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Abstract- This paper presents the architecture of a policy-
based network management system designed specifically for 
Quality of Service management, where high level business  
policies are modeled as ECA (Event-Condition-Action) rules. 
Specifically, the system is mainly based on the policy architecture 
being proposed by the IETF (Internet  Engineering Task Force), 
DMTF (Distributed Management Task Force), and TMF 
(TeleManagement Forum) standardization bodies. This work 
proposes a novel approach for policy condition evaluation using  
fuzzy logic. The fuzzy controller has the ability to examine policy 
conditions differently from  default condition analyzers that 
employ simple conditions formed by a set of (IFs, ANDs and 
ORs), allowing the consideration and correlation of several input 
variables before taking decisions for the execution of policy 
actions. The system have been implemented and evaluated over a 
test bed network formed by Cisco® routers. 

Key-words: Policy-Based Network Management, Quality of 
Service, Fuzzy Logic. 

I. INTRODUCTION

Over the last decade, academia and industry have expended 
considerable effort researching QoS mechanisms for IP networks.  
Several solutions have been developed, and some of which are 
currently implemented in ISPs (Internet Service Providers) and 
corporate networks.  Within this context, remarkable 
technologies can be listed, including traffic queuing strategies 
such as CBQ (Class-based Queuing), WFQ (Weighted Fair 
Queuing), PQ (Priority Queuing) and others; QoS architectures 
such as IntServ (Integrated Services Architecture) [1] and 
DiffServ [2]; congestion avoidance strategies such as RED 
(Random Early Discard) and traffic engineering using MPLS 
(Multiprotocol Label Switching) [3]. 

The heterogeneity of the technological options for QoS 
deployment has lead to an extremely complex scenario for the 
interoperation and customization of QoS.  As a result, in practice, 
only few mechanisms cited above have been deployed in IP 
networks. 

Meanwhile, the demand for implementing QoS mechanisms 
continues to grow.  The increased transport of real time and 
mission critical applications over IP-based networks, added to the 
explosion of P2P (Peer to Peer) traffic, and provision of new 
services such as BGP/MPLS based VPNs (Virtual Private 
Networks) [4], require the implementation of control mechanisms 
for differentiated traffic forwarding priorities in routers and 
switches.  MPLS based VPNs service, nowadays offered by most 
of the ISPs (Internet Service Providers), as a low cost alternative 
to traditional layer 2 VPNs such as Frame Relay and ATM. 
Applying QoS mechanisms as DiffServ with MPLS based VPNs, 

it is possible to differentiate traffic within an LSP (Label 
Switching Path) , thus allowing clients to determine, for instance, 
that VoIP (Voice over IP) traffic should have increased priority 
over the rest of the traffic on the ISP backbone. 

QoS mechanisms currently implemented in real networks, such 
as classifiers, schedulers and markers, are normally configured 
statically in network devices. Therefore, there is no ability for 
these mechanisms to respond to changes in traffic and the 
network state.  Furthermore, mapping enterprise policies into the 
appropriate configuration parameters for QoS mechanisms is 
generally performed manually by the network administrator. 

On the other hand, at the network management area, a new 
architecture called PBNM (Policy-Based Network Management)
have emerged allowing high-level business policies to be 
translated into appropriate configuration of network devices by 
the management systems, thus reducing the complexity of the 
network operation, independent of the type, model, vendor and 
operating system used. This architecture has emerged allowing 
some degree of automated operation of networks and the 
adaptation of the configuration of network devices to provide 
suitable QoS (Quality of Service) for different traffic flows or 
classes of service 

This paper briefly describes the design and implementation of 
a PBNM system that performs the complete cycle of policy 
creation, validation, enforcement and monitoring.  Network 
events are monitored and a policy-based automatic re-
configuration of network devices is performed. The re-
configuration is performed based on the result of a condition 
analysis. The duties of the network administrator are related 
solely to the creation of business policies using a Policy Editor.  
The PBNM system is responsible to map high-level business 
policies into device specific configurations in order to enforce the 
company goals. 

