange os municípios de Alto Paraíso de Goiás, Cavalcante e Terezina de Goiás (ao norte) e Colinas do Sul (a oeste) (Figura 3.1). A altitude varia de 620 m a 1.650 m (Felfili *et al.*, 2007). Seu limite está localizado a oeste da área urbana de Alto Paraíso de Goiás, sendo seu extremo leste distribuído ao longo da rodovia GO-118 (entre Alto Paraíso de Goiás e Teresina de Goiás); o limite sul encontra-se ao longo da estrada estadual que liga Alto Paraíso a Colinas do Sul, a rodovia GO-239; seus limites norte e oeste pertencem ao território do município de Cavalcante, e passam próximo aos povoados cujo acesso se dá ao longo da estrada vicinal de ligação entre Cavalcante e Colinas do Sul (ICMBio, 2009).

O acesso ao PNCV por via terrestre, partindo de Brasília, é feito pela BR-020, seguindo em direção à Planaltina até o cruzamento desta rodovia com a GO-118, no trevo do Pipiripau, próximo ao limite do Distrito Federal (ICMBio, 2009). Seguindo esta rodovia, percorre-se o distrito de São Gabriel e a cidade de São João D'Aliança até alcançar a cidade de Alto Paraíso de Goiás. Desse ponto, segue-se no sentido da cidade de Colinas do Sul pela rodovia G0-239 (Figura 3.2). A GO-239 encontra-se em processo de pavimentação, tendo sido asfaltados aproximadamente, 23 km e o restante, cerca de 12 km, é feito por estrada de terra (ICMBio, 2009).

Figura 3.1: Localização do PNCV no estado de Goiás.

Figura 3.2: Acesso partindo do Distrito Federal até o PNCV.

3.1.1 HISTÓRICO

Em 1961, foi criado o então Parque Nacional do Tocantins, pelo Decreto nº 49.875, de 11 de janeiro de 1961, com uma área de 625 mil hectares. A sua criação foi proposta pela Fundação Coimbra Bueno pela Nova Capital do Brasil. A criação do parque sem as devidas indenizações de terras acarretou na diminuição das atividades agropecuárias e mineiras, provocando diversos conflitos, em especial, nos municípios de Alto Paraíso de Goiás e Cavalcante.

Em 1972, o então Presidente da República, Emílio Garrastazu Médici, por meio do Decreto nº 70.492, de 11 de maio de 1972, diminuiu o parque de 625.000 hectares para 171.924 hectares (ICMBio, 2009).

Em 1981, a unidade teve novamente seus limites reduzidos por meio do Decreto presidencial nº 86.596 assinado pelo presidente João Batista Figueiredo em 17 de novembro de 1981, perfazendo aproximadamente 60.000 hectares (Pedreira, 2005). (ICMBio, 2009).

A partir de 1982, o Instituto Brasileiro de Desenvolvimento Florestal - IBDF declarando as terras como sendo de utilidade pública para efeito de desapropriação, por meio do Decreto nº 87.811, de 16 de novembro daquele ano. Entretanto, somente em 1986, a instituição conseguiu liberar os recursos necessários para a regularização fundiária do restante das propriedades. A superposição de títulos fez com que o IBDF optasse por proceder à desapropriação judicial das propriedades com titularização afirmada, mas a questão não se encontra resolvida até hoje. Ao Decreto anterior de delimitação, seguiu-se o Decreto nº 99.279 de 06 de junho de 1990, o qual precisou a área como sendo de 65.514,7259 hectares, para efeito de desapropriação. Com a implantação das atividades de uso público, a nova área do Parque passou a incluir a margem esquerda do rio Preto, do Cânion I ao poço do Salto II, até o topo do Garimpão (Figura 3.3).

Figura 3.3: Pontos demonstrando a localização do rio Preto e Cânion I do PNCV.

Em 27 de setembro de 2001, procedeu-se novamente a alteração dos limites do PNCV, desta vez visando obter o título de Sítio do Patrimônio Natural Mundial,

concebido pela Unesco. A mudança incluiu áreas dos municípios de Cavalcante, Terezina, chegando até Ourominas e atingindo cerca de 240 mil hectares (ICMBio, 2009). No entanto, o decreto que ampliou o parque foi revogado por decisão do Supremo Tribunal Federal (Pedreira, 2005), (Figura 3.4).

Figura 3.4: Legislação institutiva do PNCV e as mudanças de limites sofridas. Fonte: ICMBio (2009).

3.1.2 VEGETAÇÃO

No PNCV, estão reunidas as principais fitofisionomias do bioma Cerrado, subdivididas em formações campestres (Campo Rupestre, Campo Limpo Úmido ou Campo Limpo Seco e Campo Sujo), formações florestais (Mata Ciliar e Mata de Galeria), Cerrado sentido restrito (Denso, Rupestre e Ralo), além de Veredas e Palmeirais. Ocorrem também outras tipologias vegetacionais como florestas mesofíticas de afloramento calcário. Já o Cerradão ocorre em manchas escassas (ICMBio, 2009).

As fitofisionomias com maior representatividade são as formações savânicas estacionais campestres (Campo Rupestre, Campo Limpo e Campo Sujo) e porções de Cerrado sentido restrito (Denso, Rupestre e Ralo). Ocorre a presença de formações florestais ladeadas por campos úmidos substituídas por áreas permanentemente alagadas, com a presença de buritis (Palmeiral de Vereda). Esse padrão com imensa variedade de fisionomias pode ser interrompido por outras tipologias vegetacionais tais como as florestas mesofíticas de afloramento calcário com distribuição bastante restrita na área do parque.

A seguir, são apresentadas as diferentes formações fitofisionômicas existentes no PNCV, além do Cerrado Rupestre comentado no Capítulo 2.

Cerrado sentido restrito

Caracteriza-se pela presença de árvores baixas, inclinadas, tortuosas, com ramificações irregulares e retorcidas e geralmente com evidências de queimadas (Ribeiro & Walter, 2008). Ocorre na porção norte do Parque, na região do Ribeirão Montes Claros e do Córrego Gameleira na forma de duas manchas extensas de Cerrado Denso. Estas se encontram na divisa do limite da área da unidade. Na parte sudoeste, existem áreas pequenas de Cerrado Denso. O Cerrado Rupestre e o Cerrado Ralo ocorrem bem distribuídos em toda a área (ICMBio, 2009).

Cerradão

O Cerradão corresponde à uma formação florestal com aspectos xeromórficos. Caracteriza-se pela presença de espécies que ocorrem no Cerrado sentido restrito e também por espécies de mata. Pode ser classificado como Cerradão distrófico (solos pobres) e Cerrado mesotrófico (solos mais ricos) (Ribeiro & Walter, 2008). Ocorrem nas áreas circundantes ao parque, especialmente nos municípios de Alto Paraíso de Goiás, Colinas do Sul e Cavalcante (ICMBio, 2009).

Mata de Galeria

Vegetação florestal que acompanha os rios de pequeno porte e córregos dos planaltos do Brasil Central, formando corredores fechados sobre os cursos de água. Pode ser de dois subtipos: não-inundável e inundável (Ribeiro & Walter, 2008). Na Chapada dos Veadeiros, esse tipo de mata ocorre geralmente nas encostas e fundos de vales, predominantemente na região de São João d'Aliança. Ocorre também em Alto Paraíso de Goiás, nas proximidades do vale da lua, na direção de Colinas, na Fazenda Morro Vermelho - águas termais e no vale Sertão, na direção de Teresina de Goiás (ICMBio, 2009).

Matas Mesofíticas

Também conhecidas como Mata Seca, são as formações florestais no bioma que não possuem associação com cursos de água, caracterizada por diversos níveis de caducifolia durante a estação seca (Ribeiro & Walter, 2008). De acordo com os mesmos autores, a Mata Seca se divide em Mata Seca sempre-verde, Mata Seca semidecídua e Mata Seca decídua.

A Mata Seca pode ser encontrada em solos desenvolvidos em rochas básicas de alta fertilidade e pode se apresentar com aspecto singular na estrutura e em ambientes calcários (Ribeiro & Walter, 2008).

Campos

Na Chapada dos Veadeiros, as fisionomias campestres ocorrem em solos rasos, em áreas de relevo ondulados e no alto dos morros (ICMBio, 2009). Englobam três tipos fitofisionômicos principais: Campo Sujo, Campo Limpo e Campo Rupestre. O primeiro caracteriza-se pela presença marcante de arbustos e subarbustos juntos ao estrato herbáceo (Ribeiro & Walter, 1998) e são bastante comuns em toda área da Chapada dos Veadeiros (ICMBio, 2009).

O Campo Rupestre possui estrutura similar ao Campo Sujo, porém, diferenciamse tanto pelo substrato, composto por afloramentos de rocha, quanto pela composição florística. Essa semelhança ocorre pelo Campo Rupestre ser um tipo fitofisionômico predominantemente herbáceo-arbustivo (Ribeiro & Walter, 2008). Esta tipologia é bastante comum nas encostas e nos altos de morros na Chapada dos Veadeiros especialmente na região de Alto Paraíso, Cavalcante e, sobretudo, nas zonas limítrofes ao sudeste do parque. Em certos locais na região, essa fisionomia forma brejos estacionais que desaparecem na estação seca (ICMBio, 2009).

No Campo Limpo, a presença de arbustos é mínima (Ribeiro & Walter, 1998) e esta fitofisionomia ocorre nas áreas mais baixas da unidade, principalmente na parte sul do parque, entremeados por palmeirais de vereda. Essa tipologia predomina no parque e no município de Alto Paraíso de Goiás, assim como em grande parte da Chapada dos Veadeiros (ICMBio, 2009). O Campo Limpo apresenta variações de acordo com a umidade do solo e pela topografia, como, por exemplo, o Campo Limpo Seco, o Campo Limpo Úmido e o Campo Limpo de murundus (Ribeiro & Walter, 2008).

Veredas

As Veredas ocorrem associadas principalmente aos campos limpos na parte sul do Parque, em solos encharcados na maior parte do ano. Eles possuem palmeiras adaptadas às áreas alagadas. Também ocorrem associadas às Matas de Galeria (ICMBio, 2009).

3.1.3 CONTEXTO GEOLÓGICO-GEOMORFOLÓGICO

A região do PNCV está inserida na porção norte da faixa de dobramentos e cavalgamentos Brasília na Província Estrutural do Tocantins. Dentro dos limites do parque, predominam, amplamente, metassedimentos de baixo grau metamórfico do Grupo Araí e rochas de composição granítica. Ao sul da unidade, ocorrem as coberturas plataformais relacionadas ao Grupo Paranoá (Dardenne & Campos, 2002). Na região do PNCV, podem ser discriminados três compartimentos geomorfológicos denominados de região da planície do vale do Rio Claro, região das serras e região dos planaltos, onde a primeira corresponde a vasta área arrasada, com relevo plano a suave ondulado, desenvolvido sobre as rochas gnáissicas do embasamento (Dardenne & Campos, 2002). Os mesmos autores identificaram que o segundo compartimento está relacionado ao substrato onde quartzitos são os tipos petrográficos predominantes e onde são

observadas as maiores diferenças de cotas. Já o terceiro compartimento ocorre principalmente na porção central do parque, sendo caracterizadas por áreas elevadas com relevo pouco movimentado e com morros isolados que se realçam na paisagem regional, dentre os quais merecem destaque os morros da Baleia, da Palha Virada, Peito de Moça e do Ferro de Engomar (Dardenne & Campos, 2002) (Figura 3.5).

Figura 3.5: Caracterização geológica do PNCV.
CAPÍTULO 4 MATERIAIS E MÉTODOS

4.1 MATERIAIS

Foram obtidas da página eletrônica do Instituto Nacional de Pesquisas Espaciais (http://www.dgi.inpe.br/CDSR/), sete cenas do Landsat ETM+ de 2001 e 2002, correspondentes à orbita 221 e ponto 70 (Tabela 4.1). As cenas foram adquiridas nos meses de junho, julho, setembro e outubro. De acordo com a série histórica (1984-2003) de dados Landsat do Cerrado, o período de maio a outubro é o que apresenta maior probabilidade – superior a 40% - de se obter imagens Landsat desse bioma com menos de 10% de cobertura de nuvens (Sano et al., 2007). Estimativas visuais de cobertura de nuvens indicaram uma porcentagem de cobertura de nuvens sobre a área de estudo de até 20% em duas cenas. Nesse estudo, preferiu-se não utilizar imagens do satélite Landsat TM, disponíveis na área de estudo e sem cobertura de nuvens, por causa das dificuldades em convertê-los em reflectância de superfície. Testes detalhados que foram conduzidos em cenas de 2005 a 2008 não mostraram resultados satisfatórios pois as curvas espectrais dos alvos selecionados não estavam de acordo com as curvas espectrais de uma imagem tomadas como referência - campanha realizada em 2001 no Parque Nacional de Brasília com o uso do espectroradiômetro e conversão dos valores digitais para reflectância usando o ATREM. Isto ocorreu provavelmente por causa de valores de ganho e offset que não estão mais confiáveis, de acordo com Vicente-Serrano et al. (2008).

Órbita/Ponto	Data de Passagem	<i>Quicklook</i> da imagem	Estimativa visual de cobertura de nuvens sobre a área de estudo
	02 de junho de 2001	*	0%
221/70	20 de julho de 2001		0%
	06 de setembro de 2001		0%

Tabela 4.1: Características das imagens Landsat ETM+ do Parque Nacional da Chapada dos Veadeiros, utilizadas para a discriminação de Cerrado Rupestre.

Foi utilizado também um mosaico de imagens ortorretificadas do parque com equalização de histogramas e com 1 metro de resolução espacial, composto de 12 imagens Ikonos dos meses de junho e julho de 2003 e três imagens QuickBird de 11 de junho de 2003, bandas 1, 2 e 3. O mosaico foi georreferenciado para o sistema de projeção UTM (Universal Transversa de Mercator), datum = WGS84 e zona 23S. As imagens do QuickBird, com 60 centímetros de resolução, foram reamostradas para 1 metro. A ortorretificação foi feita a partir de um modelo digital de elevação que foi gerado com base em imagens do Terra/ASTER. Todos os processamentos efetuados para a geração desse mosaico foram conduzidos pela Geoambiente Sensoriamento RemotoTM (Geoambiente, 2005).

4.2 ABORDAGEM METODOLÓGICA

No fluxograma abaixo (Figura 4.1), estão indicadas as principais etapas deste trabalho.

Figura 4.1: Fluxograma das principais atividades desenvolvidas no trabalho.

4.2.1 CONVERSÃO PARA REFLECTÂNCIA

Cada imagem original do Landsat ETM+ foi inicialmente convertida em radiância no topo da atmosfera por meio do aplicativo ENVI 4.5. Os principais dados exigidos na etapa de conversão foram: data e horário da passagem do satélite; coordenadas centrais da cena; ângulo de elevação solar; altitude média do terreno; valores de ganho e *offset*; e condições da atmosfera no momento da passagem do satélite (visibilidade; concentração de gases e aerossóis). Nesse trabalho, esse procedimento foi feito banda a banda (total: seis bandas) para as sete cenas utilizadas no estudo. Os parâmetros de ganho e *offset* do satélite Landsat foram obtidos no seguinte endereço eletrônico: http://landsat.usgs.gov/science_L7_cpf.php.

Por causa de especificidades em termos de unidades dos parâmetros de entrada do FLAASH (algoritmo de correção atmosférica disponível no ENVI, ver detalhes na seção anterior), as unidades de radiância foram convertidas de W/(m².sr.µm) para μ W/(cm².sr.nm). Em termos práticos, basta dividir o valor de radiância resultante de cada a por 10. As imagens resultantes foram ainda transformadas do formato BSQ (*sequential*) para o formato BIL (*-interleaved-by-line*). Esses dois formatos representam maneiras diferentes de armazenar imagens digitais com múltiplas as. O primeiro armazena os valores digitais de todos os pixels de uma banda em seqüência, enquanto o segundo armazena todos os valores digitais do primeiro pixel de *n* as em seqüência.

