

ENERGIA INCORPORADA E EMISSÕES DE CO₂ DE FACHADAS. ESTUDO DE CASO DO *STEEL FRAME* PARA UTILIZAÇÃO EM BRASÍLIA

ABDALA CARIM NABUT NETO

DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

FACULDADE DE TECNOLOGIA
UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ENERGIA INCORPORADA E EMISSÕES DE CO₂ DE FACHADAS. ESTUDO DE CASO DO *STEEL FRAME* PARA UTILIZAÇÃO EM BRASÍLIA

ABDALA CARIM NABUT NETO

ORIENTADORA: ROSA MARIA SPOSTO

DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

PUBLICAÇÃO: E.DM-009A/11

BRASÍLIA/DF: SETEMBRO – 2011

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ENERGIA INCORPORADA E EMISSÕES DE CO₂ DE FACHADAS. ESTUDO DE CASO DO *STEEL FRAME* PARA UTILIZAÇÃO EM BRASÍLIA

ABDALA CARIM NABUT NETO

DISSERTAÇÃO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISÍTOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM ESTRUTURAS E CONSTRUÇÃO CIVIL.

APROVADA POR:		
Prof ^a . Rosa Maria Sposto, DSc. (PECC - UnB)		
(Orientadora)		
Prof ^a . Michele Tereza Marques Carvalho, DSc. (PECC - U (Examinadora Interna)	J nB)	
Prof. João Fernando Dias, DSc. (UFU) (Examinador Externo)		

BRASÍLIA/DF, 23 DE SETEMBRO DE 2011

FICHA CATALOGRÁFICA

NABUT NETO, ABDALA CARIM

Energia Incorporada e Emissões de CO₂ de Fachadas. Estudo de Caso do *Steel Frame*

para Utilização em Brasília. [Distrito Federal] 2011.

xxv, 157p., 210 x 297 mm (ENC/FT/UnB, Mestre, Estruturas e Construção Civil, 2011).

Dissertação de Mestrado – Universidade de Brasília. Faculdade de Tecnologia.

Departamento de Engenharia Civil e Ambiental.

1. Energia Incorporada

2. Emissões de CO₂

3. Steel Frame

4. Fachadas

I. ENC/FT/UnB

II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

NABUT NETO, ABDALA C. (2011). Energia Incorporada e Emissões de CO₂ de

Fachadas. Estudo de Caso do Steel Frame para Utilização em Brasília. Dissertação de

Mestrado em Estruturas e Construção Civil. Publicação E.DM-009A/11, Departamento de

Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 117p.

CESSÃO DE DIREITOS

AUTOR: Abdala Carim Nabut Neto

TÍTULO: Energia Incorporada e Emissões de CO₂ de Fachadas. Estudo de Caso do Steel

Frame para Utilização em Brasília

GRAU: Mestre

ANO: 2011

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação

de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e

científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa dissertação

de mestrado pode ser reproduzida sem autorização por escrito do autor.

Abdala Carim Nabut Neto

Brasília – DF – Brasil

E-Mail: carimnabut@unb.br; carimnabut@hotmail.com

iii

Dedicatória.

Dedico este trabalho ao meu pai, Marcos Nabut, por todos os seus ensinamentos, apoio e amor.

AGRADECIMENTOS

À Deus por conseguir alcançar mais um objetivo de vida que é a realização do mestrado em Estruturas e Construção Civil na Universidade de Brasília (UnB).

Ao meu pai, Marcos Nabut, pelo apoio e amor incondicional. Meu maior exemplo de competência profissional, honestidade, liderança, personalidade, força de vontade, garra, otimismo, inteligência e carinho. Obrigado por toda paciência e por todos os seus ensinamentos.

À minha orientadora Professora Rosa Maria Sposto pela disponibilidade, dedicação, comprometimento e incentivo na orientação deste trabalho. Gostaria de agradecer também as excelentes aulas de Qualidade na Construção Civil e Avaliação de Desempenho de Edificações.

Ao PECC pela vaga concedida no programa de mestrado e aos professores do PECC, em especial, Professor Elton Bauer por ter sedimentado conhecimentos extremamente importantes em Ciência dos Materiais, Sistemas de Revestimentos, Tecnologia Avançada do Concreto e por todo o apoio desde o início do mestrado. Ao Professor Luciano Bezerra pelas excelentes aulas de Métodos Matemáticos para Engenharia e Estruturas Metálicas. Aos professores Guilherme Melo, João Carlos Teatini, Antônio Nepomuceno, Paul William Partridge e José Luis Vital de Brito que contribuíram com inúmeros conhecimentos importantes durante o mestrado.

À Eva por desempenhar muito bem suas atividades como secretária do PECC contribuindo para o bom andamento das atividades diárias dos alunos e professores do programa.

À minha namorada Maria Alice Carvalho Miranda pelo companheirismo, incentivo, força, respeito, amor e carinho.

Aos amigos da UnB Ramon, Henrique, Mylane, Iuri, Sebastião, Marcus, Uchôa, Urubatan, Elaine, Jorge, Sara, Patrícia, Dyorgge, Ádria, Fábio, Hernane, Mariana, Wallison, Alejandro e Antônio Carlos pelo companheirismo e auxílio durante o mestrado.

Ao meu amigo Laszlo Piquet pelo companheirismo nos jogos de tênis e aos amigos da Fundação Getúlio Vargas (FGV), em especial João Victor Beze e Leonardo Figueiredo por animar as aulas noturnas do MBA em gestão financeira, controladoria e auditoria.

Ao José Maria de Oliveira Júnior (Tio Júnior) por ter aberto sua empresa (JM Construções e Terraplenagem) e por ter contribuído assim imensamente para este trabalho. Ao Pedro Henrique Bicalho por ter me acompanhado durante a visita à JM.

À todos os meus amigos que sempre me motivaram.

RESUMO

ENERGIA INCORPORADA E EMISSÕES DE CO2 DE FACHADAS. ESTUDO DE

CASO DO STEEL FRAME PARA UTILIZAÇÃO EM BRASÍLIA.

Autor: Abdala Carim Nabut Neto

Orientadora: Rosa Maria Sposto, DSc.

Programa de Pós-graduação em Estruturas e Construção Civil

Brasília, Setembro de 2011

Este trabalho apresenta uma análise da energia incorporada e das emissões de CO₂ de um modelo

de fachada em steel frame comparativamente com um modelo de fachada convencional.

Desenvolveu-se um estudo aplicado de sustentabilidade energético-ambiental de fachadas de steel

frame, considerando-se: energia incorporada total (EI_T) dos sistemas e emissões de CO₂ totais

(ECO_{2T}). Os resultados foram comparados com o sistema convencional de vedos de fachadas com

blocos cerâmicos, argamassa de revestimento e placas cerâmicas. Para a realização da pesquisa

utilizou-se a técnica de Estudo de Caso, para a determinação da EI_{TOT} e ECO_{2TOT}, utilizou-se: a)

dados secundários de extração de matéria prima e fabricação dos materiais (MJ/kg); b) dados

secundários de emissões de CO₂ (kg CO₂/kg) relacionados com a extração e fabricação dos

materiais de construção; c) energia incorporada e emissões de CO₂ relacionadas ao transporte de

materiais de construção feito por caminhões em Brasília; e d) análise do consumo de materiais.

Para o levantamento de dados tomou-se como base a literatura nacional e internacional e pesquisas

junto aos fabricantes e empresas especializadas. Este trabalho contribui para mostrar as

dificuldades que se encontram ao se desejar comparar alternativas construtivas sob a ótica da

sustentabilidade. Além disso, vem incrementar o banco nacional de dados de energia incorporada e

emissões de CO₂ de materiais, que pode servir para outros estudos futuros, como a avaliação do

ciclo de vida (ACV).

Palavras-chave: Energia incorporada, Emissões de CO₂, Steel Frame, Fachadas.

viii

ABSTRACT

EMBODIED ENERGY AND CO₂ EMISSIONS OF FACADES. CASE STUDY FOR THE USE OF *STEEL FRAME* IN BRASÍLIA.

Author: Abdala Carim Nabut Neto Supervisor: Rosa Maria Sposto, DSc.

Programa de Pós-graduação em Estruturas e Construção Civil

Brasilia, September of 2011

This document presents an analysis of the embodied energy and CO₂ emissions of a facade model using steel frame comparatively with a conventional facade model. A research of the environmental and energetic sustainability for steel frame facades was made considering: the total embodied energy (EI_{TOT}) and CO₂ emissions (ECO_{2TOT}). The results were compared with the conventional façade system built with ceramic blocks, mortar coverings and ceramic coating. The case study technique was used to determine the total embodied energy and CO₂ emissions in the facade models using: a) secondary data sources for the extraction of raw materials and manufacture of the final products (MJ/kg); b) secondary data regarding CO₂ emissions (kg CO₂/kg); c) incorporated energy and CO₂ emissions related to the transportation of construction materials made by trucks in Brasília; and d) analysis of the consumption of construction materials. To gather such data, national and international literatures were used as a base and research with specialized companies were also made. This paper contributes to show the difficulties encountered when deciding to compare construction alternatives under the sustainability concept. Moreover, this study enhances the national data base of embodied energy and CO₂ emissions associated with different materials that can be useful to future studies such as LCA (life cycle analysis).

Keywords – Embodied energy, CO₂ emissions, Steel Frame, Facades.

SUMÁRIO

1	IN	NTRO	DDU	ÇÃO	19
	1.1	MO	TIV	AÇÃO	23
	1.2	JUS	TIFI	CATIVA	24
	1.3	OBJ	ETI	VOS	25
	1.4	EST	RUT	TURAÇÃO DA DISSERTAÇÃO	25
2	R	EVIS	SÃO	BIBLIOGRÁFICA	27
				ITABILIDADE APLICADA À CONSTRUÇÃO CIVIL E O CICLO ÃO	
		.1.1	3	actos ambientais da cadeia produtiva da construção civil	
			_	IA INCORPORADA E EMISSÕES DE CO2 DOS MATERIAIS	
		.2.1		iceitos gerais de energia	
		.2.1		rgia Incorporada dos materiais de construção civil	
	۷.	.2.2 2.2.		Energia de extração de materiais	
		2.2.		Energia de fabricação de materiais	
		2.2.		Energia de transporte de materiais	
		2.2.		Dados de energia incorporada (EI _I) dos materiais de construção	
	2			issões de CO ₂ na construção civil	
				STEEL FRAME EM FACHADAS DE EDIFÍCIOS	
		.3.1		tórico e descrição do sistema steel frame	
		.3.2		icação do steel frame em fachadas de edifícios	
		.3.3		ntagem e Encaixe	
3				LOGIA	
_				O DA PESQUISA, TIPO DE DADOS UTILIZADOS E SEQUENCI	
	CÁI	LCUI	LO P	ARA AS VARIÁVEIS EM ESTUDO	88
				DAS EM STEEL FRAME (SF): ELEMENTOS PARA A AÇÃO/CÁLCULO DAS VARIÁVEIS DO ESTUDO	90
				DAS CONVENCIONAIS (FC): ELEMENTOS PARA A AÇÃO/CÁLCULO DAS VARIÁVEIS EM ESTUDO	93
				NCIA DAS ETAPAS	
				PERAÇÕES E LIMITAÇÕES DE CÁLCULO	
4				TAÇÃO E ANÁLISE DOS RESULTADOS	
	4.1			IA INCORPORADA NO TRANSPORTE DE MATERIAIS	
	4.2	FAC	CHA	DA EM STEEL FRAME	105
	4.	.2.1	Ene	rgia Incorporada e Emissões de CO2	105
	4.3	FAC		DA CONVENCIONAL	

	4.	.3.1 Energia Incorporada e Emissões (CO ₂)	. 106
,	4.4	ANÁLISE PARAMÉTRICA FINAL DA EI _{TOT} E ECO _{2TOT} DO SF VS. FC	. 107
5	C	ONCLUSÕES E SUGESTÕES	. 114
	5.1	CONSUMO DE MATERIAIS	. 114
	5.2	EI _I E ECO _{2I} PARA SF E FC	. 114
	5.3	EI _T E ECO _{2T} PARA SF E FC	. 115
	5.4	EI _{TOT} E ECO _{2TOT} PARA SF E FC	. 115
	5.5	CONSIDERAÇÕES FINAIS	. 115
	5.6	SUGESTÕES PARA TRABALHOS FUTUROS	. 117
RE	EFE	RÊNCIAS BIBLIOGRÁFICAS	. 119
ΑF	ÊΝ	DICES	. 130
A۱	NEX	OS	. 140

LISTA DE TABELAS

Tabela 2.1 – Impactos negativos identificados globalmente (modificado – Resende, 2007)	1
Tabela 2.2 – Exemplos de Impactos ambientais locais, regionais e globais (Goldemberg e Villanueva, 2003)	
Tabela 2.3 – Alguns impactos ambientais gerados na extração de matérias-primas para os	
materiais de construção (modificado – Grigoletti, 2001)	5
Tabela 2.4 – Matérias primas da indústria da construção e a avaliação de sua abundância (modificado – Petrucci (1982), Dasmaceno e Storolli (1994), Lippiat (1998) e Sperb	_
(2000))	5
Tabela 2.5 – Comparativo da sustentabilidade aplicada a fontes renováveis e não	`
renováveis (modificado – Bermann, 2003) 42	2
Tabela 2.6 – Estimativa de energia incorporada na produção de blocos cerâmicos	1
utilizando forno contínuo em Goiás e no distrito Federal (Sposto, 2007)	
Tabela 2.7 – Energia incorporada do aço (Tavares, 2006)	
Tabela 2.8 – Demonstrativo do cálculo da energia incorporada do clínquer	
Tabela 2.9 – Energia incorporada de cimentos Portland (adaptado de Carvalho, 2002) 64 Tabela 2.10 – Energia incorporada de carrânica de revestimento (Poltran e Mortinez, 2004)	
Tabela 2.10 – Energia incorporada da cerâmica de revestimento (Beltran e Martinez, 2004)	
Tabela 2.11 – Evolução da distribuição modal do transporte de cargas no Brasil (Bermann, 2003)	
Tabela 2.12 – Conteúdo energético dos materiais de construção em alguns países)
)
(modificado – Sperb, 2000 e Grigoletti, 2001)	
Tabela 2.14 – Energia em diferentes componentes de alvenaria (Reddy e Jagadish, 2001)71	
Tabela 2.15 – Energia incorporada em argamassas ^a (Reddy e Jagadish,2001)	
Tabela 2.16 – Energia incorporada de materiais segundo diversos autores	
Tabela 2.17 – Classificação de poluentes atmosféricos (modificado - Resende, 2007) 75	
Tabela 2.18 – Evolução dos volumes líquidos de emissão de CO ₂ (Bermann, 2003) 76)
Tabela 2.19 – Emissões de CO ₂ de diferentes tipos de cimento Portland (modificado -	7
Carvalho, 2002) 77	
Tabela 2.20 – Emissões de CO ₂ por produto (Stachera e Casagrande, 2007)	
Tabela 2.21 – Emissões de CO ₂ associadas a alguns materiais	1
Tabela 2.22 – Exemplos de construções em light <i>steel framing</i> (modificado – Freitas e	`
Crasto, 2006)	
Tabela 2.24 – Perfis de aço galvanizado para steel frame (Pini, 2008)	
Tabela 2.25 – Perfis de aço para uso em <i>Light Steel Framing</i> (NBR 15253:2005)	
Tabela 3.1 – Aplicação do método de estudo de caso	
Tabela 3.2 – Classificação dos dados obtidos no trabamo 90 Tabela 3.3 – Sequência de cálculos 90	
Tabela 3.4 – Principais fatores de conversão (adaptado de Goldemberg e Bermann 2003)97	
Tabela 3.5 – Valores de El _I e ECO _{2I} adotados na ferramenta de cálculo	
Tabela 3.6 – Valores de ECO ₂₁ adotados na ferramenta de cálculo (Stachera Jr., 2007) 98	
Tabela 3.7 – Quantitativo de materiais por m ²	
Tabela 3.8 – Transporte dos materiais para SF	
Tabela 3.8 – Transporte dos materiais para SF	
Tabela 4.1 – Consumo médio de combustível de caminhões	
Tabela 4.2 – Consumo médio de combustível de caminhões cheios	
- 1 ao cha 1.2 - Combanno medio de combaba ver de camininos elicios	,

Tabela 4.3 – Consumo médio de combustível de caminhões vazios	104
Tabela 4.4 – Perfis comerciais do SF	107
Tabela 4.5 – Valores obtidos para SF com M5 de 0,8 mm de espessura	113

LISTA DE FIGURAS

Figura 1.1 – Evolução das emissões de CO ₂ (kt) no Brasil (World Bank, 2010)	20
Figura 1.2 – Evolução do consumo de energia (kTEP) no Brasil (World Bank, 2010)	20
Figura 1.3 – Exemplos de fachadas inovadoras: (a) Fachada Foto-Voltaica (b) Fachada d	o
edifício da Sony no Japão (Borigato, 2010)	21
Figura 1.4 – Exemplos de fachadas inovadoras (Borigato, 2010)	
Figura 2.1 – Dimensões da sustentabilidade (modificado – UNEP, 2007)	
Figura 2.2 – Ciclo aberto de produção, distribuição e consumo de bens (modificado –	
Grigoletti, 2001).	30
Figura 2.3 – Ciclo de produção fechado (modificado – John, 2000)	
Figura 2.4 – Fluxograma do ciclo de vida de fachadas (modificado – ISO 14040, 2001)	
Figura 2.5 – Impactos das principais fases da indústria da construção civil com esquema	
das fases do ciclo de vida de materiais de construção (modificado – Soares <i>et al.</i> , 2002).	
Figura 2.6 – Extração de carvão mineral na superfície (ANEEL, 2008)	
Figura 2.7 – Recuperação de área degradada com plantio de acácias (ANEEL, 2008)	
Figura 2.8 – Oferta de energia interna no Brasil em 2010 (Brasil, 2011)	
Figura 2.9 – Oferta de energia no mundo em 2008 (Brasil, 2011)	
Figura 2.10 – Perfil esquemático do processo de produção de energia elétrica a partir do	
carvão mineral (modificado - ANEEL, 2008)	
Figura 2.11 – Geração de energia elétrica por tipo de combustível (IEA, 2008)	
	43
Figura 2.12- Energia incorporada na cadeia de produção de edifícios (modificado - Guimarães, 1985).	17
	4/
Figura 2.13 – Principais etapas de análise na quantificação da energia incorporada dos	40
materiais de construção civil	49
Figura 2.14 - Extração do calcário utilizado na fabricação do cimento Portland (Silva,	50
2002)	
Figura 2.15 - Extração da argila utilizada na fabricação do cimento Portland (Silva, 2002	
	50
Figura 2.16 - Extração da argila utilizada na fabricação de blocos cerâmicos (Sposto, 200	
D' 0.17 D	
Figura 2.17- Rotas para produção de aços estruturais (Pinho e Pannoni, 2010)	52
Figura 2.18- Ilustração de um forno de coque, utilizado na siderurgia integrada (Pinho e	
Pannoni, 2010)	53
Figura 2.19 - Esquema de uma sinterização, utilizada na siderurgia integrada (Pinho e	
Pannoni, 2010)	
Figura 2.20- Esquema de funcionamento do alto-forno (Pfeil, 2009)	
Figura 2.21- Esquema do conversor de oxigênio (Pfeil, 2009).	
Figura 2.22- Esquema do lingoteamento contínuo (Pfeil, 2009)	
Figura 2.23- Esquemas de laminadores (Pfeil, 2009)	58
Figura 2.24- Esquema de um laminador de perfis estruturais de aço (Pinho e Pannoni,	
2010)	58
Figura 2.25- Evolução da produção por tipo de cimento (%) (modificado – Battagin e	
Silva, 2010)	60
Figura 2.26 - Preparação do calcário, principal matéria prima na fabricação do Cimento	
Portland e estocagem e pré-calcinação da farinha. (Battagin e Silva, 2010)	61
Figura 2.27- Forno rotativo com pré-aquecedor e pré-calcinador (Battagin e Silva, 2010))
Figura 2.28- Esquema de fabricação do cimento Portland (Battagin e Silva, 2010)	
Figura 2.29 - tipos de veículos articulados e respectivos PBTC (Machado et al. 2000)	

Figura 2.30- Tipos de combinação de veículos de carga (Machado et al., 2000)	
Figura 2.31 - Contribuição da demanda de energia primária para a fabricação de mate	riais
	69
Figura 2. 32 – Protótipo de residência em Light Steel Framing na Exposição Mundial	
Chicago em 1933 (HTTP://webpages.marshall.edu/~brooks/STRAN/stran 1.htm)	
Figura 2. 33 – Montagem de residência em Light Steel Framing, São Paulo (Construto	ra
Sequência)	80
Figura 2. 34 – Painéis do pavimento térreo de casa residencial Belo Horizonte – MG	
(Freitas e Crasto, 2006)	
Figura 2. 35 – Estrutura do telhado de residência em LSF (Freitas e Crasto, 2006)	80
Figura 2. 36 – Residência em Cotia - SP (Freitas e Crasto, 2006)	80
Figura 2. 37 – Residência em Oxford – Inglaterra (HTTP://www.steel-sci.org/lightstee	21/)80
Figura 2. 38 – Hotel na Inglaterra (http://www.steel-sci.org/lightsteel)	
Figura 2. 39 – 1.425 módulos em LSF formam esse edifício na Inglaterra (
http://www.corusconstruction.com/page_9088.htm)	81
Figura 2. 40- Sistema construtivo aberto, usado com vários tipos de componentes	
industrializados compatíveis, o steel framing é montado depois da execução da fundaç	ão
do tipo radier, sobre isolamento hidrófobo e as instalações elétricas e hidráulicas	
(Arcoweb, 2010)	81
Figura 2. 41- A modulação permite o controle de utilização e a minimização do	
desperdício dos materiais complementares (Arcoweb, 2010).	81
Figura 2. 42- Casa com steel framing e fechamento com placas OSB fabricadas com ti	
de madeira reflorestada, desenvolvidas nos Estados Unidos mas já disponíveis no mero	
brasileiro (Arcoweb, 2010).	
Figura 2. 43 - Casa pronta utilizando o sistema <i>steel frame</i> (Arcoweb,2010)	
Figura 2.44 – Reforma de fachada usando <i>steel frame</i> (http://www.steel-sci.org/lightst	
ingula 2111 Terorina de racinada domino sicol y amo (intipu) in vivisicor senorgingnos	
Figura 2.45- Esquema de fachada com sistema steel frame e placas cimentícias (Pini,	02
2008)	83
Figura 2. 46- Componentes típicos do <i>steel frame</i> (SANS, 2009)	
Figura 2. 47- Seção transversal típica de uma fachada em <i>steel frame</i> (SANS, 2009)	
Figura 3.1 – Variáveis consideradas no estudo	
Figura 3.2 – Método de estudo de caso (YIN, 2001)	
Figura 3.3- Modelo de fachada com sistema steel frame	
Figura 3.4- Modelo de guia para steel frame	
Figura 3.5- Modelo de montante para steel frame	
Figura 3.6- Modelos de parafusos utilizados no sistema <i>steel frame</i> (Eternit,2009)	
Figura 3.7- Modelo de placas cimentícias utilizadas no sistema <i>steel frame</i> (Eternit, 2007)	
1 igura 5.7- Wodelo de piacas emenderas utilizadas no sistema sieei frame (Eleinit,20	
Figura 3.8- Modelo de fachada com sistema convencional	
Figura 3.9 - Organização de metodologia de elaboração do trabalho	
Figura 3.10 - Organização com o foco da dissertação	
Figura 4.1 – Energia incorporada na fabricação de materiais de construção	
Figura 4.2 – Emissões de CO ₂ associadas aos materiais de construção	
Figura 4.3 – Variações em torno da média para caminhões cheios	
Figura 4.4 – Variações em torno da média para caminhões vazios	104
Figura 4.5 – Comparativo da evolução do consumo de combustível no transporte de	105
materiais de construção no Brasil.	105
Figura 4.6 – Consumo total de materiais em massa (kg/m²) dos sistemas de fachada SI	
FC	IU8

Figura 4.7 – Consumo total de materiais em volume (m³/m²) dos sistemas de fachad	a SF e
FC	108
Figura 4.8 – EI _I dos sistemas de fachada SF e FC	109
Figura 4.9 – ECO _{2I} dos sistemas de fachada SF e FC	109
Figura 4.10 – EI _T dos sistemas de fachada SF e FC	110
Figura 4.11 – ECO _{2T} dos sistemas de fachada SF e FC	111
Figura 4.12 – Energia incorporada total (EI _{TOT}) dos sistemas de fachada SF e FC	112
Figura 4.13 – Emissões totais de CO ₂ (ECO _{2TOT}) dos sistemas de fachada SF e FC	112

LISTA DE SÍMBOLOS, NOMENCLATURA E ABREVIAÇÕES

ACV - Análise de Ciclo de Vida

ACVE - Análise do Ciclo de Vida Energético

AE - Análise Energética

ANEEL - Agência Nacional de Energia Elétrica

BEN - Balanço Energético Nacional

BTU- British Thermal Unit (Unidade Térmica Britânica)

cal - Caloria

CH₄- Gás Metano

CIB - Conseil International Du Bâtiment

CO₂ - Dióxido de carbono

e - Espessura do material

ECO₂₁ - Emissões de CO₂ relacionadas à indústria dos materiais

ECO_{2T} - Emissões de CO₂ relacionadas ao transporte dos materiais de construção

ECO_{2TOT} - Emissões de CO₂ totais do componente ou sistema

EI_I- Energia incorporada relacionada à indústria dos materiais

EI_T - Energia incorporada relacionada ao transporte dos materiais de construção

El_{TOT} - Energia incorporada total do componente ou sistema

ENC - Departamento de Engenharia Civil e Ambiental da UnB

FC - Fachada convencional

IEA - International Energy Agency

IPCC - Intergovernmental Panel on Climate Change

J - Joule

kcal - Quilocaloria

kg - Quilograma

kW - Quilowatt

kWh - Quilowatt-hora

LSF - Light Steel Frame

MIC - Ministério da Indústria e Comércio

NBR Norma Brasileira Registrada

OECD - Organization for Economic Cooperation and Development

PECC - Programa de Pós-graduação em Estruturas e Construção Civil

UnB - Universidade de Brasília

MJ - mega Joule

SF - steel frame ou fachada em steel frame

TEP - tonelada equivalente de petróleo

UNEP - United Nations Environmental Programme

WCED - World Commission on Environment and Development

INTRODUÇÃO

O desempenho e o impacto ambiental negativo causado pela construção de edificações estão sendo cada vez mais discutidos em universidades, congressos, palestras, simpósios e outros meios técnicos. A entrada de novos materiais, componentes e elementos de fachada tais como steel frame com chapas cimentícias ou OSB (Oriented Strand Board), placas de granito, chapas metálicas e outras apontam a necessidade de sua avaliação no contexto onde estão sendo aplicadas¹.

O sistema construtivo em steel frame consiste em perfis comerciais de aço leve que são conectados entre si e entre outros revestimentos tais como as placas cimentícias através de ligações parafusadas. A principal diferença entre os perfis estruturais do steel frame e de estruturas metálicas convencionais é a maior esbeltez dos perfis do sistema em steel frame.

Do ponto de vista do impacto ambiental, a avaliação desses elementos deve considerar alguns aspectos principais, como:

- a) Fontes de energia utilizadas na fabricação;
- b) Energia incorporada dos materiais;
- c) Emissões de CO₂ na sua produção;
- d) Durabilidade:
- e) Potencial de reciclagem;
- f) Além de outros fatores pós obra.

Segundo dados do World Bank (2010), as emissões de CO₂ são decorrentes da queima de combustíveis fósseis como o petróleo e o gás natural e da fabricação de materiais de construção como cimento e aço. Na Figura 1.1 apresenta-se a crescente evolução das emissões de CO₂ no Brasil, alertando sobre a necessidade de estudos que envolvam o tema e busquem contribuições e alternativas para reduzir o volume de emissões de CO2 na atmosfera.

¹ A avaliação de novos elementos de fachada não implica ser desnecessária também a avaliação dos elementos convencionais.

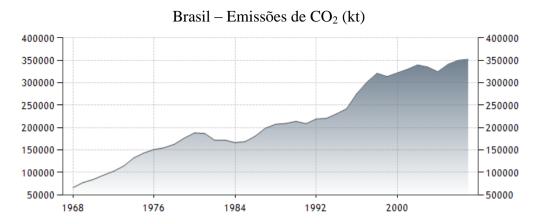


Figura 1.1 – Evolução das emissões de CO₂ (kt) no Brasil (World Bank, 2010)

Uma análise semelhante pode ser feita através da Figura 1.2 que apresenta a evolução do consumo energético no Brasil segundo dados do *World Bank* (2010). Observa-se o constante crescimento do consumo energético no País impulsionado pelo crescimento das indústrias de mineração, manufatura e construção civil. Os valores apresentados também servem de alerta para estudos e contribuições que visam reduzir o consumo energético no país contribuindo para um desenvolvimento mais sustentável.

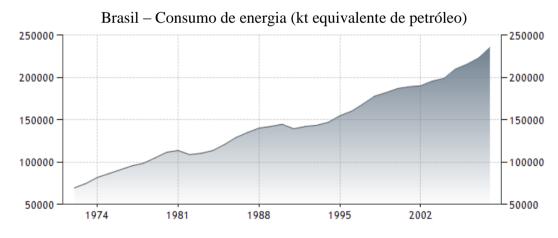


Figura 1.2 – Evolução do consumo de energia (kTEP) no Brasil (World Bank, 2010)

Resende (2007) destaca que o consumo de energia tem impactos relacionados com a própria limitação das fontes de energia, principalmente no caso de fontes não renováveis como o petróleo e o gás, mas também a diversos impactos indiretos relacionados à sua produção. A preocupação com a redução do consumo de energia cresce a cada dia, seja pela conscientização de que não são fontes infinitas, seja pela economia financeira.

Entende-se como energia incorporada dos materiais de construção civil a energia total gasta na produção de um material incluindo as etapas de extração das matérias primas, transporte e fabricação dos materiais. Pode-se acrescentar também a energia de transporte do material da fábrica até seu destino final, como por exemplo, os canteiros de obras.

Reddy e Jagadish (2001) destacam que na Índia, a energia incorporada de edifícios pode variar em limites (faixas) extensos dependendo da escolha dos materiais e técnicas de construção. Lajes e pórticos de concreto armado, alvenaria em blocos cerâmicos, alvenaria em blocos de concreto, telhas de cobertura representam sistemas convencionais comuns que formam a estrutura principal de edifícios. Sistemas construtivos semelhantes podem ser encontrados em muitos outros países desenvolvidos e em desenvolvimento.

Novas tecnologias e sistemas construtivos devem ser criados utilizando critérios e conceitos de sustentabilidade no sentido de utilizar materiais de menor energia incorporada e emissões de CO₂, além de contribuir para o armazenamento de energia como no caso da fachada fotovoltaica ilustrada na Figura 1.3 (a), onde painéis fotovoltaicos absorvem a energia solar e são capazes de gerar energia à ser consumida na própria edificação. Na Figura 1.3 (b) ilustra-se uma fachada totalmente iluminada e na Figura 1.4 também são apresentadas fotografias de fachadas inovadoras.

Figura 1.3 – Exemplos de fachadas inovadoras: (a) Fachada Foto-Voltaica (b) Fachada do edifício da Sony no Japão (Borigato, 2010)

Figura 1.4 – Exemplos de fachadas inovadoras (Borigato, 2010)

A indústria de suprimentos que alimenta o processo de edificações é caracterizada pela abundância de materiais e componentes. Observa-se, porém, que estes recursos não são infinitos. A crise de energia, o impacto no meio ambiente e a degradação das fontes naturais de recursos, que ocorrem hoje no Brasil e no mundo, apontam a necessidade de mais pesquisas sobre esses materiais e componentes, contribuindo assim para a amenização dos impactos ambientais produzidos, considerando-se desde a extração da matéria prima para a sua produção até a possibilidade de sua reciclagem no final da sua vida útil (Morais e Sposto, 2009).

Entre os principais avanços do *steel framing* no Brasil nos últimos dez anos está o desenvolvimento da cadeia de fornecedores, que passou por um importante aperfeiçoamento. Hoje, os componentes do sistema construtivo têm garantia de qualidade e são todos feitos no Brasil. Embora não existam números e estatísticas que possam retratar exatamente quanto o *steel framing* tem crescido no país, o sistema é conhecido por grande parte dos profissionais do setor (Arcoweb, 2010).

