Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/42868
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAbade, André-
dc.contributor.authorPorto, Lucas Faria-
dc.contributor.authorFerreira, Paulo Afonso-
dc.contributor.authorVidal, Flávio de Barros-
dc.date.accessioned2022-02-12T02:56:33Z-
dc.date.available2022-02-12T02:56:33Z-
dc.date.issued2022-01-
dc.identifier.citationABADE, André et al. NemaNet: a convolutional neural network model for identification of soybean nematodes. Biosystems Engineering, v. 213, p. 39-62, jan. 2022. DOI: https://doi.org/10.1016/j.biosystemseng.2021.11.016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S153751102100283X. Acesso em: 11 fev. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42868-
dc.language.isoInglêspt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleNemaNet : a convolutional neural network model for identification of soybean nematodespt_BR
dc.typeArtigopt_BR
dc.subject.keywordPlantas - doenças e pragaspt_BR
dc.subject.keywordFitonematóidept_BR
dc.subject.keywordNematoda em plantaspt_BR
dc.subject.keywordDeep Learningpt_BR
dc.subject.keywordRedes neurais convolucionaispt_BR
dc.rights.license© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.biosystemseng.2021.11.016pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S153751102100283Xpt_BR
dc.description.abstract1Phytoparasitic nematodes (or phytonematodes) are causing severe damage to crops and generating large-scale economic losses worldwide. In soybean crops, annual losses are estimated at 10.6% of the world production. Besides, the identification of these species through microscopic analysis by an expert with taxonomic knowledge is often laborious, time-consuming, and susceptible to failure. From this perspective, robust and automatic approaches are necessary for identifying phytonematodes that are capable of providing correct diagnoses for the classification of species and subsidizing of all control and prevention measures. This work presents a new public data set called NemaDataset containing 3063 microscopic images from five nematode species with the most significant damage relevance for the soybean crop. Additionally, we propose a new Convolutional Neural Network (CNN) model defined as NemaNet and present a comparative assessment with thirteen popular models of CNNs, all of them representing state-of-the art classification and recognition. The general average was calculated for each model, on a from-scratch training; the NemaNet model reached 96.76% accuracy, while the best evaluation fold reached 98.04%. When training with transfer learning was performed, the average accuracy reached 98.82%. The best evaluation fold reached 99.35%, and overall accuracy improvements of over 6.83% and 4.1%, for from-scratch and transfer learning training, respectively, compared to other popular models were achieved.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.