Em seguida, as imagens de radiância no topo da atmosfera foram convertidas para reflectância na superfície terrestre por meio do algoritmo denominado FLAASH disponível no ENVI 4.5. Para cada cena, foram inseridas as informações referentes à altitude nominal do sensor, data e hora do vôo e coordenadas centrais de cada cena. A elevação média do terreno no parque foi assumida como sendo de 1,5 km. O modelo atmosférico usado foi o tropical e o modelo de aerosol foi o rural. De acordo com o manual do software, o modelo atmosférico tropical deve ser utilizado em lugares onde a temperatura da superfície atmosférica é de 27°C ou 80 °F. Com relação ao modelo de aerosol utilizado no trabalho, a escolha foi feita levando-se em consideração que a área não é afetada por emissões urbanas ou industriais. A calibração do comprimento de onda utilizado foi o do tamanho da onda, adotando-se como fator multiplicador da

coluna d'água foi utilizado o valor um e a visibilidade inicial adotada foi de 100 km por ser um local que permite uma boa visibilidade.

4.2.2 COLETA DE REGIÕES DE INTERESSE DOS ALVOS SELECIONADOS

Após a conversão para reflectância foram coletados 10 regiões de interesse nos alvos "formação florestal, formação savânica e formação campestre". Essa coleta foi feita por meio da ferramenta *Roi tool* presente no aplicativo Envi 4.5. Essa ferramenta permite ainda a geração das chamadas *Basic Stats* (Figura 4.2) dos pixels escolhidos, que incluem os valores máximos, mínimos, média e desvio padrão dos valores dos pixels (Anexo). Esses dados foram posteriormente usados para a verificação da qualidade do dado gerado. Nas imagens ainda foram usadas a função *Enhance,Iimage Equalization,* como forma de salientar as características dos alvos escolhidos. O mesmo procedimento foi feito para o grupo de 10 ROIs das 7 cenas convertidas para reflectância.

Figura 4.2: Procedimento adotado para a coleta das regiões de interesse dos alvos escolhidos e seus respectivos valores. Tal procedimento foi realizado no aplicativo Envi 4.5.

4.2.3 REFLECTÂNCIA ACUMULADA

As imagens convertidas em reflectância foram georreferenciadas com suporte do aplicativo Erdas Imagine 9.1, extensão IMAGINE AutoSync. O modelo geométrico

para correção que foi utilizado correspondeu ao tipo *affine projection model* (APM), também conhecido como equação de projeção paralela. O valor de erro quadrático médio (RMS) adotado foi de 0,5 pixels. O georreferenciamento foi feito com base na imagem ortorretificada (*geocover*) do Landsat ETM+ do PNCV de 05 de agosto de 2001, disponível no endereço eletrônico da Universidade de Maryland (http://glcfapp.umiacs umd.edu:8080/esdi/index.jsp). Uma noção da precisão do georreferenciamento é mostrada na composição colorida RGB/457 indicada pela Figura 4.3.

Figura 4.3: Exemplo de correção geométrica das imagens de reflectância no aplicativo Erdas 9.1. Visualização da imagem na escala de 1:75.000, sobreposta com o vetor de hidrografia . Fonte: Plano de Manejo do Parque Nacional da Chapada dos Veadeiros (2009).

Posteriormente, dados de reflectância de sete cenas foram somados uma a uma e banda a banda por meio da opção *math*, disponível no aplicativo ENVI, conforme mostrada na equação abaixo:

$$\rho_a = \sum_{i=1}^n \rho_i \tag{4.1}$$

onde ρ_a = reflectância acumulada de uma determinada banda; *i* = *i*-ésima cena de observação; *n* = número de cenas utilizadas para a obtenção da reflectância acumulada; e ρi = reflectância de uma determinada cena e determinada banda.

Convém ressaltar que essa soma só é possível após junção das cenas em um único arquivo por meio da ferramenta layerstacking, já que o aplicativo Envi 4.5 não permite a soma de as de diferentes em imagens georreferenciadas.

4.2.2 SEGMENTAÇÃO DE IMAGENS

As imagens com reflectância acumulada das seis bandas do Landsat foram segmentadas pela técnica de crescimento de regiões. Após vários testes com diferentes valores, foram utilizados os seguintes limiares de similaridade e tamanho de área: 50 e 30, respectivamente. Os segmentos gerados foram exportados no formato shape. Foram gerados 4.046 polígonos, variando de 1,4 a 2.735 hectares.

4.2.3 INTERPRETAÇÃO VISUAL

Um trabalho de campo foi conduzido no PNCV no período de 07 a 08 de maio de 2009. O objetivo principal dessa etapa de campo foi identificar um maior número possível de ocorrências de Cerrado Rupestre no parque para subsidiar a interpretação de imagens. Nesse trabalho de campo, os pontos visitados foram identificados por meio de coordenadas geográficas obtidas por um receptor GPS de navegação. A identificação da fitofisionomia foi realizada por meio de inspeção visual do local. Um total de 26 pontos amostrais foram visitados nessa campanha (Tabela 4.2) e as respectivas fotos constam no Anexo do documento. As fitofisionomias identificadas foram: Campo Limpo (seis pontos); Campo Limpo Úmido (três pontos); Campo Sujo (cinco pontos); Cerrado Ralo (dois pontos); Cerrado Rupestre (sete pontos); Cerrado Típico (dois pontos); e Vereda (1 ponto). Esse número relativamente pequeno de pontos amostrados foi conseqüência da escassez de vias de acesso no interior do parque.

Terminada essa etapa de campo, as coordenadas GPS foram sobrepostas nos limites do parque (Figura 4.4). Na Figura 4.5, é mostrado o padrão de cores representativo de Cerrado Rupestre na composição colorida 457 (RGB) e a localização com as respectivas coordenadas. Percebe-se que tal fitofisionomia apresenta uma coloração azulada ou azul-escuro, esta última provavelmente devido ao sombreamento de relevo (o Cerrado Rupestre ocorre tipicamente em relevos acidentados). Vale salientar que o sombreamento nas imagens, devido à topografia acidentada, pode aumentar os erros de comissão e omissão na identificação do Cerrado Rupestre. Em termos de textura, o predomínio é de uma textura intermediária a rugosa visualizando a imagem na escala de 1:100.000.

Com base nessa chave de interpretação, os segmentos correspondentes a Cerrado Rupestre foram identificados visualmente na tela de computador. Para isso, os segmentos no formato vetorial foram sobrepostos na composição colorida RGB/453. A escala de mapeamento na tela foi de 1:40.000.

Ponto	Latitude	Longitude	Fitofisionomia
1	14° 10' 22,91094''S	47° 49' 33,71971''W	Cerrado Típico
2	14° 09' 56,78978"S	47° 50' 36,03953''W	Cerrado
			Rupestre
3	14° 09' 54,37307''S	47° 50' 31,93273"W	Cerrado
			Rupestre
4	14° 09' 44,19962''S	47° 50' 20,81632''W	Campo Sujo
5	14° 09' 37,73406''S	47° 50' 06,09129''W	Cerrado Típico
6	14° 09' 39,96005''S	47° 49' 31,97319''W	Cerrado
			Rupestre
7	14° 10' 15,34308''	47° 49' 39,27551''W	Cerrado
			Rupestre
8	14° 09' 51,19747''S	47° 47' 25,22946''W	Campo Limpo Úmido
9	14° 09' 30,13029''S	47° 47' 26,88485''W	Campo Sujo
10	14° 09' 30,13029''S	47° 47' 15,12511''W	Campo Sujo

Tabela 4.2: Identificação em campo de pontos amostrados em trabalho de campo no Parque Nacional da Chapada dos Veadeiros, conduzido no período de 07 a 08 de maio de 2009.

11	14° 09' 08,61019''S	47° 46' 53,99638''W	Campo Limpo
12	14° 08' 55,62354''S	47° 46' 31,86735''W	Campo Sujo
13	14° 08' 30,64148''S	47° 45' 57,89469''W	Campo Limpo
14	14° 08' 06,10872''S	47° 46' 00,20488''W	Vereda
15	14° 07' 55,20504''S	47° 43' 44,75540''W	Campo Limpo
16	14° 07' 27,28938''S	47° 44' 06,22752''W	Cerrado Ralo
17	14° 07' 00,57377''S	47° 44' 48,77648''W	Cerrado Ralo
18	14° 07' 52,65285''S	47° 40' 33,22596''W	Campo Sujo
19	14° 07' 39,58412''S	47° 40' 17,45840''W	Campo Sujo
20	14° 07' 04,11479''S	47° 38' 28,81113''W	Campo Limpo Úmido
21	14° 03' 18,79405''S	47° 30' 27,28055''W	Cerrado
			Rupestre
22	14° 01' 36,03631"S	47° 31' 54,92763''W	Campo Limpo
23	14° 01' 41,15336"S	47° 31' 56,06431''W	Cerrado
			Rupestre
24	13° 57' 14,78365''S	47° 29' 40,78020''W	Campo Limpo
25	13° 57' 30,67855''S	47° 29' 52,56287''W	Campo Limpo
26	13° 57' 33,45977''S	47° 29' 50,16970''W	Campo Limpo

Figura 4.4: Localização de pontos de amostragem de campo no Parque Nacional da Chapada dos Veadeiros (PNCV), cuja campanha foi realizada no período de 07 a 08 de maio de 2009. A localização e os tipos fitofisionômicos encontrados estão descritos no Anexo.

Figura 4.5: Representações típicas de padrões texturais e de cores do Cerrado Rupestre no parque Nacional da Chapada dos Veadeiros e na composição colorida RGB/457 de imagens do Landsat ETM+ convertidas em reflectância acumulada.

ocator	-0×
€ Line 24	85 单
TM, Zone 23 SAD-69/Bra	South zil
6 44 47 3	1.06 DMS DDEG
· 47°1'	7'03"

cator	
➡ Line 1867	
"M, Zone 23 Souti SAD-69/Brazil	n
56 46.94 38 27.11	DMS DDEG
. 170 2020	ידי

4.3 VALIDAÇÃO DA INTERPRETAÇÃO

Conforme mencionado anteriormente, a validação da interpretação de imagens Landsat foi realizada por meio do mosaico de imagens Ikonos e QuickBird. Foi gerada uma grade regular de pontos com espaçamento de 30" (~ 925 metros), num total de 781 pontos (Figura 4.6). Validação refere-se a um processo de avaliação, por meio de um método independente, da qualidade de um produto gerado (Justice *et al.*, 2000). Nesse contexto, mapas ou interpretações produzidos por sensores ETM+ ou similares, com resolução espacial decimétrica, podem ser validados, por exemplo, por meio de campanhas de campo, fotografias aéreas ou imagens com resolução espacial mais fina (Morisette *et al.*, 2003).

Figura 4.6: Localização dos pontos de validação da interpretação de imagens ETM+ do Parque Nacional da Chapada dos Veadeiros.

Por meio de inspeção visual do mosaico de imagens do Ikonos e QuickBird (Figura 4.7), cada ponto foi identificado como "Cerrado Rupestre" ou "Não-Rupestre", a partir de uma inspeção visual.

Figura 4.7: Imagem Ikonos/Quickbird utilizada como verdade terrestre para classificação dos pontos identificados ou não identificados como Cerrado Rupestre.

CAPÍTULO 5 RESULTADOS E DISCUSSÃO

5.1 DESEMPENHO DA CONVERSÃO DE VALORES DIGITAIS PARA REFLECTÂNCIA

Para avaliar o desempenho da conversão de valores digitais originais das imagens Landsat ETM+ para reflectância de superfície, foram extraídas 10 regiões de interesse (ROI) sobre a Mata de Galeria, um alvo com assinatura espectral bem definida e relativamente estável no tempo, isto é, com baixa sensibilidade às variações relativas à sazonalidade climática. Os ROIs correspondentes à Mata de Galeria estiveram distribuídos por toda a área do PNCV pela cena 221/70 (Figura 5.1). No anexo constam os valores máximos e mínimos, além da média e desvio padrão dos valores de reflectância dos respectivos ROIs. O tamanho dos ROIs variou entre 36 pixels a 56 pixels. A título de comparação gráfica, foram utilizados ainda dados bastante confiáveis de reflectância de superfície do referido alvo que extraídos de uma cena do Distrito Federal (órbita = 221; ponto = 71) do Landsat ETM+ de 20 de agosto de 2001, cujos valores digitais foram convertidos para reflectância de superfície pelo modelo de transferência radiativa 6S, com suporte de dados espectroradiométricos de campo, obtidos com o espectrorradiômetro FieldSpec, concomitantemente com a passagem do satélite.

Na Figura 5.1, é mostrada uma comparação de dados de reflectância sobre Mata de Galeria do PNCV, obtidas para sete datas diferentes, com os de reflectância padrão, obtidos no Distrito Federal, para as seis bandas do espectro refletivo do ETM+. Com base na Figura 5.1, pode-se concluir que a conversão das sete cenas para reflectância foi relativamente satisfatória. Apesar dos valores de reflectância estarem, na maioria dos casos, superestimados, de uma forma geral, as sete curvas acompanharam o padrão espectral mostrado pela curva de referência.

Dados de curvas espectrais de vegetação verde disponíveis na literatura (Meneses & Madeira Netto, 2001) indicam valores de reflectância inferiores a 0,05 e 0,30 nas faixas espectrais do visível e do infravermelho próximo. Nas duas faixas espectrais do

infravermelho médio, isto é, de 1,5 μ m a 1,8 μ m e de 2,1 μ m a 2,4 μ m, as referidas reflectâncias raramente ultrapassam 0,15 μ m e 0,05 μ m, respectivamente. As conversões efetuadas estão de acordo com esses dados de literatura, exceto para a banda 7. Neste caso, as reflectâncias geradas se situaram entre 0,07 μ m e 0,15 μ m.

Figura 5.1: Comparação dos dados de reflectância referentes à formação florestal das sete cenas que cobrem o Parque Nacional da Chapada dos Veadeiros com dados de referência do mesmo alvo.

5.2 REFLECTÂNCIA ACUMULADA

Com a reflectância acumulada das sete cenas foi produzido um mapa da reflectância acumulada (Figura 5.2) no qual, posteriormente, foi feita a segmentação (Figura 5.3).

Figura 5.2: Composição colorida RGB/457 do Parque Nacional da Chapada dos Veadeiros correspondente à reflectância acumulada de sete cenas.

Concomitante, as curvas espectrais acumuladas das reflectâncias das sete cenas para três tipos de coberturas vegetacionais do parque (Figuras 5.4 e 5.5) foram geradas e indicam uma grande melhoria no potencial para discriminar Cerrado Rupestre. Percebese uma clara dificuldade em discriminar as três classes espectrais em qualquer uma das cenas individuais analisadas no período de junho a outubro (estação seca). No entanto, quando as respostas espectrais são acumuladas, o poder de discriminação dos alvos tende a aumentar. Quanto maior o número de cenas, maior é a capacidade de discriminação. Essa capacidade maior de separabilidade foi mais clara para as bandas 5 e 7. As confusões espectrais entre formações savânicas e formações campestres na banda 3 e na banda 4 podem ser minimizadas nas outras bandas, notadamente, nas bandas 5 e 7. Essa melhora é importante na discriminação do Cerrado Rupestre já que o solo possui uma alta reflectância nas bandas 5 e 7.

Esses resultados estão de acordo com os obtidos por Ratana *et al.* (2005) que analisaram índices de vegetação (NDVI, índice de vegetação normalizada pela diferença e EVI, índice de vegetação realçado) derivados do sensor MODIS e acumulados para o período de janeiro a dezembro. De acordo com esses autores, as formações campestres e savânicas do Cerrado tendem a apresentar um perfil sigmoidal devido à elevada sensibilidade dessas formações à sazonalidade climática. As formações florestais tendem a apresentar curvas mais retilíneas e com índices de vegetação mais altos.