O governo federal, através do programa Minha Casa, Minha Vida, subsidiará habitações populares e vários profissionais da área acreditam que um plano desse porte só funcionará com a adoção da construção industrializada (Arcoweb, 2010). O sistema construtivo em *steel frame* torna-se então uma opção a ser utilizada nesse programa onde a Caixa Econômica Federal apresenta requisitos e condições mínimas de desempenho estrutural, segurança ao fogo, revestimentos, durabilidade entre outros. Entretanto, não são apresentados requisitos mínimos de sustentabilidade ambiental como energia incorporada dos materiais e emissões de CO₂, análise que pode ser aplicada para os materiais constituintes da fachada de habitações e edificações.

1.1 MOTIVAÇÃO

Carvalho (2009) aponta que temas relacionados à sustentabilidade, como o combate ao aquecimento global e a preservação do meio ambiente não está mais restrito ao círculo de cientistas nas universidades; estão inseridos no debate político e estratégico de grandes corporações mundiais e ocupam a pauta de prioridades de diversos países.

Um exemplo é a publicação dos relatórios do Painel Intergovernamental Sobre Mudança Climática (*Intergovernmental Panel on Climate Change* - IPCC, 2007), que prevêem um aumento médio na temperatura do planeta em torno de 1,8 °C a 4°C até 2100, provocando um aumento no nível dos oceanos de 18 a 59 cm, inundações e ondas de calor mais freqüentes, além de ciclones violentos durante mais de um milênio. Ainda segundo o estudo apresentado pelo IPCC (2007), o aquecimento do planeta se deve, principalmente, à emissão de dióxido de carbono (CO₂) provocada pelo homem ocasionando as mudanças climáticas que obrigarão milhares de pessoas a abandonar suas casas, e o número de refugiados do clima será superior ao de refugiados de guerra.

Diversos autores como Erlandsson e Borg (2003) e Shimbo et al. (2000), afirmam que a indústria da construção é uma grande consumidora de recursos naturais, envolvendo em torno de 30% a 40% do total da energia consumida, e é responsável por aproximadamente 44% do total de materiais usados para os vários fins, sendo ainda altamente poluidora no que se refere a emissões de CO₂. Tais fatos, aliados ao crescente surgimento de novas tecnologias evidenciam a necessidade de estudos visando à redução das emissões de CO₂ e do consumo de energia nas várias etapas do processo de produção.

Portanto, a motivação desta pesquisa se baseia no fato de que a indústria da construção civil impacta o meio ambiente de diversas formas, desde a exploração das matérias primas não renováveis, sua transformação e emprego em soluções construtivas.

Dentre essas implicações da atividade, escolheu-se para este estudo aquelas relacionadas à energia incorporada e emissões de CO₂ para atmosfera. Pretende-se, desta forma, caracterizar os principais agentes envolvidos no estudo como a fabricação e transporte destes materiais de construção.

1.2 JUSTIFICATIVA

A vedação vertical pode ser definida como sendo um subsistema de uma edificação constituído por elementos que compartimentam e definem os elementos internos, controlando a ação de agentes indesejáveis, com fechamentos (vedos), revestimentos, aberturas e esquadrias.

O sistema de vedação vertical pode então ser classificado como um elemento da envoltória externa, como o caso das fachadas, de compartimentação interna ou de separação, produzida por conformação ou por acoplamento úmido, fixa, pesada, monolítica, com revestimento a posteriori ou sem revestimento e descontínua.

As paredes podem ser subclassificadas em função de seu desempenho: 1) estruturais, que atuam como estruturas portantes do edifício; 2) de contraventamento, que têm a função de aumentar a rigidez da estrutura reticulada e absorver os esforços decorrentes da deformação do pórtico; 3) de vedação, que atuam somente como componente de vedação (Carvalho, 2009).

Há a necessidade se de fazer algumas distinções das formas construtivas de se executar uma parede, as quais podem ser: 1) de alvenaria, composta por blocos unidos entre si por juntas de argamassa, formando um conjunto rígido e coeso (parede de blocos de concreto, cerâmico, concreto celular, solo cimento maciço e blocos de rocha) (HENDRY, 2001); 2) maciças, moldadas no local, empregando-se fôrmas laterais, com a possibilidade de uso de diferentes materiais (de concreto, de solo cimento, de taipa, de concreto celular); 3) maciças pré-fabricadas ou pré-moldadas, que são aquelas constituídas pelo acoplamento de painéis pré-moldados ou pré-fabricados. A mesma análise pode ser feita para fachadas de edificações onde as mesmas podem ter diferentes formas construtivas e materiais distintos das demais vedações verticais internas.

Existe uma grande variabilidade nas tipologias de fachadas das edificações como por exemplo: revestimentos com placas de rocha fixadas com inserts metálicos, fachadas com dupla camada de vidro, fachadas com blocos de concreto, fachadas fotovoltaicas e fachadas em *steel frame* e outras. Para estudar a energia incorporada e emissões de CO₂, definiu-se o modelo de fachada em *steel frame* por ser um sistema pré-fabricado que torna-se uma opção à ser utilizada em Brasília.

1.3 OBJETIVOS

Esta pesquisa tem como objetivo geral realizar o levantamento e a análise da energia incorporada total (EI_{TOT}) e emissões de CO₂ totais (ECO_{2TOT}) em elementos de fachadas que utilizam o sistema *steel frame* (SF) e FC fazendo-se um comparativo entre ambos.

Os parâmetros considerados nos processos de fabricação e transporte dos materiais são:

- Quantidade de emissões de CO₂ (kg CO₂/kg);
- Energia incorporada (MJ/kg).

Como objetivos específicos destacam-se:

- Obtenção da ordem de grandeza (faixa de valores) da EI_I e ECO_{2I} dos principais materiais utilizados no SF e FC;
- Levantamento do consumo de combustível de caminhões utilizados no transporte de materiais de construção em Brasília por meio de pesquisa de campo;
- Realização de uma análise paramétrica do SF com a FC.

1.4 ESTRUTURAÇÃO DA DISSERTAÇÃO

Esta dissertação está estruturada em cinco capítulos.

No primeiro capítulo, é apresentada uma abordagem geral da pesquisa, com a introdução do tema, a motivação e justificativa deste estudo e os seus objetivos.

No segundo capítulo são apresentados alguns conceitos fundamentais relacionados à área da pesquisa, como:

- introdução aos conceitos de sustentabilidade e avaliação do ciclo de vida energético (ACVE);
- descrição geral dos impactos ambientais causados pela indústria da construção civil e seus efeitos;
- energia incorporada de materiais de construção;
- conceitos gerais de energia e apresentação de dados estatísticos energéticos e ambientais relacionados a emissões de CO₂.

No terceiro capítulo é apresentada a metodologia, incluindo procedimentos e etapas de cálculo da energia incorporada e emissões de CO₂.

No quarto capítulo são apresentados os resultados obtidos, com o cálculo facilitado por meio de planilhas eletrônicas montadas com base nos modelos de fachada em *steel frame* e convencional.

O quinto capítulo reporta às conclusões obtidas neste trabalho e às sugestões para trabalhos futuros.

2 REVISÃO BIBLIOGRÁFICA

A busca da sustentabilidade na construção civil por meio da redução de impactos ambientais negativos e o entendimento mais amplo do seu conceito merecem atenção já que trata-se da preservação do planeta para as gerações futuras.

2.1 SUSTENTABILIDADE APLICADA À CONSTRUÇÃO CIVIL E O CICLO DA CONSTRUÇÃO

Freqüentemente observam-se alusões à palavra sustentabilidade de forma incorreta, ou seja, sem a consideração do tripé sócio-cultural, econômico e ambiental. Segundo a UNEP (2007), a sustentabilidade é a sinergia entre os aspectos ambientais, sociais e econômicos conforme exemplificado na Figura 2.1.

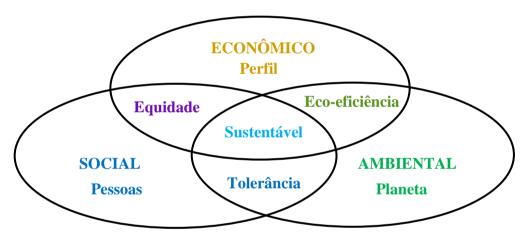


Figura 2.1 – Dimensões da sustentabilidade (modificado – UNEP, 2007).

Zimmermann, Althaus e Haas (2005) definem sustentabilidade como um estado no qual a ordem social estável é apoiada em uma estrutura econômica ajustável, podendo prevalecer um longo tempo sem sobrecarregar a capacidade ecológica da terra, promovendo as necessidades de todas as áreas da atividade humana.

Em outras palavras sustentabilidade é a capacidade de suprir as necessidades da geração presente sem comprometer a habilidade das futuras gerações em suprir suas próprias necessidades conforme definido pelo WCED (1987).

De acordo com Bessa (2010), a dimensão ambiental já tem sido amplamente debatida nas organizações que tem demonstrado uma maior responsabilidade nesse sentido concluindo que as iniciativas de preservação do meio ambiente podem trazer benefícios econômicos. Do mesmo modo, o *World Business Council for Sustainable Development* (WBCSD) introduziu, em 1992, o conceito de "eco-eficiência", para destacar a ligação entre melhorias ambientais e benefícios econômicos, dando maior visibilidade ao aspecto econômico da sustentabilidade.

Bessa (2010) destaca ainda que a dimensão social não tem tido a mesma atenção, pois seus benefícios são mais difíceis de serem mensurados. Porém, já existem bons exemplos de que a melhoria no meio ambiente pode trazer mais saúde e segurança para a sociedade como o reflorestamento de áreas degradadas pela construção civil.

Os princípios da sustentabilidade visam minimizar os impactos ambientais, ressaltando conceitos norteadores como: (1) uso eficiente de energia e água; (2) uso de espaços iluminados e ventilados naturalmente; (3) especificações de materiais duráveis e de fácil desconstrução; (4) especificações de materiais fabricados sem o uso de materiais tóxicos e com menor energia incorporada; (5) utilizar um processo produtivo de qualidade, que minimize perdas e inclua a gestão dos resíduos e emissões geradas.

Anink *et al.* (1996) destacam que a utilização de energia na construção civil não se refere apenas ao consumo de energia durante a produção mas também durante a extração, transporte, execução, utilização e desconstrução. A utilização energética por si só significa o consumo de matérias primas escassas em uma mão e emissões nocivas que contribuem para o efeito estufa em outra mão.

Os mesmos autores apontam que o estoque de diversas matérias primas é finito. O reabastecimento do estoque de matérias primas é um processo extremamente lento (em alguns casos chega a milhões de anos), portanto, o mesmo pode ser totalmente destruído. Matérias primas renováveis se regeneram mais rápido porque o material é produzido por organismos vivos. Óleo, carvão e gás também são produzidos por organismos vivos, mas levam milhares de anos para estes organismos serem convertidos em matérias primas úteis.

Pode-se então apenas falar de matérias primas renováveis quando a taxa de crescimento natural da matéria prima (taxa de rotatividade) é de ordem comparável à sua taxa de consumo.

Os critérios de sustentabilidade como uso eficiente de energia e água, utilização de materiais duráveis e de fácil desconstrução, especificações de materiais fabricados sem o uso de substâncias tóxicas e com menor energia incorporada e utilização de um processo produtivo de qualidade que minimize perdas e inclua a gestão dos resíduos gerados devem ser levados em consideração. Portanto, a escolha dos materiais de construção para execução de uma determinada edificação é uma tarefa cada vez mais importante e desafiadora.

Através dos séculos, os materiais de construção foram responsáveis pela maior quantidade de matéria prima consumida, situação corrente ainda hoje. Mais recente é a reciclagem, realizada através da combinação de coleta e processamento (por exemplo, trituração e peneiramento para a reutilização de agregados e fusão para metais) dos materiais de construção usados, geradora de um produto denominado resíduo de construção e demolição (Hendriks et al., 2007).

Hendriks et al. (2007) também destacam que a reciclagem tem sido utilizada principalmente na prevenção de resíduos e em aplicações úteis, mas os benefícios ambientais poderiam ser ainda maiores se as medidas para garantir as máximas possibilidades de reciclagem futura fossem incorporadas na fase de projeto. Isso também reflete em um dos três princípios fundamentais da política ambiental, denominado gerenciamento integrado em cadeia. Esse gerenciamento visa realizar uma administração positiva do ponto de vista ambiental, social e econômico dos ciclos dos materiais baseando-se nos seguintes princípios:

- Redução do uso de fontes de energia provenientes de combustíveis fósseis e maximização do uso de fontes de energia ambientalmente corretas;
- Equilíbrio do processo de renovação e decomposição de matérias-primas biogênicas renováveis;
- Manutenção das matérias primas em seu ciclo no maior período de tempo possível, a menos que não seja apropriado do ponto de vista ambiental. Isso significa, por

um lado, promover uma maior vida útil do produto, e, por outro, implementar passo a passo o número máximo de níveis e ciclos de reciclagem.

Lyle (1997) apud Grigoletti (2001) aponta que a produção de bens de consumo da sociedade contemporânea acontece em ciclos abertos, onde a matéria prima é extraída da natureza – sem reposição – processada, com geração de resíduos – que são lançados na terra, ar ou água – e a produção, após consumida, gera mais resíduos, novamente lançados no meio ambiente. Este ciclo aberto de materiais e energia leva a um esgotamento contínuo dos recursos naturais do planeta, tornando, a médio e longo prazos, a vida na terra insustentável. Na Figura 2.2 apresenta-se o fluxograma do ciclo aberto de produção, distribuição e consumo dos bens.

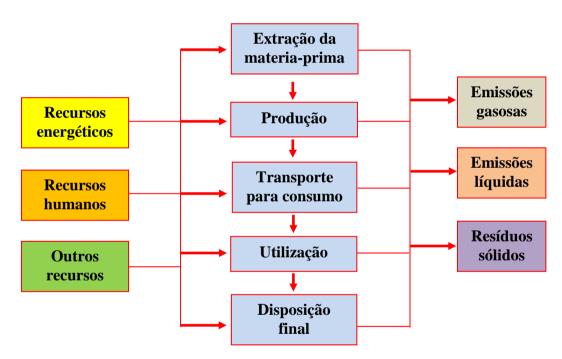


Figura 2.2 – Ciclo aberto de produção, distribuição e consumo de bens (modificado – Grigoletti, 2001).

Observando o não reaproveitamento dos materiais (reciclagem) e a busca pela redução de emissões e resíduos, faz-se necessário o desenvolvimento do ciclo semi fechado de produção como sendo um dos primeiros passos para o entendimento minucioso do ciclo fechado de sustentabilidade. Na Figura 2.3 apresenta-se um modelo de ciclo semi fechado de produção.

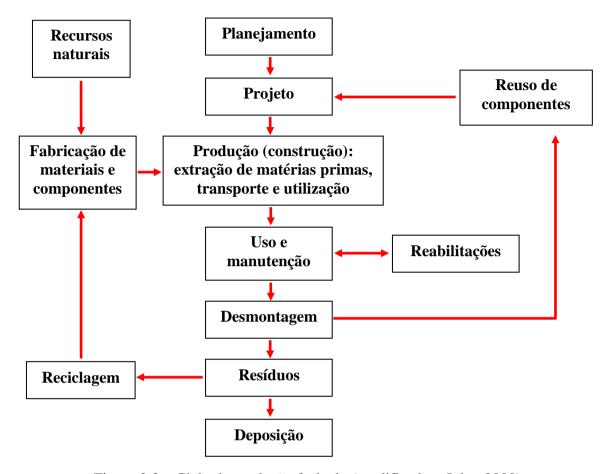


Figura 2.3 – Ciclo de produção fechado (modificado – John, 2000)

Com relação ao ciclo de produção na construção civil, destaca-se também a avaliação do ciclo de vida (ACV) dos materiais como conceito relevante. A NBR ISO 14040 (2001) conceitua ciclo de vida como sendo os estágios sucessivos e encadeados de um sistema de produto, desde a aquisição da matéria-prima ou geração de recursos naturais à disposição final.

O ciclo de vida de fachadas, por exemplo, engloba os processos de extração e transformação da matéria-prima, instalação na obra, uso, demolição/desconstrução, reciclagem / reuso / disposição final, portanto pode ser um ciclo fechado de produção, conforme apresentado na Figura 2.4.

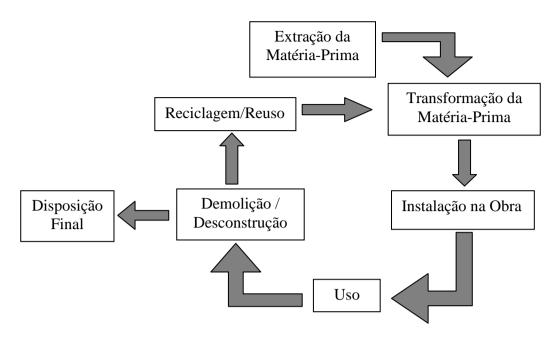


Figura 2.4 – Fluxograma do ciclo de vida de fachadas (modificado – ISO 14040, 2001)

Ainda segundo a ABNT NBR ISO 14040 (2001), a ACV é uma ferramenta para avaliar aspectos ambientais e impactos potenciais associados a um produto por meio de inventário de entradas e saídas, avaliação de impactos potenciais e interpretação dos resultados. Então, uma ACV deve apresentar um escopo onde devem ser considerados itens como função do sistema de produto, unidade funcional e fronteiras do sistema. A unidade funcional é uma medida de desempenho e serve como referência comparativa. As fronteiras do sistema que delimitam as unidades de processo também devem ser incluídas na ACV.

Dentro do contexto da ACV pode-se definir também a avaliação do ciclo de vida energético (ACVE) dos materiais, componentes ou sistemas construtivos como sendo a quantificação da energia relativa aos materiais desde a extração da matéria-prima, fabricação e transporte dos materiais de construção.

Como exemplo de ACVE no Brasil, pode ser citado o trabalho de Tavares (2006) que analisou o consumo de energia ao longo do ciclo de vida de edificações, incluindo energia incorporada, energia operacional e energia pós-operacional (desconstrução), bem como a geração de emissões em cada fase do ciclo de vida. O mesmo autor destaca que um dos objetivos de uma ACVE é mostrar a relevância dos materiais de construção no conteúdo energético da edificação relatando que a proposta de uma ACVE não é substituir um

método de análise ambiental amplo como uma ACV, mas preferencialmente facilitar uma tomada de decisão a cerca da eficiência energética e dos impactos associados como, por exemplo, a geração de CO₂.

Carvalho (2009) afirma que a ACVE é uma forma simplificada, contudo significativa onde, fundamentada na norma ABNT NBR ISO 14040, prioriza o inventário de dados de consumos energéticos diretos e indiretos. Para se chegar aos dados utilizados nesse trabalho que considera a EI e ECO₂ relacionadas aos materiais de construção, buscaram-se inventários baseados no ciclo de vida energético dos materiais e pesquisas realizadas por diferentes autores.

2.1.1 Impactos ambientais da cadeia produtiva da construção civil

Resende (2007) destaca a definição de meio ambiente como sendo o conjunto de elementos constituído pelas águas interiores ou costeiras, superficiais ou subterrâneas, subsolo, ar, flora, fauna e comunidades humanas e seus inter-relacionamentos. O meio ambiente é composto então pela união de três conjuntos: o Meio Físico composto pelas águas, o solo e o ar, o Meio Biótico composto pela fauna e flora e o Meio Antrópico composto pelos seres humanos e seus relacionamentos entre si e com os demais elementos.

Segundo a Resolução nº 1 do Conselho Nacional do Meio Ambiente (CONAMA) de 1986, impacto ambiental é qualquer alteração das propriedades físicas, químicas e biológicas do meio ambiente, causada por qualquer forma de matéria ou energia resultante das atividades humanas que, direta ou indiretamente, afetam:

I - a saúde, a segurança e o bem estar da população;

II – as atividades sociais e econômicas;

III - a biota;

IV – as condições estéticas e sanitárias do meio ambiente;

V – a qualidade dos recursos ambientais

Um impacto ambiental pode ter aspectos positivos ou negativos. A busca por melhores condições do ambiente é um aspecto positivo (exemplo: reduzir a emissão de poluentes em uma indústria), se for maléfico ao meio ambiente é negativo (Fogliatti *et al.*, 2004).

Destaca-se através da Tabela 2.1 os principais impactos ambientais negativos identificados globalmente.

Tabela 2.1 – Impactos negativos identificados globalmente (modificado – Resende, 2007)

Item	Impacto Ambiental Global	
1	Aquecimento global	
2	Destruição da camada de ozônio	
3	Poluição por nutrientes	
4	Elevado consumo e limitações de fontes de energia	
5	Elevado consumo e limitação de matérias-primas não-renováveis;	
6	Elevada geração de resíduos	
7	Poluição do ar	
8	Exclusão social	
9	Redução da biodiversidade	
10	Desertificação e aumento da seca	
11	Poluição do solo	
12	Poluição e escassez de água	
13	Desflorestamento	
14	Acidificação atmosférica	
15	Outros	

Além da escala global, os impactos ambientais também podem ser regionais ou locais e suas influências podem ser de curto, médio e longo prazo (Chemla e Labouze, 1997). Por exemplo, a destruição da camada de ozônio é um impacto global com consequências de longo prazo; a poluição do ar pode ser um impacto regional de médio prazo; já os ruídos da construção de um edifício são impactos locais de curto prazo.

Resende (2007) destaca que o setor da construção civil tem forte influência sobre os impactos ambientais globais, regionais e locais sendo o maior causador de impactos ambientais do planeta. Praticamente todas as atividades humanas necessitam de um ambiente construído por mais simples que ele seja. Isso faz com que sua necessidade de recursos de diversas naturezas tenha grandes proporções e conseqüentemente sua interação com o meio ambiente reflita a sua intensidade.

Dentre os principais impactos causados ao meio ambiente pelo setor da construção civil, apresentados por CIB (1999), John (2000) e Degani (2003) pode-se citar:

- a) consumo de recursos naturais;
- b) geração de resíduos;

- c) consumo de energia;
- d) consumo de água;
- e) poluição ambiental;
- f) poluição do ar interior nos edifícios.

O advento da revolução industrial, o aumento populacional e a urbanização nos grandes centros, acompanhado da intensificação de construções de edificações, estradas, portos, aeroportos e outras obras, agravaram problemas referentes a impactos ambientais, os quais se tornaram objeto de estudo e de preocupação atual. Na Tabela 2.2 apresenta-se os principais impactos gerados.

Tabela 2.2 – Exemplos de Impactos ambientais locais, regionais e globais (Goldemberg e Villanueva, 2003)

Situação	Problema	Principal causa
	Poluição urbana do ar.	Uso de combustíveis fósseis para
		transporte.
Local	Poluição do ar em ambientes	Uso de combustíveis sólidos (biomassa
	fechados.	e carvão) para aquecimento e cocção.
		Emissões de enxofre e nitrogênio,
Regional	Chuva ácida	matéria particulada, e ozônio na queima
Regionai		de combustíveis fósseis principalmente
		no transporte.
	Efeito estufa.	Emissões de CO ₂ na queima de
		combustíveis fósseis.
Global	Desmatamento.	Produção de lenha e carvão vegetal e
		expansão da fronteira agrícola.
	Degradação costeira e marinha.	Transporte de combustíveis fósseis.

Grigoletti (2001) apresentou impactos gerados na extração de matérias-primas para os materiais de construção. Na Tabela 2.3 mostra-se a relação entre a extração de algumas matérias primas e seus impactos como devastação local, alteração de cursos de água entre outros.

Tabela 2.3 – Alguns impactos ambientais gerados na extração de matérias-primas para os materiais de construção (modificado – Grigoletti, 2001)

		Rejeitos	gerados na extração			Impa	ctos ambienta	nis	
Matéria Prima	Tipo de extração	Características	Disposição	Devastação local	Poluição por metais pesados *	Instabilização de áreas	Partículas aéreas	Poluição química da água	Alteração de cursos de água
Alumínio	Desmonte mecânico	Solo residual	Bota-fora						
Areia	Desmonte hidráulico e dragagem	Solo residual	Bota-fora (cursos d'água)						
Argila	Desmonte mecânico	Solo residual	Bota-fora (cursos d'água)						
Cobre	Desmonte p/ explosivos	Rocha	Bota-fora						
Estanho	Desmonte hidráulico e dragagem	Solo	Bota-fora						
Ferro	Desmonte p/ explosivos	Solo	Bota-fora						
Pedras	Desmonte p/ explosivos, mecânico e	Solo residual	Bota-fora						

^{*} Zinco (Zn), chumbo (Pb), cobre (Cu), níquel (Ni), ferro (Fe), entre outros

O setor produtivo e de transformação de materiais e componentes da construção, segundo John (2010), são de grande relevância, já que os mesmos são responsáveis pela extração de 40% a 75% das matérias primas da natureza. O concreto de cimento Portland é o material artificial de maior consumo pelo homem. Ainda segundo este autor, estima-se que 51 milhões de toneladas de cimento foram produzidos no Brasil em 2009, sendo possível estimar que a cada ano mais de 362 milhões de toneladas de produtos à base de cimento (cerca de 1,9 ton/hab.ano) são consumidos.

Considerando-se o processo de produção de edificações, observa-se que há impactos nas suas várias fases, incluindo consumo de energia, emissões e geração de resíduos. Na Figura 2.5 apresentam-se as principais fases da construção civil com esquema das fases do ciclo de vida de materiais de construção (Soares *et al.*, 2002).

Impactos da Indústria da Construção Civil

1 – Extração de Matéria Prima: cadeia produtiva da construção responsável pelo uso intenso dos recursos naturais disponíveis, renováveis ou não renováveis. Geração de material particulado no processo de extração.

2 – Transporte de Matéria Prima e Componentes: consumo de energia (ex. diesel) o que implica na necessidade de escolha dos materiais próximos aos centros consumidores, visando a minimização do consumo energético. Emissões de CO₂ na atmosfera, devido aos veículos, em geral sem manutenção adequada.

3 – Fabricação de Materiais: fonte de poluição com grandes liberações de CO₂

4 – Processo de Construção: implantação de canteiro de obras; execução de infraestrutura (rede de esgoto e água, rede de energia, pavimentação e paisagismo); execução da edificação. Nesta fase os impactos da construção são devidos ao consumo e desperdício de energia, água e insumos (geração de resíduos).

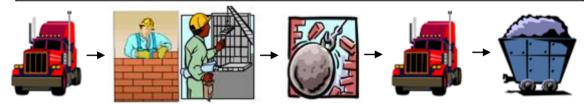


Figura 2.5 – Impactos das principais fases da indústria da construção civil com esquema das fases do ciclo de vida de materiais de construção (modificado – Soares *et al.*, 2002)

John (2010) destaca ainda que materiais abundantes como areia e argila para cerâmica já estão escassos em locais próximos das grandes ou médias cidades. Em consequência, há um aumento da distância de transporte e dos impactos ambientais associados. Além disso, um dos maiores desafios ambientais da construção é diminuir a intensidade do uso de materiais pelas construções. Em outras palavras, é preciso construir mais utilizando menor quantidade de materiais, ou seja, evitando maiores desperdícios.

Com relação à abundância das matérias primas, apresenta-se na Tabela 2.4 a relação de algumas matérias primas, suas composições básicas e a durabilidade global estimada de cada material. Ressalta-se que não foram considerados novos pontos de mineração ou extração dos materiais apresentados.

Tabela 2.4 – Matérias primas da indústria da construção e a avaliação de sua abundância (modificado – Petrucci (1982), Dasmaceno e Storolli (1994), Lippiat (1998) e Sperb (2000))

Matéria Prima	Composição básica	Disponibilidade (em anos)*	Avaliação	
Aço	Minério de ferro/carbono	231	Não Abundante	
Alumínio	Bauxita	225	Não Abundante	
Areia*	Sílica	-	Abundante	
Argila*	Sílica/alumina/óxidos de ferro/outros	-	Abundante	
Brita*	Aluminosilicatos/silicatos de ferro e magnésio/outros	-	Abundante	
Cal*	Calcário	-	Abundante	
Cimento*	Calcário/argila/gipsita	-	Abundante	
Cobre	Cobre	62	Em processo de esgotamento	
Estanho	Estanho	56	Em processo de esgotamento	
Ferro	Ferro	231	Não Abundante	
Policloreto de vinila (PVC)	Petróleo/cloreto de sódio	75	Em processo de esgotamento	
Zinco Zinco		47	Em processo de esgotamento	

^{*} Valores não encontrados nas bibliografias pesquisadas

Em relação às perdas de materiais, observa-se que a sua redução está associada tanto a questões de qualidade e grau de industrialização, quanto a questões gerenciais da obra, sendo uma estratégia importante para as empresas que desejam adquirir uma maior competitividade no mercado. Adicionalmente, a seleção correta do material mais adequado para atender os requisitos de desempenho dos elementos de uma edificação ainda é um desafio, pois exige que haja uma hierarquia dos objetivos específicos a serem atingidos (considerando-se as exigências do usuário em relação ao desempenho estrutural, de habitabilidade e de sustentabilidade, conforme estabelecido na NBR 15575 (ABNT, 2010).

No âmbito da sustentabilidade, podem ser considerados alguns requisitos, como por exemplo, a energia incorporada, as emissões de CO₂ e o consumo de materiais.

Segundo Anink *et al.* (1996), danos também podem ser causados ao ecossistema (junção entre entidades vivas como plantas e animais e entidades naturais como solo e clima em uma determinada área) e ao solo levando de décadas a séculos para o balanço ser restaurado em um ecossistema que foi corrompido. Os mesmos autores também apontam que quando um produto já cumpriu sua função (ou atingiu sua vida útil), sua deposição pode causar inúmeros problemas como a dificuldade de separação, baixo nível de degradação, geração de poeira, ocupação de espaço, degradação em aterros e liberação de substâncias nocivas se o material for queimado.

A construção civil utiliza inúmeras formas de energia renovável (como por exemplo, a biomassa) e não renovável (como o carvão mineral). As fontes de energia são utilizadas em larga escala nas indústrias de materiais de construção. A principal restrição à utilização do carvão mineral é o forte impacto socioambiental provocado em todas as etapas do processo de produção e também no consumo. A extração, por exemplo, provoca a degradação das áreas de mineração. A combustão é responsável por emissões de CO₂. Entretanto os impactos podem ser amenizados conforme mostra o exemplo na Figura 2.6 que apresenta o impacto causado pela extração do carvão mineral na superfície e a Figura 2.7 que apresenta a recuperação de área degradada com o plantio de acácias.

Figura 2.6 – Extração de carvão mineral na superfície (ANEEL, 2008)

Figura 2.7 – Recuperação de área degradada com plantio de acácias (ANEEL, 2008)

2.2 ENERGIA INCORPORADA E EMISSÕES DE CO₂ DOS MATERIAIS

Apresentam-se aqui os principais conceitos relacionados à energia incorporada dos materiais e emissões de CO₂ de elementos de fachada.

2.2.1 Conceitos gerais de energia

Bermann (2003) afirma que as fontes energéticas podem ser classificadas em função da renovabilidade. Enquanto os combustíveis fósseis (petróleo, gás natural e carvão mineral) são considerados não-renováveis, pois levam milhões de anos para se formarem e sua disponibilidade é limitada em função do esgotamento das reservas, a hidroeletricidade e a biomassa (lenha, carvão vegetal, cana de açúcar, entre outros) obtida através do plantio e reflorestamento que são consideradas como fontes renováveis, e se bem manejadas, podem assumir caráter sustentável.

Guimarães (1985) destaca que até o fim da Idade Média, a quase totalidade de energia usada provinha do uso da madeira (sob a forma de lenha), que levou à destruição das florestas que praticamente cobriam toda a Europa. Como a população humana há um milhão de anos atrás provavelmente não era superior a meio milhão de seres humanos e que atingiu mais de cerca de seis bilhões, o consumo de energia aumentou cerca de um

milhão de vezes. Isso só foi possível com o aumento do uso do carvão como fonte de calor e potência no século XIX, o uso de motores de explosão interna que levaram ao grande uso de petróleo e seus derivados e do uso de eletricidade gerada inicialmente em usinas hidroelétricas e depois em usinas termoelétricas.

Segundo Bermann (2003), diversas formas de energia são abundantes no Brasil e podem vir a ser utilizadas em larga escala. Os principais potenciais energéticos destacados pelo autor são: potencial hidroelétrico (energia elétrica obtida a partir do aproveitamento do potencial hidráulico de um determinado trecho de um rio, assegurado através da construção de uma barragem e da conseqüente formação de um reservatório); potencial dos combustíveis fósseis como petróleo e gás natural, potenciais energéticos como os produtos obtidos na biomassa e o potencial eólico pouco explorado no Brasil. Na Figura 2.8 apresenta-se a oferta de energia interna no Brasil em 2010 e na Figura 2.9 apresenta-se a oferta de energia no mundo em 2008 segundo Brasil (2011).