Specifically, this paper is focused on the module responsible for 
the condition analysis. A Fuzzy-based policy condition analyzer 
is implemented through the association of network state 
information, policy events and conditions with Fuzzyfied curves. 
This strategy allows policy decision to be performed based on 
Fuzzy policies, including the analysis of several conditions at the 
same time. 

The paper is organized as follows. Section II describes the 
policy events, conditions and actions for QoS management, 
Section III presents the overall system architecture; Section IV 
details the Fuzzy condition analyzer module implementation; and 
finally, Section V presents the validation of the Fuzzy-based 
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policy condition analyzer over a real test bed network composed 
by Cisco® routers. 

II. QOS POLICIES

One of the biggest challenges in a PBNM system is the 
creation of new types of policies at runtime, without changing 
hard coded structures and functions.  In most of the PBNM 
systems available today, a limited number of different types of 
policies can be instantiated.  Our system was designed such that 
the network administrator would be able to create customized 
policies through the selection of a set of events, conditions and 
actions.  As such, a small number of types of events, conditions 
and actions can be combined to create a large number of different 
policies.   

For this first version of the system, we focused on managing 
DiffServ mechanisms for corporate routers. In this scenario, the 
possible events, conditions and actions for creating the QoS 
policies are presented below: 

Policy Events 
• Specific Trap: this event is generated when the 

management system receives a specific SNMP TRAP 
(Simple Network Management Protocol) from a given 
network element; 

• Scheduled event: this event is generated by a scheduler.  
The specific time, or time interval for event generation are 
configurable attributes of the event; 

• Threshold: this event is generated by a monitor to notify 
that a predefined QoS performance threshold has been 
reached.  The monitor should be installed in accordance 
with a given policy activation. 

Event filters and event monitors should be installed in 
accordance with specific policy events and should be auto 
configurable so as to receive only the events that are relevant to 
the current active policies.  The system should be designed in 
such a way that new kinds of events can only be added to the 
system by inserting the relevant XML (eXtensible Markup 
Language) files describing the event information model into the 
policy repository.  

Simple Policy Conditions 
Simple policy conditions are represented in the DEN-ng policy 
model [6] as an aggregation of a set of PolicyStatements.  Their 
evaluation consists of a set of ANDs of ORs, or vice versa, 
comparing PolicyVariables with PolicyValues using the 
PolicyOperators 
The simple policy conditions to be implemented in our system 
are listed below: 

• Is the network congested? 
• Is it necessary to add a congestion prevention mechanism? 
• Is the current set of classes overloaded? 
• Is the current set of classes under-loaded? 

In our system there is a monitor responsible for collecting 
relevant information about network performance. The 
information collected is stored in a data base and is used when 
the system need to take a decision as a result of a condition 
analysis. 

Fuzzy Policy Conditions
The fuzzy conditions are capable of correlating several 

parameters such as link occupation, packet loss, delay, jitter and 

the time of day to give a numerical output of bandwidth to be 
reserved for a given traffic class.  The fuzzy logic-based 
condition analysis is better described in section IV. 

Similarly to the simple conditions, there is a monitor responsible 
for collecting QoS performance parameters from the network. 
These parameters are used as an input for the fuzzy logic-based 
condition analysis. 

Policy Actions 
Specific policy actions shall be executed after policy condition 

evaluation. For instance, action "A" would be executed if the 
analysis condition result were TRUE, action "B" if the analysis 
condition result were FALSE or action "C" as a result from 
Fuzzy condition analysis. The association of which actions may 
be executed and the occurrence of an event and a condition 
analysis result is performed by the network administrator at the 
policy editor. 

Below are listed the policy actions for configuring DiffServ 
parameters.  