5.3 EXATIDÃO GLOBAL

Do total de 781 pontos, 79 pontos foram desconsiderados por apresentar grau de incerteza baixo na referida identificação. Esses foram os casos em que os pontos se situaram sobre cobertura de nuvens ou sombra de nuvens, próximos às bordas das duas classes ou quando as manchas de "Cerrado Rupestre" ou "Não-Rupestre" eram muito pequenas, do ponto de vista da resolução espacial do Landsat ETM+. Esse número de pontos é aproximadamente 3,4 vezes superior ao número mínimo de pontos (*N*), o qual pode ser determinado conforme a relação indicada por Jensen (1996):

$$N = \frac{4(p)(q)}{E^2}$$
(4.2)

onde p = percentual de exatidão esperado; q = 1 - p; e E = erro permissível. Para um percentual de exatidão de 85% e um erro admissível de 5%, o número mínimo de pontos é igual a 204.

Esses pontos discriminados foram sobrepostos ao mapa de ocorrência de Cerrado Rupestre do PNCV para se calcular a matriz de confusão do mapeamento final. A matriz de confusão estima o erro global do mapeamento para cada categoria (Brites *et al.*, 1996; Campbell, 2007).

O índice de exatidão global do mapeamento das áreas de Cerrado Rupestre no PNCV foi de 83,19% (Tabela 5.1). De um total de 702 pontos identificados no mosaico do Ikonos e QuickBird, 594 pontos foram mapeados corretamente. Não houve tendência do mapeamento em apresentar maior erro de omissão ou de comissão: Os erros de omissão e de comissão foram de 11% e 27%, respectivamente. São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como "Não-Rupestre". São considerados erros de comissão, aqueles pontos que não correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como tal.São considerados erros de omissão, aqueles pontos que realmente correspondem a Cerrado Rupestre e que foram mapeados como "Não-Rupestre".

5.4 SEGMENTAÇÃO

Por meio da técnica de crescimento de regiões foram gerados segmentos conforme mapa abaixo:

Figura 5.3: Segmentos do Parque Nacional da Chapada dos Veadeiros gerados pela técnica de segmentação de imagens por crescimento de regiões a partir de seis bandas do espectro refletivo do Landsat ETM+.

5.5 MAPEAMENTO DE CERRADO RUPESTRE

Foram mapeados 24.451 hectares de Cerrado Rupestre no PNCV, o que corresponde a 37% da área do parque (Figura 5.6 e Anexo). Tais áreas encontram-se distribuídas ao longo de toda a área de estudo, notadamente ao longo de um eixo longitudinal NE-SW que passa aproximadamente pelo centro do parque.

De acordo com Lima (2008), em termos espectrais, Cerrado Rupestre confunde principalmente com a Mata Seca e o Cerrado sentido restrito. Um outro fator que contribui para a diminuição da exatidão global é a transição gradual e complexa do Cerrado Rupestre para as fisionomias adjacentes (Oliveira-Filho & Fluminhan-Filho, 1999). De acordo com Ribeiro & Walter (2008), o Cerrado Rupestre ocorre em ilhas mescladas às outras fitofisionomias de formação savânica. Numa toposequência, é comum encontrarem Cerrado Rupestre nas porções mais elevadas e Mata Seca ou Cerrado sentido restrito nas porções mais intermediárias e baixas, dificultando a discriminação de Cerrado Rupestre nas imagens Landsat (Lima, 2008).

Figura 5.4: Reflectâncias individual e acumulada das bandas 1, 2 e 3 do Landsat ETM+ para sete cenas e três classes de cobertura de terras do Parque Nacional da Chapada dos Veadeiros. Datas de passagem: A = 02/06/2001; B = 20/07/2001; C = 06/09/2001; D = 22/09/2001; E = 05/06/2002; F = 23/07/2002; e G = 11/10/2002. I = A; II = A+B; III = A+B+C; IV = A+B+C+D; V = A+B+C+D+E; VI = A+B+C+D+E; e VII = A+B+C+D+E+F+G.

Figura 5.5: Reflectâncias individual e acumulada das bandas 4, 5 e 7 do Landsat ETM+ para sete cenas e três classes de cobertura de terras do Parque Nacional da Chapada dos Veadeiros e adjacências. Datas de passagem: A = 02/06/2001; B = 20/07/2001; C = 06/09/2001; D = 22/09/2001; E = 05/06/2002; F = 23/07/2002; e G = 11/10/2002. I = A; II = A+B; III = A+B+C; IV = A+B+C+D; V = A+B+C+D+E; VI = A+B+C+D+E+F; e VII = A+B+C+D+E+FG.

Figura 5.6: Mapa de ocorrência de Cerrado Rupestre no Parque Nacional da Chapada dos Veadeiros, elaborado a partir de interpretação visual de imagens do Landsat ETM+ convertida em reflectância acumulada.

Tabela 5.1: Análise da exatidão global e erros de omissão e comissão do mapa de ocorrência de Cerrado Rupestre no Parque Nacional da Chapada dos Veadeiros. A verdade terrestre foi obtida a partir da análise visual de mosaico de imagens do Ikonos e QuickBird.

	Verdade Terrestre			
		Cerrado Rupestre	Cerrado Não- Rupestre	SUBTOTAL
ao de ndsat	Cerrado Rupestre	277	33	310
Interpretaç	Cerrado Não-Rupestre	85	307	392
	SUBTOTAL	362	340	702

Ę

CAPÍTULO 6 CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

A análise visual de imagens multitemporais do Landsat ETM+ convertidas para reflectância acumulada e processadas pela técnica de segmentação de imagens por crescimento de regiões permitiu uma boa discriminação de ocorrências de Cerrado Rupestre do Parque Nacional da Chapada dos Veadeiros em relação à imagens monotemporais e em valores digitais. Essa abordagem metodológica pode ser estendida para outras fitofisionomias ou outras coberturas de terras ou mesmo para outras regiões geográficas. A estratégia metodológica proposta nesse estudo pode ser ainda considerada promissora por causa da relativamente recente disponibilização sem custos de todas as imagens da série Landsat do território brasileiro disponíveis no arquivo do INPE.

A técnica de correção atmosférica pelo FLAASH mostrou ser eficiente na conversão de valores de radiância do topo da atmosfera das imagens do Landsat ETM+ para reflectância na superfície terrestre, produzindo séries temporais relativamente homogêneas do Landsat, em termos de interferência atmosférica. No entanto, a referida conversão não funcionou a contento para imagens do Landsat TM a partir do ano de 2005 até o ano de 2008.

Os dois principais fatores negativos que podem ter prejudicado um melhor desempenho do mapeamento final foi a impossibilidade de inclusão de imagens do sensor TM e a indisponibilidade de imagens ETM+ sem cobertura de nuvens da estação chuvosa na área de estudo.

Em termos de futuras pesquisas, recomenda-se a inclusão da técnica de correção topográfica em adição à correção atmosférica (ortorretificação). Embora raramente empregados nos protocolos de processamento multitemporal de imagens Landsat, os requerimentos para a referida correção são relativamente simples, exigindo-se apenas o uso de modelos digitais de elevação na mesma resolução espacial das imagens Landsat (Vicente-Serrano *et al.*, 2008). Esses autores encontraram diferenças bastante perceptíveis na evolução temporal de dados de reflectância de superfície de terrenos

49

com faces orientadas para norte e para sul, decorrentes das diferenças nas condições de iluminação solar. Uma outra técnica recomendada é o da normalização radiométrica relativa, em que uma determinada cena (freqüentemente, a mais recente ou aquela com menor interferência atmosférica, livres de cobertura de nuvens) é definida como referência. As outras cenas são então normalizadas em relação a essa cena de referência. Estudos anteriores como os desenvolvidos por Janzen *et al.* (2006) e Schroeder *et al.* (2006) indicaram que a correção atmosférica *per si so* é incapaz de remover ruídos extra-superficie de series temporais.

Considerando ainda que o Cerrado Rupestre ocorre em áreas de relevo movimentado, formado por solos classificados em Neossolos Litólicos é interessante utilizar em trabalhos futuros informações topográficas que corroborem na delimitação de áreas de Cerrado Rupestre.

REFERÊNCIAS

AMARAL, A.G.; PEREIRA, F.F.O.; MUNHOZ, C.B.R. Fitossociologia de uma área de Cerrado Rupestre na Fazenda Sucupira, Brasília-DF, **Cerne**, v. 12, p. 350-359, 2006.

BACKES, A.R.; BRUNO, O.M. Segmentação de texturas por análise de complexidade. **INFOCOMP Journal of Computer Science,** v. 5, p. 87-95, 2006.

BRITES, R.S.; SOARES, V.P.; RIBEIRO, C.A.A.S. Verificação da exatidão em classificações de uma imagem orbital mediante a utilização de três índices. **Árvore**, v. 20, p. 415-424, 1996.

CAMPBELL, J.B. Introduction to Remote Sensing. Nova Iorque: The Guilford Press, 4^a ed., 2007, 625 p.

DARDENNE, M.A.; CAMPOS, J.E.G. Parque Nacional da Chapada dos Veadeiros, GO - Sítio de grande beleza cênica do centro-oeste brasileiro. In: SCHOBBENHAUS, C.; CAMPOS, D.A.; QUEIROZ, E.T.; WINGE, M.; BERBERT-BORN, M.L.C. (eds.), **Sítios Geológicos e Paleontológicos do Brasil**. 1^a. ed. Brasília: DNPM/CPRM -Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP), v.1, p. 323-333, 2002. Disponível em: http://www.unb.br/ig/sigep/sitio096/sitio096.pdf>. Acesso em: 15 mai. 2009.

ERTHAL, J.G.; FONSECA, L.M.; BINS, L. S.; VELASCO, F.R.; MONTEIRO, A.M. Um sistema de segmentação e Classificação de imagens de satélite. São José dos campos, 1991 (INPE-5291-PRE/1696).

FELFILI, J.M.; REZENDE, A.V.; SILVA JUNIOR, M.C. **Biogeografia do Bioma Cerrado: Vegetação e solos da Chapada dos Veadeiros**. Brasília, Editora Universidade de Brasília, 2007, 256 p. GEOAMBIENTE. **Projeto JICA** (Corredor ecológico do Cerrado Paranã-Pirineus). Metodologia empregada no processamento das imagens QuickBird, Ikonos e Aster. São José dos Campos, 2005, 16 p. (relatório técnico não publicado).

ICMBio. INSTITUTO CHICO MENDES DA BIODIVERSIDADE. Resumo Executivo do Plano de Manejo do Parque Nacional da Chapada dos Veadeiros. ICMBio, 2009, 77 p. Disponível em: http://www.icmbio.gov.br/ parna_veadeiros/index.php?id_menu =75.> Acesso em: 26 out. 2009.

JANZEN, D.T.; FREDEEN, A.L.; WHEATE, R.D. Radiometric correction techniques and accuracy assessment for Landsat TM data in remote forested regions. **Canadian Journal of Remote Sensing**, vol. 32, p. 330-340.

JENSEN, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River: Prentice Hall, 2^a ed., 318 p., 1996.

JUSTICE, C.; BELWARD, A.; MORISETTE, J.; LEWIS, P.; PRIVETTE, J.; BARET, F. Developments in the 'validation' of satellite sensor products for the study of land surface. **International Journal of Remote Sensing**, vol. 21, p. 3383–3390, 2000.

KRUSE, A.F. Comparison of ATREM, ACORN and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, Colorado. In: JPL Airbone Geoscience Workshop, 13, Pasadena, 2004.

LATORRE, M.; CARVALHO JUNIOR, O.A.; CARVALHO, A.P.F.; SHIMABUKURO, Y.E. Correção atmosférica: conceitos e fundamentos. **Revista** Espaço & Geografia, vol. 5, p.153-178, 2002.

LIESENBERG, V.; SOARES, L.G.; PONZONI, F.J. Variations in reflectance with seasonality and viewing geometry: implications for classification of Brazilian savanna physiognomies with MISR/Terra data. **Remote Sensing of Environment**, vol. 107, p. 276-286, 2007.

52

LIMA, C.A. O **Cerrado Rupestre no Estado de Goiás com base em imagens LANDSAT ETM**+. Brasília, Universidade de Brasília, Departamento de Engenharia Florestal, 2008, 116 p. (Dissertação de mestrado em Engenharia Florestal).

LIMA, C.A.; SANO, E.E.; PINTO, J.R.R.; BEZERRA, H.S. Uso de imagens Landsat para a discriminação de Cerrado Rupestre na Área de Proteção Ambiental Pouso Alto e no Parque Nacional da Chapada dos Veadeiros. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 14, Natal – RN. Anais... São José dos Campos: Inpe, p. 2785-2792, 2009.

MENESES, P.R.; MADEIRA NETTO, J.S. Sensoriamento Remoto: reflectância dos alvos naturais. Brasília: Editora UnB, 1^a ed., 2001, 260 p.

MIRANDA, S.C.; SILVA JÚNIOR, M.C.; SALLES, L.A. A comunidade lenhosa de cerrado Rupestre na Serra Dourada, Goiás. **Heringeriana**, v. 1, p. 43-53, 2007.

MOREIRA, M.A. Fundamentos de Sensoriamento Remoto. Metodologias de Aplicação. Viçosa: Ed. UFV, 3ª ed., 2005, 320 p.

MOREIRA, L.; ASSAD, E.D. Segmentação e classificação supervisionada para identificar pastagens degradadas. In: WORKSHOP BRASILEIRO DE GEOINFORMÁTICA, 2, 2000, São Paulo. Anais... São Paulo: SBC, 2000. 15 p. Disponível em: http://www.tecgraf.puc-rio.br/geoinfo2000/anais/008.pdf>. Acesso em: 20 jan. 2010.

MORISETTE, J.T.; NICKESON, J.E.; DAVIS, P.; WANG, Y.; TIAN, Y.; WOODCOCK, C.E.; SHABANOV, N.; HANSEN, M.; COHEN, W.B.; OETTER, D.R.; KENNEDY, R.E. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase. **Remote Sensing of Environment**, vol. 88, p. 100-110, 2003.

MOURA, I.O. Fitossociologia de Cerrado sensu stricto sobre afloramentos rochosos no Parque Estadual dos Pireneus, Pirenópolis, Goiás. Goiânia: Universidade Federal de Goiás, 2006 (Dissertação de mestrado). NASCIMENTO, P.S.R.; BATISTA, G.T.; ALMEIDA FILHO, R. Efeito de préprocessamento (ajuste) no desempenho da segmentação e classificação de imagens Landsat-TM. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 9, Santos, 11-18 set. 1998. **Anais...** São José dos Campos, INPE, p. 981-989.

NOVO, E.M.L.M. Sensoriamento Remoto. Princípios e Aplicações. São Paulo, Editora Blucher, 2008, 363 p.

OLIVEIRA-FILHO, A.T.; FLUMINHAN-FILHO, M. Ecologia da vegetação do Parque Florestal Queda do Rio Bonito. **Cerne,** vol. 5, p. 51-64, 1999.

PEDREIRA, R.B. Legalidade do decreto de ampliação do Parque Nacional da Chapada dos Veadeiros. **Jus Navigandi**, Teresina, ano 9, n. 654, 22 abr. 2005. Disponível em: http://jus2.uol.com.br/doutrina/texto.asp?id=6612. Acesso em: 25 out. 2009.

PINTO, J.R.R.; LENZA, E.; PINTO, A.S. Composição florística e estrutura da vegetação arbustivo-arbórea em um Cerrado Rupestre, Cocalzinho de Goiás, Goiás. **Revista Brasileira de Botânica**, v. 32, n. 1, p. 1-10, 2009.

PONZONI, F.J.; SHIMABUKURO, Y.E. Sensoriamento Remoto no Estudo da Vegetação. São José dos Campos, Editora Parênteses, 2007, 127 p.

RATANA, P.; HUETE, A.; FERREIRA, L.G. Analysis of Cerrado physiognomies and conversion in the MODIS seasonal-temporal domain. **Earth Interactions**, v. 9, p. 1-22, 2005.

