Campo DC | Valor | Idioma |
dc.contributor.advisor | Chaim, Ricardo Matos | - |
dc.contributor.author | Venturini, Fabíola Cristina | - |
dc.date.accessioned | 2021-08-13T14:36:16Z | - |
dc.date.available | 2021-08-13T14:36:16Z | - |
dc.date.issued | 2021-08-13 | - |
dc.date.submitted | 2021-04-27 | - |
dc.identifier.citation | VENTURINI, Fabíola Cristina. Uso de modelos preditivos na gestão de riscos da Fiscalização Tributária. 2021. 91 f., il. Dissertação (Mestrado Profissional em Computação Aplicada)—Universidade de Brasília, Brasília, 2021. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/41670 | - |
dc.description | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2021. | pt_BR |
dc.description.abstract | Visando verificar de que forma a gestão de riscos da administração tributária do DF pode ser
aprimorada por meio do uso de modelos preditivos de mineração de dados, o estudo partiu da
caracterização do processo de gestão de riscos dos tributos indiretos pelo Fisco Distrital à luz
das boas práticas de gestão de risco aplicáveis à Administração Pública local, envolveu a
identificação de modelos preditivos aplicáveis ao processo de seleção de contribuintes a
fiscalizar, bem como sua criação e avaliação, que levou em conta o resultado das ações fiscais
já realizadas. Nesta pesquisa, exploratória e aplicada, a revisão teórica foi orientada por meio de
uma pesquisa bibliométrica a qual resultou na escolha de modelos preditivos baseados em
regressão logística e em redes neurais; reuniões foram realizadas para obter informações junto
aos auditores responsáveis pela seleção das empresas a fiscalizar e um questionário foi aplicado
para colher opiniões dos auditores responsáveis pelas auditorias; os dados armazenados em
sistemas corporativos foram estudados e extraídos para obtenção das informações relativas às
variáveis de interesse identificadas, as quais foram utilizadas na criação e treinamento dos
modelos. Foram criados modelos preditivos capazes de mapear conjuntos de empresas que
correspondem a aproximadamente metade das empresas auditadas e mais de 80% do crédito
constituído (89% no caso da rede neural modelo). Desta forma, foi possível concluir que a
utilização de modelos preditivos tem o potencial de otimizar a aplicação dos recursos disponíveis
e maximizar os resultados alcançados. | pt_BR |
dc.language.iso | Português | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.title | Uso de modelos preditivos na gestão de riscos da Fiscalização Tributária | pt_BR |
dc.type | Dissertação | pt_BR |
dc.subject.keyword | Gestão de riscos | pt_BR |
dc.subject.keyword | Indícios de irregularidades fiscais | pt_BR |
dc.subject.keyword | Avaliação de risco | pt_BR |
dc.subject.keyword | Mineração de dados | pt_BR |
dc.subject.keyword | Modelos preditivos | pt_BR |
dc.subject.keyword | Regressão logística | pt_BR |
dc.subject.keyword | Redes neurais | pt_BR |
dc.rights.license | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | pt_BR |
dc.description.abstract1 | With the objective of verifying how the use of predictive data mining models can improve the risk
management of the tax administration of the Federal District, this study started from the
characterization of the risk management process used by the District Tax Administration, followed
by the identification of the models applicable, of its implementation and finally of its evaluation,
which considered the result of the tax actions already carried out. In this exploratory and applied
research, the theoretical review was guided by a bibliometric research that resulted in the choice
of predictive models based on logistic regression and neural networks; meetings were held to
obtain information from the auditors responsible for selecting the companies to be inspected and
a questionnaire was applied to collect the opinions of the auditors responsible for the audits; the
data stored in corporate systems were studied and extracted to obtain the information related to
the identified variables of interest, which were used in the creation and training of the models.
Predictive models were created capable of mapping sets of companies that correspond to
approximately half of the audited companies and to more than 80 % of the constituted credit (89
% in the case of the neural network model). Thus, it was possible to conclude that the use of
predictive models has the potential to optimize the application of available resources and
maximize the results achieved. | pt_BR |
dc.description.unidade | Instituto de Ciências Exatas (IE) | pt_BR |
dc.description.unidade | Departamento de Ciência da Computação (IE CIC) | pt_BR |
dc.description.ppg | Programa de Pós-Graduação em Computação Aplicada, Mestrado Profissional | pt_BR |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado
|