Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/38664
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_MateusdeAndradeCruzDutra.pdf741,11 kBAdobe PDFVisualizar/Abrir
Título: Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas
Autor(es): Dutra, Mateus de Andrade Cruz
Orientador(es): Roitman, Pedro
Assunto: Fluxos geométricos
Fluxo da curvatura média
Sólitons de translação
Superfícies máximas
Superfícies isocurvadas
Superfícies anti-isocurvadas
Curvaturas de Gauss
Geometria diferencial
Referência: DUTRA, Mateus de Andrade Cruz. Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas. 2020. 44 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2020.
Resumo: No artigo [1], os autores estudam o problema de construir superfícies no semiespaço superior do R3 em que as curvaturas de Gauss induzidas pela métrica euclidiana e pela métrica hiperbólica coincidem. Neste trabalho mostraremos que, se S é uma superfície no semiespaço e K e Kh são as curvaturas de Gauss induzidas pela métrica euclidiana e hiperbólica, respectivamente, então a quantidade K/Kh é invariante por transformações paralelas com relação a métrica hiperbólica. Isso permite interpretar a construção feita em [1] como o estudo de superfícies em que esse invariante é constante positivo. Em [1], os autores também comentam que é possível adaptar a construção para obter superfícies em que esse invariante é constante negativo. Ao longo deste texto, iremos detalhar o processo de construção dessas superfícies a partir de superfícies máximas no espaço de Lorentz. Mostraremos também como usar essa construção para caracterizar localmente todos os sólitons de translação do fluxo da curvatura média harmônica, definido pela seguinte regra {(∂∂tF)⊥=KHNF(⋅,0) = identidade em que a normal ao sóliton não é paralela à direção de translação em nenhum ponto. Por último, iremos mostrar um resultado que permite construir exemplos explícitos desses sólitons através da representação Weierstrass para superfícies máximas no espaço de Lorentz e discutiremos a possibilidade de se obter uma caracterização local completa.
Abstract: In the article [1], the authors study the problem of constructing surfaces in Euclidean half space with the property that the Gaussian curvatures induced by the Euclidean and hyperbolic metrics coincide. In this work, we will show that, if S is a surface in Euclidean half space and K and Kh denote the Gaussian curvatures induced by the Euclidean and hyperbolic metrics, respectively, then the ratio K/Kh is invariant by parallel transformations with respect to the hyperbolic metric. This allows us to interpret the construction made in [1] as surfaces on which this invariant is a positive constant. In [1], the authors also point out that it is possible to adapt the construction to obtain surfaces where this invariant is a negative constant. Throughout this text, we will detail the process of constructing these surfaces starting from maximal surfaces in Lorentz space. Furthermore, we will show how to use that construction to locally characterize all the translating solitons of the harmonic mean curvature flow, defined by the following rule {(∂∂tF)⊥=KHN F(⋅,0) = identidade where the normal to the soliton is not parallel to the translation direction at any point. Finally, we will demonstrate a result that allows the construction of explicit examples of these solitons through the Weierstrass representation for maximal surfaces in Lorentz space and we will discuss the possibility of obtaining a complete local characterization.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
Informações adicionais: Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020.
Programa de pós-graduação: Programa de Pós-Graduação em Matemática
Licença: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.