REATTO, A.; CORREIA, J.R.; SPERA, S.T.; MARTINS, E.S. Solos do bioma Cerrado: aspectos pedológicos. In: SANO, S.M.; ALMEIDA, S.P.; RIBEIRO, J.F. (eds.), **Cerrado. Ecologia e Flora**. Planaltina, Embrapa Cerrados, v. 1, Cap. 5, p. 107-134, 2008.

RIBEIRO, J.F.; WALTER, B.M.T. 2008. As principais fitofisionomias do Cerrado. In: SANO, S.M.; ALMEIDA, S.P.; RIBEIRO, J.F. (eds.), **Cerrado. Ecologia e Flora**. Planaltina, Embrapa Cerrados, v. 1, Cap. 6, p. 151-199, 2008.

SANO, E.E.; FERREIRA, L.G.; HUETE, A.R. Synthetic aperture radar (L-) and optical vegetation indices for discriminating the Brazilian savanna physiognomies: a comparative analysis. **Earth Interactions**, vol. 9, Paper n. 15, p. 1-15, 2005.

SANO, E.E.; FERREIRA, L.G.; ASNER, G.P.; STEINKE, E.T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. **International Journal of Remote Sensing**, vol. 28, n. 12, p. 2739-2752, 2007.

SCHOWENGERDT, R.A. Remote Sensing. Models and Methods for Image Processing. San Diego: Academic Press, 3^a ed., 2007, 515 p.

SCHROEDER, T.A.; COHEN, W.B.; SONG, C.; CANTY, M.J.; YANG, Z. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. **Remote Sensing of Environment**, vol. 103, p. 16–26, 2006.

SIMON, M.F.; PROENÇA, C. Phytogeographic patterns of Mimosa (*Mimosoideae, Leguminosae*) in the Cerrado biome of Brazil: an indicator genus of high-altitude center of endemism? **Biological Conservation**, v. 96, p. 279-296, 2000.

VERMOTE, E.F.; TANRÉ, D.; DEUZÉ, J.L.; HERMAN, M.; MORCRETE, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. **IEEE Transactions on Geoscience and Remote Sensing**. v. 35, n. 3, p. 675–686, 1997.

VICENTE-SERRANO, S.M.; PEREZ-CABELLO, F.; LASANTA, T. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. **Remote Sensing of Environment**, v.112, p.3916-3934, 2008.

ZHAO, W.; TAMURA, M.; TAKAHASHI, H. Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. **Remote Sensing of Environment**, v. 76, p. 202-212, 2000.

ZHENG, W.; LIU, C.; ZENG, Z.; LONG, E. A feasible atmospheric correction method to TM image. Journal of China University of Mining & Technology, v. 17, p. 112-115, 2007.

BIBLIOGRAFIA COMPLEMENTAR

ADLER-GOLDEN, S.M.; MATTHEW, M.W.; BERNSTEIN, L.S.; LEVINE, R.Y.; BERK A.; RICHTSMEIER, S.C.; ACHARYA, P.K.; ANDERSON, G.P.; FELDE, G.; GARDNER, J.; HOKE, M.; JEONG, L.S.; PUKALL, B.; MELLO, J.; RATKOWSKI, A.; BURKE, H-H. Atmospheric Correction for Short-wave Spectral Imagery based on MODTRAN4. **SPIE Proceeding, Imaging Spectrometry,** v. 3753, p. 61-69, 1999. Disponível em: <http://www.spectral.com/pdf/sr117.pdf>. Acesso em: 20 set. 2009.

CERQUEIRA, J.D.; CANDEIAS, A.L.B.; SILVA, D.C. Orientação de imagens Ikonos utilizando a transformação matemática APM - Affine Projection Model. In: CONGRESSO BRASILEIRO DE CARTOGRAFIA, 21, Belo Horizonte, 2003. Anais... Disponível em: http://www.cartografia.org.br/xxi_cbc/201-SR22.pdf>. Acesso em: 20 nov. 2009.

IBAMA. INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS . **Relatório de ocorrências de incêndios em Unidades de Conservação Federais 2005-2008**. Brasília: Ibama/PREVFOGO, 2009, 31 p.

MIURA, T.; HUETE, A.R. Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data. **Sensors**, v. 9, p. 794-813, 2009.

MIURA, T.; YOSHIOKA, H.; FUJIWARA, K.; YAMAMOTO, H. Inter-comparison of ASTER and MODIS surface reflectance and vegetation index products for synergistic applications to natural resource monitoring. **Sensors**, v. 8, p. 2480-2499, 2008.

PINTO, J.R.R.; LENZA, E.; PINTO, A.S. **Phytosociological survey of the woody plant community in a Cerrado Rupestre, Cocalzinho de Goiás, Brazil**. In: ANNUAL MEETING OF THE ASSOCIATION FOR TROPICAL BIOLOGY AND CONSERVANTION, 2005, Uberlândia. Frontier in Tropical Biology and Conservation, 2005. PINTO, J.R.R.; OLIVEIRA-FILHO, A.T. Perfil florístico e estrutura da comunidade arbórea de uma floresta de vale no Parque Nacional da Chapada dos Guimarães, Mato Grosso, Brasil. **Revista Brasileira de Botânica,** v. 22, n. 1, p. 523-539, 1999.
ANEXOS

I. ACERVO FOTOGRÁFICO

Ponto 1: Cerrado Típico Latitude: 14° 10' 22,91094"S Longitude: 47° 49' 33,71971"W Data: 07 de maio de 2009

Ponto 2: Cerrado Rupestre Latitude: 14° 09' 56,78978''S Longitude: 47° 50' 36,03953''W

Data: 07 de maio de 2009

Ponto 3: Cerrado Rupestre Latitude: 14° 09' 54,37307"S Longitude: 47° 50' 31,93273"W Data: 07 de maio de 2009

Ponto 4: Campo Sujo Latitude: 14° 09' 44,19962''S Longitude: 47° 50' 20,81632''W Data: 07 de maio de 2009

Ponto 5: Cerrado Típico Latitude: 14° 09' 37,73406''S Longitude: 47° 50' 06,09129''W Data: 07 de maio de 2009

Ponto 8: Campo Limpo Úmido Latitude: 14° 09' 51,19747"S Longitude: 47° 47' 25,22946" W Data: 07 de maio de 2009

Ponto 6: Cerrado Rupestre Latitude: 14° 09' 39,96005"S Longitude: 47° 49' 31,97319"W Data: 07 de maio de 2009

Ponto 9: Campo Sujo Latitude: 14° 09' 30,13029"S Longitude: 47° 47' 26,88485"W Data: 07 de maio de 2009

Ponto 7: Cerrado Rupestre Latitude: 14° 10' 15,34308''S Longitude: 47° 49' 39,27551''W Data: 07 de maio de 2009

Ponto 10: Campo Sujo Latitude: 14° 09' 30,13029''S Longitude: 47° 47' 15,12511''W Data: 07 de maio de 2009

Ponto 11: Campo Limpo Latitude: 14° 09' 08,61019"S Longitude: 47° 46' 53,99638" W Data: 07 de maio de 2009

Ponto 12: Campo Sujo Latitude: 14° 08' 55,62354''S Longitude: 47° 46' 31,86735''W Data: 07 de maio de 2009

Ponto 13: Campo Limpo Latitude: 14° 08' 30,64148"S Longitude: 47° 45' 57,89469"W Data: 07 de maio de 2009

Ponto 14: Vereda Latitude: 14° 08' 06,10872''S Longitude: 47° 46' 00,20488''W Data: 07 de maio de 2009

Ponto 15: Campo Limpo Latitude: 14° 07' 55,20504''S Longitude: 47° 43' 44,75540''W Data: 07 de maio de 2009

Ponto 16: Cerrado Ralo Latitude: 14° 07' 27,28938''S Longitude: 47° 44' 06,22752''W Data: 07 de maio de 2009

Ponto 19: Campo Sujo Latitude: 14° 07' 39,58412"S Longitude: 47° 40' 17,45840"W Data: 08 de maio de 2009

Ponto 17: Cerrado Ralo Latitude: 14° 07' 00,57377''S Longitude: 47° 44' 48,77648''W

Ponto 20: Campo Limpo Úmido Latitude: 14° 07' 04,11479"S Longitude: 47° 38' 28,81113"W Data: 08 de maio de 2009

Ponto 18: Campo Sujo Latitude: 14° 07' 52,65285''S Longitude: 47° 40' 33,22596''W Data: 08 de maio de 2009

Ponto 21: Cerrado Rupestre Latitude: 14° 03' 18,79405"S Longitude: 47° 30' 27,28055"W Data: 08 de maio de 2009

Ponto 22: Campo Limpo Latitude: 14° 01' 36,03631"S Longitude: 47° 31' 54,92763"W Data: 08 de maio de 2009

Ponto 25: Cerrado Rupestre Latitude: 13° 57' 30,67855"S Longitude: 47° 29' 52,56287"W Data: 08 de maio de 2009

Ponto 23: Cerrado Rupestre Latitude: 14° 01' 41,15336"S Longitude: 47° 31' 56,06431"W Data: 08 de maio de 2009

Ponto 26: Campo Limpo Latitude: 13° 57' 33,45977"S Longitude: 47° 29' 50,16970"W Data: 08 de maio de 2009

Ponto 24: Campo Limpo Latitude: 13° 57' 14,78365"S Longitude: 47° 29' 40,78020"W Data: 08 de maio de 2009

II - VALORES MÉDIOS DE REFLECTÂNCIA E CORRESPONDENTES DESVIOS-PADRÕES, VALORES MÍNIMOS E MÁXIMOS DAS REGIÕES DE INTERESSE DE TRÊS ALVOS (FORMAÇÕES FLORESTAIS, FORMAÇÕES SAVÂNICAS, E FORMAÇÕES CAMPESTRES), SEIS BANDAS DO LANDSAT ETM+ E SETE DATAS DE PASSAGEM

02/06/01		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	263	431	376,12	46,065461		1	481	1121	735,222222	148,16229		1	423	562	513,88	38,258245
		2	439	582	492,6	32,444825		2	646	1277	881,916667	161,99742		2	689	804	730,32	26,164098
POL 1		3	323	396	361,52	19,811865		3	662	1344	952,416667	170,3783		3	818	940	870,56	32,728784
KÜLI		4	2452	2978	2727,32	123,37197		4	1744	2376	2036,05556	182,39438		4	2027	2238	2136,64	51,262299
		5	1260	1559	1436,64	69,672376		5	2269	2927	2580	144,24305		5	2540	2719	2647,44	50,806069
		7	1019	1256	1151,68	58,155481		7	2579	3671	3123,80556	235,33597		7	2344	2677	2503,84	80,954555
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	362	473	408,866667	30,180758		1	374	932	511,346939	93,868825		1	422	534	485,84	32,852803
		2	483	597	543,166667	34,629152		2	449	1052	620,979592	102,36627		2	603	718	660,28	28,668391
ROI 2		3	335	505	413,5	42,108849		3	471	1226	654,122449	133,63221		3	697	818	750,32	32,971857
	formação	4	2728	3219	2948,13333	143,02441	formação	4	1570	2167	1713,87755	106,67838	formação	4	1747	1923	1839,8	37,900088
	florestal	5	1645	2004	1804,86667	86,547469	savânica	5	1732	2659	2203,57143	182,74869	campestre	5	2331	2540	2427,76	65,672343
		7	1207	1587	1431,53333	77,805121		7	1963	3292	2533,26531	238,05775		7	2249	2534	2349,92	86,071153
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	319	458	408,96	35,149064		1	409	604	458,75	44,360455		1	445	557	488,68	28,093178
		2	521	607	576,32	30,85952		2	454	684	561,361111	44,240352		2	571	686	630	26,976842
ROI 3		3	368	514	461,4	38,300348		3	475	719	580,055556	60,128883		3	646	768	699,76	32,230007
		4	2491	3297	2882,04	229,42219		4	1468	1854	1651,44444	102,53458		4	1536	1711	1620	47,556983
		5	1230	1708	1578,04	128,84179		5	1374	2181	1859,30556	158,42309		5	2271	2481	2393,4	56,071383
		7	1066	1493	1316,56	98,395494		7	1489	2438	2077,97222	199,83572		7	2344	2676	2478,64	84,099088
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
ROI 4		1	251	390	319,333333	29,768455		1	354	521	419,861111	47,508287		1	394	534	478	35,232561
		2	399	514	446	29,634556		2	426	627	512,416667	48,066249		2	574	689	631,52	31,017629

	3	286	408	337,433333	33,51241	3		403	671	497,777778	69,581242	3	623	793	718,32	37,674837
	4	2667	3228	2938,8	166,08585	4	1	1290	1819	1591,41667	118,93609	4	1608	1783	1682,2	55,634222
	5	1376	1675	1503,46667	75,940872	5	1	1345	2152	1769	200,51106	5	2390	2659	2583,76	74,655475
	7	1064	1396	1223,26667	84,915347	7	1	1631	2628	2030,44444	279,01116	7	2439	2819	2604,04	98,102192
	Bandas	Min	Max	Mean	Stdev	Ban	das	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	292	404	343,333333	25,487252	1		333	445	401,32	33,40499	1	424	507	463,1	24,5226
	2	383	556	466,916667	35,230973	2		342	543	427,24	45,733175	2	604	690	644,55	21,753342
ROI 5	3	274	421	341,111111	31,699281	3		360	579	452,44	56,595112	3	697	843	761,75	30,850872
	4	2252	2954	2572,58333	170,37058	4		995	1522	1186,32	126,50287	4	1749	1924	1848,75	42,903656
	5	1141	1560	1342,16667	97,016788	5	1	1226	2273	1835,12	241,86658	5	2391	2571	2461,5	44,894613
	7	876	1256	1108,41667	79,298847	7	1	1586	2915	2314,8	306,95657	7	2249	2629	2410,8	79,171101
	Bandas	Min	Max	Mean	Stdev	Ban	das	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	319	431	380,6	30,672463	1		339	590	479,238095	52,711738	1	422	561	499,3	31,567279
	2	439	582	513,5	35,006157	2		461	720	621,857143	49,557344	2	631	746	681,066667	30,084861
ROI 6	3	299	421	372,6	32,473437	3		529	773	642,857143	54,582036	3	744	842	797,266667	30,002222
	4	2489	3086	2749,53333	139,44984	4	1	1679	1960	1801,11905	62,683955	4	1748	1959	1831,1	66,934013
	5	1230	1559	1365,8	71,779548	5	1	1585	2153	1933,35714	140,71192	5	2450	2749	2646,23333	64,095125
	7	924	1304	1109,06667	80,192412	7	1	1727	2677	2265,09524	222,10488	7	2487	2724	2617,8	64,377872
	Bandas	Min	Max	Mean	Stdev	Ban	das	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	232	427	330,583333	37,457309	1		394	534	451,166667	39,1623	1	449	616	506,52	36,669833
	2	406	521	457,416667	25,65527	2		517	660	586,555556	40,749019	2	631	775	694,4	35,11054
ROI 7	3	291	388	326,777778	23,721131	3		505	700	604,194444	52,665966	3	722	892	804,28	45,920693
	4	2286	2848	2611,83333	143,9749	4	1	1321	1812	1603,77778	126,98461	4	1606	2029	1821,88	124,32562
	5	1168	1437	1308,77778	70,82377	5	1	1736	2215	1919,19444	116,32241	5	2511	2690	2600,44	56,349416
	7	970	1302	1111	86,009302	7	2	2013	2677	2267,30556	180,46287	7	2439	2677	2579,92	64,992897
	Bandas	Min	Max	Mean	Stdev	Ban	das	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	307	446	391,033333	31,396775	1		781	1425	1072,53333	132,19962	1	394	534	480,6	29,526843
ROI 8	2	513	657	575,7	36,335743	2		956	1532	1222,3	129,38772	2	630	745	686,633333	32,488176
	3	312	458	416,7	30,831187	3	1	1072	1561	1341,43333	130,18414	3	768	889	824,166667	25,94169
	4	3054	3755	3360,1	191,21271	4	1	1878	2299	2096,66667	119,09959	4	1921	2097	2008,83333	56,132284