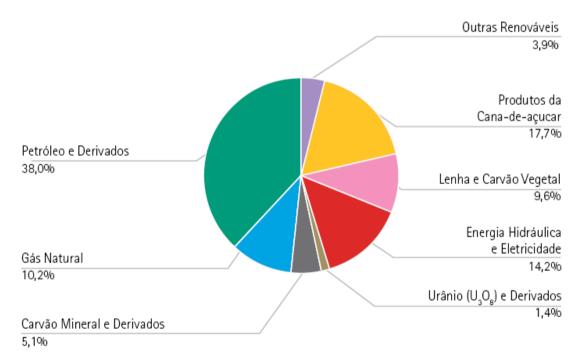


Figura 2.8 – Oferta de energia interna no Brasil em 2010 (Brasil, 2011)

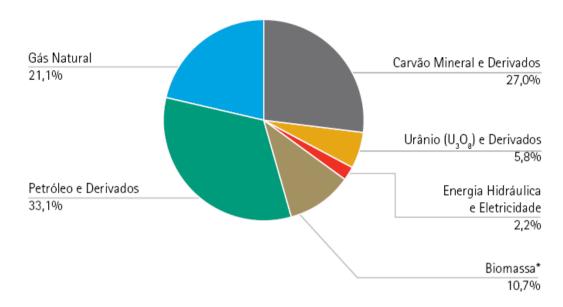


Figura 2.9 – Oferta de energia no mundo em 2008 (Brasil, 2011)

Bermann (2003) destaca que de todo o potencial hidroelétrico remanescente no Brasil, 60% se encontra na região amazônica. Os reservatórios das hidroelétricas situadas nessa região emitem quantidades consideráveis de CO₂ e CH₄, ambos gases de efeito estufa, colaborando com o agravamento do impacto ambiental desses reservatórios.

Na Tabela 2.5 realizou-se uma comparação entre as fontes de energia renováveis (como o álcool feito da cana de açúcar) com fontes de energia não renováveis como o petróleo, carvão mineral e gás natural.

Tabela 2.5 – Comparativo da sustentabilidade aplicada a fontes renováveis e não renováveis (modificado – Bermann, 2003)

Fonte de Energia	Exemplos	Avaliação da sustentabilidade		
Renovável	Solar, eólica, álcool retirado da cana de açúcar (biomassa)	Quando o combustível é queimado, libera CO ₂ ; porém a cana de açúcar, por exemplo, absorve uma quantidade proporcional de carbono da atmosfera durante seu crescimento fechando-se assim um ciclo de emissão e absorção de CO ₂ . Portanto, fontes de energia renováveis podem ser mais sustentáveis que fontes de energia não renováveis.		
Não renovável	Petróleo, carvão mineral, gás natural	Tendo como referência o ciclo do carbono, pode-se afirmar que a queima de combustíveis fósseis é insustentável já que as reservas são finitas e a capacidade do planeta de absorver os resíduos desse processo é limitada.		

Goldemberg (2003) aponta que há uma diferença de mais de dez vezes entre o consumo de energia per capita dos países industrializados (onde vive 25% da população mundial) e os países em desenvolvimento (onde vivem os restantes 75%). Os EUA, com 6% da população mundial, consomem 35% da energia mundial. O mesmo autor destaca que o consumo anual per capita em 1998 foi de 5,20 TEP nos países industrializados e de apenas 0,85 TEP nos países em desenvolvimento (incluindo as fontes de energia não comerciais). Se as fontes não comerciais, utilizadas muito ineficientemente, tais como lenha, carvão vegetal, bagaço e resíduos agrícolas forem incluídas, o consumo per capita passa a ser de 0,66 TEP nesses países.

Segundo dados da ANEEL (2008), qualquer matéria orgânica que possa ser transformada em energia mecânica, térmica ou elétrica é classificada como biomassa, podendo assim ser considerada uma fonte potencial de energia elétrica. De acordo com sua origem pode ser: florestal (madeira, principalmente), agrícola (soja, arroz e cana de açúcar, entre outras) e rejeitos urbanos e industriais (sólidos ou líquidos, como o lixo). Os derivados obtidos dependem tanto da matéria-prima utilizada (cujo potencial energético varia de tipo para tipo) quanto da tecnologia de processamento para obtenção dos energéticos.

Os processos para obtenção de energia à partir da biomassa de origem florestal se caracterizam pela baixa eficiência - ou necessidade de grande volume de matéria-prima para produção de pequenas quantidades de energia. Já a produção em larga escala da energia elétrica e dos biocombustíveis está relacionada à biomassa agrícola e à utilização de tecnologias eficientes. A pré-condição para a sua produção é a existência de uma agroindústria forte e com grandes plantações, sejam elas de soja, arroz, milho ou cana de açúcar. A biomassa é obtida pelo processamento dos resíduos dessas culturas. Assim, do milho é possível utilizar, como matéria-prima para energéticos, sabugo, colmo, folha e palha. Da soja e arroz, os resíduos que permanecem no campo, tratados como palha. Na cana-de-açúcar, o bagaço, a palha e o vinhoto.

Bermann (2003) destaca que embora a biomassa represente uma alternativa onde existe uma fonte de energia inesgotável (a luz do sol) que é convertida em combustível (álcool) e seu processo de utilização seja altamente cíclico (ciclo do carbono), outros fatores precisam ser analisados quando se avalia a sustentabilidade dessa alternativa como fonte energética. Supondo que o Brasil substituísse todo o consumo de combustíveis fósseis pela

biomassa e energia hidrelétrica, o mesmo assumiria uma posição estratégica mundial de independência do petróleo. Porém, estes aproveitamentos da biomassa feitos de maneira incorreta podem também se tornar insustentáveis frente a outros critérios como o da manutenção da biodiversidade.

A produção de resíduos em um cenário de matriz energética baseada na biomassa e hidroeletricidade seria mínima, mas as grandes extensões de terra ocupadas pelos imensos reservatórios de água e pela monocultura canavieira seria uma catástrofe ambiental que extinguiria várias espécies de animais e plantas, causando grandes distúrbios. No entanto, diferentemente do que ocorre com os combustíveis fósseis, é possível plantar cana de açúcar, ou outras espécies vegetais, respeitando o meio ambiente, isto é, ocupando racionalmente a terra de maneira a permitir a sobrevivência das espécies que habitam a região e preservar os cursos de água.

De acordo com a ANEEL (2008), outra fonte de energia utilizada nas indústrias de fabricação de materiais de construção civil é o carvão mineral. A principal aplicação do carvão mineral no mundo é a geração de energia elétrica por meio de usinas termelétricas. Em segundo lugar vem a aplicação industrial para a geração de calor (energia térmica) necessário aos processos de produção, tais como secagem de produtos, cerâmicas e fabricação de vidros. Considerando-se também a preparação e queima do carvão, este processo se dá, em resumo, da seguinte maneira: o carvão é extraído do solo, fragmentado e armazenado em silos para, posteriormente, ser transportado à usina, onde novamente será armazenado. Em seguida é transformado em pó, o que permitirá melhor aproveitamento térmico ao ser colocado para queima nas fornalhas de caldeiras. O calor liberado por esta queima é transformado em vapor ao ser transferido para a água que circula nos tubos que envolvem a fornalha. A energia térmica (ou calor) contida no vapor é transformada em energia mecânica (ou cinética), que movimentará a turbina do gerador de energia elétrica. Na Figura 2.10 ilustra-se o processo de produção de energia elétrica a partir do carvão mineral.

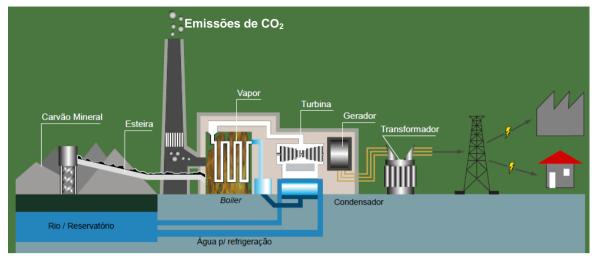


Figura 2.10 – Perfil esquemático do processo de produção de energia elétrica a partir do carvão mineral (modificado - ANEEL, 2008)

De acordo com dados da *International Energy Agency* (IEA), o carvão é a fonte mais utilizada para geração de energia elétrica no mundo, respondendo por 41% da produção total conforme apresentado na Figura 2.11.

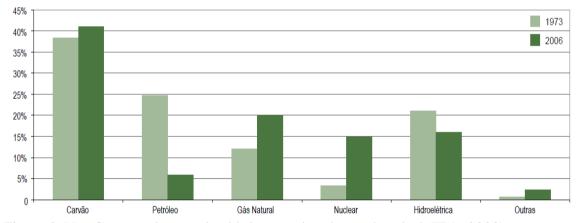
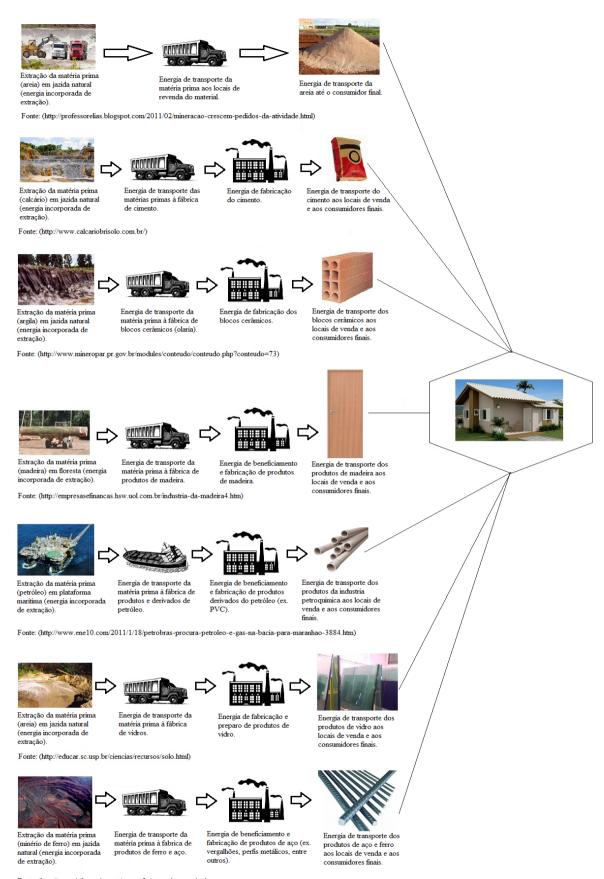


Figura 2.11 – Geração de energia elétrica por tipo de combustível (IEA, 2008)

Segundo dados da ANEEL (2008), tanto o carvão vegetal (fonte de energia renovável) quanto o mineral podem ser usados na indústria (principalmente siderúrgica) e na produção de energia elétrica. Entretanto, no carvão vegetal o poder calorífico é baixo e a participação de impurezas é elevada. O carvão mineral tem alto poder calorífico expresso em kcal/kg (quilocaloria obtida por quilo do combustível) e este poder calorífico, por sua vez, é favorecido pela incidência de carbono e prejudicado pela quantidade de impurezas (elementos rochosos e minerais).

Segundo o balanço do Ministério de Minas e Energia, no Brasil o consumo de energia elétrica dos edifícios residenciais, comerciais e públicos, equivale a 46% de toda a energia elétrica consumida. No caso de edifícios residenciais, a maior parcela do consumo está relacionada ao aquecimento de água (chuveiros elétricos) e nos edifícios comerciais e públicos à iluminação e aos sistemas de ar condicionado (Degani, 2003).


Goldemberg (2003) destaca que usualmente as fontes de energia primária classificam-se como: comerciais (objeto de transações monetárias envolvendo carvão, petróleo, gás, hidroeletricidade) e não comerciais (basicamente diferentes formas de biomassa – madeira, carvão vegetal, resíduos agrícolas e humanos- e, portanto, renováveis).

De acordo com o mesmo autor, os impactos ambientais resultantes da produção de eletricidade podem ser reduzidos melhorando a eficiência das tecnologias de geração à partir de combustíveis fósseis, minimizando a emissão de poluentes na fonte; substituindo combustíveis mais poluentes, como o carvão, por combustíveis menos poluentes como o gás natural; aumentando a participação das fontes renováveis de energia na geração de eletricidade.

O uso mais eficiente de energia deve ser feito sempre que possível, tendo em vista a redução dos problemas ambientais e aumento da vida útil das fontes de combustível fóssil, cujas reservas não são infinitas. Aumentar a eficiência com que a energia é utilizada ou promover simplesmente a "eficiência energética", justifica a proteção ambiental, pois ela é em geral vantajosa em termos de retorno do investimento (Goldemberg, 2003).

2.2.2 Energia Incorporada dos materiais de construção civil

A energia incorporada ou embutida total de um material ou componente engloba as fases de: energia de extração de matérias primas (retirada da matéria prima em sua forma bruta da natureza), fabricação de materiais (observando o tipo de material e as técnicas utilizadas na sua fabricação) e transporte dos materiais verificando as quantidades e origens dos materiais empregados nas construções (Figura 2.12).

Fonte: (http://www.infoescola.com/geografia/serra-dos-carajas/)

Figura 2.12- Energia incorporada na cadeia de produção de edifícios (modificado - Guimarães, 1985).

Guimarães (1985) destaca ainda que a energia é um fator marcante em todo processo de fabricação industrial ou artesanal. Nos processos industriais, onde a presença da máquina predomina, é fundamental o papel da energia, seja oriunda dos combustíveis fósseis (derivados de petróleo, carvão, gás natural), de fontes renováveis (lenha, carvão vegetal, álcool, etc.), ou da energia elétrica (gerada dos combustíveis ou da energia hidráulica). Nos processos artesanais, o grande dispêndio de energia é, basicamente, de origem humana e animal. Portanto, determinar a energia consumida na fabricação dos materiais de construção, implica em conhecer os processos nela utilizados.

Alcorn e Baird (1996) afirmam que a análise energética é utilizada para determinar a quantidade de energia necessária para realizar atividades e fabricar produtos ou serviços específicos. Esta análise poderá usar uma variedade de métodos que revelam a energia incorporada de uma atividade ou serviço. Segundo os mesmos autores, os quatro métodos de análise são:

- análise estatística (utiliza estatísticas publicadas para determinar a energia utilizada em determinadas indústrias) tendo como principal vantagem a agilidade e utilidade do método se as estatísticas das indústrias forem pertinentes e suficientemente detalhadas;
- análise de input-output (análise do fluxo de dólares de onde estão saindo e para onde estão indo os investimentos nos setores produtores de energia sendo possível traçar o fluxo energético da economia nacional) tendo como principal vantagem a detecção de cada transação energética que ocorre no país;
- análise do processo que envolve o exame sistemático de energia direta e indireta envolvida no processo de extração, fabricação e transporte (método que produz resultados precisos e específicos porém necessita-se de muito tempo e esforço para alcançar uma análise completa);
- por fim a análise híbrida que pode aperfeiçoar e utilizar partes de todos os outros métodos.

Ainda, em relação ao processo de análise da energia incorporada, é possível efetuar simplificações, no intuito de evitar o excesso de informações e assim, considerar apenas os

elos relevantes deste processo. Na Figura 2.13 são apresentadas as principais etapas de análise na quantificação da energia incorporada dos materiais de construção civil.

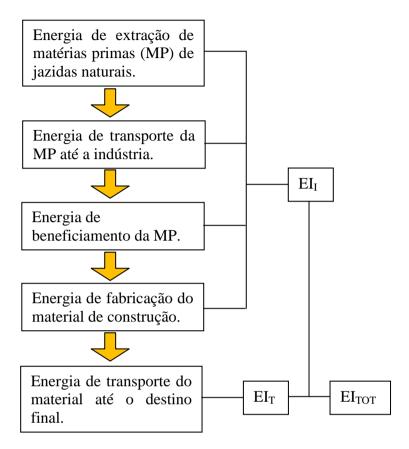


Figura 2.13 – Principais etapas de análise na quantificação da energia incorporada dos materiais de construção civil

2.2.2.1 Energia de extração de materiais

A energia de extração de materiais pode ser analisada como a energia necessária para retirar a matéria prima em sua forma bruta da natureza. Cada componente de uma edificação apresentará uma cadeia de produção específica com energia de extração diferente de outros componentes. Destaca-se nesse item a extração do calcário e da argila.

Na Figura 2.14 e Figura 2.15 ilustra-se a extração do calcário e da argila utilizada na fabricação do cimento Portland. Ressalta-se que a extração do calcário pode ser feita por explosivos e por processo mecânico (escavadeiras) e que a energia incorporada de extração dos materiais dependerá da metodologia utilizada na extração dessas matérias primas. Na Figura 2.16 destaca-se a extração da argila utilizada para fabricação de blocos cerâmicos.

Figura 2.14 - Extração do calcário utilizado na fabricação do cimento Portland (Silva, 2002)

Figura 2.15 - Extração da argila utilizada na fabricação do cimento Portland (Silva, 2002)

Figura 2.16 - Extração da argila utilizada na fabricação de blocos cerâmicos (Sposto, 2007)

As argilas utilizadas na cerâmica vermelha podem ser classificadas segundo o local de extração em:

- argila de várzea são encontradas às margens de rios e apresentam granulometria fina, textura terrosa e quando úmidas fornecem elevada plasticidade. São encontradas em cores que variam de cinza ao preto e após a queima apresentam coloração rosa ao vermelho.
- *argilas de morro* são encontradas distantes de rios, possuem baixa plasticidade, coloração natural clara e após a queima variam de vermelha a amarela. Nesse tipo de argila é fácil encontrar a presença de cascalhos, quartzos e feldspatos.
- *argilas tipo taguá* exigem máquinas pesadas e às vezes dinamites na etapa de extração, pois são encontradas em camadas bastante profundas sob rios ou encostas de morros.

No estado de Goiás e no Distrito Federal (região do estudo de caso deste trabalho) a argila para a produção de blocos provém principalmente de várzeas. A sua extração é realizada a céu aberto, por patamares, por meio de retro-escavadeiras ou outros equipamentos semelhantes.

As etapas de produção do bloco cerâmico incluem: extração da argila e sazonamento, preparo da massa, extrusão do bloco, secagem e queima (Tabela 2.6).

Tabela 2.6 – Estimativa de energia incorporada na produção de blocos cerâmicos utilizando forno contínuo em Goiás e no distrito Federal (Sposto, 2007)

utilizando forno continuo em Golas e no distrito i ederar (oposto, 2007)						
Tipo de ene	ergia		Etapa do processo		Total (J/1000)	
Diesel			Extração da argila		8773,44	
Elétrica			Moldagem, secagem queima	e	$389,0 \times 10^6$	
Térmica eucalipto)	(lenha	de	Queima		3,528 x 10 ⁹	

2.2.2.2 Energia de fabricação de materiais

Na análise do ciclo de vida energético de um material, faz-se importante conhecer as etapas envolvidas no processo de fabricação dos materiais considerando-se os materiais e combustíveis utilizados em cada etapa da produção. Destacam-se aqui a fabricação do aço e do cimento, dois dos principais tipos de materiais de construção civil utilizados no sistema construtivo em *steel frame* com placas cimentícias.

Realizando uma análise similar à energia de extração de matérias primas, a energia de fabricação dos materiais de construção depende do tipo de material e do sistema utilizado em sua fabricação. Para exemplificar e ilustrar a complexidade da análise da energia incorporada de fabricação de materiais e a variabilidade do processo de produção destacase o processo de fabricação do aço e do cimento de acordo com Pfeil (2009), Pinho e Pannoni (2010) e Battagin e Silva (2010).

O principal processo de fabricação do aço consiste na produção de ferro fundido no altoforno e posterior refinamento do aço no conversor de oxigênio. O outro processo utilizado consiste em fundir sucata de ferro em forno elétrico cuja energia é fornecida por arcos voltaicos entre o ferro fundido e os eletrodos. Em ambos os processos o objetivo é o refinamento do ferro fundido onde são adicionados elementos de liga para produzir o aço especificado (Pfeil, 2009).

Pinho e Pannoni (2010) apontam que a rota mais comum de produção de aços é aquela que passa pelo alto-forno e aciaria equipada com conversor. Essa rota compreende cerca de 65% de todo aço produzido no mundo. O coque é utilizado no alto-forno tanto como redutor quanto como fonte de energia térmica. Essa rota envolve a redução do minério de ferro até o metal líquido no alto-forno e o refino subseqüente no conversor, de modo a produzir o aço. Os vários estágios de uma siderúrgica integrada são apresentados na Figura 2.17.

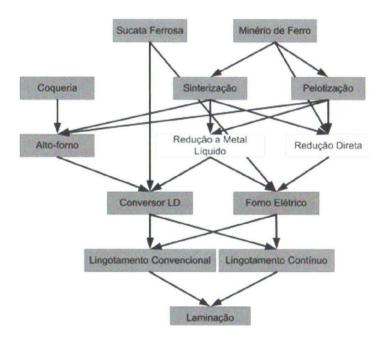


Figura 2.17- Rotas para produção de aços estruturais (Pinho e Pannoni, 2010)

O processo para produção do aço pode ser dividido nas seguintes etapas principais:

• A coqueria (carbonização do carvão metalúrgico): carvões coqueificáveis são aqueles carvões que, quando aquecidos na ausência do oxigênio, inicialmente fundem, indo a um estado plástico, incham e resolidificam, de modo a produzir uma massa sólida. Alterações físicas e químicas acontecem juntamente com a evolução de gases e vapores; o resíduo sólido que resta é chamado de coque. Misturas adequadas de carvões são moídas e carbonizadas em temperaturas de aproximadamente 1000°C a 1100°C, até que se atinja certo grau de desvolatilização, de modo a produzir o chamado coque metalúrgico, com certas propriedades mecânicas e termoquímicas bem estabelecidas. Na Figura 2.18 é ilustrado um forno de coque (Pinho e Pannoni, 2010).

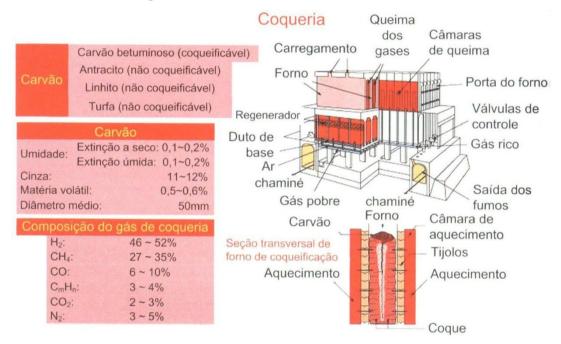


Figura 2.18- Ilustração de um forno de coque, utilizado na siderurgia integrada (Pinho e Pannoni, 2010)

• Sinterização: a sinterização é uma tecnologia utilizada para aglomeração dos finos de minério de ferro, transformando-os em uma carga adequada ao alto-forno. Atualmente, mais de 70% de todo aço bruto produzido no mundo é gerado a partir do sínter de minério de ferro. Os materiais utilizados em uma sinterização são os seguintes: finos de minério de ferro (<10 mm), moinha de coque (<3 mm), finos de calcário e dolomita (<3 mm) e outros rejeitos metalúrgicos. Os materiais são individualmente e continuamente pesados e umedecidos em um misturador rotatório. A mistura a sinterizar é carregada na máquina de

sínter através de uma tremonha, diretamente sobre uma grelha móvel (Pinho e Pannoni, 2010).

A superfície superior da mistura é queimada e entra em ignição através de queimadores estacionários, a cerca de 1200°C. Conforme a grelha se move, o ar é succionado através da caixa de vento situada embaixo da grelha. Uma região de combustão de alta temperatura é criada na carga devido à combustão do combustível sólido contido na mistura. O sínter é produzido como resultado combinado da fusão limitada, difusão superficial na superfície dos grãos e recristalização dos óxidos de ferro, no término do processo de sinterização, o bolo de sínter é britado e resfriado. O sínter resfriado é peneriado, e a fração > 6 mm é enviada ao alto forno. A fração < 5 mm é recirculada e enviada de volta à sinterização como sínter de retorno. A Figura 2.19 ilustra o processo de sinterização (Pinho e Pannoni, 2010).

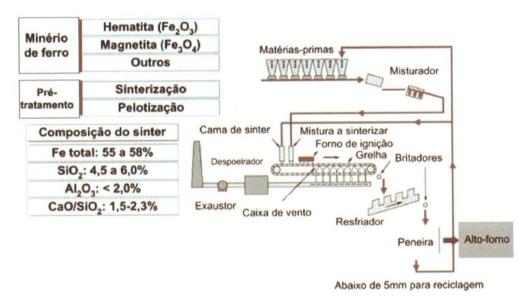


Figura 2.19 - Esquema de uma sinterização, utilizada na siderurgia integrada (Pinho e Pannoni, 2010)

• Alto-forno: os metais ferrosos são obtidos por redução dos minérios de ferro nos altosfornos como mostrados na Figura 2.20. Pela parte superior do alto-forno, são carregados minério, calcário e coque e na parte inferior do forno, insufla-se ar quente. O coque queimado produz calor e monóxido de carbono, que reduzem o óxido de ferro a ferro liquefeito, com excesso de carbono. O calcário converte o pó do coque e a ganga (minerais terrosos do minério) em escória fundida. Pela parte inferior do forno são drenadas periodicamente a liga ferro-carbono e a escória. O forno funciona continuamente e o produto de alto-forno chama-se ferro fundido ou gusa. O ferro-gusa é uma liga de ferro com alto teor de carbono e diversas impurezas como o enxofre, o silício ou o fósforo. Uma pequena parte da gusa é refundida para se obter ferro fundido comercial, porém, a maior parte é transformada em aço no conversor da aciaria (Pfeil, 2009).

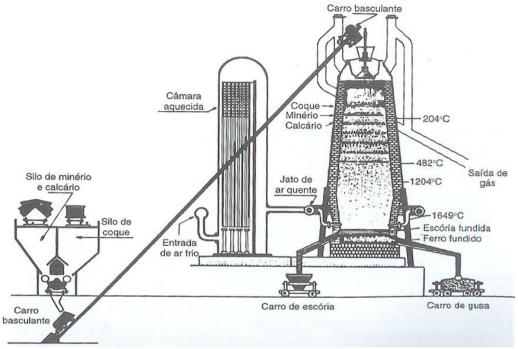


Figura 2.20- Esquema de funcionamento do alto-forno (Pfeil, 2009).

• Aciaria (conversor de oxigênio): o refinamento do ferro fundido em aço é feito no conversor de oxigênio e consiste em remover o excesso de carbono (de 4% a menos de 1%) e reduzir a quantidade de impurezas (enxofre e fósforo) a limites prefixados. O conversor de oxigênio baseia-se na injeção de oxigênio dentro da massa líquida de ferro fundido. O ar injetado queima o carbono na forma de monóxido de carbono (CO) e dióxido de carbono (CO₂), em um processo que dura de 15 a 20 minutos como mostrado na Figura 2.21. Um conversor que sopra oxigênio pelo topo pode descarbonatar 200 toneladas de metal líquido, de 4,3% a 0,04% em cerca de 20 minutos. Elementos como manganês, silício e fósforo são oxidados e combinados com cal e óxido de ferro, formando a escória que se concentra na superfície do aço liquefeito. O aço líquido é analisado, podendo modificar a mistura até se obter a composição desejada. Desse modo, obtém-se aço de qualidade uniforme. Após o fim das reações, o produto é lançado em uma panela, e a escória é descarregada em outro recipiente (Pinho e Pannoni, 2010).

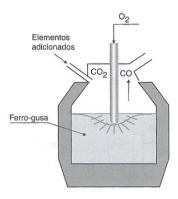


Figura 2.21- Esquema do conversor de oxigênio (Pfeil, 2009).

- Tratamento do aço na panela: o aço líquido superaquecido absorve gases da atmosfera e oxigênio da escória. O gás é expelido lentamente com o resfriamento da massa líquida, porém, ao se aproximar da temperatura de solidificação, o aço ferve e os gases escapam rapidamente. A consequência desse fato é a formação de grandes vazios no aço. Para evitar esta formação, os gases devem ser absorvidos, adicionando-se elementos como alumínio e silício na panela, em um processo conhecido como desgaseificação. Após a desgaseificação, grande parte dos óxidos insolúveis formados deve ser removida para não prejudicar as características mecânicas do aço. Esse processo é conhecido por refinamento. Quanto ao grau de desgaseificação, os aços se classificam em efervescentes, capeados, semi-acalmados e acalmados. No primeiro caso, o processo da panela contém gás suficiente para provocar alguma efervescência nas lingoteiras. Os aços efervescentes são utilizados em chapas finas. Os aços capeados são análogos aos efervescentes, sustando-se o movimento dos gases pelo resfriamento rápido e solidificação da parte superior do lingote, tendo menor segregação que os primeiros. Os aços semi-acalmados são parcialmente desoxidados, apresentando menor segregação que os capeados, e são os mais utilizados nos produtos siderúrgicos correntes (perfis, barras, chapas grossas). Nos aços acalmados, todos os gases são eliminados o que lhes confere melhor uniformidade de estrutura. São geralmente acalmados os aços-ligas, os aços de alto carbono (trilhos, barras, etc), bem como aços de baixo carbono destinados a estampagem (Pfeil, 2009).
- Lingoteamento contínuo: as usinas mais modernas possuem instalações de lingoteamento contínuo, nos quais os lingotes são moldados continuamente como mostrados na Figura 2.22 chegando aos laminadores em forma de placas com seção retangular ou tarugos, cortadas em seguimentos de comprimento adequado, por meio de maçaricos. O

lingoteamento contínuo corresponde a mais de 60% da produção total de aço líquido no mundo.

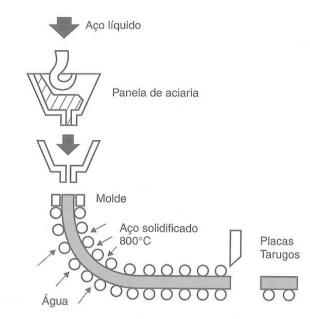


Figura 2.22- Esquema do lingoteamento contínuo (Pfeil, 2009).

• Laminação: a laminação é o processo pelo qual o aço é transformado nos principais produtos siderúrgicos utilizados pela indústria de construção como chapas e perfis laminados. As placas são inicialmente aquecidas ao rubro e introduzidas em laminadores desbastadores, nos quais dois rolos giratórios comprimem a placa, reduzindo sua seção e aumentando seu comprimento. São necessárias diversas passagens no laminador, nas quais a distância entre os rolos é progressivamente reduzida. Após a passagem pelos laminadores desbastadores, o aço passa para os laminadores propriamente ditos, onde são confeccionados os produtos siderúrgicos utilizados na indústria (Pfeil, 2009).

Na Figura 2.23 e na Figura 2.24 apresentam-se os esquemas dos rolos de um laminador. A peça metálica aquecida ao rubro é comprimida entre dois rolos giratórios e sai com espessura reduzida. Os laminadores dos produtos acabados têm seus rolos com as superfícies cortadas nas formas adequadas.

Figura 2.23- Esquemas de laminadores (Pfeil, 2009)

Na Figura 2.23 encontram-se: (a) Seção dos rolos do laminador - os rolos giram em sentidos contrários, comprimindo a peça metálica aquecida ao rubro. A seção da peça é reduzida e seu comprimento aumentado; (b) Esquema dos rolos para laminação de perfil "I", com altura determinada pela distância entre as chapas fixas. Modificando-se o espaçamento entre rolos, podem ser laminados perfis "I" de diferentes espessuras de alma; (c) Fases progressivas de laminação do perfil I.

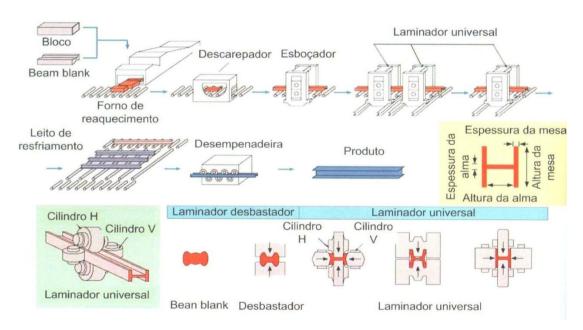


Figura 2.24- Esquema de um laminador de perfis estruturais de aço (Pinho e Pannoni, 2010)

•Tratamento térmico: os tratamentos térmicos são recursos auxiliares utilizados para melhorar as propriedades dos aços. Eles se dividem em 2 grupos: a) tratamentos destinados principalmente a reduzir tensões internas provocadas por laminação (normalização, recozimento); b) tratamentos destinados a modificar a estrutura cristalina, com alteração da resistência e de outras propriedades (tempera e revenido).

