Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46078
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_MoniqueLohaneXavierSilva.pdf383,33 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorNakano, Eduardo Yoshio-
dc.contributor.authorSilva, Monique Lohane Xavier-
dc.date.accessioned2023-07-12T22:11:21Z-
dc.date.available2023-07-12T22:11:21Z-
dc.date.issued2023-07-12-
dc.date.submitted2022-11-03-
dc.identifier.citationSILVA, Monique Lohane Xavier. Um modelo de risco de crédito bayesiano para classificação de clientes inadimplentes. 2022. 61 f., il. Dissertação (Mestrado em Estatística) — Universidade de Brasília, Brasília, 2022.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46078-
dc.descriptionDissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2022.pt_BR
dc.description.abstractO objetivo desse trabalho foi propor uma modelagem bayesiana de risco de crédito para a classificação de clientes quanto ao seu risco de inadimplência. O diferencial da metodologia proposta é a possibilidade de incorporar uma informação a priori no processo de classificação dos clientes e não apenas na obtenção das estimativas dos parâmetros do modelo que gera o Escore de Risco. A principal vantagem desse procedimento se deve à simplicidade em incorporar a opinião do especialista no processo de classificação, algo que não ocorre na modelagem bayesiana tradicional, cuja informação a priori recai sobre os parâmetros dos modelos que, geralmente, são quantidades abstratas e/ou associadas à covariáveis sujeitas a problemas de multicolinearidade. Para a devida ilustração da metodologia proposta, utilizou-se um conjunto de dados na literatura e os resultados obtidos mostraram que o modelo é útil para a classificação de clientes quanto a sua probabilidade de inadimplência.pt_BR
dc.language.isoporpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleUm modelo de risco de crédito bayesiano para classificação de clientes inadimplentespt_BR
dc.title.alternativeA bayesian credit risk model for rating defaulting customerspt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordEscore de riscopt_BR
dc.subject.keywordRegressão logísticapt_BR
dc.subject.keywordInferência bayesianapt_BR
dc.subject.keywordInformação a prioript_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1The aim of this work was to propose a bayesian credit risk model for classifying customers in terms of their default risk. The differential of the proposed methodology is the possibility of incorporating a priori information in the customer classification process and not just in the estimation of the customers' evaluation parameters. The main advantage of this procedure is due to the simplicity in incorporating the expert's opinion in the classification process, something that does not occur in traditional bayesian modeling, whose a priori information falls on the parameters of the models, which are usually abstract quantities and/or associated with covariates with multicollinearity problems. To illustrate the proposed methodology, a dataset in the literature was used and the results obtained showed that the model is useful for classifying customers in terms of their probability of default.pt_BR
dc.contributor.emailmonique_lohane@hotmail.compt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Estatísticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.