		5	1645	2034	1813,63333	113,84729		5	2359	3017	2823,36667	156,63454		5	2629	2749	2682	34,953171
		7	1254	1634	1397,83333	91,212931		7	3053	4288	3797,33333	259,04218		7	2487	2771	2611,4	67,624011
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	251	475	355,84	61,865903		1	455	1123	628,861111	154,49127		1	422	589	500,32	39,40994
		2	426	828	550,08	134,32607		2	590	1279	747,944444	161,38206		2	602	746	688,64	33,127129
ROI 9		3	330	793	457,6	140,04255		3	615	1418	819,527778	186,17311		3	696	891	793,16	48,255984
		4	2298	2964	2631,76	181,8017		4	1640	2272	1839,30556	147,97834		4	1817	2028	1925,72	61,538281
		5	1256	2094	1530,28	258,3153		5	2000	3286	2443,91667	257,05468		5	2510	2809	2693,84	77,689382
		7	1063	1918	1334,48	252,62804		7	2200	4288	2911,61111	435,20303		7	2392	2771	2630,64	90,302215
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	225	364	284,7	31,739402		1	517	852	708,8	81,469319		1	424	536	467,68	28,093178
		2	367	540	424,833333	44,092445		2	708	967	857,84	68,232861		2	604	719	657,16	29,49531
ROI 10		3	254	425	319,2	39,617481		3	788	1080	956,12	78,660303		3	697	843	784,92	39,708228
		4	2155	2962	2562,9	187,37375		4	1743	2022	1884,08	77,785988		4	1854	1994	1957,6	39,752358
		5	1047	1316	1201,06667	73,374774		5	2510	2869	2710,88	99,657463		5	2301	2571	2490,6	64,645185
		7	921	1111	1045,83333	55,068661		7	3102	3814	3396,8	187,96853		7	2249	2534	2416,44	71,377564
20/07/01		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	164	281	213,1875	39,579824		1	619	1235	1009,13333	162,33124		1	306	395	353,2	25,98097
		2	452	601	513,8125	40,056991		2	841	1495	1243,9	156,13883		2	571	662	626,8	33,91569
ROI 1		3	335	435	367,8125	32,556041		3	1052	1601	1418,9	145,87793		3	845	947	891,75	35,45475
KOLI		4	2954	3578	3323,3125	161,14413		4	1882	2364	2217,66667	133,53918		4	1756	1976	1886,3	59,11194
	formação	5	1366	1640	1487,8125	76,352008	formação	5	2821	3309	3101,73333	119,7287	formação	5	2642	2917	2808,05	73,62957
	florestal	7	1556	1690	1612,375	45,294407	savânica	7	2123	2827	2573,13333	186,54291	campestre	7	1723	1823	1776,35	29,56754
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	134	340	215,633333	47,955787		1	492	1020	730,5	128,75337		1	305	423	353,2	31,76214
ROI 2		2	364	602	484,766667	52,998818		2	716	1191	959,433333	117,87009		2	571	690	631,44	26,51584
		3	311	635	407,1	85,975277		3	996	1469	1208,36667	120,28601		3	844	945	911,2	33,62415
		4	2810	3546	3104,9	176,84073		4	1774	2179	1965,7	119,25318		4	1866	2014	1939,48	36,6687

	5	1427	2037	1616,86667	151,49934	5	2363	3186	2713,46667	196,74081	5	2702	2855	2797,44	42,5236
	7	1522	1757	1614,93333	54,754583	7	1989	2592	2261,2	147,0708	7	1723	1857	1777,72	36,08846
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	132	221	191,233333	28,042681	1	615	1934	1090,4	362,72832	1	275	393	347	28,31666
	2	392	540	476,933333	42,616925	2	867	2174	1371,23333	389,59224	2	570	690	641,84	27,27893
ROI 3	3	331	431	377,6666667	31,303116	3	1098	2345	1589,2	377,11522	3	794	969	893	50,24938
	4	2960	3585	3332,73333	143,07604	4	2027	3314	2512,53333	369,85829	4	1645	1977	1888,52	97,58164
	5	1488	1732	1602,73333	65,935148	5	2578	4164	3254,96667	413,11813	5	2641	2946	2795,68	83,55972
	7	1522	1623	1589,23333	31,830026	7	2123	3630	2664,63333	414,17508	7	1689	1823	1770,88	32,23264
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	43	278	188,3	45,736238	1	442	793	584,333333	97,453555	1	245	392	320,12	34,93723
	2	359	509	446,833333	38,895158	2	635	1079	847,633333	99,116262	2	539	629	579,04	29,33354
ROI 4	3	278	430	359	41,389654	3	827	1300	1021,96667	115,33235	3	743	868	813	38,86408
	4	2883	3583	3208,5	199,11472	4	1854	2333	2070,06667	121,77366	4	1608	1938	1755,88	73,02472
	5	1425	1730	1615,56667	62,317697	5	2302	3034	2709,83333	155,25021	5	2702	2793	2744,44	30,44268
	7	1422	1689	1588,9	51,914618	7	1922	2324	2085,3	111,53665	7	1656	1823	1741,56	39,96048
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	124	272	190,08	39,256549	1	472	1029	666,533333	109,91932	1	245	391	322,45	41,7593
	2	386	564	445,52	45,391005	2	726	1201	904,4	116,9962	2	539	658	589,95	27,57091
ROI 5	3	301	475	369,96	40,253861	3	903	1502	1130,03333	128,33402	3	743	842	792,05	24,22586
	4	2704	3108	2895,92	94,797117	4	1824	2339	1997,83333	109,30693	4	1645	1792	1722,3	42,70104
	5	1485	1912	1667,68	120,02594	5	2546	3095	2795,83333	168,62713	5	2640	2854	2757,75	61,31187
	7	1522	1689	1596,8	44,56269	7	1956	2592	2177,96667	125,44197	7	1656	1823	1744,5	47,79507
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	135	254	196,033333	32,229226	1	442	764	624,48	95,733623	1	245	363	302,68	32,19306
	2	368	515	438,533333	34,549049	2	606	993	848,84	113,1005	2	510	629	563,6	30,86665
ROI 6	3	265	389	337,633333	29,953393	3	853	1202	1068,04	111,2278	3	744	869	796,4	37,39764
	4	2700	3435	2997,53333	192,1486	4	1786	2117	1990,56	108,29169	4	1607	1827	1761,04	48,56394
	5	1306	1733	1477,76667	108,18078	5	2698	3125	2906,8	131,70738	5	2550	2824	2720,72	74,14149
	7	1522	1656	1590,36667	36,887979	7	1922	2291	2131,24	109,52788	7	1656	1790	1721,4	36,80919

	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	153	270	199,64	33,826617	1	445	973	645,88	133,93292	1	276	394	355,88	30,07258
	2	415	534	485,6	33,100856	2	754	1200	894,8	117,80492	2	571	661	634,28	26,2988
ROI 7	3	327	502	428	42,987401	3	927	1426	1101,08	137,61084	3	820	945	895,44	31,36622
	4	2700	3251	3013,2	149,27938	4	1924	2403	2095,44	104,42864	4	1792	1902	1868,44	37,95291
	5	1547	1913	1751,68	114,27552	5	2486	3156	2790,72	175,2566	5	2733	2886	2796,6	42,26405
	7	1555	1689	1608,84	38,733792	7	1922	2525	2151,4	153,38296	7	1689	1823	1780,4	34,21744
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	119	241	186,92	39,521007	1	540	1156	737,12	145,29864	1	245	421	351,3	47,16965
	2	412	560	477,72	35,147925	2	789	1502	1011,44	172,17943	2	540	718	603	32,99007
ROI 8	3	323	448	385,16	26,891263	3	1005	1753	1247,52	172,34174	3	718	943	827,166667	59,26392
	4	2919	3656	3221,4	165,31788	4	2148	2774	2348,44	157,23737	4	1682	1939	1815,13333	71,94957
	5	1577	1790	1703,56	64,436067	5	2700	3462	2956,4	183,08013	5	2640	2976	2779,56667	98,08817
	7	1522	1656	1598,2	44,885967	7	2023	2727	2248,4	165,97138	7	1656	1857	1777,46667	53,83547
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	153	300	221,458333	41,231034	1	479	1065	880,72	140,64776	1	304	392	347,48	33,00899
	2	444	593	517	38,176934	2	697	1347	1125,4	163,74727	2	540	659	618,36	31,97249
ROI 9	3	351	526	418,708333	42,655831	3	881	1551	1312,8	153,71321	3	743	868	810	32,85067
	4	3027	3652	3370,20833	159,50957	4	1847	2401	2173,32	136,49503	4	1646	1903	1763,32	64,67143
	5	1577	2035	1794,58333	102,29111	5	2670	3220	2953,52	179,30331	5	2610	2854	2711,08	57,49125
	7	1555	1723	1633,41667	47,063248	7	1956	2626	2418,16	161,68093	7	1723	1823	1772,4	37,49889
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	139	256	211,88	23,981451	1	371	694	545,266667	78,878315	1	275	393	325,628571	32,25367
	2	430	549	467,76	35,853033	2	617	944	740,833333	83,422102	2	541	659	607,657143	28,14557
ROI 10	3	292	466	366,96	36,686146	3	764	1088	912,033333	86,978588	3	745	919	836,571429	44,8719
	4	2598	3149	2885,96	168,65386	4	1738	2109	1896,16667	88,34731	4	1718	1902	1785,88571	48,19493
	5	1368	1735	1501,2	92,80176	5	2397	3129	2768,86667	180,5854	5	2306	2641	2520,08571	65,90072
	7	1522	1656	1605,28	27,689529	7	1823	2191	2021,06667	89,999208	7	1689	1823	1746,65714	36,85978

06/09/01		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	362	451	402,24	28,665136		1	606	783	668,555556	42,583997		1	494	583	534,56	26,091314
		2	523	593	547,24	23,409898		2	716	877	791,388889	39,498483		2	682	774	723,4	18,779421
POI 1		3	386	620	463,04	62,91428		3	876	1071	958,583333	47,384371		3	922	1000	965,2	20,297783
KOI I		4	1370	1824	1606,96	149,50236		4	991	1104	1062,36111	32,166667		4	1050	1135	1105,08	20,87247
		5	1401	1813	1597,8	102,14124		5	2606	2993	2776,02778	97,761367		5	2777	3019	2917,16	67,067553
		7	745	1073	840	99,889522		7	1901	2481	2148,38889	143,41952		7	1802	1978	1867,56	42,468694
			Min	Max	Mean	Stdev			Min	Max	Mean	Stdev			Min	Max	Mean	Stdev
		1	377	535	446,5	43,637022		1	621	1064	751,47619	76,560271		1	516	626	581,52	27,319285
		2	541	770	652,4	65,978366		2	758	1168	892,761905	81,522946		2	727	842	777,08	25,30797
ROI 2		3	439	693	572	82,641311		3	929	1319	1073,09524	90,151041		3	961	1099	1033,04	36,349553
		4	1623	2077	1887,13333	121,95356		4	1045	1301	1169,80952	63,206683		4	1078	1248	1147,2	36,585516
		5	1545	2223	1828,23333	205,17624		5	2653	3186	2920,92857	110,73048		5	2922	3092	3025,76	39,225077
		7	770	1199	954,733333	126,11679		7	2153	2733	2353,95238	142,07469		7	1852	2004	1932,92	47,248386
	formação	Bandas	Min	Max	Mean	Stdev	formação	Bandas	Min	Max	Mean	Stdev	formação	Bandas	Min	Max	Mean	Stdev
	florestal	1	340	473	404	30,123357	savânica	1	618	1238	788,027778	146,38901	campestre	1	537	626	587,24	24,908633
		2	565	657	600,2	28,900692		2	729	1484	942,444444	166,61769		2	750	819	794,16	21,940602
ROI 3		3	401	498	441,16	30,61002		3	890	1727	1134,13889	195,11376		3	980	1097	1047,8	29,502825
		4	1877	2302	2096,76	104,44108		4	1012	1636	1179,72222	135,89042		4	1050	1220	1166,36	35,857217
		5	1496	1738	1613,72	59,748445		5	2679	3211	2955,47222	151,55056		5	2825	3140	3007,88	88,1487
		7	644	846	762,24	50,807053		7	2052	2733	2403,69444	181,48763		7	1827	2079	1943,96	67,805162
			Min	Max	Mean	Stdev			Min	Max	Mean	Stdev			Min	Max	Mean	Stdev
		1	334	456	407,5	35,413879		1	607	851	713	52,034604		1	536	625	590,08	21,515343
		2	493	684	577,6666667	41,237985		2	762	990	867	58,306579		2	726	817	765,32	23,181746
ROI 4		3	359	576	452,055556	52,952779		3	914	1167	1055,66667	70,266432		3	978	1056	1011,72	22,168897
		4	1736	2339	1967,66667	167,76668		4	1100	1299	1190,86111	53,266528		4	1021	1134	1065,16	32,855339
		5	1520	1960	1716,44444	137,59951		5	2654	3211	2929,63889	149,44223		5	2873	3042	2956,2	45,912961
		7	719	1101	860,805556	89,679372		7	1826	2532	2168,66667	172,63587		7	1928	2054	1993,28	34,214422
ROI 5		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
KOI J		1	412	545	466,233333	33,373212		1	542	875	673,44	81,014443		1	577	666	618,08	27,130733

	2	572	755	657,066667	34,148694	2	716	1036	821,52	80,719225	2	791	882	835,76	23,972693
	3	449	742	551,266667	59,780595	3	892	1301	1033,08	103,97432	3	1072	1209	1119,04	35,662165
	4	1681	1964	1814,8	74,660334	4	990	1274	1154,44	71,753676	4	1163	1305	1224,28	30,318476
	5	1426	2008	1700,06667	164,91376	5	2750	3283	3003,16	142,85152	5	2947	3092	3030,12	42,044936
	7	695	1149	880,266667	116,25327	7	2078	2733	2338,04	162,31746	7	1902	2028	1962,64	41,22386
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	351	463	413,527778	25,917987	1	574	773	669,166667	43,080987	1	536	625	575,633333	24,169635
	2	512	672	599,166667	37,351229	2	747	908	807,055556	39,370725	2	726	817	777,266667	28,03438
ROI 6	3	411	607	481,916667	40,029543	3	882	1096	980,777778	49,1494	3	978	1115	1045,86667	36,802111
	4	1685	1968	1838,25	75,771225	4	913	1083	1004,55556	48,593618	4	1105	1247	1179	39,751816
	5	1349	1833	1552,30556	90,132227	5	2487	2899	2708,69444	92,926029	5	2946	3188	3055,43333	54,623276
	7	693	920	778,083333	66,60518	7	2229	2683	2492,88889	108,69585	7	1877	2079	1987,4	48,860533
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	343	432	390,583333	26,812977	1	465	576	537,066667	31,609616	1	556	668	614,933333	22,300353
	2	499	638	580,055556	31,72646	2	609	746	685,166667	37,144715	2	770	884	824,933333	21,378257
ROI 7	3	385	503	443,055556	37,635048	3	723	880	794,866667	40,370468	3	1018	1136	1064,76667	30,544127
	4	1679	2049	1865,22222	78,274284	4	908	1193	1040,2	70,573708	4	1128	1216	1173,96667	23,327479
	5	1424	1667	1543,77778	70,894735	5	2124	2560	2348,13333	113,81495	5	2971	3286	3179,4	71,444505
	7	670	846	754,972222	43,532901	7	1626	2104	1864,9	103,89927	7	1978	2256	2136,43333	63,551056
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	351	440	393	22,305095	1	579	811	675,904762	61,763044	1	510	622	568,16	34,650253
	2	536	628	587,366667	24,670915	2	683	917	795,238095	59,89088	2	721	814	772,64	25,969341
ROI 8	3	415	512	473,933333	27,238327	3	750	1024	884,619048	66,484897	3	974	1110	1042,6	35,408332
	4	1710	2163	1963,13333	113,3465	4	747	972	867,833333	55,039638	4	1132	1220	1174,68	25,004533
	5	1544	1835	1727,26667	79,634914	5	1958	2321	2109,64286	93,930909	5	2850	3068	2973,84	44,920003
	7	769	971	872,6	57,576097	7	1827	2235	2052,2381	113,41652	7	1852	1978	1908,28	31,172263
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
ROI 9	1	389	500	440,277778	30,620825	1	607	851	720,361111	57,802201	1	516	627	575,8	25,395357
	2	588	680	623,388889	26,30185	2	693	990	862,611111	73,419452	2	728	819	776,466667	21,500174
	3	382	676	481,611111	61,827538	3	855	1167	1044,77778	86,664579	3	962	1098	1030,56667	34,125209

