Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42526
Arquivos associados a este item:
Não existem arquivos associados a este item.
Título: MHM : a novel collaborative spectrum sensing method based on markov-chains and harmonic mean for 5G networks
Autor(es): Ferreira, Gabriel de Carvalho
Barreto, Priscila América Solís Mendez
Rocha, Geraldo P.
Caetano, Marcos Fagundes
Karvonen, Heikki
Vartiainen, Johanna
Assunto: Sensores
Processos de Markov
5G
Rádio
Acesso dinâmico ao espectro
Data de publicação: Jun-2020
Editora: IEEE
Referência: FERREIRA, Gabriel et al. MHM: a novel collaborative spectrum sensing method based on markov-chains and harmonic mean for 5G networks. In: 2020 IFIP NETWORKING CONFERENCE (NETWORKING), 2020, Paris. Proceedings [...]. Paris: IEEE, 2020. Disponível em: https://ieeexplore.ieee.org/document/9142763.
Abstract: Cognitive radios and spectrum sensing are considered fundamental for spectrum optimization in 5G networks. Collaborative spectrum sensing improves detection by collecting data from different nodes and increasing the amount of information available for accurate channel state detection. However, malicious nodes can report wrong information, disturbing the collaborative sensing results and network operation. This paper presents two techniques: (1) a Markov chain-based technique that improves spectrum sensing accuracy while reducing the reporting control traffic; (2) a harmonic mean-based technique that discards less relevant sensing reports, mitigating Byzantine attacks. The two techniques were evaluated in a simulation scenarios based on rural areas. The results show that the proposed techniques increase the accuracy of a classic hard-combining fusion technique, reducing false positives and reporting overhead while improving network resilience to malicious nodes.
Unidade Acadêmica: Instituto de Ciências Exatas (IE)
Departamento de Ciência da Computação (IE CIC)
Versão da editora: https://ieeexplore.ieee.org/document/9142763
Aparece nas coleções:Trabalhos apresentados em evento

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.