http://repositorio.unb.br/handle/10482/45071
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Albuquerque, José Carlos de | - |
dc.contributor.author | Santos, Gelson Conceição Gonçalves dos | - |
dc.contributor.author | Figueiredo, Giovany de Jesus Malcher | - |
dc.date.accessioned | 2022-10-26T23:16:30Z | - |
dc.date.available | 2022-10-26T23:16:30Z | - |
dc.date.issued | 2021-03-08 | - |
dc.identifier.citation | ALBUQUERQUE, José Carlos de; SANTOS, Gelson G. dos; FIGUEIREDO, Giovany M. Existence and behavior of positive solutions for a class of linearly coupled systems with discontinuous nonlinearities in RN. Journal of Fixed Point Theory and Applications, v. 23, n.2, maio 2021. DOI 10.1007/s11784-021-00858-0. Disponível em: https://link.springer.com/article/10.1007/s11784-021-00858-0. Acesso em: 26 out. 2022. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/45071 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Springer Nature | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Existence and behavior of positive solutions for a class of linearly coupled systems with discontinuous nonlinearities in RN | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Sistemas linearmente acoplados | pt_BR |
dc.subject.keyword | Lipschitz, Função de | pt_BR |
dc.subject.keyword | Soluções positivas | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s11784-021-00858-0 | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11784-021-00858-0 | pt_BR |
dc.description.abstract1 | In this paper we are concerned with existence and behavior of positive solutions to the following class of linearly coupled elliptic systems with discontinuous nonlinearities −Δu+V1(x)u=H(u−β)f1(u)+a(x)v,−Δv+V2(x)v=H(v−β)f2(v)+a(x)u,u,v∈D1,2(RN)∩W2,2loc(RN),in RN,in RN,(S)β where β≥0, N≥3, V1,V2, a:RN→R are positive potentials, which can vanish at infinity, f1,f2:R→R are continuous functions and H is the Heaviside function, i.e, H(t)=0 if t≤0, H(t)=1 if t>0. We use a suitable nonsmooth truncation, for systems, to apply a version of the penalization method of Del Pino and Felmer (Calc Var Partial Differ Equ 4:121–137, 1996) combined with the Mountain Pass Theorem for locally Lipschitz functional to obtain a positive solution (uβ,vβ) of (S)β in multivalued sense. In addition, we show that (uβ,vβ)→(u,v) in D1,2(RN)×D1,2(RN) as β→0+, where (u, v) is a positive solution of the continuous system (S)0 in strong sense. | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0003-2273-6054 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0003-1697-1592 | pt_BR |
dc.contributor.email | mailto:josecarlos.melojunior@ufpe.br | pt_BR |
dc.contributor.email | mailto:gelsonsantos@ufpa.br | pt_BR |
dc.contributor.email | mailto:giovany@unb.br | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.