		4	15	73 21	10 1884,13889	121,62945		4	1015	1270	1147 5	67 15/19/		4	1078	1101	1129.2	25.05/197/
		5	13	75 20	1653,97222	141,49457		5	2582	3236	3015 02778	149 25558		5	2898	3141	3019 23333	56 596992
		7	59	95 11	50 820,472222	116,42349		7	1978	2557	2287.75	135.67301		7	1852	2155	1980.1	65.911827
		Banda	as M	lin M	ax Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	28	80 41	4 349,138889	24,711076		1	507	684	569.966667	34.814269		1	492	669	574.583333	33,167432
		2	40	60 59	9 528,888889	32,90747		2	629	766	709,433333	30.318634		2	680	817	745.694444	27.9651
ROI 10		3	32	23 44	1 380,916667	25,671969		3	740	955	842,8	45,461162		3	920	1057	973,027778	33,355647
		4	17	43 22	81 1996,47222	135,64186		4	937	1051	995,066667	31,19011		4	1021	1304	1101,22222	53,942356
		5	13	300 16	15 1457,25	74,975949		5	2244	2632	2447,56667	100,88733		5	2873	3188	2971,22222	68,599088
		7	6	17 84	4 720,25	61,005093		7	1876	2279	2082,83333	120,6417		7	1827	2104	1948,75	54,98227
22/09/01		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	365	508	434.277778	29.335119		1	477	641	541.440000	41.751327		1	504	622	555.640000	29.021371
		2	584	703	635.944444	33.855951		2	622	882	691.040000	52.827139		2	728	824	781.560000	26.320271
DOI 1		3	422	581	496.750000	29.156107		3	695	1072	792.800000	79.754833		3	1018	1117	1065.480000	23.535647
KÜLI		4	1685	2167	1926.305556	128.439607		4	1037	1179	1070.200000	37.301698		4	1139	1252	1184.760000	27.112851
		5	1457	1830	1626.055556	76.894341		5	2140	2630	2379.960000	113.740011		5	2893	3148	3015.240000) 75.522778
		7	676	894	805.805556	45.926537		7	1536	1946	1744.320000	110.381052		7	1806	1999	1901.360000	50.536192
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
:	formação	1	323	418	381.333333	23.788339	formação	1	412	599	493.440000	46.936198	formação	1	498	639	580.666667	36.435425
	norestai	2	520	615	571.200000	28.597564	savanica	2	527	740	626.360000	51.604166	campestre	2	723	886	794.066667	35.303544
ROI 2		3	388	527	437.000000	29.231537		3	597	915	726.400000	80.979421		3	934	1091	1013.400000) 43.493638
		4	1693	2031	1859.800000	86.548531		4	903	1160	981.560000	71.695583		4	995	1248	1100.133333	61.241598
		5	1390	1600	1506.633333	52.676949		5	1890	2286	2111.760000	105.283854		5	2774	3123	2962.633333	83.670735
		7	653	822	732.966667	40.250494		7	1369	1731	1578.240000	94.803868		7	1829	2119	1965.333333	74.310315
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
ROI 3		1	223	321	264.880000	25.809107		1	586	707	647.800000	34.333456		1	496	614	549.880000	33.546386
NOI 5		2	441	559	491.520000	35.256347		2	799	918	848.733333	29.264470		2	746	817	779.720000	23.842399
		3	295	415	379.640000	34.172211		3	1017	1136	1071.166667	32.395278		3	995	1094	1039.920000	33.047844

	4	1677	2029	1881.600000	94.135983	4	1128	1270	1195.500000	36.079175	4	1133	1219	1173.200000	29.744747
	5	1502	1780	1626.640000	84.838022	5	2815	3164	2963.900000	90.015075	5	2938	3172	3068.920000	55.595204
	7	746	940	816.960000	57.254898	7	1922	2405	2158.066667	151.383490	7	1926	2071	2002.760000	39.766275
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	571	805	683.700000	62.473801	1	642	992	765.666667	81.318773	1	503	645	572.300000	30.241727
	2	708	944	851.200000	69.221982	2	821	1124	922.833333	83.805387	2	776	871	823.566667	21.533748
ROI 4	3	604	823	721.633333	59.541051	3	959	1336	1086.972222	98.347049	3	1109	1248	1169.200000	28.877148
	4	1635	2204	1956.533333	142.013533	4	1120	1345	1221.416667	59.146489	4	1292	1378	1328.733333	27.797213
	5	1502	1805	1663.833333	78.063671	5	2627	3233	2906.333333	139.220483	5	3071	3234	3169.533333	44.023296
	7	796	989	898.800000	50.787183	7	1896	2548	2193.277778	162.341723	7	1923	2092	1999.966667	42.381261
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	652	865	765.480000	62.012176	1	637	801	720.166667	38.175713	1	526	647	572.800000	33.337916
	2	865	1032	949.840000	44.485653	2	810	976	879.966667	42.142192	2	798	868	836.920000	15.462104
ROI 5	3	720	900	807.160000	47.367957	3	974	1153	1076.866667	45.473549	3	1169	1290	1218.800000	27.345018
	4	1967	2194	2077.000000	60.266768	4	1148	1318	1225.100000	42.183793	4	1252	1452	1361.160000	39.214878
	5	1711	1874	1793.800000	44.220093	5	2795	3168	2956.600000	97.098102	5	3123	3309	3226.480000	42.911848
	7	916	1085	997.280000	40.086906	7	1972	2335	2161.433333	96.184694	7	1925	2119	2033.680000	43.613568
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	318	459	365.280000	31.057098	1	500	737	577.840000	61.077601	1	508	647	574.560000	33.039219
	2	515	657	578.400000	34.614544	2	586	849	690.920000	68.236061	2	726	866	806.400000	39.863308
ROI 6	3	370	489	421.080000	33.537193	3	722	984	850.480000	77.821976	3	1088	1264	1155.480000	44.474824
	4	1838	2320	2000.360000	118.919398	4	1028	1198	1115.080000	50.438841	4	1225	1367	1299.960000	44.932802
	5	1445	1981	1660.280000	129.756027	5	2656	3727	3163.560000	326.778860	5	3120	3330	3249.720000	55.453073
	7	671	1058	811.280000	87.379689	7	1901	3035	2464.840000	309.686896	7	2022	2215	2121.880000	48.911757
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	318	459	365.280000	31.057098	1	485	579	533.560000	25.258794	1	498	664	580.966667	37.604552
ROL7	2	515	657	578.400000	34.614544	2	711	829	760.200000	29.653555	2	770	915	834.266667	41.579947
	3	370	489	421.080000	33.537193	3	843	1042	922.800000	41.755239	3	1087	1286	1161.533333	48.052940
	4	1838	2320	2000.360000	118.919398	4	1131	1245	1188.920000	27.907466	4	1180	1322	1251.133333	42.787150
	5	1445	1981	1660.280000	129.756027	5	2538	2841	2687.360000	66.580077	5	3164	3374	3259.700000	49.971130

