http://repositorio.unb.br/handle/10482/45088
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Figueiredo, Giovany de Jesus Malcher | - |
dc.contributor.author | Moreira, Sandra I. | - |
dc.contributor.author | Ruviaro, Ricardo | - |
dc.date.accessioned | 2022-11-03T20:43:39Z | - |
dc.date.available | 2022-11-03T20:43:39Z | - |
dc.date.issued | 2021-09-12 | - |
dc.identifier.citation | FIGUEIREDO, Giovany M.; MOREIRA, Sandra I.; RUVIARO, Ricardo. Nonlinear perturbations of a periodic fractional Laplacian with supercritical growth. Topological Methods in Nonlinear Analysis, v. 58, n. 1, p. 335-349, 2021. DOI 10.12775/TMNA.2020.073. Disponível em: https://apcz.umk.pl/TMNA/article/view/35215. Acesso em: 03 nov. 2022. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/45088 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Nicolaus Copernicus University | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Nonlinear perturbations of a periodic fractional Laplacian with supercritical growth | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Métodos variacionais | pt_BR |
dc.subject.keyword | Expoente supercrítico | pt_BR |
dc.subject.keyword | Equação fracionária | pt_BR |
dc.identifier.doi | http://doi.org/10.12775/TMNA.2020.073 | pt_BR |
dc.relation.publisherversion | https://apcz.umk.pl/TMNA/article/view/35215 | - |
dc.description.abstract1 | Our main goal is to explore the existence of positive solutions for a class of nonlinear fractional Schrödinger equation involving supercritical growth given by $$ (- \Delta)^{\alpha} u + V(x)u=p(u),\quad x\in \mathbb{R^N},\ N \geq 1. $$ We analyze two types of problems, with $V$ being periodic and asymptotically periodic; for this we use a variational method, a truncation argument and a concentration compactness principle. | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0003-1697-1592 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0002-3255-2446 | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.