• Classifier configuration; 
• Marker configuration; 
• Traffic Shaping or Policing configuration; 
• Dropper configuration; 
• Queue scheduler configuration; 

We adopted the strategy of using an object-oriented information 
model for representing the events, conditions, actions and their 
relationships.  In order to contextualize the FCA (Fuzzy 
Condition Analyzer) module, the next section briefly presents the 
system implementation architecture, described with details by 
Siqueira et al. [7]. 

III. QOSM IMPLEMENTATION ARCHITECTURE

This section presents the implementation architecture for the 
QoS Policy Manager (QoSM).   The system is composed of 
internal elements responsible for policy edition, compilation, 
conflict detection and resolution, and policy evaluation.  There 
are interfaces to external elements such as the policy repository, 
network configuration and monitoring proxies. 

The work of standardization bodies, such as the IETF and 
DMTF, in relation to PBNM, has mostly focused on the 
architecture of policy-based systems, information models and 
protocols.  Conversely, DEN-ng policy model is one step forward 
in this respect, specifying the policy life cycle, some internal 
components such as a policy state machine, and it also presents 
some use cases for policy evaluation. 

Based on the DEN-ng approach, we propose the PDP 
implementation architecture that is illustrated in Fig. 1. 

QoSM Interfaces: 
• I-PMT (Interface to the Policy Management Tool):

provides web-based access for network administrators to 
insert, edit and delete policies; 

• I-PR (Interface to the Policy Repository): provides access 
to the policies (events, conditions, actions and their 
relationships) stored in the policy repository.  The Policy 
Repository stores the network policies that will be analyzed 
by the QoSM in order to make decisions and translate them 
into network configuration modifications.  In our system, 
the Policy Repository was modeled as an extension of the 
DEN-ng policy model for managing QoS mechanisms; 
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• I-PSMR (Interface to the Policy State Machine 
Repository): provides access to the policies state 
repository.  The Policy State Machine repository maintains 
the execution state of all active policies.  Valid states are: 
event not occurred; event occurred; conditions satisfied; 
conditions not satisfied; action executed (sent to the 
device); successful action execution at the device; and 
some other combinations of different states; 

• I-NELC (Interface to the Network Element Layer 
Configuration Proxy): provides access to the proxies 
responsible for the configuration of the network devices.  
This interface may receive policy actions modeled in XML 
from the AG module (described below) and translate them 
into specific commands for the devices being managed.  
This project contemplates the implementation of a proxy 
that supports CLI (Command Line Interface) configuration; 

• I-NELM (Interface to the Network Element Layer 
Monitoring Proxy): provides access to the monitoring 
proxies.  The proxies may access devices via SNMP to 
monitor network and traffic states.  

QoSM internal modules: 
• PE (Policy Editor): implements the server side presentation 

logic of the user web-based policy editor.  The policy 
editor presents a set of events, conditions and actions to the 
user.  The policy is created through the association of a set 
of events, conditions and actions.  Furthermore, the PE 
enables the configuration of specific attributes of each 
policy component, such as threshold values for events, 
limits for condition variables and configuration parameters 
for policy actions; 

• PC (Policy Compiler): translates the policies from the 
business view to the Policy Information Model format.  
Specifically in this project, the policies to be stored at the 
policy repository are translated into object-orientated 
objects according to the DEN-ng model; 

• CD (Conflict Detector): enables the detection of conflicts, 
both intra policy and inter policy; 

• EG (Event Generator): this module generates specific pre-
configured events, mostly obtained via the I-NELM 
interface and subsequently used to trigger the analysis of 
the set of conditions of the policies associated with the 
given event; 

• CA (Condition Analyzer): provides a simple condition 
analysis (using the operators IF, AND and OR); 

• FCA (Fuzzy Condition Analyzer): provides an advanced 
condition analysis, as further described in Section IV; 

• AG (Action Generator): sends specific actions to the I-
NELC interface by means of the condition evaluation of 
TRUE or FALSE; 

• SMC (State Machine Controller): communicates with the 
EG, CA and AG modules.  It updates the policy state data, 
enabling the system to avoid policy evaluation errors and 
assisting the network administrator to monitor the levels of 
QoS levels applied through the policies. 