Tavares (2006) apresentou na Tabela 2.7 as principais etapas na fabricação do aço com uma estimativa de sua energia incorporada (EI_I) final.

Tabela 2.7 – Energia incorporada do aço (Tavares, 2006)

Aço	Fonte	Conversão	MJ/kg
Aço Bruto - Média	BEN, 2005; IBS (2004)	0,62 tep/t	25,95
Laminação	IBS (2004)	829 Mcal/t	3,5
Mineração	Ribeiro (2003)	0,1 MJ/t	0,12
Transportes	1900 kg minério, dist. 600 km	0,73 MJ/t/km	0,92
TOTAL			30,49

Após a descrição do processo de fabricação do aço, ressalta-se a dificuldade de inventariar o consumo de energia e emissões de CO₂ justificando assim a utilização de dados secundários obtidos de outros autores. Por outro lado, os dados secundários devem ser relacionados à realidade considerada pelo próprio autor dos dados.

Com relação à fabricação do cimento, vale destacar que sua produção pode variar ao longo dos anos, e, desta forma, a energia incorporada e as emissões de CO₂ também sofrerão alterações. Na Figura 2.25 apresenta-se a variação da produção do cimento de acordo com o tipo disponibilizado no mercado.

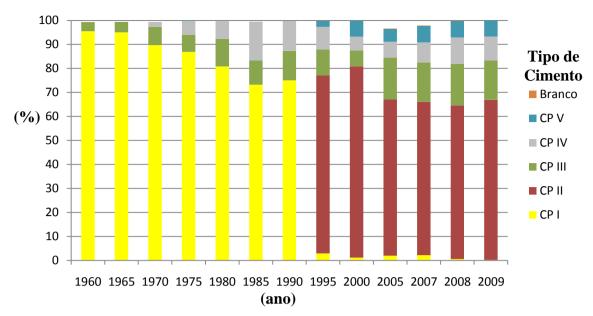


Figura 2.25- Evolução da produção por tipo de cimento (%) (modificado – Battagin e Silva, 2010)

Portanto, considerando-se a variação na produção do cimento, deve-se ter em mente que ocorrerão variações da energia incorporada e emissões de CO₂ relacionadas à fabricação desse material.

De acordo com Battagin e Silva (2010), o cimento Portland é produzido em instalações industriais complexas, dotadas de equipamentos apropriados à obtenção do produto final dentro dos parâmetros especificados e pode conter, além do clínquer Portland e do gesso para regular a pega, a adição de uma ou mais matérias primas (escória granulada de alto forno, materiais pozolânicos ou fíler calcário), dependendo do tipo de cimento.

A complexidade da fabricação do cimento Portland se inicia com a extração das matérias primas para a produção do clínquer. Na Figura 2.26 é mostrada uma jazida de calcário, o uso de explosivos para o desmonte da rocha, o processo de transporte até as unidades de britagem, a entrada de pedras de grandes dimensões do britador, o transporte do material britado até as unidades de moagem, a estocagem da farinha (composta de calcário moído e já misturado a argila e eventualmente minério de ferro) e um equipamento de précalcinação da farinha na entrada do forno rotativo.

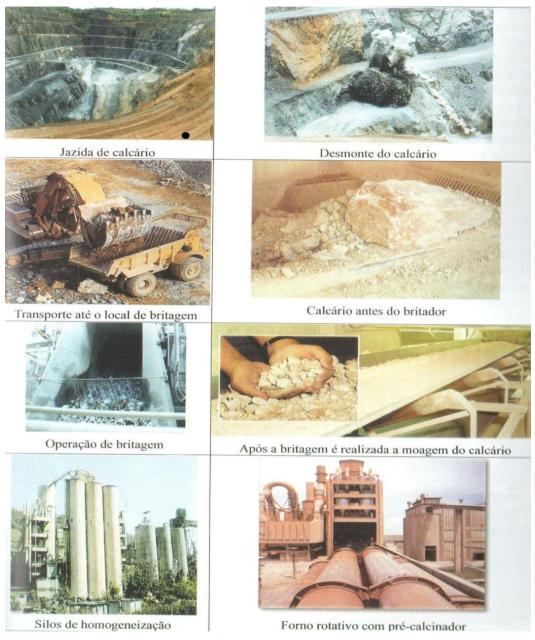


Figura 2.26 - Preparação do calcário, principal matéria prima na fabricação do Cimento Portland e estocagem e pré-calcinação da farinha. (Battagin e Silva, 2010)

A farinha, ou material cru, entra no forno rotativo e caminha por gravidade em direção à parte mais quente do equipamento. A Figura 2.27 mostra um exemplo do fluxograma do processo de produção mais utilizado no Brasil, que é um dos mais modernos no mundo e consiste na produção em fornos de via seca dotados de pré-calcinadores.

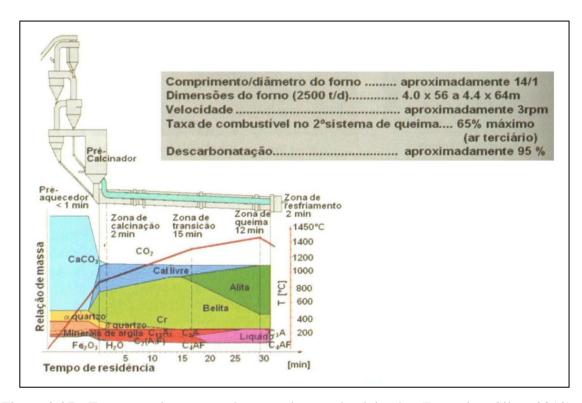


Figura 2.27- Forno rotativo com pré-aquecedor e pré-calcinador (Battagin e Silva, 2010)

Uma fábrica de cimento trabalha continuamente, pois o forno rotativo de produção de clínquer apenas tem seu processo produtivo interrompido para a realização de manutenção.

As principais razões para utilização de adições aos cimentos devem-se à diminuição do consumo energético específico na fabricação do cimento que esses materiais proporcionam, contribuindo para a economia de combustíveis importados ou não; às propriedades específicas que acarretam ao cimento, em especial a durabilidade, com aplicações vantajosas sobre o cimento comum; a razões ecológicas, com o aproveitamento de rejeitos sobre o cimento comum; à razões ecológicas com o aproveitamento de rejeitos industriais poluidores; a razões estratégicas, evitando que as jazidas de calcário sejam exauridas prematuramente e à diminuição das emissões de CO₂.

O clínquer Portland é o material sinterizado e peletizado, resultante da calcinação a cerca de 1450 °C de uma mistura adequada de calcário e argila e, eventualmente, de componentes corretivos, empregados de modo a garantir a composição química da mistura dentro de limites específicos, sendo constituído na sua maior parte por silicatos (75%) e em proporções menores de aluminatos e ferro-aluminatos cálcicos.

O clínquer em pó tem a peculiaridade de desenvolver uma reação química em presença de água, na qual ele, primeiramente, torna-se pastoso e, em seguida, endurece, adquirindo elevada resistência e durabilidade. Essa característica adquirida pelo clínquer, que faz dele um ligante hidráulico muito resistente, é sua propriedade mais importante.

Os insumos necessários para a produção de uma tonelada de clínquer, de acordo com Battagin e Silva (2010) são em média:

- 1.250 kg de calcário;
- 300 kg de argila;
- 14 kg de minério de ferro;
- 60 a 130 kg de combustível
- 110 a 130 kWh de energia elétrica.

Utilizando-se os dados fornecidos por Battagin e Silva (2010) e sabendo-se das relações de energia (1 kWh = 3,6 MJ = 860 kcal) e supondo-se que o combustível utilizado na fabricação do clínquer é o carvão mineral nacional com energia térmica de 4500 kcal/kg, é possível estimar-se a energia incorporada do clínquer de acordo com os cálculos apresentados na Tabela 2.8.

Tabela 2.8 – Demonstrativo do cálculo da energia incorporada do clínquer

Quantidade de clínquer (kg)	1000
Quantidade de energia elétrica (kWh)	110
Quantidade de carvão mineral (kg)	60
Energia térmica do carvão mineral (kcal/kg)	4500
Energia térmica total (kcal)	270000
Energia térmica incorporada no clínquer (kcal/kg)	270
Energia térmica incorporada no clínquer (kWh/kg)	0,314
Energia térmica incorporada no clínquer (MJ/kg)	1,13
Energia elétrica incorporada no clínquer (MJ/kg)	0,40
Energia incorporada total do clínquer (MJ/kg)	1,53

As condições de fabricação do clínquer (temperatura, tempo de permanência no forno, moagem e homogeneização das matérias primas, ambiente no interior do forno e outras) são acompanhadas na maioria das fábricas brasileiras por análise microscópica de seções polidas do clínquer obtido, que permite reconstituir toda a história de sua fabricação. Isso permite a indústria acompanhar e corrigir com rapidez e conhecimento científico seu

processo produtivo. A Figura 2.28 resume as etapas descritas com relação à fabricação do cimento Portland.

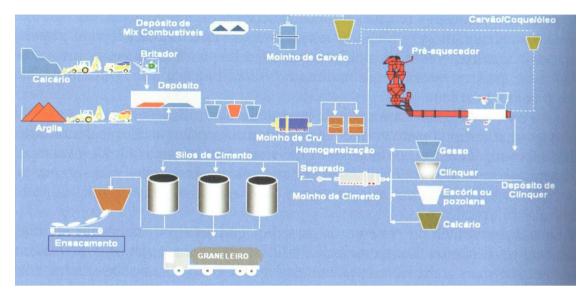


Figura 2.28- Esquema de fabricação do cimento Portland (Battagin e Silva, 2010)

Carvalho (2002) apresentou uma análise semelhante da energia incorporada dos diferentes tipos de cimento Portland conforme apresentado na Tabela 2.9.

Tabela 2.9 – Energia incorporada de cimentos Portland (adaptado de Carvalho, 2002)

Tipo	Energia (kWh/ton)	Energia (kWh/kg)	EI _I (MJ/kg)	
CP I	998	0,998	3,5928	
CP II - F	683	0,683	2,4588	
CP III	347	0,347	1,2492	
CP IV	522	0,522	1,8792	

Para cerâmica de revestimento, Beltran e Martinez (2004), apresentaram uma análise para estimativa da energia incorporada para cerâmica de revestimento conforme apresentado na Tabela 2.10.

Tabela 2.10 – Energia incorporada da cerâmica de revestimento (Beltran e Martinez, 2004)

Etapa	En. Térmica (kcal/kg)	En. Elétrica (kWh/t)	En. Térmica (MJ/kg)	En. Elétrica (MJ/kg)	TOTAL
Moagem		22		0,079	
Atomização	450	28	1,884	0,101	
Prensagem		20		0,072	
Secagem	110	14	0,46	0,05	
Esmaltação		23		0,083	
Queima	580	30	2,428	0,108	
Outros		23		0,083	
Total térmica e Elétrica			4,772	0,576	5,348

Vale ressaltar a dificuldade de inventariar o consumo de energia no processo de fabricação dos materiais de construção, justificando assim o uso de dados secundários obtidos de outros autores. Por outro lado, os dados secundários devem ser relacionados à realidade considerada pelo próprio autor dos dados.

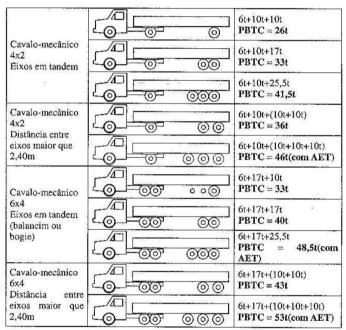
2.2.2.3 Energia de transporte de materiais

De acordo com Guimarães (1985), para analisar a energia consumida no transporte dos materiais verifica-se as quantidades e origens dos materiais empregados nas construções e considera-se a distância média entre dois pontos: fábrica e canteiro de obras. As principais fontes de energia utilizadas no transporte de materiais no Brasil são os combustíveis como óleo diesel e gasolina. O consumo médio de combustível utilizado (óleo diesel) foi de 0,0384 l/T km, que representava o consumo médio da maioria dos caminhões que transportavam carga no Brasil.

Bermann (2003) aponta que em 1999 o setor de transportes respondia por 28% do consumo final de energia no Brasil, equivalente a 47,2 milhões de TEP. Desse total, 90% era destinado ao transporte rodoviário, principalmente o transporte de cargas. A Tabela 2.11 apresenta a evolução da proporção entre os volumes totais de bens transportados pelo sistema ferroviário e rodoviário no Brasil. Ressalta-se que de todo o diesel consumido em 1999 no país (33.505.000,00 m³), 78% era utilizado para o transporte rodoviário.

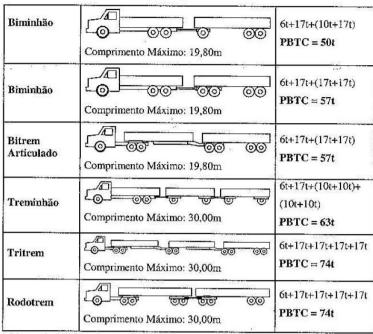
Tabela 2.11 – Evolução da distribuição modal do transporte de cargas no Brasil (Bermann, 2003)

Modo	1940	1959	1974	1999
Ferroviário	62 %	37 %	20,4 %	19,5 %
Rodoviário	34 %	58 %	68,6 %	61,8 %
Outros	4 %	5 %	11,0 %	18,7 %


Reddy (2001) destaca que o transporte de materiais é um fator principal no custo e energia de uma edificação. Na Índia, grande parte da carga dos materiais de construção em centros urbanos e semi-urbanos é transportada utilizando caminhões, de forma que a distância de transporte varia dependendo da localização da atividade de construção, que normalmente para áreas urbanas, variam entre 10 a 100 km. Na cidade de Bangalore na Índia, materiais como blocos/tijolos, agregados moídos, entre outros são transportados com distância entre 40-60 km, a areia é transportada de uma distância de 70-100 km antes de chegar ao local de construção em centros urbanos e semi-urbanos. Já o cimento e o aço são transportados através de ferrovias com distância de 500 km ou mais. Materiais de construção mais extravagantes como mármore, tintas, entre outros são muitas vezes transportados a grandes distâncias (> 1500 km) na Índia.

Areias naturais e agregados de rocha triturados consomem aproximadamente 1,75 MJ/m³ para cada quilometro de distância transportada. Similarmente tijolos necessitam de aproximadamente 2,0 MJ/m³ por quilômetro de viagem. Considerando que o aço e o cimento também são transportados em caminhões, a energia do diesel de 1MJ/tonelada/km é gasta durante o transporte. A energia térmica gasta na produção de areia natural é nula, mas é necessário um gasto de 175 MJ de energia de diesel/m³ para transportar mais de 100 km de distância. Agregados triturados consomem aproximadamente 20 MJ/m³ durante a sua produção e um adicional de 400-800% a mais durante o transporte para distâncias de 50-100 km. A energia gasta durante o transporte de tijolos é de aproximadamente 4-8% da sua energia em produção, para distâncias de 50-100 km. A energia de transporte necessária para deslocar materiais de alta energia incorporada como o aço e o cimento é pequena quando comparada com a energia gasta durante a produção de tais materiais (Reddy, 2001).

Segundo Seixas (2001) e Scania (1997) a "Lei da Balança", parte do Código Nacional de Trânsito, foi elaborada na década de 60 e posta em prática a partir de 1974 no Brasil. Esta Lei refere a um conjunto de artigos do referido código que influem nas limitações de


dimensões e de peso para os veículos de carga e passageiros de fabricação nacional. O Peso Bruto Total (PBT) do caminhão, ou o Peso Bruto Total Combinado (PBTC) da composição veicular, não pode ultrapassar a Capacidade Máxima de Tração (CMT) estabelecida de 4,2 kW/t (5,71 cv/t), restringindo-se ainda ao limite máximo de 45 t. Na Figura 2.29 e Figura 2.30 ilustram-se os pesos máximos para os tipos de veículos utilizados no transporte florestal rodoviário.

Machado *et al.* (2000) comentam que, de acordo com a Resolução 68/98, as combinações de veículos de carga (CVC), com mais de duas unidades, incluindo a unidade tratora (ex.: rodotrens, treminhões e tritrens) ou de duas articulações (ex. bitrens), somente poderão circular portando uma Autorização Especial de Trânsito (AET). Estas combinações não poderão possuir PBTC superior a 74 toneladas, respeitando-se a CMT, tendo comprimento máximo de 30 m e limite de peso máximo estabelecido por eixo.

Obs.: eixos dos semi-reboques com rodados duplos.

Figura 2.29 - tipos de veículos articulados e respectivos PBTC (Machado et al., 2000)

Obs.: eixos dos semi-reboques e reboques com rodados duplos.

Figura 2.30- Tipos de combinação de veículos de carga (Machado et al., 2000)

2.2.2.4 Dados de energia incorporada (EI_I) dos materiais de construção

Sperb (2000) e Grigoletti (2001) apresentam um comparativo do conteúdo energético dos materiais de construção em diferentes países. Na Tabela 2.12 mostra-se os valores de energia incorporada para diferentes materiais em países como Brasil, Austrália, Canadá, Nova Zelândia e Holanda.

Tabela 2.12 – Conteúdo energético dos materiais de construção em alguns países (modificado – Sperb, 2000 e Grigoletti, 2001)

	Conteúdo energético dos materiais de construção em MJ/kg*					
País	Brasil	Holanda				
Policloreto de vinila – PVC*	74,30	288,00	-	-	52,40	
Alumínio	98,80	201,60	236,30	166,00	250,00	
Cobre*	87,70	57,60	-	70,60	100,00	
Zinco*	-	54,00	64,10	-	25,00	
Aço	25,60	36,00	25,70	32,00	60,00	
Vidro plano	27,90	21,60	10,20	14,90	12,30	

	Conteúdo energético dos materiais de construção em MJ/kg*					
País	Brasil	Austrália	Canadá	N. Zelândia	Holanda	
Madeira compensada*	-	24,10	-	-	-	
Madeira aglomerada*	5,20	8,00	-	-	-	
Madeira serrada*	3,30	3,20	-	2,50	5,00	
Fibrocimento*	3,60	7,60	-	13,10	-	
Blocos concreto*	0,60	1,40	-	0,90	3,50	
Blocos cerâmicos	3,10	4,30	4,90	2,50	7,00	

^{*} Alguns valores não foram encontrados nas bibliografias pesquisadas.

De acordo com Zabalza (2010), a indústria da construção utiliza grandes quantidades de materiais que envolvem um alto consumo energético. Segundo o mesmo autor, 60 % das matérias primas extraídas da litosfera são para utilização em obras civis e construção de edifícios. Deste volume, 40 % são destinados apenas para utilização na construção de edifícios.

Na Figura 2.31 apresentam-se dados baseados principalmente na Espanha e outros países europeus da contribuição da demanda de energia primária para a fabricação de materiais necessários na construção de 1 m² de edifício (área de piso total).

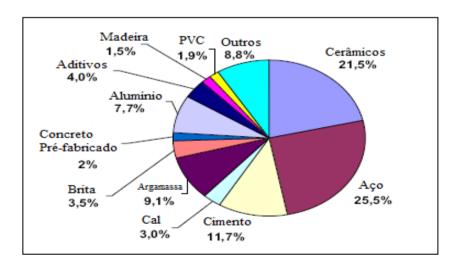


Figura 2.31 - Contribuição da demanda de energia primária para a fabricação de materiais (modificado - Zabalza, 2010)

Tavares (2006) faz uma relação de diversos materiais contendo a energia incorporada dos mesmos conforme apresentado na Tabela 2.13.

Tabela 2.13 – Energia incorporada de alguns materiais de construção (Tavares, 2006)

Materiais	EI (MJ/kg)
Aço - laminado Ca 50 A	30
Alumínio lingote	98,2
Alumínio anodizado	210
Alumínio reciclado - extrudado	17,3
Areia	0,05
Argamassa - mistura	2,1
Borracha natural - latex	69
Borracha sintética	135
Brita	0,15
Cal virgem	3
Cerâmica - bloco de 8 furos	2,9
Cerâmica - branca	25
Cerâmica - revest, monoqueima	5,1
Cerâmica porcelanato	13
Cerâmica - telha	5,4
Cimento Portland	4,2
Cobre	75
Concreto - bloco de vedação	1
Concreto simples	1,2
Fibra de vidro	24
Fibrocimento - telha	6
Fio termoplástico	83
Gesso	4
Granito - aparelhada	2
Lã mineral	19
Latão	80
Madeira - aparelhada seca forno	3,5
Madeira - aparelhada seca ar livre	0,5
Madeira - laminada colada	7,5
Madeira - MDF	9
Mármore	1
Placa de gesso	4,5
Poliamida - nylon	125
Poliestireno expandido	112
Polietileno de alta densidade	95
Polipropileno	83,8
Poliuretano	74

Materiais	EI (MJ/kg)	
Solo-cimento - bloco	0,6	
Solvente - tolueno	67,9	
Telha de vidro	23,13	
Tinta acrílica	61	
Tinta óleo	98,1	
Tinta PVA latex	65	
Tubo PVC	80	
Vermiculita	1,37	
Vidro plano	18,5	

Segundo o mesmo autor, os materiais utilizados na estrutura de edifícios representam mais de 50% da energia incorporada do edifício e os materiais recicláveis e naturais apresentam menor energia incorporada e devem ser utilizados quando os requisitos de desempenho e qualidade forem atendidos.

Reddy e Jagadish (2001) destacam que uma quantidade considerável de energia é gasta no processo de fabricação e transporte de diversos tipos de materiais de construção. A conservação de energia é importante no contexto de limitar as emissões de gases na atmosfera que contribuem para o efeito estufa e reduzir o custo dos materiais. O mesmo autor aponta que a energia incorporada total de edifícios com alvenaria estrutural pode ser reduzida em até 50% quando materiais alternativos e com uso eficiente de energia são utilizados. O mesmo autor analisou a energia incorporada em diferentes componentes de alvenaria e argamassas conforme apresentado na Tabela 2.14 e Tabela 2.15.

Tabela 2.14 – Energia em diferentes componentes de alvenaria (Reddy e Jagadish, 2001)

Tipo de material	Dimensões (mm)	Energia em um bloco(s) (MJ)	Energia por bloco cerâmico equivalente (MJ)	Energia do bloco (%)
Bloco de rocha	180 x 180 x 180	0	0	0
Bloco cerâmico	230 x 105 x 70	4,25	4,25	100
Bloco de solo-	230 x 190 x 100	2,60 (6% cimento)	1,00	23,5
cimento	230 x 190 x 100	3,50 (8% cimento)	1,35	31,7
Bloco de	400 x 200 x 200	12,30 (7% cimento)	1,32	31,2
concreto vazado	400 x 200 x	15,00 (10%	1,62	38,1

Tipo de material	Dimensões (mm)	Energia em um bloco(s) (MJ)	Energia por bloco cerâmico equivalente (MJ)	Energia do bloco (%)
	200	cimento)		
Bloco curado à	230 x 190 x	6,70 (10% cal)	2,58	60,6
vapor	100			

O carvão, as cinzas de carvão e a lenha são os combustíveis mais comumente utilizados para a queima dos blocos cerâmicos na Índia. Em geral, cada bloco cerâmico precisa de 0,20 kg de carvão ou 0,25-0,30 kg de lenha para o processo de queima. Isto referente a 3,75-4,75 MJ de energia térmica por bloco. O valor médio 4,25 MJ por bloco cerâmico (tamanho: 230 mm x 110 mm x 70 mm) tem sido considerado para a comparação e cálculo da quantidade de energia de edifícios e alvenaria.

Tabela 2.15 – Energia incorporada em argamassas^a (Reddy e Jagadish, 2001)

	Proporção	Energia/m ³		
Tipo de argamassa	Cimento	Solo	Areia	(MJ)
Argamassa de cimento	1	0	6	1268
	1	0	8	1006
Argamassa de cimento-pozolana	$0,8:0,2^{b}$	0	6	918
	$0,8:0,2^{b}$	0	8	736
Argamassa de solo-cimento	1	2	6	849
	1	2	8	773
Argamassa de cal-pozolana	1 (1:2) ^c	0	3	732

^a Conteúdo energético: cimento Portland = 5,85 MJ/kg; areia = 175 MJ/m³; pozolana = 1,5 MJ/m³.

Reddy e Jagadish (2001) também afirmam que a energia do cimento Portland, resultante da utilização do carvão nos fornos rotativos e da energia necessária para britagem e moagem do clínquer é estimada em 5,85 MJ/kg. A cal hidratada consome 5,63 MJ de energia térmica/kg que é aproximadamente o mesmo do cimento. O alto consumo energético da cal pode ser atribuído à baixa eficiência térmica de fornos de pequena escala empregados para queima da cal na Índia. O alumínio e o aço são os dois maiores consumidores energéticos comumente utilizados na construção de edifícios. Apesar do alumínio ser muito mais leve que o aço, o mesmo consome seis vezes mais energia do que o aço por unidade de peso. Na Tabela 2.16 é apresentado um comparativo de diferentes pesquisas sobre a energia incorporada de alguns materiais de construção.

^b Cimento: pozolana (0,8:0,2).

^c Cal:pozolana (1:2).

Tabela 2.16 – Energia incorporada de materiais segundo diversos autores

Material	Energia Incorporada (MJ/kg)	Fonte
	30,49	Tavares (2006) - Brasil
	32,0	Alcorn (1996) - Nova Zelândia
Aço	32,0	Gonzales et al. (2006) – Espanha
3	33,70	Lee (2011) – Holanda
	42,7	Monahan (2010) - Reino Unido
	0,05	Tavares (2006) - Brasil
Areia	0,06	Guimarães (1985) - Brasil
	0,10	Alcorn (1996) - Nova Zelândia
	2,10	Tavares (2006) - Brasil
Argamassa	2,17	Zabalza (2010) - Espanha
	6,42	Monahan (2010) - Reino Unido
	2,50	Alcorn (1996) - Nova Zelândia
	3,56	Zabalza (2010) - Espanha
DI C A :	3,99	Guimarães (1985) - Brasil
Bloco Cerâmico	4,25	Reddy (2001) - Índia
	4,88	Sposto (2007) - Brasil
	8,17	Monahan (2010) - Reino Unido
Cal	2,35	Guimarães (1985) – Brasil
Cal	3	Tavares (2006) - Brasil
	2,46	Carvalho (2002) - Brasil
Cimento Portland	4,23	Zabalza (2010) - Espanha
Comum	4,62	Tavares (2006) - Brasil
	7,80	Alcorn (1996) - Nova Zelândia
Revestimento	2,50	González et al. (2006) – Espanha
cerâmico	4,15	Tavares (2006) - Brasil
Revestimento cerâmico (porcelanato)	13	Tavares (2006) - Brasil

2.2.3 Emissões de CO₂ na construção civil

As emissões de CO₂ na cadeia da construção civil estão intimamente ligadas à poluição ambiental de maneira geral e mais especificamente ligadas à poluição atmosférica. A resolução nº 3 de 28/06/1990 do CONAMA considera como poluente atmosférico qualquer forma de matéria ou energia com intensidade e em quantidade, concentração, tempo ou características em desacordo com os níveis estabelecidos, e que torne ou possa tornar o ar impróprio, nocivo ou ofensivo à saúde, inconveniente ao bem estar público, danosos aos

materiais, à fauna e à flora, ou prejudicial à segurança, ao uso e gozo da propriedade e às atividades normais da comunidade.

Resende (2007) aponta que particularmente no caso de edifícios pode-se observar algumas formas de poluição como:

- (a) poluição atmosférica proveniente principalmente da emissão de material particulado nas fases de construção e demolição; da emissão de CO₂ e CFC que pode ocorrer em incêndios, na extração, fabricação e transporte dos materiais, na utilização de equipamentos, a partir de utensílios domésticos, entre outros, nas fases de construção, manutenção e demolição;
- (b) poluição sonora gerada nas fases de construção, manutenção e demolição, proveniente principalmente da utilização de equipamentos, veículos e ferramentas diversas;
- (c) poluição da água e do solo gerados pela emissão de material particulado, resíduos sólidos e líquidos diversos em todas as fases da vida do edifício (lavagem de pneus de caminhões, armazenamento inadequado de materiais, terraplenagem, processo erosivo e assoreamento, emprego de materiais lixiviáveis, resíduos de construção, carregamento de poeiras por chuvas, demolição e utilização, entre outros);
- (d) vibração tipo de poluição que ocorre com frequência nas fases de construção e demolição (exemplos: cravação de estacas, queda de objetos, movimentação de equipamentos, entre outros) mas que pode ocorrer também na fase de utilização.

Resende (2007) destaca que os poluentes atmosféricos podem ser originados de processos naturais ou antropogênicos. São exemplos de fontes naturais os gases emitidos por erupções vulcânicas, decomposição de animais e vegetais, suspensão de poeiras do solo pelos ventos, formação de gás metano em pântanos, aerossóis marinhos, pólen de plantas, incêndios naturais em florestas, entre outros. As fontes antropogênicas são diversas, mas podem ser citadas: construções, incineração de lixo, equipamentos de refrigeração e ar condicionado, queima de combustíveis diversos, queimas na agricultura, processos e operações industriais entre outros.

De acordo com John (2000) a maior fonte de poluição é a produção de materiais. O autor cita a emissão de grande quantidade de material particulado na extração de agregados ou na moagem de matérias primas na produção de cal e cimento por exemplo. Outro fato discutido é a emissão de CO₂ gerada no processo de calcinação durante a fabricação da cal e do cimento – em torno de 785 kg de CO₂ por tonelada de material produzido no caso da cal e 560 kg/t no caso do cimento – além da emissão de CO₂ nos processos de queima, que no caso do cimento é de cerca de 850 kg/t.

Os poluentes podem ser classificados em primários e secundários. Os poluente primários são aqueles emitidos diretamente na atmosfera, como exemplos, os particulados, monóxido de carbono, óxidos de nitrogênio, hidrocarbonetos entre outros. Já os poluentes secundários são aqueles produzidos a partir de reações químicas entre poluentes primários e/ou constituintes naturais da atmosfera, como exemplos os óxidos de nitrogênio ou o trióxido de enxofre, formados na atmosfera a partir de emissões de indústrias. Quanto a sua classe química os poluentes são classificados em poluentes orgânicos e poluentes inorgânicos (Resende, 2007).

Na Tabela 2.17 apresentam-se exemplos de poluentes agrupados conforme sua classificação.

Tabela 2.17 – Classificação de poluentes atmosféricos (modificado - Resende, 2007)

Classificação	Exemplos
Material Particulado	Poeiras, fumaças, fumos, névoas.
Gases e Vapores	CO, CO ₂ , SO ₂ , O ₃ , NO _x , HC, NH ₃ , CL, H ₂ S.
Poluentes primários	CO, SO ₂ , CH ₄ , NH ₃ , CL, H ₂ S.
Poluentes secundários	O ₃ , aldeídos, sulfatos, ácidos orgânicos, nitratos orgânicos.
Poluentes orgânicos	HC, aldeídos, ácidos, orgânicos, nitratos orgânicos, partículas
	orgânicas.
Poluentes inorgânicos	CO, CO ₂ , SO ₂ , NO _x , poeira mineral, névoas ácidas e alcalinas.

Ainda com relação às emissões, o CO₂ é o principal contribuinte ao aquecimento por efeito estufa. Entretanto, o CH₄ tem um potencial de aquecimento global (*Global Warming Potential* – GWP) onze vezes maior do que o CO₂ e isso explica porque o metano, que é menos abundante do que o CO₂ na atmosfera (1,71 ppmv comparado com 355 ppmv do CO₂), contribui significativamente para o aquecimento global, porém em menor escala (Goldemberg, 2003).

Bermann (2003) aponta que os combustíveis fósseis (petróleo, gás natural e carvão mineral) podem deixar de ser usados mesmo antes do esgotamento de suas reservas pelo fato de serem um dos maiores responsáveis pelo efeito estufa, que é considerado atualmente o problema ambiental de maior relevância. A emissão de CO₂ resultante da queima dos combustíveis fósseis, contribui com aproximadamente 55% para o aquecimento global do planeta. Portanto, o mesmo autor destaca que a avaliação da evolução das emissões de dióxido de carbono no Brasil se impõe como um indicador de sustentabilidade energética não apenas pela relevância do problema em si, mas pelo significado que a questão do aquecimento global decorrente das emissões dos gases de efeito estufa vem assumindo no contexto internacional.

Ainda segundo Bermann (2003), a relevância da questão das emissões de CO₂ pode ser verificada a partir dos dados da Tabela 2.18 que revelava em 2003 um processo de aumento do volume das emissões de CO₂ por fontes energéticas no Brasil ao longo das duas últimas décadas e com uma tendência de incremento ainda maior no volume de emissões.

Tabela 2.18 – Evolução dos volumes líquidos de emissão de CO₂ (Bermann, 2003).

