Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/31404
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_ElisangelaCandeiasBizatti.pdf679,74 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorGomes, Antônio Eduardo-
dc.contributor.authorBiazatti, Elisângela Candeias-
dc.date.accessioned2018-03-12T13:59:57Z-
dc.date.available2018-03-12T13:59:57Z-
dc.date.issued2018-03-12-
dc.date.submitted2017-12-04-
dc.identifier.citationBIAZATTI, Elisângela Candeias. Modelo de regressão log Weibull com fração de cura para dados grupados. 2017. 60 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2017.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/31404-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2017.pt_BR
dc.description.abstractNeste trabalho é proposto um modelo de regressão com fração de cura para dados grupados utilizando a distribuição Weibull, que pode ser usada para modelar dados de sobrevivência quando a função de risco tem formas: constante, monotonicamente crescente ou monotonicamente decrescente. O modelo de regressão proposto é indicado para casos em que há no estudo, indivíduos que não apresentam a possibilidade de ocorrência do evento de interesse, indicando a presença de indivíduos curados no estudo. E também em situações em que observa-se um número excessivo de observações empatadas, para corrigir esses empates os dados são grupados em intervalos, ou quando a variável resposta é observada em intervalos de tempo, sendo esses intervalos iguais para todas as unidades amostrais. Dessa forma, os dados grupados são um caso particular de dados de censura intervalar. Um conjunto de dados reais foi utilizado para ilustração do modelo proposto. As estimativas dos parâmetros do modelo foram obtidas pelo método de máxima verossimilhança. Para detectar possíveis observações in uentes foi realizada uma análise de sensibilidade no modelo proposto. Toda a análise foi desenvolvida no software R.pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleModelo de regressão log Weibull com fração de cura para dados grupadospt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordModelo de regressãopt_BR
dc.subject.keywordDistribuição Weibullpt_BR
dc.subject.keywordFração de curapt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.contributor.advisorcoGomes, Juliana Betini Fachini-
dc.description.abstract1In this work we propose a regression model with a cure fraction for grouped data using the Weibull distribution, which can be used to model survival data when the risk function is constant, monotonically increasing or monotonically decreasing. The proposed regression model is indicated for cases in which there are individuals who do not present the possibility of occurrence of the event of interest, indicating the presence of individuals cured in the study. Also, in situations where an excessive number of ties observations is observed, the data are grouped in intervals to correct these draws, or when the response variable is observed in time intervals, these intervals being equal for all sample units. In this way, grouped data is a particular case of interval censored data. A set of real data was used to illustrate the proposed model. The estimates of the model parameters were obtained by the maximum likelihood method. In order to detect possible in uential observations, a sensitivity analysis was performed in the proposed model. All the analysis was developed in software R.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Estatísticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.