Fig. 1 - QoS Manager internal architecture.

IV. FUZZY CONDITION ANALYZER (FCA) ARCHITECTURE

Much work has been done on Policy Management. 
Nevertheless, there are some issues still open for research, such 
as policy conflict detection, policy evaluation strategies, high 
level policy representation and translation, policy representation 
language, and others.  

Little attention has been dedicated to policy condition 
evaluation strategies. Most of the implementations use a set of 
(ANDs of ORs) or a set of (ORs of ANDs) for policy condition 
evaluation. 

This scheme leads to a very predicable decision strategy. We 
propose in this work a different approach for policy condition 
evaluation using Fuzzy logic. The FCA module is formed by a 
Fuzzy controller able to take several variables from the network, 
compare them using fuzzyfied curves and give a result for the 
condition. 

Following we describe how the FCA was implemented in Java, 
J2SE v1.4 with Postgres Database. 

A. Fuzzy Controller 

Fuzzy Logic is also being used to control large engineering 
plants such as power stations, effluent treatment systems and 
even to maintain a steady flight path for pilot less reconnaissance 
aircraft. By defining a method that allows a mathematical 
description of vague, imprecise and possibly conflicting 
information, sophisticated systems may be devised to 
significantly improve system performance. Fuzzy controllers are 
conceptually very simple. They consist of an input stage 
(fuzzyfication), a processing stage (inference), and an output 
stage (defuzzification). The input stage maps sensor or other 
inputs, such as switches, thumbwheels, and so on, to the 
appropriate membership functions and truth-values. The 
processing stage invokes each appropriate rule and generates a 
result for each, then combines the results of the rules. Finally, the 
output stage converts the combined result back into a specific 
control output value. Fuzzy logic provides a simple and powerful 
method of decision-making that facilitates a link between basic 
logic and practical applications. It has been shown that a fuzzy 
logic controller can provide algorithms which convert the 
linguistic control strategies based on intuition, heuristic learning 
and expert knowledge into an automatic control strategy for 
bandwidth management purposes [10] [11] and [14]. A fuzzy 
inference system is usually rule based and has the inherent 
capability to perform inference and derive results with imprecise 
models and quantities. The block diagram of a general fuzzy 
controller is illustrated in Fig. 2. 
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Fig. 2 - Block diagram of a fuzzy inference system

1)  Membership Functions to the Fuzzy Controller 

The fuzzy membership function used in the solution of our 
problem is continuo function: triangular trimf(x; a, b, c), as 
described in the equation below(1).  
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where b is modal value, and a and c denote the lower and upper 
bounds, respectively, for nonzero values of trimf(x). The 
membership values were obtained by mapping the values 
obtained from the experiment developed in TIPHON 
(Telecommunications and Internet Protocol Harmonization Over 
Networks) project for Voice over IP  (VoIP) quality [12]. 

B. Controller Variable  

We have adopted the link occupation, end-to-end packet loss, 
end-to-end peak jitter, period of day and end-to-end delay as 
entry variables in our system, which give us a rate available in 
the system to assure quality of service. 

The range of all possible values for an end-to-end link metric 
is as follows: “Link Occupation” presented in Table I, “End-to-
End Packet loss” shown in Table II, “Peak Jitter” shown in Table 
III, “Period of Day” shown in Table IV, “End-to-End Delay” 
shown in Table V. The “Fuzzy Controller Bandwidth” can be 
seen in Table VI.  The graphical representation of the 
membership functions for each one of the variables is presented 
in the  Figures 3, 4, 5, 6 and 7 respectively.  