Fontes de Energia no		1000 toneladas de CO ₂	
Brasil	1980	1990	1999
Derivados de petróleo	147.605	148.102	213.189
Óleo diesel	48.479	63.939	89.501
Óleo combustível	53.233	31.556	34.562
Gasolina	25.289	21.495	40.818
GLP	7.963	16.247	19.838
Querosene	6.524	6.481	8.968
Outros de petróleo	6.117	8.384	19.502
Carvão mineral e deriv.	15.766	26.373	35.853
Gás Natural	1.823	6.392	10.168
Total Combustíveis Fósseis	165.194	180.867	259.210
Lenha e carvão vegetal	103.595	77.236	54.306
Total	268.789	258.103	313.516

Goldemberg (2003) destaca que o CO₂ é o principal contribuinte ao aquecimento por efeito estufa, emissão que comumente ocorre na fabricação de materiais de construção. Adicionalmente, a seleção correta do material mais adequado para cada solicitação

(mecânica, ambiental, necessidade do usuário) é uma forma eficiente de reduzir o consumo de materiais.

Carvalho (2002) apresentou um estudo que mostra as emissões de CO₂ relacionadas com diferentes tipos de cimento Portland de acordo com o exposto na Tabela 2.19.

Tabela 2.19 – Emissões de CO₂ de diferentes tipos de cimento Portland (modificado - Carvalho, 2002)

Tipo	ECO _{2I} (kg/ton)	ECO _{2I} (kg CO ₂ /kg)
CP I	855	0,8550
CP II - F	565	0,5650
CP III	256	0,2560
CP IV	428	0,4280

Stachera e Casagrande (2007) apresentam de forma resumida, as emissões de CO₂ devido à fabricação dos principais materiais de construção pesquisados conforme o padrão comercial brasileiro. Na Tabela 2.20 apresentam-se os valores encontrados pelos autores.

Tabela 2.20 – Emissões de CO₂ por produto (Stachera e Casagrande, 2007)

Emissão de CO ₂ por saco de cimento CP II 32 (50 kg)	48,44 kg
Emissão de CO ₂ por saco de cal (20 kg)	15,71 kg
Emissão de CO ₂ por kg de aço	1,45 kg
Emissão de CO ₂ por tijolo (unidade, 6 furos, 9 x 14 x 19 cm)	0,95 kg
Emissão de CO ₂ por m ³ de areia média (natural de rio)	22,62 kg

Na Tabela 2.21 apresentam-se dados agrupados de emissões de CO₂ associadas a alguns materiais de construção segundo diversos autores.

Tabela 2.21 – Emissões de CO₂ associadas a alguns materiais

Material	Emissões (kg CO ₂ /kg)	Fonte
	0,5168	González et al. (2006) – Espanha
Aço	1,4500	Stachera e Casagrande (2007) - Brasil
AÇU	1,5260	Zabalza (2010) - Espanha
	3,8000	Monahan (2010) - Reino Unido
Areia	0,0090	Isaía, Gasteldini (2004) - Brasil
Areia fina seca	0,0162	Stachera e Casagrande (2007) - Brasil

Material	Emissões (kg CO ₂ /kg)	Fonte
Areia média seca	0,0151	Stachera e Casagrande (2007) - Brasil
Areia grossa seca	0,0133	Stachera e Casagrande (2007) - Brasil
Argomosso	0,2410	Zabalza (2010)- Espanha
Argamassa	0,3900	Monahan (2010) - Reino Unido
	0,3300	Soares, Pereira (2004) - Brasil
Bloco Cerâmico	0,3800	Stachera e Casagrande (2007) - Brasil
	0,5200	Monahan (2010) - Reino Unido
Cal	0,7860	Stachera e Casagrande (2007) - Brasil
	0,3900	Monahan (2010) - Reino Unido
Cimento Portland	0,5650	Carvalho (2002) – Brasil
Comum	0,8190	Zabalza (2010) - Espanha;
	0,9690	Stachera e Casagrande (2007) - Brasil
Revestimento	0,5200	Monahan (2010) - Reino Unido
cerâmico	0,8570	Stachera e Casagrande (2007) - Brasil

2.3 USO DO STEEL FRAME EM FACHADAS DE EDIFÍCIOS

Buscando-se entender a aplicação do sistema *steel frame* em fachadas de edifícios, apresenta-se um breve histórico com a descrição deste sistema construtivo e detalhes técnicos do *steel frame* aplicado em fachadas.

2.3.1 Histórico e descrição do sistema steel frame

Crasto e Freitas (2006) apontam que diante do crescimento populacional e dos avanços tecnológicos, a indústria da construção civil no mundo tem buscado sistemas mais eficientes de construção com o objetivo de aumentar a produtividade, diminuir o desperdício e atender a uma demanda crescente. Apesar do Brasil ser um dos maiores produtores mundiais de aço, destaca-se que até 2006 o emprego desse material em estruturas de edificações foi pouco expressivo se comparado ao potencial do parque industrial brasileiro. O desenvolvimento de produtos siderúrgicos no país ampliou as alternativas de soluções construtivas disponíveis e o uso do aço, que visa alternativas de mudança no panorama do setor da construção civil.

Segundo Rodrigues (2006), existem dois conceitos básicos relativos ao Sistema *Light Steel Framing* (LSF) ou apenas *steel frame*: *frame* é o esqueleto estrutural projetado para dar forma e suportar a edificação, sendo composto por elementos leves – os perfis formados a frio (PFF), e *framing* é o processo pelo qual se unem e vinculam esses elementos. A história do framing inicia-se entre 1810, quando os Estados Unidos iniciaram a conquista do território, e 1860, quando a migração chegou à costa do Oceano Pacífico. Naqueles

anos, a população americana se multiplicou por dez e, para solucionar a demanda por habitações, recorreu-se à utilização dos materiais disponíveis no local (madeira), utilizando os conceitos de praticidade, velocidade e produtividade originados na Revolução Industrial (*wood framing*).

De acordo com Arcoweb (2010), o *wood framing* (estruturas e molduras de madeira) conquistou espaço, no século 19, pois a madeira nos Estados Unidos era abundante e o sistema possuía características importantes como velocidade e produtividade para suprir o déficit habitacional do país. A partir da metade do século 20, as siderúrgicas norteamericanas começaram a colocar no mercado aços galvanizados, com espessuras reduzidas, para a produção dos *frames* metálicos (molduras metálicas), com maior resistência à corrosão. Crasto e Freitas (2006) destacam que no Japão, as primeiras construções em LSF começaram a aparecer após a Segunda Guerra Mundial quando foi necessária a re-construção de quatro milhões de casas destruídas por bombardeiros. A madeira, material usado na estrutura das casas, havia sido um fator agravante nos incêndios que se alastravam durante os ataques. Assim, o governo japonês restringiu o uso da madeira em construções autoportantes a fim de proteger os recursos florestais que poderiam ser exauridos e também para promover construções não inflamáveis.

Rodrigues (2006) aponta que um aspecto particular do LSF que o diferencia de outros sistemas construtivos tradicionais é sua composição por elementos ou subsistemas (estruturais, de isolamento, de acabamentos exteriores e interiores, de instalações, entre outros) funcionando em conjunto.

Crasto e Freitas (2006) relatam que, para que o sistema cumpra com as funções para o qual foi projetado e construído, é necessário que os subsistemas estejam corretamente interrelacionados e que os materiais utilizados sejam adequados. Dessa forma, a escolha dos materiais e de mão-de-obra é essencial na velocidade de construção e no desempenho do sistema. A Tabela 2.22 apresenta exemplos de construções feitas utilizando o *steel frame* em diferentes lugares no mundo.

Tabela 2.22 – Exemplos de construções em light *steel framing* (modificado – Freitas e Crasto, 2006)

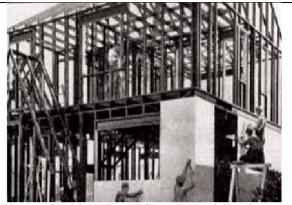


Figura 2. 32 – Protótipo de residência em Light Steel Framing na Exposição Mundial de Chicago em 1933 (HTTP://webpages.marshall.edu/~brooks/S TRAN/stran 1.htm)

Figura 2. 33 – Montagem de residência em Light Steel Framing, São Paulo (Construtora Sequência)

Figura 2. 34 – Painéis do pavimento térreo de casa residencial Belo Horizonte – MG (Freitas e Crasto, 2006)

Figura 2. 35 – Estrutura do telhado de residência em LSF (Freitas e Crasto, 2006)

Figura 2. 36 – Residência em Cotia - SP (Freitas e Crasto, 2006)

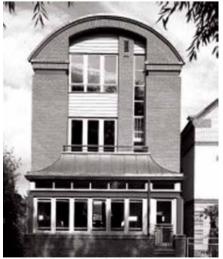


Figura 2. 37 – Residência em Oxford – Inglaterra (HTTP://www.steelsci.org/lightsteel/)

Figura 2. 38 – Hotel na Inglaterra (http://www.steel-sci.org/lightsteel)

Figura 2. 39 – 1.425 módulos em LSF formam esse edifício na Inglaterra (http://www.corusconstruction.com/page_9 088.htm)

Figura 2. 40- Sistema construtivo aberto, usado com vários tipos de componentes industrializados compatíveis, o steel framing é montado depois da execução da fundação do tipo radier, sobre isolamento hidrófobo e as instalações elétricas e hidráulicas (Arcoweb, 2010).

Figura 2. 41- A modulação permite o controle de utilização e a minimização do desperdício dos materiais complementares (Arcoweb, 2010).

Figura 2. 42- Casa com steel framing e fechamento com placas OSB fabricadas com tiras de madeira reflorestada, desenvolvidas nos Estados Unidos mas já disponíveis no mercado brasileiro (Arcoweb, 2010).

Figura 2. 43 - Casa pronta utilizando o sistema *steel frame* (Arcoweb,2010).

2.3.2 Aplicação do steel frame em fachadas de edifícios

Na Figura 2.44 apresenta-se uma fachada de um edifício em reforma utilizando o LSF.

Figura 2.44 – Reforma de fachada usando *steel frame* (http://www.steel-sci.org/lightsteel)

O sistema *steel frame* pode utilizar diferentes tipos de fechamentos como placas cimentícias e placas OSB (*Oriented Strand Boards*). Segundo Pini (2008), as placas cimentícias são placas planas pré-fabricadas de cimento Portland e outros materiais como agregados, adições, aditivos, fibras ou telas sem emprego de amianto. Têm espessura máxima de 30 mm, em geral de 10 mm ou 12 mm, e dimensões que permitem seu transporte e fixação nas obras.

Rodrigues (2006) destaca que as vedações e o acabamento utilizam um método que combina uma alta capacidade isolante termo acústico com o emprego de variadas soluções construtivas entre elas: sistemas de gesso acartonado ("Dry Wall") para paredes internas e tela de poliéster aplicadas sobre chapa cimentícia para paredes externas. Para o revestimento externo pode ser aplicada a argamassa projetada ou o "siding" vinílico, por exemplo. A estrutura de aço fica então encapsulada e protegida dentro das paredes e entrepisos. O mesmo autor afirma ainda que os Estados Unidos, Inglaterra, Austrália, Japão e Canadá utilizam intensamente o *steel frame* há mais de trinta anos.

De acordo com Pini (2008), as placas cimentícias possuem fibras dispersas na matriz ou reforços em malhas de fibras de vidro nas superfícies. São encontrados no mercado os seguintes tipos: placas com cimento Portland, compostas por agregados naturais, celulose e fios sintéticos – CRFS (Cimento Reforçado com Fios Sintéticos); placas com cimento Portland, constituídas de agregados leves, reforçados com telas de fibra de vidro nas superfícies; placas com cimento Portland, compostas por agregados e fibras de vidro resistentes a álcalis dispersos na matriz. Com relação às dimensões e aplicações das placas cimentícias, as dimensões nominais relativas ao comprimento e largura são geralmente declaradas pelo fabricante, sendo a espessura nominal máxima de 30 mm.

Na Figura 2.45 apresenta-se um esquema simplificado da utilização do sistema *steel frame* com placas cimentícias em fachadas de edifícios. Na Tabela 2.23 são apresentadas as dimensões e aplicações de painéis cimentícios para fabricante específico que produz placas com agregados naturais, celulose e fios sintéticos e na Tabela 2. 24 apresentam-se as dimensões dos perfis comerciais de aço galvanizado utilizado no sistema *steel frame*.

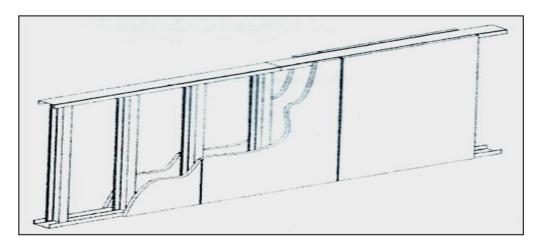


Figura 2.45- Esquema de fachada com sistema *steel frame* e placas cimentícias (Pini, 2008).

Tabela 2.23 – Dimensões e aplicação de painéis cimentícios (Pini, 2008)

Espessura	Comprimento	Largura	Massa	Massa/	Aplicações
(mm)	(m)	(m)	da Placa	\mathbf{m}^2	
			(kg)	(kg/m^2)	
	2,00	1,20	24,4	10,2	Dutos de ar-
6	2,40	1,20	29,4	10,2	condicionado,
	3,00	1,20	36,7	10,2	divisórias leves,
					pequenos arremates.
	2,00	1,20	32,6	13,6	Paredes internas em
8	2,40	1,20	39,2	13,6	áreas secas e úmidas,
	3,00	1,20	49,0	13,6	revestimentos de
					paredes comuns.
	2,00	1,20	40,8	17,0	Áreas secas e úmidas,
10 *	2,40	1,20	49,0	17,0	internas e externas em
	3,00	1,20	61,2	17,0	sistemas steel frame,
					isolamentos acústicos.
	2,00	1,20	48,9	20,4	Uso interno com
	2,40	1,20	58,8	20,4	drywall, fechamentos
12 *	3,00	1,20	73,5	20,4	internos e externos que
					necessitem de maior
					espessura por questões
					estéticas ou físicas
					específicas.

* Placas com rebaixo nas bordas para acabamento nas juntas.

Tabela 2. 24 – Perfis de aço galvanizado para steel frame (Pini, 2008)

		Largura da	Largura da	Largura do	
Dimensões	Designação	alma ou aba	mesa ou aba	enrijecedor	Espessura
(mm)		(mm)	(mm)	de borda	(mm)
				(mm)	
90 x 40	Montante	90	40	12	de 0,80 mm
140 x 40	Montante	140	40	12	a 3,00 mm
200 x 40	Montante	200	40	12	
250 x 40	Montante	250	40	12	
300 x 40	Montante	300	40	12	
92 x 38	Guia	92	38	-	
142 x 38	Guia	142	38	-	
202 x 38	Guia	202	38	-	
L150 x 40	Cantoneira de	150	40	-	-
	abas desiguais				
L200 x 40	Cantoneira de	200	40	-	-
	abas desiguais				
L250 x 40	Cantoneira de	250	40	-	-
	abas desiguais				
20 x 30	Cartola	30	20	12	-

Na Tabela 2.25 são apresentadas as designações dos perfis de aço formados a frio para uso em *Light Steel Framing* e suas respectivas aplicações segundo a NBR 15253 (ABNT, 2005).

Tabela 2.25 – Perfis de aço para uso em *Light Steel Framing* (NBR 15253:2005)

SEÇÃO TRANSVERSAL	SÉRIE Designação NBR 6355:2003	Utilização
b _w	U simples U $b_{ m w}$ x $b_{ m f}$ x $t_{ m n}$	Guia Ripa Bloqueador
b _w t _n	U enrijecido $ ext{Ue} \ b_{w} ext{x} \ b_{f} ext{x} \ ext{D} ext{x} \ t_{n} $	Bloqueador Enrijecedor de alma Montante Verga Viga
t _n b _w	Cartola Cr b _w x b _f x D x t _n	Ripa
b _f t _n	Cantoneira de abas desiguais L b _{f1} x b _{f2} x t _n	Cantoneira

2.3.3 Montagem e Encaixe

Segundo o fabricante das placas cimentícias (Eternit) aplicadas no sistema *steel frame*, os seguintes procedimentos devem ser realizados:

- a) As placas devem ser montadas preferencialmente do centro para as extremidades e de cima para baixo;
- b) Quando ambas as faces da estrutura da parede receberem placas cimentícias, as juntas das placas da face interna e da face externa não devem coincidir no mesmo montante, para garantir a rigidez do conjunto;
- c) As juntas verticais das chapas devem evitar a ocorrência de quatro vértices no mesmo ponto;
- d) Nos vãos de portas e janelas, as juntas verticais junto aos batentes não devem seguir até o teto;
- e) Todas as juntas devem ser feitas sobre montantes ou guias;

f) As juntas das placas não devem coincidir com as juntas dos painéis.

A Norma SANS (*South African National Standard*) 517 (2009) apresenta considerações específicas sobre o sistema em *steel frame* como os materiais constituintes, considerações de cálculo estrutural, serviços de instalação entre outros aspectos considerados na África do Sul. Na Figura 2. 46 e na Figura 2. 47 são apresentados modelos típicos de *steel frame* que ilustram este sistema construtivo, de acordo com a SANS 517 (2009).

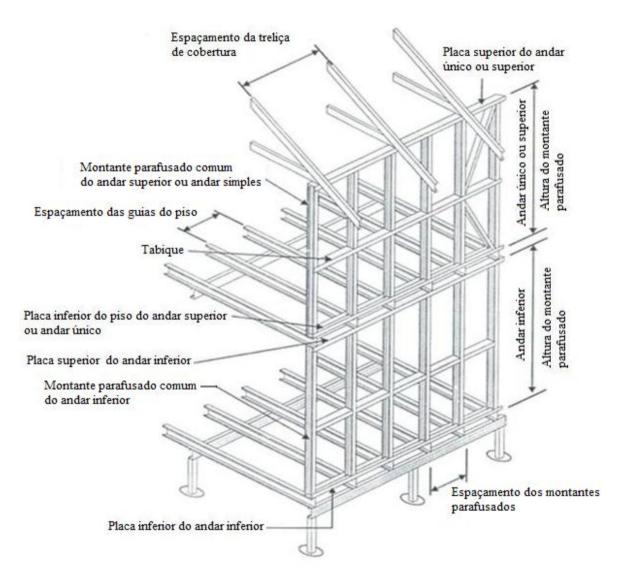


Figura 2. 46- Componentes típicos do *steel frame* (SANS, 2009)

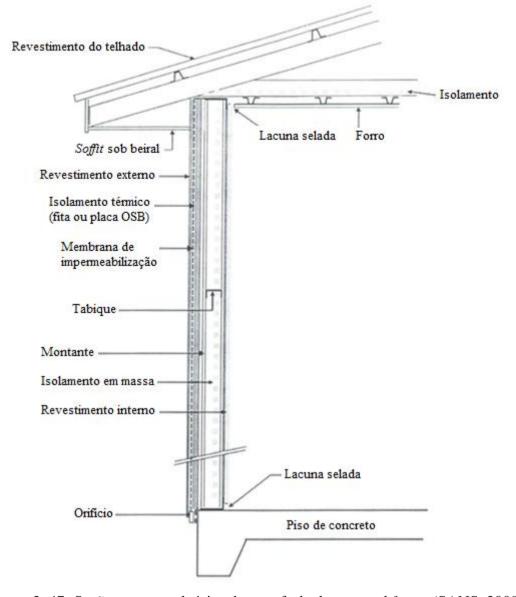


Figura 2. 47- Seção transversal típica de uma fachada em *steel frame* (SANS, 2009)

Após essas informações obtidas na revisão da literatura, delimita-se o foco do trabalho e escolhem-se então os seguintes tipos de fachadas a serem estudadas sob os aspectos de energia incorporada de materiais, emissões de CO₂ e consumo de materiais: fachadas que utilizam o sistema *steel frame* com placas cimentícias comparadas com as fachadas convencionais (com blocos cerâmicos, chapisco, emboço, reboco paulista e argamassa colante com revestimento cerâmico). No capítulo 3 apresenta-se a metodologia empregada na pesquisa.

3 METODOLOGIA

Neste capítulo, é apresentada a metodologia utilizada no estudo da sustentabilidade energético-ambiental das fachadas que utilizam o sistema *steel frame* comparativamente à fachada convencional adotada com blocos cerâmicos furados, argamassa mista de assentamento e revestimento cerâmico. As variáveis do estudo são apresentadas na Figura 3.1.

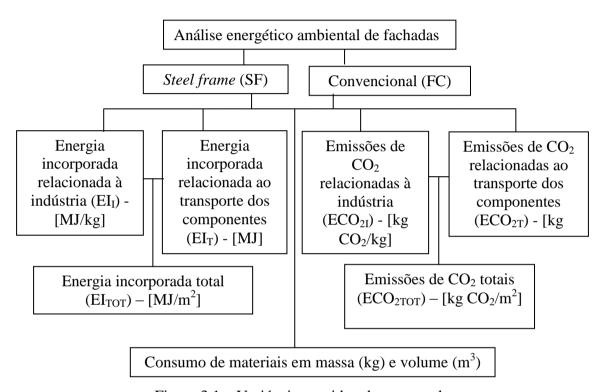


Figura 3.1 – Variáveis consideradas no estudo

3.1 MÉTODO DA PESQUISA, TIPO DE DADOS UTILIZADOS E SEQUENCIA DE CÁLCULO PARA AS VARIÁVEIS EM ESTUDO

Como estratégia de pesquisa utilizou-se o método de estudo de caso de natureza encaixada (abrangendo vários níveis dentro do caso estudado). Na Figura 3.2 é apresentado este método proposto por Yin (2001).

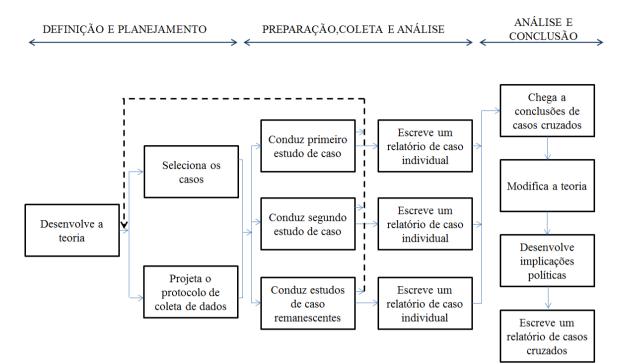


Figura 3.2 – Método de estudo de caso (YIN, 2001)

Aplicando os conceitos descritos por YIN (2001), na Tabela 3.1 são apresentados os conceitos e estratégias adotados na elaboração deste trabalho.

Ta	bela 3.1 – Aplicação do método de estudo de caso
1.0	Revisão
1.1	Geral
1.2	Específica (foco do trabalho)
2.0	Desenvolvimento da Pesquisa
2.1	Definição dos materiais/produtos que compõem os dois tipos de fachada em estudo
2.1.1	SF (materiais/produtos típicos)
2.1.2	FC (materiais/produtos típicos)
2.2	Quantitativo de materiais/produtos nas fachadas
2.2.1	SF
2.2.2	FC
2.3	Energia Incorporada Total (EI _{TOT})
2.3.1	SF
2.3.2	FC
2.4	Emissões de CO ₂ Totais (ECO _{2TOT})
2.4.1	SF
2.4.2	FC

Apresenta-se na Tabela 3.2 a classificação dos dados pesquisados neste trabalho.

Tabela 3.2 – Classificação dos dados obtidos no trabalho

Item de Análise		Classificação dos Dados
EI _{TOT} SF e	Extração e fabricação (EI _I)	Secundários (fontes nacionais e internacionais)
EI _{TOT} FC	Transporte (EI _T)	Primários (pesquisa de campo)
ECO ₂ SF e	Extração e fabricação (ECO _{2I})	Secundários (fontes nacionais e internacionais)
ECO ₂ FC	Transporte (ECO _{2T})	Secundários (fontes nacionais e internacionais)

Na análise dos sistemas SF e FC montou-se a sequência apresentada na Tabela 3.3 para cálculo da energia incorporada, emissões de CO_2 e consumo de materiais por m^2 de fachada.

Tabela 3.3 – Sequência de cálculos

Tubeiu 3.5 Sequencia de curcuios		
PASSO DESCRIÇÃO		
1 Levantamento da quantidade de materiais necessários para exec	cução de 1 m ²	
de fachada de cada modelo (SF e FC).	-	
2 Cálculo da massa (kg) e volume (m³) de cada material	ou camada	
constituinte para cada m ² dos sistemas analisados.		
Cálculo da energia incorporada utilizada no sistema estudado		
3 Massa _{camadaou peça} Energia Incorporada EI		
$\frac{3}{m^2 \text{ de fachada estudada}} \cdot \frac{Energia \text{ Incorporada}}{kg \text{ de material}_{camadaou peca}} = \frac{EI}{m^2} \text{ para cama}$	iaa ou-peça	
Somatório da energia incorporada total por m² de todas as		
3.1 materiais constituintes = energia incorporada por m ² tota		
estudada.	i da facilada	
Cálculo das emissões de CO ₂ geradas no sistema		
Massa _{camada ou peça} Emissões CO ₂ Emissões CO ₂	ada ou nooa	
$\frac{Massa_{camadaou\ peça}}{m^2\ de\ fachada\ estudada} \cdot \frac{Emissões\ CO_2}{kg\ de\ material_{camadaou\ peça}} = \frac{Emissões\ CO_2}{m^2}\ para\ camadaou\ peça}$	iada ou-peça	
Somatório das ECO _{2I} /m ² de todas as camadas e/ou materiais co	onstituintes do	
4.1 sistema analisado = emissões totais de CO_2 por m^2 de fachada e	studada.	
Emissões de CO ₂ geradas no transporte dos materiais: fator	de conversão	
4.2 utilizando um litro de óleo diesel = emissão de 3,15 kg de CO ₂		

3.2 FACHADAS EM *STEEL FRAME* (SF): ELEMENTOS PARA A DETERMINAÇÃO/CÁLCULO DAS VARIÁVEIS DO ESTUDO

O modelo típico de fachada SF foi concebido conforme a Figura 3.3 seguindo recomendações de fabricantes especializados e o modelo apresentado por Pini (2008).

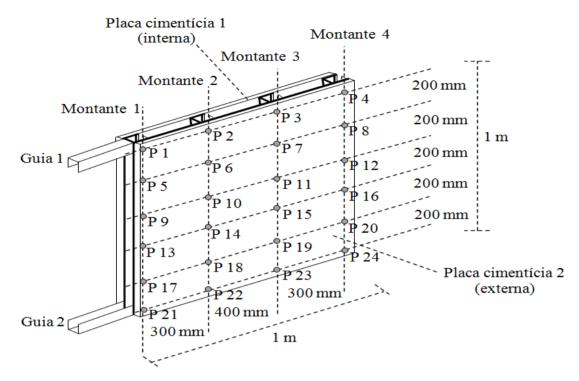


Figura 3.3- Modelo de fachada com sistema steel frame

Para as guias metálicas consideraram-se as dimensões comerciais disponibilizadas no mercado calculando-se então a área da seção transversal conforme a Equação 3.4 e a Figura 3.4.

$$A_{TG} = 2 \cdot \left(e_g \cdot l_{mg}\right) + \left(l_{ag} - 2 \cdot e_g\right) \cdot e_g \tag{3.4}$$

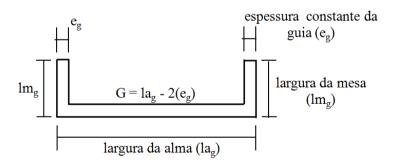


Figura 3.4- Modelo de guia para steel frame

Para os montantes também se consideraram as dimensões comerciais disponibilizadas no mercado calculando-se assim a área da seção transversal conforme a Equação 3.5 e a Figura 3.5.

$$A_{M} = (l_{am} - 2 \cdot e_{m}) \cdot e_{m} + 2 \cdot (e_{m} \cdot lm_{m}) + 2 \cdot [e_{m} \cdot (leb_{m} - e_{m})]$$

$$(3.5)$$

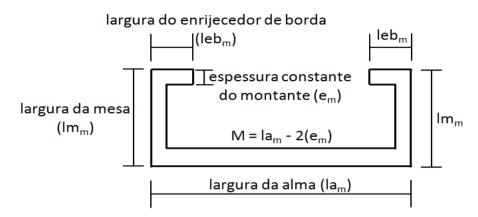


Figura 3.5- Modelo de montante para steel frame

Após o cálculo da área da seção transversal dos guias e montantes, calcula-se o volume das peças (considerando 1 metro de guias e montantes). Por fim determina-se o peso das peças multiplicando o volume encontrado pelo peso específico do aço.

Com relação aos parafusos utilizados no *steel frame*, a título de simplificação de cálculos, considerou-se os parafusos como peças cilíndricas para cálculo da área de conseqüente volume de parafusos. Determinou-se o peso dos parafusos multiplicando o volume encontrado pelo peso específico do aço. Na Figura 3.6 apresentam-se os diâmetros de parafusos comerciais utilizados para o sistema *steel frame*.

Figura 3.6- Modelos de parafusos utilizados no sistema *steel frame* (Eternit, 2009)

Para as placas cimentícias utilizaram-se as recomendações do fabricante na idealização do modelo em *steel frame* analisado. A Figura 3.7 apresenta o modelo apresentado pelo fabricante.



Figura 3.7- Modelo de placas cimentícias utilizadas no sistema steel frame (Eternit, 2009)

Composição da placa cimentícia: Cimento (CPII-F)*;_calcário em pó, celulose não branqueada e fibra sintética PVA

* (90% do total da massa seca da placa)

Para o cálculo da energia incorporada e emissões considerou-se os dados fornecidos pelo fabricante referente à energia elétrica em função da sua produção anual somados aos dados de fabricação do cimento.

3.3 FACHADAS CONVENCIONAIS (FC): ELEMENTOS PARA A DETERMINAÇÃO/CÁLCULO DAS VARIÁVEIS EM ESTUDO

O modelo convencional de fachadas foi adotado conforme a Figura 3.8 seguindo técnicas tradicionais utilizadas neste sistema construtivo.

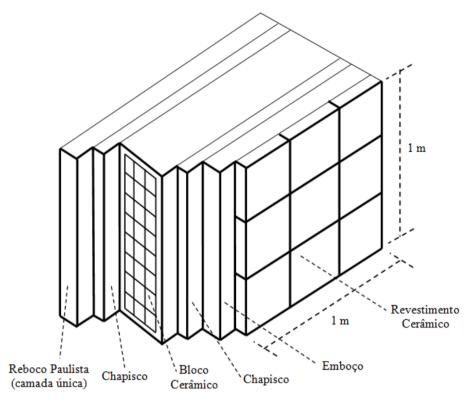


Figura 3.8- Modelo de fachada com sistema convencional

Portanto, considerou-se para o sistema de fachada convencional alvenaria com blocos cerâmicos assentados com argamassa convencional rodada em obra, chapisco, emboço, reboco paulista (camada única) e argamassa colante na colocação do revestimento cerâmico. Os cálculos pertinentes para cada camada foram programados em planilhas eletrônicas conforme apresentados no Apêndice B deste trabalho.

3.4 SEQUENCIA DAS ETAPAS

A organização deste trabalho utilizando a ferramenta de cálculo em planilhas eletrônicas seguiu as etapas conforme apresentadas na Figura 3.9 e na Figura 3.10.

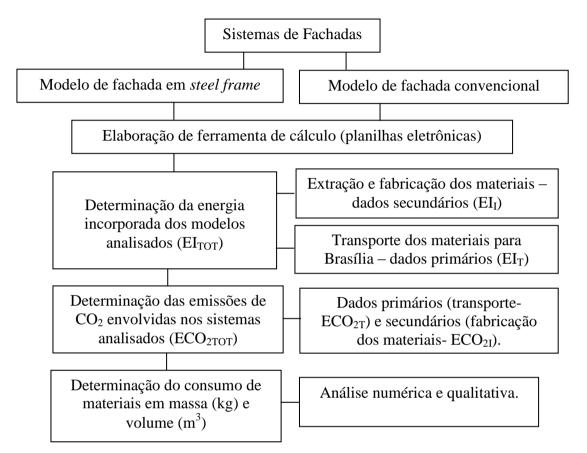


Figura 3.9 - Organização de metodologia de elaboração do trabalho

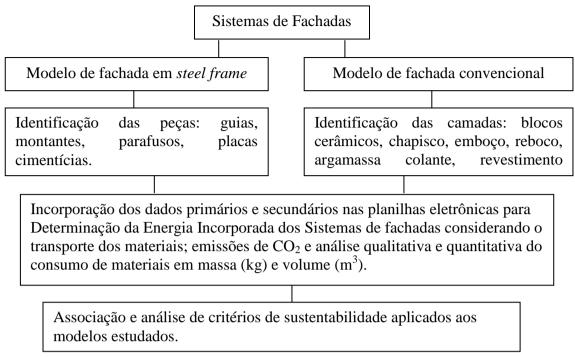


Figura 3.10 - Organização com o foco da dissertação

Os dados foram organizados em planilhas eletrônicas de cálculo buscando sistematizar o cálculo da energia incorporada e emissões de CO₂ para fachadas com sistema *steel frame* comparativamente às fachadas com sistema convencional.

