Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46534
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Extended Weibull Regression.pdf972,47 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRodrigues, Gabriela Maria-
dc.contributor.authorOrtega, Edwin M. M.-
dc.contributor.authorCordeiro, Gauss M.-
dc.contributor.authorVila Gabriel, Roberto-
dc.date.accessioned2023-09-22T15:27:46Z-
dc.date.available2023-09-22T15:27:46Z-
dc.date.issued2022-10-05-
dc.identifier.citationRODRIGUES, Gabriela M. et al. An extended weibull regression for censored data: application for COVID-19 in Campinas, Brazil. Mathematics, [S.l.], v. 10, n. 19, 3644. DOI: https://doi.org/10.3390/math10193644. Disponível em: https://www.mdpi.com/2227-7390/10/19/3644. Acesso em: 22 set. 2023.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46534-
dc.language.isoengpt_BR
dc.publisherMDPIpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleAn extended weibull regression for censored data : application for COVID-19 in Campinas, Brazilpt_BR
dc.typeArtigopt_BR
dc.subject.keywordEstatística matemáticapt_BR
dc.subject.keywordCovid-19pt_BR
dc.rights.license(CC BY) Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pt_BR
dc.identifier.doihttps://doi.org/10.3390/math10193644pt_BR
dc.description.abstract1This work aims to study the factors that increase the risk of death of hospitalized patients diagnosed with COVID-19 through the odd log-logistic regression model for censored data with two systematic components, as well as provide new mathematical properties of this distribution. To achieve this, a dataset of individuals residing in the city of Campinas (Brazil) was used and simulations were performed to investigate the accuracy of the maximum likelihood estimators in the proposed regression model. The provided properties, such as stochastic representation, identifiability, and moments, among others, can help future research since they provide important information about the distribution structure. The simulation results revealed the consistency of the estimates for different censoring percentages and show that the empirical distribution of the modified deviance residuals converge to the standard normal distribution. The proposed model proved to be efficient in identifying the determinant variables for the survival of the individuals in this study, which can help to find more opportune treatments and medical interventions. Therefore, the new model can be considered an interesting alternative for future works that evaluate censored lifetimespt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-8141pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-3999-7402pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-3052-6551pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1073-0114pt_BR
dc.contributor.affiliationUniversity of São Paulo, Department of Exact Sciencespt_BR
dc.contributor.affiliationUniversity of São Paulo, Department of Exact Sciencespt_BR
dc.contributor.affiliationFederal University of Pernambuco, Department of Statisticspt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Statisticspt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins
UnB - Covid-19

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.