Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42865
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMachado, Marcela Rodrigues-
dc.contributor.authorSantos, J. M. C. dos-
dc.date.accessioned2022-02-12T01:48:44Z-
dc.date.available2022-02-12T01:48:44Z-
dc.date.issued2021-10-
dc.identifier.citationMACHADO, M. R.; SANTOS, J. M. C. dos. Effect and identification of parametric distributed uncertainties in longitudinal wave propagation. Applied Mathematical Modelling, v. 98, p. 498-517, out. 2021. DOI: https://doi.org/10.1016/j.apm.2021.05.018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0307904X21002638. Acesso em: 11 fev. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42865-
dc.language.isoInglêspt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleEffect and identification of parametric distributed uncertainties in longitudinal wave propagationpt_BR
dc.typeArtigopt_BR
dc.subject.keywordMétodo WKBpt_BR
dc.subject.keywordPropagação de ondaspt_BR
dc.rights.license© 2021 Elsevier Inc. All rights reserved.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.apm.2021.05.018pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0307904X21002638pt_BR
dc.description.abstract1Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.