Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/39157
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_LucasLavoyerdeMiranda.pdf1,32 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorTenenblat, Keti-
dc.contributor.authorMiranda, Lucas Lavoyer de-
dc.date.accessioned2020-07-07T13:32:30Z-
dc.date.available2020-07-07T13:32:30Z-
dc.date.issued2020-07-07-
dc.date.submitted2020-06-18-
dc.identifier.citationMIRANDA, Lucas Lavoyer de. On the maximum principle and the Ricci flow. 2020. 143 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/39157-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020.pt_BR
dc.description.abstractNesta dissertação, será apresentado um estudo sobre o princípio do máximo para escalares e fibrados vetoriais sobre variedades compactas e algumas aplicações sobre o fluxo de Ricci, tendo como objetivo final demonstrar importantes resultados obtidos em 1982 por Richard Hamilton. Iremos introduzir o fluxo de Ricci, calcular as equações de evolução de importantes objetos geométricos, demonstrar a existência e unicidade local do fluxo e procurar compreender os obstáculos para existência para todo tempo. Por fim, comentaremos o principal resultado do artigo de Richard Hamilton, que afirma que toda variedade Riemanniana de dimensão 3 compacta e sem bordo com curvatura de Ricci estritamente positiva admite uma métrica com curvatura seccional positiva constante e, portanto, é difeomorfa à esfera tridimensional (caso seja simplesmente conexa) ou ao quociente da esfera por algum grupo finito de isometrias agindo livremente na variedade. Os resultados apresentados apareceram em artigos publicados e esta dissertação é majoritariamente baseada nos artigos de 1982 e de 1984 de Richard Hamilton, nas notas sobre o fluxo de Ricci de Petter Topping e no livro de Bennet Chow e Dan Knopf sobre o fluxo de Ricci, assim como seus volumes subsequentes.pt_BR
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleOn the maximum principle and the Ricci flowpt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordGeometria diferencialpt_BR
dc.subject.keywordFluxo de Riccipt_BR
dc.subject.keywordPrincípio do máximopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1In this dissertation, we will provide a study of the maximum principle both for scalars and for vector bundles on compact manifolds, as well as an introduction to the Ricci flow, with the goal of proving some important results due to Richard Hamilton, obtained in 1982 in his first paper on the Ricci flow. We shall introduce the Ricci flow, compute several evolution equations for some important geometric entities, prove short time existence and uniqueness of the Ricci flow and try to understand what are the obstacles for long time existence. Finally, we comment on Hamilton’s main result from his seminal 1982 paper, that says that every three-dimensional closed Riemannian manifold with strictly positive Ricci curvature admits a metric with constant positive sectional curvature and, therefore, is diffeomorphic to the three dimensional sphere (if it’s simply connected) or a quotient of the sphere by a finite group of isometries acting freely on it. All these results appeared in published papers and this dissertation is mainly based on Hamilton’s 1982 and 1984 papers, Peter Topping’s lecture notes on the Ricci flow and Bennet Chow’s and Dan Knopf’s book on the Ricci flow and its sequels.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Matemática (IE MAT)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Matemáticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.