http://repositorio.unb.br/handle/10482/42816
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Acciarri, Cristina | - |
dc.contributor.author | Shumyatsky, Pavel | - |
dc.date.accessioned | 2022-02-03T19:19:44Z | - |
dc.date.available | 2022-02-03T19:19:44Z | - |
dc.date.issued | 2022-01-07 | - |
dc.identifier.citation | ACCIARRI, Cristina, SHUMYATSKY, Pavel. Profinite groups with restricted centralizers of π-elements. Mathematische Zeitschrift, 2022. DOI: https://doi.org/10.1007/s00209-021-02955-9. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/42816 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Profinite groups with restricted centralizers of π-elements | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Grupos profinitos | pt_BR |
dc.subject.keyword | π-elementos | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s00209-021-02955-9 | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007%2Fs00209-021-02955-9 | pt_BR |
dc.description.abstract1 | A group G is said to have restricted centralizers if for each g in G the centralizer CG(g) either is finite or has finite index in G. Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of primes π, we take interest in profinite groups with restricted centralizers of π-elements. It is shown that such a profinite group has an open subgroup of the form P×Q, where P is an abelian pro-π subgroup and Q is a pro-π′ subgroup. This significantly strengthens a result from our earlier paper. | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.