TABLE I 
FUZZY MEMBERSHIP FOR FUZZY INPUTS 

“LINK OCCUPATION” - LO

Linguistic 
Variable 

Type 
Function 

Parameters 
Function (a,b,c) Values 

LOW trimf (x; La, Lb, Lc) (x;0,32,96 ) 
MEDIUM trimf (x; Ma, Mb, Mc) (x; 64,128,192) 
HIGH trimf (x; Ha, Hb, Hc) (x;160,224,256) 

LOW MEDIUM HIGH
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Fig. 3 - Membership functions of the linguistic variable 
(input) “Link Occupation” - LO

TABLE II 
FUZZY MEMBERSHIP FOR FUZZY INPUTS 

“END-TO-END PACKET LOSS RATIO %” - PL

Linguistic 
Variable 

Type 
Function 

Parameters 
Function (a,b,c) Values 

GOOD trimf (x; Ga, Gb, Gc) (x; 2, 6, 10) 
MEDIUM trimf (x; Ma, Mb, Mc) (x; 7, 14, 21) 
POOR trimf (x; Pa, Pb, Pc) (x; 17, 25, 33) 

GOOD MEDIUM POOR

1

0
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Fig. 4 – Membership functions of the linguistic variable 
(input) “End-to-End Packet loss ratio %” - PL

TABLE III 
FUZZY MEMBERSHIP FOR FUZZY INPUTS 

“END-TO-END PEAK JITTER (DELAY VARIATION)” - PJ

Linguistic 
Variable 

Type 
Function 

Parameters 
Function (a,b,c) Values 

GOOD trimf (x; Ga, Gb, Gc) (x; 50, 75, 100) 
MEDIUM trimf (x; Ma, Mb, Mc) (x; 84, 125, 166) 
POOR trimf (x; Pa, Pb, Pc) (x; 151, 225, 299) 

GOOD MEDIUM POOR

1

0
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Fig. 5 – Membership functions of the linguistic variable 
(input) “End-to-End Peak Jitter” - PJ
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TABLE IV 
FUZZY MEMBERSHIP FOR FUZZY INPUTS 

“PERIOD OF DAY” - PD

Linguistic 
Variable 

Type 
Function 

Parameters  
Function (a,b,c) Values 

DAWN trimf (x; Da, Db, Dc) (x; 0, 3, 6) 
MORNING trimf (x; Ma, Mb, Mc) (x; 5, 9, 12 ) 
AFTERNOON trimf (x; Aa, Ab, Ac) (x; 11, 15, 18) 
NIGHT trimf (x; Na, Nb, Nc) (x; 17, 21, 24) 

DAWN MORNING AFTERNOON

1

0
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Fig. 6 – Membership functions of the linguistic variable 
(input) “Period of Day” - PD

TABLE V 
FUZZY MEMBERSHIP FOR FUZZY INPUTS 

“END-TO-END DELAY (TRANSFER DELAY)” - TD

Linguistic 
Variable 

Type 
Function 

Parameters  
Function (a,b,c) Values 

BEST trimf (x; Ba, Bb, Bc) (x; 101, 150, 200) 
HIGH trimf (x; Ha, Hb, Hc) (x; 168, 250, 333) 
MEDIUM trimf (x; Ma, Mb, Mc) (x; 235, 350, 466) 
LOW trimf (x; La, Lb, Lc) (x; 302, 450 599) 

Fig. 7 – Membership functions of the linguistic variable 
(input) “End-to-End Delay (Transfer Delay)” - TD

TABLE VI 
FUZZY MEMBERSHIP FOR FUZZY OUTPUT  

“FUZZY CONTROLLER BANDWIDTH” - CB

Linguistic Variable Type 
Function 

Parameters 
Function (a,b,c) 