7 671 1058 811.20000 85.379689 7 1830 2140 1964.760000 68.147071 7 2044 22 1 1252 346 Mean Sidev Bandas Min Max Mean Sidev																			
Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max 1 252 340 29640000 24.726841 1 452 600 545.33333 34.493063 1 530 6 7 1 31 411 355.40000 24.569832 3 803 962 877.77778 81.62144 5 227 62 22 70 8 4 1699 206 1955.40000 70.51403 4 1046 1247 114.16667 49.199013 4 987 11 5 1246 1525 1565.40000 70.51429 5 144 703 2495.58333 10.071421 5 2726 28 8 Min<			7	671	1058	811.280000	87.379689		7	1850	2140	1964.760000	68.147071		7	2044	2213	2135.666667	40.978828
I 252 346 29640000 24.726841 1 482 600 545.33333 34.493063 1 530 6 R018 3 314 413 355.480000 24.599832 3 803 962 877.77778 38.162144 3 904 994 9 4 1699 2905 1935.40000 10.711420 5 2144 270 2495.58333 109.171421 5 2726 28 7 602 723 652.400000 34.295432 7 1657 2093 1898.583333 109.453806 7 1828 20 8 1 299 271.433333 19.33165 1 504 831 659.94444 76.40201 1 438 5 265 7 128 109.994444 76.40327 3 929 10 14.438 5 265 14.53 14.44 14.532.532619 2 717 1028 854.416607 74.453197 2]	Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
2 419 538 400.440000 28.952663 2 662 782 731.388889 31.493562 2 710 88 RO18 3 314 413 355.480000 24.569832 3 803 962 877.77778 88.162144 3 904 90 5 1264 1552 1565.200000 70.31429 5 2144 2703 2495.58333 100.4771421 5 2726 28 7 602 723 652.480000 34.295432 7 1657 2093 1898.583333 100.453806 7 1828 22 8 1 229 271.43333 19.33165 1 504 831 659.94444 76.240201 1 438 5 2 667 74.53197 2 2665 7 7 502 765 2854.16667 74.453197 2 665 7 2 667 74.53197 2 663 7 7 502			1	252	346	296.400000	24.726841		1	482	600	545.333333	34.493063		1	530	647	592.333333	24.122294
RO18 3 34 443 25549000 24.569832 3 803 962 877.77778 38.162144 3 904 905 4 1699 2095 1925.400000 107.118403 4 1046 1247 1144.16667 49.199013 4 987 11 7 602 723 1652.00000 70.31429 5 2144 2703 1985.83333 109.453806 7 1828 20 80nd Min Max Mean Sidev Bandas Min Max Mean Sidev Bandas Min Max 5 1 438 5 8019 3 314 414 374.53333 25.32619 2 717 1025 854.416667 74.453197 2 665 7 8019 3 314 414 374.53333 26.32643 4 1124 266 166.11111 39.956246 146.539438 5 2637 28			2	419	538	490.440000	28.952663		2	662	782	731.388889	31.493562		2	710	805	759.300000	23.403728
4 1699 2096 1935.40000 107.518603 4 1046 1247 1144.166667 49.199013 4 987 11 5 1246 1525 1365.20000 70.341429 5 214 2703 2495.58333 140.717421 5 2726 28 Bandus Min Max Mean Solev Bandus Min Max Solev Bandus Solev Bandus Solev Bandus Min Max Mean Solev Bandus Min Max Max Mean </td <td>ROI 8</td> <td></td> <td>3</td> <td>314</td> <td>413</td> <td>355.480000</td> <td>24.569832</td> <td></td> <td>3</td> <td>803</td> <td>962</td> <td>877.777778</td> <td>38.162144</td> <td></td> <td>3</td> <td>904</td> <td>984</td> <td>934.866667</td> <td>23.855504</td>	ROI 8		3	314	413	355.480000	24.569832		3	803	962	877.777778	38.162144		3	904	984	934.866667	23.855504
S 1246 1525 1365.20000 70.341429 5 2144 2703 2495.583333 140.771421 5 2726 28 Bandas Min Max Mean Stolev Bandas Stolev Bandas Stolev Bandas Min Max Mean Stolev Bandas Stolev Bandas Min Max Mean Stolev Bandas Min Max Mean Stolev Bandas Min Ma Max Max Mean </td <td></td> <td></td> <td>4</td> <td>1699</td> <td>2096</td> <td>1935.400000</td> <td>107.518603</td> <td></td> <td>4</td> <td>1046</td> <td>1247</td> <td>1144.166667</td> <td>49.199013</td> <td></td> <td>4</td> <td>987</td> <td>1100</td> <td>1039.633333</td> <td>23.257899</td>			4	1699	2096	1935.400000	107.518603		4	1046	1247	1144.166667	49.199013		4	987	1100	1039.633333	23.257899
RO19 3 602 7.23 652.480000 34.295432 7 1657 2093 1898.58333 109.453806 7 1828 20 1 229 299 271.433333 19.33165 1 50.4 831 659.94444 76.20201 1 438 55 2 417 515 466.733333 25.232619 2 717 1025 854.41667 74.453197 2 652 76 3 9 1 4438 5 2 657 7 155 166.733333 26.82514 3 871 128 1039.69444 84.630227 3 99 10 15 153 1408 1281.500000 61.255119 5 2676 3258 3042.805556 136.539438 5 2637 28 7 530 746 659.033333 57.249294 7 1969 2669 2406.69444 168.16126 7 1757 15 8andas Min <td< td=""><td></td><td></td><td>5</td><td>1246</td><td>1525</td><td>1365.200000</td><td>70.341429</td><td></td><td>5</td><td>2144</td><td>2703</td><td>2495.583333</td><td>140.771421</td><td></td><td>5</td><td>2726</td><td>2843</td><td>2784.600000</td><td>33.512324</td></td<>			5	1246	1525	1365.200000	70.341429		5	2144	2703	2495.583333	140.771421		5	2726	2843	2784.600000	33.512324
Bandas Min Max Mean Sidev Bandas Min Max Min Max Sidev Sidev Sidev Sidev Sidev Sidev Bandas Min Max Mean Sidev Bandas Min Min <td></td> <td></td> <td>7</td> <td>602</td> <td>723</td> <td>652.480000</td> <td>34.295432</td> <td></td> <td>7</td> <td>1657</td> <td>2093</td> <td>1898.583333</td> <td>109.453806</td> <td></td> <td>7</td> <td>1828</td> <td>2021</td> <td>1919.866667</td> <td>45.115739</td>			7	602	723	652.480000	34.295432		7	1657	2093	1898.583333	109.453806		7	1828	2021	1919.866667	45.115739
I 229 299 271.433333 19.333165 1 504 831 659.944444 76.240201 1 438 5.5 RO19 3 314 414 374.53333 25.32619 2 717 1025 854.416667 74.453197 2 665 77. RO19 3 314 414 374.53333 26.832134 3 871 1228 1039.694444 84.630227 3 929 10 4 1532 1844 1680.23333 96.026463 4 1124 1266 1166.11111 39.956246 4 961 11 5 1153 1408 1281.50000 61.255119 5 2676 3258 3042.805556 136.539438 5 2637 28 7 530 746 659.033333 57.249294 7 1969 2609 2406.694444 168.161626 7 1757 15 Bandas Min Max Mean Stdev </td <td></td> <td>]</td> <td>Bandas</td> <td>Min</td> <td>Max</td> <td>Mean</td> <td>Stdev</td> <td></td> <td>Bandas</td> <td>Min</td> <td>Max</td> <td>Mean</td> <td>Stdev</td> <td></td> <td>Bandas</td> <td>Min</td> <td>Max</td> <td>Mean</td> <td>Stdev</td>]	Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
RO19 3 314 414 374.53333 25.232619 2 717 1025 854.416667 74.453197 2 665 77. RO19 3 314 414 374.533333 28.832134 3 871 1228 1039.694444 84.630227 3 929 10 4 1552 1844 1680.233333 96.026463 4 1124 1266 1166.111111 39.956246 4 961 11 5 1153 1408 1281.50000 61.255119 5 2676 3258 3042.805556 136.539438 5 2637 28 7 530 746 659.033333 57.249294 7 1969 269 2406.694444 168.161626 7 17.757 15 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas 1 44 169.133333 39.463817 4 1094 12 2			1	229	299	271.433333	19.333165		1	504	831	659.944444	76.240201		1	438	555	485.166667	27.614443
RO19 3 314 414 374.53333 28.832134 3 871 1228 1039.694444 84.630227 3 929 10 4 153 1484 1680.233333 96.026463 4 1124 1266 1166.111111 39.956246 4 961 11 5 1153 1408 1281.50000 61.255119 5 2676 3258 3042.805556 136.539438 5 2637 28 7 530 746 659.033333 57.249294 7 1969 2669 2406.694444 168.161626 7 1757 15 Bandas Min Max Mean Stdev Bandas 3 9.37 11 44 104 104 102 125 1096.333333 39.463817 4			2	417	515	466.733333	25.232619		2	717	1025	854.416667	74.453197		2	665	783	727.400000	29.034581
4 1532 1844 1680.233333 96.026463 4 1124 1266 1166.111111 39.956246 4 961 11 5 1153 1408 1281.500000 61.255119 5 2676 3258 3042.805556 136.539438 5 2637 28 7 530 746 659.033333 57.249294 7 1969 2669 2406.694444 168.161626 7 1757 15 Bandas Min Max Mean Stdev Bandas Min Max Stdev Bandas Stdev Bandas Min Max Max Stdev Bandas </td <td>ROI 9</td> <td></td> <td>3</td> <td>314</td> <td>414</td> <td>374.533333</td> <td>28.832134</td> <td></td> <td>3</td> <td>871</td> <td>1228</td> <td>1039.694444</td> <td>84.630227</td> <td></td> <td>3</td> <td>929</td> <td>1068</td> <td>997.333333</td> <td>36.009896</td>	ROI 9		3	314	414	374.533333	28.832134		3	871	1228	1039.694444	84.630227		3	929	1068	997.333333	36.009896
5 1153 1408 1281.500000 61.255119 5 2676 3258 3042.805556 136.539438 5 2637 28 7 530 746 659.033333 57.249294 7 1969 2669 2406.694444 168.161626 7 1757 19 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max 1 256 373 315.360000 30.356054 1 565 825 690.750000 60.694257 1 494 6 2 474 593 515.040000 29.492202 2 751 1038 887.027778 64.465932 2 787 8. ROI 10 3 312 470 367.040000 54.003920 4 1185 1356 1271.083333 39.463817 4 1094 102 5 1353 1703 1481.120000 103.996522 5 2724 3121 2961.222221 100.078858 5 2892 22			4	1532	1844	1680.233333	96.026463		4	1124	1266	1166.111111	39.956246		4	961	1131	1075.666667	44.240981
ROI 10 3 312 470 367.249294 7 1969 2669 2406.694444 168.161626 7 1757 195 Bandas Min Max Mean Stdev 7 199 1096.33333 79.88494 3 973 11 4 1762 1960 1870.440000 54.003920 4 1185 1356 1271.083333 39.463817 4 1094 12 5 1353 1703 1481.120000 103.996522			5	1153	1408	1281.500000	61.255119		5	2676	3258	3042.805556	136.539438		5	2637	2894	2788.533333	61.833889
Bandas Min Max Mean Stdev Bandas Min Max			7	530	746	659.033333	57.249294		7	1969	2669	2406.694444	168.161626		7	1757	1903	1826.733333	34.733402
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$]	Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	256	373	315.360000	30.356054		1	565	825	690.750000	60.694257		1	494	611	584.880000	32.598977
ROI 10 3 312 470 367.040000 33.893805 3 937 1259 1096.333333 79.888494 3 973 11 4 1762 1960 1870.440000 54.003920 4 1185 1356 1271.083333 39.463817 4 1094 122 5 1353 1703 1481.120000 103.996522 5 2724 3121 2961.222222 100.078858 5 2892 32 7 623 864 719.200000 56.179771 7 2139 2598 2402.611111 117.103929 7 1926 22 05/06/02 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max 05/06/02 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max 1 248 385 320,33333 46,453048 1 257 476 362,055556 47,007564 1			2	474	593	515.040000	29.492202		2	751	1038	887.027778	64.465932		2	787	858	816.320000	22.824913
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ROI 10		3	312	470	367.040000	33.893805		3	937	1259	1096.333333	79.888494		3	973	1132	1050.480000	39.803811
5 1353 1703 1481.120000 103.996522 5 2724 3121 2961.222222 100.078858 5 2892 32 7 623 864 719.200000 56.179771 7 2139 2598 2402.611111 117.103929 7 1926 22 05/06/02 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max 05/06/02 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev Bandas Min Max 1 248 385 320,333333 46,453048 1 257 476 362,055556 47,007564 1 349 51 ROI 1 florestal 3 273 559 434,027778 85,838215 savânica 3 494 779 597,777778 28,2449116 campestre 3 805 94 4 1132 1922 <			4	1762	1960	1870.440000	54.003920		4	1185	1356	1271.083333	39.463817		4	1094	1207	1175.320000	29.898049
7 623 864 719.200000 56.179771 7 2139 2598 2402.611111 117.103929 7 1926 22 05/06/02 Bandas Min Max Mean Stdev Bandas Min Max Max Max Mean Stdev Bandas Min Max Max<			5	1353	1703	1481.120000	103.996522		5	2724	3121	2961.222222	100.078858		5	2892	3265	3133.160000	120.762053
05/06/02 Bandas Min Max Mean Stdev Bandas Min Max Mean Stdev <th< td=""><td></td><td></td><td>7</td><td>623</td><td>864</td><td>719.200000</td><td>56.179771</td><td></td><td>7</td><td>2139</td><td>2598</td><td>2402.611111</td><td>117.103929</td><td></td><td>7</td><td>1926</td><td>2216</td><td>2092.560000</td><td>73.568607</td></th<>			7	623	864	719.200000	56.179771		7	2139	2598	2402.611111	117.103929		7	1926	2216	2092.560000	73.568607
05/06/02 Bandas Min Max Mean Stdev Bandas Min Max A 1 248 385 320,333333 46,453048 1 257 476 362,055556 47,007564 1 349 51 A 1 273 559 434,027778 85,838215 formação 2 462 686 546,694444 48,112261 formação 2 662 77 ROI 1 florestal 3 273 559 434,027778 85,838215 savânica 3 494 779 597,777778 62,449116 campestre 3 805 94 4 1132 1922 1603,166667 185,61935 4																			
1 248 385 320,33333 46,453048 1 257 476 362,055556 47,007564 1 349 51 ROI 1 florestal 2 332 642 524,305556 67,300953 formação 2 462 686 546,694444 48,112261 formação 2 662 77 801 1 132 1922 1603,166667 185,61935 4 911 1152 1021,1111 51,903635 4 1254 132 5 938 1872 1475,527778 218,88425 5 1691 2129 1914,94444 96,698632 5 2595 2895	05/06/02		Banda	s Mir	n Ma	x Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
formação 2 332 642 524,305556 67,300953 formação 2 462 686 546,694444 48,112261 formação 2 662 77 ROI 1 florestal 3 273 559 434,027778 85,838215 savânica 3 494 779 597,777778 62,449116 campestre 3 805 94 4 1132 1922 1603,166667 185,61935 4 911 1152 1021,1111 51,903635 4 1254 133 5 938 1872 1475,527778 218,88425 5 1691 2129 1914,94444 96,698632 5 2595 289			1	248	385	5 320,333333	46,453048		1	257	476	362,055556	47,007564		1	349	513	422,861111	32,548998
ROI 1 florestal 3 273 559 434,027778 85,838215 savânica 3 494 779 597,777778 62,449116 campestre 3 805 94 4 1132 1922 1603,166667 185,61935 4 911 1152 1021,11111 51,903635 4 1254 133 5 938 1872 1475,527778 218,88425 5 ¹⁶⁹¹ 2129 1914,94444 96,698632 5 2595 289		formação	2	332	642	2 524,305556	67,300953	formação	2	462	686	546,694444	48,112261	formação	2	662	773	699,611111	23,18408
4 1132 1922 1603,166667 185,61935 4 911 1152 1021,1111 51,903635 4 1254 132 5 938 1872 1475,527778 218,88425 5 ¹⁶⁹¹ 2129 1914,94444 96,698632 5 2595 289	ROI 1	florestal	3	273	559	9 434,027778	85,838215	savânica	3	494	779	597,777778	62,449116	campestre	3	805	946	869,472222	31,325468
5 938 1872 1475,527778 218,88425 5 ¹⁶⁹¹ 2129 1914,94444 96,698632 5 2595 28			4	113	2 192	2 1603,166667	185,61935		4	911	1152	1021,11111	51,903635		4	1254	1357	1312,63889	22,589698
			5	938	187	2 1475,527778	3 218,88425		5	1691	2129	1914,94444	96,698632		5	2595	2800	2701,36111	58,106382

	7	481	942	748,527778	122,09961	7	1215	1553	1406,47222	83,343861	7	1554	1769	1656,33333	44,68365
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	207	317	271,466667	29,234761	1	315	588	475,72	57,075622	1	346	483	413,888889	30,244506
	2	405	518	457,433333	29,388812	2	575	772	669,52	63,475796	2	603	772	660,75	31,790722
ROI 2	3	356	428	390	22,125037	3	592	854	739,28	69,309403	3	755	874	801,444444	30,980588
	4	1683	2095	1904,966667	81,157354	4	1008	1115	1073,88	35,540259	4	1014	1289	1116,08333	58,869044
	5	1401	1664	1521,866667	74,153956	5	1867	2393	2188,32	130,81785	5	2595	2916	2674,88889	70,122252
	7	664	848	762,4	49,956947	7	1247	1831	1627,6	138,69932	7	1646	1830	1732,88889	47,748614
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	212	350	291,066667	39,357717	1	305	579	426,7	65,057614	1	353	490	414,166667	28,758601
	2	437	605	529,466667	43,047474	2	458	767	589,6	73,040187	2	582	723	651,388889	30,512085
ROI 3	3	337	503	403,9	39,654847	3	515	848	636,333333	82,29733	3	716	883	805,416667	36,074823
	4	1613	2060	1874,933333	110,81421	4	947	1050	998,2	33,428668	4	1054	1260	1135,91667	59,464455
	5	1373	1927	1628	131,38729	5	1573	2449	1979,03333	225,02866	5	2398	2631	2514,11111	48,424774
	7	695	910	804,033333	60,814292	7	1031	1891	1423,06667	206,88493	7	1496	1711	1614,77778	53,906327
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	244	354	292,1	29,471611	1	382	820	535,972222	125,29519	1	294	404	338,138889	28,882177
	2	467	580	527,466667	32,133057	2	538	1100	720,555556	146,8018	2	545	657	596,333333	25,487252
ROI 4	3	293	460	378,366667	39,370463	3	512	1154	779,75	157,7429	3	632	774	690,944444	34,345259
	4	1507	2090	1706,633333	134,07447	4	1011	1288	1113,58333	73,755726	4	1078	1181	1111,27778	25,353062
	5	1170	1608	1386,966667	90,662878	5	1690	2799	2218,69444	281,58458	5	2011	2186	2074,97222	44,696747
	7	542	788	691,866667	62,223586	7	1123	2167	1615,27778	263,7702	7	1155	1339	1244,36111	43,61006
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	243	353	302,4	30,153773	1	258	423	332,388889	35,141573	1	368	505	434,633333	36,630949
	2	467	608	537	36,684465	2	377	490	439,361111	28,441572	2	600	740	683,066667	27,983903
ROI 5	3	364	507	415,8	35,679126	3	402	545	468,222222	36,403384	3	798	940	862	35,897363
1.015	4	1541	1953	1719,6	109,93369	4	664	905	775,5	58,101635	4	1115	1218	1176,9	27,770426
	5	1257	1724	1496,64	100,50783	5	1459	2246	1861,44444	175,14883	5	2390	2623	2529,1	57,566364
	7	634	880	738,92	59,511147	7	1001	1861	1471,36111	210,79376	7	1431	1707	1588,36667	75,114388
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev

	1	220	330	271,416667	25,488793	1	473	857	685,527778	96,117335	1	315	452	376,84	28,717997
	2	333	586	452,861111	56,403218	2	682	1075	868,305556	91,247801	2	572	656	602,24	22,747308
POLG	3	273	416	340,194444	32,417649	3	802	1207	984,638889	98,051052	3	703	869	792,64	32,783227
KOIO	4	1101	1754	1454,861111	188,19111	4	1040	1349	1183,86111	66,226517	4	1078	1147	1115,28	19,719956
	5	792	1493	1187	161,8765	5	2216	2800	2564,58333	132,65667	5	2040	2332	2225,84	66,883406
	7	451	758	618,666667	74,066379	7	1523	2138	1903,88889	125,05834	7	1308	1492	1407,64	52,639402
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	271	408	319,361111	36,470068	1	319	512	385,24	50,735655	1	348	486	420,833333	32,956682
	2	468	608	521,666667	33,045423	2	546	771	602,84	64,19351	2	601	770	706,25	33,295538
ROI 7	3	317	483	407,972222	34,934621	3	610	895	702,88	79,196128	3	775	918	858,722222	37,101876
	4	1612	2265	1826,583333	169,10324	4	945	1186	1053,56	72,163634	4	1045	1320	1174,94444	58,126436
	5	1461	1986	1700,944444	115,20812	5	2011	2361	2204,68	89,475658	5	2216	2420	2331,52778	39,269389
	7	727	1065	853,027778	80,762256	7	1308	1676	1553,16	93,765968	7	1309	1524	1400,72222	49,177005
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	212	350	252,166667	34,125248	1	267	404	339,138889	36,658387	1	348	430	396,777778	26,212441
	2	410	522	472,761905	31,514464	2	491	604	536,333333	31,189742	2	601	684	654,777778	28,823712
ROI 8	3	334	429	378,642857	22,512675	3	540	706	618,472222	39,769684	3	774	869	819,5	28,53419
	4	1618	1928	1764,904762	75,639649	4	911	1220	1016,72222	74,561427	4	1181	1317	1244,91667	36,278585
	5	1343	1605	1478,690476	57,071837	5	1633	2071	1860	115,09052	5	2507	2681	2585,94444	47,328605
	7	664	879	741,547619	48,127981	7	1093	1523	1280,05556	121,76604	7	1431	1677	1576,97222	48,925299
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	159	296	210,595238	29,923528	1	412	796	539,083333	101,62575	1	348	485	420,666667	33,380062
	2	354	495	432,5	34,485239	2	565	1045	735,083333	114,05797	2	631	715	680	25,377155
ROI 9	3	260	427	329,095238	29,27732	3	701	1177	858,194444	127,21901	3	777	896	834,722222	32,067439
	4	1661	2005	1830,095238	99,511198	4	975	1285	1082,97222	67,962379	4	1114	1252	1200,5	29,243314
	5	1226	1606	1409,809524	79,308363	5	2099	2945	2473,88889	199,00751	5	2479	2712	2592,83333	60,526972
	7	572	787	681,666667	52,616267	7	1522	2536	1954,72222	233,49709	7	1523	1769	1640,86111	56,99732
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
DOI 10	1	218	355	294,722222	30,63202	1	257	477	351,6	44,909564	1	290	400	348,083333	27,66057
KUI 10	2	468	608	547,305556	33,174706	2	434	631	519,566667	46,568217	2	544	657	600,111111	28,943075

