Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/32866
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_DióscorosBritoAguiarJúnior.pdf1,43 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCioletti, Leandro Martins-
dc.contributor.authorAguiar Junior, Dióscoros Brito-
dc.date.accessioned2018-10-22T16:51:59Z-
dc.date.available2018-10-22T16:51:59Z-
dc.date.issued2018-10-16-
dc.date.submitted2018-05-04-
dc.identifier.citationAGUIAR JUNIOR, Dióscoros Brito. Um princípio variacional para entropia específica em dinâmica simbólica com alfabetos não-enumeráveis. 2018. x, 99 f., il. Tese (Doutorado em Matemática)—Universidade de Brasília, Brasília, 2018.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/32866-
dc.descriptionTese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018.pt_BR
dc.description.abstractNeste trabalho generalizamos uma parametrização obtida por Corro em [6] no espaço Euclidiano tridimensional, e usamos essa parametrização para estudar uma classe de hipersuperfícies orientadas no espaço Euclidiano, ditas hipersuperfícies Weingarten de tipo esférico, satisfazendo uma relação especial tipo Weingarten entre as r-ésimas curvaturas médias. Classificamos as hipersuperfíciesWeingarten de tipo esférico de rotação. Estudamos uma classe de hipersuperfícies chamadas hipersuperfícies tipo esférico, e mostramos que no caso bidimensional, esta classe coincide com as superfícies Weingarten de tipo esférico. Também damos uma caracterização de uma classe de hipersuperfícies de Dupin e estudamos superfícies com invariantes de Laplace nulo, além de dar uma caracterização das superfícies mínimas de Laguerre.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleUm princípio variacional para entropia específica em dinâmica simbólica com alfabetos não-enumeráveispt_BR
dc.typeTesept_BR
dc.subject.keywordEntropiapt_BR
dc.subject.keywordMecânica estatísticapt_BR
dc.subject.keywordHipersuperfícies (Matemática)pt_BR
dc.subject.keywordEspaço euclidianopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1We generalize a parameterization obtained by Corro in [6] in the three- dimensional Euclidean space, and we use this parameterization to study a class of oriented hypersurfaces in Euclidean space, called of Weingarten hypersurface of spherical type, satisfying a special relation between the rth mean curvatures. We classify the Weingarten hipersurface of spherical type of rotation. We studied a class of hypersurfaces called hypersurfaces of spherical type, and we show that in the two-dimensional case, this class coincides with the Weingarten surfaces of spherical type. We also give a characterization of Dupin hypersurfaces and study surfaces with Laplace invariants null, as well as characterize the Laguerre minimal surfaces.pt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.