Foram utilizados os dados nacionais disponíveis na literatura para cada material constituinte dos modelos estudados e dados internacionais para materiais onde não foram encontrados estudos nacionais contendo valores que pudessem ser utilizados.

Utilizou-se o MJ/kg de material como unidade padrão de energia incorporada dos materiais e quilos de CO₂/kg de material como unidade de emissões de CO₂. A Tabela 3.4 apresenta os principais fatores de conversão utilizados na elaboração das planilhas eletrônicas de cálculo e posterior análise dos resultados.

Tabela 3.4 – Principais fatores de conversão (adaptado de Goldemberg e Bermann 2003)

Conversão de Unidades
1 TEP = 41.865,00 MJ
1 kWh = 3600 kJ = 3,6 MJ
Óleo diesel: 1 TEP = $3,15$ t CO ₂
Gás natural: 1 TEP = $2,12$ t CO ₂
Carvão mineral: 1 TEP = 3,83 t CO ₂
Óleo combustível: 1 TEP = 3,34 t CO ₂
Gasolina: 1 TEP = $2,93 \text{ t CO}_2$
Lenha e carvão vegetal: 1 TEP = 4,27 t CO ₂
Outros de petróleo: 1 TEP = 3,04 t CO ₂
Gás de coqueria: $1 \text{ TEP} = 2,84 \text{ t CO}_2$

3.5 CONSIDERAÇÕES E LIMITAÇÕES DE CÁLCULO

Após a análise numérica dos dados de EI_I e ECO_{2I} utilizou-se dados nacionais específicos como valores de referência para utilização na ferramenta em planilhas eletrônicas. Na Tabela 3.5 são apresentados os valores adotados na ferramenta de cálculo e análise.

Tabela 3.5 – Valores de EI_I e ECO_{2I} adotados na ferramenta de cálculo

Material	EI _I (MJ/kg);	Fonte
	ECO_{2I} (kg CO_2 /kg)	
Aço (chapa dobrada)	30,49;	Tavares (2006)
	1,53 ^a	Zabalza (2010)
Cimento portland	2,46;	Carvalho (2002)
(CP II - F)	0,57	Carvalho (2002)
Areia natural	0,05;	Tavares (2006)
	0,016 ^b	Stachera e Casagrande (2007)
Cal	3,0;	Tavares (2006)
	0,786	Stachera e Casagrande (2007)
Bloco cerâmico furado	4,88;	Sposto (2007)
	0,33	Soares et al. (2002)
Revestimento cerâmico	5,35;	Tavares (2006)
	0,857	Stachera e Casagrande (2007)

^a Valor de referência retirado de dado internacional

Stachera e Casagrande (2007) fazem uma diferenciação entre valores de emissões de CO₂ para areia natural fina, média e grossa conforme apresentado na Tabela 3.6 e analisado no Apêndice C desse trabalho.

^b Valor de referência para areia natural fina

Tabela 3.6 – Valores de ECO₂₁ adotados na ferramenta de cálculo (Stachera Jr., 2007)

Material	ECO _{2I}	Fonte
Areia natural fina	0,016;	
Areia natural média	0,015;	Stachera Jr. (2007)
Areia natural grossa	0,013	

Para a mistura das argamassas, considerou-se a betoneira MOB 400 L do fabricante Fischer que apresenta um consumo energético de 1,5 kWh. Para este trabalho será utilizado o fator de conversão: 1 kWh = 3600 kJ = 3,6 MJ. Portanto o consumo energético desta betoneira é de 5,4 MJ. Considerando-se uma produção de metade da capacidade máxima da betoneira (200 kg), estima-se um valor de aproximadamente 0,03 MJ/kg associados ao processo de mistura da argamassa.

Adotou-se então o valor de 0,03 MJ/kg como valor de referência para a EI_I e 0 kg de CO_2 /kg como valor de referência para a mistura da argamassa considerando-se que a betoneira utiliza eletricidade como fonte de energia.

O detalhamento de materiais necessários para construção de 1 m² de fachada em *steel frame* está apresentado na Tabela 3.7.

Tabela 3.7 – Quantitativo de materiais por m²

Material	Detalhamento
Guias	2 unidades com dimensões: 202 x 38 mm, espessura = 2 mm
	(conforme Figura 3.4)
Montantes	4 unidades com dimensões: 200 x 40 mm, espessura = 2 mm
	(conforme Figura 3.5)
Placa cimentícia	2 unidades com dimensões: 1,00 x 1,00 m, espessura =10 mm
Parafusos	48 unidades com ponta broca e aletas de expansão de fixação
rararusus	da placa cimentícia conforme recomendação do fabricante.

Os parafusos considerados na fixação entre os perfis metálicos e as placas cimentícias foram os parafusos com ponta broca, cabeça autoescariante e aletas de expansão com dimensões de 4,2 x 32 mm.

Com relação à energia incorporada e emissões de CO_2 referentes ao transporte dos materiais utilizou-se os seguintes valores para obtenção de EI_T e ECO_{2T} :

- Consumo médio de diesel utilizado no transporte dos materiais = 0,0136 l/t.km
- 1 L diesel = 35,58 MJ (Goldemberg e Villanueva, 2003)

• 1 L diesel = 3,15 kg CO₂ (Bermann, 2003)

Não foram consideradas a energia incorporada e emissões de CO₂ associadas à mão de obra necessária para execução dos modelos de fachada SF e FC.

No cálculo das distâncias de transporte das fábricas dos materiais, considerou-se como destino final o edifício do SG-12 da UnB sendo que estas distâncias foram traçadas utilizando informações de fornecedores locais dos materiais específicos. Portanto, adota-se a distância de transporte como aquela que considera o início na fábrica e vai diretamente à obra e considera-se apenas o caminho de ida no cálculo da EI_T e ECO_{2T} para SF e FC. Na Tabela 3.8 e na Tabela 3.9 são apresentadas as distâncias de transporte dos materiais consideradas neste trabalho.

Tabela 3.8 – Transporte dos materiais para SF

Material	Local da fábrica	Destino final	Distância percorrida
Guias	Curitiba-PR		1.394 km
Montantes	São Paulo – SP	Drádio SC 12 Enganharia	1.014 km
Parafusos	Curitiba – PR	Prédio SG 12 – Engenharia Civil	1.394 km
Placas cimentícias	Goiânia - GO	CIVII	213 km

Tabela 3.9 – Transporte dos materiais para FC

Material	Local da fábrica	Destino final	Distância percorrida		
Bloco (ou	Anápolis				
placa)	(Campo Limpo		175 km		
cerâmico(a)	de Goiás) - GO				
Cimento	Sobradinho - P. (1) GG 12		20 1		
	DF	Prédio SG 12 –	28 km		
Cal	Suzano - SP	Engenharia Civil	1.019 km		
Areia	Ipameri - GO		285 km		
Revestimento cerâmico	Anápolis - GO		160 km		

4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Neste capítulo são apresentados os resultados obtidos para energia incorporada (EI_{TOT}), ECO_{2TOT} e consumo de materiais para os modelos de fachadas estudados. Vale ressaltar que para EII dos materiais utilizados na ferramenta de cálculo, foram considerados os dados nacionais disponíveis; além disto, foram considerados os valores que se apresentaram mais próximos (entre si), indicando assim a probabilidade de serem provenientes de processos de fabricação semelhantes.

Utilizando os dados apresentados por Monahan e Powell (2010) e González e Navarro (2005) observa-se uma relação proporcional (quanto maior for a energia incorporada do material, maiores serão as emissões de CO₂ associadas ao mesmo) entre a energia incorporada dos materiais e suas respectivas emissões de CO₂ conforme apresentado na Figura 4.1 e Figura 4.2.

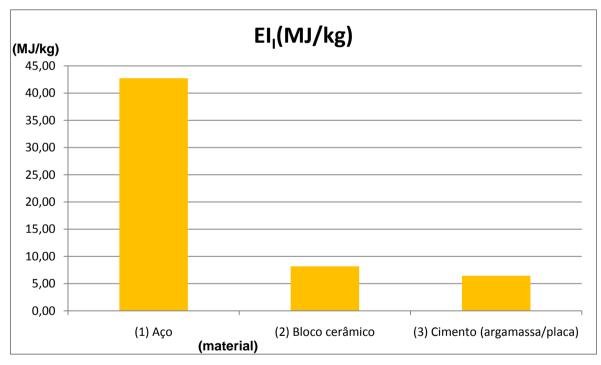


Figura 4.1 – Energia incorporada na fabricação de materiais de construção

Na Figura 4.1 observa-se um valor de EI_I mais elevado para o aço, principal material no sistema *steel frame*, quando comparado a outros materiais como o bloco cerâmico e o cimento que são mais utilizados no sistema de fachada convencional. Visando obter o conteúdo energético e as emissões de CO₂ totais do sistema estudado, faz-se necessário a determinação do consumo dos materiais em massa para os modelos de fachada analisados.

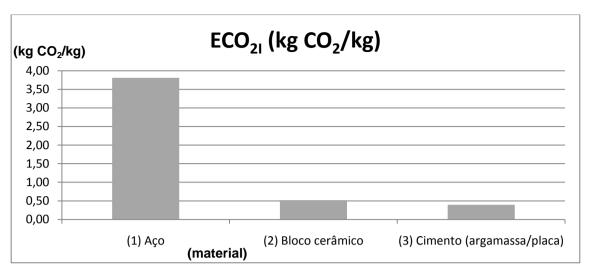


Figura 4.2 – Emissões de CO₂ associadas aos materiais de construção

Por meio da análise gráfica foi possível observar que quanto maior a energia incorporada do material existe uma tendência do mesmo emitir uma maior quantidade de CO₂ na atmosfera.

4.1 ENERGIA INCORPORADA NO TRANSPORTE DE MATERIAIS

De acordo com empresas especializadas em transporte de materiais de construção, o consumo médio de combustível depende do tipo e da quantidade de materiais transportadas nos caminhões. Através de uma pesquisa de campo realizada em uma empresa especializada no transporte de materiais de construção, foram obtidos os consumos de combustível de alguns tipos de caminhões (Tabela 4.1). Ressalta-se que para os caminhões cheios inclui-se o peso próprio do caminhão na carga de materiais e para os caminhões vazios a carga de materiais equivale ao peso próprio do caminhão. Destaca-se no Apêndice A as fotos dos principais caminhões responsáveis pelo transporte de materiais de construção.

Tabela 4.1 – Consumo médio de combustível de caminhões

Fabricante do Caminhão	Tipo de Caminhão	Especificação do Caminhão	Carga de Materiais (ton)	Média de km/l	l/km	l/t.km
Mercedes Benz	Caminhão Basculante (CB) - cheio	1620	31	2,0	0,50000	0,01613
Mercedes Benz	Caminhão Basculante (CB) - vazio	1620	10	3,5	0,28571	0,02857
Mercedes Benz	Caminhão Basculante (CB) - cheio	2423	34	1,9	0,52632	0,01548
Mercedes Benz	Caminhão Basculante (CB) - vazio	2423	11	2,4	0,41667	0,03788
Mercedes Benz	Cavalo Mecânico (CM) - cheio	2640	67	1,5	0,66667	0,00995
Mercedes Benz	Cavalo Mecânico (CM) - vazio	2640	22	2,1	0,47619	0,02165
Mercedes Benz	Caminhão Basculante (CB) - cheio	2635	49	1,5	0,66667	0,01361
Mercedes Benz	Caminhão Basculante (CB) - vazio	2635	14	2,2	0,45455	0,03247
Mercedes Benz	Caminhão Basculante (CB) - cheio	2726	35	1,9	0,5263	0,0150
Mercedes Benz	Caminhão Basculante (CB) - vazio	2726	11	2,4	0,4167	0,0379
Mercedes Benz	Cavalo Mecânico (CM) - carreta - cheio	1634	59	1,5	0,6667	0,0113
Mercedes Benz	Cavalo Mecânico (CM) - carreta - vazio	1634	15	2,0	0,5000	0,0333
Mercedes Benz	Cavalo Mecânico (CM) - rodotrem - cheio	2644	75	1,1	0,9174	0,0122
Mercedes Benz	Cavalo Mecânico (CM) - rodotrem - vazio	2644	30	1,2	0,8403	0,0280
Scania	Bitrem Articulado	R 420	60	1,1	0,9434	0,0157
Scania	Bitrem Articulado	R 420	23	2,0	0,5000	0,0217
		MÉDIA	34,12	1,89	0,5815	0,0220

Com os dados obtidos na pesquisa, calculou-se as médias diferentes para caminhões cheios e vazios como mostrado na Tabela 4.2 e Tabela 4.3, bem como as variações em torno da média apresentadas na Figura 4.3 e Figura 4.4.

Tabela 4.2 – Consumo médio de combustível de caminhões cheios

Caminhão de Transporte de Materiais de Construção	Unidade de Consumo (l/t.km)
Caminhão Basculante (CB) – cheio	0,0161
Caminhão Basculante (CB) – cheio	0,0155
Cavalo Mecânico (CM) – cheio	0,0100
Caminhão Basculante (CB) – cheio	0,0136
Caminhão Basculante (CB) – cheio	0,0150
Cavalo Mecânico (CM) - carreta – cheio	0,0113
Cavalo Mecânico (CM) - rodotrem - cheio	0,0122
Bitrem Articulado – cheio	0,0157
Média	0,0137
Desvio Padrão	0,0023
CV	16,79%

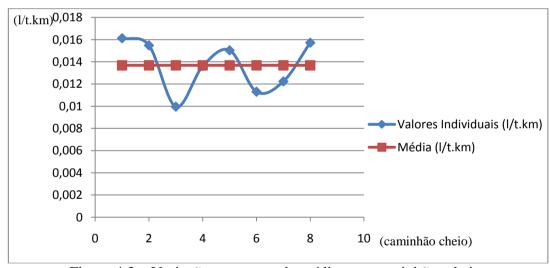


Figura 4.3 – Variações em torno da média para caminhões cheios

Tabela 4.3 – Consumo médio de combustível de caminhões vazios

Caminhão de Transporte de Materiais de Construção	Unidade de Consumo (l/t.km)
Caminhão Basculante (CB) - vazio	0,0286
Caminhão Basculante (CB) - vazio	0,0379
Cavalo Mecânico (CM) - vazio	0,0216
Caminhão Basculante (CB) - vazio	0,0325
Caminhão Basculante (CB) - vazio	0,0379
Cavalo Mecânico (CM) - carreta - vazio	0,0333
Cavalo Mecânico (CM) - rodotrem - vazio	0,0280
Bitrem Articulado - vazio	0,0217
Média	0,0302
Desvio Padrão	0,0064
CV	21,14%

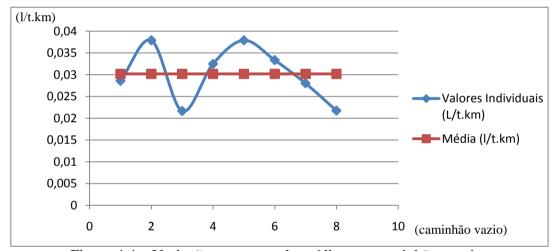


Figura 4.4 – Variações em torno da média para caminhões vazios

A partir da pesquisa de campo, considerou-se o consumo médio de combustível utilizado (óleo diesel) nos caminhões de transporte de materiais de construção cheios em Brasília de 0,0136 l/T km. Na Figura 4.5 é apresentado o comparativo dos dados da pesquisa de campo realizada com o valor apresentado por Guimarães (1985).

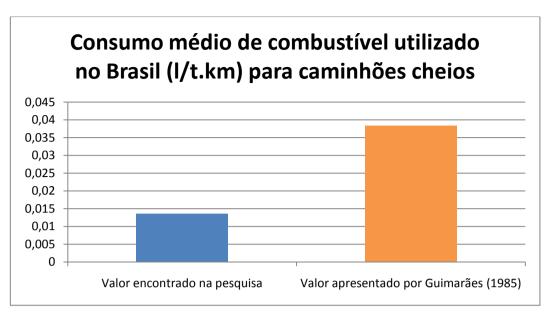


Figura 4.5 – Comparativo da evolução do consumo de combustível no transporte de materiais de construção no Brasil.

4.2 FACHADA EM STEEL FRAME

Os resultados apresentados a seguir foram baseados nas considerações e limitações de cálculo apresentadas na metodologia desse trabalho.

4.2.1 Energia Incorporada e Emissões de CO₂

Para a fachada com sistema SF utilizaram-se as recomendações técnicas de seus fabricantes para a montagem da ferramenta apresentada no Apêndice D desse trabalho.

Após a determinação da EI_I do consumo de materiais (em massa e volume) e da ECO_{2I} para o modelo de fachada em *steel frame*, determinou-se a energia incorporada e emissões de CO₂ relacionadas ao transporte (EI_T e ECO_{2T}) dos materiais do sistema em *steel frame* até Brasília-DF. Nas Figuras apresentadas nos Anexos P à R são apresentadas as regiões onde são fabricados os componentes do sistema segundo informações fornecidas por empresa especializada na instalação do *steel frame* em Brasília. As distâncias foram traçadas utilizando o software *Google Earth* (2008) com precisão de GPS (*Global Positioning System*).

Após a determinação das distâncias dos locais de origem ou fábrica dos materiais e com o uso da ferramenta elaborada para o cálculo foram realizados os cálculos e obtidos os resultados para EI_T e ECO_{2T} .

4.3 FACHADA CONVENCIONAL

A fachada com sistema convencional foi considerada conforme modelo descrito na metodologia deste trabalho.

4.3.1 Energia Incorporada e Emissões (CO₂)

A fachada com sistema convencional, modelo apresentado na montagem dos sistemas analisados, apresentou os resultados mostrados no Apêndice E deste trabalho.

Após a determinação da energia incorporada, consumo de materiais (em massa e volume) e emissões de CO₂ para 1 m² do modelo de fachada convencional, determinou-se a energia incorporada e emissões de CO₂ relacionadas ao transporte dos materiais do sistema convencional até Brasília-DF. Nos Anexos R à W são mostradas as regiões onde são fabricados os materiais do sistema de fachada convencional segundo informações de fabricantes e empresas especializadas em transporte de materiais de construção.

Com relação ao transporte da areia segundo informações da empresa de extração e fornecimento para Brasília DF, as características da areia dependem da região de extração. Segundo esta empresa, as principais regiões de extração de areia de rio (fina, média e grossa) próximas a Brasília são localizadas em Ipameri (GO) e Orizona (GO). O fornecedor também destacou que fornece areia média e fina moída de Cocalzinho (GO) e Pirenópolis (GO) e areia rosa de Brazlândia (DF). Neste trabalho foi considerada a extração de areia realizada em Ipameri (GO) por ser uma das principais reservas de areia natural de rio próximas a Brasília-DF a 285 km do edifício do SG 12 localizado na Universidade de Brasília (UnB).

Após a determinação das distâncias dos locais de origem ou fábrica dos materiais e com o uso de ferramenta para cálculo da EI_T e ECO_{2T} foi possível obter os resultados para energia incorporada e emissões de CO₂ no transporte.

4.4 ANÁLISE PARAMÉTRICA FINAL DA EI_{TOT} E ECO_{2TOT} do SF VS. FC

Na Figura 4.6 à Figura 4.13 são apresentados os gráficos comparativos dos modelos de fachadas SF e FC estudados para:

- a) consumo de materiais em massa e volume;
- b) EI_I e ECO_{2I} para SF e FC;
- c) EI_T e ECO_{2T} para SF e FC;
- d) EI_{TOT} e ECO_{2TOT} para SF e FC.

Os perfis comerciais de montantes do SF utilizados na análise paramétrica são apresentados na Tabela 4.4.

Tabela 4.4 – Perfis comerciais do SF

Montante	Dimensões comerciais (mm)	Espessura do perfil (mm)	Espessura do perfil (mm)	Espessura do perfil (mm)
M1	90 x 40 x 12	0,8	2,0	3,0
M2	140 x 40 x 12	0,8	2,0	3,0
M3	200 x 40 x 12	0,8	2,0	3,0
M4	250 x 40 x 12	0,8	2,0	3,0
M5	300 x 40 x 12	0,8	2,0	3,0

Vale ressaltar que as dimensões dos perfis das guias com dimensões 202 x 38 mm e espessura de 2 mm permaneceu constante nas análises realizadas. Os dados para FC também permaneceram constantes.

a) Consumo de materiais: o consumo total de materiais em massa (kg/m^2) e volume (m^3/m^2) apresenta-se na Figura 4.6 e Figura 4.7 respectivamente.

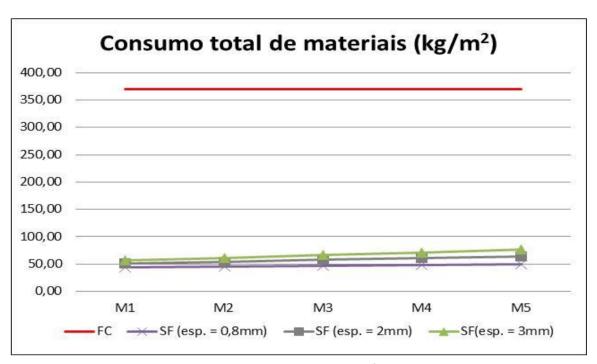


Figura 4.6 – Consumo total de materiais em massa (kg/m²) dos sistemas de fachada SF e FC.

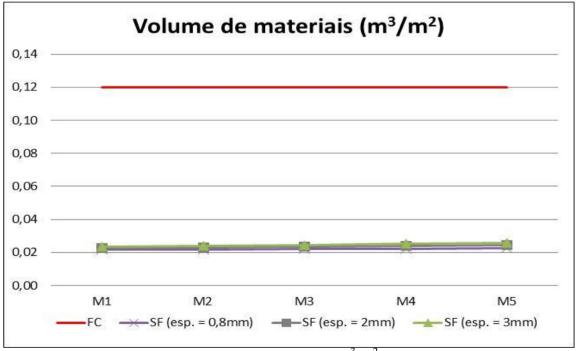


Figura 4.7 – Consumo total de materiais em volume (m³/m²) dos sistemas de fachada SF e FC

Observa-se na Figura 4.6 e na Figura 4.7 que o sistema SF analisado representa aproximadamente 18 % do volume e 13% da massa total do modelo FC utilizando o perfil M1. Observa-se também que a variação das dimensões dos perfis dos montantes do SF não influenciam de maneira significativa na massa e no volume total do sistema SF. Por fim,

para todos os perfis utilizados na ferramenta, o sistema SF apresentou um consumo de materiais em massa e volume menor que o sistema de FC.

b) EI_I e ECO_{2I} para SF e FC: na Figura 4.8 e Figura 4.9 são apresentados os resultados obtidos para os sistemas analisados.

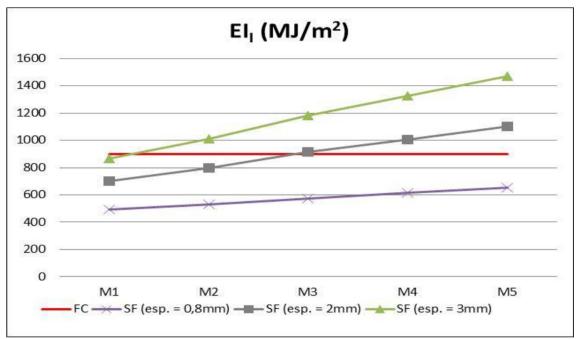


Figura 4.8 – EI_I dos sistemas de fachada SF e FC

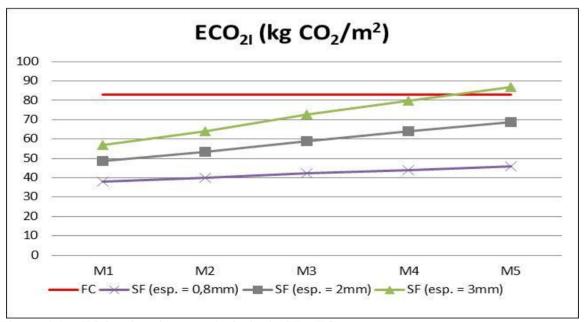


Figura 4.9 – ECO_{2I} dos sistemas de fachada SF e FC

Observa-se que com relação à EI_I dos modelos estudados, diferentes análises podem ser consideradas. Na Figura 4.24 observa-se que para o perfil M1, a EI_I do sistema SF é menor que no sistema de FC. Entretanto, apenas o perfil M5 com espessura de 0,8 mm apresenta uma EI_I menor que o sistema FC. Esta análise pode ser atribuída ao valor de energia incorporada do aço (estimado em 30,49 MJ/kg) comparado ao bloco cerâmico (estimado em 4,88 MJ/kg). Portanto, um pequeno incremento de massa no sistema SF apresenta um grande impacto nos resultados de EI_I da fachada. Com relação a ECO_{2I}, o perfil M5 com espessura de 3 mm do SF ultrapassa o valor da FC apesar de não ocorrer uma discrepância de valores de ECO_{2I} da mesma forma que ocorre para EI_I. Por exemplo, o maior valor adotado para ECO_{2I} do SF foi 1,53 kg CO₂/kg (valor referente ao aço) e o maior valor adotado para a FC foi de 0,85 kg CO₂/kg (valor referente ao revestimento cerâmico).

c) EI_T e ECO_{2T} para SF e FC: na Figura 4.10 e Figura 4.11 são apresentados os resultados comparativos para SF e FC.

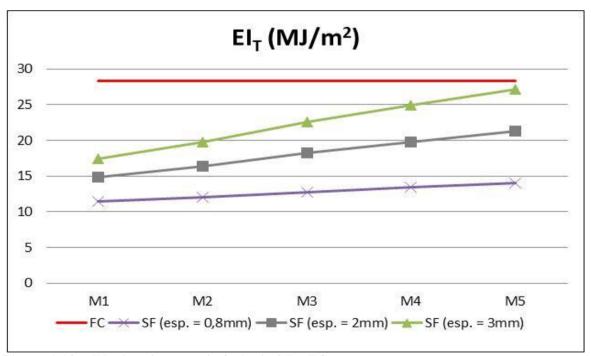


Figura 4.10 – EI_T dos sistemas de fachada SF e FC

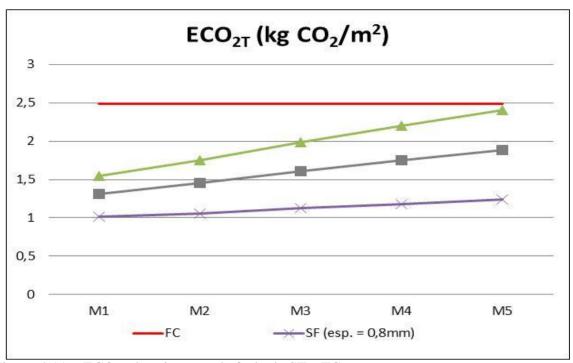


Figura 4.11 – ECO_{2T} dos sistemas de fachada SF e FC

Observa-se na Figura 4.10 que a EI_T foi menor no sistema SF para todos os perfis utilizados. Os principais fatores que contribuíram para esse resultado foram a distância total percorrida e a massa total do SF menores que na FC. A mesma análise pode ser feita para a ECO_{2T} onde a ordem de grandeza dos valores apresentados segue o mesmo raciocínio para SF e FC.

d) EI_{TOT} e ECO_{2TOT} para os sistemas SF e FC: na Figura 4.12 e Figura 4.13 são apresentados os resultados para EI_{TOT} e ECO_{2TOT} dos sistemas SF e FC, ou seja, a soma de EI_{I} e EI_{T} ; ECO_{2I} e ECO_{2T} .

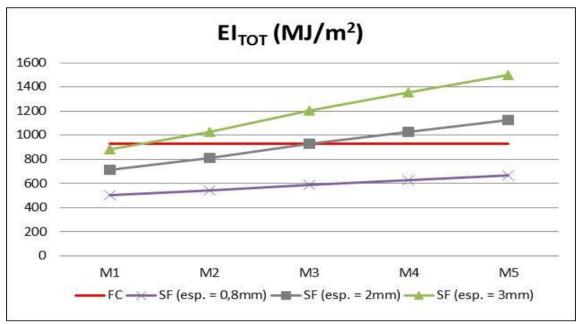


Figura 4.12 – Energia incorporada total (EI_{TOT}) dos sistemas de fachada SF e FC

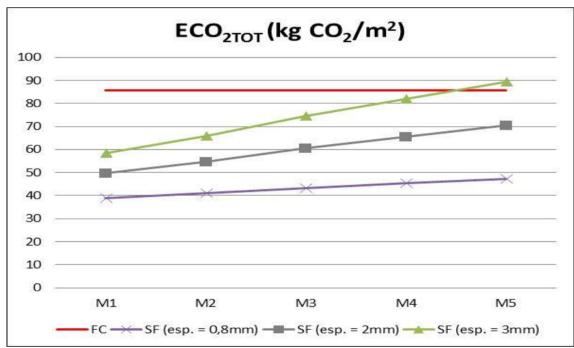


Figura 4.13 – Emissões totais de CO₂ (ECO_{2TOT}) dos sistemas de fachada SF e FC

Observa-se que com relação à EI_{TOT} dos modelos estudados, diferentes análises podem ser consideradas. Na Figura 4.12 observa-se que para o perfil M1, a EI_{TOT} do sistema SF é menor que no sistema de FC. Entretanto, apenas o perfil M5 com espessura de 0,8 mm apresenta uma EI_{TOT} menor que o sistema FC. Para a ECO_{2TOT}, o perfil M5 com espessura de 3 mm do SF ultrapassa o valor da FC. Essa análise é semelhante à análise da EI_I e

 ECO_{2I} pois o transporte dos materiais (EI_T e ECO_{2T}) apresenta uma influência de aproximadamente 2,5 % nos resultados finais (EI_{TOT} e ECO_{2TOT}).

Observa-se por fim que a fachada em SF com montantes com espessura igual a 0,8 mm obteve EI_{TOT}, ECO_{2TOT} e consumo de materiais em massa menores que a FC. Na Tabela 4.5 apresentam-se os resultados para o elemento de fachada em SF com montantes M5 de 0,8 mm de espessura.

Tabela 4.5 – Valores obtidos para SF com M5 de 0,8 mm de espessura*

Variável	SF	FC
Massa (kg/m ²)	49	370
$EI_{TOT} (MJ/m^2)$	665	929
ECO _{2TOT} (kg CO ₂ /m ²)	47	85

^{*} Valor recomendado pelo fabricante para utilização em habitação

5 CONCLUSÕES E SUGESTÕES

Neste trabalho foram feitas análises sobre a energia incorporada e as emissões de CO₂ dos modelos de fachadas SF e FC. Também foi levantado o consumo de materiais destas fachadas. São apresentadas aqui as conclusões obtidas em cada uma das análises realizadas e as sugestões para trabalhos futuros.

5.1 CONSUMO DE MATERIAIS

Com relação ao consumo de materiais em massa e em volume, observou-se que sua determinação impacta diretamente os resultados de EI_{TOT} e ECO_{2TOT}. A massa de cada material utilizado nos sistemas SF e FC serve como ponto de partida para a análise da energia incorporada e emissões de CO₂ associadas aos sistemas. Ressalta-se também a desmaterialização da fachada em SF que apresenta um consumo aproximado de materiais em massa e volume, respectivamente, de 50 a 75 kg/m² e 0,02 a 0,024 m³/m² comparado com a FC que apresentou 370 kg/m² e 0,12 m³/m² de consumo de materiais em massa e volume.

5.2 EI_I E ECO_{2I} PARA SF E FC

Os valores de EI_I analisados dependeram da massa total do sistema SF, ou seja, para perfis mais esbeltos, o valor de EI_I do SF foi menor que no sistema FC. Em contrapartida, para perfis de SF mais robustos, a análise apresentou-se de maneira inversa. Observa-se assim a influência dos valores de EI_I individuais de cada material constituinte dos sistemas, neste estudo de caso, por exemplo, a EI_I do aço impactou de maneira significativa na EI_I do sistema SF ao aumentar as dimensões dos montantes utilizados no modelo. Obteve-se como resultado aproximado de EI_I e ECO_{2I} respectivamente para o SF: 450 a 1500 MJ/m² e 39-85 kg CO₂/m². Para a FC os resultados foram: 850 MJ/m² e 83 kg CO₂/m².

