Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42816
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAcciarri, Cristina-
dc.contributor.authorShumyatsky, Pavel-
dc.date.accessioned2022-02-03T19:19:44Z-
dc.date.available2022-02-03T19:19:44Z-
dc.date.issued2022-01-07-
dc.identifier.citationACCIARRI, Cristina, SHUMYATSKY, Pavel. Profinite groups with restricted centralizers of π-elements. Mathematische Zeitschrift, 2022. DOI: https://doi.org/10.1007/s00209-021-02955-9.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42816-
dc.language.isoInglêspt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleProfinite groups with restricted centralizers of π-elementspt_BR
dc.typeArtigopt_BR
dc.subject.keywordGrupos profinitospt_BR
dc.subject.keywordπ-elementospt_BR
dc.identifier.doihttps://doi.org/10.1007/s00209-021-02955-9pt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs00209-021-02955-9pt_BR
dc.description.abstract1A group G is said to have restricted centralizers if for each g in G the centralizer CG(g) either is finite or has finite index in G. Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of primes π, we take interest in profinite groups with restricted centralizers of π-elements. It is shown that such a profinite group has an open subgroup of the form P×Q, where P is an abelian pro-π subgroup and Q is a pro-π′ subgroup. This significantly strengthens a result from our earlier paper.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.