Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/41753
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_EduardodeMendonçaMesquita.pdf4,01 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorLlanos Quintero, Carlos Humberto-
dc.contributor.authorMesquita, Eduardo de Mendonça-
dc.date.accessioned2021-08-17T15:33:30Z-
dc.date.available2021-08-17T15:33:30Z-
dc.date.issued2021-08-17-
dc.date.submitted2018-08-14-
dc.identifier.citationMESQUITA, Eduardo de Mendonça. Estudo comparativo de meta-heurísticas aplicadas ao controle preditivo baseado em modelo. 2018. 122 f., il. Dissertação (Mestrado em Sistemas Mecatrônicos) — Universidade de Brasília, Brasília, 2018.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/41753-
dc.descriptionDissertação (mestrado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2018.pt_BR
dc.description.abstractA computação bioinspirada é um ramo da computação natural que busca desenvolver algoritmos de otimização inspirados no comportamento dos seres encontrados na natureza. Nesse contexto, destacam-se os algoritmos evolucionários e os baseados na inteligência coletiva. Aqueles são inspirados pela evolução biológica dos seres e estes pelo comportamento coletivo de insetos e animais. Neste trabalho, serão coloca- dos em prova representantes dessas duas áreas. Meta-heurísticas clássicas, como PSO e DE, e também os mais recentes representantes: GWO (lobos), MFO (mariposas), SSA (salpas), WOA (baleias jubarte), DA (libélulas), além do SCA baseado no comportamento periódico das funções seno e cosseno. Os desempe- nhos dessas meta-heurísticas serão comparados via testes estatísticos não-paramétricos (NxN algoritmos), os quais, são métodos livres de qualquer tipo de distribuição de dados, ou seja, diferentemente dos métodos paramétricos, não dependem dos requisitos de normalidade, homogeneidade da variância e independência dos dados. Dentro desses testes não-paramétricos foram aplicados dois procedimentos post-hoc: Nemenyi (1963) e Shaffer (1983), os quais auxiliam na comparação em pares (1x1) do grupo de meta-heurísticas. Além das meta-heurísticas mencionadas, outras duas formam o grupo de análise, JADE e LSHADE, que utilizam técnicas auto-adaptativas dos parâmetros do DE. Os desempenhos dessas meta-heurísticas se- rão analisados mediante três estudos de caso: dois problemas de controle preditivo baseado em modelo, pêndulo invertido simples e attitude de satélites, e funções mono-objetivas com restrição de fronteira dacompetição CEC2017. Destes estudos de caso é retirada a mediana de 51 execuções de cada problema. Nos problemas de controle preditivo os algoritmos MFO e GWO tiveram bons desempenhos. Neste tra- balho foram apresentadas três novas versões do GWO e uma do MFO que superaram o resultados de seus respectivos originais nos problemas de controle.pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleEstudo comparativo de meta-heurísticas aplicadas ao controle preditivo baseado em modelopt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordHeurísticapt_BR
dc.subject.keywordAlgoritmos adaptativospt_BR
dc.subject.keywordTestes não-paramétricospt_BR
dc.subject.keywordCompetição CEC2017pt_BR
dc.subject.keywordControle preditivopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1Bioinspired computing is a branch of natural computing that seeks to develop optimization inspired by the behavior of beings found in nature. In this context, the evolutionary algorithms and those based on collective intelligence stand out. The former are inspired by the biological evolution of living beings and these by the collective behavior of insects and animals. In this work, representatives of these two areas will be put to the test. Classic meta-heuristics, such as PSO and DE, and also the most recent representati- ves: GWO (grey wolves), MFO (moth-flame), SSA (salps), WOA (humpback whales), DA (dragonflies), as well as SCA based on the periodic behavior of sine and cosine functions. The performance of these meta-heuristics will be compared through non-parametric statistical tests (NxN algorithms), which are free methods of any type of data distribution, that is, unlike parametric ones do not depend on the requirements of normality, homoscedasticity and independence of the data. Within these non-parametric tests, two post- hoc procedures were applied: Nemenyi (1963) and Shaffer (1983), which aid in the comparison in pairs (1x1) of the metaheuristics group. In addition, two others meta-heuristics form the analysis group, JADE and LSHADE, which use self-adaptive techniques of the DE parameters. Following these techniques will be presented modifications and adaptations of GWO and MFO that present better performances than the originals. The performance of these meta-heuristics will be analyzed through three case studies: two pre- dictive control problems, simple inverted pendulum and attitude of satellites, and mono-objective functions with bound constraints of CEC2017 competition. From these case studies the median of 51 runs of each problem is extracted. In the predictive control problems the MFO and GWO algorithms performed well. In this work were presented three new versions of GWO and one of MFO that surpassed the results of their repective originals in the control problems.pt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Mecânica (FT ENM)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Sistemas Mecatrônicospt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.