		3	364	507	433,027778	33,05276		3	494	684	577,833333	41,35305		3	727	869	791,416667	34,454421	
		4	1642	2020	1856,5	87,849709		4	776	1086	916,033333	65,819232		4	1079	1182	1113,05556	27,100811	
		5	1549	1811	1665,555556	63,940796		5	1633	2333	1892,46667	148,65204		5	2332	2536	2442,27778	54,541523	
		7	727	850	807,027778	33,980235		7	1092	1707	1367,86667	128,49198		7	1369	1584	1482,08333	48,687561	
23/07/02		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev	
		1	208	362	271,638889	32,912137		1	159	527	333,555556	70,301979		1	708	892	806,555556	38,76482	
		2	421	514	461,472222	27,547866	7866		2	370	772	505,666667	83,211263		2	938	1092	1023,58333	38,85752
DOL		3	302	431	385,111111	31,980153		3	398	913	584,805556	119,24688		3	1105	1311	1216,88889	45,99241	
ROI 1		4	1343	1744	1519,19444	100,75765		4	845	1174	933,75	86,535996		4	1286	1396	1333,94444	27,2962	
		5	1051	1379	1209,44444	75,530295		5	1513	2435	1976,41667	212,59262		5	2642	2790	2725,16667	46,56271	
		7	569	879	698,166667	73,546293		7	1338	2021	1740,61111	197,84515		7	1556	1773	1680	49,15515	
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev	
		1	439	566	496,632653	33,188661		1	259	413	339,861111	44,851598		1	580	794	679,416667	39,65737	
		2	607	731	656,734694	28,431772		2	474	629	541,861111	37,707258		2	872	964	913,777778	25,40316	
ROI 2		3	533	666	588,285714	30,358277		3	507	767	636,083333	67,471211		3	1075	1177	1119,55556	30,31119	
	formação	4	1309	1711	1463,16327	89,279605	formação	4	932	1150	1028,33333	50,181385	formação	4	1103	1322	1222,38889	52,03805	
	florestal	5	1197	1406	1295,61225	55,249365	savânica	5	1602	2197	2011	125,99569	campestre	5	2610	2729	2671,30556	36,82842	
		7	474	723	612,265306	46,129697		7	934	1617	1259,72222	172,26219		7	1524	1804	1659,27778	63,00186	
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev	
		1	123	216	179,416667	29,949839		1	234	603	371,138889	71,819676		1	692	815	732,333333	35,911	
		2	326	513	411,277778	38,831954		2	385	849	543,416667	85,928666		2	803	989	903,75	43,44742	
ROI 3		3	264	421	317,638889	40,162636		3	463	927	638,722222	99,929292		3	941	1146	1040,5	47,52172	
		4	1704	2031	1844,58333	88,054001		4	855	1148	955,611111	56,181989		4	991	1174	1073,38889	44,78984	
		5	1249	1488	1378,58333	78,58333 69,311048		5	1665	2409	2046,58333	184,83373		5	2253	2580	2406,30556	91,79661	
		7	535	846	672,083333	75,162823		7	1307	1804	1540,13889	133,06264		7	1431	1679	1579,97222	61,47496	
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev			Min	Max	Mean	Stdev	
ROI 4		1	145	268	204,12	28,614274		1	254	652	348,25	82,351295		1	584	759	689,666667	45,25661	
		2	350	502	461,04	37,965423		2	407	807	519,805556	88,198743		2	812	961	895,833333	37,78714	

	3	282	407	352	34,18211	3	429	994	606,861111	118,2842	3	994	1200	1097,3	46,76364
	4	1745	2000	1856,48	62,415356	4	848	1247	1006,05556	101,47229	4	1140	1248	1196,93333	26,21257
	5	1306	1544	1452,08	48,521404	5	1541	2553	1978,47222	235,37975	5	2431	2728	2633,16667	80,86177
	7	658	813	734,88	40,140711	7	904	1836	1438,63889	231,21631	7	1431	1804	1641,96667	90,32909
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	139	264	193,805556	28,659398	1	674	888	774,833333	46,093383	1	658	791	725,68	35,76278
	2	345	500	415,972222	43,517147	2	837	1053	923,833333	46,248707	2	835	962	914,52	35,17945
ROI 5	3	219	400	317,638889	40,242233	3	951	1207	1056,30556	57,458964	3	994	1150	1072,76	45,95585
	4	1460	2011	1717,05556	154,7346	4	1057	1276	1188,77778	56,490258	4	1136	1246	1176,6	27,64959
	5	1185	1601	1400	99,620422	5	2312	2759	2486,08333	107,27545	5	2284	2670	2492,84	117,0729
	7	563	1029	706,75	90,484845	7	1430	2238	1875,25	196,80119	7	1586	1928	1684,84	82,92048
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	430	611	510,918367	40,286907	1	345	468	400,888889	30,895934	1	763	916	827,457143	35,19638
	2	677	835	741,142857	36,995495	2	531	655	593,861111	34,349592	2	964	1089	1038,11429	30,19522
ROI 6	3	566	774	669,408163	45,531545	3	556	762	664,777778	42,311843	3	1152	1308	1244,77143	34,57055
	4	1553	1952	1744,46939	88,791446	4	829	976	876,25	31,318069	4	1285	1395	1342,57143	22,03645
	5	1522	1880	1687,2449	78,326116	5	1519	1965	1714,16667	103,13528	5	2700	2820	2780,48571	36,84496
	7	630	1003	772,367347	73,565927	7	1121	1804	1444,36111	199,87799	7	1525	1711	1602,94286	40,74739
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	157	310	225,809524	34,878352	1	344	5 53	485,361111	42,852673	1	522	676	577	35,71535
	2	328	515	411,333333	43,147883	2	600	755	693,861111	42,236851	2	750	905	815,033333	42,2076
ROI 7	3	243	525	367,928571	65,037097	3	694	874	790,861111	47,711725	3	920	1152	1035,93333	65,21367
	4	1235	1637	1401,42857	91,510667	4	852	1072	974,222222	52,557512	4	1067	1286	1199,66667	58,81727
	5	1076	1582	1254,95238	140,31758	5	1575	1962	1787,80556	95,774384	5	2550	3115	2851,76667	139,2689
	7	474	846	655,571429	103,96508	7	1337	1710	1511,05556	100,94382	7	1462	1866	1645,13333	112,9625
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	476	664	563,47619	42,760957	1	285	439	375,204082	34,808392	1	750	903	824,7	43,97503
ROI 8	2	738	866	798,095238	34,160889	2	501	594	547,183673	26,937948	2	867	1079	1006,2	48,55029
	3	546	754	662,142857	41,964312	3	559	765	666,632653	51,636023	3	1120	1325	1199,66667	51,19424
	4	1790	2188	1977,57143	99,078964	4	783	929	853,265306	36,313321	4	1174	1355	1270,26667	47,02746

		5	1400	1787	1569,14286	90,296955		5	1518	1815	1684,02041	68,81209		5	2551	2819	2705,46667	66,96511
		7	568	847	714,142857	60,965233		7	1215	1712	1432,02041	86,830172		7	1462	1649	1547,46667	51,48601
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	283	468	390,166667	45,474326		1	259	505	383,611111	58,344434		1	572	756	674,777778	47,51187
		2	505	722	601,916667	49,842824		2	445	599	530,555556	40,917649		2	841	959	901,277778	33,47717
POLO		3	446	626	521,305556	39,126038		3	515	721	613,833333	56,257825		3	1044	1199	1129,83333	36,62279
KOI 9		4	1472	2165	1862,88889	173,33877		4	710	1002	867	54,404832		4	1102	1321	1200,66667	51,29801
		5	1249	1696	1518,61111	101,10427		5	1521	2027	1752,16667	137,50003		5	2610	2789	2696,94444	56,64523
		7	596	845	729,305556	66,095091		7	1494	2177	1840,83333	156,60952		7	1586	1835	1708,91667	70,63685
		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	473	631	551,916667	39,076025		1	294	540	390,566667	52,682971		1	697	820	755,133333	33,23971
DOI 10		2	706	802	750,583333	28,106303		2	476	692	584,3	57,738501		2	901	1054	974,666667	43,30751
		3	564	721	633,888889	32,099646		3	537	898	697,9	77,054549		3	1071	1277	1179,23333	43,44055
KOI 10		4	1799	2054	1981,16667	62,186126		4	827	938	884,9	31,685252		4	1212	1321	1255,23333	25,80522
		5	1515	1782	1664,77778	60,729429		5	1458	1994	1743,16667	126,95508		5	2729	2877	2803,83333	38,02276
		7	628	845	749,361111	46,573538		7	1494	1959	1701,7	112,55501		7	1555	1804	1709,36667	64,74112
11/10/02		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev		Bandas	Min	Max	Mean	Stdev
		1	391	545	479,083333	37,475611		1	446	556	493,055556	27,90386		1	494	582	535,066667	22,91654
		2	719	874	799,944444	38,703226		2	576	732	643,111111	36,039485		2	723	790	769,366667	23,26679
DOI 1		3	1014	1220	1109,66667	43,470187		3	638	843	735,472222	51,213551		3	926	1038	986,666667	24,85729
KOI I		4	1113	1296	1199,86111	38,230992		4	895	1162	1045,69444	61,196554		4	1110	1297	1190,33333	37,04921
	formação	5	2316	2584	2513,80556	65,988665	formação	5	2062	2523	2300,86111	118,16554	formação	5	2831	3095	2951,26667	71,16709
	florestal	7	1370	1588	1484,38889	56,291221	savânica	7	1512	1944	1736,30556	114,62232	campestre	7	1833	2083	1954,3	69,10769
			Min	Max	Mean	Stdev			Min	Max	Mean	Stdev			Min	Max	Mean	Stdev
		1	276	386	316,944444	25,845635		1	440	594	529,76	39,108055		1	453	585	516,066667	30,96932
ROI 2		2	474	630	549,694444	31,56021		2	574	774	656,08	47,349692		2	682	793	725,6	36,22973
		3	325	418	363,527778	24,158389		3	673	897	755,16	60,308015		3	893	1005	933,1	26,92179
		4	1915	2367	2132,83333	95,248697		4	926	1060	993,76	37,946541		4	1004	1191	1098,53333	54,5317

	5	1346	1609	1495,47222	67,40347	5	2061	2588	2366,32	123,77827	5	2723	2943	2861,6	55,46083
	7	566	748	673,777778	46,181079	7	1512	2011	1800,6	124,12628	7	1788	2015	1916,2	62,34686
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	295	363	325,24	21,010474	1	412	719	489,555556	55,359317	1	453	584	540,2	28,17238
	2	520	587	544,36	18,964616	2	526	859	600,305556	61,503923	2	702	814	770,133333	24,99205
ROI 3	3	359	435	404,76	22,679433	3	577	969	663,055556	76,463976	3	930	1077	1015,23333	34,23719
	4	1950	2379	2169,72	117,4594	4	872	1113	953,75	60,575514	4	1111	1217	1176,6	23,90585
	5	1565	1786	1678,24	57,738116	5	1950	2741	2291,97222	141,13145	5	2833	3118	3038,26667	61,28618
	7	702	838	777,84	35,872088	7	1511	2125	1776,86111	120,47434	7	1925	2129	2018,86667	50,14444
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	309	420	349,9	24,011994	1	447	623	516,133333	43,119508	1	452	584	511,84	24,2
ROI 4	2	509	577	542,1	23,823127	2	597	753	668,2	37,087408	2	703	769	731,16	19,59524
	3	340	454	405,6	32,43944	3	694	862	759,666667	44,391156	3	891	984	954,44	27,4197
	4	1540	1995	1846,7	129,46472	4	942	1100	1020,16667	37,084325	4	1111	1191	1149	20,5061
	5	1308	1529	1426,46667	53,725184	5	2173	2612	2398,56667	111,30315	5	2766	3008	2901,52	62,76751
	7	569	751	663	42,957878	7	1628	2105	1828,16667	117,88161	7	1811	1992	1928,76	52,83566
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	309	397	362,533333	24,295215	1	440	619	540	45,939991	1	472	603	521,611111	28,99288
	2	508	597	555,633333	23,994947	2	612	7 <i>5</i> 95	696,666667	48,184511	2	700	767	730,472222	17,61085
ROI 5	3	359	453	391,733333	20,834211	3	674	920	779,933333	59,812312	3	869	999	935,444444	30,52348
	4	1887	2340	2104,23333	125,02405	4	943	1242	1104,56667	58,720074	4	1030	1191	1106,61111	45,25059
	5	1396	1550	1487,66667	42,093765	5	2381	2906	2624,33333	127,40333	5	2721	2875	2771,47222	32,76626
	7	592	728	664,6	36,359887	7	1709	2365	2043,2	152,58269	7	1788	1947	1860,75	36,87614
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	342	430	382,333333	18,345973	1	559	821	700,944444	61,254478	1	449	559	504	26,03075
ROI 6	2	564	698	621,466667	31,622486	2	736	979	865,027778	53,861455	2	655	744	698,027778	21,98374
	3	368	498	428,666667	24,342858	3	847	1107	974,833333	60,502892	3	831	962	880,638889	25,08859
	4	1809	2129	1994,53333	92,945195	4	956	1143	1047,97222	48,395092	4	976	1109	1021,5	39,0571
	5	1390	1566	1509,53333	34,5121	5	2305	2679	2503,33333	97,907828	5	2656	2788	2703,66667	37,74047
	7	635	771	690,233333	35,138822	7	2057	2489	2304,47222	104,55388	7	1788	1969	1870,38889	43,77297

	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	264	376	328,722222	24,982978	1	406	736	559,777778	87,830067	1	470	646	527,095238	34,37867
	2	493	561	529,111111	18,72474	2	536	870	679,944444	80,789654	2	677	810	740,690476	31,93323
ROI 7	3	338	413	380,305556	19,338813	3	607	1018	778,611111	112,378	3	886	1036	948,97619	38,27021
	4	1950	2218	2090,19444	71,787313	4	737	1084	893,638889	91,604789	4	1003	1217	1099	47,18826
	5	1302	1544	1430,22222	55,863666	5	1760	2881	2270,22222	268,03338	5	2612	2875	2743,19048	60,40644
	7	587	769	657,583333	39,361602	7	1241	2559	1937,19444	308,52801	7	1765	1947	1857,40476	47,70185
		Min	Max	Mean	Stdev		Min	Max	Mean	Stdev		Min	Max	Mean	Stdev
	1	246	356	321,76	27,708723	1	400	620	508,533333	56,587883	1	452	540	485	22,92868
	2	518	584	539,44	16,426807	2	592	792	658,1	57,098433	2	659	748	709,7	22,66115
ROI 8	3	331	406	367,88	18,362825	3	650	912	784,666667	73,828008	3	854	966	918,733333	31,99346
	4	2043	2307	2153,04	54,962472	4	880	1040	970,666667	47,272018	4	1084	1164	1110,96667	23,43808
	5	1359	1513	1434,68	41,197411	5	2110	2550	2376,93333	108,66174	5	2745	2920	2838,8	49,11029
	7	560	696	637,32	32,19824	7	1490	2330	1981,2	201,87422	7	1811	1970	1879,53333	47,26793
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	298	386	347,5	25,426083	1	638	1165	852,690476	125,49521	1	472	582	542,066667	24,33379
	2	508	574	551,388889	19,312879	2	790	1412	1057,83333	137,00666	2	723	814	778,433333	22,47862
ROI 9	3	338	468	397,305556	28,490419	3	987	1659	1278,59524	141,41637	3	945	1077	990,566667	25,02645
	4	1948	2268	2104,19444	95,391769	4	1048	1502	1238,54762	98,786096	4	1137	1271	1211,8	34,71202
	5	1406	1714	1529,44444	77,875521	5	2480	3491	2945,42857	234,39555	5	2831	3117	2944,13333	69,46581
	7	607	834	709,916667	52,495646	7	1899	3103	2476,38095	280,08335	7	1810	2060	1946,03333	69,18316
	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev	Bandas	Min	Max	Mean	Stdev
	1	271	403	324,333333	35,147038	1	460	680	543,111111	53,917279	1	429	518	475,133333	24,42968
	2	479	612	558,583333	29,89828	2	614	836	698,222222	53,406854	2	656	746	702,133333	23,05875
ROI 10	3	367	572	447,722222	46,385103	3	668	1004	815,944444	77,690575	3	853	984	906,733333	30,55005
	4	1759	2132	1925,44444	92,074021	4	1002	1109	1059,77778	26,63951	4	975	1109	1040,26667	37,65079
	5	1381	2062	1650,69444	174,48927	5	2412	2829	2610,52778	101,4899	5	2549	2725	2625,83333	46,3689
	7	606	1106	818,472222	120,93859	7	1784	2238	2031,86111	101,75633	7	1652	1902	1774,63333	55,47319

