http://repositorio.unb.br/handle/10482/44510
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2022_MariaLuizaFerrariniGoulart.pdf | 939,15 kB | Adobe PDF | Visualizar/Abrir |
Título: | Grupos finitos com poucos elementos em órbitas por automorfismos |
Autor(es): | Goulart, Maria Luiza Ferrarini |
E-mail do autor: | marialuizafg@gmail.com |
Orientador(es): | Dantas, Alex Carrazedo |
Assunto: | Teoria de grupos Grupo de automorfismos Órbitas |
Data de publicação: | 12-Ago-2022 |
Data de defesa: | 3-Jun-2022 |
Referência: | GOULART, Maria Luiza Ferrarini. Grupos finitos com poucos elementos em órbitas por automorfismos. 2022. 70 f., il. Dissertação (Mestrado em Matemática) — Universidade de Brasília, Brasília, 2022. |
Resumo: | Sejam G um grupo finito e Aut(G) o grupo de automorfismos de G. Definimos a órbita por automorfismos do elemento g ∈ G como o conjunto OAut(G) (g) = {g σ ;σ ∈ Aut(G)} e chamamos de Aut(G)-órbita uma órbita por automorfismos. Determinamos maol o tamanho máximo de uma órbita por automorfismos. Essa dissertação tem como objetivo o estudo de grupos finitos cujos tamanhos das órbitas são pequenos. Em particular, estudamos a caracterização de grupos tais que maol(G) ∈ {1,2,3}, e mostramos que existe uma família infinita de grupos finitos satisfazendo maol(G) = 8. Tais resultados foram estudados tendo como base o artigo Finite groups with only small automorphism orbits, de Alexander Bors, publicado em 2020. |
Abstract: | Sejam G um grupo finito e Aut(G) o grupo de automorfismos de G. Definimos a órbita por automorfismos do elemento g ∈ G como o conjunto OAut(G) (g) = {g σ ;σ ∈ Aut(G)} e chamamos de Aut(G)-órbita uma órbita por automorfismos. Determinamos maol o tamanho máximo de uma órbita por automorfismos. Essa dissertação tem como objetivo o estudo de grupos finitos cujos tamanhos das órbitas são pequenos. Em particular, estudamos a caracterização de grupos tais que maol(G) ∈ {1,2,3}, e mostramos que existe uma família infinita de grupos finitos satisfazendo maol(G) = 8. Tais resultados foram estudados tendo como base o artigo Finite groups with only small automorphism orbits, de Alexander Bors, publicado em 2020. |
Unidade Acadêmica: | Instituto de Ciências Exatas (IE) Departamento de Matemática (IE MAT) |
Informações adicionais: | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2022. |
Programa de pós-graduação: | Programa de Pós-Graduação em Matemática |
Licença: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. |
Agência financiadora: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). |
Aparece nas coleções: | Teses, dissertações e produtos pós-doutorado |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.