Values 

Low positive trimf (x; La, Lb, Lc) (x;2,5,8 ) 
Medium positive trimf (x; Ma, Mb, Mc) (x;6,9,12 ) 
High positive trimf (x; Ha, Hb, Hc) (x,10,13,16; ) 
Low negative trimf (x; Lna, Lnb, Lnc) (x;-2,-5,-8 ) 
Medium negative trimf (x; Mna, Mnb, Mnc) (x;-6,-9,-12 ) 
High negative trimf (x; Hna, Hnb, Hnc) (x; -10,-13,-16) 
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Fig. 8 – Membership functions of the linguistic variable 
(output) “Fuzzy Controller Bandwidth” - CB

C. Basic Fuzzy Rules 

The acknowledgment that relates the several variables and 
their respective values was summarized in table IV, which 
originates the basic fuzzy rules with the If-then format.  The 
inference process used in the simulation is known as Mamdani, 
proposed in 1976 by Ebrain Mamdani [9].  The output variable 
Bandwidth has six terms and uses Center-of-Maximum (CoM)
defuzzification. Thus, we can define some inference rules based 
in the table VII.  For instance: 
1. If (Link Occupation is LOW) And (End-to-End Delay is

MEDIUM) And (Period of Day is AFTERNOON) And (End-
to-End Peak Jitter is MEDIUM) And (End-to-End Packet loss 
is POOR) Then (Fuzzy Controller Bandwidth is LOW 
Positive)

As already described, fuzzy policy conditions were deployed 
taking as input Link occupation, end-to-end delay, period of day, 
end-to-end packet loss and current controller bandwidth. The 
FCA module gives as output the differential bandwidth that 
should be configured for a given link. Fig. 9  shows a screenshot 
of the fuzzy condition editor where the network administrator can 
create  fuzzy conditions 

Fig. 9 – FCA policy condition editor 

V. VALIDATION

Fig. 10 shows the testbed network where the QoS policy 
management system was applied. The network is formed by a 
Juniper M10 router (P1), three Cisco 3620 router (PE1, P2, and 
PE2) and a Cisco 7200 router (P3). A network tester (Agilent 
RouterTester) was used for traffic generation and measurement. 
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Fig. 10 – Testbed network

For a given set of rules configured at the FCA interface 
(shown in Fig. 9), based on the result of the execution of the 
fuzzy condition analyzer, some actions related to the policy were 
executed. The QoSM system (QoS Manager) generated the 
following configuration at the routers with the bandwidth 
percentage  needed to be reserved for each class of service: 

class-map match-all classe7 
  match ip dscp 7 
class-map match-all classe6 
  match ip dscp 6 
class-map match-all classe5 
  match ip dscp 5 
policy-map TesteQoS 
  class classe7 
   bandwidth percent 30 
  class classe6 
   bandwidth percent 25 
  class classe5 
   bandwidth percent 15 
  class class-default 
   bandwidth percent 5 
Interface x/x 
Service-policy TesteQoS 

As can be inferred, the interfaces were configured with the 
CB-WFQ (Class-based Weighted Fair Queueing) scheduling 
algorithm, class 0 received 30% of bandwidth, class 1 received 
25%, class 2 received 15% and class 3 received 5%. Fig. 11 
shows the results for the RouterTester Over-Subscription-QoS 
test executed over the network configured automatically by the 
QoSM system.  

Fig. 11 – Test results 

The left curves are for 16Mbps total throughput and the right 
curves are for 10Mbps. The traffic for each class is generated 
evenly. The network support at most 8Mbps. 

As can be seen, the total throughput for each class is in 
accordance with the reserved values for each class. 

VI. CONCLUSION

In this paper we have described the implementation 
architecture of a PBNM system designed specifically for 
managing QoS mechanisms in IP networks. The major 
contributions of our work are the introduction of new concepts 
into the architecture, such as a flexible policy editor that allows 
the composition of new types of policies, a fuzzy condition 
analyzer that has the ability to compare policy conditions 
differently from the default condition analyzers that use a set of 
IFs, a distributed event and configuration proxy scheme for 
collecting network events and configuring different types of 
network elements, the specialization of the CIM event model for 
QoS events, and the proposal of an implementation architecture 
for the PDP. 
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