Observa-se com relação aos valores de ECO_{2I} para o sistema SF que o perfil M5 com espessura de 3 mm supera o valor da FC porque a massa do perfil foi suficientes para que tal situação ocorresse. Destaca-se novamente a importância de se estudar cada material constituinte de sistemas de fachada para poder medir sua influência no produto final. Além disto, observa-se que a variação nos processos de fabricação dos materiais impacta

diretamente na EI_I e ECO_{2I} dos materiais gerando dispersões nos valores encontrados na literatura nacional e internacional.

5.3 $EI_T E ECO_{2T} PARA SF E FC$

Com relação à energia incorporada e emissões de CO₂ relacionados ao transporte dos materiais ² , observa-se que as mesmas foram menores no sistema SF. Os resultados aproximados para EI_T e ECO_{2T} para o SF foi: 11 - 27 MJ/m² e 1,0 - 2,4 kg CO₂/m². Para a FC os resultados foram: 27 MJ/m² e 2,5 kg CO₂/m². Este resultado pode ser explicado devido a maiores massas e distâncias totais percorridas para a execução do sistema FC. Apesar de uma maior disponibilidade local dos materiais constituintes da FC, as distâncias foram maiores porque o consumo de material foi maior. Observa-se uma carência de disponibilidade local dos materiais constituintes do SF, pois os mesmos são trazidos de outros estados no Brasil segundo informações de empresas especializadas neste sistema em Brasília. De maneira geral, quanto maior for a distância percorrida e a massa transportada, maior será o consumo de combustível, impactando diretamente na EI_T e ECO_{2T}.

5.4 EI_{TOT} E ECO_{2TOT} PARA SF E FC

Observa-se que com relação à EI_{TOT} e ECO_{2TOT} a análise é semelhante à EI_I e ECO_{2I} pois o transporte dos materiais (EI_T e ECO_{2T}) apresenta uma influência de aproximadamente 2,5 % nos resultados finais (EI_{TOT} e ECO_{2TOT}). Os resultados aproximados para EI_{TOT} e ECO_{2TOT} para o SF foram: 461 a 1527 MJ/m^2 e 40-88 kg CO_2/m^2 . Para a FC os resultados foram: 878 MJ/m^2 e 86 kg CO_2/m^2 .

5.5 CONSIDERAÇÕES FINAIS

Ao se especificar os materiais utilizados em uma edificação, deve-se ter em mente os objetivos a serem alcançados com relação à sustentabilidade energético-ambiental, ou seja, quais são os critérios mais importantes a serem atendidos pois demonstrou-se que atender a

-

² Pires (2005) destaca que em geral, a maior contribuição da carga de poluentes nas grandes metrópoles está associada ao setor de transportes seguida do setor industrial. Com relação ao abandono da malha ferroviária no Brasil como principal meio de transporte de cargas, Bermann (2003) destacou um fato histórico que influencia na concentração em investimentos apenas na malha rodoviária. Na década de 1950, nos anos que antecederam o governo JK, grandes montadoras como a Mercedes-Benz investiram pesado no país na produção exclusiva de caminhões.

todos os critérios é uma tarefa extremamente desafiadora. Por exemplo: segundo critérios de sustentabilidade aplicados à construção civil devem-se especificar materiais duráveis e de fácil desconstrução buscando minimizar também as emissões e energia incorporada dos materiais. Estruturas em aço, como o caso do *steel frame*, apresentam facilidade de desconstrução aliado ao potencial de reciclagem maior que nas fachadas convencionais, porém, o aço é um material que possui energia incorporada associada a sua fabricação maior que estruturas que utilizam o cimento, blocos cerâmicos e a areia como matéria-prima como o caso das fachadas convencionais.

Outro fator a ser destacado é a disponibilidade de empresas especializadas no *steel frame* e suas partes constituintes em Brasília. Observa-se uma limitação no número destas empresas principalmente no que se refere às partes constituintes do sistema (guias, montantes, parafusos e placas cimentícias) disponíveis em outros estados do Brasil (Goiânia, Curitiba e São Paulo). Esta ausência de fábricas locais aumenta a energia incorporada do sistema devido à grandes distâncias de transporte das partes constituintes. O sistema convencional de fachadas apresenta uma maior facilidade de disponibilidade de materiais por possuir fábricas dos materiais constituintes (cimento, blocos cerâmicos, areia, argamassas industrializadas) mais próximas de Brasília reduzindo a energia de transporte.

Estudos que analisam os impactos ambientais e aplicação dos conceitos de sustentabilidade no setor da construção civil podem também contribuir para que as fábricas dos materiais de construção também busquem inovações tecnológicas visando reduzir a energia incorporada e as emissões de CO₂ dos seus materiais e os demais impactos ambientais gerados na sua fabricação.

Após a elaboração do trabalho foi possível aguçar o senso crítico com relação ao tema pesquisado e propor alternativas que visam reduzir a energia incorporada e as emissões de CO_2 associadas aos materiais de construção civil. No setor de transporte de materiais de construção civil sugere-se dar preferência pelo transporte ferroviário e/ou hidroviário quando for possível. Um exemplo de transporte hidroviário apresentado por Bermann (2003) é a hidrovia Tietê-Paraná que parte da cidade de Santa Maria da Serra às margens do rio Tietê e estendendo-se por 2400 km a hidrovia prevê o escoamento de 15 milhões de toneladas de carga por ano.

Com relação ao aço destacam-se: dar preferência à utilização de aço reciclado nas indústrias visando reduzir a energia incorporada e emissões de CO₂ deste material;

utilização de outros meios de fabricação de materiais (exemplo: substituição de tipos de combustíveis e energia utilizada nas indústrias). São exemplos de fontes de energia alternativas para as indústrias: óleos vegetais carburantes (retirados de vegetais como buriti, babaçu, mamona, soja, dendê, entre outros); energia solar, eólica e fotovoltaica.

Para o cimento recomenda-se a utilização de cimentos com menor EI e ECO₂ como o caso do CP III (cimento de alto forno); segundo Carvalho (2002) quando as exigências de resistência mecânica e durabilidade forem atendidas, e a utilização de outros meios de fabricação de materiais (exemplo: substituição de tipos de combustíveis e energia utilizada nas indústrias).

Para a indústria cerâmica (blocos e revestimentos cerâmicos) recomenda-se também a utilização de outros meios de fabricação de materiais (exemplo: substituição de tipos de combustíveis e fontes energéticas utilizados nas indústrias) substituindo por exemplo, a lenha por gás ou biomassa proveniente de florestas com manejo quando for possível e viável.

5.6 SUGESTÕES PARA TRABALHOS FUTUROS

A busca incessante por critérios de determinação da sustentabilidade energético ambiental de modelos e sistemas construtivos e por respostas para os frequentes questionamentos que surgem ao longo do desenvolvimento de uma pesquisa deve ser motivada por aqueles que querem dar uma contribuição nas diversas áreas do conhecimento. Visando contribuir para busca de tais critérios e respostas, recomendam-se algumas sugestões para trabalhos futuros:

- Aprofundar as pesquisas de energia incorporada e emissões de CO₂ dos materiais de construção junto às fábricas no Brasil.
- Estudo da energia incorporada e emissões de CO₂ para diferentes tipos de fachadas como fachadas com pele de vidro, fachadas com placas de rocha fixadas com inserts metálicos entre outras.
- Comparação de sistemas construtivos que utilizam materiais reciclados com sistemas que utilizam materiais não reciclados.
- Utilizar outros parâmetros de sustentabilidade como o consumo de água e emissão de outros gases do efeito estufa aplicados a diferentes sistemas construtivos.
- Utilizar os modelos de fachadas para ampliar os estudos de consumo de materiais, energia incorporada e emissões de CO₂ para outros sistemas construtivos como o *dry-wall*.

 \bullet Utilização do modelo da ferramenta criada em planilhas eletrônicas neste trabalho na elaboração de softwares brasileiros para quantificação das emissões de CO_2 e energia incorporada de diferentes tipos de sistemas de fachadas e outros sistemas construtivos.

REFERÊNCIAS BIBLIOGRÁFICAS

Janeiro, 2010.

ALCORN, J. BAIRD, G. Use of hybrid energy analysis method for evaluating the embodied energy of building materials. Victoria University of Wellington, New Zealand. WREC, 1996.

ANINK, D.; BOONSTRA, C.; MORRIS, A. **Handbook of sustainable building**: an environmental preference method for selection of materials for use in construction and refurbishment. Londres: James and James, 1996.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14040: Gestão ambiental – Avaliação do ciclo de vida – Princípios e estrutura. Rio de Janeiro: ABNT, 2001. 10 p.

_____. NBR 13754: Revestimento de Paredes e Tetos em Argamassas Inorgânicas – Especificação - Procedimento. Rio de Janeiro, 1996.

_____. NBR 13755: Revestimento de paredes externas e fachadas com placas cerâmicas e com utilização de argamassa colante - Procedimento. Rio de Janeiro, 1996.

_____. NBR 15253: Perfis de aço formados a frio, com revestimento metálico, para painéis reticulados em edificações: Requisitos Gerais. Rio de Janeiro, 2005.

____. NBR 15575: Edifícios habitacionais de até cinco pavimentos – Desempenho. Rio de

ARSLAN, C. **Re-Design, Re-Use and Recycle of Temporary Houses.** Building and Environment, v. 42, n. 1, p. 400-406, janeiro, 2007.

BATTAGIN, A.; SILVA, I. O cimento Portland no Brasil. In: IBRACON. **Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais.** São Paulo, 2010. Cap. 24, p 761-782.

BELTRAN, J.V.L.; MARTINEZ, G.C.M. Medidas para redução do consumo energético nos processos de produção de pavimentos e revestimentos cerâmicos. Cerâmica e informação, Jan./Abr., 1999. Faenza Editrice do Brasil. Florianópolis.

BERMANN, C. Energia no Brasil: para quê e para quem. Crise e Alternativas para um país sustentável. Editora Livraria da Física. São Paulo, 2a ed., 2003.

BESSA, V. Contribuição à metodologia de avaliação das emissões de dióxido de carbono no ciclo de vida das fachadas de edifícios. 2010. 263 p. Tese (Doutorado), Escola Politécnica, Universidade de São Paulo, São Paulo, 2010.

BLOM, I., et al. **Environmental impact of dwellings in use: Maintenance of façade components.** Building and Environment (2010), doi: 10.1016/j.buildenv.2010.05.015

BORIGATO, I. Fotografias de fachadas inovadoras. 2010. 5 fot.; arquivo pessoal; Color.

BRASIL. Ministério das Minas e Energia, Secretaria de Energia. Balanço Energético Nacional 2011. Brasília, 2011.

BRUNA, P. J. V. **Arquitetura, Industrialização e Desenvolvimento**. Editora Perspectiva S.A. São Paulo, 2002.

CALLISTER, W.D. **Ciência e engenharia de materiais: uma introdução**. Tradução de Sérgio Murilo Soares. Rio de Janeiro: LTC, 2008.

CARVALHO, J. Análise de Ciclo de Vida ambiental aplicada a construção civil – Estudo de caso: comparação entre cimentos Portland com adição de resíduos. 2002. 102 p. Dissertação (Mestrado), Escola Politécnica, Universidade de São Paulo, São Paulo, 2002.

CARVALHO, M. Metodologia para avaliação da sustentabilidade de habitações de interesse social com foco no projeto. 2009. 223 p. Tese (Doutorado), Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, 2009.

CENTRO BRASILEIRO DA CONSTRUÇÃO EM AÇO. CBCA: **Guia do Construtor em Steel Framing.** Rio de Janeiro, 2003.

CHEMLA, P.; LABOUZE, E. **Ranking environmental impacts**: applications to buildings. Second international Conference of Building and Environment – CIB, Paris, 8p. 1997.

COLEN, I. F. B. **Metodologia de avaliação do desempenho em serviço de fachadas rebocadas na óptica da manutenção predictiva**, Tese de Doutorado, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2009.

CONSELHO NACIONAL DO MEIO AMBIENTE – **CONAMA. N-307**. Resolução CONAMA Nº 307. 05 de Julho de 2002. Publicado no D.O.U. de 02/01/2003.

COUTO, A.; COUTO, J.; TEIXEIRA, J. Desconstrução – Uma ferramenta para a sustentabilidade da construção. In: Inovações Tecnológicas e Sustentabilidade, 2006, São Paulo. NUTAU 2006, **Anais**.

CRASTO, R.C.M.; FREITAS, A.M.S. **Steel framing: arquitetura**. Rio de Janeiro: Instituto Brasileiro de Siderurgia / Centro Brasileiro da Construção em Aço, 2006.

CROWTHER, P. Design for buildability and The Deconstruction Consequences. In: Design for Deconstruction and Material Reuse. **CIB Publication 272**, 2002.

DAMASCENO, E. C., STOROLLI, F. A. P. Matérias primas minerais para refratários: revisão do potencial nacional. In: **Congresso Brasileiro de Cerâmica**, 38., 1994, Blumenau. Anais... São Paulo: Associação Brasileira de Cerâmica, 1994, v.1, p. 348-353.

DEGANI, C.M. Sistemas de gestão ambiental em empresas construtoras de edifícios. 2003. 223f. Dissertação de Mestrado. Escola Politécnica, Universidade de São Paulo, São Paulo, 2003.

ERLANDSSON, M.; BORG, M. Generic LCA: methodology applicable for buildings, constructions and operation services. Today practice and development needs. **Building** and Environment, v. 38, p. 919 – 938, 2003.

FOGLIATTI, M.C.; FILLIPO, S.; GOUDARD, B. **Avaliação de impactos ambientais**: aplicação aos sistemas de transporte. Rio de Janeiro: Interciência, 2004. 249 p.

FONSECA, J.; MARTINS, G. Curso de Estatística. São Paulo. 6ª Edição, Atlas, 1996.

GOLDEMBERG, J.; VILLANUEVA, L. D. Energia, Meio Ambiente e **Desenvolvimento**. Tradução de André Koch. 2ª ed. São Paulo: USP, 2003. 226 p

GONZÁLEZ, M.; NAVARRO, J. Assessment of the decrease of CO₂ emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact. Building and Environment (2005), doi: 10.1016/j.buildenv. 2005.04.006.

GRIGOLETTI, G. C. Caracterização de impactos ambientais de indústrias de cerâmica vermelha do estado do Rio Grande do Sul. 2001.154 f. Dissertação (Mestrado) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2001.

GUIMARÃES, G. D. **Análise energética na construção de habitações**. 1985. 228 f. Dissertação (Mestrado) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1985.

HENDRIKS, C.F.; NIJKERK, A. A.; VANKOPPEN, A.E. **O** ciclo da construção. Tradução de Cláudia Naves David Amorim e Rosana Stockler Campos Clímaco. Brasília: Editora Universidade de Brasília, 2007.

HENDRY, E. Masonry walls: materials and construction. **Construction and Building Materials**, v. 15, p. 323-330, 2001.

IBRACON. Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais. Volumes 1 e 2, 2ª Ed, São Paulo, 2010. 1773 p

INTERNATIONAL COUNCIL FOR RESEARCHES AND INOVATION IN BUILDING AND CONSTRUCTION - CIB. **Agenda 21 on Sustainable Construction.** CIB Report Publication 237,July, 1999.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Climate change 2007: the physical science basis, this summary for policymakers. *In*: SESSION OF WORKING GROUP I OF THE IPCC, 10., Paris, 2007.

JOHN, V.M. **Reciclagem de resíduos na construção civil**: contribuição à metodologia de pesquisa e desenvolvimento. 2000. 102 f. Tese de livre docência. Escola Politécnica, Universidade de São Paulo, São Paulo, 2000.

JOHN, V.M. Materiais de Construção e o Meio Ambiente. In: IBRACON. **Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais.** São Paulo, 2010. Cap. 4, p 97-121.

LEE, B., et al. Embodied energy of building materials and green building rating systems – a case study for industrial halls. Sustainable Cities and Society, 2011. Doi: 10.1016/j.scs.2011.02.002

LIPPIATT, B. BEES 1.0 – **Building for environmental and economics sustainability: technical manual and user guide.** Gaithersbourgh, USA: U.S. Department of Commerce, National Institute of Standards and Technology, 1998. 84p.

LYLE, J.T. Regenerative design for sustainable development. New York: John Wyley & Sons, 1993. 338p.

MACHADO, C.C.; LOPES, E.S.; BIRRO, M.H.B. Elementos básicos do transporte florestal rodoviário. Viçosa: Editora UFV, 2000. 167 p.

MASCARÓ, J.L. Consumo de energia e construção de edifícios. São Paulo: SECOVI, 1981. 77f.

MASCARÓ. J. L. e MASCARÓ, L. Incidência das variáveis projetivas e de construção no consumo energético dos edifícios. Porto Alegre: Luzzato, 1992.

MONAHAN, J. POWELL, J. An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings, 2010. Doi: 10.1016/j.enbuild.2010.09.005

MORA, P. Life cycle, sustainability and the transcendent quality of building materials. Building and Environment (2005), doi:10.1016/j.buildenv.2005.11.004

MORAIS, A. E.; SPOSTO, R. M. Revestimento cerâmico e de granito: estudo preliminar comparativo com foco na energia incorporada. ELECS, Recife, 2009.

MORAIS, D.M. (2007). Briquetes de resíduos ligno celulósicos como potencial energético para a queima de blocos cerâmicos: aplicação em uma indústria de cerâmica vermelha que abastece o Distrito Federal, Tese de Doutorado, Programa de Pós-Graduação em Estruturas e Construção Civil, Universidade de Brasília, 265p.

PETRUCCI, E. G. R. Materiais de construção. 6a ed. Porto Alegre: Globo, 1982. 435p.

PFEIL, W. Estruturas de Aço: Dimensionamento Prático de Acordo com a NBR 8800:2008. 8. Ed. Rio de Janeiro, LTC, 2009.

PINHO, F. PANNONI, F. Produtos Metálicos Estruturais. In: IBRACON. **Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais.** São Paulo, 2010. Cap. 33, p 1113-1148.

PINI. Alternativas Tecnológicas para Edificações. São Paulo, Editora Pini, Vol 1, 2008.

PIRES, D. Inventário de emissões atmosféricas de fontes estacionárias e sua contribuição para a poluição do ar na região metropolitana do Rio de Janeiro. Tese (Doutorado), Programa de Planejamento Energético, Universidade Federal do Rio de Janeiro, 2005.

POMARO, H. **Os cinco desafios do** *Light Steel Frame*. Sistemas Prediais – Arquitetura Sustentável, Tecnologias Emergentes, Energia Renovável. Engenharia e Arquitetura. São Paulo, ISSN 1981-4240, out. 2011.

REDDY, V. JAGADISH, K.S. Embodied energy of common and alternative building materials and technologies, **Energy and Buildings**, v. 35, p. 129-137, India, 2001.

RESENDE, F. (2007). Poluição atmosférica por emissão de material particulado: avaliação e controle nos canteiros de obras de edifícios. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia de Construção Civil, Escola Politécnica da Universidade de São Paulo, 2007.

ROCHA, E. Os Resíduos Sólidos de Construção e Demolição: gerenciamento, quantificação e caracterização. Um estudo de caso no Distrito Federal. Dissertação (Mestrado em Engenharia Civil) — Faculdade de Tecnologia, Universidade de Brasília, Brasília, 2006.

RODRIGUES, F. C. **Steel framing: engenharia**. Rio de Janeiro: Instituto Brasileiro de Siderurgia / Centro Brasileiro da Construção em Aço, 2006.

ROSSELLÓ-BATLE, B., et al. Energy use, CO₂ emissions and waste throughout the life cycle of a sample of hotels in the Balearic Islands. Spain, Energy and Buildings (2009), doi: 10.1016/j.enbuild.2009.10.024

ROSSO, T. Racionalização da Construção. São Paulo, FAUUSP, 1980. 300p.

SCANIA. Lei da balança: aspectos técnicos legais. São Bernardo do Campo: SCANIA, 1997. 8p.

SEIXAS, F. **Novas tecnologias no transporte rodoviário de madeira.** Departamento de Ciências Florestais da ESALQ/USP. São Paulo, Piracicaba, 2001.

SEIXAS, F. Uma metodologia de seleção e dimensionamento da frota de veículos rodoviários para o transporte principal da madeira. Tese (Doutorado) – EESC, São Carlos. 106 p. 1992.

SHIMBO, I. et al. Indicadores de sustentabilidade na cadeia produtiva de habitação em madeira de reflorestamento. In: ENTAC, 8., 2000, Salvador, v. 1, p. 181-188, Salvador, 2000.

SILVA, E. Fotografias de extração do calcário e argila utilizados na fabricação do cimento. 2002. 4 fot.; arquivo pessoal; color.

SILVA, V. G. **Avaliação da sustentabilidade de edifícios de escritórios brasileiros**: diretrizes e bases metodológicas. Tese (Doutorado) – EPUSP, São Paulo, 2003.

SILVA, V.G.; SILVA, M. G.; AGOPYAN, V. Avaliação de edifício no Brasil: da avaliação ambiental para avaliação de sustentabilidade. **Revista Ambiente Construído.** Porto Alegre, v. 3, n. 3, p. 7-18, 2003.

SOARES, S.R., PEREIRA, S.W., BREITENBACH, F.E. Análise do ciclo de vida de produtos cerâmicos da indústria de construção civil. Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, 2002.

SOUSA, G., JOHN, V.M. **Seleção de materiais, componentes e sistemas**. Escola Politécnica da Universidade de São Paulo, São Paulo, 2001.

SOUTH AFRICAN NATIONAL STANDARD. SANS 517: Light *steel frame* building. South Africa, 2009.

SPERB, M. Avaliação de tipologias habitacionais a partir da caracterização de impactos ambientais relacionados a materiais de construção. 2000. 149 f. Dissertação (Mestrado em Engenharia Civil). Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2000.

SPOSTO, R.M. DO Ó, S.W. (2006) Management and technology for quality and sustainability of masonry components in Brasilia's market. CIB, Chile, 2004.

SPOSTO, R. M. **Relatório final**: gestão e tecnologia para a qualidade e sustentabilidade na produção de blocos cerâmicos e alvenaria no Distrito Federal. Brasília: FINEP/HABITAT/FVA, 2007.

STACHERA JR, T. CASAGRANDE JR, E.F. Avaliação de emissões de CO₂ na construção civil: um estudo de caso da habitação de interesse social no Paraná. In: ENCONTRO NACIONAL SOBRE GESTÃO EMPRESARIAL E MEIO AMBIENTE, 9., 2007, Curitiba. Anais do IX ENGEMA. Curitiba: Universidade Tecnológica Federal do Paraná, 2007.

TAVARES, S.F. Metodologia de análise do ciclo de vida energético de edificações residenciais brasileiras. 2006. 225f. Tese (Doutorado em Engenharia Civil) — Programa de Pós Graduação em Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, 2006.

TANNO, L. C; MOTTA, J. F. M. Panorama setorial – Minerais industriais. **Revista** Cerâmica Industrial, v. 5 n.3, p. 37-40, 2000.

TERNI, A. et al. Steel frame – Estrutura. Téchne, São Paulo, v.16, n.137, ago. 2008

UNITED NATIONS ENVIRONMENT PROGRAMME. **Life cycle assessment**: a business guide to sustainability. Paris: UNEP, 2007.

WORLD COMMISSION ON ENVIRONMENT AND DEVELOPMENT. **Our common future.** Oxford: Oxford University Press, 1987. 400 p.

YELLISHETTY, M., et al. Environmental life-cycle comparisons of steel production and recycling:sustainability issues, problems and prospects. Australia, Environmental Science & Policy (2011), doi: 10.1016/j.envsci.2011.04.008

YIN, R. **Estudo de caso: planejamento e métodos** / Robert K. Yin; tradução Daniel Grassi. – 2^a. ed. Porto Alegre: Bookman, 2001.

ZABALZA, I., et al. **Life cycle assessment of building materials**: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential, Building and Environment (2010), doi:10.1016/j.buildenv.2010.12.002

ZIMMERMANN, M.; ALTHAUS, H-J.; HAAS,A. Benchmarks for sustainable construction: a contribution to develop a standard. **Energy and Buildings**, v. 37, p. 1.147-1.157, 2005.

Sites de internet:

ANEEL, 2008. Fontes renováveis e não renováveis de energia. Disponível em: http://www.aneel.gov.br/area.cfm?idArea=17&idPerfil=8 Acesso em: 25 maio 2011

AECWEB, 2010. Temático: **Fachadas**. Disponível em: http://www.aecweb.com.br/fachadas-metalicas-sul-metais/tematicos/artigos/1442/6> Acesso em: 29 nov. 2010

ARCOWEB, 2010. **Steel Framing: Obra Rápida e Limpa**. [citado em Setembro de 2009]. Disponível em: http://www.arcoweb.com.br/tecnologia/steel-framing-obra-rapida-18-01-2010.html Acesso em: 10 fev. 2011

CEGÁS, 2011. Companhia de Gás do Ceará. Disponível em: < http://www.cegas.com.br/index.php?option=com_content&view=article&id=74&Itemid=1 56> Acesso em: 15 maio 2011.

Eternit. **Catálogo Técnico Eterplac**: Placa Cimentícia. 2009. 9p. Disponível em: www.eternit.com.br> Acesso em: 25 jan. 2011

Google Earth, (2008). Software de imagens de satélite. Disponível em:http://www.google.com.br/intl/pt-BR/earth/download/ge/agree.html Acesso em: 05 fev. 2011.

IEA, 2008. International Energy Agency. Disponível em: <www.iea.org> Acesso em: 20 abril 2011

SunEarthTools, (2009). Calculadora de emissões de CO₂. Disponível em: http://www.sunearthtools.com/dp/tools/CO2-emissions-calculator.php?lang=pt. Acesso em: 05 jun. 2011.

The World Bank, (2010). Working for a World Free of Poverty. Disponível em: http://data.worldbank.org/brazilian-portuguese?cid=GPDptbr_27 Acesso em: 05/02/2011

APÊNDICES

APÊNDICE A - Tipos de caminhões de transporte de materiais de construção

Fabricante do	Tipo de	Especificação do	e materiais de construção Fotografia do caminhão
Caminhão	Caminhão	Caminhão	Fotograna do Caminiao
Mercedes Benz	Caminhão Basculante (CB)	1620	
Mercedes Benz	Caminhão Basculante (CB)	2423	37 37 37 37 37 37 37 37 37 37 37 37 37 3
Mercedes Benz	Caminhão Basculante (CB)	2635	M 05
Mercedes Benz	Caminhão Basculante (CB)	2726	
Mercedes Benz	Cavalo Mecânico (CM) - carreta	1634	

APÊNDICE B - Roteiro de cálculo para camadas da FC

$$V_{camada} = (esp_{camada}) \cdot (altura_{camada}) \cdot (l \arg ura_{camada})$$
 (B1)
Onde V_{camada} é o volume da camada analisada (m³)

A quantidade de cimento em um traço de argamassa, pode ser determinada pela expressão 3.7.

$$C = \frac{1000 - V_{ar}}{\frac{1}{\gamma_{cim}} + \frac{cal}{\gamma_{cal}} + \frac{areia}{\gamma_{areia}} + \frac{a}{c}}$$
(B2)

Onde C é o consumo de cimento para realização de 1 m^3 de revestimento, V_{ar} é o teor de ar e (a/c) é a relação água cimento. O traço neste caso é em massa seca. A transformação da quantidade em massa para volume seco, e vice-versa, se faz com a massa unitária do material conforme apresentado na expressão B3.

$$\delta = \frac{M}{V_{ap}} \tag{B3}$$

Onde δ é a massa unitária, M é a massa seca e V_{ap} é o volume aparente seco do material.

Transformação do traço em volume para traço em massa:

Considerando-se como referência 50 kg de cimento com volume aparente de 36 L.

À seguir são apresentados os cálculos para o consumo dos materiais.

a) Argamassa de assentamento: 1:1:4 (volume) com (a/c) = 1.3

36L: 36 L: 144 L

Transformando para traço em massa, tem-se:

36 L x 1,38 : 36 x 0,50 : 144 x 1,50= 49,68 : 18 : 216, o que equivale a 1: 0,36:4,35 (traço em massa)

Consumo de cimento =
$$\frac{1000}{\frac{1}{3.15} + \frac{0.36}{1.10} + \frac{4.34}{2.65} + 1.3} = 279,13 \text{ kg}$$

Para camada de argamassa de assentamento considerando-se um volume de 0,01 m³, temse uma massa de cimento de 2,79 kg, 1,00 kg de cal e 12,13 kg de areia.

b) Chapisco:

1:3 (volume) com (a/c) = 1,0

36L: 108 L

Transformando para traço em massa, tem-se:

36 L x 1,38 : 108 x 1,50= 50,0 : 162, o que equivale a 1: 3,24 (traço em massa)

Consumo de cimento =
$$\frac{1000}{\frac{1}{3.15} + \frac{3.24}{2.65} + 1.0} = 393,68 \text{ kg}$$

Para camada de chapisco, considerando-se um volume de 0,005 m³, tem-se uma massa de cimento de 1,96 kg e 6,35 kg de areia.

c) Emboço e reboco Paulista (camada única)

1:2:9 (volume), com (a/c) = 2.2

36L: 72 L: 324 L

Transformando para traço em massa, tem-se:

36 L x 1,38 : 72 x 0,50 : 324 x 1,50 = 49,68 : 36 : 486

1: 0,72: 9,78 (traço em massa)

Consumo de cimento =
$$\frac{1000}{\frac{1}{3.15} + \frac{0.72}{1.10} + \frac{9.78}{2.65} + 2.2} = 145,72 \text{ kg}$$

Para camada de argamassa de assentamento considerando-se um volume de 0,02 m³, temse uma massa de cimento de 2,91 kg, 2,10 kg de cal e 28,50 kg de areia.

Na Tabela A1 são apresentados os valores calculados para cada material constituinte das camadas de argamassa da FC.

Tabela B1 - Quantidades de material para cada camada de argamassa da FC

MATERIAL		QUANTIDADES
Annual de constantante 1.1.4	Cimento	2,79 kg de cimento CPII F-32
Argamassa de assentamento: 1:1:4 (volume), $e = 10 \text{ mm}$, $a/c = 1,3$	Cal	1,00 kg de cal
(volume), $c = 10$ mm, $ac = 1,3$	Areia	12,13 kg de areia
Chapisco ¹ (externo e interno): 1:3	Cimento	1,96 kg de cimento CP II F-32
(volume), $a/c = 1,0$, $e = 5 \text{ mm}$	Areia	6,35 kg de areia
Argamassa de emboço ² (externo):	Cimento	2,91 kg de cimento CPII F-32
1:2:9 (volume), $a/c = 2,2$, $e = 20 \text{ mm}$	Cal	2,10 kg de cal
	Areia	28,50 kg de areia
Argamassa de reboco paulista ou	Cimento	2,91 kg de cimento CPII F-32
camada única (interno), 1:2:9	Cal	2,10 kg de cal
(volume), $a/c = 2.2$, $e = 20 \text{ mm}$	Areia	28,50 kg de areia

^{1 -} NBR 13754/96; 2 - NBR 13755/96

Com base nos consumos calculados de cimento, cal e areia bem como nos dados levantados, foi possível estimar posteriormente a energia incorporada e as emissões de CO₂.

APÊNDICE C – Análise da variação das ECO21 para areia fina, média e grossa

$$\delta = \frac{M}{V_{ap}}$$

$$\delta_{AF} < \delta_{AM} < \delta_{AG}$$

$$\delta_{AF} = \frac{M}{V_{AF}} \Longrightarrow V_{AF} = \frac{M}{\delta_{AF}}$$

$$\therefore V_{AF} > V_{AM} > V_{AG}$$

Então, para o transporte da areia, tem-se: $ECO_{2AF} > ECO_{2AM} > ECO_{2AG}$

APÊNDICE D – Ferramenta de cálculo da EI_{TOT} e ECO_{2TOT} para o SF

Tabela D1 - Entrada de dados e cálculos realizados para a fachada SF

	Tabela D1 - Entrada de dados e carcul	OS TEATIZAGE			
	Dados		Unidade (1)		Unidade (2)
	Largura da alma (la _g)	202,00	mm		
	Largura da mesa (Im _g)	38,00	mm		
	Espessura constante da guia (e _g)	2,00	mm		
⋖	$G=Ia_g-2(e_g)$	198,00	mm		
GUIA	Área da seção transversal da guia	548,00	mm ²	5,48	cm ²
	Comprimento da guia	100,00	cm		
	Volume da guia	548,00	cm ³		
	Quantidade de guias	2,00	unidades		
	Volume total de aço (guias)	1.096,00	cm ³	0,0011	m ³
	Largura da alma (la _m)	300,00	mm		
	Largura da mesa (Im _m)	40,00	mm		
	Largura do enrijecedor de borda (leb _m)	12,00	mm		
벌	Espessura constante do montante (e _m)	2,00	mm		
MONTANTE	M= Ia _m - 2(e _m)	296,00	mm		
<u> </u>	Área da seção transversal do montante	792,00	mm ²	7,92	cm ²
2	Comprimento do montante	100,00	cm		
	Volume do montante	792,00	cm ³		
	Quantidade de montantes	4,00	unidades		
	Volume total de aço (montantes)	3.168,00	cm ³	0,00317	m ³
	Diâmetro do parafuso	4,20	mm		
SOS	Comprimento do parafuso	32,00	mm		
E.S	Volume aproximado do parafuso	443,34	mm ³		
PARAFUSOS	Quantidade de parafusos	48,00	unidades		
74	Volume total de aço (parafusos)	21.280,39	mm ³	2,1E-05	m^3

Tabela D2 - Energia incorporada (EI $_{\rm I}$) e emissões de CO $_{\rm 2}$ (ECO $_{\rm 2I}$) na indústria para 1 m 2 de fachada SF

	FACHADA COM SISTEMA STEEL FRAME									
Item	Materiais Constituintes	Peso Específico (kg/m³)		Dimensõe Altura (m)	Espessura (m)	Volume (m³)	Massa de material (kg)	Energia Incorporada (MJ/kg)	Energia do Sistema (MJ)	
1	Guias (aço)	7850	1	-	-	0,0011	8,6036	30,49	262,32	
2	Montantes (aço)	7850	-	-	-	0,0032	24,8688	30,49	758,25	
3	Parafusos (aço)	7850	1	-	-	0,0000	0,1671	30,49	5,09	
4	Placas Cimentícias	-	•	-	-	,		-	-	
4.1	90 % Cimento (CP II F) - composição da placa	1700	,	-	-	0,0200	30,60	2,46	75,28	
4.2	Energia na Fabricação da placa	-	-	-	-	-	15,30	0,18	2,75	
	_	•			TOTAL	0,0243	64,2395	TOTAL	1103,70	

Tabela D3 - EI_T e ECO_{2T} dos materiais para execução do modelo SF

	Tabela D3 - E1] e Ecozi dos materiais para execução do modelo Si									
Item	Materiais Constituintes	TRANSPORTE								
		Orígem (fábrica) do Material	Destino Final	Distância (km)	Consumo Médio diesel (L/T.km)	Consumo diesel total (L)	Energia Incorporada no Transporte (MJ)	Emissões de CO ₂ no Transporte (kg CO ₂)		
1	Guias (aço)	Curitiba - Paraná	SG 12 Eng. Civil - UnB - Brasília	1394	0,0136	0,16311049	5,803471243	0,513798044		
2	Montantes (aço)	São Paulo - São Paulo	SG 12 Eng. Civil - UnB - Brasília	1014	0,0136	0,3429507	12,20218589	1,080294703		
3	Parafusos (aço)	Curitiba - Paraná	SG 12 Eng. Civil - UnB - Brasília	1394	0,0136	0,003167022	0,112682626	0,009976118		
4	Placas Cimentícias	-	-	1	-	-	-	-		
4.1	90 % Cimento (CP II F) - composição da placa	Goiás-Goiânia	SG 12 Eng. Civil - UnB - Brasília	213	0,0136	0,0886	3,1539	0,2792		
			TOTAL	4015	TOTAL	0,5979	21,2722	1,8833		

APÊNDICE E – Ferramenta de cálculo da EI_{TOT} e ECO_{2TOT} para a FC Tabela E1 - EI_I e ECO_{2I} para FC

FACHADA CONVENCIONAL								
ltem	Materiais Constituintes	Massa de material (kg)	Energia Incorporada do material (MJ/kg)	Energia do Sistema (МЈ)	Emissões de CO ₂ (kg CO ₂ /kg)	Emissões do Sistema (kg CO ₂)		
1	Bloco Cerâmico (9 x 19 x 19 cm)	144	4,88	702,72	0,3300	47,52		
1.1	Argamassa de Assentamento	-	-	-	-	-		
1.2	Cimento (CP II F)	2,79	2,46	6,86	0,57	1,58		
1.3	Cal	1,00	3	3,00	0,7860	0,79		
1.4	Areia	12,13	0,05	0,61	0,0151	0,18		
1.5	Mistura	15,92	0,03	0,48	-	-		
2	Chapisco Interno		=	-	=	-		
2.1	Cimento Portland Comum (CP II - F)	1,96	2,46	4,8216	0,57	1,11		
2.2	Areia	6,35	0,05	0,3175	0,0130	0,08		
2.3	Mistura	8,31	0,03	0,25	-	-		
3	Chapisco Externo	-	i	-	-	-		
3.1	Cimento Portland Comum (CP II - F)	1,96	2,46	4,8216	0,5650	1,11		
3.2	Areia	6,35	0,05	0,3175	0,0133	0,08		
3.3	Mistura	8,31	0,03	0,25	-	-		
4	Emboço	-	-	-	-	-		
4.1	Cimento (CP II F)	2,91	2,46	7,1586	0,5650	1,64415		
4.2	Cal	2,10	3	6,3	0,7860	1,6506		
4.3	Areia	28,5	0,05	1,425	0,0151	0,43035		
4.4	Mistura	33,51	0,03	1,01	-	-		
5	Reboco Paulista (interno)	-	-	-	-	-		
5.1	Cimento (CP II F)	2,91	2,46	7,1586	0,5650	1,64415		
5.2	Cal	2,1	3	6,3	0,7860	1,6506		
5.3	Areia	28,5	0,05	1,425	0,0162	0,4617		
5.4	Mistura	33,51	0,03	1,01	-	-		
6	Revestimento Cerâmico	27	5,35	144,45	0,8570	23,139		
		370,12	TOTAL	900,67	TOTAL	83,07		

Tabela E2 - EI_T e ECO_{2T} para FC

uocia L2		TRANSPORTE-FC							
Item	Materiais Constituintes	Orígem (fábrica) do Material	Destino Final	Distância média (km)	Consumo Médio diesel (L/T.km)	Consumo diesel total (L)	Energia Incorporada no Transporte (MJ)	Emissões de CO ₂ no Transporte (kg CO ₂)	
1	Bloco Cerâmico (9 x 19 x 19 cm)	Olaria Campo Limpo de Goiás - Anápolis	SG 12 Eng. Civil - UnB - Brasília	175	0,0136	0,3427	12,1940	1,0796	
1.1	Argamassa de Assentamento	-	-	=	-	-	-	-	
1.2	Cimento (CP II F)	Brasília - Sobradinho II - fábrica de cimento e argamassa industrializada	SG 12 Eng. Civil - UnB - Brasília	28	0,0136	0,0011	0,0378	0,0033	
1.3	Cal	Suzano (SP)	SG 12 Eng. Civil - UnB - Brasília	1019	0,0136	0,0139	0,4931	0,0437	
1.4	Areia	lpameri - GO	SG 12 Eng. Civil - UnB - Brasília	285	0,0136	0,0470	1,6728	0,1481	
2	Chapisco Interno	-	-	-	-	-	-	-	
2.1	Cimento Portland Comum (CP II - F)	Brasília - Sobradinho II - fábrica de cimento e argamassa industrializada	SG 12 Eng. Civil - UnB - Brasília	28	0,0136	0,0007	0,0266	0,0020	
2.2	Areia grossa seca	Ipameri - GO	Ipameri - GO		0,0246	0,8757	0,0650		
2.3	Mistura	=	=	=	-	=	=	-	
3	Chapisco Externo	-	=	-	-	-	=	-	
3.1	Cimento Portland Comum (CP II - F)	Brasília - Sobradinho II - fábrica de cimento e argamassa industrializada	SG 12 Eng. Civil - UnB - Brasília	28	0,0136	0,0007	0,0266	0,0024	
3.2	Areia grossa seca	lpameri - GO	SG 12 Eng. Civil - UnB - Brasília	285	0,0136	0,0246	0,8757	0,0775	
3.3	Mistura	-	-	-	-	-	-	-	
4	Emboço	-	-	-	-	-	-	-	
4.1	Cimento (CP II F)	Brasília - Sobradinho II - fábrica de cimento e argamassa industrializada	SG 12 Eng. Civil - UnB - Brasília	28	0,0136	0,0011	0,0394	0,0035	
4.2	Cal	Suzano (SP)	SG 12 Eng. Civil - UnB - Brasília	1019	0,0136	0,0291	1,0355	0,0917	
4.3	Areia média seca	Ipameri - GO	SG 12 Eng. Civil - UnB - Brasília	285	0,0136	0,1105	3,9304	0,3480	
4.4	Mistura	-	-	-	-	-	-	-	
5	Reboco Paulista (interno)	-	-	-	-	-	-	-	
5.1	Cimento (CP II F)	Brasília - Sobradinho II - fábrica de cimento e argamassa industrializada	SG 12 Eng. Civil - UnB - Brasília	28	0,0136	0,0011	0,0394	0,0035	
5.2	Cal	Suzano (SP)	SG 12 Eng. Civil - UnB - Brasília	1019	0,0136	0,0291	1,0355	0,0917	
5.3	Areia fina seca	lpameri - GO	SG 12 Eng. Civil - UnB - Brasília	285	0,0136	0,1105	3,9304	0,3480	
5.4	Mistura	-	-	=	=	=	=	=	
7	Revestimento Cerâmico	Anápolis - GO	SG 12 Eng. Civil - UnB - Brasília	160	0,0136	0,0588	2,0904	0,1851	
			TOTAL	4957	TOTAL	0,7955	28,3032	2,4928	

ANEXOS

ANEXO A – Prefixos decimais (Goldemberg e Villanueva, 2003)

Nomenclatura	Valor	Nomenclatura	Valor
deca (da)	10 ¹	deci (d)	10 ⁻¹
hecto (h)	10 ²	centi (c)	10 ⁻²
quilo (k)	10 ³	mili (m)	10 ⁻³
mega (M)	10 ⁶	micro (µ)	10 ⁻⁶
giga (G)	10 ⁹	nano (n)	10-9
tera (T)	10 ¹²	pico (p)	10 ⁻¹²
peta (P)	10^{15}	femto (f)	10 ⁻¹⁵
Exa (E)	10 ¹⁸	atto (a)	10 ⁻¹⁸

ANEXO B – Fatores de conversão para a energia (Goldemberg e Villanueva, 2003)

Para:	TJ	Gcal	MTEP	MBTU	GWh
De:	Multiplique por:				
TJ	1	238,8	$2,388 \times 10^{-5}$	947,8	0,2778
Gcal	$4,1868 \times 10^{-3}$	1	10 ⁻⁷	3,968	$1,163 \times 10^{-3}$
MTEP	$4,1868 \times 10^4$	10^{7}	1	$3,968 \times 10^7$	11630
MBTU	$1,0551x10^3$	0,252	2,52x10 ⁻⁸	1	2,931x10 ⁻⁴
GWh	3,6	860	$8,6x10^{-5}$	3412	1

 $^{1 \}text{ QUAD} = 1,055 \text{ EJ} = 25,2 \text{ MTEP} = 10^{15} \text{ BTU}$

ANEXO C – Unidades de trabalho, energia e potência (Goldemberg e Villanueva, 2003)

1 joule (J)	=	10^7 ergs
1 watt (W)	=	1 J/s
1 HP	=	746 W
1 cal	=	4,18 J
1 quilowatt-hora (kWh)		$3.6 \times 10^{13} \text{ ergs} = 3600 \text{ kJ}$
	=	860 kcal = 8.6 x 10-5
		TEP
1 TEP (tonelada equivalente de petróleo)	=	$10.000,00 \times 10^3 \text{ kcal} =$
		1,28 tonelada de carvão =
		11630 kWh
1 BTU – British Thermal Unit (Unidade Térmica	=	252 cal
Britânica)		
1 kW – ano/ano	=	0,753 TEP/ano

 $^{1 \}text{ BTU} = 252 \text{ cal}$

¹ libra (lb) = 0.454 kg

ANEXO D – Resultados da Avaliação do Ciclo de Vida (ACV) para diversas telhas e blocos (Zabalza, 2010)

Material de construção	Massa Específica (kg/m³)	Condutividade Térmica (W/mK)	Demanda de Energia Primária (MJ – Eq/kg)	Potencial de aquecimento global (kg CO ₂ – Eq/kg)	Demanda de água (l/kg)
Tijolo cerâmico comum	1800	0.95	3.562	0.271	1.890
Tijolo cerâmico leve	1020	0.29	6.265	-0.004	1.415
Tijolo de areia e cal	1530	0.70	2.182	0.120	3.009
Telha cerâmica (1)	2000	1.00	15.649	0.857	14.453
Telha de rocha	2100	1.50	2.200	0.290	3.009
Telha cerâmica (2)	2000	1.00	4.590	0.406	2.456
Telha de concreto	2380	1.65	2.659	0.270	4.104
Telha de fibrocimento	1800	0.50	11.543	1.392	20.368

ANEXO E – Resultados da Avaliação do Ciclo de Vida (ACV) para diversos materiais isolantes (Zabalza, 2010)

Material de construção	Massa Específica (kg/m³)	Condutividade Térmica (W/mK)	Demanda de Energia Primária (MJ – Eq/kg)	Potencial de aquecimento global (kg CO ₂ – Eq/kg)	Demanda de água (l/kg)
EPS para enchimento de laje	30	0.0375	105.486	7.336	192.729
Lã de rocha	60	0.04	26.393	1.511	32.384
Espuma de poliuretano rígida	30	0.032	103.782	6.788	350.982
Cortiça para laje	150	0.049	51.517	0.807	30.337
Fibra de celulose	50	0.04	10.487	1.831	20.789
Lã de madeira	180	0.07	20.267	0.124	2.763

ANEXO F - Resultados da Avaliação do Ciclo de Vida (ACV) para cimento e concreto (Zabalza, 2010)

Material de construção	Massa Específica (kg/m³)	Condutividade Térmica (W/mK)	Demanda de Energia Primária (MJ – Eq/kg)	Potencial de aquecimento global (kg CO ₂ – Eq/kg)	Demanda de água (l/kg)
Cimento	3150	1.4	4.235	0.819	3.937
Argamassa de cimento	1525	0.7	2.171	0.241	3.329
Concreto armado	2546	2.3	1.802	0.179	2.768
Concreto	2380	1.65	1.105	0.137	2.045

ANEXO G – Resultados da Avaliação do Ciclo de Vida (ACV) para produtos de madeira (Zabalza, 2010)

Material de construção	Massa Específica (kg/m³)	Condutivida de Térmica (W/mK)	Demanda de Energia Primária (MJ – Eq/kg)	Potencial de aquecimento global (kg CO ₂ – Eq/kg)	Demanda de água (l/kg)
Madeira serrada macia plana, seca em estufa	600	0.13	20.996	0.3	5.119
Madeira serrada macia plana, seca ao ar	600	0.13	18.395	0.267	4.192
Madeira laminada colada para uso interno	600	0.13	27.309	0.541	8.366
Chapa (placa) particulada para uso interno	600	0.13	34.646	0.035	8.788
Chapa (placa) orientada	600	0.13	36.333	0.62	24.761

ANEXO H – Resultados da Avaliação do Ciclo de Vida (ACV) para diversos materiais de construção freqüentemente utilizados (Zabalza, 2010)

Material de construção	Massa específica (kg/m³)	Condutividad e Térmica (W/mK)	Demanda de Energia Primária (MJ – Eq/kg)	Potencial de aqueciment o global (kg CO ₂ – Eq/kg)	Demanda de água (l/kg)
Aço para concreto armado	7900	50	24.336	1.526	26.149
Alumínio	2700	239	136.803	8.571	214.341
PVC	1400	0.17	73.207	4.267	511.999
Vidro liso	2500	0.95	15.511	1.136	16.537
Cobre	8920	380	35.586	1.999	77.794

ANEXO I - Energia em materiais de construção básicos (Reddy e Jagadish, 2001)

Tipo de material	Energia térmica (MJ/kg)
Cimento	5,85
Cal	5,63
Cimento de cal-pozolana	2,33
Aço	42,0
Alumínio	236,8
Vidro	25,8

ANEXO J - Energia incorporada total em um edifício (Reddy,2001)

Tipo de edifício e especificações	Número de pavimentos	Área construída (m²)	Energia incorporad a total/100 m ² (GJ)	Quantidade equivalente de carvão/ 100 m ² (toneladas)
Estrutura de concreto armado com paredes de tijolos de argila queimados.	8	5120	421	21
Alvenaria estrutural, laje maciça de concreto armado para cobertura/piso, acabamento em mosaico para o piso.	2	149,5	292	15
Laje de cobertura/piso com enchimento de blocos de solo-cimento, acabamento com piso cerâmico terracotta.	2	160,5	161	8

ANEXO K - Energia incorporada dos materiais de construção (Alcorn e Baird, 1996)

Material	EI (MJ/kg)
Agregados em geral	0,1
Alumínio virgem extrudado	166
Alumínio reciclado extrudado	17,3
Betume	44,1
Bronze	62
Tapete	106
Cimento	7,8
Placa de fibro cimento	13,1
Bloco de solo-cimento	0,42
Bloco cerâmico	2,5
Bloco de concreto	0,86
Concreto reforçado com vidro	3,4
Concreto, 30 Mpa	1,4
Concreto pré moldado	2
Cobre	70,6
Vidro comum	14,9
Vidro reforçado	25,3
Isolamento em celulose	4,4
Isolamento em lã	16,1
Grafite	35,1
Tinta à base de solvente	98,1
Tinta à base de água	88,5
Papel para construção	25,5
Papelão (kraft)	12,6
Placa de gesso	6,1
Aço reciclado perfis	8,9
Aço reciclado arame	12,5
Aço bruto	32
Rochas, dimensões	0,79
Madeira, seca ao forno	2,5
Madeira escura	4,6
Madeira, placa com fibras de média densidade	11,9
Zinco galvanizado por kg de aço	2,8

ANEXO L – Energia incorporada dos materiais de construção civil (Tavares, 2006)

MATERIAIS	⁽²⁾ EE (MJ/kg)	EE (MJ/m³)	(3) Desperd. %	⁽⁴⁾ Dens. (kg/m³)
Aço - chapa galvanizada	33,80	265330,00		7850
Aço - chapa dobrada	30,00	235500,00		7850
Aço - Iaminado CA 50A (1)	30,00	235500,00	10	7850
Aço - reciclado	12,50			
Acrílico	80,00			
Água	0,02	20,00		1000
Alumínio lingote (1)	98,20	265140,00		2700
Alumínio anodizado	210,00	567000,00		2700
Alumínio reciclado - extrudado	17,30			
Alumínio reciclado - anodizado	42,90			
Areia	0,05	75,75	50	1515
Argamassa - mistura	2,10	3906,00	40	1860
Asfalto	51,00	107865,00		2115
Batente - madeira aparelhada	3,50	2100		600
Borracha natural - latex	69,00	63480,00		920
Borracha sintética	135,00	160650,00		1190
Brita	0,15	247,50	40	1650
Cal virgem	3,00	4500,00	50	1500
Carpete	50,00	1,525,525	15	
Cêra	52,00		13	
Cerâmica - azulejo	6,20	12400,00		2000
Cerâmica - bloco de 8 furos (1)	2,90	4060,00	15	1400
Cerâmica - branca	25,00	52075,00	5	2000
Cerâmica - piso esmaltado	5,00	10000,00		2000
Cerâmica – revest, biqueima	6,20	12400,00		2000
Cerâmica – revest, monoqueima (1)	5,10	10200,00	15	2000
Cerâmica porcelanato	13,00	27300,00	15	2100
Cerâmica - refratária		2/300,00	15	2100
Cerâmica - telha	32,40	10360.00		1900
Chapa de compensado	5,40	10260,00 4400,00	15	
Chumbo lingote	8,00	238140,00	15	550 11340
Cimento Portland (1)	21,00 4.20	8190.00	40	
Cobre	75,00	669975,00	40	1950 8933
Concreto armado	3,10	005575,00		0,55
Concreto bloco	1,00	2000,00	15	2000
Concreto simples	1,20	2760,00	10	2300
Dobradiça - ferro	40,00	314800,00	10	7870
Fechaduras	55,00	467500,00		8500
Ferro fundido	32,80	246000,00		7500
Fibra de vidro	24,00	768,00		
Fibrocimento - telha	6,00	11520,00	10	32 1920
Fio termoplástico			25	2430
Gesso	83,00	201690,00	25	
Gesso acartonado	4,00	3200,00		800
	6,10	E 100 00		2700
Granito - aparelhada	2,00	5400,00		2700
Lã mineral	19,00	2090,00		110
Latão	80,00	682400,00		8530
Madeira - aparelhada seca forno	3,50	2100,00	15	600
Madeira - aparelhada seca ar livre	0,50	300,00	15	600
Madeira - laminada colada	7,50	4875,00	15	650
Madeira - MDF	9,00	9000,00	15	1000
Mármore	1,00	2680,00		2680
Marmorite	0,48			
Palha	0,24	31,20		130
Papel (1)	18,54	17242,20		930

Continuação ANEXO L - Energia incorporada dos materiais de construção civil (Tavares, 2006)

Papel kraft	37,70			
Papel de parede	36,40			
Placa de gesso	4,50	4500,00	35	1000
Poliamida - nylon	125,00	143750,00		1150
Poliestireno expandido	112,00	6160,00		55
Polietileno de alta densidade	95,00	90250,00		950
Polipropileno	83,80	92180,00		1100
Poliuretano - espuma	74,00	2590,00		35
Porta - madeira aparelhada	3,50	2275,00		650
Prata	128,20	1346100,00		10500
Selante - formaldeído	80,00	120000,00		1500
Solo-cimento - bloco	0,60	1020,00		1700
Solvente - tolueno	67,90	74690,00		1100
Telha de vidro	23,13	55512,00		2400
Tinta acrílica	61,00	79300,00	15	1.3 kg/l
Tinta óleo	98,10	127530,00	15	1.3 kg/l
Tinta PVA latex	65,00	84500,00	15	1.3 kg/l
Torneiras e registros	95,00			
Tubo - PVC	80,00	104000,00	17	1300
Tubo de ferro galvanizado	33,80			
Vermiculita	1,37	167,14		122
Vidro plano	18,50	46250,00	5	2500
Vidro - blindex	26,20			
Vinil	47,00			
Zinco	51,00	364140,00		7140

⁽¹⁾ Pesquisa própria
(2) Valores médios: BOUSTEAD & HANCOCK (1979); MIC-CETEC MG (1982); GUIMARÃES (1985); ALCORN (1996); LAWSON (1996); ANDERSEN, (1993); BLANCHARD, (1998); SCHEUER & REPPE (2003).
(3) Pesquisa FINEP / PCC/ USP, AGOPYAN et al, 1998
(4) Valores médios: INCROPERA, 1992; VAN VLACK, 1970.

ANEXO M – Equivalência energética de combustíveis (CEGÁS, 2011)

EQUIVALÊNCIA ENERGÉTICA						
COMBUSTÍVEL	UNIDADE	FATOR DE CONVERSÃO				
Gás Natural	m³	1,00				
Gás Liquefeito de petróleo - GLP	kg	1,27				
Óleo Diesel	litro	1,08				
Lenha	kg	0.35				
Óleo combustível BPF	kg	1,08				
Carvão Vegetal	kg	0,72				
Querosene	litro	0,8834				
Energia Elétrica	kWh	0,0915				
Carvão Mineral Nacional (4500 kcal/kg)	kg	0,48				
Barril de Petróleo*	litro	150				

^{* 1} barril de petróleo = 159 litros

Multiplique a quantidade em unidade de medida do combustível em análise pelo fator de conversão para obter a quantidade equivalente em m3 de gás natural.

Exemplo:

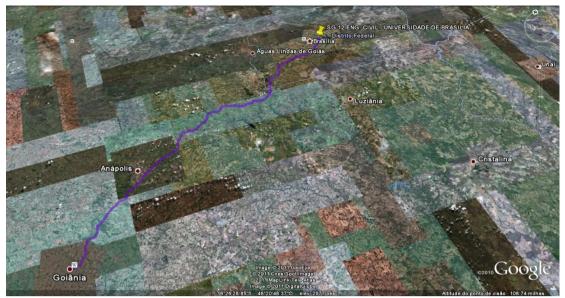
5.000 litros de diesel = 5.000 x 1,08 = 5.400 m3 de Gás Natural.

ANEXO N – Fatores de conversão de energia (CEGÁS, 2011)

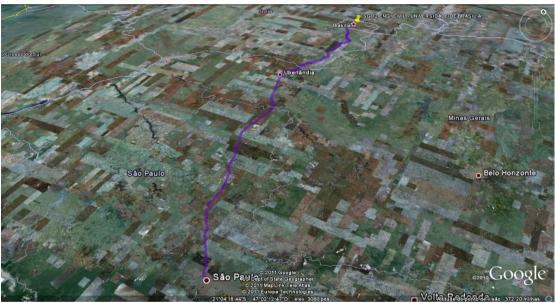
ENERGIA
1 kW = 1,35962 cv
1 kW = 1,341 hp
1 BTU = 1,005 J
1 cal = 4,1868 J
1 KWh = 3,6 MJ
1 kcal = 3,97 BTU
1 m³ de GN = 39 (VCB)* MJ

^{*} Valor calorífico bruto

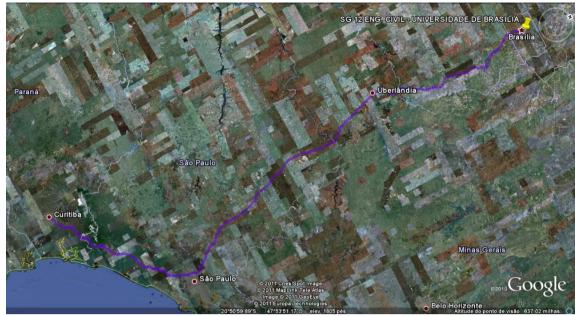
Gás Natural:


¹ metro cúbico = 9.400 Kcal (20°C e 1 atm)

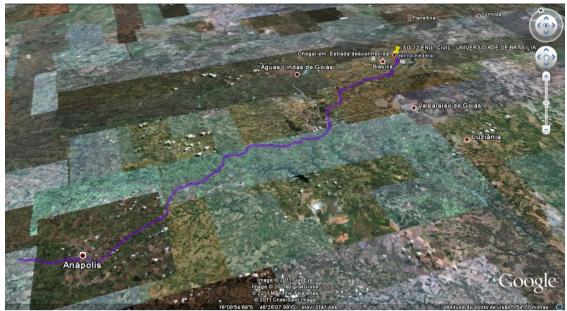
¹ milhão de BTU (1 MMBTU) = 26, 8 metros cúbicos (m³) de gás natural.


ANEXO O – Fatores de conversão de energia (Brasil, 2011)

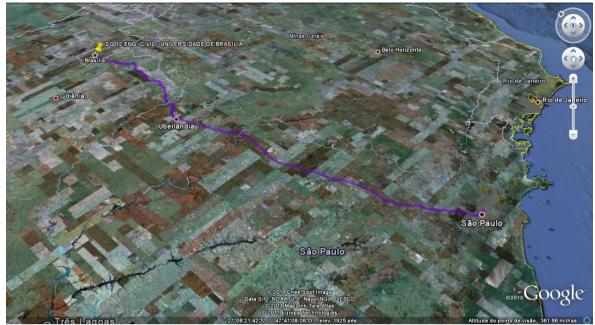
Fontes de Energia	Unidade	Multiplicar por (=tep)
Alcatrão	m ³	0,855
Álcool Etílico Anidrido	m ³	0,534
Álcool Etílico Hldratado	m ³	0,510
Asfaltos	m ³	1,018
Bagaço de Cana	t	0,213
Biogás	1000 m ³	0,5
Caldo de Cana	t	0,062
Carvão Metalúrgico Importado	t	0,740
Carvão Metalúrgico Nacional	t	0,642
Carvão Mineral Importado	t	0,496
Carvão Vapor 3100 kcal/kg	t	0,295
Carvão Vapor 3300 kcal/kg	t	0,310
Carvão Vapor 3700 kcal/kg	t	0,350
Carvão Vapor 4200 kcal/kg	t	0,400
Carvão Vapor 4500/4699 kcal/kg	t	0,425
Carvão Vapor 4700/5199 kcal/kg	t	0,445
Carvão Vapor 5200/5699 kcal/kg	t	0,490
Carvão Vapor 5700/5899 kcal/kg	t	0,542
Carvão Vapor 5900 kcal/kg	t	0,560
Carvão Vapor 6000 kcal/kg	t	0,570
Carvão Vapor 6201/8000 kcal/kg	t	0,62
Carvão Vapor sem Especificação	t	0,285
Carvão Vegetal	t	0,646
Casca de Arroz	t	0,278
Casca de Árvore	t	0,19
Casca de Castanha	t	0,278
Cavacos	t	0,31
Chips de Madeira	t	0,306
Coque de Carvão Mineral	t	0,690
Coque de Petróleo	m ³	0,873
Eletricidade (Hidráulica e Térmica)	MWh	0,086
Gás de Aciaria	1000 m ³	0,1
Gás de Alto Forno	1000 m ³	0,07
Gás Canalizado - Rio de Janeiro	1000 m ³	0,380
Gás Canalizado - São Paulo	1000 m ³	0,450
Gás de Coqueria	1000 m ³	0,430
Gás de Refinaria	m ³	0,655
Gás Liquefeito de Petróleo	m ³	0,611
Gás Natural Seco	1000 m ³	0,880
Gás Natural Úmido	1000 m ³	0,993

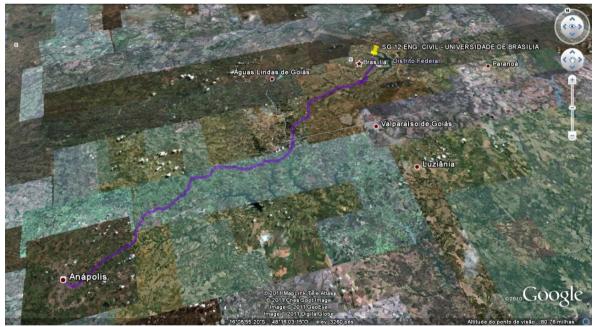

Fontes de Energia	Unidade	Multiplicar por (=tep)
Gasolina Automotiva	m³	0,770
Gasolina de Aviação	m³	0,763
Hidrogênio	t	2,864
Lenha Comercial	t	0,310
Lixívia	t	0,286
Lubrificantes	m³	0,891
Melaço	t	0,185
Moinha de Carbono	t	0,63
Nafta	m³	0,765
Óleo Combustível Médio	m³	0,959
Óleo Diesel	m³	0,848
Outras Fontes Primárias não renováveis não especificadas	t	0,615
Outras Fontes Primárias não especificadas	t	0,833
Outras Renováveis	tep	1,000
Outros	t	0,3
Outros Energéticos do Petróleo	m³	0,890
Outros Não-Energéticos de Petróleo	m³	0,890
Outros Resíduos de Árvore	t	0,19
Petróleo	m³	0,891
Pó de Alto Forno	t	0,278
Querosene de Aviação	m³	0,822
Querosene Iluminante	m³	0,822
Raspa de Pneu	t	0,833
Residuos de Madeira	t	0,306
Residuos de Pinus	t	0,306
Solvente	m³	0,781
Tar Bruto	t	0,57
Urânio contido no UO ₂	kg	73,908
Urânio U ₃ O ₈	kg	10,139

ANEXO P – Distância de Goiânia até o SG 12 (UnB) = 213 km (placas cimentícias) (Google, 2008)


ANEXO Q - Distância de São Paulo até o SG 12 (UnB) = 1014 km (montantes) (Google, 2008)

ANEXO R - Distância de Curitiba até o SG 12 (UnB) = 1394 km (guias e parafusos) (Google, 2008)


ANEXO S- Distância da fábrica de cimento até o edifício SG 12 (UnB) = 28 km (Google, 2008)


ANEXO T – Distância da olaria em Campo Limpo (Anápolis) até o edifício SG 12 (UnB) = 175 km (Google, 2008)

ANEXO U - Distância de ponto de extração de areia (Ipameri-GO) até o edifício SG 12 UnB = 285 km (Google, 2008)

ANEXO V – Distância do ponto de extração e fabricação de cal hidratada (Suzano-SP) até o edifício SG 12 UnB = 1019 km (Google, 2008)

ANEXO W – Distância da fábrica de pisos cerâmicos em Anápolis até o edifício SG 12 UnB = 160 km (Google, 2008)